
POLITECNICO DI TORINO
Master’s Degree in DATA SCIENCE AND

ENGINEERING

Master’s Degree Thesis

Spatio-Temporal Graph Neural Networks
for Wind Power Forecasting

Supervisors

Prof. Paolo Garza

Dr. Luca Colomba

Candidate

Giovanni Mantegna

December 2023

Summary

Wind power forecasting represents a significant and challenging aspect of power
supply management. The electricity grid necessitates a continual balance between
electricity consumption and generation. Since wind power generation is notably
influenced by wind speed, unlike conventional power generation systems, it can
exhibit erratic fluctuations, requiring power substitution from alternative sources.
For these reasons, wind farm production forecasts are indispensable. However,
forecasting wind power production is difficult due to the inherent unpredictability
of wind behavior. Various methodologies exist in the literature to address this
challenge, including the utilization of numerical weather prediction models.

This thesis focuses on wind power forecasting solely based on historical turbine
production data. This work aligns with the 2022 KDD Cup challenge presented by
Baidu, which tasks participants with predicting wind farm active power for a 48-hour
horizon using past data and wind turbine spatial positioning data. The primary
emphasis of this challenge is on leveraging spatial information to enhance forecasting
precision. The thesis starts with an exploratory data analysis to comprehend the
distinctive characteristics of wind data and proceeds to a data cleaning process to
rectify corrupted data. Several forecasting models are subsequently evaluated.

The investigation begins with a basic statistical model, Lasso regression, it
advances to a more intricate model such as gated recurrent units , and ultimately
focuses on spatio-temporal graph neural networks. First of all, the general frame-
work of spatio-temporal graph neural networks is investigated and within this
framework the Graph WaveNet model is considered as the most appropriate for
this task. In fact, this model is able to capture informative relationships between
the time series and spatial data of various turbines.

The results of the thesis are presented in two distinct contexts: short-term
forecasts, considering prediction horizons of 2 hours, 6 hours, and 12 hours, and
long-term forecasts, spanning 48 hours. For short-term forecasts, it is demonstrated
that models such as gated recurrent units network and Graph WaveNet exhibit a
pronounced superiority compared to regression-based models. Notably, the Graph
WaveNet model achieves superior results when compared to the other models
supporting the thesis that spatial data can be effectively employed to enhance

ii

wind power forecasting. In the experimental section, the incorporation of external
features such as wind speed and other covariates is also investigated, and an
optimized hyperparameter configuration is identified.

In the long-term setting experiments, it is demonstrated that a single model
is insufficient for accurate 48-hour wind power predictions due to the need to
simultaneously capture long-term and short-term dynamics. An ensemble model
approach, combining prediction at different forecast horizons (12 hours and 48
hours), is used to improve forecasting performance. This ensemble model consists
of two Graph WaveNet models trained separately, one for prediction in the short-
term setting and one for prediction in the long-term setting. Two different graph
configurations were used for the two models. The resulting best-performing model
in this thesis achieves results comparable to the top 9 participants out of more
than 2000 entrants in the 2022 KDD Cup challenge.

In the final part of the thesis, potential future implementations are explored.
On November 14, 2023, Google DeepMind released the source code of GraphCast,
an auto-regressive graph neural network model capable of providing more accurate
weather forecasts than numerical weather prediction models. Combining GraphCast
with the local graph neural network studied in this thesis could be effective, since
GraphCast provides an accurate prediction on a large scale while a local graph neural
network provides an accurate prediction on a short scale. This hypothetical model
could provide precise forecasts and enhance wind power forecasting performance,
thus improving wind energy management.

iii

Acknowledgements

I extend my gratitude to my supervisors, Professor Paolo Garza and Dr. Luca
Colomba, for their guidance and valuable feedback throughout the completion of
this thesis. Special appreciation goes to my brother Francesco, my father Rosario,
and my cousin Fabio for their advice and support in navigating the complexities of
the research.

I am also deeply thankful for the support of those who have been by my side
during these two years. A sincere acknowledgment goes to my friend Domenico,
without whom my time in Turin would have been less enjoyable. Additionally, I
want to express my gratitude to my dear friends Dario, Vincenzo, Federico, Silvia,
and Alessandro for their encouragement.

Lastly, I extend my heartfelt thanks to my entire family, especially my mother
Francesca, including my feline companion Sam, for their enduring support and
patience throughout this educational journey.

iv

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 Related works 3

3 Background 5
3.1 Lasso Regression . 5
3.2 Neural Networks . 7

3.2.1 Backpropagation Algorithm 8
3.3 Recurrent Neural Networks (RNNs) 9
3.4 Long Short Term Memory networks (LSTMs) 10
3.5 Gated Recurrent Unit (GRU) . 11
3.6 Temporal Convolutional Networks (TCN) 12
3.7 Transformers . 14

3.7.1 Attention Mechanism . 14
3.8 Graph Neural Networks . 16

3.8.1 Graph Convolutional Networks (GCN) 17

4 Dataset 19
4.1 Data Exploration . 21
4.2 Data Cleaning . 25

5 Methodology 28
5.1 Problem Statement . 28
5.2 Spatio-Temporal Graph Neural Networks Framework 29
5.3 Spatio-Temporal Graph Convolutional Networks (STGCN) 30
5.4 Graph WaveNet . 31

v

6 Experiments and Results 34
6.1 Wind role for power forecasting . 34
6.2 Short-Term Setting . 37

6.2.1 Lasso Experiment . 37
6.2.2 GRU Experiment . 39
6.2.3 Graph WaveNet Experiment 42
6.2.4 Short-Term Results . 46

6.3 Long-Term Setting . 47
6.3.1 Performance of Individual Models 48
6.3.2 Ensemble Model . 49
6.3.3 Summary of all results . 51

7 Conclusions and Future Work 53
7.0.1 Future Works . 54

Bibliography 57

vi

List of Tables

4.1 Features specifications of the SDWPF dataset 19
4.2 Percentage of unusable data . 25
4.3 Percentage of unusable data after cleaning 27

6.1 Hyperparameters chosen for all the experiments done with the Graph
WaveNet model. 44

6.2 Table of all the results obtained . 52

vii

List of Figures

3.1 Recursive multi-step forecasting. Blu boxes represent observed values
whereas orange boxes represent predicted values. The input window
to the model is highlighted by a red dashed line. 6

3.2 Direct multi-step forecasting. Blu boxes represent observed values
whereas orange boxes represent predicted values. The input window
to the model is highlighted by a red dashed line. 7

3.3 Basic scheme of the perceptron structure 7
3.4 Example of a neural network structure with two hidden layers . . . 8
3.5 RNN structure . 9
3.6 LSTM cell structure . 11
3.7 GRU cell structure . 12
3.8 Example of causal convolution . 13
3.9 Example of dilated convolution with k = 2 and d = 1,2,4,8 14
3.10 Transformers as presented in the article by Vaswani et al. [13] . . . 15
3.11 Grid graph (left), line graph (middle), and a generic graph (right) . 16

4.1 Turbine relative position, the x-axis indicates the relative latitude
and y-axis the relative longitude. Each blue dot represents the
location of a wind turbine. 20

4.2 Pearson correlation matrix of wind turbine features. High values of
correlation are highlighted by red boxes whereas anti-correlation is
highlighted by blue boxes. 22

4.3 Pearson correlation matrix of active power of 134 turbines. The red
areas highlight groups of turbines with strong correlations, while
blue regions indicate isolated turbines with weaker correlations. The
hierarchical trees on the leaf and top of the matrix are obtained with
the average linkage method. 23

4.4 Left panel: spatial proximity hierarchical clustering of turbines
obtained with the average linkage method. Right panel: correlation
hierarchical clustering of turbines active power obtained with the
average linkage method. Different clusters have different colors. . . 24

viii

4.5 Time series of day 3 before cleaning 26
4.6 Time series of day 3 after cleaning 26

5.1 Structure of the spatial-temporal convolutional blocks as described
in Yu et al. [20] . 31

5.2 Graph WaveNet model structure 32

6.1 Scheme of wind power curve . 35
6.2 Scatter plot of wind power curve from data of turbine N.1 35
6.3 Regression between the wind power and the square of wind speed

for data of turbine N.1. Black dots are the dataset points and the
blu line represents the regression line 36

6.4 Computation of active power using wind speed data as input. Where
the relationship between active power and wind speed is the one
given in Equation 6.2 . 37

6.5 Example of prediction of Lasso regression for outfile N. 139 38
6.6 Example of prediction of Lasso regression for outfile N. 2 38
6.7 Network configuration for GRU Experiment. This network structure

presents 2 GRU layers of 128 units (left part) and 2 fully connected
layers (right part) of 64 units. 39

6.8 Comparison between GRU results with features and without features.
(a) panel shows results for 2 hours predictions, (b) panel for 6 hours,
and (c) panel for 12 hours. 41

6.9 Example of prediction of GRU model for outfile N. 139 42
6.10 First tested graph structure of wind factory. Unweighted edges are

used and each node connects to its five closest nodes. When the
distance between a node and other nodes is the same the degree is
slightly larger than five. The colors indicate the degree centrality of
each node. 43

6.11 Second tested graph structure of wind factory. Two nodes are
connected if they are within a radius of 1100 meters. The colors
indicate the degree centrality of each node. 43

6.12 Graph structure from the self-adaptive adjacency matrix. The
structure is learned from the model capturing additional connections
between nodes. The color indicates the degree centrality of nodes.
Yellow nodes have a higher degree than blue nodes. 45

6.13 Comparison between models performances in the short term setting.
Error score values are on the y-axis. (a) panel reports comparison
for 2-hour forecasting, (b) panel for 6-hour forecasting, and (c) panel
for 12-hour forecasting. 47

ix

6.14 Comparison between the performance of models in a long-term
setting. Error score values are on the y-axis. The forecasting period
is 48 hours. 48

6.15 Error score as a function of the predicting time instants for Graph
WaveNet 48 hours (blue line), Lasso regression (orange line) 48 hours
and Graph WaveNet 12 hours (green line). 49

6.16 Overview of the performance of all models for 48-hour forecasting.
Error score values are on the y-axis. KDDWinner error score is
reported in blue color for comparison with the model investigated in
this thesis. 50

6.17 Prediction of ensemble model over 48 hours for outfile N.54. The
red line is the model prediction while the blue line is the real-time
series. 50

6.18 Prediction of ensemble model over 48 hours for outfile N.88. The
red line is the model prediction while the blue line is the real-time
series. 51

7.1 GraphCast aggregation structure as described in [49] 54
7.2 Example graph structure of a possible extension of the thesis work.

Orange nodes represent external nodes with GraphCast predictions,
while blue nodes depict wind farm turbines. 55

x

Chapter 1

Introduction

In the context of addressing climate change, wind energy plays a fundamental role
among renewable energy sources. In recent years, substantial investments have
been directed towards the establishment of wind farms, particularly in offshore
locations. However, unlike some other renewable energy sources, wind energy
production is inherently characterized by its intermittent and unpredictable nature.
This inherent variability poses a significant challenge for both grid operators
and power grid management. To tackle the challenge of managing wind energy
effectively, it has become necessary to develop methods for forecasting wind energy
production over specific forecast horizons. This task is referred to as wind power
forecasting (WPF) and can be accomplished through a variety of approaches. One
common method involves the use of physical models, such as precise numerical
weather prediction (NWP) models. While these models offer high accuracy, they
come with substantial computational costs and are better suited for longer-term
forecasts. However, when the need arises for shorter-term forecasts, spanning
hours or days, alternative approaches become more relevant. These alternatives
encompass statistical methods, machine learning, and deep learning techniques.
These methodologies leverage historical turbine production data and other sensor-
derived information to predict future wind energy generation. In this context, the
Chinese company Baidu introduced the Baidu KDD CUP 2022 challenge [1], aimed
at identifying the most effective model for predicting wind energy production time
series. A distinctive feature of this challenge is the provision of spatial coordinates
for the turbines, enabling the integration of spatial data with temporal information
to enhance forecasting accuracy. In fact, the spatio-temporal interdependence of
different physical locations can be particularly important for power forecasts since
physical properties such as wind fields, are non-stationary in both space and time,
meaning that historical time series for different physical locations should be jointly
considered to better learn global trends and propagation in both space and time.
Although the challenge ended in 2022 with the participation of over 2000 teams

1

Introduction

worldwide, the dataset remains available for further research and improvements.
Following the specification of Baidu KDD CUP 2022 challenge, the primary

objective of this thesis is to present a comprehensive analysis of methodologies
suitable for the task of wind power forecasting, focusing on a 2-day forecast
horizon. The thesis aims to show the key factors and critical challenges inherent
in wind power forecasting. Specifically, the thesis demonstrates how state-of-
the-art deep learning methods can yield more accurate predictions compared
to traditional statistical models. In this regard, spatio-temporal graph neural
networks are employed, showing their capability to analyze and integrate both
temporal and spatial information. An initial phase encompasses an exploratory
analysis of the dataset and a data cleaning process. Subsequently, three distinct
forecasting methods are investigated: 1) Lasso regression, serving as a foundational
statistical model and acting as the benchmark for subsequent models, 2) a Gated
Recurrent Unit (GRU) [2] network evaluated for its predictive performance and
3) the innovative Graph WaveNet [3], a member of the spatio-temporal graph
neural network family, assessed for its forecasting capabilities. The thesis conducts
a comparative analysis of these models, considering both short-term (2 hours, 6
hours, 12 hours) and long-term (48 hours) forecasting scenarios, demonstrating
the superior performance of the spatio-temporal time series forecasting approach
for each forecasting horizon. Finally, an ensemble model that enhances long-term
forecasting by combining short-term and long-term predictions is presented.

The structure of the thesis is the following: Chapter 2 reviews the related works
in the field of wind power forecasting. Chapter 3 provides an overview of the
theoretical concepts of the methods presented in subsequent sections. Chapter 4
details the KDD Baidu challenge dataset and its distinctive characteristics. Chapter
5 explores in detail the theory behind spatio-temporal graph neural network methods.
Chapter 6 presents the experiments and their results. Lastly, Chapter 7 offers
concluding remarks and final considerations.

2

Chapter 2

Related works

The chapter discusses the extensive body of scientific literature concerning Wind
Power Forecasting (WPF) and its evolution over time in response to advancements
in time series forecasting. The primary focus of this chapter is on statistical mod-
els, excluding numerical weather prediction (NWP) models and physical models.
Historically, one- and two-day forecasts of wind speed relied on basic statistical
methods such as AutoRegressive Integrated Moving Average (ARIMA) models.
Notable studies by Kavasseri and Seetharaman [4] and Singh, Mohapatra, et al.
[5], applied variations of ARIMA to enhance wind power forecasting. Machine
learning algorithms like Support Vector Regressor (SVR) and K-nearest neighbor
(KNN) were also employed in this context [6, 7, 8]. In recent years, the scien-
tific community has increasingly turned to neural networks for their ability to
capture complex non-linear relationships. Among neural network architectures,
Recurrent Neural Networks (RNN) have gained popularity, with variants like Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) showing promise
in improving wind power forecasts, as demonstrated by Li et al. [9]. WaveNet,
introduced by Oord et al. [10] in 2016 shows the utility of 1D convolution for time
series forecasting, particularly for capturing long-term dependencies. Convolution
1D has proven effective in wind power forecasting, as seen in the work by Shivam
et al.[11] and the work by Dong et al.[12]. In 2017, transformer architectures
were introduced in Vaswani et al. innovative paper "Attention is All You Need"
[13]. Although originally designed for natural language processing, transformers
have found applications in various deep learning domains. For time series fore-
casting, multiple transformer models, including Temporal Fusion Transformer[14],
LogSparse Transformer[15], and Autoformer[16], have been developed and have
shown significant promise in wind power forecasting as highlighted by different
papers [17, 18, 19]. Recent research has emphasized the use of spatial data to en-
hance wind power forecasting. The use of Spatio-temporal Graph Neural Networks
(STGNN) has gained prominence, allowing the incorporation of both spatial and

3

Related works

temporal information. These STGNN architectures, initially developed for tasks
such as traffic forecasting, have been adapted to wind power forecasting. Special-
ized examples include Spatio-Temporal Graph Convolutional Networks (STGCN)
[20], Adaptive Graph Convolutional Recurrent Networks (AGCRN) [21], Graph
WaveNet [3], and Diffusion Convolutional Recurrent Neural Network (DCRNN)
[22]. These architectures have demonstrated the capability of spatial information
to enhance forecasting. Several recent studies, including those by Stańczyk and
Mehrkanoon [23], Wang et al. [24] and Wang and He [25] have leveraged STGNNs
for wind power forecasting, showing superior performance compared to previous
models.

In the context of the Baidu KDD CUP 2022 challenge [1], various high-
performance models have emerged. Huerta et al. proposes a solution combining
GRU models for short-term forecasting and a KNN regressor for long-term fore-
casting [26]. Zhao et al. utilized GRU for short-term forecasting and a linear
temporal layer for long-term forecasting, achieving fifth place in the challenge [27].
Spatial data proves to be a focal point for enhancing forecasting in the challenge, as
demonstrated in the work of Jiang et al. who tested two types of STGNNs models,
the AGCRN and MTGNN models [28]. The winning solution of the challenge,
proposed by Li et al., employed an ensemble model that integrates two modules:
the DMST module for short-term forecasting and the ST-Tree module for long-term
forecasting, both of which use spatial and temporal aggregation techniques [29].

4

Chapter 3

Background

In this chapter, the theory behind the methods used in the experiments section
will be briefly introduced. These methods are currently used for the time-series
forecasting problem and are based on machine learning and deep learning.

3.1 Lasso Regression
Within the domain of machine learning, regression encompasses a collection of
mathematical methodologies that empower data scientists to anticipate continuous
outcomes denoted as y by harnessing one or more predictor variables denoted as
x. Among these methodologies, linear regression distinguishes itself as the most
widely embraced approach due to its simple and effective characteristics in the
domains of prediction and forecasting.

In the context of linear regression, the principal objective is to determine a
hyperplane. This determination is achieved through the minimization of the
cumulative sum of mean-squared errors across all data points. To express this
formally in mathematical terms, linear regression is employed to address the
following problem statement:

Given a set of N tuples (xi, yi) where xi belongs to Rn and yi belongs to R for
all i in the range from 1 to N, we aim to find:

ây = β0 + βx (3.1)
subject to the condition:

minβ0,β

NØ
i=1

...yi − (β0 + βxi)
...2

(3.2)

In the experimental section, Lasso regression, a regularized version of linear
regression, is utilized. Lasso regression not only minimizes the cumulative sum of

5

Background

mean-squared errors but also incorporates a regularization term, resulting in the
following optimization problem:

minβ0,β

NØ
i=1

...yi − (β0 + βxi)
...2

+ α
NØ

k=0
|βk| (3.3)

The regularization term promotes simpler models by driving many regression
coefficients to zero.

Regression techniques find utility in the realm of time-series forecasting, where
predicting the next time step can be viewed as a regression task based on previous
time records. Two primary strategies for employing regression methods in multi-step
time-series forecasting exist. Firstly, a recursive multi-step forecasting approach
employs a single regression model to iteratively predict multiple time steps. The
model leverages the forecast at time t+1 to predict those at time t+2, as illustrated
in Figure 3.1.

Figure 3.1: Recursive multi-step forecasting. Blu boxes represent observed values
whereas orange boxes represent predicted values. The input window to the model
is highlighted by a red dashed line.

Alternatively, a direct multi-step forecasting approach can be adopted. In this
scenario, a multitude of regression models, equivalent to the number of time steps
to predict, are employed, as depicted in Figure 3.2.

The direct multi-step forecasting approach is computationally intensive, as it
necessitates training N distinct models, where N represents the number of steps to
forecast. For extended forecast horizons, the direct forecasting method exhibits
significantly improved performance compared to the recursive approach.

6

Background

Figure 3.2: Direct multi-step forecasting. Blu boxes represent observed values
whereas orange boxes represent predicted values. The input window to the model
is highlighted by a red dashed line.

3.2 Neural Networks
A neural network is a computational system inspired by the structural organization
of the human brain. It consists of multiple fundamental processing units known as
perceptrons (Figure 3.3). Each perceptron, when given an input vector x, operates
as follows:

out = f(w · x + b) (3.4)

Here, w represents a weight vector, and b is the bias term. The function f(·) is
an activation function that maps inputs to values within the range of 0 to 1.

Figure 3.3: Basic scheme of the perceptron structure

7

Background

The neural network’s architecture is built by arranging various perceptrons into
different layers. The output of one layer’s perceptrons serves as the input for the
perceptrons in the subsequent layer, as illustrated in the diagram in Figure 3.4:

Figure 3.4: Example of a neural network structure with two hidden layers

Following an initial learning phase in which the network’s weights are adjusted,
the neural network, when provided with specific inputs, can generate appropriate
outputs. It can accomplish complex tasks such as classification or regression.

3.2.1 Backpropagation Algorithm
The most crucial phase in neural networks is the learning phase, where the objective
is to determine the weight matrix W composed by the vectors of weights w(i)

obtained by the learning of pairs of input and output data. This allows the network
to produce correct outputs for classification or regression tasks when new input
data is presented. To achieve this, the backpropagation algorithm is employed,
which comprises two stages: forward propagation and backward propagation, used
to refine network parameters. In the forward propagation phase, the input is
fed into the network, passing through various perceptrons and layers, ultimately
producing a final output. For instance, in a network with three hidden layers, the
computation unfolds as follows:

z(1) = f(w(1) · x + b(1))
z(2) = f(w(2) · z(1) + b(2))

out = w(3) · z(2)

(3.5)

The goal is to find the output out in such a way as to minimize a cost function
that depends on all the weights W:

C = cost(out, y) (3.6)

8

Background

Here, cost(·) represents any differentiable function, and y is the expected output.
To achieve this minimization, gradient descent is employed since, in most cases,
the function cannot be solved analytically. During each training step, the weights
are updated as follows:

wnew
k = wold

k − η
∂C

∂wk

bnew
k = bold

k − η
∂C

∂bk

(3.7)

Where wk is a component of the vector w(i) and bk is the bias of a layer. This
process ensures a descent towards a local optimal minimum. Neural networks and
their variants serve as foundational components in all architectures utilized in deep
learning. Subsequent architectures we encounter will employ variations of neural
networks as their fundamental building blocks.

3.3 Recurrent Neural Networks (RNNs)
Recurrent Neural Networks, abbreviated as RNNs, constitute a specialized category
of neural networks well-suited for handling sequential data, such as time series or
natural language. Unlike conventional neural networks, where each fundamental
computational unit is linked to every unit in the subsequent layer, RNNs are
structured to embrace the temporal nature of the sequence. To illustrate this
concept visually, consider the diagram in Figure 3.5.

Figure 3.5: RNN structure

In this diagram, we can observe the essence of an RNN’s architecture, where
each time step is represented, and connections loop back to capture the sequential
relationships between data points. In the context of RNNs, we have N inputs
corresponding to different time points from 0 to t, and hidden states are introduced,
denoted as ht, to account for the sequential nature of the data. These hidden states
represent the outputs of neurons at time t − 1 and serve as inputs for the neurons
at time t. Consequently, the output at a subsequent time step t is calculated as
follows:

9

Background

ht = f(ht−1, xt) (3.8)
Here, xt represents the input at time t, and f(·) denotes a non-linear function.

In the PyTorch implementation, the output is expressed as:

ht = tanh(xtW
T
ih + bih + ht−1W

T
hh + bhh) (3.9)

During the training phase, as is the case with traditional neural networks, the
network learns the weights Wih and Whh which are shared across all layers. The
learning algorithm employed for this purpose is known as Backpropagation Through
Time (BPTT), which differs slightly from the classic backpropagation. However, it
is important to note that RNNs face certain challenges during training. They are
particularly susceptible to the issue of vanishing gradients, making it challenging
to train weights associated with deeper layers. Additionally, their architecture
primarily focuses on capturing short-term dependencies, making it difficult for
RNNs to effectively model long-term patterns.

3.4 Long Short Term Memory networks (LSTMs)
LSTM (Long Short Term Memory) networks represent an evolution of Recurrent
Neural Networks (RNNs), specifically designed to effectively handle long-term
dependencies. They find extensive application in tasks where the consideration
of historical data over extended periods is critical, such as time series forecasting
and natural language processing. To address the challenge of managing long-term
dependencies, LSTM introduces a specialized memory cell structure (Figure 3.6)
capable of retaining information for prolonged periods. This memory cell comprises
three essential components: the input gate, the forget gate, and the output gate,
along with a cell state that propagates information to subsequent time steps.

The forget gate’s primary function is to filter out irrelevant information and
preserve useful data. This operation is accomplished through a neural network
layer described by the equation:

ft = σ(Wf · [ht−1, xt] + bf) (3.10)
Here, the function σ(·) is the sigmoid function and returns values between 0 and

1, determining the extent to which information from previous time steps should be
forgotten and Wf are the weights of the forget gate. Conversely, the input gate
regulates the incorporation of new data at time t and its impact on the cell state
Ct. This process involves two key calculations:

it = σ(Wi · [ht−1, xt] + bi)æCt = tanh(WC · [ht−1, xt] + bC)
(3.11)

10

Background

Figure 3.6: LSTM cell structure

Here the index i refers to the input gate and the index C to the cell state. The
cell state, Ct, is computed by combining the contributions from the forget gate and
the input gate:

Ct = ft ∗ Ct−1 + it ∗ æCt (3.12)

Finally, the output gate (labeled with index o) is responsible for generating the
memory cell’s output and is calculated as follows:

ot = σ(Wo · [ht−1, xt] + bo)
ht = ot ∗ tanh(Ct)

(3.13)

Not only do LSTMs address the challenge of handling long-term dependencies,
but they also effectively mitigate the issue of vanishing gradients. Nevertheless,
the training procedure of LSTMs can be a more demanding task due to their
significantly larger parameter space compared to conventional RNNs.

3.5 Gated Recurrent Unit (GRU)
Another variant of recurrent neural networks (RNN) is known as the Gated Re-
current Unit (GRU). While its fundamental concept bears resemblance to Long
Short-Term Memory (LSTM) networks, GRU simplifies the architecture by merging
the forget gate and input gate into a single entity termed the "update gate." In
conjunction with this, another gate called the "reset gate" is introduced. Unlike
LSTMs, GRUs do not maintain a separate cell state distinct from the hidden state.
Instead, the memory cell behaves as illustrated in Figure 3.7.

11

Background

Figure 3.7: GRU cell structure

The behavior of the memory cell is mathematically defined by the following
equations:

zt = σ(Wz · [ht−1, xt])
rt = σ(Wr · [ht−1, xt])åht = tanh(W · [rt ∗ ht−1, xt])

ht = (1 − zt) ∗ ht−1 + zt ∗ åht

(3.14)

Where Wz are the weights of the update gate and Wr are the weights of the reset
gate. The notable advantage of this memory cell structure lies in its reduced
parameter count, which simplifies the training phase and often yields improved
results. It remains uncertain which memory cell structure performs optimally across
diverse tasks. Various studies, such as those conducted by Greff et al. [30] (2016)
and Jozefowicz et al. [31] (2015), have compared different RNN structures. Their
collective findings suggest that the choice of the best structure frequently depends
on the specific task and dataset characteristics.

3.6 Temporal Convolutional Networks (TCN)
Convolutional Neural Networks (CNNs) stand as a significant breakthrough in the
deep learning field. Ever since the pioneering CNN architectures [32, 33], they
have elevated performance across a wide spectrum of tasks, such as vision and
speech. The fundamental concept underlying this architectural approach involves
the incorporation of convolutional layers in addition to the fully connected layers.
Within these convolutional layers, filters or kernels are employed to convolve with
the input data, thereby extracting valuable feature maps. Convolution represents
a specialized operation in which one matrix is processed with another matrix. This

12

Background

operation entails the multiplication of cell values in a matrix with corresponding
cell values in the filter matrix. In more recent work by Bai et al. [34], convolutional
networks for time series forecasting are formalized, resulting in the introduction of
Temporal Convolutional Networks (TCN). For 1D sequences, applying convolution
implies careful consideration, as it must consider the causal constraint. In fact
the prediction at time t should solely depend on preceding time points without
incorporating information from the data to be predicted. To address this, causal
convolution was introduced in Oord et al. [10]. Causal convolution exclusively
involves elements from time t and earlier in the previous layer during the convolution
process (see Figure 3.8).

Figure 3.8: Example of causal convolution

Nonetheless, simple causal convolution is restricted in its ability to consider a
historical context that scales linearly with the network’s depth. This limitation
requires very deep architectures, particularly in tasks that require access to a more
extensive historical context. Consequently, Oord et al. [10] introduced dilated
convolution, represented by the operation F on an element s:

F (s) = (x ∗d f)(s) =
k−1Ø
i=0

f(i) · xs−d·i (3.15)

Here, d represents the dilation factor, k indicates the filter size, and s − d · i
accounts for the past direction. Dilation introduces a fixed step between each pair
of adjacent filter taps (see Figure 3.9).

13

Background

Figure 3.9: Example of dilated convolution with k = 2 and d = 1,2,4,8

3.7 Transformers
In the field of deep learning, Transformers have emerged as the most important and
innovative architecture, revolutionizing numerous tasks such as, for example, natural
language processing. These neural network architectures were first introduced in
2017 through the innovative paper "Attention is All You Need" by Vaswani et al.
[13]. What sets Transformers apart is their distinctive Encoder-Decoder structure
(see Figure 3.10) and the use of attention mechanisms. While the Encoder module is
tasked with crafting a hidden representation of the input data, the Decoder module’s
role is to generate the correct output, using the Encoder’s hidden representation as
input.

In contrast to networks employing recurrent units, Transformers need not to
process data sequentially. Instead, they employ a positional encoding module
to account for data position. Additionally, they leverage multihead attention
modules, enabling the network to focus on specific portions of the input, significantly
enhancing performance.

3.7.1 Attention Mechanism
The concept of the attention mechanism, originally introduced by Bahdanau et al.
[35] in 2014, is to extract a data token’s representation within an input sequence
using a weighted sum of hidden representations. This approach provides crucial
context information for the given data token.

ci =
TxØ

j=1
αijhj (3.16)

Here, ci represents the context vector for the output token i, and hj denotes

14

Background

Figure 3.10: Transformers as presented in the article by Vaswani et al. [13]

the hidden representations. However, the attention mechanism described in the
paper by Vaswani et al. [13] takes a slightly different approach. It is based on three
distinct quantities: Query, Key, and Values. The underlying concept remains the
same, but the computation of these three values differs.

Attention(Q, K, V) = softmax(Q · KT

√
dk

)V (3.17)

Here, Q and K represent projection vectors for the decoder and encoder, respec-
tively. The dot product between Q and KT yields a measure of similarity between
the two representations, which is then normalized by the sequence size dk. This
results in a weighted sum of V values, offering essential context about the data
concerning other data in the sequence. The paper also introduces the possibility of
employing multiple attention heads in parallel, repeating the process several times
to identify diverse relationships within the data.

15

Background

MultiHead(Q, K, V) = Concat(head1, ..., headh)W O

headi = Attention(QW Q
i , KW K

i , V W V
i)

(3.18)

In these equations, W Q
i , W K

i , and W V
i are weight matrices determined through

linear layers.

3.8 Graph Neural Networks
Up to this point, we have explored network structures designed to tackle problems
associated with Euclidean data, including 2D and 1D datasets. However, in reality,
many types of data exhibit intricate relationships that are more accurately depicted
as graphs. Notable examples of such data encompass social networks and protein
structures. In this broader context, traditional neural networks like Convolutional
Neural Networks (CNNs) treat data structures as grid graphs and RNNs view
sequential data as linear graphs. Graph Neural Networks (GNNs) are a class of deep
learning models tailored to process data characterized by complex, graph-based
relationships.

Figure 3.11: Grid graph (left), line graph (middle), and a generic graph (right)

Graph Neural Networks excel at addressing a wide range of tasks, including
node classification or regression, link prediction, graph classification, and even
spatio-temporal forecasting. Their approach to these tasks hinges on the acquisition
of effective node representations, accomplished by integrating information from
both the graph structure and node attributes. To formalize this framework, let’s
consider a graph, denoted as G = (V, E), where V represents the set of nodes and E
denotes the set of edges. We also have an adjacency matrix A ∈ RN×N representing
the connections between nodes, and a matrix X ∈ RN×C that encapsulates the
attributes of each node, with C denoting the number of features for each node.
The primary objective of GNNs is to accurately learn H ∈ RN×F , which represents

16

Background

hidden information for each node, with F defining the dimensionality of this
representation. This learned representation is subsequently utilized to address
the specific downstream tasks. The fundamental concept underpinning GNNs is
the iterative learning of node representations. This iterative process combines the
representations of a node’s neighbors with its own representation to update the
current node representation. The general framework, as described Xu et al.[36],
can be expressed through the following equations:

ak
ν = AGGREGATEk

î
Hk−1

u : u ∈ N (ν)
ï

Hk
ν = COMBINEk

î
Hk−1

ν , ak
ν

ï (3.19)

Here, N(ν) represents the set of neighboring nodes of node ν. Equation 3.19
illustrates how, at each step k, the representations of neighboring nodes from
the previous step k − 1 are aggregated and combined with the current node’s
past representation to derive the updated representation at step k. The final
representation, HK , is subsequently leveraged to address specific downstream tasks.
For instance, it can be fed into a feedforward network to yield the desired output:

ŷν = σ(WHT
ν) (3.20)

In this equation, W represents the shared weights across various nodes, which
are typically determined through an optimization process aimed at minimizing a
loss function:

O =
Ø

loss(yi, ŷi) (3.21)

3.8.1 Graph Convolutional Networks (GCN)
Graph convolutional networks (GCN) introduced in 2016 by Kipf and Welling [37]
is now the most popular graph neural network architecture due to its simplicity
and effectiveness in a variety of tasks and applications. The two Equations 3.19
and 3.20 in this work are summarized by the following relationship:

Hk+1 = σ
1
D̃− 1

2 ÃD̃− 1
2 HkW k

2
(3.22)

Here Ã is the adjacency matrix to which an identity matrix is added, Ã = A + I.
This augmentation introduces self-loops to the corresponding graph and it allows
to directly carry out the information of the node itself. D̃ is a diagonal matrix
containing the degrees of the individual nodes. The term D̃− 1

2 ÃD̃− 1
2 can be seen

as a normalization factor, weighting the influence of neighboring nodes based on
their respective degrees. Equation 3.22 can be expressed in non-matrix form to
provide a single-node perspective:

17

Background

hk+1
i = σ

 Ø
j∈Ñ(i)

1ñ
didj

hjW
k

 (3.23)

Where Ñ(i) is the set of neighbors that includes the i-th node itself. and di is
the degree of the i-th node.

18

Chapter 4

Dataset

The dataset employed in this thesis is the SDWPF dataset [1] proposed in the
Baidu KDD CUP 2022 competition. This dataset originates from the Supervisory
Control and Data Acquisition (SCADA) system of a wind farm, featuring 134 wind
turbines. The SCADA system records data at 10-minute intervals, yielding a total
of 4,727,520 records over a span of 245 days. The dataset encompasses 13 distinct
columns, each corresponding to a specific feature, which is outlined in Table 4.1.

Column Column Name Specification
1 TurbID Wind turbine ID
2 Day Day of the record
3 Tmstamp Created time of the record
4 Wspd (m/s) The wind speed recorded by the anemometer
5 Wdir(°) The angle between wind direction and turbine nacelle
6 Etmp(°C) Temperature of the surrounding environment
7 Itmp (°C) Temperature inside the turbine nacelle
8 Ndir (°) Nacelle direction, i.e., the yaw angle of the nacelle
9 Pab1 (°) Pitch angle of blade 1
10 Pab2 (°) Pitch angle of blade 2
11 Pab3 (°) Pitch angle of blade 3
12 Prtv (kW) Reactive power
13 Patv (kW) Active power (target variable)

Table 4.1: Features specifications of the SDWPF dataset

The target variable for prediction is the active power (Patv) measured in kilowatt
(kW). Specifically, the goal is to forecast the power output of the entire wind farm,
which can be calculated as the sum of active power for all wind turbines, i.e.,
P = q

i Patvi. Additionally, the dataset includes spatial information regarding the

19

Dataset

turbine locations, as depicted in Figure 4.1.

Figure 4.1: Turbine relative position, the x-axis indicates the relative latitude
and y-axis the relative longitude. Each blue dot represents the location of a wind
turbine.

Data Quality Considerations

It’s important to note that the data was collected from sensors, and as such, some
records may exhibit acquisition issues. Specifically, certain records may contain
below zero values for power measurements, which is physically impossible. To
address this problem, any instance where Patv < 0 is set to Patv = 0. Moreover,
there are also missing values in the dataset. During the testing phase, records with
missing data are excluded from the score calculation. There are also instances when
wind turbines are not generating power due to external factors, like maintenance
or grid management. In these cases, the active power is considered unknown.
Specifically, if at time t, Patv ≤ 0 and Wspd > 2.5, then the actual active power
is unknown. Similarly, if at time t, Pab1 > 89◦ or Pab2 > 89◦ or Pab3 > 89◦,
then the actual active power is unknown. These unknown values are not used for
model evaluation. Furthermore, there may be abnormal data due to recording
system errors, such as Ndir > 720◦ or Ndir < −720◦, and Wdir > 180◦ or
Wdir < −180◦. Records with abnormal values in any column are also excluded
from model evaluation.

20

Dataset

Evaluation metrics

The evaluation metric proposed for the challenge is a composite score that combines
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). Given the
presence of unknown, abnormal, and missing values in records for different turbines,
the score is calculated separately for each turbine and then aggregated to yield the
overall score for the entire wind farm. The evaluation score for a specific turbine i
from time t0 to t0+j is defined as follows:

si
t0 = 1

2

öõõôq288

j=1

1
Patvi

t0+j − Patv
i
t0+j

22

288 +
q288

j=1

---Patvi
t0+j − Patv

i
t0+j

288

st0 =

134Ø
i=1

si
t0

(4.1)

In cases where there are abnormal, missing, or unknown values, the prediction
is considered correct, and the difference is set to zero: Patvi

t0+j − Patv
i
t0+j = 0.

Test set structure

The test set used for this research corresponds to the final phase (phase three) of
the competition. It comprises 142 input files (infiles) and 142 output files (outfiles).
Infiles represent 14-day datasets that serve as input for the model, while outfiles
provide the ground truth for the forecasts and span 2 days (288 time instants).
The files of the test set are randomly sampled from various times of the year, and
the challenge’s objective is to achieve the lowest possible average evaluation score
on the outfiles using a subset of the infiles as input data.

4.1 Data Exploration
In a data science pipeline, it is essential to conduct an initial exploration of the
dataset as part of the process. The primary objective is to uncover potential
correlations and critical aspects in the dataset under investigation. Specifically, one
valuable technique for identifying data relationships is correlation analysis. In this
context, a correlation analysis has been performed 1) on the features within the
SDWPF dataset and 2) on the time series of the target variable "Pavt" for various
turbines. Pearson’s correlation coefficient, denoted as rxy for two features x and y,
is expressed as:

rxy =
qn

i=1 (xi − x̄) (yi − ȳ)ñqn
i=1 (xi − x̄)2

ñqn
i=1 (yi − ȳ)2

(4.2)

21

Dataset

Correlation between features

Figure 4.2 illustrates the correlation matrix among the various features within the
SDWPF dataset. It reveals that the correlation between wind speed and active
power is notably high, at 81%. Additionally, there are other notable associations,
such as the correlation between temperature and the day of the year, which is
influenced by the annual cycle.

Figure 4.2: Pearson correlation matrix of wind turbine features. High values of
correlation are highlighted by red boxes whereas anti-correlation is highlighted by
blue boxes.

Correlation between turbines

An additional crucial analysis concerns the correlation between the active power
generated by different turbines. This analysis aims to discern whether there are
variations in the performance of individual turbines within the wind farm. In
practice, wind turbines within a wind farm may exhibit different efficiency levels
and some may be defective. Furthermore, their spatial placement within the farm
can influence their behavior. Similar to the previous analysis, Pearson’s correlation
coefficient is employed. Moreover, hierarchical clustering is applied to identify
groups of turbines with similar behavior at multiple levels. Figure 4.3 displays the

22

Dataset

correlation matrix for all 134 turbines, with hierarchical groupings highlighted on
the left and top of the image. The red areas highlight groups of turbines with strong
correlations, while blue regions indicate isolated turbines with weaker correlations
to the rest.

Figure 4.3: Pearson correlation matrix of active power of 134 turbines. The
red areas highlight groups of turbines with strong correlations, while blue regions
indicate isolated turbines with weaker correlations. The hierarchical trees on the
leaf and top of the matrix are obtained with the average linkage method.

23

Dataset

Spatial Correlation

To investigate whether the observed correlations between turbines are influenced
by their spatial proximity, an analysis was conducted using hierarchical clustering
with the average linkage method. The resulting clustering was truncated to focus
on a limited number of clusters. A separate clustering was performed exclusively
considering the distances between turbines. Subsequently, the results of the two
clustering methods were compared (Figure 4.4), employing the adjusted mutual
information metric, motivated by a potential unbalanced cluster with few elements
[38].

Figure 4.4: Left panel: spatial proximity hierarchical clustering of turbines
obtained with the average linkage method. Right panel: correlation hierarchical
clustering of turbines active power obtained with the average linkage method.
Different clusters have different colors.

24

Dataset

The comparison indicates that the correlation cluster exhibits a spatial compo-
nent, as several neighboring turbines are grouped together (e.g., clusters 11 and 10
on the right). This observation is further substantiated by the adjusted mutual
information value (ADI = 0.394). Nonetheless, there are instances of turbines
showing correlations with others situated at a greater distance, suggesting that
factors such as turbine height, placement within the wind farm, or turbine type
(new or old) could also influence these correlations.

4.2 Data Cleaning

In the preliminary analysis of the dataset, it was determined that 23.93% of the
data was unsuitable for use due to its classification into abnormal, missing, or
unknown data categories. This represents a substantial portion of the dataset that
cannot be utilized for training purposes. Consequently, a data recovery procedure
was implemented to mitigate the large amount of unusable data. The distribution
of the type of unusable data is summarized in Table 4.2.

Type of Data Percentage
Missing Data 1.047%

Unknown Values 22.89%
Abnormal Values 0.002%

Union 23.93%

Table 4.2: Percentage of unusable data

The approach employed for data recovery is grounded in the concept of correlation
clusters introduced in the previous section. Data points that fall into the categories
of unknown, missing, or abnormal are substituted with the average value associated
with the respective cluster to which the turbine is assigned at that specific time.
This strategy is chosen due to the expectation that the average value from the
relevant cluster provides a meaningful approximation of the wrong data point. In
cases where an entire cluster contains exclusively unusable data, the recovery of
data within that cluster is unfeasible. This data recovery process results in the
preservation of a considerable number of records. Subsequently, a backfill process
is employed to address any remaining missing points ("NAN"). The updated
percentages of unusable data following the data cleaning procedure are presented
in Table 4.3.

25

Dataset

Figure 4.5: Time series of day 3 before cleaning

Figure 4.6: Time series of day 3 after cleaning

26

Dataset

Type of Data Percentage
Missing Data 0.00%

Unknown Values 14.40%
Abnormal Values 0.002%

Union 14.402%

Table 4.3: Percentage of unusable data after cleaning

Figures 4.5 and 4.6 provide visual representations of the data cleaning process’s
impact on reducing wrong values within time series data. Figure 4.5 depicts the
time series data before cleaning. In contrast, Figure 4.6 illustrates the same time
series data after the cleaning procedure, revealing an improvement in data quality
and a reduction in errors.

27

Chapter 5

Methodology

In this chapter, we delve into the mathematical description and elaborate on
the primary method utilized throughout this thesis. It starts by introducing the
problem context associated with spatio-temporal forecasting, following the notation
established by Cini et al. in their work on taming spatio-temporal data [39, 40].
Next, the core solutions employed to address the aforementioned problem are
presented. Finally, we explain the details of two models designed to solve this
problem.

5.1 Problem Statement
A dataset comprising 134 distinct time series is considered, each representing the
active power generated by a different turbine. Each of these time series is composed
of a sequence spanning T time instances. Consequently, we can define the matrix
X0:T −1 ∈ RN×T . This matrix encompasses the observed data from time t = 0 to
t = T −1 for the N distinct time series. The interrelationship between the N turbines
is encoded within an adjacency matrix A ∈ RN×N . Moreover, should there be
any additional features associated with each node, we can represent them through
another matrix, constructed in a similar manner as X. This auxiliary matrix is
labeled as U0:T −1 ∈ RN×T ×F with F denoting the number of additional features.
Collectively, we can define the aggregation of these elements at a specific time t as
Gt = ⟨Xt, Ut, A⟩ which encapsulates all the information available at that time. The
focal point of this thesis aligns with the KDD Baidu 2022 challenge [1]. The goal
of the challenge is to tackle a multi-step-ahead time-series forecasting problem that
entails predicting 288-time instances. Given the introduced notation, we seek to
determine Xt:t+288 ∈ RN×288 using G(t−win):t as input, where win indicates the size
of the input window used in predicting the output. The existing literature offers
various methodologies to address problems of this nature, and an exploration of the

28

Methodology

general framework involving Spatio-Temporal Graph Neural Networks (STGNN) is
presented in the subsequent sections.

5.2 Spatio-Temporal Graph Neural Networks
Framework

The fundamental concept behind Spatio-Temporal Graph Neural Networks is to
extract both spatial and temporal information from the input data, represented
as G(t−win):t. This extraction can be achieved through a variety of methods. In
Cini et al. [40], an exposition on the general framework of graph-based models
for temporal time series forecasting is elucidated, encompassing the following key
operations:

hi,0
t−1 = Encoder

1
xi

t−1, ui
t−1, vi

2
H l+1

t−1 = STMPl
1
H l

≤t−1, E≤t−1
2

l = 0, ..., L − 1

âxi
t:t+H = Decoder

1
hi,L

t−1, ui
t:t+H

2 (5.1)

An encoding operation, Encoder(·) prepares the input for subsequent pro-
cessing via a multilayer perceptron (MLP) layer. Similarly, a decoding operation
Decoder(·) serves to generate the final prediction. Spatiotemporal message-
passing operation STMP(·) extracts spatio-temporal features from the input. This
operation is performed by several space-time layers ranging from 0 to L-1. The
differentiating factor among models lies in the nature of the STMP(·) function. In
general, it has the following structure:

hi,l+1
t = Upl

A
hi,l

≤t, Aggr
j∈Nt(i)

î
Msgl

1
hi,l

≤t, hj,l
≤t, ej,l

≤t

2ïB
(5.2)

Here, Msg(·) represents a message passing function, Aggr(·) represents an
aggregation function while Up(·) represents an update function. Notably, this
equation bears a resemblance to Equations 3.19 and 3.20, highlighting a common
underlying paradigm. However, in the STMP operation, a temporal aggregation
of data is introduced, distinguishing it from previous formulations. This temporal
aggregation can occur before (Time-Than-Space), after (Space-Than-Time), or in
non-separable phases with respect to spatial aggregation (Time-And-Space).

Time-Than-Space

In the Time-Than-Space (TTS) model, temporal aggregation takes precedence.
Initially, temporal aggregation is carried out, after which the extracted hidden
representations are employed for message passing, aggregation, and combination:

29

Methodology

hi,1
t = SeqEnc

1
hi,0

≤t

2
H l+1

t = MPl(H l
t , Et)

(5.3)

Here SeqEnc(·) can be implemented using various sequence modeling architec-
tures such as RNN, TCN, or attention-based methods. While MP(·) is responsible
for spatial aggregation and can be realized through architectures like Graph Con-
volutional Networks (GCN).

Space-Than-Time

Conversely, in the Space-Than-Time (STT) model, the temporal and spatial
aggregation operations are reversed compared to the TTS model:

H i,l
t = MPl(H i,l−1

t , Et)
hi,L

t = SeqEnc
1
hi,L−1

t−W :t

2 (5.4)

Time-And-Space

Time-and-space (T&S) models are the most prevalent in the literature due to their
superior ability to concurrently capture spatial and temporal information. Various
methods can be employed to implement T&S models, with the simplest approach
involving alternating spatial and temporal aggregation operations several times [20].
Other solutions employ a single graph that connects present states to future states
through the Cartesian product between graphs or the Kronecker product. These
diverse approaches offer flexibility in modeling spatio-temporal data, allowing for
tailored solutions to address specific forecasting challenges.

5.3 Spatio-Temporal Graph Convolutional Net-
works (STGCN)

Introduced by Yu et al. in 2017 [20], Spatio-Temporal Graph Convolutional Network
(STGCN) is a graph-based model for spatio-temporal forecasting. Initially designed
for traffic forecasting, this model has found applications in various research domains.
Within the framework discussed in the preceding section, STGCN aligns with
the Time-And-Space model paradigm. Its structure consists of two sequential
convolutional blocks (as detailed in Section 3.6) and one spatial graph convolution
layer (as explained in Section 3.8.1) as shown in Figure 5.1.

30

Methodology

Figure 5.1: Structure of the spatial-temporal convolutional blocks as described in
Yu et al. [20]

The STMP(·) function in this model is described by the following equation:

vl+1 = Γl
1 ∗ τReLU

1
Θl ∗ G

1
Γo

1 ∗ τvl
22

(5.5)

In this equation, the two components Γ∗τ correspond to a 1-D causal convolution
(as outlined in Section 3.6) followed by a gated linear unit (GLU) activation function.
The innermost term represents the initial temporal gated convolution, while the
second term represents the convolution executed after message passing. The term
Θ ∗ G corresponds to spatial message passing, as in Equation 3.22 but in the present
setting it is expressed in spectral terms, with Θ representing the kernel of the
spatial convolution.

5.4 Graph WaveNet
Graph WaveNet is a computational model introduced by Wu et al. [3] in 2019,
taking inspiration from prior work by Oord et al.[10]. The model is structured
according to Equation 5.1 and includes an encoder with a simple linear layer for
linear data transformation, followed by the stacking of L layers of spatiotemporal
message-passing blocks. The decoder consists of two linear layers with Rectified
Linear Unit (ReLU) activation functions. All hidden states from the L layers
are connected to the decoder through skip connections, enabling the model to
handle spatiotemporal information at multiple levels of aggregation and avoiding
gradient issues. The spatiotemporal message-passing module is composed of a

31

Methodology

Graph Convolutional Layer (GCN) and a Gated Temporal Convolutional Layer
(Gated TCN) as shown in Figure 5.2.

Figure 5.2: Graph WaveNet model structure

Graph convolutional layer

In the Graph Convolutional Layer, the authors introduced a mechanism to enable
the model to autonomously form a self-adaptive adjacency matrix. By using
Chebyshev polynomials approximation, it is possible to approximate the spatial
convolution Θ ∗ G as:

Θ ∗ G ≈
LØ

l=0
P lXWl (5.6)

Here, X represents the input matrix, and P = A/rowsum(A). The authors
proposed an enhancement by adding a new element in the factorization in equation
5.6:

Θ ∗ G ≈
LØ

l=0
P lXWl1 + åAl

aptXWl2 (5.7)

The matrix åAapt is constructed as follows:

32

Methodology

åAapt = SoftMax(ReLU(E1E
T
2)) (5.8)

where E1, E2 ∈ RN×c are randomly initialized node embedding dictionaries with
learnable parameters. Through this self-adaptive adjacency matrix, the model can
learn additional relationships between various nodes.

Gated Temporal Convolutional Layer

For temporal aggregation, the model employs dilated causal convolution (see Section
3.6) with a gating mechanism:

h = tanh (Θ1 ∗ X + b) ⊙ σ (Θ2 ∗ X + c) (5.9)

Here, σ(·) is a sigmoid function that regulates the information passed to the next
layer. The terms Θ ∗ X represent dilated causal convolution with kernel Θ, and ⊙
denotes element-wise multiplication. This gated mechanism facilitates the learning
of complex temporal dependencies, especially in the case of very long sequences.

33

Chapter 6

Experiments and Results

In this chapter, the outcomes of the experiments are presented. The experiments
were conducted utilizing computational resources provided by Google Colab and
HPC@PoliTO [41]. The results were divided into short-term and long-term scenarios.
The short-term context involves forecasting for 2 hours, 6 hours, and 12 hours
(equivalent to 12, 26, and 72 time steps, respectively). In contrast, the long-term
context pertains exclusively to the 48-hour forecast. Before performing the main
experiments, an experiment concerning the relationship between wind speed and
active power was conducted.

6.1 Wind role for power forecasting
This initial experiment aims to show if wind speed can serve as a proxy measure
of the active power generated by wind turbines. Typically, a representation of
the relationship between wind speed and active power resembles the scheme in
Figure 6.1 and Figure 6.2 with dataset data. The left part of the plot displays a
preliminary cut-in region where the wind is insufficient to set the turbine rotor in
motion. This is followed by a transition phase in which power production increases
with wind speed, culminating in the rated power region, where the wind turbine
operates at full capacity. Based on fluid dynamics theory, Betz’s law [42] provides
an upper limit on the power obtainable from an ideal rotor:

Pmax = 16
27 · 1

2ρSv3 (6.1)

Here, ρ represents air density, S corresponds to the rotor’s surface area, and v is
the wind speed. However, in practice, accounting for factors like friction, the power
obtained from the wind is below this ideal limit. Additionally, the relationship
between active power and wind speed in the transition phase is influenced by

34

Experiments and Results

several variables, including turbine height and the specific location of the wind
farm. Research by Teyabeen et al. [43] investigates different functional relationships
between wind speed and active power. Primarily they consider linear, quadratic,
cubic, or exponential functional forms.

Figure 6.1: Scheme of wind power curve

Figure 6.2: Scatter plot of wind power curve from data of turbine N.1

35

Experiments and Results

In this experiment, a quadratic form has been chosen to model the relationship
between wind speed and power output during the transition phase. The relationship
is then written as:

P = av2 (6.2)

Here, a represents a coefficient determined through linear regression without an
intercept term.

Figure 6.3: Regression between the wind power and the square of wind speed for
data of turbine N.1. Black dots are the dataset points and the blu line represents
the regression line

The regression was performed separately for each individual turbine and Figure
6.3 offers a visual representation of the quadratic fitting for turbine N.1. With these
regression coefficients established for all turbines, the wind speed from time t to t+T
is used to predict the corresponding power output. Figure 6.4 shows the prediction
for a step of 288-time records using wind speed as a proxy. Unsurprisingly, with
knowledge of wind speed, predicting the power output of the wind farm becomes
a relatively straightforward task. In fact, wind speed forecasting and wind power
forecasting can be considered closely related and often interchangeable tasks.

36

Experiments and Results

Figure 6.4: Computation of active power using wind speed data as input. Where
the relationship between active power and wind speed is the one given in Equation
6.2

6.2 Short-Term Setting
In short-term experiments, forecasting trials with various time horizons were
conducted, specifically targeting 2 hours, 6 hours, and 12 hours ahead. These
experiments involved evaluating the performance of several models: 1) Lasso
Regression, a GRU Network 2) with and 3) without additional features, and 4)
Graph WaveNet with features data. In all cases, a fixed input window size win is
set at 200 time instants. All the experiments follow an 80% training data and 20%
validation data split.

6.2.1 Lasso Experiment
Lasso regression served as the primary focus of this experiment. Lasso for its
fast execution allowed for the implementation of direct multi-step forecasting (as
discussed in Section 3.1), where a unique model was created for each time step to be
predicted. Furthermore, separate models were generated for all 132 wind turbines
within the factory, leading to a total of 38,016 nested models. The experiment uses
Grid Search techniques to optimize the regularization parameter α, resulting in an
optimal value of α = 0.0215 and for this particular experiment, active power data
is used without the inclusion of additional features. To perform these preprocessing
and training tasks Skforecast library [44] is used. The Lasso Regression model
achieved its best forecast with the following error scores as defined in Chapter
4: 21.73 for the 2-hour forecast case, 32.3 and 39.17 for the 6-hour and 12-hour

37

Experiments and Results

forecast cases respectively. This outcome establishes a solid baseline for subsequent
models, given that Lasso regression, while being a simple model, effectively utilizes
regularization to capture time series trends and averages. For illustrative purposes,
Figures 6.5 and 6.6 display a 12-hour forecast encompassing 72 time steps. The
figures show that the models manage to follow the average values quite well.

Figure 6.5: Example of prediction of Lasso regression for outfile N. 139

Figure 6.6: Example of prediction of Lasso regression for outfile N. 2

38

Experiments and Results

6.2.2 GRU Experiment

In this experiment, a Gated Recurrent Unit (GRU) neural network was employed
to capture more intricate relationships within sequential data. The choice of
GRU over traditional Recurrent Neural Networks (RNNs) and Long Short-Term
Memory (LSTM) networks was guided by its swifter training process and superior
performance compared to a standard RNN. Unlike Lasso’s previous experiment,
different models were not created for different turbines but a single model was
trained for all the turbines.

Model Structure

Regarding the architectural configuration of the model, various setups were tested.
Initially, a model with two GRU layers and a Fully Connected layer was examined.
This configuration exhibited better results than a Lasso model but still did not
meet the desired score result for solving the problem in comparison to the literature.
Consequently, the final chosen configuration entailed two GRU layers and two
Multi-Layer Perceptron (MLP) layers employing the Rectified Linear Unit (ReLU)
activation function (see Figure 6.7).

Figure 6.7: Network configuration for GRU Experiment. This network structure
presents 2 GRU layers of 128 units (left part) and 2 fully connected layers (right
part) of 64 units.

39

Experiments and Results

The output from the GRU layers serves as input to two Fully Connected layers.
In terms of network dimensions, the two GRU layers each comprise 128 neurons,
while both fully connected layers consist of 64 neurons. Adjusting the network’s
width proved crucial, as reducing it decreases the model’s ability to capture intricate
patterns while enlarging it prolonged the training without substantial performance
gains. Furthermore, a dropout probability of 0.3 was used to make the network
more robust to overfitting.

Training and Loss Function

For the training phase, an initial experiment utilized the Mean Absolute Error
(MAE) as the loss function:

MAE = 1
n

nØ
i=1

|yi − ŷi| (6.3)

However, this approach yielded unsatisfactory results due to the irregular nature
of wind data, which often exhibits behaviors far from the average. To address this
issue, the Mean Squared Error (MSE) loss function was considered:

MSE = 1
n

nØ
i=1

(yi − ŷi)2 (6.4)

Nonetheless, MSE is highly sensitive to outliers. Consequently, the Huber Loss
was identified as a suitable compromise, as it combines elements of both MSE and
MAE:

H(yi, ŷi) =
I

1
2(yi − ŷi)2 for |yi − ŷi| ≤ δ

δ(|yi − ŷi| − 1
2δ) otherwise

Huber = 1
n

nØ
i=1

H(yi, ŷi)
(6.5)

The chosen delta value for Huber loss was set to 5 following the paper by Jiang
et al.[28]. Given that the data underwent standard scaling, this implies that only
data points exceeding 5 times the standard deviation above the mean are linearly
weighted. Another critical aspect concerning the loss function involved the inclusion
of an L2 regularization term:

L2term = λ

2n

Ø
w

w2 (6.6)

This term, reminiscent of the regularization term in Lasso regression, encourages
models with lower weights, thus mitigating overfitting, which is a common issue
in this problem. The PyTorch library accommodates the use of the weight decay

40

Experiments and Results

parameter, with a chosen value of 0.001. Values lower than this would lead to
overfitting, while higher values would overly simplify the model. The gradient
descent optimization was performed using the Adam Optimizer, and the learning
rate was set at 0.0001.

Features

Two distinct experiments were conducted, differing in the features used as input to
the network. In one experiment, only the target variable, the active power, was
utilized. In the other, two additional features are incorporated. These additional
features were wind speed, which was identified in Section 6.1 as highly indicative
of the power trend, and a cyclical covariate aiding the model in recognizing the
correct daily cycle. The construction of this cyclical covariate is as follows:

hm = 60 · hour + minute

sine_feature = sin(hm · 2π

1440)
(6.7)

Here, hour and minute are the timestamps of the considered record, while sine_feature
is computed using a sine function to capture cyclical patterns over the course of
a day. The results obtained with the use of features are better in every forecast
horizon compared to those without features (see Figure 6.8)

(a) Error score 2 hours (b) Error score 6 hours (c) Error score 12 hours

Figure 6.8: Comparison between GRU results with features and without features.
(a) panel shows results for 2 hours predictions, (b) panel for 6 hours, and (c) panel
for 12 hours.

Other experiments were carried out using other features such as the direction of
the turbine axis (Ndir) and the ID number of turbines (TurbID), without arriving
at superior results. Figure 6.9 shows the forecasting of the model with the features
for the outfile N.139. By making a comparison with Figure 6.5 it is possible to

41

Experiments and Results

see how the model is able to better understand the trend of the curve. It is also
important to note that more complex models, although performing better, never
deviate much from a solution that is close to the average value given by Lasso’s
prediction due to the complexity of the problem.

Figure 6.9: Example of prediction of GRU model for outfile N. 139

6.2.3 Graph WaveNet Experiment
The Graph WaveNet model has proven to be the most effective model in the context
of this thesis, demonstrating superior performance in wind power forecasting for
both short-term and long-term horizons. As detailed in Section 5.4, this model
exhibits the remarkable capability to autonomously discern relationships among the
various wind turbines. The implementation of Graph WaveNet utilized in this study
is the one provided by the Tsl (Torch Spatiotemporal) library, as proposed by Cini
and his team in their 2022 publication [45]. The input features for this experiment
are consistent with those employed in the case of the GRU model, comprising wind
speed and the cyclical pattern over the course of a day as a covariate.

Graph Structure

The model needs as input an adjacency matrix that describes the spatial relationship
between the various turbines. In this graph representation, each node corresponds
to a distinct turbine, and the connections between nodes describe their proximity

42

Experiments and Results

Figure 6.10: First tested graph structure of wind factory. Unweighted edges are
used and each node connects to its five closest nodes. When the distance between
a node and other nodes is the same the degree is slightly larger than five. The
colors indicate the degree centrality of each node.

Figure 6.11: Second tested graph structure of wind factory. Two nodes are
connected if they are within a radius of 1100 meters. The colors indicate the degree
centrality of each node.

to one another. Two different configurations were tested in the experiments. In the
first configuration, unweighted edges connect each node to its five closest nodes.
This configuration is shown in Figure 6.10. For the majority of nodes, the degree
centrality in this graph is equal to five, whereas in the case the distance between a

43

Experiments and Results

node and two or more other nodes is the same the degree is slightly larger than
five. A second configuration was tested in which two turbines are connected if they
are within a certain proximity radius. The radius was set at 1100 meters. The
value of 1100 meters was chosen so that the average degree of the corresponding
graph was as close as possible to the average degree of configuration number one.
In this case, weighted edges are constructed as follows.

wi,j =
I

exp(−dist(i,j)
γ

) dist(i, j) ≤ 1100
0 otherwise

(6.8)

where dist(i, j) is the distance between i-th and j-th node and γ controls the
kernel width. The representation of the graph is shown in Figure 6.11. The colors
of the graph show the degree centrality of the nodes.

Dilated convolution

Graph WaveNet uses a dilated convolution mechanism to handle temporal aggre-
gation (see Paragraph 3.6). In fact, it is essential to set the parameters of the
dilated convolution so that it is possible to consider the correct receptive field.
The Tsl (Torch Spatiotemporal) library provides two parameters to handle dilated
convolution, dilated and dilated_mod. Referring to Equation 3.15, the first
parameter controls the filter size k while the second manages the dilation factor d.
In all experiments, the value of dilated is set to 2 while the value of dilated_mod
is set to 4. The result for each temporal filter is similar to the one shown in Figure
3.9.

hidden_size 32
n_layers 10
ff_size 256
emb_size 10

temporal_kernel_size 2
spatial_kernel_size 2

dilation 2
dilation_mode 4

dropout 0.3

Table 6.1: Hyperparameters chosen for all the experiments done with the Graph
WaveNet model.

44

Experiments and Results

Hyperparameters setting

Since the setting of the training hyperparameters for the GRU network was sat-
isfactory, for Graph WaveNet, a similar configuration was used. The network
utilizes a Huber Loss function with a delta value set to 5 while employing a weight
decay of 0.003 and a learning rate of 0.0003. The experiment incorporates ten
Graph WaveNet blocks, with a temporal convolutional kernel dilation of two and a
dilation mod of four. The number of features is 10 in the node embeddings used
for graph learning, while the number of units in the nonlinear readout is 256. Also
in this case the dropout probability was set at 0.3. Table 6.1 shows in detail all
the hyperparameters of the network by using the variable names used in the Tsl
library (Torch Spatiotemporal) [45].

Figure 6.12: Graph structure from the self-adaptive adjacency matrix. The
structure is learned from the model capturing additional connections between
nodes. The color indicates the degree centrality of nodes. Yellow nodes have a
higher degree than blue nodes.

Self-adaptive adjacency matrix

In Section 5.4, we explored the Graph WaveNet model, which allows us to learn
additional connections between nodes beyond what is already present in the initial
adjacency matrix. During training, the model generates a new self-learned adjacency

45

Experiments and Results

matrix. This matrix is then utilized in the inference phase alongside the initial
adjacency matrix linked to a spatial structure. The exam of the self-learned
adjacency matrix reveals a distinct grouping of turbines. Specifically, turbines with
TurbID from 1 to 45 form a strongly connected group, while the remaining turbines
constitute a weakly connected second group. To better understand the relationships
learned independently by the model, we can visualize the corresponding connecting
graph derived from the self-adaptive adjacency matrix. Figure 6.12 displays this
graph, with colors indicating the degree centrality of the nodes. Yellow nodes have
a higher degree centrality while blue nodes have a lower one. The distinct colors
highlight the two turbine groups mentioned earlier. Although interpreting the
self-adaptive adjacency matrix is challenging due to the inherent complexity of the
deep learning model, we can hypothesize that the model identified relationships
between turbines not explicitly present in the original data. For instance, it may
have uncovered connections related to turbine height or wind exposure. The graph
further illustrates that the connected subgraph primarily comprises turbines from
the third row from the top, showing among other things a spatial component.

6.2.4 Short-Term Results

This section provides a comparative analysis of various models, the performance of
models is illustrated in Figure 6.13. This figure highlights that Graph WaveNet
consistently outperforms the other models in the short-term forecasting horizons, for
2 hours forecasting, 6 hours, and 12 hours. This superiority can be attributed to the
model’s capacity to leverage spatial information for enhanced forecasting precision
and the model’s ability to capture further relationships between turbines as discussed
in the previous paragraph. For the short-term experiment, the first graph structure
(Figure 6.10) described in the previous paragraph was used. Notably, Graph
WaveNet exhibits a reduction in error score of more than one unit in comparison to
Lasso for each short-term forecasting horizon. It is worth highlighting that GRU
and Lasso error scores tend to converge as the forecasting horizon extends. In fact,
in the 12-hour forecast, GRU without the features works slightly worse than a Lasso
regression. Graph WaveNet maintains its superiority over Lasso in the mid-term,
affirming its ability to focus on specific elements for short and mid-term forecasts
without compromising the accuracy of average predictions. Based on these results
it is possible to say that Graph WaveNet manages spatial and temporal information
better than the models seen previously in wind power forecasting task.

46

Experiments and Results

(a) Error score in forecasting 2 hours (b) Error score in forecasting 6 hours

(c) Error score in forecasting 12 hours

Figure 6.13: Comparison between models performances in the short term setting.
Error score values are on the y-axis. (a) panel reports comparison for 2-hour
forecasting, (b) panel for 6-hour forecasting, and (c) panel for 12-hour forecasting.

6.3 Long-Term Setting
When dealing with long-term forecasting, a distinct set of considerations comes
into play. It is important to note that there is not a single model that significantly
outperforms all others in this context. This observation has been reinforced by
several studies related to the KDD Baidu Challenge, as indicated in the works of
Huerta et al. [26], Zhao et al. [27], and Liu et al. [46]. In fact, when attempting
to forecast over a horizon of 288 time intervals, a single model encounters various
challenges in simultaneously capturing short-term and long-term patterns. To
address this issue, proposed solutions include adjusting the granularity of the
forecast, as suggested by Zhao et al. [27]. This is done by considering fewer time

47

Experiments and Results

intervals, or employing ensemble models that differentiate forecasts for the short
term and long term, as demonstrated in the works of Huerta et al. [26] and Liu et
al. [46].

6.3.1 Performance of Individual Models

A comparison of models in the long-term forecasting scenario reveals that the
GRU network, both with and without features, underperforms in comparison to a
Lasso regression. This discrepancy can be attributed to the challenges that RNN
models typically face when dealing with forecasts over such extended timeframes,
as noted by Ismail et al. [47]. Graph WaveNet model achieves a score error of 45.40
exhibiting a limited improvement of only -0.35 compared to a Lasso regression (see
Figure 6.14). This limited improvement motivates us to investigate how to further
reduce the model’s prediction error.

Figure 6.14: Comparison between the performance of models in a long-term
setting. Error score values are on the y-axis. The forecasting period is 48 hours.

Figure 6.15 shows the error score of the Lasso and Graph WaveNet models
as a function of time and it illustrates the relatively small differences between
these models over time. Lasso appears to perform well in the mid-term, while
Graph WaveNet excels in both short-term and long-term forecasts. When the
graph includes a model trained exclusively for the first 72 time intervals in the
short-term setting, it becomes evident that this approach outperforms the models
trained for 288-time intervals. This observation supports the idea of employing an
ensemble model to separately handle short-term and long-term predictions.

48

Experiments and Results

Figure 6.15: Error score as a function of the predicting time instants for Graph
WaveNet 48 hours (blue line), Lasso regression (orange line) 48 hours and Graph
WaveNet 12 hours (green line).

6.3.2 Ensemble Model

Drawing inspiration from the approach proposed by Huerta et al. [26], an ensemble
model that combines short-term and long-term forecasting is developed. This model
considers the predictions made by the Graph WaveNet model in the short-term
setting for the first 72 time intervals and by a different Graph WaveNet model for
the long-term setting spanning the entire time interval. The models are trained
separately and with a different graph configuration.

For the short term, the model uses the graph structure that connects the 5
closest turbines (Figure 6.10), while for the long term, the model uses the second
configuration which considers turbines connected within a radius of 1100 meters
(Figure 6.11). The best model for both cases was found by training for 30 epochs
and taking the model that performs best on the validation set. This ensemble
model improves forecasting by giving a score reduction of -0.09 compared to a single
Graph WaveNet model, leading to an error score of 45.31. This result appears to
be very close to that obtained by the best model of the Baidu KDD 2022 challenge
(44.91), placing ninth on the challenge leaderboard.

Figure 6.16 shows an overview of the performance of all the models used for
48-hour forecasting together with the best result of the challenge obtained by Li
et al. [29].

49

Experiments and Results

Figure 6.16: Overview of the performance of all models for 48-hour forecasting.
Error score values are on the y-axis. KDDWinner error score is reported in blue
color for comparison with the model investigated in this thesis.

Figure 6.17: Prediction of ensemble model over 48 hours for outfile N.54. The
red line is the model prediction while the blue line is the real-time series.

Figure 6.17 shows the forecast obtained by the ensemble model for the outfile
N.54, the forecast is more accurate for the first 72 time instants as it uses the
model in the short-term setting. For the remaining time instants, the forecast of
the long-term setting is used which focuses mainly on the average value of the

50

Experiments and Results

trend of the curve. Additionally, Figure 6.18 shows that when the time series to
be predicted is highly intermittent, when for example it is a period of turbolence,
the short-term prediction fails to capture local patterns and aligns with long-term
average forecasts. In such instances, the ensemble model predicts an average value,
missing local fluctuations in the curve.

Figure 6.18: Prediction of ensemble model over 48 hours for outfile N.88. The
red line is the model prediction while the blue line is the real-time series.

6.3.3 Summary of all results
In conclusion, this section summarizes all obtained results. Table 6.2 presents
a comparison of error scores for forecasting horizons of 2, 6, 12, and 48 hours,
respectively. The table includes all investigated models, with the number of time
intervals to predict, and the best result highlighted in bold characters. The Lasso
regression model serves as a baseline, and the last line of the table indicates the
increase compared to the baseline of the best-performing model.

The gain obtained by the best-performing model is more substantial for short-
term forecasts, progressively diminishing up to the long-term forecast of 48 hours.
This trend is observed because, for longer forecasts, achieving the best result aligns
closely with predicting an average value, and it is too difficult to accurately predict
it at such a distant forecasting horizon. The table also underscores the varying
suitability of models for capturing different temporal dependencies. For instance,
GRU networks excel in short-term forecasts (2 and 6 hours), whereas they prove

51

Experiments and Results

to be unsuitable for 12-hour forecasts and longer-term forecasts. Graph WaveNet
outperforms all other models for every forecast horizon. For the 48-hour forecast,
the proposed ensemble model proved to be the best-performing model combining
the best short-term and long-term features.

Methods 2 hour 6 hour 12 hour 48 hour
12 instants 36 instants 72 instants 288 instants

Lasso (baseline) 21.73 32.30 39.17 45.75
GRU 21.00 32.04 39.40 46.29

GRU + features 20.85 31.71 39.10 45.90
Graph WaveNet 20.35 31.23 38.18 45.40

Ensemble - - - 45.31

Increments on baseline −1.38 −1.07 −0.99 −0.44

Table 6.2: Table of all the results obtained

52

Chapter 7

Conclusions and Future
Work

In conclusion, this thesis presents several considerations. Firstly, spatio-temporal
graph neural networks (STGNN), originally designed for different tasks, have
exhibited superior performance in both short-term and long-term wind power
forecasting scenarios. This conclusion is drawn from a comparison with two
other models, Lasso regression and a Gate Recurrent Unit (GRU) network. The
incorporation of spatial data of turbines significantly contributed to the accuracy
of predicting wind power generation.

It is essential to emphasize that this study utilized unprocessed data from
the Baidu KDD Challenge 2022, directly captured by sensors. Preliminary data
exploration and cleaning operations were necessary and played a fundamental role
in managing the dataset effectively. In addressing the challenge’s requirement for a
2-day wind power forecasting model (288-time instants), it becomes evident that a
single model was insufficient for simultaneously capturing short-term and long-term
patterns, a conclusion supported by the existing literature related to the Baidu
KDD Challenge.

As a response to this problem, a decision was made to adopt an ensemble
modeling approach for the final model, which combines forecasts from two Graph
WaveNet models. One model is trained specifically for the initial 12 hours (short
term), while the other focuses on forecasting the remaining 36 hours (long term).
According to the prescriptions of the Baid KDD challenge, the resulting model
achieved an error score of 45.31, securing a position within the top 10 best results
on the leaderboard among a participant pool exceeding 2000 participants.

53

Conclusions and Future Work

7.0.1 Future Works
The application of spatio-temporal graph neural networks in wind power forecasting
introduces promising perspectives to further explore. One example is provided
by the work of Rathore et al. [48] employing Graph WaveNet to predict wind
speed across a graph connecting multiple cities. This study suggests the potential
integration of wind power forecasts from statistical models with numerical weather
prediction (NWP) models. Such an integrated approach holds the prospect of
yielding significantly improved results for both short-term and long-term wind
power forecasting. Following this research area, very recently a team of researchers
from Google DeepMind released the source code of GraphCast [49], a graph
neural network model that outperforms numerical weather prediction models in
several forecasting scenarios. This model constitutes an important perspective for
forecasting meteorological variables. Unlike spatio-temporal graph neural networks,
GraphCast is an auto-regressive model. It uses the current state’s output as input
for the next step, considering the present and past states from 6 hours prior to
predict the future state for the next 6 hours. This prediction is made for each node
in the graph, utilizing a unique multi-mesh graph structure, as illustrated in Figure
7.1.

Figure 7.1: GraphCast aggregation structure as described in [49]

The distinctive feature of GraphCast is its simultaneous aggregation at multiple
levels, enabling the forecast to incorporate information at different distances.

In future explorations, integrating GraphCast forecasts with the spatio-temporal
graph neural network techniques presented in this thesis could lead to superior

54

Conclusions and Future Work

wind power forecasting outcomes. This integration might involve using GraphCast
predictions as external nodes in the wind farm graph structure. To achieve this,
wind speed should be used as the target variable instead of turbine-generated power,
aligning with GraphCast’s focus on meteorological variables. This adjustment poses
no issue, as demonstrated in Section 6.1, where wind speed serves as a proxy for
wind farm power generation. Additionally, considerations must be made regarding
forecast granularity, given that GraphCast makes 6-hour predictions, while wind
farm forecasts typically have lower granularity. Lastly, structuring the graph
to encompass the wind farm and external nodes with GraphCast predictions is
essential. Figure 7.2 provides an example of a representation of what this graph
structure might look like.

Figure 7.2: Example graph structure of a possible extension of the thesis work.
Orange nodes represent external nodes with GraphCast predictions, while blue
nodes depict wind farm turbines.

In this illustration, orange nodes represent external nodes with GraphCast
predictions, while blue nodes depict wind farm turbines. This approach combines
a global meteorological perspective from GraphCast nodes with a local perspective
from turbine historical data. The wind forecast is then injected into turbine-related
nodes, determining the energy produced by the wind farm. This potential model,
merging GraphCast predictions with spatio-temporal graph neural networks, aligns
with recent literature on meteorological variable prediction.

In conclusion, spatio-temporal graph neural networks stand as state-of-the-art

55

Conclusions and Future Work

models in meteorological forecasting, particularly in the domain of wind power
prediction. New models that provide both large-scale and local forecasts can
drive wind power forecasting towards better performance, improving wind energy
management.

56

Bibliography

[1] Jingbo Zhou, Xinjiang Lu, Yixiong Xiao, Jiantao Su, Junfu Lyu, Yanjun Ma,
and Dejing Dou. «SDWPF: A Dataset for Spatial Dynamic Wind Power Fore-
casting Challenge at KDD Cup 2022». In: arXiv preprint arXiv:2208.04360
(2022) (cit. on pp. 1, 4, 19, 28).

[2] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. «Learning phrase rep-
resentations using RNN encoder-decoder for statistical machine translation».
In: arXiv preprint arXiv:1406.1078 (2014) (cit. on p. 2).

[3] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang.
«Graph wavenet for deep spatial-temporal graph modeling». In: arXiv preprint
arXiv:1906.00121 (2019) (cit. on pp. 2, 4, 31).

[4] Rajesh G Kavasseri and Krithika Seetharaman. «Day-ahead wind speed fore-
casting using f-ARIMA models». In: Renewable Energy 34.5 (2009), pp. 1388–
1393 (cit. on p. 3).

[5] SN Singh, Abheejeet Mohapatra, et al. «Repeated wavelet transform based
ARIMA model for very short-term wind speed forecasting». In: Renewable
energy 136 (2019), pp. 758–768 (cit. on p. 3).

[6] Ilhami Colak, Seref Sagiroglu, and Mehmet Yesilbudak. «Data mining and
wind power prediction: A literature review». In: Renewable energy 46 (2012),
pp. 241–247 (cit. on p. 3).

[7] Alireza Zendehboudi, M Abdul Baseer, and R Saidur. «Application of support
vector machine models for forecasting solar and wind energy resources: A
review». In: Journal of cleaner production 199 (2018), pp. 272–285 (cit. on
p. 3).

[8] Kathrine Lau Jørgensen and Hamid Reza Shaker. «Wind power forecasting
using machine learning: State of the art, trends and challenges». In: 2020 IEEE
8th International Conference on Smart Energy Grid Engineering (SEGE).
IEEE. 2020, pp. 44–50 (cit. on p. 3).

57

BIBLIOGRAPHY

[9] Yanfei Li, Haiping Wu, and Hui Liu. «Multi-step wind speed forecasting using
EWT decomposition, LSTM principal computing, RELM subordinate com-
puting and IEWT reconstruction». In: Energy Conversion and Management
167 (2018), pp. 203–219 (cit. on p. 3).

[10] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
«Wavenet: A generative model for raw audio». In: arXiv preprint arXiv:1609.03499
(2016) (cit. on pp. 3, 13, 31).

[11] Kumar Shivam, Jong-Chyuan Tzou, and Shang-Chen Wu. «Multi-step short-
term wind speed prediction using a residual dilated causal convolutional
network with nonlinear attention». In: Energies 13.7 (2020), p. 1772 (cit. on
p. 3).

[12] Xiaochong Dong, Yingyun Sun, Ye Li, Xinying Wang, and Tianjiao Pu.
«Spatio-temporal convolutional network based power forecasting of multiple
wind farms». In: Journal of Modern Power Systems and Clean Energy 10.2
(2021), pp. 388–398 (cit. on p. 3).

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. «Attention is all you
need». In: Advances in neural information processing systems 30 (2017) (cit.
on pp. 3, 14, 15).

[14] Bryan Lim, Sercan Ö Arık, Nicolas Loeff, and Tomas Pfister. «Temporal
fusion transformers for interpretable multi-horizon time series forecasting».
In: International Journal of Forecasting 37.4 (2021), pp. 1748–1764 (cit. on
p. 3).

[15] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang
Wang, and Xifeng Yan. «Enhancing the locality and breaking the memory
bottleneck of transformer on time series forecasting». In: Advances in neural
information processing systems 32 (2019) (cit. on p. 3).

[16] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. «Autoformer:
Decomposition transformers with auto-correlation for long-term series fore-
casting». In: Advances in Neural Information Processing Systems 34 (2021),
pp. 22419–22430 (cit. on p. 3).

[17] Lei Wang, Yigang He, Lie Li, Xiaoyan Liu, and Yingying Zhao. «A novel
approach to ultra-short-term multi-step wind power predictions based on
encoder–decoder architecture in natural language processing». In: Journal of
Cleaner Production 354 (2022), p. 131723 (cit. on p. 3).

[18] Kai Qu, Gangquan Si, Zihan Shan, XiangGuang Kong, and Xin Yang. «Short-
term forecasting for multiple wind farms based on transformer model». In:
Energy Reports 8 (2022), pp. 483–490 (cit. on p. 3).

58

BIBLIOGRAPHY

[19] Hai-Kun Wang, Ke Song, and Yi Cheng. «A hybrid forecasting model based
on CNN and informer for short-term wind power». In: Frontiers in Energy
Research 9 (2022), p. 788320 (cit. on p. 3).

[20] Bing Yu, Haoteng Yin, and Zhanxing Zhu. «Spatio-temporal graph convolu-
tional networks: A deep learning framework for traffic forecasting». In: arXiv
preprint arXiv:1709.04875 (2017) (cit. on pp. 4, 30, 31).

[21] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. «Adaptive graph
convolutional recurrent network for traffic forecasting». In: Advances in neural
information processing systems 33 (2020), pp. 17804–17815 (cit. on p. 4).

[22] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. «Diffusion convolutional
recurrent neural network: Data-driven traffic forecasting». In: arXiv preprint
arXiv:1707.01926 (2017) (cit. on p. 4).

[23] Tomasz Stańczyk and Siamak Mehrkanoon. «Deep graph convolutional net-
works for wind speed prediction». In: arXiv preprint arXiv:2101.10041 (2021)
(cit. on p. 4).

[24] Fei Wang, Peng Chen, Zhao Zhen, Rui Yin, Chunmei Cao, Yagang Zhang, and
Neven Duić. «Dynamic spatio-temporal correlation and hierarchical directed
graph structure based ultra-short-term wind farm cluster power forecasting
method». In: Applied Energy 323 (2022), p. 119579 (cit. on p. 4).

[25] Lei Wang and Yigang He. «M2STAN: Multi-modal multi-task spatiotemporal
attention network for multi-location ultra-short-term wind power multi-step
predictions». In: Applied Energy 324 (2022), p. 119672 (cit. on p. 4).

[26] Fernando Sebastián Huerta, Manuel Angel Suarez, Daniel Velez Serrano,
Alejandro Carrrasco Sánchez, and Eugenio Neira Bustamante. «Hybrid Model:
Deep learning GRU neural network and K-nearest neighbors for Wind Power
Forecasting». In: () (cit. on pp. 4, 47–49).

[27] Yiji Zhao, Haomin Wen, Junhong Lou, Jinji Fu, Jianbin Zheng, and Youfang
Lin. «EasyST: Modeling Spatial-Temporal Correlations and Uncertainty for
Dynamic Wind Power Forecasting via PaddlePaddle». In: (2022) (cit. on
pp. 4, 47).

[28] Jiawei Jiang, Chengkai Han, and Jingyuan Wang. «BUAA_BIGSCity: Spatial-
Temporal Graph Neural Network for Wind Power Forecasting in Baidu KDD
CUP 2022». In: arXiv preprint arXiv:2302.11159 (2023) (cit. on pp. 4, 40).

[29] Linsen Li, Qichen Sun, Dongdong Geng, Chunfei Jian, Dongen Wu, and
Shiliang Pu. «Complementary Fusion of Deep Spatio-Temporal Network and
Tree Model for Wind Power Forecasting (Team: HIK)». In: (2022) (cit. on
pp. 4, 49).

59

BIBLIOGRAPHY

[30] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and
Jürgen Schmidhuber. «LSTM: A search space odyssey». In: IEEE transactions
on neural networks and learning systems 28.10 (2016), pp. 2222–2232 (cit. on
p. 12).

[31] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. «An empirical
exploration of recurrent network architectures». In: International conference
on machine learning. PMLR. 2015, pp. 2342–2350 (cit. on p. 12).

[32] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. «Gradient-
based learning applied to document recognition». In: Proceedings of the IEEE
86.11 (1998), pp. 2278–2324 (cit. on p. 12).

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. «Imagenet classi-
fication with deep convolutional neural networks». In: Advances in neural
information processing systems 25 (2012) (cit. on p. 12).

[34] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. «An empirical evaluation
of generic convolutional and recurrent networks for sequence modeling». In:
arXiv preprint arXiv:1803.01271 (2018) (cit. on p. 13).

[35] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. «Neural machine
translation by jointly learning to align and translate». In: arXiv preprint
arXiv:1409.0473 (2014) (cit. on p. 14).

[36] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. «How powerful
are graph neural networks?» In: arXiv preprint arXiv:1810.00826 (2018)
(cit. on p. 17).

[37] Thomas N Kipf and Max Welling. «Semi-supervised classification with graph
convolutional networks». In: arXiv preprint arXiv:1609.02907 (2016) (cit. on
p. 17).

[38] Simone Romano, Nguyen Xuan Vinh, James Bailey, and Karin Verspoor.
«Adjusting for chance clustering comparison measures». In: The Journal of
Machine Learning Research 17.1 (2016), pp. 4635–4666 (cit. on p. 24).

[39] Andrea Cini, Ivan Marisca, Daniele Zambon, and Cesare Alippi. «Taming
Local Effects in Graph-based Spatiotemporal Forecasting». In: arXiv preprint
arXiv:2302.04071 (2023) (cit. on p. 28).

[40] Andrea Cini, Ivan Marisca, Daniele Zambon, and Cesare Alippi. «Graph Deep
Learning for Time Series Forecasting». In: arXiv preprint arXiv:2310.15978
(2023) (cit. on pp. 28, 29).

[41] HpcPolitoSite. http://www.hpc.polito.it (cit. on p. 34).
[42] Albert Betz. Introduction to the theory of flow machines. Elsevier, 2014 (cit.

on p. 34).

60

http://www.hpc.polito.it

BIBLIOGRAPHY

[43] Alhassan Ali Teyabeen, Fathi Rajab Akkari, and Ali Elseddig Jwaid. «Math-
ematical modelling of wind turbine power curve». In: International Journal
of Simulation Systems, Science & Technology 19.5 (2018), pp. 1–13 (cit. on
p. 35).

[44] Joaquin Amat Rodrigo and Javier Escobar Ortiz. skforecast. Version 0.10.1.
Sept. 2023. doi: 10.5281/zenodo.8382788. url: https://skforecast.org/
(cit. on p. 37).

[45] Andrea Cini and Ivan Marisca. Torch Spatiotemporal. Mar. 2022. url: https:
//github.com/TorchSpatiotemporal/tsl (cit. on pp. 42, 45).

[46] Hanhan Liu. «trymore: Solution to Spatial Dynamic Wind Power Forecasting
for KDD Cup 2022». In: (2022) (cit. on pp. 47, 48).

[47] Aya Abdelsalam Ismail, Timothy Wood, and Héctor Corrada Bravo. «Im-
proving long-horizon forecasts with expectation-biased LSTM networks». In:
arXiv preprint arXiv:1804.06776 (2018) (cit. on p. 48).

[48] Neetesh Rathore, Pradeep Rathore, Arghya Basak, Sri Harsha Nistala, and
Venkataramana Runkana. «Multi scale graph wavenet for wind speed fore-
casting». In: 2021 IEEE International Conference on Big Data (Big Data).
IEEE. 2021, pp. 4047–4053 (cit. on p. 54).

[49] Remi Lam et al. «Learning skillful medium-range global weather forecasting».
In: Science (2023), eadi2336 (cit. on p. 54).

61

https://doi.org/10.5281/zenodo.8382788
https://skforecast.org/
https://github.com/TorchSpatiotemporal/tsl
https://github.com/TorchSpatiotemporal/tsl

	List of Tables
	List of Figures
	Introduction
	Related works
	Background
	Lasso Regression
	Neural Networks
	Backpropagation Algorithm

	Recurrent Neural Networks (RNNs)
	Long Short Term Memory networks (LSTMs)
	Gated Recurrent Unit (GRU)
	Temporal Convolutional Networks (TCN)
	Transformers
	Attention Mechanism

	Graph Neural Networks
	Graph Convolutional Networks (GCN)

	Dataset
	Data Exploration
	Data Cleaning

	Methodology
	Problem Statement
	Spatio-Temporal Graph Neural Networks Framework
	Spatio-Temporal Graph Convolutional Networks (STGCN)
	Graph WaveNet

	Experiments and Results
	Wind role for power forecasting
	Short-Term Setting
	Lasso Experiment
	GRU Experiment
	Graph WaveNet Experiment
	Short-Term Results

	Long-Term Setting
	Performance of Individual Models
	Ensemble Model
	Summary of all results

	Conclusions and Future Work
	Future Works

	Bibliography

