
POLTECNICO DI TORINO
Master’s Degree in Data Science and Engeneering

Master’s Degree Thesis

Reliability evaluation of Split Computing
Neural Networks

Supervisors

Matteo SONZA REORDA

Juan David GUERRERO BALAGUERA

Josie Esteban RODRIGUEZ CONDIA

Candidate

Giuseppe ESPOSITO

December 2023

Abstract

In the contemporary era, Artificial Intelligence (AI) has become integral to Internet
of Things (IoT) systems, revolutionizing several fields. Due to resource constraints
of these devices, various model optimization techniques are employed, such as split
computing (SC), where the workload is partly offloaded to the cloud to ensure that
the required resources are within the capabilities of the employed devices. Despite
these optimizations, models still require advanced hardware like GPUs which may
be affected by faults. The Graphics Processing Unit, or GPU, has emerged as a
vital computing technology in both personal and business settings. It is specifically
designed for parallel processing and is utilized in numerous applications such as
graphics and video rendering. Nevertheless, GPUs are becoming more popular for
use in creative production and artificial intelligence (AI), due to their capability to
speed up computation, in case it involves simpler basic operations. The employment
of such advanced hardware brings itself some risks particularly when they are used
for safety-critical application. To assess the reliability of this sensitive hardware,
Fault Injection simulations are carried out in order to find a relationship between
the performance of the model and the features of its corruption. The evaluation of
SC2 models reliability in the presence of GPU faults remains unexplained. This
thesis work examines the impact of hardware failures on system reliability under
the assumptions of the split computing approach that distributes neural network
architecture between mobile devices and cloud systems in addition to a knowledge
distillation process to maintain prediction accuracy and reduce transmission load
that could be degraded by the injection of an artificial bottleneck. Furthermore,
the research identifies vulnerable features through software-level simulations and
investigates various hardening techniques on lightweight Deep Neural Network
models. The findings exhibit substantial deterioration of accuracy in models
subjected to fault injection during inference of several tasks, including image
classification, object detection, and semantic segmentation. Suggested hardening
techniques, including custom activation functions, show promise in improving
model robustness and several simulation campaigns have been carried out and the
corresponding statistics analyzed and compared.

i

Acknowledgements

I would like to thank my supervisors Matteo and tutors Juan David and Josie
Esteban for their constant guidance, invaluable insights and continuous support
during the research project. Their expertise, constructive feedback and commitment
have been instrumental in shaping this project and enhancing my understanding of
the subject matter. I would like to thank my family who have been a guiding light
in the night when everything seemed to be hard. Your moral support guided me to
my goals and for that I can only be grateful. A big thank you to my friends, whose
inspiration and motivation have made the challenging moments of this academic
endeavour joyful and bearable. Your laughter and support have made this journey
memorable and rewarding.

Giuseppe.

Computing resources provided by hpc@polito (http://www.hpc.polito.it).

ii

Table of Contents

List of Tables vi

List of Figures viii

Acronyms xii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem formulation . 2
1.3 Thesis contribution . 3

2 Background 4
2.1 Machine learning fundamentals . 4

2.1.1 Deep Learning . 5
2.1.2 VGG . 8
2.1.3 ResNet . 9
2.1.4 MobileNet . 10
2.1.5 Collaborative Intelligence 11

2.2 Testing and Reliability . 17
2.2.1 Key Features of Fault Injection Systems 18

3 Related Work 22
3.1 Fault Injection for DNN models robustness assessment 22

3.1.1 Fault Injection framworks 23
3.1.2 Hardening techniques . 26

4 Experiment settings 28
4.1 Fault injection framework . 28

4.1.1 Weights FI . 29
4.1.2 Neuron FI . 30

4.2 Reliability Evaluation of Image classification application 31

iv

4.2.1 Model: SC ResNet50 Classifier 33
4.2.2 Model: SC MobileNet Classifier 34

4.3 Reliability Evaluation of Object Detection applications 38
4.3.1 Model: SC Faster RCNN with FPN 41
4.3.2 Model: SC SSD300 . 42

4.4 Reliability Evaluation of Semantic segmentation applications 43
4.4.1 Model: SC Deeplab v3 . 43

4.5 Exploration of hardening techniques for SC CNNs 44
4.5.1 Activation function boundary 44
4.5.2 Layer swap . 46
4.5.3 Pooling removal . 47
4.5.4 Fusion compression . 47

5 Experimental Results 48
5.1 Image Classification . 48

5.1.1 Model: MobileNet Classifier 48
5.1.2 SC Model: ResNet50 Classifier 57

5.2 Object detection . 59
5.2.1 Dataset: Coco dataset 2017 59
5.2.2 Student training . 60
5.2.3 Fault injection resiliency . 60
5.2.4 SC Model: Faster RCNN with FPN 62

5.3 Semantic segmentation . 64
5.3.1 Dataset: Pascal VOC 2012 64
5.3.2 Fault injection resiliency analysis 65

6 Conclusions and future works 67

A Experimental Results 69

Bibliography 79

v

List of Tables

4.1 Weight fault injection hyperparameter 34
4.2 Neuron fault injection hyperparameter 35
4.3 MobileNet training hyperparameter 37

5.1 MobileNet V3 Small training hyperparameter values. 49
5.2 SC MobileNet V3 Small Weight FI hyperparameters. 53
5.3 SC MobileNet V3 Small Neuron FI hyperparameter. 55
5.4 SC SSD300_VGG16 average IoU for split configuration CR+BQ(6). 60
5.5 SC SSD300_VGG16 IoU degradation - Weights FI. 62
5.6 SC SSD300_VGG16 with Custom ReLU IoU degradation - Weights

FI. 63
5.7 SC Faster RCNN with FPN weights fault injection hyperparameters 63
5.8 SC Faster RCNN with FPN IoU degradation - Weights FI. 64
5.9 SC DeepLabV3 weights fault injection hyperparameters. 65

A.1 Execution time of performed experiments. The time represented is
evaluated without the use of distributed jobs. However, given the
HPC provided by Politecnico di Torino, multiple jobs were initiated
and parallelized to achieve feasible simulation times. 71

A.2 Relevant MobileNet V3 Small hyperparameter configuration trained. 72
A.3 Models performance trained under the configuration listed in A.2. . 72
A.4 SC Mobilenet MRAD per layer when corrupted_bit = 30 - Weights

FI. 72
A.5 SC Mobilenet MRAD per layer - Weights FI. 72
A.6 SC Mobilenet MRAD per layer when corrupted_bit = 30 - Neuron FI. 72
A.7 SC Mobilenet MRAD per layer - Neuron FI. 73
A.8 SC ResNet50 Weight FI hyperparameters - Weights FI. 73
A.9 SC ResNet50 Weight FI hyperparameters - Neuron FI. 73

vi

A.10 SC SSD300_VGG16 prediction majority - Weights FI. It represents
the number of times (in percentage) that the #Predictions from
corrupted SC SSD300_VGG16 is >,<,= to #Predictions from fault
free SC SSD300_VGG16 when considering only SDC and Critical
predictions. 73

vii

List of Figures

2.1 Main subdivision of machine learning algorithms, [Source] 4
2.2 Basic architecture of a general-purpose Convolutional Neural Network 7
2.3 VGG 19 backbone plus several ending dense layers for the classifica-

tion. [Source]. 9
2.4 ResNet skip connection maps the input of he convolutional layer

with an identity mapping which is later added to the output of the
layer [9]. 10

2.5 Edge computing servers are kept as closer as possible to the mobile
device in order to make the communication faster, [Source]. 12

2.6 The optimal early exit point is found by optimizing the accuracy of
a classifier that uses the feature extracted at different stages of the
model. [16] . 12

2.7 Forward pass of the DNN such that it is partly executed on the
resource-constrained device and partly in the cloud [18] 13

2.8 Effects of hardware level fault injection on the software performances 16
2.9 Effects of hardware level fault injection on the software performances.

[Source] . 19

4.1 Bit-flip example . 29
4.2 Hardware-aware fault propagation based on GPU’s GeMM algorithm

workload distribution. 30
4.3 Corrupted prediction evaluation process for image classification models 33
4.4 Artificial bottleneck training from [1] 37
4.5 Split Mobilenet bottleneck architecture 38
4.6 Misprediction for each downstream task. Specifically, the top-most

figure represents a failure in coordinates regression and the bot-most
figure represents a misclassification. [Source] 39

4.7 Flow chart of the labeling process of the faulty predictions 40
4.8 SC SSD300_VGG bottleneck architecture. 42
4.9 ReLU Activation Function . 44
4.10 HardTanH Activation Function in splittable MobileNet Classifier . . 45

viii

https://arshren.medium.com/supervised-unsupervised-and-reinforcement-learning-245b59709f68
https://medium.com/@siddheshb008/vgg-net-architecture-explained-71179310050f
https://semiconductor.samsung.com/emea/support/tools-resources/dictionary/edge-computing/
https://eshard.com/fault-injection
https://www.istockphoto.com/it/foto/guidare-al-tramonto-vista-dallangolazione-del-conducente-messa-a-fuoco-dellauto-gm636690722-113103609

4.11 HardTanH Activation Function in splittable SSD300_VGG16 . . . 45
4.12 Layer Swap in MobileNet Classifier bottleneck 46
4.13 Layer Swap in SSD300_VGG16 bottleneck 46

5.1 MobileNet V3 Small training and validation loss. 50
5.2 MobileNet V3 Small validation Top1 and Top5 accuracy. 51
5.3 SC MobileNet V3 Small Top1 validation accuracy. 52
5.4 SC MobileNet V3 Small with custom ReLU Top1 validation accuracy. 53
5.5 SC MobileNet V3 Small Mean Relative Top1 Accuracy, F1-score,

Precision and Recall Matrics degradation VS bit faulty position -
Weights FI. 54

5.6 SC MobileNet V3 Small with Custom ReLU Mean Relative Top1
Accuracy, F1-score, Precision and Recall Matrics degradation VS
bit faulty position - Weights FI. 55

5.7 SC MobileNet V3 Small Mean Relative Top1 Accuracy Degradation
VS bit faulty position by injection layer setting - Neuron FI. 56

5.8 SC MobileNet V3 Small with Custom ReLU Mean Relative Top1
Accuracy Degradation VS bit faulty position by injection layer setting
- Neuron FI. 56

5.9 Sample from one of the branches of ImageNet. Source: [42] 57
5.10 SC ResNet50 Mean Relative Top1 Accuracy Degradation VS Injec-

tion layer by split configuration (CR+BQ(*)) - Weights FI. 58
5.11 SC ResNet50 Mean Relative Top1 Accuracy Degradation VS bit

faulty position by split configuration - Weights FI. 59
5.12 SC SSD300_VGG16 Critical, SDC and Masked boxes per layer

injection - Weights FI. 61
5.13 SC SSD300_VGG16 with Custom ReLU Critical, SDC and Masked

boxes per layer injection - Weights FI. 62
5.14 SC Faster RCNN with FPN Critical, SDC and Masked boxes per

layer injection - Weights FI. 63
5.15 Segmentation: Generating pixel-wise segmentations giving the class

of the object visible at each pixel, or "background" otherwise. [Source] 64
5.16 Action Classification: Predicting the action(s) being performed by a

person in a still image. [Source] . 65
5.17 SC DeepLabV3 prediction percentages - Weigths FI. 66

A.1 SC MobileNet V3 Small, SDC and Masked predictions per layer -
Weights FI. 69

A.2 SC SSD300_VGG16 hard-cut area ratio per layer injection. 70

ix

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

A.3 SC SSD300_VGG16 hard-cut majority of prediction per layer in-
jection. The percentage of cases in which the number of boxes
predicted by the faulty SC SSD300_VGG16 is smaller (F_maj),
larger (G_maj) or equal (eq) than the number of boxes predicted
by the corresponding golden model, or when the corrupted model
made no predictions (not_predicted). 74

A.4 SC SSD300_VGG16 Custom ReLU area ratio per layer injection. . 75
A.5 SC SSD300_VGG16 Custom ReLU majority of prediction per layer

injection. The percentage of cases in which the number of boxes
predicted by the faulty SC SSD300_VGG16 Custom ReLU is smaller
(F_maj), larger (G_maj) or equal (eq) than the number of boxes
predicted by the corresponding golden model, or when the corrupted
model made no predictions (not_predicted). 76

A.6 SC Faster RCNN with FPN. Area ratio between the boxes of the
corrupted model and the boxes of the fault-free model per layer in-
jection when considering only SDC and Critical predictions. Weights
FI . 77

A.7 SC Faster RCNN with FPN prediction majority - Weights FI. The
percentage of cases in which the number of boxes predicted by
the faulty SC Faster RCNN with FPN is smaller (F_maj), larger
(G_maj) or equal (eq) than the number of boxes predicted by the
corresponding golden model, or when the corrupted model made no
predictions (not_predicted). 78

x

Acronyms

AI
artificial Intelligence

NN
Neural Network

COTS
Commercial-Off-The-Shell

ANN
Artificial Neural Network

CNN
Convolutional Neural Network

DNN
Deep Neural Network

FC layer
Fully-connected layer

ReLU
Rectified Linear Unit

ILSVRC
ImageNet Large Scale Visual Recognition Challenge

EC
Edge Computing

xii

EE
Early Exiting

MLE
Maximum Likelihood Estimation

FLOPS
Floating Point Operations Per Second.

FI
Fault injection

SUT
System under testing

IoU
Intersection over Union

FAT
Fault Aware Training

HDL
Hardware Description Level

IoT
Internet of Things

LSB
Lowest Significant Bit

MSB
Most Significant Bit

GeMM
General Matrix Multiplication

SC
Split Computing

xiii

SC2
Supervised Compression for Split Computing

SDC
Silent Data Corrupted

MSE
Mean Squared Error

mAP
mean Average Precision

SGD
Stochastic Gradient Descent

RMSProp
Root Mean Squared Propagation

RCNN
Region-based Convolutional Neural Network

FPN
Feature Pyramid Network

SSD
Single Shot multiblox Detector

GPU
Graphics Processing Unit

VGG
Visual Geometry Group

MM
Matrix Multiplication

SM
Streaming Multiprocessor

xiv

FMA
Fused Multiply–Add

FCNN
Fully Convolutional Neural Network

SPP
Spatial Pyramid Pooling

ASPP
Atrous Spatial Pyramid Pooling

VOC
Visual Object Classes

HardTanH
Hard Hyperbolic Tangent

CR+BQ
Channel Reduction + Bit Quantization

MRAD
Mean Relative Accuracy Degradation

xv

Chapter 1

Introduction

1.1 Motivation

In the present era, Artificial Intelligence (AI), in particular, Deep Neural Networks
(DNNs), has become an integral element within Internet of Things (IoT) systems,
enhancing their capacity to improve new technologies in the fields of public services,
industry, automotive, and healthcare (among the others). Consider, for instance,
the utilization of object detection models in self-driving cars to identify obstacles,
or the application of trajectory tracking models in the same scenario, aiding in
following road markings.

Aside from the substantial computational resources required for training em-
ployed DNN models for these tasks, the computational cost incurred solely during
the inference stage must not be underestimated. For instance, resource-intensive
models typically demand the utilization of high-performance computing systems
or powerful Graphic Processing Units (GPUs) devices. However, compact devices
such as IoT systems are intended to have limited computational capabilities, since
they typically correspond to Commercial Off-The-Shell (COTS). Hence, such that
running DNN algorithms becomes unfeasible with the Edge Computing. Conse-
quently, the idea of completely offloading the computational cost to cloud systems
has been taken into account.

Nonetheless, state-of-the-art techniques see the advantages of Split Computing
techniques. It allows to split the model’s architecture in Head which is executed on
the mobile device (i.e., IoT device), and Tail executed on the cloud or on an Edge
server. Furthermore, in order to minimize the transfer load to the cloud as much
as possible, a layer or a block of bottleneck layers replace a layer in the split point,
whose aim is to significantly reduce the number of neurons as well as to reduce the
amount of data interchange between the mobile device and the cloud.

As the tail architecture receives a compressed version of the feature maps, a

1

Introduction

knowledge distillation process is performed in order to train a compressed version
of the model, i.e., the head. The knowledge distillation process aims to replicate
the knowledge that the model would have had if the bottleneck had not been
introduced. This involves training a compressed version of the original model,
making it lighter while maintaining the same performance as far as possible.

While these advancements will keep playing a subordinate role in human decision-
making, some dangerous situations can arise when hardware malfunctions come into
play, if we consider the aforementioned case, hardware faults can lead to the wrong
detection of an object close to the autonomous vehicle or, even worse, an accident
caused by the missing detection of a person. Thus, assessing the dependability
of these technologies, particularly their resilience against such errors, becomes of
paramount importance, in order to enhance the fault resilience of such systems
when using the Split Computing paradigm.

The objective of this work is first to develop a Fault Injection system for reliability
and robustness assessment to faults that could occur at the hardware level. The
fairness tests of such Fault Injector are enforced by expanding the selection of
models already available in Supervised Compression for Split Computing (SC2) with
the possibility of being adapted to new datasets. As soon as a general assessment
of how the different characteristics of the faults can affect the performance of
the software, some software hardening techniques are then proposed based on the
previous analysis, together with a deep understanding of the structure of the models
under testing.

1.2 Problem formulation
A flexible framework for training and evaluating models in the split computing
paradigm was proposed by Yoshitomo Matsubara et al. in [1]. Their contribution
to the state of the art was in the development of a new training technique based
on Supervised Compression, which focuses on reducing the size of the model on
the mobile device side by training it to mimic the behavior of an already trained
and heavier version of the same.

This thesis work presents a framework to perform application-level fault injection
campaigns to induce error injection at both the weight and neuron levels of any
split computing DNN, allowing for a considerable degree of flexibility. Furthermore,
we created additional SC DNN architectures using different configurations and
evaluation datasets that allow us to explore the incidence of hardware faults on
their reliability.

A significant gap in the current landscape is the lack of a benchmark for assessing
the resilience of models within the split computing framework. As this framework
is proposed for use on IoT devices, it is a pressing issue that necessitates the

2

Introduction

attention of the research community. Developing a uniform benchmark will not
only permit comparative analyses but also play a vital role in guaranteeing the
practicability and dependability of fault features with split computing models in
real-world situations.

1.3 Thesis contribution
My contribution to this research work is:

• Analyzing the results of software-level simulation of fault injection and provide
a comprehensive overview of the most vulnerable software features, in order
to enhance their protection and hardening.

• Extending the selection of models trained with Supervised Compression for
Split Computing (SC2) by adapting existing architectures to the split com-
puting paradigm and training them on new datasets.

• Exploring, implementing and testing different hardening techniques in order
to improve the robustness of lightweight Deep Neural Network models for
image classification, object detection and semantic segmentation tasks.

This thesis is divided as follows:

• Chapter 1 : Provides an overview of the reasons behind the project and the
main contributions of this specific work.

• Chapter 2 : Introduces the basis of both machine learning algorithm and fault
injection background, clarifying the tools applied during the development.

• Chapter 3 : Explores different fault injection techniques at the hardware level
in GPU accelerators and software level in deep learning applications.

• Chapter 4 : Detailed description of the experimental setup for the fault in-
jection, applied methodologies for the adaptation of new models to the SC2
framework, and software reinforcing techniques implementation.

• Chapter 5 : Results of the analysis aimed at finding a correlation between the
hardware fault features and the trend of the metrics

• Chapter 6 : Conclusions of the thesis work.

3

Chapter 2

Background

2.1 Machine learning fundamentals

Figure 2.1: Main subdivision of machine learning algorithms, [Source]

Machine Learning is a branch of Artificial Intelligence that aims to mimic a
human-like learning process. Human reasoning is composed of both deductive
and inductive reasoning: deductive reasoning entails applying general rules or
principles to arrive at specific conclusions. For example, if we know that "all men
are mortal" and that "Socrates is a man," we can deduce that "Socrates is mortal.".
On the other hand, inductive reasoning is based on the generalization of patterns
discovered in situations already experienced. However, Inductive Reasoning extracts

4

https://arshren.medium.com/supervised-unsupervised-and-reinforcement-learning-245b59709f68

Background

useful relations between data and attributes by means of statistical models. For
example, over the past thousands of years, scientists have observed that water
freezes at 0 Celsius degrees at standard atmospheric pressure. Considering that
the available observations come from various geographic locations and climates
which consistently support the first premise, it can be inferred that under the
above-mentioned conditions, regardless of the geographic location, the water freezes
at or below 0 degrees Celsius. In the same way that these forms of reasoning lead
humans to conclusions based on empirical evidence, it is crucial to highlight the
parallelism between inductive reasoning and the learning process of a machine
learning model.

Machine learning can be divided into 3 main categories [2]:

• Supervised learning. Algorithms for supervised learning use a dataset
comprising features with an additional dimension where a target or label for
each occurrence is reported. As an example, consider the Iris dataset1, where
each Iris plant is labeled with the appropriate species. This dataset may be
examined by a supervised learning algorithm, which can then learn to classify
Iris plants into three different species based on the available ground truth.

• Unsupervised Learning. Unsupervised learning algorithms interact with a
dataset containing a variety of features and eventually gain useful information
about the dataset’s underlying structure. In the field of deep learning, our
typical goal is to capture the probability distribution that produced the dataset.
For activities like anomaly detection or denoising, such algorithms can be
employed in order to perform pattern recognition and group the elements on
the dataset based on possible hidden trends.

• Reinforcement learning. Algorithms for Reinforcement learning are not
trained from the experience of a fixed dataset, they interact with the environ-
ment. Specifically, Fig 2.1 an Agent A interacts with an Environment E with
the default setup and then a Quality Function is designed such that A is able
to accomplish the assigned learning task.

2.1.1 Deep Learning
Deep Learning is a subset of Machine learning that includes special algorithms:
Artificial Neural Networks (ANNs). The concept of ANN dates back to the
1940s and 1950s when they were inspired by models of biological Neural Networks
(NNs) in the brain. Nowadays, NNs are software-implementable algorithms and

1A tabular dataset which contains information about sepal length, petal length, sepal width
and petal width of three categories of Iris dataset.

5

Background

they are very flexible. It means that, depending on the architecture of the algorithm,
they can perform different tasks.

All the possible tasks can be grouped into several macro areas, but the ones
that most influence our everyday lives are: Computer Vision, Natural Language
Processing, and Time Series Forecasting. This section will focus on Computer
Vision and specifically on the tasks that include the models that have been part of
the objective of the following study.

Computer vision plays a major role in today’s technological landscape. It
aims to replicate the advanced human capability for visual perception by giving
machines the ability to perceive the visual world as humans do. Possible real-
world applications of such a technology are autonomous vehicles, medical imaging,
security and surveillance, industrial product inspection, navigation and mapping,
art and creativity, and agriculture. Each goal can be reached by changing the
internal structure of the NN; nevertheless, the most frequent layer types are the
Convolutional Layers and the Fully-Connected layers.

Let us now examine a toy example in order to understand the general idea of
Convolutional Neural Networks(CNNs). Given two any functions f(x) and g(x) the
Convolution can be expressed as the sum of the overlaps of one of the functions
and all of the shifted versions of the other function:

(f × g)(x) =
Ú ∞

−∞
f(t) × g(x− t)dt (2.1)

Commonly structured CNN receives a d-dimensional tensor2 as input, which repre-
sents the image to be processed. The first stages of the algorithm process form the
feature extractor and are typically performed by Convolutional layers. Specifically,
a dot product3 between the tensor and some generally small matrices called kernels
is computed, which represents the overlap of the two functions described in Eq.
2.1, followed by an activation function and possibly pooling operation. Eventually,
d-dimensional tensors are extracted and are called feature maps.

An activation function is a mathematical function that adds non-linearity to the
objective function to optimize, which enables the model to simulate a non-linear
mapping input-output by deciding whether to fire the response of a neuron or not
and assigning a corresponding weight. On the other hand, the feature map’s spatial
dimensions are lowered during a pooling operation by choosing the most important
data from smaller locations, preserving key features while lowering computing
complexity. This sequence is usually known as a Convolutional Block. The
extracted feature maps typically represent edges, textures, or shapes which become
more detailed the more convolutions are performed. This means the higher the

2A multidimensional array.
3Given 2 vectors a and b the dot product (·) is defined as a · b = a1b1 + a2b2 + . . . + anbn

6

Background

Figure 2.2: Basic architecture of a general-purpose Convolutional Neural Network

feature resolution, the better the classification capabilities of the model on the
object under analysis. Nevertheless, the more convolutions applied, the more the
NN loses the perception of the spatial location of the object depicted in the image.

The objective of the whole process is to encode images as feature maps, which
makes it simpler for the NN to identify patterns and objects. Usually, the con-
catenation of Convolutional Blocks represents the backbone of the model and the
process is called feature extraction. Subsequently, they are concatenated with some
other type of layers: Fully-Connected layers. Fully-Connected layers perform the
dot product of the feature maps with a vector of weights (w,b):

y = f (w · x+ b)

The last convolutional layer output is then passed through a dense layer block
ending with a softmax activation function which outputs a probability distribution.
Such a distribution quantifies the confidence level associated with each possible
label, into the input image. Overall, the depth of the NN depends on the number
of layers that are inside its architecture.

As the aim of this work is to create a baseline for the field of interest, we decided
to focus on the 3 most frequent tasks of Computer Vision.

• Image Classification: it is a Supervised task of Computer Vision where
the goal is to assign a label to an input image. By definition, the dataset
of images is provided with target labels to assign to each image. The toy
example explained above is the typical pipeline of inference of a model meant
for image classification. Indeed, one of the main obstacles involves the need
for extensive and accurately annotated datasets to facilitate training. The
processes of collecting, labeling, and maintaining these expansive datasets
can consume significant time and resources. Additionally, reaching elevated

7

Background

accuracy levels calls for intricate models, often demanding substantial com-
putational capabilities. This situation concerns energy consumption and the
potential for scalable implementation.

• Object Detection: it is a pioneering field in computer vision that has revolu-
tionized the way machines perceive and understand visual data. Unlike image
classification which assigns a single label to an entire image, object detection
goes a step further by identifying and localizing multiple objects within an
image, providing valuable information about their positions and dimensions,
[3]. The importance of object detection is evident in its wide range of applica-
tions. In autonomous driving, it enables vehicles to identify pedestrians, other
vehicles, and traffic signs, enhancing road safety. In healthcare, it assists in
detecting anomalies in medical images, such as tumors in X-rays. Retail and
e-commerce use object detection for inventory management and visual search
capabilities [4].

• Semantic Segmentation: it involves the partitioning of an image into
distinct segments, each corresponding to a specific object or region of in-
terest. Unlike object detection which identifies objects as bounding boxes,
semantic segmentation assigns a label to every pixel in an image, providing a
detailed understanding of the image’s content. The significance of semantic
segmentation lies in its ability to enable machines to comprehend images at a
more granular level [5]. This has different applications, ranging from medical
image analysis, where it aids in pinpointing specific structures like tumors, to
environmental monitoring, where it assists in land cover classification through
satellite imagery. In autonomous driving, semantic segmentation helps vehicles
understand road scenes by identifying different objects and road markings [6]
[7].

The backbone of the models employed for computer vision tasks can have
different architectures depending on the support that these features can provide
to the downstream task. Over the past ten years, numerous models have been
developed and are now utilized as benchmarks for feature extraction. The following
subsection will focus on the models that have recently influenced the advancement
of new backbones and specifically the advantages that such innovation has brought.

2.1.2 VGG
VGG feature extractor is the result of an experiment carried out by Karen Simonyan
and Andrew Zisserman who wanted to prove that by pushing the depth of a feature
extractor to 16-19 layers, the classification capabilities of the model improve a
lot with respect to the state-of-the-art. In [8] they showed the architecture that

8

Background

Figure 2.3: VGG 19 backbone plus several ending dense layers for the classification.
[Source].

is reported in Figure 2.3. The small sizes of the kernels with the sharp increase
of the number of channels of the feature maps preceded by significant layers of
MaxPooling2D has shown striking improvement in the field of image classification.
Specifically, they won the second place in ILSVRC2014 reaching 24.7% of top1 and
7.5% of top5 test error. [8]

2.1.3 ResNet
He Kaiming et al. in [9], considered that training a model based on the mapping
error from the input to the output of a neural network is more effective in terms
of algorithm convergence so that the model can be deepened as the size of the
convolutional layers increases, avoiding the phenomenon of exploding gradients.
Specifically, it was assumed that enhancing the depth of a convolutional neural
network would enhance the feature extraction process, thereby benefiting the
downstream task.

However, with the increased size of the network, the complexity of the objective
function to optimize also increases. Mathematically, if the desired underlying
mapping is H(x), rather than directly trying to learn H(x), the model learns

9

https://medium.com/@siddheshb008/vgg-net-architecture-explained-71179310050f

Background

Figure 2.4: ResNet skip connection maps the input of he convolutional layer with
an identity mapping which is later added to the output of the layer [9].

F (x) = H(x) −x, which is equivalent to H(x). However, it is thought that learning
this function is easier than the unreferenced mapping of F (x). In this case, the right
side arrow in fig 2.4 represents the so-called skip connection which simply maps
the input with an identity function and then sums it to the output of the residual
block. This intuition led them to win first place in the classification competition of
ILSVRC2015 and also proved to have noteworthy generalization capabilities for
other kinds of computer vision tasks such that it is the current most used backbone
for several tasks.

In the contemporary development of such a backbone, skip connections have a
somewhat more complex mapping function, as illustrated in [10]. Nonetheless, the
meaning behind it is preserved, i.e. if the optimal function is closer to an identity
mapping rather than a zero mapping, it may be simpler for the solver to detect
perturbations with respect to an identity mapping than to learn the function as
completely new.

2.1.4 MobileNet
MobileNet is a family of convolutional neural networks that tries to optimize the
memory efficiency of the model and the computational cost of the whole process of
training and inference. To do so, in [11] Andrew G. Howard et al. introduced 2
new concepts of convolution which resulted to be significant for the optimization
of the computational cost.

Their intuition consisted of decomposing the process of the standard convolution

10

Background

into 2 steps which are:

• depthwise convolution: apply #filters = input_channels with variable kernel
sizes. By doing so, spatial dimensions are reduced while depth remains the
same.

• pointwise convolution: apply #filters > input_channels of size 1 × 1. By
doing so, spatial dimensions remain the same while the number of channels of
the feature maps increases.

Overall the reduction of the cost computation is:

1
N

+ 1
D2

K

(2.2)

where DK is the kernel size in the case of depthwise convolution and N is the
number of channels in the case of pointwise convolution.

Eventually, in addition to these optimization techniques, they used also other 2
already existing strategies which consist in a multiplier for the number of filters
α and a multiplier for the spacial dimensions of the feature maps at each layer ρ.
They both range in (0,1].

With these optimizations taken to their limits, they have exhibited a significantly
high ratio of model optimization to accuracy degradation, demonstrating the validity
of their model.

2.1.5 Collaborative Intelligence
The more research in this area goes on, the more neural network models require a
computational cost that from edge devices such as a Jetson Nano are unsustainable
given the number of weights in the statistical model, which is in the order of MB.
As explained in section 2.1.3, it has been proved that the deeper the model, the
more accurate the feature extraction becomes, hence improving the accuracy of the
head model prediction [9, 8, 12, 13]. But increasing the depth means adding a lot
of convolutions. If we, for example, consider ResNet50 backbone, we can estimate
its model size to be 98 MB, which corresponds to 25.6 million weights which is
quite impressive.

Based on these assumptions one of the most recent noteworthy research is to
find a way to optimize the model size or to find the best strategy to deploy as
much as possible the workload to the cloud systems which potentially is assumed
to have an infinite computational power.

Recently, Edge Computing (EC) has tried to meet these kinds of needs, but
another challenge to address arises which is the balance between latency and com-
putation. Certainly, mobile devices such as drones or rescue systems require a fairly

11

Background

Figure 2.5: Edge computing servers are kept as closer as possible to the mobile
device in order to make the communication faster, [Source].

high response speed from the model, which is fully executed in the cloud. At the
same time, these systems could be sending information with really high frequency,
which could slow down the communication system or even create bottlenecks by
exceeding the bandwidth. Therefore, the focus of the optimization, in this case, is
communication with the cloud. The options explored were high-bandwidth wireless
links such as Long Range, which has a maximum data rate of 37.5 kbps due to duty
cycle limitations. Nonetheless, the research conducted by Jiménez Mateo et al. in
[14] and Zhang et al. in [15] revealed that despite the wide spectrum available in
the mmWave bands, these communication paths suffer from limited throughput
due to interferences causing delays and blockages.

Figure 2.6: The optimal early exit point is found by optimizing the accuracy of a
classifier that uses the feature extracted at different stages of the model. [16]

The Early Exiting (EE) strategy, originally introduced by Teerapittayanon et
al. [17], represents a cutting-edge advancement in DNN algorithm optimization.

12

https://semiconductor.samsung.com/emea/support/tools-resources/dictionary/edge-computing/

Background

Through the strategic placement of early termination points in the network archi-
tecture, EE enables an early conclusion of computations once a desired confidence
level is reached for a given input sample. This pioneering approach removes the
necessity to reduce the size of DNN models, resulting in a notable reduction in
computational complexity. As a result, employing EE technology greatly reduces
both the total inference time and computational costs.

This methodology is particularly important in the field of Computer Vision,
where varying degrees of sample complexity are present. Notably, EE approaches
have been successfully adapted to encompass a range of situations, including mobile-
edge-cloud computing systems. Here, neural models are allocated in a way that
is dynamically tailored to the computational capabilities of each device, with the
aim of optimizing both confidence levels and computational resources. The Split

Figure 2.7: Forward pass of the DNN such that it is partly executed on the
resource-constrained device and partly in the cloud [18]

Computing technique lies between the other two, as it consists of splitting the
forward pass of the model into 2 stages:

1. The first one is executed with the available resources of the mobile device.

2. The second stage instead is computed on the cloud.

and eventually, the output of the required prediction is sent to the cloud server.
This ranking is due to the fact that the features extracted by the first convolutional
layers that form the head are called high-level features because they are semantically
important for the general understanding of the objects in the image. On the other
hand, the features extracted from the tail are called low-level features, which,

13

Background

losing the spatial cognition of the elements, are able to extract details such as
contours, edges and angles. A high-level feature map typically contains a lower
number of channels and, conversely, a low-level feature map contains a higher
number of channels, this means that the computational cost is higher the more the
sample batch is closer to the tail of the feature extractor because the number of
FLOPS increases significantly. As the optimal solution becomes more complete
and complex, the number of problems to address also increases. Therefore, the
position of the "split point" is a critical topic, clearly discussed by Li et al. in
[19], in terms of the available resources on the mobile device and the available
bandwidth, showing that the best-performing configuration, presents the split point
close to the tail of the model.

To the best of our knowledge, split computing is one of the most exceptional
frameworks on which most efficient mobile applications of DNN are built. Over
recent years, various enhancements have been implemented to minimize model
accuracy degradation while simultaneously reducing the volume of data transmitted
to the cloud for the forward process.

In the context of techniques that aim to deploy the workload to the cloud
(partly or totally), the most significant obstacle is the volume of data represented
by feature maps that must be transferred to the cloud for the model to perform
the inference process. The approaches outlined below prioritize this optimization
challenge.

Bottleneck injection and bit quantization

The bottleneck is a special category of layer or block of layers which drastically
decreases the number of neurons with respect to the ones of the previous layer.
To the best of our knowledge, this concept was originally introduced by Sandler
et al. in [11]. it is emphasized that the Rectified Linear Unit (ReLU) activation
function can lead to a loss of information in a channel, potentially causing a collapse.
However, if there are numerous channels and a structured activation manifold, some
information may still be retained in other channels. The paper demonstrates that if
the input manifold can be embedded into a considerably lower-dimensional subspace
of the activation space, the ReLU transformation can preserve information while
introducing necessary complexity into the set of expressible functions. Assuming the
manifold of interest is low-dimensional, the optimization of existing neural networks
can be addressed by incorporating linear bottleneck layers into the convolutional
blocks. Experimental evidence underscores the importance of using linear layers to
prevent non-linearities from causing excessive information loss.

In addition to the artificial bottleneck injection further data minimization can
be performed by using Bottleneck Quantization, it is a technique for performing
computations and storing tensors at lower bit widths than floating-point precision.

14

Background

A quantized feature map allows lightening operations of the following layer with
lessened precision relative to full precision (floating point) values. For example,
quantization can approximate parameters expressed in Float32 (which is the typical
representation of neurons and parameters) to Int8 which means reducing the
computation time 4 times given the faster execution of the operation between Ints
rather than Float values and the same multiplier holds for the model size which is
significantly reduced.

The most common quantization strategies used in DNN applications are:

• Dynamic Quantization: This procedure entails not only converting the weights
to int8 - as is the case in all quantization types - but also changing the
activations to int8 immediately before conducting the computation (and hence
"dynamic").

• Post-Training Static Quantization: It involves feeding batches of data through
the network first, and computing distributions of the different activations.
This is achieved through inserting "observer" modules at various points in
the network that record these distributions. This information is utilized to
determine the level of quantization required for different activations during
inference.

• Quantization Aware Training: It yields the highest accuracy among the three
methods. During both forward and backward passes of training with QAT,
all weights and activations are "fake quantized", meaning that float values are
rounded to imitate int8 values. However, all computations are still performed
with floating-point numbers. Therefore, all weight adjustments made during
training are conscious of the fact that the model will ultimately be quantized.
As a result, this method typically yields greater accuracy compared to the
other two methods once quantized.

In particular, bottleneck quantization is a special case of Dynamic Quantization
and Quantization Aware Training.

Knowledge distillation

In machine learning the knowledge distillation process is based on the idea of
transferring the knowledge from one model to another by comparing the output
of the two and setting up the training phase such that so-called student model
imitates the behavior of the teacher model. Let us consider a pretrained model T
and a non-pretrained model S but with a more compressed architecture. The task
to which a distillation process framework aims, is to use output coming from T as
a reference and train S with a loss based on the distance between the reference
output ŷ(x|t) and the output of the distilled model y(x|t) taking into account, if

15

Background

possible, also the ground truth ȳ. Generally, it is used the Cross-Entropy loss that
has the following expression:

E(x|t) = −t2
Ø
i

ŷi(x|t) log yi(x|t) −
Ø
i

ŷi log yi(x|1) (2.3)

where the temperature factor t ranges in [0; ∞] and it weights the contribution of
the distillation process and x is the input sample batch.

In [20] it is demonstrated that knowledge distillation is a special case of model
compression. This is possible under the assumption that the logits have zero mean.

Supervised Compression for Split Computing

Figure 2.8: Effects of hardware level fault injection on the software performances

In [1] Matsubara et al. merged all the aforementioned techniques and in fig. 2.8
is reported the final architecture of the student S and teacher T models. We can
notice that the actual split of the model occurs in S and T is totally transferred
to the cloud in order to completely offload the model size of T which is heavier
since it is pre-trained without any optimization process. On the other hand, S
has the same architecture of T but one layer or a block of layers is replaced with
an encoder-decoder structure where a bottleneck layer is injected such that the
number of channels significantly decreases and, in addition to that, it performs a
bit quantization to Int8 format. The bottleneck layer represents the real split point
which means that, during the deployment, the feature maps extracted until this
layer will be transferred to the cloud. Eventually, the inference process continues
and, in case online training is performed, the outputs of the layer of the teacher
corresponding to the replaced one and the outputs of the decoder are compared in
order to keep training it.

In this setup the layers that remain the same between T and S are pre-trained,
in fact the aim of their training pipeline is to make the model learn to encode and
then decode the feature extracted until their point which means basically train

16

Background

only the layers which for the encoder-decoder structure. Such training phase is
divided in two main stages:

1. Training the student model with targets h and tail architecture obtained from
the teacher.

2. Fine-tuning the decoder and tail portion with the fixed encoder.

A student model trained through knowledge distillation can be represented as a
deterministic two-step mapping, where z = ⌊fθ(x)⌉ and ĥ = gϕ(z), the encoder and
decoder mapping respectively, with ĥ(≈ h) now being a decompressed intermediate
hidden feature in the final student model (refer to Figure 2). Assuming pψj

(yj|ĥ)
represents the output probability distribution of the student model with parameters
ψj, the fine-tuning step consists in optimizing:

ψ∗
j = arg min

ψj

−E(x,y)∼D[pψj
(yj|gϕ(⌊fθ(x)⌉))] (2.4)

This approach reduces the computational load on lower-powered mobile devices by
transferring the majority of the processing workload to a high-capacity cloud or edge
server. Additionally, the solitary encoder in our entropic student has the capability
to accommodate multiple downstream tasks. The findings indicate an improvement
in supervised rate-distortion performance for three distinct vision tasks, along
with decreased prediction latency end-to-end when compared to multiple baseline
methods for neural image compression and feature compression.

2.2 Testing and Reliability
As the digital landscape expands and becomes more integrated into our everyday
lives, the necessity for reliable hardware, and consequently software systems, ex-
ponentially increases. A hardware-level failure may occur when a logical element
becomes stuck at either one or zero. Evaluating the robustness of such a system
involves intentionally introducing failures by trying to cover all possible cases, may
leading to large search space. After analyzing the obtained results, the most sensi-
tive parts of the hardware, or the errors that most often degrade the reliability of
the hardware, are evaluated, and engineers try to adopt the least invasive methods
possible to prevent or possibly make the system more robust to these types of
errors. Such systems can be hardened at two levels:

• Hardware level: for example, by strengthening circuit parts using a different
and more resistant material or technology.

• Software level: for example, design the program such that if a fault occurs,
the behavior of the system remains the same.

17

Background

Regardless of whether or not a hardware fault may be considered irrelevant to the
experiment’s goals, it could still have significant consequences on the experiment’s
outcomes. Thus, it is crucial to highlight the role of fault injection systems in
enhancing the resilience of our System Under Testing.

The focus of this thesis work is the Software level simulation which involves the
reproduction of the effects of hardware aware faults, when forwarding data through
a DNN. Nowadays, DNN algorithms exploit the ability of GPUs to support data
and thread-level parallelism. In such applications, the impact of permanent faults,
potentially due to aging, becomes a significant concern, especially in applications
where the expected lifetime of GPUs exceeds ten years.

Historically, GPUs have been known for their susceptibility to transient faults.
The sensitivity of GPUs and parallel applications, including CNNs, to radiation
and other sources of transient faults has been extensively researched. Shafique
et al. in [21, 22] state that such faults can corrupt the output of a running
application, leading to potentially catastrophic outcomes in safety-critical domains,
and consequently propose an overview of the cutting-edge strategies for different
categories of faults. However, as GPUs find applications in sectors like automotive,
robotics, aerospace, and health care, where the device’s life expectancy ranges
from 5 to 10 years, new challenges in GPU reliability evaluation emerge. This life
expectancy is notably longer than the typical 1-2 years for GPUs used in gaming,
mining, or high-performance computing applications. Consequently, considerations
related to aging, degradation, and wear-out effects become crucial as they can
lead to permanent hardware faults in GPUs. Such faults, when occurring in
safety-critical domains, can produce unacceptable critical effects.

Despite the known vulnerabilities of GPUs to transient faults, there remains a
significant gap in understanding the impact of permanent faults on GPUs, especially
when running CNNs (Condia et al., [23]). The probability of a permanent fault
leading to a critical failure is influenced by both the architecture of the GPU
and the characteristics of the software implementing the CNN. An exhaustive
gate-level fault simulation for this purpose is impractical due to the high compu-
tational requirements. The inherent parallelism of GPU architecture, combined
with the sheer number of potential fault points and the complexity of CNN soft-
ware implementations, makes the evaluation of permanent fault effects extremely
challenging.

2.2.1 Key Features of Fault Injection Systems
In the field of computer science, fault injection serves as a testing technique to
better comprehend the responses of a Systems Under Testing (SUT) under unusual
conditions. This methodology induces stress on the systems in question to evaluate
their behavior and identify any latent errors. Data are collected such that statistical

18

Background

inferences can be performed to find any pattern leading to critical faults based on
the characteristics of the injected fault. It is based on the basic concepts of: faults
(an abnormal physical condition of the system), errors (a variation in the behavior
of the system with respect to internal signals), and failure (a visible change in the
behavior of the output system.). Once the critical faults are detected the next

Figure 2.9: Effects of hardware level fault injection on the software performances.
[Source]

step is to relate these faults with the sensible parts of the system that are affected
and then try to protect them such that they become less sensible to specific faults.
Generally, a FI model includes the following components:

• fault injector: it injects faults in the target system.

• workload generator: defines the basic instructions to exercise the target
software during the experiments.

• controller: controls the experiment.

• monitor: tracks the execution of the workflow of the experiment.

• data collector: it performs online data collection.

• data analyzer: it processes and analyzes data which can happen also offline.

As Benso et al. shows in [24], depending on the level of injection and the method-
ologies, FI can be characterized as:

• Simulation based: A testing environment is created that simulates the
execution of the fault-free system and then the faulty system by comparing
the results. Such a simulation can be performed on different levels depending
on the feature of the system the experiment is designed to evaluate:

– Software level: high level FI covers different fault categories, such as
injecting code to simulate scenarios like buffer overflows or incorrect input

19

https://eshard.com/fault-injection

Background

handling, as well as environmental faults that involve manipulating the
execution environment, such as changing system parameters or introducing
network latency disregarding the hardware features of the resources.

– Hardware level: low level FI which includes the application of high volt-
ages, extreme temperatures, and electromagnetic pulses to electronic
components, such as computer memory and Central Processing Units.
By subjecting components to conditions beyond their intended operating
limits, computer systems can be forced to mis-execute instructions and
corrupt critical data.

• Platform based: Injection, collection of data, and analysis are performed
directly on a physical device which emulates the execution of the SUT.

• Radiation based: This can be considered a branch of the platform-based FI,
but the nature of the fault changes. Accelerated radiation tests are carried
out in order to reproduce an external electromagnetic interference.

It is noteworthy to discuss the feasibility of different FI methods depending on
their characteristics, by looking at cost, development effort, exactness, observability,
repeatability and various other metrics of comparison. The detailed study of Ruospo
et al. in [25] highlights that the costs to be incurred to carry out experiments are
definitively higher in radiation-based tests because they irreparably degrade the SUT,
given the high amount of radiation to which the devices are exposed and this also
justifies the low degree of repeatability of the experiments. Nevertheless, the highest
workload depends on the level on which you are working because the developer has
to build build, and control all the components of the FI environment. Hence, as the
application’s level decreases, the development effort increases, and the platform-
oriented tests are conducted directly on the physical device. "Exactness" follows
the same trend because it relies on how realistically the framework reproduces the
defects; therefore, the lower the level, the more accurate must be the application.
From an observability perspective, it is quite intuitive that the simulation-based
level outperforms all others since the infrastructure of the application by itself
makes you custom the capability of the system to collect data and compute the
corresponding metrics.

Some further detailed characterization can be described from the faults’ point
of view. Depending on the duration of the fault, a preliminary classification is:

• Permanent if they are continuous and stable over time, typically resulting
from irreversible physical damage.

• Transient if they are transient in nature and frequently arise due to external
disruptions.

20

Background

• Intermittent faults: if they occur within a specified time.

On the other hand, the faults can be also classified with respect to their nature:

• Power-related faults: Power source problems, such as varying voltages or
sudden power spikes.

• Overheating: Elevated temperatures can result in reduced performance or
even trigger the accelerator to cease functioning in order to safeguard itself.

• Wear and Tear: Extended utilization of AI accelerators can result in the
deterioration of hardware elements, including connectors, sockets, or solder
joints. These physical issues can lead to a decline in performance or eventual
malfunction over time.

21

Chapter 3

Related Work

The current fault injection methodology has a varied range of approaches, each
designed to expose system vulnerabilities. This chapter presents an extensive review
of available fault injection techniques, emphasizing their relevance and efficiency in
the context of AI-augmented IoT systems. The following segments explore specific
fault injection methodologies, providing a detailed examination of their principles,
applications, and results. The primary objective of this chapter is to establish
a framework for evaluating and selecting fault injection techniques that are best
suited to the unique requirements of AI-powered IoT systems, by synthesizing
insights from existing research.

3.1 Fault Injection for DNN models robustness
assessment

As discussed in Chapter (2), to ensure proper training of DNNs, a large amount
of data is required resulting in a high number of operations (e.g. scalar product,
activation functions and derivatives for gradient computation).

Despite the low computational cost of each operation, the complex architectures
involved necessitate significant computational power. The nesting of multiple func-
tions implies a complex optimization process leading to high overall computational
costs. Consequently, similarly intricate hardware infrastructure, such as embedded
GPU accelerators, are employed. GPUs execute numerous parallel processes, allow-
ing for optimal efficiency and if a component fails the model’s performance can be
significantly impacted or not.

In this testing environment, two main components can be reinforced:

• Hardware: by replacing the most critical components with the same product
made of a different material or protecting the part to avoid overload.

22

Related Work

• Software: by simulating the effect of a hardware fault on the DNN models by
purposely injecting random noise into the software’s basic elements (i.e. weights
and neurons). Then, based on the results of analysis aimed at extracting the
critical fault characteristics, the model’s architecture can be reinforced or a
Fault Aware Training (FAT) can be carried out.

Clearly, the most expensive and time-consuming solution to implement is hardware
hardening, as it may rely on destructive testing or involve refactoring a new
hardware solution with more expensive materials. Thus, this chapter will delve
into the literature on fault detection and software solutions.

Some studies in this area, such as Ruospo et al. in [25], focus on the properties
of the characterization of FI techniques and give an overview of the challenges
that an FI system has to face today. They then explain the pros and cons of all
these metodologies, pointing out that simulation-based FIs at the software level are
cheaper, faster, more controllable and easier to implement. In particular, in these
simulations, the SUT is the probabilistic model and, thanks to the tools provided
by Pytorch and Tensorflow1, it is easier for the developer to perturb some internal
features of the model at inference time. In this process custom fault injection
functions can be used in order to compute appropriate metrics for error evaluation.
On the other hand, the software-level fault injections may not faithfully reproduce
the real effects of faults due to a lack of information about the hardware used, then
they may lose accuracy in the real case representation.

Hardware-level FI frameworks are employed to overcome this problem and to
work at a lower level of abstraction which assures a higher injection accuracy.
Generally, the choice of one or another abstraction level depends on the time
consumption that an experiment would take and on the economic resources at the
disposal of the developer, because Hardware FIs are more time-consuming and less
cost-effective, an attempt of catching hardware DNNs vulnerabilities is presented
in [26]. Thus, when a FI framework is designed, there are 2 main features to take
into account: the coverage level of the real case simulation and the computational
effort of the experiments.

3.1.1 Fault Injection framworks
Ares [27] is one of the first software-level FI tools aiming at understanding the
relationship between fault rate and model accuracy, therefore focusing on the
coverage level rather than efficiency.

Ares presents an innovative approach to fault analysis in the DNN model, by
directly injecting faults into designated points, such as weights, activations, and

1Main Python libraries for Deep Learning models development

23

Related Work

hidden states. This application-based perspective enables a detailed investigation
of fault behavior, leading to a more sophisticated understanding of fault tolerance
across different components of the network. Additionally, the paper emphasises that
more precies data types for models greatly boost resilience (up to 10×), providing
a new aspect to enhancement plans.

In order to assess Ares’s reliability as a Fault injector, it has been tested on a
real DNN accelerator, exhibiting its precision in capturing the bit-error behavior
observed in real hardware.

For what concerns the fairness aspect of a simulation, a mathematical estimation
of the number of campaigns and the number of faults to inject was provided by
Leveugle et al. in [28] in order to reach the desired confidence in the experiment.
Assuming the following statement:

1. Features that characterize the soft errors follow a normal distribution

2. During the random sampling of the faults without replacement, a uniform
distribution must be shaped

3. The number of faults of the initial population N depends on the number of
components that can be perturbed, on the error model and on the number of
cycles of workload

it provides a basis for the error level e corresponding to a campaign with a specific
number of injected faults n which is:

e = t×
öõõôp× (1 − p)

n
× N − n

N − 1 (3.1)

where N is the initial population size, p is the estimated proportion of individuals
in the population having a given characteristic and eventually t is the cut-off point
of the population distribution corresponding to the confidence level.

During this thesis work, the main infrastructure used to inject faults in DNN at
run time is pytorchFI, presented in [29]. PytorchFI is a runtime perturbation tool
that stands out for its user-friendly approach from the already existing frameworks
such as Ares [27] and TensorFI [30]. PyTorchFI excels in terms of runtime overhead,
boasting a native implementation that incurs negligible additional computational
cost. This efficiency is crucial, particularly for applications that demand real-time
or near-real-time processing.

The approaches of use proposed in [29] are described as follows:

1. A simple approach is to add an intermediate layer after each convolutional
layer. This layer contains a transformation step to perturb the output values
before they are passed to the next layer in the network. However, using

24

Related Work

this method to investigate different perturbation models requires significant
changes to the network configuration. For deep networks with many layers, or
those with custom layers distributed between convolutions, implementing this
approach would require significant user effort.

2. Alternatively, one could choose to modify the PyTorch source code to intercept
neuron computations for perturbation. However, this approach faces chal-
lenges in terms of portability, as it could require different implementations of
convolutions for different processing backends such as CPU, GPU and others.
It would also require patching of scripts and ongoing developer maintenance
to ensure compatibility with future versions of PyTorch.

Ruospo et al. [31] and Zheng et al. [32] contribute significantly to the evolving
landscape of research focused on evaluating the reliability of Deep Neural Networks
(DNNs) and on the hardening techniques by injecting faults a both hardware and
software level. [31] proposed a novel pipelined multi-level fault injector for DNNs,
specifically tailored for reducing fault simulation time at the Hardware Description
Level (HDL). This approach addresses the challenge of efficiently assessing DNN
reliability in the presence of specific hardware architectures. By viewing neural
network layers as pipeline stages and synchronizing single inference computations,
the framework enables designers to evaluate the suitability and robustness of
hardware for DNN-based applications.

In contrast, MindFI [32], which is based on Mindspore 2 provides an additional
fault injection strategy which consists in injecting noise in the data, specifically
it allows at simulating different faults such as image noise, labeling errors, and
cosmic particle-induced bit flips.

Ruospo et al. made an important contribution by developing an additional FI
framework called SCI-FI [33]. SCI-FI is comprised of four FI models, two of which
perturb the parameters (i.e. the weights) and two that perturb the neurons. The
paper examines three strategies for strengthening software, namely, substituting
activation functions, employing fault-free model output, and implementing skip
connections within the blocks.

Another interesting tool for these kinds of simulations was developed by a
team from Harvard University, NVIDIA Corporation, and the University of Illinois
in [34] where they proposed a software-directed selective protection technique
by optimizing the fault detection. In this paper it is included a Feature-Map

2Mindspore is a framework that helps data scientists to design training and inference pipelines
specifically in the context of mobile applications. It implements Source Transmission automatic
differentiation approach whose aim is to make the computation of the gradient at training time
as efficient as possible supporting complex control flow scenarios, higher-order functions, and
closures. For more details please check the Mindspore documentation.

25

https://www.mindspore.cn/tutorials/en/master/beginner/introduction.html

Related Work

Level Resilience (FLR) and Inference Level Resilience (ILR), complemented by
the combined approach, FILR. These methods aim to achieve comprehensive error
coverage with minimal computational overhead. The peculiarity of such approaches
stands in the definition of a tailored loss which lets the model learn to pinpoint the
most sensible feature maps to protect. It achieves nearly full error coverage while
incurring only a modest average runtime overhead of 48%.

One of the first noticeable FI frameworks that reached a fault coverage higher
than a random sampling of faults was ISimDL, developed by Colucci et al. and
presented in [35]. ISimDL utilizes neuron sensitivity for producing importance
sampling-based fault scenarios, presenting an efficient and precise means of identi-
fying critical faults. Furthermore, it supports FAT by selecting faults that result in
errors and inserting them during the DNN training process to increase the network’s
resilience to such errors. ISimDL can achieve precision 15 times higher in detecting
critical faults than random sampling and reduce FAT overhead by over 12 times.

The fault injection frameworks outlined in this section have displayed consid-
erable strengths, closely adhering to the requirements set forth by the current
state-of-the-art. Their versatility and effectiveness in simulating various fault
scenarios underscore their importance in fault tolerance testing. However, it is im-
portant to note that these frameworks tend to maintain a certain level of hardware
agnosticism, which may be advantageous in certain contexts, yet may also warrant
consideration in scenarios where specific hardware nuances play a critical role. This
characteristic prompts a thoughtful evaluation of their suitability in specific testing
environments.

3.1.2 Hardening techniques
As outlined in [21], in the face of permanent faults, characterized by irreparable
chip damage, the most effective recourse often entails the replacement of the
faulty chip or component, albeit at a significant cost. A more economically viable
alternative involves the selective discarding of only the erroneous bits or bytes
of the afflicted component, thereby minimizing incurred expenses. Specifically
tailored to ML systems, techniques like fault-aware training, pruning, mapping, and
activation clipping play pivotal roles in addressing permanent faults. Fault-aware
training entails the training of DNNs to account for various faults at multiple levels,
spanning from the transistor to logic levels. While potent, this approach does entail
substantial computational overhead. Fault-aware pruning involves the excision of
DNN connections and parameters associated with faulty processing elements or
nodes, guided by fault maps of the underlying hardware. Fault-aware mapping
exploits the saliency of DNN parameters to define a mapping while retaining the
salient components. Meanwhile, fault-aware activation clipping involves the capping
of activation values surpassing a predefined threshold for fault-free neural networks,

26

Related Work

obviating the need for either pruning or retraining.
On the other hand soft errors, arising from transient faults can be mitigated

through various techniques. These include interleaving to prevent consecutive bit
errors, additional error detection circuitry, periodic scrubbing to remove errors,
hardware redundancy with voting mechanisms, and error detection and correction
codes. Recent advancements also include replicating hardware accelerators with
a majority voting for added safety. These approaches involve trade-offs in terms
of error detection, correction capabilities, area, power, and latency. Redundancy-
based methods may incur significant area overhead. Additionally, studies highlight
that bit-flips from 1 to 0 have a more significant impact on system accuracy in
DNN-based systems, informing the choice of error-correction mechanisms for critical
bit-flips.

Eventually, it is noteworthy to mention 2 simple yet effective software-reinforcing
techniques which showed impressive results. They were proposed by Cavagnero
et al. in [36]. The intuition behind their research is that when a fault is injected
the most affected layer is generally a Convolution because it contains way more
weight and neurons than others (e.g. FC layer), and specifically some of these
elements can reach very high values depending on the fault which lead the model
to a misclassification.

Thus, they have tried to clip the output feature maps in the range [0,6] using a
ReLU6 activation function. By doing so they did not reduce the accuracy of the
model because the convolution itself can still output values in a range [−∞,∞],
but when they are propagated to the next one, they will fall within the desired
range.

With the same assumption, another important contribution that they gave to
the fault injection environment, was to further change the architecture of the model
by swapping the position of the batch-normalization layer with the convolutional
layer. The batch normalization standardizes the values of the tensors within the
same batch, then it is able to detect the outliers from the actual data distribution.
Then huge or very low values in the feature maps will be detected as outliers and
then standardized according to the distribution of the current batch. This paper
has been an inspiration for the design of our hardening techniques, in the context
of fault injection in supervised compression for split computing models.

27

Chapter 4

Experiment settings

Up to this point, we have outlined the project’s motivations, as well as provided a
preliminary study aimed at gaining a deep understanding of the theory behind it and
previous research. This chapter will outline the fundamental aspects of the research,
including a description of the methods used for the analysis of the fault injection
results to establish a baseline for evaluation. By combining existing knowledge with
our proposed analysis, we have designed effective software reinforcement techniques.
In particular, the experiments carried out during the thesis work consist of:

• Fault injecting in the backbone of models that are already available in [1]:
ResNet50 Classifier for image classification, Faster RCNN with backbone
ResNet50 for the object detection and DeeplabV3 with backbone ResNet50
for the Semantic Segmentation in order to assess the robustness of different
configurations.

• Fault injecting in newly trained student models suitable for the task of Image
Classification and Object Detection.

• Hardening techniques based on the analysis of results of fault injection in
default models.

4.1 Fault injection framework
As already mentioned in Chapter (3), the Fault injector used for the injection
campaigns is based on pytorchFI which allows perturbing at inference time a neuron
or a weight located in a specific position of the feature map/weights tensor. We
propose an extension of the available PytorchFI tool that enables to corrupt the
parameters of the CNN as well as the feature map.

28

Experiment settings

4.1.1 Weights FI
This method entails randomly perturbing a value in the weights tensor, which
represents the output of the Neural Network’s learning process. As the models
we are testing were trained using the split computing paradigm and knowledge
distillation, they have fewer parameters than their original versions due to model
size optimization. This makes them more susceptible to performance issues caused
by hardware faults using the stuck-at fault model.

Firstly, it is computed the number of faults to inject n, (Leveugle et al., [28])
which is computed as:

n = N

1 + e2 × N−1
t2×p×(1−p)

(4.1)

Starting from an initial population size N , this resulting total number of faults
satisfies an error margin e, the cut-off point t corresponding to a confidence level,
and the probability p of randomly picking a specific value of the features describing
the fault. When weights are corrupt, the characteristics of a fault are: kernel K,
channel Ch, row R, column Col which define the exact position of the weight in
the parameters tensor to perturb and, in addition to these, another feature which
defines the severity of the perturbation is the bitmask b.

Figure 4.1: Bit-flip example

Since the injection under analysis is based on bit-flips, the bitmask is still a
positional feature because it can actually define the position of the bit to flip such
that the corresponding real number changes. A toy example of what "bitmask"
feature represents is shown in Fig 4.1. If we consider a real number expressed as
a 32-bit Single-Precision Floating-Point number, it can be easily converted to a
binary representation, and depending on the perturbed bit position, it can be more
or less affected by the injection.

29

Experiment settings

(K,Ch,R,Col) is a vector of integers and one of the assumptions behind Eq 4.1
requires that:x

K ∼ Uniform(0, shape[0]), (4.2)
Ch ∼ Uniform(0, shape[1]), (4.3)
R ∼ Uniform(0, shape[2]), (4.4)
Col ∼ Uniform(0, shape[3]) (4.5)

where the components of the vector shape are the dimensions of the kernel tensor
to corrupt in case the injection occurs in a convolutional layer, otherwise if the
corrupted layer is a dense layer, shape vector will have only 2 components (R and
Col) due to the shape of the corresponding weights tensor. For what concerns
instead b, by hypothesis, it still must follow a Uniform distribution but the range
of random integer sampling is bounded between the Lowest Significant Bit (LSB)
= 19 and Most Significant Bit (MSB) = 31 because of tensors data type. Since bit
corruption in LSB typically induces no effect on the DNN, most of the time results
are masked.

4.1.2 Neuron FI

Figure 4.2: Hardware-aware fault propagation based on GPU’s GeMM algorithm
workload distribution.

As described in Section 2.1.5, the bottleneck layer precedes the split point of the
DNN architecture and its aim is to drastically decrease the number of channels of
the output feature map. By doing so, the number of neurons of the corresponding
layer decreases and then it increases the probability that the model’s robustness is
weakened by a hardware-level fault which makes it interesting to test such models
with neuron-level injection. This section presents the process of fault injection at
Neuron level which accepts the following hyperparameters:

30

Experiment settings

• layer_start and layer_stop: to better simulate error propagation across
successive feature maps and the convolutional layer, the framework allows for
the specification of the layer range for the injection to occur.

• num_threads: number of threads to corrupt per Streaming Multiprocessor.

• tail_size: the size of the threads block tile.

• block_fault_rate: portion of tiles executed in a faulty Streaming Multipro-
cessor.

• neuron_fault_rate: portion of affected neurons due to the fault propagation.
Typically the Convolutional and Fully-Connected are mapped into GPUs as General
Matrix Multiplication(GeMM). Such implementation of fault injection relies on
the GeMM algorithms that are implemented in the GPUs, as shown in fig 4.2. The
matrix is divided into sub-matrices called tiles, which are distributed among the
parallel cores. We took inspiration from the fault propagation that may occur
at hardware level. More precisely, if one Streaming Multiprocessor (SM) has a
defective Fused Multiply–Add (FMA) core, the resulting error may propagate to one
or more threads per warp, causing multiple data corruption that is also distributed
at the output of the tile. Consequently, processing more than one tile on the
malfunctioning SM produces a consequent effect on its respective tiles’ outcomes.
On the basis of this knowledge, we simulated the behavior of the algorithm for the
MM when some hardware components are damaged.

Thus, in this particular fault injection scenario, the list of faults comprises all
feasible combinations of the aforementioned hyperparameters and these hyperpa-
rameters are preliminarily set in accordance with the hardware architecture that is
available to the researcher.

Once the fault list is properly generated the evaluation process is performed:
generally, the predictions of the Corrupted Models are compared with Golden Model
predictions.

Before going in-depth into the detailed description of the different setups it
is noteworthy to point out that the injection will always occur within the first
layers of the bottleneck because the only tensors of layer parameters that are still
trainable also during the fine-tuning step of SC2, belong to the encoder structure
of the bottleneck.

4.2 Reliability Evaluation of Image classification
application

In the dynamic and ever-evolving field of computer vision, image classification serves
as a crucial task that demonstrates the profound influence of convolutional neural

31

Experiment settings

networks (CNNs) on visual recognition. The paper [37] by Peng et al., presents a
detailed investigation of cutting-edge models that have not only transformed image
classification but have also promoted advancements in numerous computer vision
applications.

Image classification involves categorizing images into predefined classes. It
is a fundamental building block for numerous downstream tasks, such as object
detection, scene understanding, and facial recognition.

Commonly utilized metrics for the assessment of image classification models
include:

• Accuracy: the ratio of correctly classified instances to the total number of
instances in the dataset. It provides a fundamental measure of overall model
performance.

• Precision and Recall: have particular relevance to imbalanced datasets. Preci-
sion emphasizes the accuracy of positive predictions while recall emphasies
the model’s ability to capture all relevant instances of a particular class.

• F1-Score: The harmonic mean of precision and recall, offering a balanced
assessment of classification performance.

• Top-k Accuracy: Extending beyond binary classification, this metric evaluates
whether the correct class is within the top-k predicted classes, reflecting a
broader understanding of the model’s proficiency. Such a metric extension
can be applied also to the metrics of precision, recall and F1-score.

Accuracy = TP + TN

TP + TN + FP + FN
, (4.6)

Recall = TP

TP + FN
, (4.7)

Precision = TP

TP + FP
, (4.8)

F1-Score = 2 · Precision · Recall
Precision + Recall (4.9)

These metrics are used in order to evaluate the Faulty Model by taking as
reference the Golden Model guesses such that the corrupted predictions can be
labeled as Critical1, SDC2 or Masked3.

1when the injected error induces a misclassification
2Silent Data Corruption without prediction changes
3when the injected error does not change the inference outputs

32

Experiment settings

Figure 4.3: Corrupted prediction evaluation process for image classification
models

Fig. 4.3 outlines the evaluation process used in every FI in image classification
task models. For each test image, only correct predictions of the golden model
and correct predictions of the corrupted models are considered (w.r.t. the ground
truth). Specifically, the Top 5 predictions, ordered by confidence level, are extracted
from the output of each model alongside their corresponding probabilities. If the
Top1 label predictions differ, the faulty Top1 prediction is labeled Critical, and
if the Top5 predictions do not contain the same number of correctly classified
labels, the prediction is labeled Critical. Otherwise, if the conditions are satisfied,
confidence levels are compared, and the labels assigned will be either SDC or
Masked depending on their equality.

The subsequent sections will detail the environment in which the models were
trained in relation to supervised compression for split computing. This will include
configurations, loss criteria, and other hyperparameters. Consequently, the setup
for the FI campaigns will also be presented, i.e., the injection type of the layers,
number of trials, and other hyperparameters that are crucial for achieve a clear
overview and comprehending the results of the simulation analysis.

4.2.1 Model: SC ResNet50 Classifier
Most common classification models often rely on feature extractors followed by
a classification block that involves one or more Dense layers and a softmax and

33

Experiment settings

together they compute the probability distribution of the class labels referring to
the current image. In SC2 framework a standard model for each task was already
implemented, specifically, for image classification, it was ResNet50 Classifier. As the
name suggests, the model is composed of a ResNet50 backbone, already presented
in section 2.1.3, and a classifier block that contains the sequence of AveragePooling,
FC layer, and a softmax activation function [1].

The bottleneck layer replaces many of the layers from the original model while
avoiding skip connections in order to obtain the student model and at the split
point a "SimpleQuantization" is performed on the output feature map, casting
the data from Float32 into Int8 format. At the end of the bottleneck, the Mean
Squared Error (MSE) between the output of the teacher and the output of the
student until that point is computed. This is utilized in the loss computation,
and subsequently, the data is forwarded through the rest of the network. The
corresponding output of student and teacher models is used to compute the MSE.
For the backward step, the accumulated losses are summed and then employed to
update the weights. The images are fed through the network for 20 epochs, with a
batch size of 16.

The gradient step on the learnable parameter search space is weighted by the
learning rate of 0.001, which is subsequently decreased by a factor of 0.1 every
5 epochs to facilitate model convergence. Eventually, all trained models vary
according to the "number of channels" in the output feature map at the split point,
which is a hyperparameter that takes discrete values within the discrete interval
[1,2,3,6,9,12].

On top of these trained models, we performed a fault injection at the weight
level. Specifically, we injected faults in the convolutional layers considering the
following hyperparameters:

Layers
cut-off distribution point
confidence level
probability fault instances

Table 4.1: Weight fault injection hyperparameter

Additionally, a neuron-level fault injection is performed whose configuration is
described by the hyperparameters of the of the following table:

4.2.2 Model: SC MobileNet Classifier
As discussed in chapter (3), the more reliable the experiment, the greater the
number of faults to inject. This, in turn, results in time-consuming campaigns. In

34

Experiment settings

Layers
Trials
size_tail
block_fault_rate
neuron_fault_rate
num_threads

Table 4.2: Neuron fault injection hyperparameter

some instances, the simulator must inject ≈ 6000 faults to achieve a 99% confidence
level. Given that the ResNet50 classifier typically takes 4 minutes to evaluate 500
images, the overall campaign becomes extremely time-consuming. Even a small
improvement of only 1 second would greatly reduce simulation time. Therefore, a
preliminary assessment of the inference time on different models has been carried
out before the choice of MobileNet Classifier as one of the additional models to
implement in the SC2 framework which resulted in being significantly faster than
the ResNet50 Classifier due to its reduced model size.

One of the key assumptions of the SC2 framework’s training process is that the
teacher models have previously been trained on the same dataset. As the models
provided by Pytorch have not been pre-trained on the dataset we intend to use, we
have designed an appropriate pipeline to train MobileNet on Cifar100.

First and foremost, for the sake of model size efficiency, MobileNet v3 small
have been chosen as the target version which is both stable and is actually used for
deployment in real hardware.

The innovation of MobileNet v3 was the introduction of a selection of layers of the
previous versions as building blocks. These layers are complemented by updated
swish nonlinearities. The sigmoid is used by both the squeeze and excitation
components, as well as the swish nonlinearity, which can result in computational
inefficiencies and fixed point arithmetic accuracy issues. Their solution is to
substitute the sigmoid with the hard sigmoid (Howard et al., [38]). A small
version of such a model differs from the large one because of the employment of
less and more lightweight convolutional layers which decrease the model size and
consequently speed up the inference.

For what concerns the learning pipeline, the most suitable criterion of loss for an
image classification task is the Cross-Entropy loss, whose expression for multivariate
classification is:

H(yi, ŷi) = −
CØ
j=1

yij log(ŷij) − (1 − yij) log(1 − ŷij) (4.10)

where

35

Experiment settings

• C is the cardinality of the set of classes

• yi,j is an indicator variable which results 1 if i belongs to the class j, otherwise
it results 0

• ŷi,j is the predicted probability by the algorithm that the label i belongs to
the class j.

Once the loss is computed, the optimizers’ aim is to record it and then update
the weights according to the algorithm, specifically, two algorithms have been
considered:

• Stochastic Gradient Descent (SGD): Computes the derivatives of the opti-
mization function only with respect to batches of the dataset, such that, the
gradient step is an average among all the optimization results. Especially when
dealing with large datasets, makes the algorithm more efficient. Moreover, the
randomization of the data introduces some noise which prevents the model
not to learning the inner paths in the organization of the data.

• Root Mean Squared Propagation (RMSProp): is designed to adapt the learning
rates (γ) of individual model parameters by scaling the gradients based on
their historical magnitudes.

Eventually, in order to favor the learning algorithm convergence, it is best practice
to scale γ according to a schedule and in this specific case 2 different schedulers are
considered: the first one is a Multi-Step scheduler that scales γ according to a factor
ϵ after every s epochs and the second one is a Cosine Annealing Warm Up scheduler
that, after the model is trained for a specific number of epochs (warmup_epochs),
γ is scaled according to the following schedule:

ηt = ηimin + 1
2(ηimax − ηimin)

3
1 + cos

3
Tcurr
Ti

π
44

(4.11)

To sum up, the hyperparameters tuned for the training step of MobilenetV3Small
are reported in table 4.3

Once the model was trained with the best configuration, we used it as a teacher
model, and then a proper encoder-decoder structure was designed in order to
cover the 2nd,3rd and 4th layers of the original model, by reducing the initial 15
convolutions to 5 convolutions, avoiding the inverted skip connections and also
SqueezeExcitation modules belonging to the original model. The main challenge to
be faced during the design phase of the bottleneck was the matching of the tensor
shapes. In general, in order to avoid any software error in the forward function of
a CNN algorithm, it is only needed to match the number of channels of the input
and output feature maps with respect to the required number of channels of the

36

Experiment settings

γ
s
weight_decay (ρ)
ϵ
batch_size
momentum
warmup_epochs
num_epochs

Table 4.3: MobileNet training hyperparameter

previous and following convolutional block. Nonetheless, in the SC2 framework, in
order to train the newly designed encoder of the bottleneck, it is needed to match
the spatial dimensions of the teacher model output feature maps, i.e. output of the
bottleneck layer, must match in shape with the output of the last replaced layer.
The reason stands behind the computation of the loss (Fig. 4.4). As presented in
section 2.1.5 the MSE loss is used to train the bottleneck, thus, in order to keep
fairness in the training algorithm, the shapes of the compared tensors must match,
and the parameters of the new convolutions must accordingly be tuned. Starting

Figure 4.4: Artificial bottleneck training from [1]

from the basic convolution operation, it can be found that given a feature map
as input with height Hin and applying a 2D convolution with padding p, stride s
dilation d and kernel size k, the height of the output feature map is:

Hout =
E
Hin + 2 × p[0] − d[0] × (k[0] − 1) − 1

s[0] + 1
F

(4.12)

The same formula has been used in order to match the width spatial dimension

37

Experiment settings

considering the second components of the vectors describing the convolution:

Wout =
E
Win + 2 × p[1] − d[1] × (k[1] − 1) − 1

s[1] + 1
F

(4.13)

Indeed, for what concerns the tuning of the third dimension (i.e. convolution
number of output channels), the parameters of the internal convolutional blocks,
have been found as a trade-off between the head model size and the accuracy of
the whole bottleneck to encode and then decode the input feature map.

Thus, under the above-mentioned assumptions, the artificial bottleneck archi-
tecture injected in MobileNet is shown in Fig. 4.5

Split point

32

3216

16 16

6

8 8
128 256 24

8

width=height

channels

Legend

Figure 4.5: Split Mobilenet bottleneck architecture

Once defined the design and training processes of the Artificial Bottleneck block.
The student model is submitted to the robustness test with our pytorchFI-based
Fault Injector. As the neuron FI results in a time consumption that is twice that
of weight FI, it is more beneficial for this particular model to perform only the
second one, where the split point outputs 6 channels.

The simulation is characterized by same hyperparameters shown in A.9 and A.8.

4.3 Reliability Evaluation of Object Detection
applications

As preannounced in section 2.1.1, among the various activities in this area, object
detection represents a crucial and demanding challenge. The key to object detection
is not only to recognize the presence of objects in an image or video but also
to locate them, frequently using bounding boxes. This capability finds extensive
applications in various domains: retail and inventory management, geospatial
imaging, gesture recognition, quality control and industrial automation.

The importance of object detection lies in its crucial role in enabling machines
to understand the visual world in a manner similar to human perception. Rather
than just identifying individual objects, object detection allows for a more detailed
understanding of complex scenes by recognizing the spatial relationships and

38

Experiment settings

contextual interactions between multiple entities. Such thorough comprehension
of information is vital, spanning from recognizing individuals on the street for
autonomous cars to recognizing peculiarities in medical photographs [39].

The object detection task is composed of two downstream tasks:

• Multi-variate Regression of the coordinates that locate the bounding boxes.

• Classification of the boxes that define the detected object.

Figure 4.6: Misprediction for each downstream task. Specifically, the top-
most figure represents a failure in coordinates regression and the bot-most figure
represents a misclassification. [Source]

Therefore, the failure of one of the two tasks may lead to a misprediction as
shown in Fig 4.6, where the red box is predicted by the Golden model and the
yellow one is predicted by the corrupted model. In order to better comprehend the
taxonomy used in the labeling process of the faulty predictions let us now focus on

39

https://www.istockphoto.com/it/foto/guidare-al-tramonto-vista-dallangolazione-del-conducente-messa-a-fuoco-dellauto-gm636690722-113103609

Experiment settings

Fig 4.7. Let us consider the prediction of the golden model ŷ
g

one at a time, and
the vector of faulty predictions ŷf , each of them is represented by a label ŷ(∗,l), and
the vector containing the coordinates of the bottom-left corner and of the top-right
corner of the bounding box ŷ(∗,[x1,y1,x2,y2]). It is computed the distance between
the ŷ(g,[x1,y1,x2,y2]) and ŷ(f,[x1,y1,x2,y2]) and the faulty prediction which minimizes this
distance is considered as the corrupted version of the ŷ

g
under analysis. Once

the candidate has been found, the faulty bounding box is classified as critical if
IoU <= 60%, otherwise, the correspondence of the label is checked, in case it is
not verified the box is labeled as Critical, otherwise, it labeled as SDC or Covered
according to some arbitrary thresholds of IoU level.

For each element

Compute
Norm2

dist(t,r)

dist(t,r)
dist(b,l)

dist(b,l)

dist(b,l)

dist(t,r)

Sum distances
by comparison

Min

Candidate
faulty box

Golden output

Faulty output

==100%

labels
equal?

labels
equal?

Critical

Critical

SDC

Critical Masked

<= 60% Yes

No Yes

<= 90%
and

>=60%

YesNo

…

scenario 1:

scenario 2:

scenario 3:

Figure 4.7: Flow chart of the labeling process of the faulty predictions

40

Experiment settings

The IoU score is a metric aimed at the evaluation of an object detection and
semantic segmentation algorithm and it computes the ratio between the area of
overlap and the union of the bounding boxes representing the ground truth and
the prediction.

Under the stated assumptions, the subsequent sections will present the envi-
ronmental configuration used to train the models for supervised compression in
split computing, including the configurations, loss_criterion and other hyperpa-
rameters, alongside the setup for the FI campaigns i.e. the layer injection type,
number of trials, and other hyperparameters that are essential for a comprehensive
understanding of the simulation analysis results.

4.3.1 Model: SC Faster RCNN with FPN
Most state-of-the-art object detection models currently used were developed in 2015.
They all start with a feature extraction step, followed by the proposal of multiple
bounding boxes. They all start with a feature extraction step, followed by the
proposal of multiple bounding boxes. These boxes are then filtered based on their
prediction confidence level. Differences between these models can be attributed to
variations in their box proposal process. The model that was chosen by Matsubara
et al. to be implemented in the SC2 framework was Faster RCNN with FPN (Faster
Region-based Convolutional Neural Network with Feature Pyramid Network, [40])
which is one of the latest and most optimized versions of RCNN. Input images of
varying resolutions are resized, with the longer dimension not exceeding 1000 pixels
and the shorter dimension not exceeding 600 pixels. Explanation of technical term
abbreviations will be provided upon first usage. Following this resizing, the feature
extracted by the ResNet50 backbone displays consecutive features that correspond
to ?? pixels in the input image. For each feature map point (i.e. Region Proposal),
we initially check for the presence of an object. If an object is found, then we set
the coordinates of the Anchor Point to the actual object position.

After performing a 3 × 3 convolution, two parallel blocks serve as a regressor
for the extreme points coordinate of the bounding box and as a classifier for the
corresponding label.

Since the backbone employed is identical to the one explained in section 4.2.1,
the architecture of the encoder-decoder structure, comprising the separation point
appropriate for the student model in the SC2 paradigm, has been injected in
the same way as the classification model. This involves the use of identical
hyperparameters and configurations during the training process. We decided
to keep the same training hyperparameters used by the authors of [1], the only
difference in our setup is that, in this case the output of more layers take part to
the whole computation of a MSE which computes the distance of the corresponding
output of the bottleneck layer and the output of the replaced layer that will be

41

Experiment settings

later added to the MSE computed on the output of the following convolutional
blocks.

Eventually, a weights-level FI is carried out with the hyperparameters of tab
A.8 and A.8.

4.3.2 Model: SC SSD300
For object detection task we added to the available selection in SC2 another model:
SSD300_VGG16, short name for Single Shot multi-box Detector 300 with Visual
Geometry Group 16, where:

• Single Shot: this means that the tasks of bounding boxes regression and
classification are performed in a single forward pass of the network.

• 300 : all the images are previously resized to 300 × 300

• MultiBox : name for the regressor by Szegedy et al., [41]

• VGG16 : the backbone aimed at feature extraction process.
Following the feature extraction process, the output feature maps are fed into both
the multibox regressor and other convolutional layers. The subsequent convolutions
aim to generate feature maps with varying aspect ratios and resolutions for new
bounding boxes which are consequently fed in the same regressor. The multibox
eventually receives 8732 box proposals per class, a number significantly higher than
the proposal pool in Faster RCNN with FPN. Our choice in using SSD300_VGG
is thus justified by the high precision and speed in bounding boxes generation and
classification.

The model trained on COCO2017 is already available in Pytorch, therefore it is
ready to be used as teacher model in the context of SC2. Nonetheless, the same
process described in section 4.2.2 has been performed in order to fit the bottleneck
architecture in the VGG backbone. Under the assumption stated in 4.2.2 the
resulting artificial bottleneck architecture is depicted in Fig. 4.8.

width=height

channels

Legend

224

3 64 64 128 128 256 256 5126

224 224 112 112 56 56 56 28

Split point

Figure 4.8: SC SSD300_VGG bottleneck architecture.

When performing a convolution with a smaller number of neurons before the split
point and then training under the assumptions of SC2, the output feature maps will

42

Experiment settings

try to fit the original data distribution by spreading around the original mean. This
procedure is significantly simplified by executing a BatchNormalization once the split
point convolution has taken place. Although the authors of [8] have demonstrated
through experiments that VGG does not necessitate any normalization step, we have
observed that incorporating a BatchNormalization layer considerably facilitates
the convergence of the learning algorithm.

In the general outline of the bottleneck layer, a hardcut approach is used. This
involved redesigning the first 8 convolutional blocks of the VGG16 and adding a
bottleneck layer to the 4th block, thereby reducing the number of output channels
to match the desired number of layers for the specific configuration being tested.

The FI weights level campaign has been performed with identical hyperparame-
ters as those outlined in table A.9.

4.4 Reliability Evaluation of Semantic segmenta-
tion applications

As previously stated in section 2.1.1, semantic segmentation is crucial in computer
vision, allowing machines to comprehend visual information with greater detail than
traditional object recognition tasks. By assigning a semantic label to each pixel
in an image, this method empowers machines not only to identify the presence of
objects but also their exact boundaries and spatial relationships within a scene. This
capability has been utilized in numerous sectors ranging from autonomous driving
and medical imaging to augmented reality and robotics. The requirement for high-
precision visual perception continues to increase, and the study and advancement
of semantic segmentation algorithms has become paramount in the quest for more
sophisticated and capable artificial intelligence systems.

Given its field of applications, assessing the reliability aimed at these tasks
becomes fundamental. For what concerns the taxonomy used in order to assign
categories Critical, SDC and Masked to the predictions mainly relies on 3 arbitrary
thresholds for the global pixel-wise accuracy w.r.t the golden prediction. In
particular, the corrupted masks that totally overlap with the golden masks are
labeled as Masked, when the overlapping is within the range [90%,100%), masks
are labeled as SDC, otherwise the prediction is Critical.

4.4.1 Model: SC Deeplab v3
When forwarding data through the network, the first step is the feature extraction
that, in the specific case of SC2, the authors have used ResNet50 such that, the
artificial bottleneck injection is performed with the same modalities and the same
training setup of the split model shown in section 4.2.1.

43

Experiment settings

Given the computational cost that models for semantic segmentation require for
a simple evaluation, we have decided to perform only weight FI.

4.5 Exploration of hardening techniques for SC
CNNs

4.5.1 Activation function boundary

Figure 4.9: ReLU Activation Function

The methodologies of FI as described in sections 4.1.1 and 4.1.2 utilize bit-flips
on the MSB, which often lead to tensor cells with values very close to zero, so that
they are approximated to 0 due to the machine representation limit, or, in the
opposite case, the bit-flips can even lead to very high values. This implies that any
scalar product involving the convolutions or BatchNormalization operation may
result in NaN , ∞, or extremely high values.

Activation function is one of the components of Convolutional Neural Networks
that permits to have control on the single cells of a feature map. Specifically, one of

44

Experiment settings

the most commonly used Activation functions in CNNs is ReLU which guarantees
that the feature maps entries have always positive values applying the function
outlined in Fig. 4.9. Since activation functions are always placed at the end of
a convolutional block, by using them it is possible to perform a later check after
the convolution. ReLU function is the specific case of Hard Hyperbolic Tangent
(HardTanH). It is able to clip the values between a specified range and ReLU
represents a HardTanH where the range is [0,+∞]. Being able to find suitable
Upper Bounds for the outputs of the convolutions could prevent the effect of
corruption that would lead values to extremely high values or to +∞. A best
practice in machine learning is to normalize the test data with statistics that
represent the distribution of the training set, such they could result closer to the
training distribution and the model can perform better. So that, an evaluation of
the training set have been performed and the maximum per convolutional layer
of all the feature maps representing all the training images has been computed.
Therefore the computed values have been used to replace the ReLU functions of
the original bottleneck layer with HardTanH. Eventually, the newly designed split
model is trained in SC2 framework with 6 channels of compression at the split
point, and a weight FI have been performed with the same testing hyperparameters
of the test performed on the reference student model.

In order to have a general overview of applicability of such hardening technique,
it has been adapted to both the bottlenecks of the models implemented during the
activities of this work, i.e. splittable MobileNet Classifier (Fig. 4.10) and splittable
SSD300_VGG16 (Fig. 4.11).

Figure 4.10: HardTanH Activation Function in splittable MobileNet Classifier

Figure 4.11: HardTanH Activation Function in splittable SSD300_VGG16

45

Experiment settings

4.5.2 Layer swap

Figure 4.12: Layer Swap in MobileNet Classifier bottleneck

Figure 4.13: Layer Swap in SSD300_VGG16 bottleneck

In section 4.3.2 the importance of the BatchNormalization layer has been
highlighted which computes mean and variance statistics within the current batch
under analysis and could help the stability of such metrics when the channel
reduction is performed in the bottleneck layer. Since the Convolution operation is
heavier in terms of required computational cost, it may be more prone to faults
than the BatchNormalization layer. Therefore, another hardening technique has
been implemented which consists of swapping the BatchNormalization layer, which
usually occurs after the convolutional layer, with the ReLU activation function
such that it can properly perform the check it is aimed to on the most critical layer.
In Fig. 4.12 and 4.13 the visual representation of respectively Split MobileNet and
Split SSD300_VGG16, can be found.

46

Experiment settings

4.5.3 Pooling removal
Within a convolutional block, pooling layers are utilized to decrease the spatial
dimensions of the feature map without enlarging the parameter space. The design
of an encoder-decoder structure like our bottleneck block is commonly guided by
the principle of minimizing the reconstruction error, which is eased by increas-
ing the number of learnable parameters, resulting in a more explainable search
space. Pooling layers carry out a straightforward function of averaging, taking
the maximum, or minimum values. Therefore, by enlarging the kernel sizes of
identical convolutional blocks, these layers can be eliminated. The structure of the
bottleneck is properly adapted for Split MobileNet and for Split SSD300_VGG16.

4.5.4 Fusion compression
After an ablation study concerning several hardening techniques, it may be in-
teresting to see how their combination performs. A list of the contributions that
each hardening proposal can provide to the general structure of the bottleneck is
reported.

• Custom ReLU : define a proper value range within the expected tensor cells
are admitted.

• Layer swap: provide a check to the convolution which is the most critical
operation.

• Pooling removal: decrease the reconstruction error by increasing the size of
learnable parameters space

47

Chapter 5

Experimental Results

This section will provide the results of all the experiments presented in the previous
chapter by exploring with the following structure:

• Image Classification task.

• Object Detection task.

• Semantic segmentation task.

Indeed, the statistics about the simulation and training times are presented in the
table A.1 where both student and teacher training execution times are evaluated
with the best-performing configuration. All the simulations were conducted on

• A workstation HP Z2 G5 with an Intel Core i9-10800 CPU with 20 cores,
32 GB of RAM memory, and equipped with an RTX 3060TI GPU platform
including an NVIDIA Ampere architecture with compute capability (CC) 8.6.

• "Legion" cluster was mainly used with 2 Intel Xeon Scalable Processors Gold
6130 2.10 GHz 16 cores, and equipped with 6 NVIDIA Tesla V100 SXM2, 32
GB and 5120 cuda cores (on 6 nodes).

5.1 Image Classification
5.1.1 Model: MobileNet Classifier
The CIFAR-100 dataset is used as a benchmark in the field of computer vision,
playing a crucial role in image classification research and development. With
its 100 classes, each containing 600 images of resolution 32 × 32, it delivers a
diverse and challenging set of visual data. Importantly, CIFAR-100 offers a more
detailed classification challenge than its previous version, CIFAR-10, covering a

48

Experimental Results

wide range of object categories. This dataset covers a broad range of everyday
objects, animals, and natural scenes, requiring advanced techniques in feature
extraction and classification. Its rich diversity and complexity make CIFAR-100 an
excellent dataset for evaluating the robustness and generalization capabilities of
deep learning models in real-world scenarios.

In this context, CIFAR-100 has been used to:

• train and evaluate the teacher model MobileNet.

• train and evaluate its compressed version, i.e. SC MobileNet.

• test the resiliency of SC MobileNet by means of neuron and weights level FI.

Teacher training

The MobileNet teacher model has been trained by trying the most relevant combi-
nation of the hyperparameters shown in tab. 5.1. As best practice in training a

Hyperparameter Value
start_leanring_rate(γ) 0.3,0.15,0.1, 0.05, 0.005, 0.001
step(s) 3,5, 10, 15, 30
weight_decay (ρ) 6e−5, 1e−5, 1e−4

learning_rate_decay(ϵ) 0.99, 0.2, 0.15, 0.1, 0.05
batch_size 16, 64, 128, 512, 2048
momentum 0.99, 0.89
warmup_epochs 5, 10, 20
num_epochs 100, 200, 300, 400

Table 5.1: MobileNet V3 Small training hyperparameter values.

general-purpose neural network, we started by training the model for 100 epochs, a
learning rate (0.1), a multi-step learning rate schedule that decreases the learning
rate every 10 epochs of 0.1, and a weight_decay = 1e−4 and we found that the
algorithm starts converging too early by reaching the best validation accuracy
(30%) after 20 epochs and stop increasing. The fast convergence of the algorithm
may be due to a high value of the leanring_rate(γ), then we started exploring
lower values but they did not lead to any significant result by reaching a maximum
validation accuracy of 40%.

Eventually, by taking as a reference the work of Showlo published in its GitHub
repository ([Source]) we decided to use a Cosinum Annealing Learning Rate sched-
uler with Warm Up starting with a learning rate of 0.15 decreased according to
the scheduler every 3 epochs of a factor 0.99 and a weight_decay(ρ) = 6e−5.
Furthermore the batch_size = 2048, warmup_epochs = 5, momentum = 0.89.

49

https://github.com/ShowLo/MobileNetV3

Experimental Results

As we can see from the learning curves corresponding to loss and accuracy metrics
respectively depicted in 5.1 and in 5.2, the trend is smoother than the one described
in the other hyperparameter configuration. The loss fast decreases until it is able
to reach 2% where it is close to the algorithm convergence and when it is close to
the 400° epoch, it reaches its lowest value (≈ 1.52%)

Figure 5.1: MobileNet V3 Small training and validation loss.

The reason behind the final best configuration suggested may be found in the
fact that MobileNet is mainly known because of model size optimization which
makes the model lightweight due to the limited number of weights and this leads
to a search space dimensionality that is more limited than other models like the
ResNet50 Classifier. Reducing the search space brings to the avoidance of curse of
dimensionality phenomenon1 and consequently the distances between the points
delates and the same holds for the hyperplane on which the computed gradient
tries to find the optimum.

The table A.3 reports the most relevant configuration with the corresponding

1given a fixed volume of a hypercube, as the space dimensionality increases, the distance
between 2 edges decreases exponentially where the 2 edges are represented by two general points
in the search space. This means that the distance between the points tends to vanish.

50

Experimental Results

Figure 5.2: MobileNet V3 Small validation Top1 and Top5 accuracy.

best accuracy and loss both at validation and training time.
Once the best configuration has been found and the corresponding model has

been trained, MobileNet teacher model for SC2 is available.

Student training

Once the best-performing teacher model has been found, its compressed version
and additionally the hardened version with Custom ReLU have been trained.

By means of the strategy presented in section 4.2.2 the Split MobileNet Classifier
and Split MobileNet Classifier Custom ReLU are trained and specifically, we
obtained impressive results with a slightly modified version of the original training
set up in SC2 framework. Specifically, models are trained for 20 epochs, with
batch_size = 4, by freezing the modules that are not replaced by the bottleneck
layer, i.e. layer0 and the layers that follow the 4th. Furthermore, taking as reference
the training pipeline of the teacher a multi-step learning rate schedule has been used
with frequent milestones, specifically, they take values from the discrete interval
[2,4,6,8,10,12,14,16,18] and consequently, limited learning_rate_step = 0.95 and
starting_rate = 0.05. Eventually, the contributions of the MSE loss corresponding
to the layers that follow the 4th are summed up and then backpropagated.

51

Experimental Results

Figure 5.3: SC MobileNet V3 Small Top1 validation accuracy.

Concerning the Split MobileNet Classifier, in Figure 5.3, the Top1 validation
accuracy see a significant growth during the first 4 epochs, followed by a small drop
in performance between the 4th and 5th epochs when the learning rate is 0.045125.
However, adjusting the learning rate to 0.04286875 gets it closer to the hyperplane
optimum, enabling consistent growth until convergence. The whole process leads
to a validation score of Top1, which indicates a performance decrease of merely
5.27% in comparison to the teacher model’s performance and the model size results
in 10.5MB that, compared to the teacher model size, it shows a relative model size
decrease of ≈ 20%.

Indeed, as Figure 5.4, the Top1 validation accuracy of Split MobileNet Classifier
with custom ReLU exhibits a rapid increase during the initial 4 epochs, followed by
a small plateau between the 4th and 5th epochs when the learning rate is 0.045125.
However, when the learning rate is adjusted to 0.04286875, it approaches the
hyperplane optimum, leading to continuous growth until convergence. This trend
results in a Top1 validation score indicating a performance degradation of only
5.74% compared to the performance of the teacher model.

As stated in section 4.2.2 both weights and neuron-level fault have been injected
on the first 4 layers of the architectures and have been carried out focusing only on

52

Experimental Results

Figure 5.4: SC MobileNet V3 Small with custom ReLU Top1 validation accuracy.

the compression on the split point to 6 channels feature maps.

Weights Fault Injection

The weights FI has been performed with the hyperparameter setting shown in tab
5.2.

Layers 0,1,2,3,4
error margin ≈ 5%
confidence level 99%
probability fault instances 0.5
of test images 500

Table 5.2: SC MobileNet V3 Small Weight FI hyperparameters.

Fig. 5.5 illustrates, with a log scale, the decline in Accuracy, F1-score, Precision,
and Recall metrics concerning the golden performance at various bit faulty positions,

53

Experimental Results

Figure 5.5: SC MobileNet V3 Small Mean Relative Top1 Accuracy, F1-score,
Precision and Recall Matrics degradation VS bit faulty position - Weights FI.

according to the following formula:

MeanRelativeMetricDegradation = 100 × faulty_metric− golden_metric
golden_metric

(5.1)
In the most critical injection, i.e. when the bit-flip occurs on the MSBs, it can be
noticed that the more advanced the stage of the network in which the fault occurs,
the more resilient the model is. The same trend does not hold for the LSB due to
the smaller but not negligible entity of the degradation (< 1%).

Indeed, Fig. A.1 reports the percentage of Top1 Critical, SDC, and Masked
predictions for each layer of injection where the Silent Data Corruption2 percentage,
related to the Top1 predictions are > 80% except for the injection in layer4 when
the model seems to have a resilient behavior with the highest masked percentage
(33%).

The hardening effects are reported in Fig. 5.6 where the statistics computed
especially in the most critical scenario, i.e. 30th bit corruption, show significant
improvements when a soft error occurs in layer3 and layer4. Specifically, tab.
A.4 and tab A.5 better outline the comparisons and the improvement in terms of
MRAD.

2i.e. when prediction accuracy is within 90% and 100% over all the test set images

54

Experimental Results

Figure 5.6: SC MobileNet V3 Small with Custom ReLU Mean Relative Top1
Accuracy, F1-score, Precision and Recall Matrics degradation VS bit faulty position
- Weights FI.

Neuron Fault Injection

Under the setting shown in Tab. 5.3 neuron FI have been performed.

Hyperparameter Value
Layers 0,1,2,3,4
Trials 5
tail_size 32 × 32
block_fault_rate 20%, 40%, 60%, 80%100%
neuron_fault_rate 2%, 4%, 6%, 8%10%
threads 32
of test images 500

Table 5.3: SC MobileNet V3 Small Neuron FI hyperparameter.

Fig. 5.7 reports the Mean Relative Accuracy Degradation (MRAD) per corrupted
bit position showing from bit 30 to bit 25 a metric degradation > 60% while for
the LSB the corrupted model shows a low MRAD (< 15%), specifically the average
injection effects can be deduced by tab A.7. The higher MRAD in correspondence
of the MSB can be explained by the presence of bottleneck quantization consisting
of approximating the Float32 resolution to Int8 then the considered corrupted bit
position causes significant changes in the resulting real number.

55

Experimental Results

Figure 5.7: SC MobileNet V3 Small Mean Relative Top1 Accuracy Degradation
VS bit faulty position by injection layer setting - Neuron FI.

On the other hand, the Custom ReLU implementation shows a MRAD improve-
ment for each injection simulation reported in A.7. Figure 5.8 presents the Mean
Relative Accuracy Degradation (MRAD) per corrupted bit position. The results
demonstrate a significant degradation in metric performance of more than 40%
from bit positions 30 to 25, while a low MRAD value (< 11%) is observed for the
LSB corrupted model.

Figure 5.8: SC MobileNet V3 Small with Custom ReLU Mean Relative Top1
Accuracy Degradation VS bit faulty position by injection layer setting - Neuron FI.

56

Experimental Results

5.1.2 SC Model: ResNet50 Classifier
In this context, ILSVRC2012 has been used during fault injection in SC ResNet50.
It is one of the most famous Datasets in the field of image classification.

Figure 5.9: Sample from one of the branches of ImageNet. Source: [42]

ImageNet had been continuously updated with new images until the last ILSVRC
occurring in 2017 where the team BDAT won the first place with an overall mAP
of ≈ 0.73 for the object detection task.

The authors of [1] have decided to use the version of 2012 which contains
10,000,000 labeled images depicting 10,000+ object categories. The competition’s
validation and test data includes 150,000 photographs from Flickr3 and other search
engines, which have been manually annotated to indicate the presence or absence of
1000 object categories. The categories represent both internal nodes and leaf nodes
of ImageNet and do not overlap. A subset of 50,000 labeled images were provided
as validation data in the development kit, alongside a list of the 1000 categories.
The remaining images, without labels, were used for evaluation purposes.

As stated in section 4.2.1 both weights and neuron-level faults have been injected
on the first 4 layers of the architecture over all the possible configurations of channel
compression available in SC2, specifically [1,2,3,6,9,12] are the channel depth of
the bottleneck feature maps.

Weights Fault Injection

The ImageNet test set is used in the Weights FI campaign with comparable
hyperparameter settings as presented in table A.8, in particular, due to the reduced

3Flickr is an image hosting and video hosting service, as well as an online community, founded
in Canada and headquartered in the United States.

57

Experimental Results

image processing rate (from ≈ 140 img
s

to ≈ 50 img
s

), the number of test images must
be adjusted accordingly (from 5000 to 500 test images).

Figure 5.10: SC ResNet50 Mean Relative Top1 Accuracy Degradation VS Injection
layer by split configuration (CR+BQ(*)) - Weights FI.

In the context of the Weight FI campaign, SC ResNet50 demonstrates resilience
to soft errors, as evidenced by the MRAD in Figure 5.10 never exceeding 10%,
except in the case of CR+BQ(1) when injection occurs in layer 4. This outcome is
rather curious as one would expect that the earlier the injection, the higher the
probability that such a soft error can propagate to the end of the forward pass,
thus degrading the performance of the model.

Neuron Fault Injection

For the same reasons mentioned in the previous section, the hyperparameter setting
can be described by the following table A.9.

As shown in Figure 5.11, there is a significant decrease in performance for all
split configurations when the Neuron FI is performed. This is particularly evident
with 12 and 9 channel compression, resulting in an MRAD of approximately 100%.
However, the teacher ResNet50 model does not exhibit the same degradation as
it possesses a larger number of neurons that can recover possible soft faults in
the feature map. Having a lower number of neurons increases the likelihood of

58

Experimental Results

Figure 5.11: SC ResNet50 Mean Relative Top1 Accuracy Degradation VS bit
faulty position by split configuration - Weights FI.

degraded attention performance over all the channels of the resulting feature map.
Furthermore, bit-quantization can lead to performance degradation due to the
reduction of feature map resolutions from Float32 to Int8, which also makes the
previously defined LSB more susceptible to apparently lower effective bit-flips.

5.2 Object detection

5.2.1 Dataset: Coco dataset 2017
The Common Objects in Context 2017 dataset (COCO 2017) presents an extensive
and diverse collection of annotated images with different resolutions. It comprises
over 200,000 images that serve as a rich visual annotated collection of objects,
boxes and caption annotations. COCO 2017 stands out for its ability to present
complex, contextual environments, showcasing a wide variety of object categories
in real-world scenarios. It categorizes objects and defines stuff categories like sky,
water and grass. The dataset offers a richer semantic context, as every image comes
with multiple human-generated captions. This contextual granularity presents a
challenge for algorithms to comprehensively understand scenes, highlighting the
significance of COCO 2017 as a vital resource for object detection and semantic
segmentation tasks.

In this context, COCO2017 has been used to:

• train and evaluate its compressed version of pre-trained object detection model,
i.e. SC SSD300_VGG16.

• test the resiliency of SC SSD300_VGG16 by means of weights level FI.

59

Experimental Results

• test the resiliency of SC Faster RCNN with FPN by means of neuron and
weights level FI.

5.2.2 Student training
Using the approach outlined in section 4.3.2, we trained the Split SSD300_VGG16
and achieved impressive results with the default configuration set in the SC2
framework reaching an average test IoU score of 45.14% and the model size results
184.4MB that, compared to the teacher model size, it, unfortunately, shows a
relative model size increase of ≈ 30%. Specifically, we trained the model for a
total of 20 epochs, with batch_size = 16, by freezing the modules that are not
replaced by the bottleneck layer, i.e. the last 2 convolutional blocks of the backbone.
Furthermore, following Yoshitomo et al.’s proposed training pipeline, a multi-step
learning rate schedule was employed with two milestones. These milestones were
selected from the discrete interval of [5,15], and consequently, a high decreasing
factor was applied at each milestone (0.1) and 0.001 was used as start_γ. The
contributions of the Mean Squared Error (MSE) loss correspond to the last two
convolutional blocks.

Further training has been performed on the model utilizing the "Custom ReLU"
hardening technique, whereby ReLU activation functions have been substituted with
HardTanH activation functions. This replacement is executed by correctly setting
thresholds, referring to the Vanilla Split SSD300_VGG16. The SC2 training
pipeline was utilized with the same hyperparameter configuration outlined in
section 5.1.1. The obtained score of test_IoU = 41.11% may preliminarly suggest
a potential decrease in fault resilience.

Configuration/Layer score
SC SSD300_VGG16 45.14%
SC SSD300_VGG16 with Custom ReLU 41.11%

Table 5.4: SC SSD300_VGG16 average IoU for split configuration CR+BQ(6).

5.2.3 Fault injection resiliency
As stated in section 4.3.2 only weights-level faults have been injected on the first 4
layers of the architecture and the simulations have been carried out focusing only
on the compression on the split point to 6 channels feature maps. Since the object
detection consists of 2 downstream tasks (regression of box edges and box label
classification), it results harder than image classification task to be performed, then
more prone to performance degradation when the FI is run.

60

Experimental Results

Figure 5.12: SC SSD300_VGG16 Critical, SDC and Masked boxes per layer
injection - Weights FI.

Assuming that the number of boxes predicted on the same image, from different
models, can change in Fig. 5.12 are reported the percentages of Critical, SDC and
Masked boxes over all the boxes predicted on the same image and over all the
images. A decreasing trend on the percentage of SDC boxes is noticeable from
layer injection 0 to layer injection 4 while the percentage of Masked boxes increases.
This confirms the improvement of resiliency performance noticed in section 5.1.1
for image classification.

A deeper analysis focused on statistics evaluated on SDC and on Masked
predictions has brought to the results depicted in A.2 and in A.3 where the former
explains the tendency of the corrupted model to predict bounding boxes smaller
than those predicted by the golden model or in some cases (when MSB are targeted)
to not predict anything. Given the aforementioned assumption, in A.3 it is evaluated
the number of times that the corrupted model predicts more, less, an equal number
of boxes or when it does not predict anything. According to the results regarding
the probability distribution of area ratio statistic, it is more frequent that the
corrupted prediction tends to vanish (in fact, regardless of the injection layer, tab.
A.10 reports the absolute percentages of all the cases).

For this task, the metric degradation is determined by the complement of the
IoU score that assesses the percentage of non-overlapping regions between the
corrupted and golden predictions. The obtained outcomes are presented in tab.
5.5.

Let us now focus on how the SSD300_VGG16 performs when the Custom

61

Experimental Results

Split Configuration/Layer 0 1 2 3 4
CR+BQ(6) 42.75% 39.55% 39.19% 38.85% 39.73%

Table 5.5: SC SSD300_VGG16 IoU degradation - Weights FI.

Figure 5.13: SC SSD300_VGG16 with Custom ReLU Critical, SDC and Masked
boxes per layer injection - Weights FI.

ReLU hardening technique (section 4.5.1) is employed. If plots in Fig. 5.13 and in
Fig. 5.12 are compared, it is noticeable that such a hardening technique is not as
effective as it was proven for the image classification task. In fact, we can deduce
that the percentages of Critical and SDC prediction increase for this model due to
the performance degradation w.r.t. the vanilla model. This happens despite in Fig.
A.5, there are no more cases in which the model does not predict anything but,
on the other hand, the above-mentioned phenomenon of vanishing boxes becomes
more predominant as it can be noticed also in A.4.

Therefore the resulting IoU degradation is resumed in tab. 5.6

5.2.4 SC Model: Faster RCNN with FPN
In SC2, the pretraining of Faster RCNN with FPN was already provided by Yoshit-
omo et al., therefore it was possible to perform both weight and neuron FIs with
all the provided configuration (i.e., [CR+BQ(1), CR+BQ(2), CR+BQ(3), CR+
BQ(6), CR +BQ(9), CR +BQ(12), BaseLine] where baseline corresponds to the
teacher model).

62

Experimental Results

Split Configuration/Layer 0 1 2 3 4
CR+BQ(6) 43.34% 41.21% 41.21% 40.54% 41.71%

Table 5.6: SC SSD300_VGG16 with Custom ReLU IoU degradation - Weights
FI.

Weights Fault Injection

The table 5.7 shows the hyperparameter setting of the FI campaign performed on
Faster RCNN with FPN

Layers 0,1,2,3,4
error margin ≈ 5%
confidence level 98%
probability fault instances 0.5
of test images 100

Table 5.7: SC Faster RCNN with FPN weights fault injection hyperparameters

Figure 5.14: SC Faster RCNN with FPN Critical, SDC and Masked boxes per
layer injection - Weights FI.

From a preliminary assessment (Fig. 5.14), all configurations present a prevalence
of SDC predictions (around 80%) nevertheless, when a fault occurs in layer 3 for
channel reduction to 1 and for the teacher model the architectures seem to be more
fault resilient with a Masked prediction percentage of ≈ 35%.

Further analysis have been carried out in order to explain such general behavior
focusing on SDC and Critical predictions. For these cases, the distribution of the
area ratio results (A.6) shows a slight trend for this model to boxes vanishing. Such
trend is then confirmed in Fig. A.7 which depicts a striking prevalence of the cases

63

Experimental Results

in which the corrupted model does not predict anything surpassing the 50%.
Eventually the IoU degradation is represented in tab. 5.8.

Configuration/Layer 0 1 2 3 4
CR+BQ(1) 13.95% 14.64% 13.70% 13.80% 16.09%
CR+BQ(2) 12.44% 13.35% 10.86% 11.35% 15.27%
CR+BQ(3) 13.03% 13.56% 13.04% 13.89% 15.64%
CR+BQ(6) 11.25% 11.12% 11.59% 11.07% 12.48%
CR+BQ(9) 11.59% 11.05% 10.08% 10.77% 12.07%
CR+BQ(12) 13.12% 13.58% 12.33% 12.97% 14.02%
BaseLine 14.30% 13.82% 13.44% 12.34% 15.74%

Table 5.8: SC Faster RCNN with FPN IoU degradation - Weights FI.

5.3 Semantic segmentation
5.3.1 Dataset: Pascal VOC 2012

Figure 5.15: Segmentation: Generating pixel-wise segmentations giving the class
of the object visible at each pixel, or "background" otherwise. [Source]

The Pascal VOC 2012 dataset is a cornerstone in the field of computer vision,
particularly renowned for its relevance in object detection and semantic segmenta-
tion research. Originally introduced as part of the Visual Object Classes (VOC)
challenge, this dataset encompasses a diverse array of images spanning 20 distinct
object categories, encompassing everyday objects like cars, pedestrians, and various
animals. The dataset is meticulously curated and comprises a training set consisting
of approximately 1,464 images, a validation set with roughly 1,449 images, and a
test set incorporating around 1,456 images. Each image is meticulously annotated,
providing not only object-level labels but also precise bounding box coordinates for

64

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

Experimental Results

Figure 5.16: Action Classification: Predicting the action(s) being performed by a
person in a still image. [Source]

accurate object localization, as well as pixel-level segmentation masks for detailed
semantic understanding.

In this context, the testing of the DeeplabV3 model’s robustness was conducted
using Pascal VOC 2012.

5.3.2 Fault injection resiliency analysis
Due to the limitations of the resources at our disposal, weights FI with all con-
figurations have been performed with the following hyperparameter setting: The

Layers 0,1,2,3,4
error margin ≈ 5%
confidence level 98%
probability fault instances 0.5
of test images 50

Table 5.9: SC DeepLabV3 weights fault injection hyperparameters.

obtained results are depicted in fig. 5.17 that mainly highlights the high sensibility
to soft faults of SC DeepLabV3. In fact it is noticeable that models trained in all
split configurations (CR+BQ) present a Critical prediction percentage even higher
than the previous Neuron FI which demonstrated to be the most effective reaching
exceeding the 30% in the worst performing split configurations, i.e. CR+BQ(3),
CR+BQ(6), CR+BQ(9), CR+BQ(12).

65

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

Experimental Results

Figure 5.17: SC DeepLabV3 prediction percentages - Weigths FI.

66

Chapter 6

Conclusions and future
works

In conclusion, this dissertation builds on the state-of-the-art of Split Computing
(Supervised Compression for Split Computing from Matsubara et al. [1]), which
distributes DNNs between edge devices and the cloud within IoT systems. In
recognition of the constraints caused by limited computing resources, the concept of
SC is investigated as a means to deploy DNNs efficiently on IoT devices. To tackle
the critical problem of system reliability, specifically in safety-critical situations, a
FI system is developed to replicate software effects due to hardware faults such that
it is possible to study their effect on the reliability of SC. The integration of software
hardening methods was informed by the findings from these simulations, improving
the robustness of the delicate deep neural network models. Our contributions also
include extending the collection of models for SC, training them using Supervised
Compression, and investigating the most suitable hardening technique. Looking
ahead, the dissertation emphasizes the necessity for a standardized benchmark
suite to evaluate model resilience in AI applications on IoT systems.

From the experimentation conducted on the initial SC models, it became appar-
ent that the model occasionally failed to make predictions due to the occurrence
of NaN values generated by the bit flip corresponding to the MSB, which caused
the convolution to produce values tending towards ∞ or −∞. Therefore, it was
expected that the most significant improvement would come from the hardening
technique involving the upper bound of the ReLU activation function, which was
confirmed by the FI campaign in the SC image classification model.

Therefore, it is significant to highlight the findings related to the implementation
of a custom ReLU hardening technique on the MobileNet V3 Small model. The
research effectively demonstrated how the adapted MobileNet V3 Small, integrated
with the custom ReLU approach, exhibited a noteworthy enhancement in fault

67

Conclusions and future works

tolerance. This was particularly evident under conditions of weights-level FI, where
the model’s resilience to such perturbations was tested. The CIFAR-100 dataset
served as a challenging benchmark, allowing for a comprehensive assessment of the
model’s performance under various fault scenarios.

Precisely, the custom ReLU implementation mitigated the impact of faults
injected at both the neuron and weight levels, by, on average, decreasing the
MRAD of 6.278. When compared to the standard MobileNetV3Small model, the
custom ReLU variant displayed a more robust behavior, particularly in scenarios
involving the most critical bit-flip errors at higher bit positions. These findings
underscore the effectiveness of the custom ReLU technique in enhancing the fault
tolerance of MobileNetV3Small, making it a valuable contribution to the field of
resilient SC deep learning models, particularly in applications where reliability
under fault conditions is paramount. Based on the findings some proposals for
future developments are presented:

• Extend the range of models available to provide a comprehensive and reliable
assessment of the reliability of SC architectures.

• Despite the good performance of the models trained in the SC context, a
fine-tuning step can be performed on different datasets in order to improve
their generalization capabilities.

• Examine the resilience of the models hardened with the untested techniques
described in section 4.5, consisting of Pooling removal and Layer swap. Fur-
thermore, since the literature (such as [36]) reoorted significant results for
the layer swap technique together with the custom activation function, a
noteworthy experiment could explore the fusion of these two strategies.

• As soon as a more extensive and comprehensive benchmark is available and
the most sensible parts of the architecture are detected, it would be interesting
to explore Fault Aware Training (FAT) as a hardening technique.

68

Appendix A

Experimental Results

Figure A.1: SC MobileNet V3 Small, SDC and Masked predictions per layer -
Weights FI.

69

Experimental Results

Figure A.2: SC SSD300_VGG16 hard-cut area ratio per layer injection.

70

Experimental Results

Fa
ul

t
In

je
ct

io
n

Tr
ai

ni
ng

#
C

or
ru

pt
ed

W
ei

gh
ts

W
ei

gh
t

#
C

or
ru

pt
ed

N
eu

ro
ns

N
eu

ro
n

M
ob

ile
N

et
V

3
Sm

al
l

≈
5h

SC
M

ob
ile

N
et

V
3

Sm
al

l
≈

4h
27

05
8

≈
8g
g

:8
h

64
96

≈
4g
g

SC
M

ob
ile

N
et

V
3

Sm
al

lC
us

to
m

R
eL

U
≈

4h
27

05
8

≈
8g
g

:8
h

64
96

≈
4g
g

SC
R

es
N

et
50

54
01

6
≈

16
g
g

:8
h

64
96

≈
20
g
g

:1
2h

SC
SS

D
30

0_
V

G
G

16
≈

10
h

82
75

≈
8g
g

:1
2h

SC
SS

D
30

0_
V

G
G

16
C

us
to

m
R

eL
U

≈
10
h

82
75

≈
8g
g

:1
2h

SC
Fa

st
er

RC
N

N
w

ith
FP

N
54

01
6

≈
20
g
g

:2
0h

SC
D

ee
pL

ab
V

3
54

01
6

≈
20
g
g

T
ab

le
A

.1
:

Ex
ec

ut
io

n
tim

e
of

pe
rfo

rm
ed

ex
pe

rim
en

ts
.

T
he

tim
e

re
pr

es
en

te
d

is
ev

al
ua

te
d

w
ith

ou
t

th
e

us
e

of
di

st
rib

ut
ed

jo
bs

.
H

ow
ev

er
,

gi
ve

n
th

e
H

PC
pr

ov
id

ed
by

Po
lit

ec
ni

co
di

To
rin

o,
m

ul
tip

le
jo

bs
we

re
in

iti
at

ed
an

d
pa

ra
lle

liz
ed

to
ac

hi
ev

e
fe

as
ib

le
sim

ul
at

io
n

tim
es

.

71

Experimental Results

start_γ step ρ ϵ batch_size momentum num_epochs
0.15 3 6e−5 0.99 512 0.89 400
0.1 20 1e−4 0.1 64 0.99 100
0.1 10 1e−4 0.1 64 0.99 100
0.1 3 6e-5 0.99 2048 0.89 400
0.1 10 1e−4 0.05 64 0.99 100
0.3 3 6e−5 0.99 64 0.89 100
0.2 3 6e−5 0.99 32 0.89 400

Table A.2: Relevant MobileNet V3 Small hyperparameter configuration trained.

Train Val
Top1
Acc. (%) Top5

Acc. (%) Loss (%) Top1
Acc. (%) Top5

Acc. (%) Loss (%)

58.79 84.8 1.53 73.37 95.92 0.87
23.14 51.06 3.15 27.54 57.55 2.88
25.30 54.16 3.04 29.96 61.44 2.74
58.55 84.87 1.51 74.82 95.54 0.89
25.80 54.78 3.01 30.86 61.93 2.71
53.64 81.91 1.73 68.20 93.89 1.07
57.38 84.31 1.58 71.31 92.27 0.83

Table A.3: Models performance trained under the configuration listed in A.2.

Model/Injection layer 0 1 2 3 4
SC Mobilenet 100% 100% 100% 100% 99.69%
SC MobileNet with custom ReLU 100% 100% 100% 99.07% 98.15%

Table A.4: SC Mobilenet MRAD per layer when corrupted_bit = 30 - Weights
FI.

Model/Injection layer 0 1 2 3 4
SC Mobilenet 95.92% 86.15% 81.06% 50.90% 43.42%
SC MobileNet with custom ReLU 96.10% 80.94% 79.19% 45.82% 24.30%

Table A.5: SC Mobilenet MRAD per layer - Weights FI.

Model/Injection layer start and layer stop 0-1 1-2 2-3 3-4
SC Mobilenet 100% 99.98% 100% 95.04%
SC MobileNet with custom ReLU 100% 99.97% 99.98% 91.63%

Table A.6: SC Mobilenet MRAD per layer when corrupted_bit = 30 - Neuron FI.

72

Experimental Results

Model/Injection layer start and layer stop 01 12 23 34
SC Mobilenet 47.05% 50.23% 53.08% 47.98%
SC MobileNet with custom ReLU 45.54% 50.24% 50.56% 31.61%

Table A.7: SC Mobilenet MRAD per layer - Neuron FI.

Layers 0,1,2,3,4
error margin ≈ 5%
confidence level 99%
probability fault instances 0.5
of test images 5000

Table A.8: SC ResNet50 Weight FI hyperparameters - Weights FI.

Hyperparameter Value
Layers 0,1,2,3,4
Trials 5
tail_size 32 × 32
block_fault_rate 20%, 40%, 60%, 80%100%
neuron_fault_rate 2%, 4%, 6%, 8%10%
threads 32
of test images 5000

Table A.9: SC ResNet50 Weight FI hyperparameters - Neuron FI.

Majority percentage (%)
F_majority 15.87
G_majority 35.39
G_F_equality 18.03
F_not_predicted 30.70

Table A.10: SC SSD300_VGG16 prediction majority - Weights FI. It represents
the number of times (in percentage) that the #Predictions from corrupted SC
SSD300_VGG16 is >,<,= to #Predictions from fault free SC SSD300_VGG16
when considering only SDC and Critical predictions.

73

Experimental Results

Figure A.3: SC SSD300_VGG16 hard-cut majority of prediction per layer
injection. The percentage of cases in which the number of boxes predicted by the
faulty SC SSD300_VGG16 is smaller (F_maj), larger (G_maj) or equal (eq) than
the number of boxes predicted by the corresponding golden model, or when the
corrupted model made no predictions (not_predicted).

74

Experimental Results

Figure A.4: SC SSD300_VGG16 Custom ReLU area ratio per layer injection.

75

Experimental Results

Figure A.5: SC SSD300_VGG16 Custom ReLU majority of prediction per layer
injection. The percentage of cases in which the number of boxes predicted by the
faulty SC SSD300_VGG16 Custom ReLU is smaller (F_maj), larger (G_maj) or
equal (eq) than the number of boxes predicted by the corresponding golden model,
or when the corrupted model made no predictions (not_predicted).

76

Experimental Results

Figure A.6: SC Faster RCNN with FPN. Area ratio between the boxes of the
corrupted model and the boxes of the fault-free model per layer injection when
considering only SDC and Critical predictions. Weights FI

77

Experimental Results

Figure A.7: SC Faster RCNN with FPN prediction majority - Weights FI. The
percentage of cases in which the number of boxes predicted by the faulty SC
Faster RCNN with FPN is smaller (F_maj), larger (G_maj) or equal (eq) than
the number of boxes predicted by the corresponding golden model, or when the
corrupted model made no predictions (not_predicted).

78

Bibliography

[1] Yoshitomo Matsubara, Ruihan Yang, Marco Levorato, and Stephan Mandt.
«Supervised Compression for Resource-Constrained Edge Computing Sys-
tems». In: 2022 IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV). IEEE, Jan. 2022. doi: 10.1109/wacv51458.2022.00100.
url: https://doi.org/10.1109%5C%2Fwacv51458.2022.00100 (cit. on
pp. 2, 16, 28, 34, 37, 41, 57, 67).

[2] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. Cambridge, MA, USA: MIT Press,
2016 (cit. on p. 5).

[3] Li Fei-Fei and Ranjay Krishna. «Searching for Computer Vision North Stars».
In: Daedalus 151.2 (May 2022), pp. 85–99. issn: 0011-5266. doi: 10.1162/
daed_a_01902. eprint: https://direct.mit.edu/daed/article-pdf/151/
2/85/2060580/daed_a_01902.pdf. url: https://doi.org/10.1162/
daed%5C_a%5C_01902 (cit. on p. 8).

[4] Licheng Jiao, Fan Zhang, Fang Liu, Shuyuan Yang, Lingling Li, Zhixi Feng,
and Rong Qu. «A Survey of Deep Learning-Based Object Detection». In: IEEE
Access 7 (2019), pp. 128837–128868. doi: 10.1109/ACCESS.2019.2939201
(cit. on p. 8).

[5] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional
Networks for Semantic Segmentation. 2015. arXiv: 1411.4038 [cs.CV] (cit.
on p. 8).

[6] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. «U-net: Convolutional
networks for biomedical image segmentation». In: Medical Image Comput-
ing and Computer-Assisted Intervention–MICCAI 2015: 18th International
Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.
Springer. 2015, pp. 234–241 (cit. on p. 8).

[7] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.

79

https://doi.org/10.1109/wacv51458.2022.00100
https://doi.org/10.1109%5C%2Fwacv51458.2022.00100
http://www.deeplearningbook.org
https://doi.org/10.1162/daed_a_01902
https://doi.org/10.1162/daed_a_01902
https://direct.mit.edu/daed/article-pdf/151/2/85/2060580/daed_a_01902.pdf
https://direct.mit.edu/daed/article-pdf/151/2/85/2060580/daed_a_01902.pdf
https://doi.org/10.1162/daed%5C_a%5C_01902
https://doi.org/10.1162/daed%5C_a%5C_01902
https://doi.org/10.1109/ACCESS.2019.2939201
https://arxiv.org/abs/1411.4038

BIBLIOGRAPHY

«The cityscapes dataset for semantic urban scene understanding». In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 3213–3223 (cit. on p. 8).

[8] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2015. arXiv: 1409.1556 [cs.CV] (cit. on
pp. 8, 9, 11, 43).

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. 2015. arXiv: 1512.03385 [cs.CV] (cit. on
pp. 9–11).

[10] Olivia Weng et al. «Tailor: Altering Skip Connections for Resource-Efficient
Inference». In: ACM Transactions on Reconfigurable Technology and Systems
(2023) (cit. on p. 10).

[11] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. «Mobilenets:
Efficient convolutional neural networks for mobile vision applications». In:
arXiv preprint arXiv:1704.04861 (2017) (cit. on pp. 10, 14).

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
2015. arXiv: 1502.01852 [cs.CV] (cit. on p. 11).

[13] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going Deeper with Convolutions. 2014. arXiv: 1409.4842 [cs.CV]
(cit. on p. 11).

[14] Pablo Jimenez Mateo, Claudio Fiandrino, and Joerg Widmer. «Analysis of
TCP Performance in 5G mm-Wave Mobile Networks». In: ICC 2019 - 2019
IEEE International Conference on Communications (ICC). 2019, pp. 1–7.
doi: 10.1109/ICC.2019.8761718 (cit. on p. 12).

[15] Menglei Zhang, Michele Polese, Marco Mezzavilla, Jing Zhu, Sundeep Rangan,
Shivendra Panwar, and Michele Zorzi. «Will TCP Work in mmWave 5G
Cellular Networks?» In: IEEE Communications Magazine 57.1 (2019), pp. 65–
71. doi: 10.1109/MCOM.2018.1701370 (cit. on p. 12).

[16] Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia. «Split com-
puting and early exiting for deep learning applications: Survey and research
challenges». In: ACM Computing Surveys 55.5 (2022), pp. 1–30 (cit. on p. 12).

[17] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. BranchyNet:
Fast Inference via Early Exiting from Deep Neural Networks. 2017. arXiv:
1709.01686 [cs.NE] (cit. on p. 12).

80

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1409.4842
https://doi.org/10.1109/ICC.2019.8761718
https://doi.org/10.1109/MCOM.2018.1701370
https://arxiv.org/abs/1709.01686

BIBLIOGRAPHY

[18] Arian Bakhtiarnia, Nemanja Milošević, Qi Zhang, Dragana Bajović, and
Alexandros Iosifidis. «Dynamic Split Computing for Efficient Deep EDGE
Intelligence». In: ICASSP 2023 - 2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 2023, pp. 1–5. doi: 10.
1109/ICASSP49357.2023.10096914 (cit. on p. 13).

[19] Guangli Li, Lei Liu, Xueying Wang, Xiao Dong, Peng Zhao, and Xiaobing
Feng. Auto-tuning Neural Network Quantization Framework for Collaborative
Inference Between the Cloud and Edge. 2018. arXiv: 1812.06426 [cs.DC]
(cit. on p. 14).

[20] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a
Neural Network. 2015. arXiv: 1503.02531 [stat.ML] (cit. on p. 16).

[21] Muhammad Shafique, Mahum Naseer, Theocharis Theocharides, Christos
Kyrkou, Onur Mutlu, Lois Orosa, and Jungwook Choi. «Robust Machine
Learning Systems: Challenges,Current Trends, Perspectives, and the Road
Ahead». In: IEEE Design & Test 37.2 (2020), pp. 30–57. doi: 10.1109/MDAT.
2020.2971217 (cit. on pp. 18, 26).

[22] Alberto Bosio et al. «Emerging Computing Devices: Challenges and Oppor-
tunities for Test and Reliability». In: 2021 IEEE European Test Symposium
(ETS). 2021, pp. 1–10. doi: 10.1109/ETS50041.2021.9465409 (cit. on
p. 18).

[23] Josie E. Rodriguez Condia, Juan-David Guerrero-Balaguera, Fernando F.
Dos Santos, Matteo Sonza Reorda, and Paolo Rech. «A Multi-level Approach
to Evaluate the Impact of GPU Permanent Faults on CNN’s Reliability».
In: 2022 IEEE International Test Conference (ITC). 2022, pp. 278–287. doi:
10.1109/ITC50671.2022.00036 (cit. on p. 18).

[24] Alfredo Benso and Paolo Prinetto. Fault injection techniques and tools for
embedded systems reliability evaluation. Vol. 23. Springer Science & Business
Media, 2003 (cit. on p. 19).

[25] Annachiara Ruospo, Ernesto Sanchez, Lucas Matana Luza, Luigi Dilillo,
Marcello Traiola, and Alberto Bosio. «A Survey on Deep Learning Resilience
Assessment Methodologies». In: Computer 56.2 (2023), pp. 57–66. doi: 10.
1109/MC.2022.3217841 (cit. on pp. 20, 23).

[26] Behzad Salami, Osman S. Unsal, and Adrian Cristal Kestelman. «On the
Resilience of RTL NN Accelerators: Fault Characterization and Mitigation».
In: 2018 30th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD). 2018, pp. 322–329. doi: 10.1109/
CAHPC.2018.8645906 (cit. on p. 23).

81

https://doi.org/10.1109/ICASSP49357.2023.10096914
https://doi.org/10.1109/ICASSP49357.2023.10096914
https://arxiv.org/abs/1812.06426
https://arxiv.org/abs/1503.02531
https://doi.org/10.1109/MDAT.2020.2971217
https://doi.org/10.1109/MDAT.2020.2971217
https://doi.org/10.1109/ETS50041.2021.9465409
https://doi.org/10.1109/ITC50671.2022.00036
https://doi.org/10.1109/MC.2022.3217841
https://doi.org/10.1109/MC.2022.3217841
https://doi.org/10.1109/CAHPC.2018.8645906
https://doi.org/10.1109/CAHPC.2018.8645906

BIBLIOGRAPHY

[27] Brandon Reagen, Udit Gupta, Lillian Pentecost, Paul Whatmough, Sae
Kyu Lee, Niamh Mulholland, David Brooks, and Gu-Yeon Wei. «Ares: A
framework for quantifying the resilience of deep neural networks». In: 2018
55th ACM/ESDA/IEEE Design Automation Conference (DAC). 2018, pp. 1–6.
doi: 10.1109/DAC.2018.8465834 (cit. on pp. 23, 24).

[28] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. «Statistical fault
injection: Quantified error and confidence». In: 2009 Design, Automation &
Test in Europe Conference & Exhibition. 2009, pp. 502–506. doi: 10.1109/
DATE.2009.5090716 (cit. on pp. 24, 29).

[29] A. Mahmoud, N. Aggarwal, A. Nobbe, J. R. S. Vicarte, S. V. Adve, C. W.
Fletcher, I. Frosio, and S. K. S. Hari. «PyTorchFI: A Runtime Perturbation
Tool for DNNs». In: 2020 50th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W). 2020, pp. 25–31
(cit. on p. 24).

[30] Zitao Chen, Niranjhana Narayanan, Bo Fang, Guanpeng Li, Karthik Pat-
tabiraman, and Nathan DeBardeleben. TensorFI: A Flexible Fault Injection
Framework for TensorFlow Applications. 2020. arXiv: 2004.01743 [cs.DC]
(cit. on p. 24).

[31] Annachiara Ruospo, Angelo Balaara, Alberto Bosio, and Ernesto Sanchez.
«A Pipelined Multi-Level Fault Injector for Deep Neural Networks». In: 2020
IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT). 2020, pp. 1–6. doi: 10.1109/DFT50435.
2020.9250866 (cit. on p. 25).

[32] Yang Zheng, Zhenye Feng, Zheng Hu, and Ke Pei. «MindFI: A Fault Injection
Tool for Reliability Assessment of MindSpore Applicacions». In: 2021 IEEE
International Symposium on Software Reliability Engineering Workshops
(ISSREW). 2021, pp. 235–238. doi: 10.1109/ISSREW53611.2021.00068
(cit. on p. 25).

[33] G. Gavarini, A. Ruospo, and E. Sanchez. «SCI-FI: a Smart, aCcurate and
unIntrusive Fault-Injector for Deep Neural Networks». In: 2023 IEEE Euro-
pean Test Symposium (ETS). 2023, pp. 1–6. doi: 10.1109/ETS56758.2023.
10173957 (cit. on p. 25).

[34] Abdulrahman Mahmoud et al. «Optimizing Selective Protection for CNN
Resilience». In: 2021 IEEE 32nd International Symposium on Software Relia-
bility Engineering (ISSRE). 2021, pp. 127–138. doi: 10.1109/ISSRE52982.
2021.00025 (cit. on p. 25).

82

https://doi.org/10.1109/DAC.2018.8465834
https://doi.org/10.1109/DATE.2009.5090716
https://doi.org/10.1109/DATE.2009.5090716
https://arxiv.org/abs/2004.01743
https://doi.org/10.1109/DFT50435.2020.9250866
https://doi.org/10.1109/DFT50435.2020.9250866
https://doi.org/10.1109/ISSREW53611.2021.00068
https://doi.org/10.1109/ETS56758.2023.10173957
https://doi.org/10.1109/ETS56758.2023.10173957
https://doi.org/10.1109/ISSRE52982.2021.00025
https://doi.org/10.1109/ISSRE52982.2021.00025

BIBLIOGRAPHY

[35] Alessio Colucci, Andreas Steininger, and Muhammad Shafique. ISimDL: Im-
portance Sampling-Driven Acceleration of Fault Injection Simulations for Eval-
uating the Robustness of Deep Learning. 2023. arXiv: 2303.08035 [cs.LG]
(cit. on p. 26).

[36] Niccolò Cavagnero, Fernando Dos Santos, Marco Ciccone, Giuseppe Averta,
Tatiana Tommasi, and Paolo Rech. «Transient-Fault-Aware Design and Train-
ing to Enhance DNNs Reliability with Zero-Overhead». In: 2022 IEEE 28th
International Symposium on On-Line Testing and Robust System Design
(IOLTS). 2022, pp. 1–7. doi: 10.1109/IOLTS56730.2022.9897813 (cit. on
pp. 27, 68).

[37] Luzhou Peng, Bowen Qiang, and Jiacheng Wu. «A Survey: Image Classification
Models Based on Convolutional Neural Networks». In: 2022 14th International
Conference on Computer Research and Development (ICCRD). 2022, pp. 291–
298. doi: 10.1109/ICCRD54409.2022.9730565 (cit. on p. 32).

[38] Andrew Howard et al. Searching for MobileNetV3. 2019. arXiv: 1905.02244
[cs.CV] (cit. on p. 35).

[39] Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object
Detection in 20 Years: A Survey. 2023. arXiv: 1905.05055 [cs.CV] (cit. on
p. 39).

[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. 2016.
arXiv: 1506.01497 [cs.CV] (cit. on p. 41).

[41] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. «SSD: Single Shot Multi-
Box Detector». In: Computer Vision – ECCV 2016. Springer International
Publishing, 2016, pp. 21–37. doi: 10.1007/978-3-319-46448-0_2. url:
https://doi.org/10.1007%5C%2F978-3-319-46448-0_2 (cit. on p. 42).

[42] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
«ImageNet: A large-scale hierarchical image database». In: 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition. 2009, pp. 248–255. doi:
10.1109/CVPR.2009.5206848 (cit. on p. 57).

83

https://arxiv.org/abs/2303.08035
https://doi.org/10.1109/IOLTS56730.2022.9897813
https://doi.org/10.1109/ICCRD54409.2022.9730565
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1905.05055
https://arxiv.org/abs/1506.01497
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007%5C%2F978-3-319-46448-0_2
https://doi.org/10.1109/CVPR.2009.5206848

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation
	Problem formulation
	Thesis contribution

	Background
	Machine learning fundamentals
	Deep Learning
	VGG
	ResNet
	MobileNet
	Collaborative Intelligence

	Testing and Reliability
	Key Features of Fault Injection Systems

	Related Work
	Fault Injection for DNN models robustness assessment
	Fault Injection framworks
	Hardening techniques

	Experiment settings
	Fault injection framework
	Weights FI
	Neuron FI

	Reliability Evaluation of Image classification application
	Model: SC ResNet50 Classifier
	Model: SC MobileNet Classifier

	Reliability Evaluation of Object Detection applications
	Model: SC Faster RCNN with FPN
	Model: SC SSD300

	Reliability Evaluation of Semantic segmentation applications
	Model: SC Deeplab v3

	Exploration of hardening techniques for SC CNNs
	Activation function boundary
	Layer swap
	Pooling removal
	Fusion compression

	Experimental Results
	Image Classification
	Model: MobileNet Classifier
	SC Model: ResNet50 Classifier

	Object detection
	Dataset: Coco dataset 2017
	Student training
	Fault injection resiliency
	SC Model: Faster RCNN with FPN

	Semantic segmentation
	Dataset: Pascal VOC 2012
	Fault injection resiliency analysis

	Conclusions and future works
	Experimental Results (1)
	Bibliography

