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Abstract

In recent years, the idea of technical debt is gaining adoption to describe the
problem introduced - more or less consciously - by imperfections in code in an
attempt to reduce time and costs of software development.

The goal of this thesis is to investigate whether technical debt, a concept usually
applied to large industrial software, can be applied to the software developed by
students in their programming assignments.

The idea could be useful both for students and for teachers.
Students could find the aid of an automated analysis of their programs helpful
to understand which topics they still have not understood completely and what
mistakes or oversights they incurred during their preparation.
For teachers, on the other hand, analysing the code produced by students might
be useful at two different times: throughout the course, to understand whether
some topics are still a bit obscure to a number of students and might require a
revision. Then, following the final evaluation, technical debt analysis may be useful
to understand the overall comprehension of the most difficult concepts or even to
award the students who wrote not only working but also clean and maintainable
code, which is a skill that is not usually considered in early-on courses but that
most definitely has to be picked up before entering the labour market.

Specifically, this paper examines a known context, the Object-oriented programming
course for the Computer Engineering Bachelor’s degree of Politecnico di Torino: real
past projects have been analysed verifying which problems arise as the commonest
amongst the students, whether they make sense in the context of students’ initial
approaches to programming and their possible correlation with the final evaluation
received.

This study did prove useful to understand the repeating issues amongst the students
and to work out a way to automate said analysis, so that, in the future, it could be
carried out even during the course to better comprehend the students’ preparation.
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Chapter 1

Introduction

In recent years, technical debt has emerged as a new concept in software engineering.
The idea, first formulated by Ward Cunningham in 1992, is that every bug or
not properly written section of code represents a debt. "Every minute spent on
not-quite-right code counts as interest on that debt", Cunningham postulates.

In fact, every new feature or even modification operated while not addressing the
most problematic parts of the code will eventually have to be repaid: fixing the
same bug, as trivial as it may be, might take much more time if, with the passing
of time, new features, dependencies and, in general, assumptions have been made
upon that piece of software.

These imperfections in code are not always intentional: they can be caused by lack
of time during development (including the testing phase) or by intentional choices,
either lacking proper consideration or even after well-rounded ones but based on a
context that changed throughout time.

A few examples of these imperfections that constitute technical debt are bad organi-
zations of classes, known defects of the code never fixed, requirements implemented
only partially, code not dutifully tested or whose coverage is insufficient.

Technical debt is not at all an infrequent matter: what happens even in the
most efficient of work environments with the best possible code produced is that,
periodically, some amount of time has to be allotted to "repay the debt", refactoring
already-existing code, avoiding even more cumbersome modifications down the line.
The idea of technical debt has proven effective in reducing unforeseen changes and
modifications during development and has been growingly adopted in recent years.

Several softwares and solutions have then emerged to automate and facilitate the
identification of technical debt: these softwares perform different kinds of analyses
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Introduction

that highlight the presence of pieces of code that might constitute a problem (the
debt) and even provide and estimation of the time needed to solve the issues (the
"sum" needed to repay the debt).

These kinds of softwares, though, are usually applied in medium-to-large companies
to manage the development process: the goal of this thesis is to understand whether
they can be applied to analyse code produced by students in their assignments or
final evaluations.

Typically, throughout their career, students produce small projects aimed at solving
only a handful of requirements, usually avoiding testing and other phases of
development. Furthermore, focusing on the first few years of learning, as this paper
does, means that a lot of errors that might be found in the code might come just
out of inexperience of the students, not even knowing that some practices might
represent a bad behaviour in software development.

The aim of this research, in any case, is to explore whether applying the concepts
of technical debt and automated code analysis to these projects could reveal
macroscopic errors not highlighted by the assignments evaluations, but nevertheless
important to be understood and, in future, possibly avoided by the students.

This could represent an advantage both for students and for teachers. Students, in
the first place, by having their assignments analysed might recognise that they lack
preparation or studying on some specific topics, that some concepts still have to be
ironed out. Automated analysis could very well represent a valid aid in studying
and more importantly understanding the mistakes or the oversights made during
the preparation.
For teachers, on the other hand, analysing the code produced by students might
be useful at two different times: initially, throughout the course, analysing the
assignments as they are being handed in, to understand whether some topics are still
a bit obscure to a number of students and might require a revision. Then, following
the final evaluation, technical debt analysis may be useful both to understand the
overall comprehension of the most difficult concepts and even to award the students
who wrote not only working but also clean and maintainable code, which is often a
skill that might not be considered in early-on courses but that most definitely has
to be picked up before entering the labour market.

Specifically, this paper will examine a known context, the Object-oriented pro-
gramming course for the Computer Engineering Bachelor’s degree of Politecnico
di Torino: this course represents the first approach for students to object-oriented
programming and, also, to automated testing and evaluation. All programming
assignments throughout the semester and, afterwards, the final exam are evaluated
against a batch of tests, written by the evaluators.
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Given that all the students work on the same assignments composed of the same
requirements, applying an automated analysis to the code might underline some
common critical issues not fully understood by the students or, in the case of the
final evaluation, might incentivize the production of better-quality code.

The thesis will first explore the concepts of software quality, technical debt and
automated software analysis, portraying the existing context in which these tech-
nologies are usually spent.
Subsequently, the whole research process will be described, including all the tenta-
tive solutions approached, the softwares considered for the purpose and the ones
eventually chosen.
Finally, the results of the analysis conducted on the projects produced by the
students for a past exam will be laid out, verifying, for this specific case, which
problems arise as the commonest amongst the students, whether they make sense
in the context of students’ initial approaches to programming and their possible
correlation with the final evaluation received.
In the end, a general picture will be composed, examining which further develop-
ments might be suitable for this thesis and whether the application of technical debt
to students’ assignments is a viable idea, in which way and with what implications.
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Chapter 2

Context and background

This chapter is intended at understanding the general context that serves as a
starting point for this thesis and how the goal of this research came to be.

2.1 Software quality
Back when software development was in its infancy, software quality was not even
conceived as a concept. Software was developed and bugs were squashed out as
they were identified.

With the passing of time, this approach was no longer sufficient. In the ’70s, software
could no longer be considered "good quality" if it "just worked": all requirements
had to be met. This meant developing tests to ensure that such requirements
were fulfilled. However, this created long delays, aversion to change and a strong
dependency between software development and testing [1].

In recent decades, software quality has again evolved as a concept: passing an
exhaustive series of tests is still a necessary but no longer a sufficient condition.
Nowadays, "quality is a development issue, not a testing issue" [2]. This means that
beyond ensuring that the produced software adheres to all functional requirements,
offering all the functions and performing all the tasks it has been designed for, said
software has to be certified to conform to non-functional requirements too.

These non-functional requirements, as a general rule, stipulate how the system
should behave or even how the code should be written and organized. Although
not exhaustively, ten common non-functional requirements can be identified [3]:

• Scalability: it refers to the systems’ ability to perform and operate as the
number of users or requests increases;

4



Context and background

• Availability: it is measured as a percentage of uptime and defines the proportion
of time that a system is functional and working;

• Extensibility: it measures the ability and feasibility to extend a system,
either by adding new functionalities or modifying existing ones, and the effort
required to implement the extension;

• Consistency: it guarantees that every read returns the most recent write. This
means that after an operation executes, the data is consistent across all the
nodes, and thus all clients see the same data at the same time;

• Resiliency: it measures the ability to resist, handle and recover from accidental
and malicious failures;

• Usability: it gauges the system’s capacity to enable users to perform tasks
safely, effectively and efficiently, offering a comprehensible and accessible
experience;

• Observability: it is the ability to collect data about the program execution,
the modules’ internal states and the communication between components, for
example by logging, monitoring and raising alerts;

• Security: it highlights the degree to which the software protects information
and data so that people, other products or systems have access to data
appropriate to their types and levels of authorization;

• Durability: it relates to the software’s ability to meet users’ needs for a
relatively long time;

• Agility: it enables developers to respond to changes quickly; it is characterized
by the maintainability (testability and ease of development), the deployability
(the time it takes to get code into production), the configurability and the
compatibility with other products or designs of the software.

In the latest years this change in perspective has caused a paradigm shift in how
the development process is organized. Firstly, Test-Driven Development (TDD)
has been introduced as a concept, including unit testing (testing the single fea-
ture), integration testing (testing the integration of different software layers) and
end-to-end (E2E) testing (testing the whole process). Its principle is to "write the
test first" [4]: a single unit test is written, which fails because the functionality is
not implemented yet. Then "just enough" code is written to make the test pass,
and then the process is repeated for every functionality needed, accumulating unit
tests along the way [5].
But that is not all: versions checking is fostered, to make sure that the latest
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Context and background

versions of runtime environments, frameworks, and libraries are used, and Con-
tinuous Integration/Continuous Development (CI/CD) means that new features
are integrated in the main production codebase as they are finished, avoiding
discovering conflicts and incompatibilities only at the end of development [6].

Aggregating these new concepts in an organic form, Agile software development
has been proposed as a new way of organizing work. First proposed in the 2001
Manifesto for Agile Software Development [7], these new Agile practices promote a
new way of working, different from the traditional approach.

The traditional approach, usually called waterfall, consists in dividing software
development into separate subsequent phases: design, development, testing, deploy-
ment and maintenance. This usually leads to several problems, as this model does
not cope well with change, leads to unpredictable software quality, as testing is
only performed at the end, and if any problems arise a lot of restructuring work is
often needed [8].

The Agile Manifesto proposes a leaner solution that aims at delivering working
software frequently, favours the collaboration between developers and stakeholders
and welcomes change, even late in the process. This agility is also researched
through continuous attention to good design, avoiding slack solutions that might
be faster initially but that might cost time and resources down the line: this is
where the concept of technical debt is introduced, which will be described later in
this chapter.

Specifically, the Agile Manifesto values [7]:

• individuals and interactions over processes and tools;

• working software over comprehensive documentation;

• customer collaboration over contract negotiation;

• responding to change over following a plan.

Adopting the Agile approach has led companies to achieve up to 30 percent increases
in productivity and implementation speed while simultaneously reducing residual
defects at time of release by over 70 percent [9].

The Agile methodology is not the only possible solution for a process that fosters
software quality: one of its main applications, for example, is the Extreme Pro-
gramming methodology, whose main principles are reviewing the code intensively
(mainly through pair programming), performing continuous integration and testing,
iterating quickly and considering only the minimum workable requirements, to
limit the scope of the work. In fact, the name comes from the adage "what is good,
do to the extreme" [10].
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Albeit gaining popularity in recent years, Agile, Extreme Programming or similar
methodologies do not represent the only solution to write good-quality software. On
the contrary, companies and developers usually mix the approaches, accommodating
their own needs [11].

The common line, though, is the search for greater software quality. What is
nowadays important is not only what the software does, but also how it does it
and how it is organized. As previously mentioned, this required several changes
throughout the years in how work is organized, but these changes were quickened
by a couple of reasons.

2.1.1 Possible effects of poor software quality
Two main motivations propelled the search for better-quality software: risk and
cost management.

Risk management

Software failures have caused many different problems over the decades, ranging
from human fatalities to simple annoyances that nonetheless have to be taken care
of. Many examples can be cited, from crashes of perfectly-crafted planes caused
by mere software bugs [12] [13], to simply customers of smart thermostats left
in the cold [14] or to hazardous rockets explosions [15] [16]. These of course are
negative events for a company that in many cases can be prevented by pursuing
high software quality.

Cost management

In addition and often aside the concrete dangers, costs risks take a prominent
role in underlying poor software quality. Good software costs less to maintain or
to extend in functionality, whereas bad software inevitably leads to rewrites and
reworks, paralyzing the development process, as programmers have to work on
past functionalities to be fixed and cannot continue with the planned schedule,
accumulating backlog. Even worse, though rarer, are business-disrupting events,
such as trading firms almost going bankrupt due to a computer glitch [17] or car
makers having to issue recalls due to malfunctioning software in their vehicles [18].

2.1.2 Causes of poor software quality
As previously discussed, many tools and mechanisms exist today to improve software
quality. Nevertheless, the results are, often, still far from being satisfactory, as
mentioned. Why is that?
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Many reasons coexist: one possible answer, tough, is that, despite vast improvements
in recent years, the spotlight is nowadays still on coding and not on the entire
software engineering process. This focus, though, concentrates on the wrong aspects,
because programmers spend more time designing, testing, maintaining code or
generally managing the software operations than they spend actually coding new
functionalities in [19] [20].

The consequences of this general thinking are rather practical: sometimes quick
prototypes are made, writing code that will either have to be thrown away, being
too expensive to fix, or at least heavily refactored. The common misconception is
that producing working code quickly speeds up the development process, whereas
it will actually slow it down in the future [21].
Often not enough time is dedicated to testing, again prioritizing writing new code,
accumulating the debt of testing towards the later stages of the software flow [22].
On the other hand, another common misconception is that a piece of code that
passes all tests is definitely correct: testing usually takes out the most evident bugs,
but not always subtle timing bugs and edge cases are found.
Finally, lack of time diminishes software quality, or better lack of planning and
prioritization of the wrong aspects: peer review is often disregarded and fixed dates
and requirements do not concede the needed flexibility for software to be improved
[21].

All these issues contribute to worsen software quality and can all be summarized
by a common metaphor that can be used to describe them: the technical debt.

2.2 Technical debt
As previously discussed, often in software development quite some time is spent on
fixing bugs or problems, time that could have been better spent had the design
of the code been done properly in the first place and software quality prioritized.
A new concept has been formulated in recent years that perfectly sums up this
pattern and habit: the technical debt.

This metaphor was first proposed by Ward Cunningham in 1992, describing the
work he had conducted with his team on the WyCash project, the first commercial
software developed and maintained using all the Extreme Programming principles
[23], trying to organize their work according to this philosophy [24].

By this metaphor, every time some code is produced, some form of debt is signed.
This may be caused by bugs or imperfections introduced in the code and still
not recognized, meaning that they will have to be fixed at a later time, but more
generally the debt represents the developers’ incomplete understanding of the
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features being developed.

This means that time spent on not-quite-right code counts as interest towards
that debt: by continuing to build new functionalities upon the existing code those
previously introduced imperfections will become harder to address and improve,
and continuing to code without refactoring, i.e. without reorganizing the program
to reflect the newly acquired understanding of the features (acquired by developing
them) only means that the program will eventually contain no understanding of the
matter and improvements will take longer and longer, or, worse, will be practically
impossible [25].

The way to repay even just part of the debt is to refactor the code, again not only
to address the imperfections but mainly to reflect one’s current understanding of
the problem, "putting the learning back into the program" [25].
Cunningham suggests that the best time to refactor a program is right before you
extend it, "making a place for a feature before I make the feature" [26].

Jim Highsmith even defines the Cost of Change (CoC), which of course increases
with the passing of time and with more technical debt present. He suggests that even
doing nothing makes matters worse, only incremental refactoring can eventually
reduce the Cost of Change [27].

Figure 2.1: Cost of Change [27]

Cunningham further elaborates that the whole debt metaphor and the ability to
pay back debt depend "upon your writing code that is clean enough to be able to
refactor as you come to understand your problem" [25]. That is, the programmer
cannot be asked to foresee the future, as it usually even "does the future a disservice
by trying" [26] (making assumptions that, in any case, will have to be changed

9



Context and background

down the road), but it is paramount to write organized code from the outset, in
order to be able to modify it at a later time, and to welcome change from the
beginning, even making it a part of the schedule and accounting for it.

In 2001, Cunningham reinstated the metaphor [28] by postulating that:

• Skipping design is like borrowing money;

• Refactoring is like repaying principal (in financial terms, the principal is the
initial amount of money that is borrowed in a loan);

• Slower development due to complexity is like paying interest.

Of course creating technical debt during development presents both advantages
and disadvantages.
On the one hand, it allows to release on time and within budget, to produce more
code and to reach a working state in a quicker way. It is beneficial for stakeholders
too, as they have the opportunity to get back to developers in less time with
feedback and opinions.
On the other hand, technical debt implies increased maintenance costs as the
project grows, inferior flexibility of the code and, overall, worse productivity.

2.2.1 Types of technical debt
Technical debt can be divided into different types, depending on its origin [29]:

• Code debt: imperfections or bugs in code, inconsistent coding style;

• Design debt: violations of design rules, e.g. bad organization of classes;

• Test debt: lack of tests, inadequate test coverage, and improper test design;

• Documentation debt: incomplete or outdated documentation.

They all concur to increase the general debt but, depending on the context and
the specific project, one might be worse than the other. In general, technical debt
is usually composed of all of them.

2.2.2 Causes of technical debt
Many different reasons determine the growth of technical debt for a specific project.
With the main one remaining the lack of understanding of the problem, as per
the original metaphor formulated by Ward Cunningham, literature has in time
identified other possible causes of technical debt [29]:

• Schedule pressure: working under pressure inevitably leads to hasty decisions;
programmers tend to adopt shortcuts or to make code "that just works",
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creating problems such as code duplication (it is easier to copy and paste
than to refactor to reuse what could be common code). This approach means
that the product will be released on time but will be riddled with bugs,
imperfections or will be plagued by technical debt;

• Lack of skilled designers: designers that do not understand the fundamental
design principles or the problem at hand will definitely take bad decisions,
either planning, designing or reviewing decisions that will lead to poor software
quality;

• Lack of application of design principles: as per Ward Cunningham, failing to
apply sound design principles tends to create code that is then quite difficult
to extend or modify. Sometimes this is not even the designers fault: it often
happens when relieving an old codebase that has outdated and legacy code;

• Lack of awareness of design imperfections and refactoring: programmers are
often unaware of the imperfections introduced in the code; by not addressing
them, deferring refactoring, the technical debt accumulates over time.

As previously mentioned, it is often acceptable to create a certain amount of
technical debt, either to prototype a certain functionality or to gain a better under-
standing of the requirements, but always with the thought in mind of addressing it
as soon as possible.

2.3 Identifying the technical debt
Given that sometimes it is somewhat difficult to even recognize the presence of
technical debt in a codebase, different kinds of methods and analysis have been
formulated to identify debt and to estimate the size and time needed to address it.

This kind of analyses are broadly divided into two main categories: dynamic
analyses and static analyses, the main difference being whether the actual code
is run or not in order to be analysed. These are not alternatives but tend to be
complementary approaches.

2.3.1 Dynamic program analysis
The commonest and most typical kind of analysis, dynamic analysis necessitates
for the code to run in order to analyse it.
This type of analysis is more input-centric [30], is best suited to handle runtime
programming language features like polymorphism, dynamic binding, threads, etc.
and usually incurs larger run-time overheads than static analysis [31].
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The main modality of analysing the software is through the execution of a series
of test cases. Tests can be unit tests (testing the single feature), integration tests
(testing the integration of different software layers) and end-to-end (E2E) and
acceptance tests (testing the whole process) [32].
Subsequently, the code coverage is usually computed, to understand whether the
tests are in fact exhaustive and examine all parts of the program.

Another modality is monitoring the program during its normal execution. This
can be done in various ways, either by debugging, logging or monitoring resource
usage, events, and interactions.

Other types of dynamic analysis are program slicing (reducing the program to the
minimum form that still produces the selected behaviour, to better identify what
causes a problem) [33], security analyses and fuzzing (executing a program on a
wide variety of inputs, often randomly generated) [34].

2.3.2 Static program analysis
Static analysis differs from the dynamic one, as the code does not have to be run
in order to be analysed.

Static analysis works by creating a model of the state of the program and then
determining how the program reacts to that state. Given that a program execution
can carry out in many different ways, the analysis has to keep track of all the
possible states. This is of course not feasible, as even every possible user input or
interaction would need to be considered, so a simplification has to be performed in
order to obtain a workable model: this means that the analysis will be somewhat
less precise than a dynamic one, but will probably be able to provide different and
complementary results [31] [35].

Different kinds of static program analyses can be performed.

Data-flow analysis

This kind of analysis focuses on the values data assume during the execution of the
program and how they evolve: specifically, the goal is to verify whether "tainted"
data (that is, user-supplied data which is still unchecked) is sanitized before being
used [36] [37].
This technique is often used by compilers to optimize the code.

Control-flow analysis

The purpose of the Control-flow analysis is to determine what "elementary blocks"
(functions or pieces of code in general) may lead to what other "elementary blocks".
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The information is collected and represented in a control-flow graph (CFG). This
is yet another technique used by compilers to optimize the code [36].

Abstract interpretation

The theory of Abstract interpretation is a general methodology for calculating
analyses: it allows the extraction of information about a possible execution of a
program without actually executing the program. It can be used by compilers to
look for possible optimizations or for certifying a program against certain classes
of bugs [36] [38].

Types systems

A type system is a logical system that defines a set of rules that can be applied as
a property to all elements of a language, such as variables, constants, functions
or expressions. This allows to perform a static analysis that ensures that such
requirements, defined by the programmer, are met. This practice is usually called
type checking and is useful to prevent errors, to avoid unwanted behaviours, to
improve the efficiency (thanks to optimizations performed by the compiler) or to
even just better explicit the designer’s intentions [39].

Model checking

Software model checking is the algorithmic analysis of programs to prove properties
of their executions. It traces its roots back to logic and theorem proving, providing
ways to check if a model (which in this context means a formal model of a piece of
code, though in other contexts it could be a model of a piece of hardware) complies
with a given specification [40].

2.3.3 Dynamic and static program analysis: the synergy
As mentioned, dynamic and static analyses are not alternatives, but they are often
complementary. The two approaches can be applied to a single problem, producing
results that are useful in different contexts. For instance, both are used for program
verification. Static analysis is typically used for proofs of correctness, type safety,
or other properties. Dynamic analysis demonstrates the presence (not the absence)
of errors and increases confidence in a system.
Quite often performing one analysis first, then the other (and perhaps iterating) is
more powerful than performing either one in isolation [35].
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2.4 The results of the analyses: bugs and code
smells

These types of analyses, as discussed, provide varied and different kinds of results.
Static program analysis, specifically, provides one kind of result that is worth
exploring, as it will be the center of this thesis: the detection of bugs and code
smells.

2.4.1 Bugs
A bug, famously, is an anomaly in the code that causes a malfunction of the
program. A typical example is a mathematical operation where the divisor is zero
(typically, this happens when it is the user to provide, even indirectly, the divisor
and the input is not thoroughly checked): as the operation is clearly impossible,
the program will crash.

More in general, though, only the worst bugs actually cause the program to crash:
more often the effects will be more subtle, harder to recognize and perhaps even
manifesting themselves in seemingly unrelated parts of the program.

A bug might not even cause any visible effect most of times: this is why static
program analysis is useful to recognize in advance such bugs, vastly reducing time
spent debugging or investigating the bug.

2.4.2 Code smells
A different kind of imperfection that can be found in code is a code smell. It should
be noted, initially, that a code smell is not a bug: in fact, code smells do not cause
anomalies during the execution of the program and, even if not addressed, they are
for the most part harmless.

They are, although, quintessential in the improvement of software quality, as they
are strictly related to the concept of technical debt. Even the name, in fact, suggests
it: first coined by Kent Beck, it evokes the idea that "intricate code doesn’t smell
right" [41] [42].

A code smell, ultimately, represents an imperfection in the code, indicates poor
software quality (in that specific part of the codebase, at least) and suggests the
possibility of refactoring [43].

Criteria for recognizing a code smell are not set in stone and human intuition is
always greatly valued, but a few broad examples can be provided [43]:
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• Duplicated code: code that has been copied and pasted; it could be extracted,
generalized and unified to improve readability and flexibility (in case of future
modifications);

• Long method: "the longer a procedure is, the more difficult it is to understand";
dividing long methods in smaller ones improves encapsulation (each piece of
code does one specific thing) and readability (the method name itself acts a a
comment and provides an explanation of what the code does);

• Large class: usually a combination of long methods and duplicated code; can
be refactored for better clarity;

• Long parameter list: long lists of parameters in methods signatures that are
difficult to handle; they can be replaced with method calls, substituted with a
parameter object or the whole method could be refactored to reference the
attributes of its own object (in the case of object-oriented programming);

• Speculative generality: first suggested by Brian Foote, this happens when the
code is generalized beyond the current needs, covering edge cases and special
needs that are useless at the moment and that only concur at rendering the
code more intricate and harder to maintain.

These are only a few examples of many imperfections that can be classified as
code smells: it is evident that none of these anomalies cause any misbehaviour in
the program, but they increase the technical debt, worsening the quality of the
codebase and causing it to become more and more difficult to manage.

2.5 Putting it all together: applying technical
debt to programming assignments evaluation

As already cited, program analysis is a valid tool for recognizing the presence of
technical debt in a codebase. This kind of analysis is usually employed in software
development companies [44]; the idea of this thesis, though, is to apply these same
methods to the evaluation of students’ programming assignments.

The idea, of course, is not to identify technical debt in itself, but to investigate
whether this concept and program analysis can be helpful for both students and
teachers to understand common mistakes and imperfections.

Evidently, bugs need to be addressed in order to obtain a fully-working program;
it could be argued, however, that it could be premature to highlight code smells
in students’ assignments. The goal of the thesis, nonetheless, is to understand
whether even code smells can be useful in recognizing where the students could
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improve: subsequently, perhaps, the list of rules to check the code against could be
reduced, if certain ones were to be judged too advanced or irrelevant.

The following chapters will describe how this idea was put to the test and, eventually,
what findings were gathered in the process.
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Chapter 3

Analysis methodology

After reviewing, in the previous chapter, the context from which this thesis origi-
nated, this chapter will proceed to describe the methodologies adopted to conduct
the work, which was the starting point, what choices were made and what softwares
were selected to be used.
The results of the work will be reviewed in the following chapters.

3.1 The starting point
The goal of this thesis was to apply the concept of technical debt to students’
programming assignments: specifically, the Object-oriented programming course for
the Computer Engineering Bachelor’s degree of Politecnico di Torino was chosen
as the starting point.

This course is for many reasons peculiar in the career of this degree [45] [46].
Firstly, this is the first course that introduces not only object-oriented programming,
but also the first concepts of software engineering to the students.
It is also the first course to provide automated evaluations, both for assignments
throughout the course and for the final exam.

Specifically, the course presents several programming assignments during the course,
characterized by the concepts of the Java language introduced in the course up
to that point. The assignment is composed of a few different requirements and is
accompanied by a small example class that tests the main methods or functionalities
required and that is useful for clarifying doubts regarding requirements.
After the deadline a test suite is added to the Continuous Integration/Continuous
Development pipeline, ensuring that all tests are run in the same environment.
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Figure 3.1: Exam procedure [45]

The final exam works in a similar fashion: the teachers prepare an initial project
and upload it to the student’s repository. During the exam, then, the student is
again provided with a requirement document and a small example class, as the
acceptance tests are made available only after the deadline. In the following days
the students have to fix or complete the program in order to make it pass all
the tests in the suite: the exam is then graded considering the amount of tests
passed by the lab version and the amount of modifications needed to complete the
fully-working home version (and the answers to a few theory questions).

Both the assignments and the final exam are tested through a CI/CD pipeline. All
students’ repositories are hosted on a private GitLab instance, thus the pipeline
is configured in a gitlab-ci.yml file [appendix A.1]. This file describes the steps to
be taken when executing the pipeline: in this initial version, only one stage of the
process is present, in which the program is compiled and tests are run.

All students’ projects are written in Java and are created as Maven projects. Apache
Maven is a build automation tool that simplifies the building process of (primarily)
Java projects [47]. All projects are described by a Maven’s Project Object Model
(POM) [appendix A.1], an XML representation of the project which describes the
project’s configuration and plugins and that manages the project build phase [48].

3.2 The initial goal
Dynamic program analysis is what is currently used by both students and teachers
in the context of this exam: students likely use debugging to complete their
assignments, whereas teachers use automated testing to assess the work after
students hand it in.

The initial goal was to match a static analysis phase to the dynamic one, both for
teachers and for students.
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Specifically, by applying the concept of technical debt students would be able to
get an evaluation of their work as they progress, listing peculiar bugs or code
smells highlighting where they need to improve their assignment or even their
understanding of the issue altogether.
Teachers, on the other hand, could use a static analysis report to comprehend
where their students’ knowledge is weaker and what could be useful to revise in
class.

The initial goal was to understand how to perform a static program analysis in
the already-defined context of the Object-oriented programming course, to assess
which softwares would be better suited for the task and to evaluate whether a full
analysis report would be appropriate for a student.

This was to be done with two modalities: an individual analysis for the student,
which eventually might be integrated in the GitLab pipeline after the testing phase,
and a massive analysis for teachers, to analyse an assignment as a whole.

3.3 Initial orientation analysis
The first step was to understand which software to use to perform the static program
analysis: many alternatives were considered, but both due to previous personal
experience with it and for the valid documentation available for the integration
with Maven SonarQube was chosen.

SonarQube is a software developed by SonarSource that performs code inspections
to highlight bugs and code smells in code [49].

Working on the individual analysis necessity, after setting up a local instance of
SonarQube as a Docker container, the GitLab CI/CD pipeline [appendix A.2] was
modified to include a second stage: the first stage remained the testing one, where
the code is compiled and tests are run. If this stage is successful, the codequality
stage is started, where a SonarQube analysis is initiated and results are saved in the
(currently local) instance of SonarQube. The POM file was also modified [appendix
A.2] to include the SonarScanner for Maven plugin, necessary to run the analysis.

To test the new stage the gitlab-ci-local tool [50] was used: this allowed to avoid
pushing a new commit for every test by running them locally.

3.3.1 Initial analysis on personal projects
An initial analysis on past personal projects was conducted. Specifically, having
attended the Object-oriented programming in 2020, all programming assignments
published during that course, an exam example and two exams were analyzed.
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# of lines Bugs Code smells Duplication Passed testsTotal Critical Major Minor
LAB01 University 87 3 (D) 42 0 22 20 0% 13/17
LAB02 Hydraulics 87 0 (A) 18 1 7 10 2.3% 38/38
LAB03 Diet 76 4 (C) 10 0 4 6 5.7% 54/54
LAB04 Mountain Huts 343 0 (A) 3 1 0 2 0% 1/1
LAB05 Clinic 398 0 (A) 0 0 0 0 0% 1/1
EXAMDEMO Milliways 437 0 (A) 1 0 0 1 0% 1/1
EXAM_2020-06-23 Sports 78 0 (A) 2 0 1 1 0% 44/44
EXAM_2020-07-07_Delivero 79 0 (A) 0 0 0 0 0% 50/50

Table 3.1: Results for initial analysis on personal projects

It can be noted that bugs or code smells can only be found in the first assignments:
this is probably due to the structure of the course. In fact, these assignments were
modified after the publication of the acceptance tests, therefore some bugs or code
smells might have been fixed in the process.

This is not what would normally happen if this process was to be applied to a
student’s assignment: the student might find this kind of analysis useful even
during the coding process. It was impossible, however, to recover prior versions of
these assignments resolutions, so this issue has to be taken into account.

The counterexample is the first assignment, "LAB01 University", which is the only
one that was not fully fixed after the publication of the acceptance tests (hence not
fully passing the tests in this analysis) and is also the one presenting the severest
bugs (a few divisions whose divisor is not checked to be different from zero) and
receiving the worst reliability rating (D).

The code smells found in the assignments are mostly related to styling inconsisten-
cies, coding or naming conventions not followed or duplicated code.

3.4 Batch analysis of an assignment
The following step was to understand how to run a batch analysis on a large group
of projects; that is, how to analyse all the projects belonging to an assignment at
the same time, grouping the results in order to obtain a general picture.

Having worked out a way to automatically run the static analysis on every student’s
commit, the initial idea was to rework the data obtained from said analyses to
avoid running them again.

Different options offered by SonarQube were considered, such as applications or
portfolios, that are functionalities that allow to group different SonarQube projects
into a single one to aggregate the data. Though probably viable solutions, these
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functionalities are only available in the paid editions of SonarQube, so other options
were then explored.

The other problem with this initial idea was that it was nearly impossible to run an
analysis on past assignments or, in general, on projects that had not been already
analysed in the context of the GitLab pipeline. This was a severe limitation for
the initial idea, which was worth considering.

Two more "manual" alternatives were then discussed, both needing some kind of
grouping of the projects before running the analysis. Choosing one of these options
also meant decoupling the individual modality of the analysis from the batch one:
each one could be run independently, and the latter would no longer need for every
project to be run through the CI/CD pipeline before aggregating the data.

3.4.1 Multi-project batch analysis
The first option considered for a batch analysis consisted in creating a large project,
containing different sources: specifically, every student’s project would have to be
indicated as a different source.

The setup of the analysis would be quite simple: all the students’ projects would
have to be located inside a parent folder, which would also contain the POM file
(not mutated from the previously slightly modified one, designed for the "individual"
analysis [appendix A.2]) and a sonar-project.properties file [appendix A.3.1]. This
file serves as a configuration file for the SonarScanner plugin that performs the
SonarQube analysis and would be necessary, in this case, to indicate each subfolder
as a different source, to be treated as such in the final analysis. SonarQube, in fact,
divides the analysis by the different sources, but given that the project is only one
(described by the POM file in the parent folder), this specific directive would have
to be provided.

After manually testing this solution (before developing an automation to apply it
to a massive analysis), it was evident that this methodology would work, as a test
analysis was successfully completed, but a few problems would have to be resolved.

Firstly, all the extra files (such as HTML - the requirements documents - or XML
files - the POM files) and the test files would have to be ignored. While the extra
files did not represent a problem at compile time, test files, to be obviously ignored
in the analysis as files not developed by the students, would have to excluded from
the compilation too to avoid conflicting namespaces and packages names.

Generally, given that each subfolder would contain a project based on the same
initial template provided by the teachers, all packages names (and therefore all
import commands, if present) would have to be renamed uniquely: grouping
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parent_folder

LAB03_Diet_s000001

src

diet

project_file_1.java

project_file_2.java

...

requirements_file_1.html

requirements_file_2.html

...

LAB03_Diet_s000002

src

diet

project_file_1.java

project_file_2.java

...

requirements_file_1.html

requirements_file_2.html

...

pom.xml

sonar-project.properties

Figure 3.2: Multi-project batch analysis folder schema (based on projects and
folder names for the third assignment)

projects based on a common template under the same project means that a package
designed by a student conflicts with all the others developed by their colleagues.

While probably all solvable issues, a second option for performing a batch analysis
was explored.
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3.4.2 Multi-module batch analysis
The other option, while by many aspects similar, presented some key differences
with the previous one.

The idea was to exploit Maven’s multi-module functionality: in Maven a project
can be composed of different modules, each being a different project, that are then
grouped in a parent one. While quite similar to the previous solution, this idea is
different: previously, Maven was unaware of the different submodules and would
just compile every Java file contained in the parent folder. It was then up to the
SonarScanner (via the configuration provided in the sonar-project.properties file)
to distinguish the different subprojects and treat them as such.
In this case, on the other hand, Maven is fully aware of the modularity of the
parent project, and then SonarQube merely distinguishes the folders from which
the different analysed files were taken.

This also solves the problem of conflicting namespaces: even if different packages
share a common name, this does not represent a problem because Maven compiles
each submodule separately and assembles them in the larger project only afterwards.

For the same reason tests would not have to be excluded from the compilation,
but nonetheless they would need to be subsequently avoided by the analysis, again
given that they are not written by the students.

In detail, to carry out this approach, each submodule would need to contain a POM
file [appendix A.3.2] that describes it and that references the parent project where
the submodule resides. Then, the parent folder would need to contain another
POM file [appendix A.3.2], describing the larger project and referencing all the
submodules which compose it.

Another manual test was conducted following this alternative approach, verifying
the validity of this solution too.

In the process, the parent POM file [appendix A.3.2] was also designed to contain all
sorts of directives for the analysis: after specifying the language of the analysis (Java,
in this case), all tests and example classes files were excluded (namely excluding
all files containing the @Test directive, though some further exclusions might be
needed) and all additional files (HTML, XML) were ignored. Code duplication
and coverage were also disabled, as duplication between different projects might
be picked up (though only due to the shared template) and code coverage was
null, given that all tests files were ignored. Finally, SonarQube’s Source Control
Manager was disabled too: this is a functionality that allows to analyse the author
of each line of code, amongst other things, but such a feature was not necessary for
purpose of the work.
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3.4.3 Choosing an approach for the analysis
After testing both options manually (by manually typing in the necessary files and
locating them were needed) both approach resulted valid and viable.

The choice made, though obviously arguable, was to follow the latter multi-module
approach. The choice was made considering that it would have been probably
slightly easier to automate the process of writing and placing the POM files for
the multi-module approach, rather than automating the necessary renaming of
packages and imports for the multi-project solution.
Furthermore, the multi-module alternative allowed to avoid interfering with the
files written by the students: while renaming the packages would likely cause no
harm, especially in small projects like programming assignments, philosophically
it would mean meddling with the students’ work, perhaps slightly contradicting
the goal of the analysis. The chosen method, on the other hand, only needed an
"external approach", modifying files unrelated to the students’ code.

After making this choice it was clearly necessary to automate the process, as it
would not be feasible, for a massive analysis, to manually place all POM files and
compile them correctly following the multi-module solution.

3.4.4 Automating the analysis
To create an automation, templates for the parent POM [appendix A.3.2] and the
child POM [appendix A.3.2] were created.

Afterwards, a Bash script was created [appendix A.3.2]. To work, this script has to
be placed inside the parent folder, alongside a folder named "templates", containing
the parent_pom.xml and child_pom.xml files.
This script considers all the subfolders of the folder in which it is placed as submod-
ules (excluding the "templates" and "target" subfolders): it visits all subfolders and
copies there the child POM, substituting the parentArtifactId (that is, the id
of the parent POM) with the value passed as parameter to the script (this allows
to customize the name that will eventually be displayed in SonarQube) and the
childArtifactId with the name of the subfolder (which is by definition unique,
so no conflicts can arise).
After finalizing the child POM, the parent POM is modified to add the visited
subfolder to the list of modules. This allows to create the cross-referencing needed
by Maven’s multi-modular solution.
Finally, after iterating through all subfolders, the script launches a Maven command
that builds the project and then launches the analysis, whose results are then saved
to the SonarQube instance specified in the parent POM.
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Figure 3.3: Multi-module batch analysis folder schema (based on projects and
folder names for the third assignment)



To launch the script [appendix A.3.2], as mentioned, it is necessary to pass the
parent’s artifact id and the SonarQube token for authentication. This choice was
made to make the script secure and portable, given that the token is specific to
the SonarQube instance.

This script greatly automates the setup of the analysis: it is only necessary to place
all the projects to be analyzed in a common folder, to place the templates and the
script in this folder and then launch the latter with the appropriate parameters.

3.5 Analysing a past exam
After completing the automation of the analysis, a past assignment was analysed
in its entirety.

An exam of the aforementioned Object-oriented programming course was analysed:
specifically, the first call for the exams of the 2022/2023 edition of the course, held
on June 26th, 2023.

The exam consisted of 428 projects to be analysed: as described, the projects were
placed in a common folder, alongside the templates and the script, and then the
script was launched, setting up the files as needed and then performing the analysis.

A slight modification was made to the script in the process: the compilation would
previously halt if a single module’s compilation would fail. This had to be avoided,
because it is common in this kind of assignments to find projects that do not
compile, either for a student’s mistake or because the student decided not to
finish the exam or assignment. A --fail-never option was added to the Maven
compilation command, ensuring to simply skip and ignore all modules that do not
compile.

To extrapolate all the data, i.e. how many occurrences of every bug or code smell
were found for every student, a SQL script was written [appendix A.3.2]. The
script queries the database which SonarQube uses to save the analysis data.
Assuming that every folder containing a student’s project is named according to
their student number, such as s123456, the script selects all students numbers from
the components names (the components are all the files SonarQube analyses, which,
as mentioned, contain the student number in their path), then performs a left join
with another table, created selecting all the students numbers for the students
whose projects contained at least one occurrence of the rule being considered and
the number of such occurrences.
Therefore, this script outputs two columns: a column containing all students
numbers and another column listing the occurrences of the specific issue for each
student.
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This query has to be performed for every rule of interest (only the commonest rules
were selected for the analysis, as will be mentioned in the following chapter) by
specifying the rule’s id: these ids were retrieved manually, from the rules table of
the database.

The following chapter will describe in detail the findings of this analysis: all the
data retrieved, the commonest bugs and code smells registered and the amount
in which they were found. Subsequently, a statistical analysis will be performed,
in order to understand the correlation between said bugs and code smells and the
final mark the students received.
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Chapter 4

Analysis results

This chapter will lay out the results of the analysis conducted on the first call for
the exams of the 2022/2023 edition of the Object-oriented programming course,
held on June 26th, 2023, as mentioned in the previous chapter.

All the data were gathered in an Excel spreadsheet [appendix B]: marks and
occurrences of every bug or code smell for every student were registered.

Specifically, the spreadsheet contains multiple sheets:

• A "Data" sheet, which contains a row for every student: for every student,
a few columns summarize general data (such as the final mark received, the
number of lines of code of their project and the number of bugs and code
smells totalled) and then each issue is reported in a different column, marking,
for every student, how many occurrences of a specific bug or code smell were
found;

• An "Analysis" sheet reports the results of the general analysis described in
section 4.1;

• A "Rules" sheet reports all the rules that raise bugs or code smells that were
considered: their unique id (UUID) is reported alongside their name, their
shortened name (used for brevity in the other sheets) and part of the data
regarding the single issues analysis described in section 4.2;

• For every bug or code smell a separate sheet is then presented, reporting in
two different columns the marks of the students who registered said issue and
the ones of those who did not; the results of the t-test analysis described in
section 4.2 are then laid out.
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Only the rules originating issues which were the commonest amongst all projects
were selected: this was done to eliminate outliers, but it was a purely subjective
evaluation. All the ignored rules were anyway very scarcely registered and deemed
not important for the goal of the analysis: generally speaking, rules totalling less
then 20 unique occurrences (thus appearing in a very limited number of projects,
as multiple occurrences can be found in the same project) were not considered,
especially if regarding issues too specific for students at their first approach with
object-oriented programming. This means that out of the 497 registered bugs 438
were analysed, and out of the 3952 registered code smells 2791 were studied.

After selecting the rules, the first step in the analysis of the results was to set aside
all the projects that did not receive a final evaluation, either because the student
was absent (but having booked the exam the project was created) or decided to
withdraw from the exam (which is possible by not submitting a fully-working home
version that passes all requirements). This meant reducing the total number of
projects from 428 to 216.

Then, two kinds of analyses were performed: a general analysis, trying to understand
the correlation between the number of bugs or code smells and the evaluation, and
one specific for every issue, trying to study its significance for the final mark.

4.1 General analysis

4.1.1 Marks - issues correlation
Firstly, it was interesting to understand whether some sort of correlation between
the number of bugs or code smells found in every project and the final mark existed.

To study it, the linear correlation coefficient (also known as Pearson’s correlation
coefficient) was computed. This is a coefficient that ranges from -1 to 1 and is
a measure of dependence between two variables. Specifically, if the coefficient is
positive a positive correlation exists, meaning that the two variables change in
the same direction (if one increases, the other increases too and vice versa). On
the other hand, if two variables are negatively correlated they change in opposite
directions: if one increases, the other decreases [51].

The strength of a correlation is measured by it "effect size", defined by two thresholds:
if a correlation coefficient is greater than 0.3, then the correlation has medium
strength. If it is greater than 0.5, the two variables are strongly correlated [52].

The correlations were computed using the CORREL function in Excel [53], both
considering all bugs and code smells found and only the ones relative to the rules
chosen for the analysis.
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Figure 4.1: Marks - analysed bugs correlation

Figure 4.2: Marks - analysed code smells correlation
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Correlation Coefficient
Marks - bugs 0,02405504
Marks - code smells 0,09117172
Marks - analysed bugs 0,02266843
Marks - analysed code smells 0,11144053

Table 4.1: Correlation between final marks and bugs or code smells found

The results quite evidently highlight almost no correlation between the variables.
A first result to be noted, then, is that generally speaking the presence of code
smells or bugs does not affect the evaluation: this is likely because the final mark
strongly depends on the number of tests the program passes, tests that do not
consider nor verify the quality of the software.

4.1.2 Lines of code - issues correlation
The correlation between the total number of lines of code of the projects and the
number of bugs or code smells was also researched. This was done to verify whether
a student producing more lines of code, thus likely solving more requirements, also
registers more issues.

Correlation Coefficient
Lines - bugs 0,17453429
Lines - code smells 0,25949454
Lines - analysed bugs 0,15144641
Lines - analysed code smells 0,22289385

Table 4.2: Correlation between number of lines of code and issues found

In this case the correlation is weak, though present: this means that the more lines
of code written, the more likely the student is to produce bugs or code smells. This
argument is true but weak, so it cannot be taken as a general assumption.
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Figure 4.3: Lines of code - analysed bugs correlation

Figure 4.4: Lines of code - analysed code smells correlation
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4.2 Single issues analysis
After exploring some general findings, all the registered bugs and code smells were
analysed. As mentioned, only the commonest ones were considered.

Generally speaking, the major issues found are:

• Types management (comparing different types or using nullable types without
considering the null case);

• Not checking hazardous cases such as possible divisions by zero;

• Comparisons of strings and Boxed types by reference (with ==) and not by
value (using .equals());

• Code formatting conventions not observed;

• Methods, fields or pieces of code left unused or commented out.

All the bugs and code smells relative to the rules selected for the analysis will be
listed and explained in the following pages. For every issue, a series of considerations
was carried out.

Firstly, the correlation between the occurrences of the single issue and the final mark
was computed, using the aforementioned Pearson’s linear correlation coefficient.
This was meant to understand whether the presence of a single bug or code smell
is significant for the final evaluation.

Secondly, a more specific test was carried out to understand the actual influence a
bug or code smell had on the final mark: the average mark of the students who
incurred at least one occurrence of the issue at hand was computed, and then the
average mark of the students whose projects did not contain any occurrence of
such issue was calculated too. To verify whether the difference between the two
means is significant, a t-test was performed.

A t-test is a statistical test that is used to compare the means of two groups and
to understand whether the difference is significant. In this case a two-sample
t-test assuming different variances was performed, given that the two groups are
independent and that no hypotheses can be formulated on their actual variance.

The two-tailed t-test result will be considered: this is the result to evaluate when
one mean can be either higher or lower than the other, and both directions are
significant [54]. In fact, this will be useful to determine whether the ones who
registered a certain issue got in average a different mark than the ones who did not
register it; that is, if said issue had any influence on the final mark or, even, if the
mark had any influence in finding more of those issues (for example, it could be
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plausible to find more bugs with a lower mark).

The results of these tests will be laid out in the following pages for every bug or
code smell: every analysed issue will be explained, a concrete code example will be
presented and then the numbers of the analysis will follow. All code examples are
taken from the analysis itself, so they are unmodified first-hand examples of real
code written by students during the exam and of the consequent issues.

At the end, all the most important findings will be summarized (in section 4.3).

4.2.1 Bug: Division by zero
Bug explanation

SonarQube’s description of the bug is "Zero should not be a possible denominator".
This bug is registered when a divisor is not checked to be different from zero (if a
divisor is zero, a fatal error occurs). It usually happens when the divisor is derived,
even indirectly, from a user input.

Bug example

This bug was found, for example, in this method:

1 pub l i c double getCompleteness ( ) {
2 double t o t S l o t = 0 ;
3 double sa = 0 ;
4 f o r ( Schedule s : s chedu l e s . va lue s ( ) ) {
5 t o t S l o t += s . g e t S l o t s ( ) . s i z e ( ) ;
6 sa += s . getAppointments ( ) . s i z e ( ) ;
7 }
8

9 re turn sa / t o t S l o t ;

Here, totSlot is zero if the schedules array is empty, but no check is performed:
if the array is in fact empty, the program crashes.

Analysis

The occurrence of this bug has no significant correlation neither with the final mark
nor with the number of lines of code, as shown in table 4.3.

The important result, described in table 4.4, is that P(T<=t) two-tail is less than
alpha (the chosen standard significance level): this means that the difference in
the average mark between the group of students who incurred this bug and the
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Description Value
Total occurrences 24
Number of projects involved 20 (9.26 %)
Correlation with final mark 0.21981811
Correlation with number of lines of code 0.153771416

Table 4.3: Division by zero bug correlation analysis

Bug found Bug not found
Mean 24.1335 21.10857143
Variance 13.2058766 18.13863077
Observations 20 196
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 25
t Stat 3.48629712
P(T<=t) two-tail 0.00182719
t Critical two-tail 2.05953855

Table 4.4: Division by zero bug t-test analysis

group of the ones who did not is significant. Therefore, this bug had an influence
on the final mark, or vice versa (perhaps a variation in the final mark means more
or less bugs found, given that the final mark is determined by tests that do not
consider software quality).

4.2.2 Bug: String ==
Bug explanation

SonarQube states that "Strings and Boxed types should be compared using
"equals()"". The reason is simple: in Java, == compares two objects by refer-
ence. That is, == tests whether two references specifically refer to the same object,
whereas the .equals() method verifies whether two objects, even if different by
reference, are logically the same.

Although this bug relates to all boxed types, such as Int, Long or Char, it is more
frequently found when comparing strings.
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Bug example

An example from the analysis in which the bug was detected:

1 pub l i c void addDoctor ( S t r ing id , S t r ing name , S t r ing surname ,
S t r ing s p e c i a l i t y ) throws MedException {

2 i f ( ! t h i s . s p e c i a l i t i e s . conta in s ( s p e c i a l i t y ) ) {
3 throw new MedException ( ) ;
4 }
5 f o r ( i n t i =0; i<doctor s . s i z e ( ) ; i++) {
6 i f ( doc tor s . get ( i ) . id == id ) {
7 throw new MedException ( ) ;
8 }
9 }

10

11 // . . .
12 }

The id (line 6) is compared by reference, which will likely return different results
than expected.

Analysis

Description Value
Total occurrences 268
Number of projects involved 62 (28.7 %)
Correlation with final mark 0.003264319
Correlation with number of lines of code 0.073938472

Table 4.5: String == bug correlation analysis

This bug is quite common, as it has a lot of occurrences and is found in almost one
third of projects, but it has no correlation with the final mark and the difference
between those who registered the bug and those who did not is not significant.
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Bug found Bug not found
Mean 22.1480645 21.08292208
Variance 15.4432782 19.35825742
Observations 62 154
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 125
t Stat 1.73986195
P(T<=t) two-tail 0.08434456
t Critical two-tail 1.97912411

Table 4.6: String == bug t-test analysis

4.2.3 Bug: Collection.get()
Bug explanation

The SonarQube description of the bug is "Inappropriate "Collection" calls should
not be made". This bug is reported when methods like remove() or contains()
are called with a parameter of a different type than the one of the collection the
method operates on.
The signature of these methods, such as Collection.contains(Object o) or
Collection.remove(Object o), presents a parameter of type Object, so the call
itself is allowed, but this usually leads to unexpected results, as the method will
always return false or null.

Bug example

The bug is found in pieces of code such as:

1 pub l i c S t r ing setAppointment ( S t r ing ssn , S t r ing name , S t r ing
surname , S t r ing code , S t r ing date , S t r ing s l o t ) throws
MedException {

2 i f ( ! doc to r s . containsKey ( code ) | | ! doc to r s . get ( code ) .
ge tSchedu le s ( ) . conta in s ( date ) ) {

3 throw new MedException ( ) ;
4 }
5

6 // . . .
7 }

In this case the getSchedules() method retrieves a List<Schedule>, but the
contains() method checks for a String type, so it will always return false.
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Analysis

Description Value
Total occurrences 43
Number of projects involved 14 (6.48 %)
Correlation with final mark -0.072426947
Correlation with number of lines of code 0.048735667

Table 4.7: Collection.get() bug correlation analysis

Bug found Bug not found
Mean 19.8707143 21.49386139
Variance 14.0542995 18.59106462
Observations 14 202
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 15
t Stat -1.5504928
P(T<=t) two-tail 0.14186221
t Critical two-tail 2.13144955

Table 4.8: Collection.get() bug t-test analysis

Although being quite a severe bug, a correlation with the final mark is not found.
The t-test does not signal any significance.

4.2.4 Bug: Optional.get()
Bug explanation

SonarQube explains this bug stating that an "Optional value should only be accessed
after calling isPresent()". This means that, when dealing with an Optional value,
it should be first verified whether said Optional actually holds a value: otherwise,
a NoSuchElementException will be thrown.
To avoid the exception, the isPresent() or !isEmpty() methods should be called.
Alternatively, other methods such as orElse(), orElseGet() or orElseThrow()
can be used to specifically deal with an Optional value.
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Bug example

1 pub l i c S t r ing getMeet ingTi t l e ( S t r ing meetingId ) {
2 re turn meetings . stream ( ) . f i l t e r (m−>m. get Id ( ) . equa l s ( meetingId

) ) .map( Meeting : : g e t T i t l e ) . f i n d F i r s t ( ) . get ( ) ;
3 }

In this case the findFirst() method returns an Optional value that will be empty
if the Stream is empty too: if no meeting is found by the filter method or if there
are no meetings at all, an exception will be thrown.

Analysis

Description Value
Total occurrences 28
Number of projects involved 17 (7.87 %)
Correlation with final mark 0.03400739
Correlation with number of lines of code 0.061490846

Table 4.9: Optional.get() bug correlation analysis

Bug found Bug not found
Mean 21.7858824 21.35472362
Variance 14.3255007 18.79739475
Observations 17 199
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 20
t Stat 0.44538535
P(T<=t) two-tail 0.66082476
t Critical two-tail 2.08596345

Table 4.10: Optional.get() bug t-test analysis

The bug is not correlated with the final mark and the t-test highlights no significant
difference.
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4.2.5 Bug: Null deref
Bug explanation

SonarQube specifies that "Null pointers should not be dereferenced": doing so will
throw a NullPointerException.

Bug example

1 pub l i c boolean equa l s ( Object o ) {
2 Seat s = ( Seat ) o ;
3 re turn ( t h i s . g e tLe t t e r ( ) == s . g e tLe t t e r ( ) && t h i s . getRow ( ) ==

s . getRow ( ) ) ;
4 }

In this example the parameter is of type Object, which means that it can be
null too. The first line simply casts the parameter, but if o is in fact null, the
getLetter() method will throw an exception.

Analysis

Description Value
Total occurrences 20
Number of projects involved 10 (4.63%)
Correlation with final mark 0.135923946
Correlation with number of lines of code 0.129891303

Table 4.11: Null deref bug correlation analysis

Bug found Bug not found
Mean 22.433 21.33796117
Variance 33.2396678 17.77273534
Observations 10 206
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 9
t Stat 0.59297572
P(T<=t) two-tail 0.56779674
t Critical two-tail 2.26215716

Table 4.12: Null deref bug t-test analysis
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The bug is found in a small number of projects; the correlation and t-test analyses
do not highlight peculiarities.

4.2.6 Bug: Silly ==
Bug explanation

The bug is explained by SonarQube stating that "Silly equality checks should not
be made". Quite simply, comparisons of dissimilar types will always return false:
this means that the equality check in question can be removed or, more likely, that
the comparison has to be fixed.

Bug example

1 pub l i c c l a s s TrainManager {
2 pr i va t e Lis t <Str ing > s t o p s L i s t ;
3 pr i va t e Map<Integer , Stop> stopsMap ;
4 pr i va t e Stop l a s tS top ;
5

6 // . . .
7

8 pub l i c i n t setLastStop ( St r ing stop ) {
9 t h i s . l a s tS top = t h i s . stopsMap . get ( stop ) ;

10 i n t to t = 0 ;
11 boolean found = f a l s e ;
12 f o r ( S t r ing s : t h i s . s t o p s L i s t ) {
13 i f ( s . equa l s ( l a s tS top ) ) {
14 found = true ;
15 }
16 i f ( found == true ) {
17 to t += t h i s . getNumberOfBookings ( l a s tS top . getName

( ) , s ) ;
18 }
19 }
20 re turn to t ;
21 }
22

23 // . . .
24 }

In this example lastStop is of type Stop, being extracted from the stopsMap map.
However, it is then checked against s, which is a value from the stopsList list,
which holds elements of type String. This means that the comparison will always
return false, and the function will always return 0.
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Analysis

Description Value
Total occurrences 13
Number of projects involved 9 (4.17%)
Correlation with final mark 0.02613918
Correlation with number of lines of code 0.107718868

Table 4.13: Silly == bug correlation analysis

Bug found Bug not found
Mean 22.0888889 21.35821256
Variance 11.2689611 18.7342099
Observations 9 207
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 9
t Stat 0.63059433
P(T<=t) two-tail 0.54398385
t Critical two-tail 2.26215716

Table 4.14: Silly == bug t-test analysis

The bug appears in a limited number of projects and no correlation is found. The
t-test analysis does not report any significant difference.

4.2.7 Bug: Intermediate Stream
Bug explanation

SonarQube explains the bug by saying that "Intermediate Stream methods should
not be left unused". This happens when a Stream is not concluded by a terminal
operation: as intermediate operations on a Stream are lazy, if no terminal operation
requests for any data no work will ever be executed. This is symptomatic of
unfinished pieces of code.
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Bug example

1 pub l i c Map<Str ing , L i s t <Str ing >> f i n d S e a t s ( S t r ing begin , S t r ing
end , S t r ing k l a s s ) {

2 ca r s . va lue s ( ) . stream ( ) . f i l t e r ( c −> c . hasAva i lab l eSeatStops (
begin , end ) ) ;

3

4 re turn n u l l ;
5 }

The bug is found in pieces of code that have not been finished by the students: the
return null statement is provided by the initial project template and is meant to
be substituted; not doing so means that the student decided not to complete the
method.

Analysis

Description Value
Total occurrences 10
Number of projects involved 8 (3.7%)
Correlation with final mark -0.090408697
Correlation with number of lines of code -0.003773042

Table 4.15: Intermediate Stream bug correlation analysis

Bug found Bug not found
Mean 18.97125 21.48163462
Variance 11.0397268 18.49360698
Observations 8 208
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 8
t Stat -2.0713214
P(T<=t) two-tail 0.07208092
t Critical two-tail 2.30600414

Table 4.16: Intermediate Stream bug t-test analysis

The bug, appearing in a very limited number of projects, has no correlation with
the final mark; the t-test analysis shows no significant difference.
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4.2.8 Bug: Math operands cast
Bug explanation

Regarding this bug, SonarQube states that "Math operands should be cast before
assignment": the problem lies in the fact that, for example, dividing two integers
and then assigning to a double is possible (due to automatic type conversion),
but upon assigning precision will already be lost, as operating on integers always
generates an integer. While technically possible, this will probably yield unexpected
results.

Bug example

1 Double compare1 = ( double ) ( starHour + starMin /100) ;

In this case either starHour or starMin should be cast to double in order to
preserve floating-point precision before the assignment to compare1.

Analysis

Description Value
Total occurrences 32
Number of projects involved 26 (12.04%)
Correlation with final mark -0.058853922
Correlation with number of lines of code 0.068137292

Table 4.17: Math operands cast bug correlation analysis

Bug found Bug not found
Mean 21.205 21.41378947
Variance 18.757074 18.43428503
Observations 26 190
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 32
t Stat -0.2307878
P(T<=t) two-tail 0.81894883
t Critical two-tail 2.03693334

Table 4.18: Math operands cast bug t-test analysis

No significant evidence is highlighted by the analysis for this bug.
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4.2.9 Code smell: Cognitive Complexity
Code smell explanation

SonarQube states that "Cognitive Complexity of methods should not be too high":
the Cognitive Complexity is a measure of how hard the control flow of a method
is to understand. Methods with high Cognitive Complexity will be difficult to
maintain.

Specifically, the Cognitive Complexity is increased by 1 for every complexity-
incrementing statement, such as conditions (if, else, case - for the switch
statement), loops (for, while), logical operators (&&, ||) or exception handlers
(catch, throw). Nested statements count more.

Code smell example

In this example the Cognitive Complexity of the method is 16, which is above the
standard threshold of 15. SonarQube therefore suggests to improve the understand-
ability of the method by reducing its complexity.

Analysis

Description Value
Total occurrences 37
Number of projects involved 31 (14.35%)
Correlation with final mark 0.142434151
Correlation with number of lines of code 0.221994825

Table 4.19: Cognitive Complexity code smell correlation analysis
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Smell found Smell not found
Mean 22.79709677 21.15264865
Variance 14.50948796 18.73325979
Observations 31 185
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 44
t Stat 2.179446466
P(T<=t) two-tail 0.034694501
t Critical two-tail 2.015367574

Table 4.20: Cognitive Complexity code smell t-test analysis

The code smell has no significant correlation neither with the final mark nor with
the number of lines of code of the project. However, the t-test analysis shows a
significant difference between the average mark of the students who registered this
code smell and the one of those who did not.

4.2.10 Code smell: Methods set static fields
Code smell explanation

SonarQube’s description of the code smell is "Instance methods should not write to
"static" fields": this means that a static field should not be updated by non-static
methods, which could lead to errors in case of multiple instances of the class or
multiple threads. Static fields should only by updated by synchronized static
methods.

Code smell example

1 pr i va t e s t a t i c i n t stopCode = 0 ;
2

3 pub l i c i n t de f i n eS tops ( S t r ing . . . s tops ) {
4 f o r ( var s : s tops ) {
5 stopCode++;
6 t h i s . s tops . put ( stopCode , s ) ;
7 }
8 re turn t h i s . s tops . keySet ( ) . s i z e ( ) − 1 ;
9 }
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Analysis

Description Value
Total occurrences 11
Number of projects involved 9 (4.17%)
Correlation with final mark 0.016048698
Correlation with number of lines of code 0.072142935

Table 4.21: Methods set static fields code smell correlation analysis

Smell found Smell not found
Mean 21.70333333 21.37497585
Variance 13.982775 18.64665813
Observations 9 207
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 9
t Stat 0.256113648
P(T<=t) two-tail 0.803621012
t Critical two-tail 2.262157163

Table 4.22: Methods set static fields code smell t-test analysis

No significant findings emerge from the statistical analysis for this bug.

4.2.11 Code smell: Stream.toList()
Code smell explanation

SonarQube describes the code smell stating that a ""Stream.toList()" method should
be used instead of "collectors" when unmodifiable list needed": the code smell refers
to the fact that, when terminating a Stream, the .collect(Collectors.toList())
method is usually used, but this yields a mutable list. It is then preferable to use
Collectors.toUnmodifiableList(), introduced in Java 10, although being quite
verbose, or better the specific terminator Stream.toList(), introduced in Java 16.
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Code smell example

1 pub l i c Co l l e c t i on <Str ing > getCarsByClass ( S t r ing k l a s s ) {
2 re turn ca r s . va lue s ( ) . stream ( )
3 . f i l t e r ( c −> c . ge tC la s s ( ) . equa l s ( k l a s s ) )
4 .map( Car : : ge t Id )
5 . c o l l e c t ( C o l l e c t o r s . t o L i s t ( ) ) ;
6

7 }

Analysis

Description Value
Total occurrences 479
Number of projects involved 150 (69.44%)
Correlation with final mark 0.446797723
Correlation with number of lines of code 0.325362376

Table 4.23: Stream.toList() code smell correlation analysis

Smell found Smell not found
Mean 22.39086667 19.11090909
Variance 15.56285629 17.57011608
Observations 150 66
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 118
t Stat 5.392462945
P(T<=t) two-tail 3.62281E-07
t Critical two-tail 1.980272249

Table 4.24: Stream.toList() code smell t-test analysis

The issue is found in the vast majority of projects: it has a positive medium
correlation both with the final mark and with the number of lines of code. This
means that the more lines of code written or the higher the mark, the more likely it
is to register this issue. This probably underlines a general lack of comprehension
of this problem, though it being quite specific: it is possible that students are not
fully aware of the difference between modifiable and unmodifiable lists and that
they are more accustomed to using the Collectors methods for terminating every
Stream, not knowing the rather new method specific for the purpose. This could
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mean that the students who write more code and who receive a better evaluation
simply have "more opportunities" to incur this code smell.

According to the t-test analysis, the difference between the average mark of the
students who incurred this specific code smell and the one of those who did not is
significant.

4.2.12 Code smell: Standard output to log
Code smell explanation

SonarQube states that "Standard outputs should not be used directly to log
anything". It is pretty normal for beginners to use the System.out.println()
method to quickly assess the value of a variable, but a logger should be preferred
to foster uniformity and clarity. This is of course not a critical issue, especially for
students.

Code smell example

1 pub l i c Co l l e c t i on <Str ing > g e t S p e c i a l i s t s ( S t r ing s p e c i a l i t y ) {
2

3 ArrayList<Str ing > retVal = new ArrayList <>() ;
4 f o r ( Doctor d : doc tor s . va lue s ( ) ) {
5 i f (d . spec == s p e c i a l i t y ) {
6

7 retVal . add (d . id ) ;
8 System . out . p r i n t l n (d . id ) ;
9

10 }
11 }
12 re turn retVal ;
13 }

Analysis

Description Value
Total occurrences 56
Number of projects involved 28 (12.96%)
Correlation with final mark 0.086480853
Correlation with number of lines of code 0.123474702

Table 4.25: Standard output to log code smell correlation analysis
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Smell found Smell not found
Mean 22.34 21.24696809
Variance 7.583007407 19.893833
Observations 28 188
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 51
t Stat 1.781023496
P(T<=t) two-tail 0.080864575
t Critical two-tail 2.00758377

Table 4.26: Standard output to log code smell t-test analysis

The analyses reveal no peculiarities.

4.2.13 Code smell: entrySet iteration
Code smell explanation

The description of this code smell provided by SonarQube is ""entrySet()" should
be iterated when both the key and value are needed". Students sometimes iterate
over a keySet (that is, the set of all the keys of a specific map), and then use each
key to retrieve the value corresponding to it stored in the map. This is highly
inefficient, as it accesses the map multiple times, and renders the code harder to
read. A more efficient way would be to iterate over the entrySet itself: that is,
the pairs of keys and values.
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Code smell example

1 pub l i c c l a s s MedManager {
2 SortedMap<Str ing , Doctor> doctor s = new TreeMap<>() ;
3

4 // . . .
5

6 pub l i c Map<Str ing , L i s t <Str ing >> f i n d S l o t s ( S t r ing date , S t r ing
s p e c i a l i t y ) {

7 Map<Str ing , L i s t <Str ing >> tmp = new HashMap<>() ;
8 f o r ( S t r ing code : doc tor s . keySet ( ) ) {
9 i f ( doc tor s . get ( code ) . getSpec ( ) . equa l s ( s p e c i a l i t y ) ) {

10

11 i f ( doc tor s . get ( code ) . getSchedule ( date ) != n u l l ) {
12 tmp . put ( code , new ArrayList <>()) ;
13 f o r ( Schedule i : doc to r s . get ( code ) . getSchedule (

date ) ) {
14 tmp . get ( code ) . add ( St r ing . format ( "%s−%s " , i .

g e tS ta r t ( ) , i . getEnd ( ) ) ) ;
15 }
16 }
17 }
18 }
19 re turn tmp ;
20 }
21

22 // . . .
23 }

In this example both the keys and the values for the doctors map are needed;
however, the student iterated over the keySet alone, resorting than to call
doctors.get(code) multiple times to obtain the actual value. A leaner solution
would be to iterate over the entrySet:

1 f o r (Map. Entry<Str ing , Doctor> entry : doc tor s . entrySet ( ) ) {
2 St r ing code = entry . getKey ( ) ;
3 Doctor doctor = entry . getValue ( ) ;
4 // . . .
5 }
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Analysis

Description Value
Total occurrences 49
Number of projects involved 18 (8.33%)
Correlation with final mark 0.073532734
Correlation with number of lines of code 0.091394548

Table 4.27: entrySet iteration code smell correlation analysis

Smell found Smell not found
Mean 21.72666667 21.38335025
Variance 16.86465882 18.57068566
Observations 18 197
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 21
t Stat 0.338083988
P(T<=t) two-tail 0.738656425
t Critical two-tail 2.079613845

Table 4.28: entrySet iteration code smell t-test analysis

No correlation with the final mark is found. The t-test does not signal any
significance.

4.2.14 Code smell: Map.get() and value test
Code smell explanation

SonarQube description of the code smell is ""Map.get" and value test should be
replaced with single method call": it is common to test for the presence of a specific
key in a map and then, if absent or present, adding or modifying the value for
that key. This could be done in an easier and perhaps more readable way with the
computeIfPresent() and computeIfAbsent() methods. However, these methods
might not be easy to approach for students.
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Code smell example

1 pub l i c void a d d S p e c i a l i t i e s ( S t r ing . . . s p e c i a l i t i e s ) {
2 f o r ( S t r ing s : s p e c i a l i t i e s ) {
3 i f ( ! t h i s . s p e c i a l i t i e s . containsKey ( s ) )
4 t h i s . s p e c i a l i t i e s . put ( s , new ArrayList <>()) ;
5 }
6 }

In the example, the same key is used to test its presence in the map and then to
perform the insertion. A compliant solution would be:

1 pub l i c void a d d S p e c i a l i t i e s ( S t r ing . . . s p e c i a l i t i e s ) {
2 f o r ( S t r ing s : s p e c i a l i t i e s ) {
3 t h i s . s p e c i a l i t i e s . computeIfAbsent ( s , s −> new ArrayList

<>()) ;
4 }
5 }

Analysis

Description Value
Total occurrences 47
Number of projects involved 43 (19.91%)
Correlation with final mark 0.025960833
Correlation with number of lines of code 0.118133061

Table 4.29: Map.get() and value test code smell correlation analysis

Smell found Smell not found
Mean 21.60767442 21.33421965
Variance 17.45375161 18.71145825
Observations 43 173
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 66
t Stat 0.381398187
P(T<=t) two-tail 0.704132899
t Critical two-tail 1.996564419

Table 4.30: Map.get() and value test code smell t-test analysis
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No significant evidence is registered from the analyses.

4.2.15 Code smell: Use of String constructor

Code smell explanation

SonarQube states that "Constructors should not be used to instantiate "String",
"BigInteger", "BigDecimal" and primitive-wrapper classes". This is because doing so
is less clear and uses more memory than simply using the desired value in the case
of strings or valueOf for everything else (for example, Double.valueOf(1.1)).

Code smell example

1 pub l i c c l a s s Stop {
2 pr i va t e i n t ID ;
3 pr i va t e S t r ing Name ;
4

5 pub l i c Stop ( i n t id , S t r ing name) {
6 ID=id ;
7 Name= new St r ing (name) ;
8 }
9 }

In this case Name = name would be sufficient, without using the String class
constructor.

Analysis

Description Value
Total occurrences 16
Number of projects involved 6 (2.78%)
Correlation with final mark 0.103300077
Correlation with number of lines of code 0.019562819

Table 4.31: Use of String constructor code smell correlation analysis

The analyses do not highlight correlations or significant differences in the means.

54



Smell found Smell not found
Mean 23.925 21.31619048
Variance 11.58999 18.45144858
Observations 6 210
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 5
t Stat 1.835765991
P(T<=t) two-tail 0.125830937
t Critical two-tail 2.570581836

Table 4.32: Use of String constructor code smell t-test analysis

4.2.16 Code smell: Use of raw types
Code smell explanation

SonarQube describes the issue saying that "Raw types should not be used", mean-
ing that generic types should not be used without type parameters in variable
declarations or return values, as doing so bypasses generic type checking and defers
the catch of unsafe code to runtime. This code smell is likely raised mostly when
students forget the diamond operator <> upon initializing a variable.

Code smell example

1 pr i va t e Lis t <Booking> bookings= new LinkedLis t ( ) ;

In this example the correct initialization would be new LinkedList<>(), as the
diamond operator helps infer the type from the type of the variable the object will
be assigned to.

Analysis

Description Value
Total occurrences 17
Number of projects involved 8 (3.7%)
Correlation with final mark -0.0192284
Correlation with number of lines of code -0.060174327

Table 4.33: Use of raw types code smell correlation analysis

The analyses report no significant evidence.
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Smell found Smell not found
Mean 20.0325 21.44081731
Variance 14.73539286 18.52935633
Observations 8 208
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 8
t Stat -1.013464477
P(T<=t) two-tail 0.340505494
t Critical two-tail 2.306004135

Table 4.34: Use of raw types code smell t-test analysis

4.2.17 Code smell: Public variable fields
Code smell explanation

SonarQube explains this bug stating that "Class variable fields should not have
public accessibility". This means that a field of a class should either be marked as
static final or should be private and have public setters and getters if needed.
This allows to provide additional validation, ensures that the internal representation
is not exposed and that the field can be mutated only by actors internal to the
class.

Code smell example

1 pub l i c c l a s s Stop {
2 pr i va t e i n t id ;
3 pr i va t e S t r ing name ;
4 pub l i c boolean i s L a s t ;
5 pub l i c boolean i s F i r s t ;
6

7 // . . .
8 }

In this case both isLast and isFirst should not be public, but rather they should
have public getters and setters and be private.

Analysis

No correlation with the final mark or with the number of lines of code is found and
the difference between the average mark of the students that incurred this error
and the one of those who did not is not significant.
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Description Value
Total occurrences 53
Number of projects involved 14 (6.48%)
Correlation with final mark 0.015538302
Correlation with number of lines of code -0.071000649

Table 4.35: Public variable fields code smell correlation analysis

Smell found Smell not found
Mean 20.28 21.46549505
Variance 29.49984615 17.67216617
Observations 14 202
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 14
t Stat -0.800240067
P(T<=t) two-tail 0.436941056
t Critical two-tail 2.144786688

Table 4.36: Public variable fields code smell t-test analysis

4.2.18 Code smell: Lambdas or method refs
Code smell explanation

SonarQube states that "Lambdas should be replaced with method references", as
method or constructor references are commonly agreed to be, most of the time,
more compact and readable than using lambdas, and are therefore preferred.

Code smell example

1 pub l i c Co l l e c t i on <Str ing > getCarsByClass ( S t r ing k l a s s ) {
2 re turn ca r s . va lue s ( ) . stream ( )
3 . f i l t e r ( c−>c . getC ( ) . g e tC la s s e ( ) . equa l s (

k l a s s ) )
4 .map( c−>c . get Id ( ) )
5 . c o l l e c t ( C o l l e c t o r s . t o L i s t ( ) ) ;
6 }

In this example a lambda expression is used in the map method to retrieve the car
id. The method reference (i.e., Car::getId), would be preferred.
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Analysis

Description Value
Total occurrences 141
Number of projects involved 64 (29.63%)
Correlation with final mark 0.204141917
Correlation with number of lines of code 0.108435018

Table 4.37: Lambdas or method refs code smell correlation analysis

Smell found Smell not found
Mean 22.995625 20.71203947
Variance 12.67301865 19.34268919
Observations 64 152
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 145
t Stat 4.004008365
P(T<=t) two-tail 9.90753E-05
t Critical two-tail 1.976459563

Table 4.38: Lambdas or method refs code smell t-test analysis

No correlation is registered by the analysis, but, according to the t-test, the average
mark of the students that registered this issue is significantly different from the
one of those who did not.

4.2.19 Code smell: Local vars returned
Code smell explanation

The code smell is explained by SonarQube stating that "Local variables should
not be declared and then immediately returned or thrown": although it might be
convenient to be able to name such variable to better describe what the code does,
the method name ought to be sufficient.
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Code smell example

1 pr i va t e i n t h t i ( S t r ing time ) {
2 i n t min = In t eg e r . pa r s e In t ( time . s p l i t ( " : " ) [ 0 ] ) ∗60 + In t eg e r .

pa r s e In t ( time . s p l i t ( " : " ) [ 1 ] ) ;
3 re turn min ;
4 }

In this example the min variable is instantiated and then immediately returned:
this could be avoided by directly returning the result of the expression.

Analysis

Description Value
Total occurrences 86
Number of projects involved 47 (21.76%)
Correlation with final mark -0.103246467
Correlation with number of lines of code 0.095540766

Table 4.39: Local vars returned code smell correlation analysis

Smell found Smell not found
Mean 20.20148936 21.71881657
Variance 17.29031295 18.29754264
Observations 47 169
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 75
t Stat -2.19891298
P(T<=t) two-tail 0.030967272
t Critical two-tail 1.992102154

Table 4.40: Local vars returned code smell t-test analysis

The code smell has no significant correlation neither with the final mark nor with
the number of lines of code of the project. However, the t-test analysis shows a
significant difference between the average mark of the students who registered this
code smell and the one of those who did not.
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4.2.20 Code smell: Collapsible "if" statements
Code smell explanation

SonarQube states that "Collapsible "if" statements should be merged", as this would
improve the code’s readability.

Code smell example

1 pub l i c Co l l e c t i on <Str ing > l i s tAppointments ( S t r ing code , S t r ing
date ) {

2 List <Str ing > r e s = new LinkedList <>() ;
3 f o r (Map. Entry<Str ing , Appointment> e : apps . entrySet ( ) ) {
4 Appointment app = e . getValue ( ) ;
5 Doctor d = app . getDoctor ( ) ;
6 i f (d . ge t Id ( ) . equa l s ( code ) ) {
7 i f ( app . g e t S l o t ( ) . getDate ( ) . equa l s ( date ) ) {
8 r e s . add ( St r ing . format ( "%s=%s " , app . g e t S l o t ( ) .

getFrom ( ) , app . ge tPat i ent ( ) . getSSN ( ) ) ) ;
9 }

10 }
11 }
12

13 re turn r e s ;
14 }

In this case the two enclosed if statements could be merged using the && operator.

Analysis

Description Value
Total occurrences 51
Number of projects involved 28 (12.96%)
Correlation with final mark 0.086141669
Correlation with number of lines of code 0.120823023

Table 4.41: Collapsible "if" statements code smell correlation analysis
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Smell found Smell not found
Mean 22.34142857 21.24675532
Variance 6.536834921 20.04441669
Observations 28 188
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 56
t Stat 1.877134861
P(T<=t) two-tail 0.065712369
t Critical two-tail 2.003240719

Table 4.42: Collapsible "if" statements code smell t-test analysis

No significant evidence is found in the analysis.

4.2.21 Code smell: Class fields shadowed
Code smell explanation

SonarQube’s description of the code smell is "Local variables should not shadow
class fields": this issue is purely related to the naming choices, but could lead to
worse readability or even to bugs, if the student mistakenly thinks they’re using
one variable but are really using another.

Code smell example

1 pub l i c c l a s s MedManager {
2 pr i va t e Set<Str ing > accepted = new TreeSet <>() ;
3

4 // . . .
5

6 pub l i c double showRate ( S t r ing code , S t r ing date ) {
7 long accepted = t h i s . appointments . va lue s ( ) . stream ( )
8 . f i l t e r ( s−>s . getDate ( ) . equa l s ( date ) )
9 . f i l t e r ( s−>s . getDoctor ( ) . ge t Id ( ) == code )

10 . f i l t e r ( s−>s . getAccepted ( ) )
11 . count ( ) ;
12 long to t = t h i s . appointments . va lue s ( ) . stream ( )
13 . f i l t e r ( s−>s . getDate ( ) . equa l s ( date ) )
14 . f i l t e r ( s−>s . getDoctor ( ) . ge t Id ( ) == code )
15 . count ( ) ;
16 re turn ( double ) accepted / to t ;
17 }
18 }
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In this example the accepted local variable shadows the homonymous attribute of
the class. In this specific case this does not lead to any bug, but it could create
confusion for the reader.

Analysis

Description Value
Total occurrences 40
Number of projects involved 29 (13.43%)
Correlation with final mark 0.160043127
Correlation with number of lines of code 0.049694189

Table 4.43: Class fields shadowed code smell correlation analysis

Smell found Smell not found
Mean 23.03206897 21.13379679
Variance 12.05702414 18.95665271
Observations 29 187
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 43
t Stat 2.639719653
P(T<=t) two-tail 0.011513761
t Critical two-tail 2.016692199

Table 4.44: Class fields shadowed code smell t-test analysis

The analysis reveals that the average mark of the group of students whose code
contained this code smell is significantly different from the one of those whose code
did not.

4.2.22 Code smell: Homonymous class and field
Code smell explanation

SonarQube describes the issue stating that "A field should not duplicate the name
of its containing class": just like for the previous code smell, this renders the code
harder to read, understand and maintain.
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Code smell example

1 pub l i c c l a s s Stop {
2 pr i va t e S t r ing stop ;
3

4 // . . .
5 }

Analysis

Description Value
Total occurrences 17
Number of projects involved 17 (7.87%)
Correlation with final mark -0.019357526
Correlation with number of lines of code 0.019257481

Table 4.45: Homonymous class and field code smell correlation analysis

Smell found Smell not found
Mean 21.10529412 21.41286432
Variance 18.30146397 18.4833266
Observations 17 199
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 19
t Stat -0.284417102
P(T<=t) two-tail 0.779167386
t Critical two-tail 2.093024054

Table 4.46: Homonymous class and field code smell t-test analysis

No significant evidence is revealed by the analysis.

4.2.23 Code smell: Field names convention
Code smell explanation

Regarding this code smell, SonarQube states that "Field names should comply with
a naming convention": this issue is usually registered when students capitalize the
first letter of a variable’s name or use different conventions, such as snake case, or
a mix of different conventions.
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Code smell example

1 pub l i c c l a s s TrainManager {
2 Set<Str ing > Cla s s e s = new TreeSet <>() ;
3 TreeMap<Str ing , Car> Vagoni = new TreeMap<>() ;
4 i n t idFactory =1;
5 i n t idFactory_book =1;
6 TreeMap<Integer , Stop> Fermate = new TreeMap<>() ;
7 TreeMap<Str ing , Booking> Prenotaz ion i = new TreeMap<>() ;
8

9 // . . .
10 }

In this example the Classes, Vagoni, idFactory_book, Fermate and
Prenotazioni variables do not comply with the standard naming conventions for
Java.

Analysis

Description Value
Total occurrences 158
Number of projects involved 60 (27.78%)
Correlation with final mark -0.056263383
Correlation with number of lines of code 0.105757184

Table 4.47: Field names convention code smell correlation analysis

Smell found Smell not found
Mean 21.28283333 21.42935897
Variance 16.91065794 19.06673894
Observations 60 156
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 113
t Stat -0.230508501
P(T<=t) two-tail 0.81811346
t Critical two-tail 1.981180359

Table 4.48: Field names convention code smell t-test analysis

This code smell is found in a large number of projects. However, no significant
evidence is registered by the analysis.
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4.2.24 Code smell: Methods and vars naming
Code smell explanation

SonarQube explains this code smell stating that "Local variable and method
parameter names should comply with a naming convention". This issue is extremely
similar to the previous one, but refers not to class fields but to local variables and
method parameters.

Code smell example

1 pub l i c void addPrenotato ( S t r ing seat , I n t eg e r Da , In t eg e r A,
S t r ing ssn , S t r ing DaN, St r ing AN)

2 {
3 i f ( ! Po s t iPr eno ta t i . containsKey ( s ea t ) )
4 {
5 //Creo l a l i s t a e l a aggiungo
6 List <Tratta> L = new LinkedList <>() ;
7 L . add (new Tratta (Da , A, ssn , DaN, AN) ) ;
8 Pos t iPr eno ta t i . put ( seat , L) ;
9 }

10 e l s e
11 {
12 //Aggiungo l a t r a t t a a l l a l i s t a
13 Pos t iPr eno ta t i . get ( s ea t ) . add (new Tratta (Da , A, ssn , DaN,

AN) ) ;
14 }
15

16 }

In this example the Da, A, DaN and AN method parameters, alongside the local
variable L, do not comply with the standard naming conventions for Java.

Analysis

Description Value
Total occurrences 166
Number of projects involved 46 (21.3%)
Correlation with final mark -0.009300424
Correlation with number of lines of code 0.102641933

Table 4.49: Methods and vars naming code smell correlation analysis
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Smell found Smell not found
Mean 21.84717391 21.26458824
Variance 15.55472739 19.18197172
Observations 46 170
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 78
t Stat 0.867522006
P(T<=t) two-tail 0.388317191
t Critical two-tail 1.990847069

Table 4.50: Methods and vars naming code smell t-test analysis

This issue is reported on a considerable portion of the analysed projects; no
correlation is in any case found with the final mark and no difference is registered
by the t-test analysis.

4.2.25 Code smell: Vars declared on same line
Code smell explanation

SonarQube describes the code smell stating that "Multiple variables should not be
declared on the same line", again to improve readability.

Code smell example

1 pub l i c c l a s s Reservat ion {
2 pr i va t e S t r ing codF , partenza , a r r i v o ;
3 pr i va t e S t r ing nome , cognome ;
4 pr i va t e S t r ing carId , s ea t ;
5 pr i va t e i n t codU ;
6

7 // . . .
8 }
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Analysis

Description Value
Total occurrences 197
Number of projects involved 64 (29.63%)
Correlation with final mark 0.195613131
Correlation with number of lines of code 0.108705666

Table 4.51: Vars declared on same line code smell correlation analysis

Smell found Smell not found
Mean 22.4634375 20.93611842
Variance 18.85452768 17.62324775
Observations 64 152
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 115
t Stat 2.383689608
P(T<=t) two-tail 0.01877768
t Critical two-tail 1.980807541

Table 4.52: Vars declared on same line code smell t-test analysis

According to the t-test analysis, the difference between the average mark of the
students who incurred this issue and the one of those who did not is significant.

4.2.26 Code smell: Redundant casts
Code smell explanation

SonarQube describes the issue stating that "Redundant casts should not be used":
this happens when the type of an expression is already the one it will be cast to,
so the cast itself is unnecessary and only renders the code harder to read. In the
analysis this is normally found when the student is not sure of the type of the
expression or when they do not know that some conversions happen automatically,
without the need of an explicit cast.
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Code smell examples

1 pub l i c c l a s s Traincar {
2 pr i va t e i n t row ;
3 pr i va t e char l a s t S e a t ;
4

5 // . . .
6

7 pub l i c i n t getNumSeats ( ) {
8 i n t a =( i n t ) ( l a s t S e a t − ’ a ’ ) ;
9 re turn a∗row ;

10 }
11 }

In this example the student might not have been aware of the fact that subtracting
two chars already yields an integer, so the cast is redundant.

1 pub l i c double showRate ( S t r ing code , S t r ing date ) {
2 double numApp = ( double ) appointments . va lue s ( ) . stream ( )
3 . f i l t e r ( a −> a . getDocId ( ) . equa l s ( code ) )
4 . f i l t e r ( x −> x . getDate ( ) . equa l s ( date ) )
5 . count ( ) ;
6

7 double numPres = ( double ) appointments . va lue s ( ) . stream ( )
8 . f i l t e r ( a −> a . getDocId ( ) . equa l s ( code ) )
9 . f i l t e r ( x −> x . getDate ( ) . equa l s ( date ) )

10 . f i l t e r (b −> b . ge tPat i ent ( ) . i sAsseganto ( ) )
11 . count ( ) ;
12

13 double t a s s o=numPres/numApp ;
14

15 re turn 1− t a s s o ;
16 }

In this case the student might not have known that, in an assignment, variables
are automatically converted to the type of the variable they are assigned to if
the conversion is widening (that is, if the conversion can be performed without
losing information): this means that the conversion to double ahead of the two
assignments is unnecessary.
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Analysis

Description Value
Total occurrences 69
Number of projects involved 32 (14.81%)
Correlation with final mark 0.033936908
Correlation with number of lines of code -0.099464267

Table 4.53: Redundant casts code smell correlation analysis

Smell found Smell not found
Mean 22.266875 21.23592391
Variance 19.57400282 18.13244176
Observations 32 184
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 42
t Stat 1.223312728
P(T<=t) two-tail 0.228030968
t Critical two-tail 2.018081703

Table 4.54: Redundant casts code smell t-test analysis

No evidence is registered by the analysis.

4.2.27 Code smell: Redundant bool literals
Code smell explanation

The description of the code smell provided by SonarQube is "Boolean literals should
not be redundant": that is, boolean expressions should not be checked against
boolean literals (true or false) but should be used as is. According to SonarQube
this helps improve readability, but arguably, in some situations, the contrary could
also be true.
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Code smell example

1 pub l i c c l a s s MedManager {
2 pr i va t e Map <Str ing , Medico> medic i = new TreeMap<>() ;
3

4 // . . .
5

6 pub l i c void addDoctor ( S t r ing id , S t r ing name , S t r ing surname ,
S t r ing s p e c i a l i t y ) throws MedException {

7 i f ( medic i . containsKey ( id )==true ) {
8 throw new MedException ( ) ;
9 }

10 i f ( s p e c i a l i t a . conta in s ( s p e c i a l i t y )==f a l s e ) {
11 throw new MedException ( ) ;
12 }
13 Medico m = new Medico ( id , name , surname , s p e c i a l i t y ) ;
14 medic i . put ( id , m) ;
15 }
16 }

Analysis

Description Value
Total occurrences 100
Number of projects involved 39 (18.06%)
Correlation with final mark 0.096309203
Correlation with number of lines of code 0.145990666

Table 4.55: Redundant bool literals code smell correlation analysis

Smell found Smell not found
Mean 22.41717949 21.1620339
Variance 16.35682605 18.64828107
Observations 39 177
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 59
t Stat 1.732656093
P(T<=t) two-tail 0.088381503
t Critical two-tail 2.000995378

Table 4.56: Redundant bool literals code smell t-test analysis
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The code smell is found in a considerable number of projects, but no evidence is
highlighted by the analysis.

4.2.28 Code smell: Diamond operator
Code smell explanation

SonarQube describes the code smell stating that "The diamond operator ("<>")
should be used" to reduce the verbosity of generics code: instead of having to declare
a type in both the declaration and the constructor, the constructor declaration can
be simplified with <>, and the compiler will infer the type.

Code smell example

1 pub l i c c l a s s MeetServer {
2 SortedSet<Str ing > c a t e g o r i e s S e t = new TreeSet<Str ing >() ;
3 SortedMap<Str ing , Str ing > meetingsMap = new TreeMap<Str ing ,

Str ing >() ;
4

5 SortedMap<Str ing , Str ing > optionsMap = new TreeMap<Str ing ,
Str ing >() ;

6 SortedMap<Str ing , L i s t <Str ing >> showSlotsMap = new TreeMap<
Str ing , L i s t <Str ing >>() ;

7

8 HashMap<Str ing , Boolean> pol lCheckSet = new HashMap<Str ing ,
Boolean >() ;

9 SortedMap<Str ing , Str ing > preferencesMap = new TreeMap<Str ing ,
Str ing >() ;

10

11 // . . .
12 }

In this case all the constructors for TreeMap and HashMap could be simplified with
the diamond operator.

71



Analysis

Description Value
Total occurrences 153
Number of projects involved 45 (20.83%)
Correlation with final mark 0.028438392
Correlation with number of lines of code -0.00385885

Table 4.57: Diamond operator code smell correlation analysis

Smell found Smell not found
Mean 21.50755556 21.35736842
Variance 16.8699098 18.88778892
Observations 45 171
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 72
t Stat 0.215580208
P(T<=t) two-tail 0.829924522
t Critical two-tail 1.993463567

Table 4.58: Diamond operator code smell t-test analysis

The code smell is registered in a large number of projects, but no significant
evidence is highlighted by the analysis.

4.2.29 Code smell: Unnecessary imports
Code smell explanation

SonarQube states that "Unnecessary imports should be removed" to reduce confusion
and improve readability.
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Code smell example

1 package i t . p o l i t o . med ;
2

3 import java . s q l . Time ;
4

5 pub l i c c l a s s S l o t {
6 i n t s t a r t ;
7 i n t end ;
8 boolean a v a i l a b l e = f a l s e ;
9 pub l i c S l o t ( i n t s ta r t , i n t end ) {

10 t h i s . s t a r t = s t a r t ;
11 t h i s . end = end ;
12 }
13 }

The java.sql.Time class is never used in this file: it was probably used by a prior
version of the Slot class, but given that it is no longer used its import statement
should be removed.

Analysis

Description Value
Total occurrences 163
Number of projects involved 89 (41.2%)
Correlation with final mark -0.013113072
Correlation with number of lines of code -0.032166057

Table 4.59: Unnecessary imports code smell correlation analysis

Smell found Smell not found
Mean 21.55651685 21.27102362
Variance 13.97874796 21.58419656
Observations 89 127
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 210
t Stat 0.499240028
P(T<=t) two-tail 0.618132904
t Critical two-tail 1.971324793

Table 4.60: Unnecessary imports code smell t-test analysis
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The issue is found in a large number of projects, but no significant evidence is
registered by the analysis.

4.2.30 Code smell: Unused local variables
Code smell explanation

Regarding this code smell SonarQube states that "Unused local variables should
be removed" to improve readability and remove dead code: this issue is usually
registered in methods that are not finished, so perhaps a variable is used to perform
some initial computation but the work is never finalized. More rarely, the code
smell actually refers to unused variables in an otherwise normal code.

Code smell example

1 pub l i c Co l l e c t i on <Str ing > l i s t B o o k i n g s ( S t r ing car , S t r ing s ea t ) {
2 Co l l e c t i on <Str ing > r e s = new LinkedList <>() ;
3 Vagone vag = vagoni . get ( car ) ;
4

5 pr eno ta z i on i . forEach ( ( k , v )−>{
6

7 }) ;
8 re turn n u l l ;
9 }

This method is unfinished, so all the variables are considered unused.

Analysis

Description Value
Total occurrences 152
Number of projects involved 68 (31.48%)
Correlation with final mark -0.102709208
Correlation with number of lines of code 0.043168332

Table 4.61: Unused local variables code smell correlation analysis

The code smell is registered in a large number of projects, but no significant
evidence is highlighted by the analysis.
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Smell found Smell not found
Mean 20.63029412 21.73709459
Variance 17.13665663 18.69912551
Observations 68 148
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 135
t Stat -1.799366133
P(T<=t) two-tail 0.074194403
t Critical two-tail 1.977692277

Table 4.62: Unused local variables code smell t-test analysis

4.2.31 Code smell: Empty methods
Code smell explanation

SonarQube describes the code smell stating that "Methods should not be empty":
while in general this code smell could be registered for several reasons (for example
sometimes an intentionally-blank override is needed), in the analysis it is found
when students decided not to work on a method whose template was already
provided in the teacher’s initial project.

Code smell example

1 pub l i c void addClasses ( S t r ing . . . c l a s s e s ) {
2

3 }

This method’s signature was included in the template provided by the teacher for
the exam: given that the method returns void, it was left blank in the template
not to provide suggestions on how it ought to be completed. The student then
decided not to complete it, thus incurring this code smell.

Analysis

The code smell is found in a considerable number of projects. Its number of
occurrences is negatively correlated with the final mark (with a medium "effect
size"): this means that the more issues of this kind registered, the lower the
mark. This makes sense, as registering less of these issues means completing more
methods and more requirements (generally speaking, although sometimes students
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Description Value
Total occurrences 95
Number of projects involved 56 (25.93%)
Correlation with final mark -0.450191265
Correlation with number of lines of code -0.112511559

Table 4.63: Empty methods code smell correlation analysis

Smell found Smell not found
Mean 18.22571429 22.4956875
Variance 16.92979221 14.2550121
Observations 56 160
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 90
t Stat -6.825089263
P(T<=t) two-tail 9.92511E-10
t Critical two-tail 1.986674541

Table 4.64: Empty methods code smell t-test analysis

start working on a method but do not finish it), thus likely getting a better final
evaluation.

The difference between the average mark of the students who incurred this code
smell and the one of those who did not is also found to be significant.

4.2.32 Code smell: Empty arrays returned
Code smell explanation

SonarQube states that "Empty arrays and collections should be returned instead
of null": this code smell is registered, just like the previous one, when a student
decides not to work on a method whose template was already provided in the
teacher’s initial project. Differently from the previous issue, this code smell is
found in methods that return an object: to avoid complaints from the compiler,
the template for the exam cannot be left empty, so not to provide suggestions a
return null statement is added, statement which is meant to be replaced by the
student with one actually returning an object of the specified type.
Therefore again, as per the previous code smell, this issue is not related to the
software quality itself, but rather to the completeness of the project.
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Code smell example

1 pub l i c Co l l e c t i on <Str ing > ge tC l a s s e s ( ) {
2 re turn n u l l ;
3 }

Analysis

Description Value
Total occurrences 299
Number of projects involved 163 (75.46%)
Correlation with final mark -0.529908661
Correlation with number of lines of code -0.305823997

Table 4.65: Empty arrays returned code smell correlation analysis

Smell found Smell not found
Mean 20.64159509 23.68622642
Variance 14.88865793 22.52486241
Observations 163 53
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 76
t Stat -4.237086242
P(T<=t) two-tail 6.29166E-05
t Critical two-tail 1.99167261

Table 4.66: Empty arrays returned code smell t-test analysis

This code smell is found in the vast majority of projects: differently from the
previous issue, which would not be raised if the student even just started working
on a method without finishing it, this code smell is found even if the student started
working on the method but omitted to substitute the return null statement. This
explains the difference in the number of projects involved.

The code smell is negatively correlated both with the final mark and with the
number of lines of code in the project (with a large and medium "effect size"
respectively): this again means that the higher the mark received or the more lines
of code produced, the less issues of this kind registered. This is coherent with
the idea of students replacing the provided template with actual code: doing so
more times means solving more requirements and likely receiving a better final
evaluation.
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The difference between the average mark of the students who incurred this issue
and the one of those who did not is again found to be significant.

4.2.33 Code smell: Commented out code
Code smell explanation

Regarding this code smell SonarQube states that "Sections of code should not be
commented out", as this bloats programs and reduces readability.

Code smell example

1 pub l i c Map<Str ing , L i s t <Str ing >> f i n d S l o t s ( S t r ing date , S t r ing
s p e c i a l i t y ) {

2 // d o t t o r i . va lue s ( ) . stream ( ) . f i l t e r (d−>d . getSpec ( ) . equa l s (
s p e c i a l i t y ) )

3 // . f latMap (d−>d . g e t L i s t ( ) . stream ( ) )
4 // . f i l t e r ( o−>o . getData ( ) . equa l s ( date ) )
5 // . c o l l e c t ( C o l l e c t o r s . groupingBy ( Doctor : : getName ) ) ;
6 Map<Str ing , L i s t <Str ing >> mapp = new HashMap<>() ;
7 f o r ( Doctor d : d o t t o r i . va lue s ( ) ) {
8 i f ( d . getSpec ( ) == s p e c i a l i t y ) {
9 List <Str ing > l i s t a = new LinkedList <>() ;

10 f o r ( Orar io or : d . g e t L i s t ( ) ) {
11 i f ( or . getData ( ) == date ) {
12 l i s t a . add ( or . g e t I n t e r v a l l o ( ) ) ;
13 }
14 }
15 mapp . put (d . ge t Id ( ) , l i s t a ) ;
16 }
17 }
18 re turn mapp ;
19 }

Analysis

Description Value
Total occurrences 139
Number of projects involved 66 (30.56%)
Correlation with final mark 0.006499403
Correlation with number of lines of code 0.003817572

Table 4.67: Commented out code code smell correlation analysis
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Smell found Smell not found
Mean 21.47378788 21.3512
Variance 16.51621774 19.32725358
Observations 66 150
Hypothesized mean difference 0
Alpha 0.05
Degrees of freedom 134
t Stat 0.199101269
P(T<=t) two-tail 0.842485318
t Critical two-tail 1.977825758

Table 4.68: Commented out code code smell t-test analysis

The code smell is registered in a large number of projects, but no significant
evidence is highlighted by the analysis.
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4.3 Summary of results
To sum up, a few interesting results have been found in the analysis. These findings
compose a general picture that will be discussed in the final chapter.

4.3.1 Issues correlation with the final mark and with the
number of lines of code

Firstly, only the occurrences of few issues are correlated with the final evaluation
received or with the number of lines of code of the student’s project. Specifically,
two issues have a medium correlation and one has a strong correlation with the
final mark, and two of these three issues also have a medium correlation with the
number of lines of code.

Issue type Issue Correlation with final mark Correlation type
Code smell "Stream.toList()" method should be used when unmodifiable list needed 0.446797723 Medium
Code smell Methods should not be empty -0.450191265 Medium
Code smell Empty arrays and collections should be returned instead of null -0.529908661 Strong

Table 4.69: Single issues correlation with final mark

Issue type Issue Correlation with # of lines Correlation type
Code smell "Stream.toList()" method should be used when unmodifiable list needed 0.325362376 Medium
Code smell Empty arrays and collections should be returned instead of null -0.305823997 Medium

Table 4.70: Single issues correlation with number of lines of code

All the analysed bugs and code smells are credible as issues produced by students
at their initial approach with programming or, specifically, with object-oriented
programming; even more so considering the time constraints of the exam: many
of these issues, the bugs at least, could be identified by testing the program on
a wider range of inputs and debugging it, but the time constraints for the exam
and the students inexperience may represent an obstacle in doing so. However,
almost no issue has a correlation with the final mark: this can explained by the
fact that the final mark is determined almost uniquely by the number of passed
tests, that do not consider the quality of the software. In fact, the three correlated
issues are code smells: although being more severe, bugs have no correlation with
the evaluation.

There is only one positively correlated (both with the final mark and with the
number of lines of code) code smell, which is anyway related to a quite specific
issue, perhaps outside the interest of novice students: this could also explain the
positivity of the correlation. The more lines of code written, the more likely a
student is to produce an issue they might even not know the existence of.
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On the contrary, as previously mentioned, the negative correlations derive from
the structure of the exam: at the start of the exam students are provided with
a template for all methods and classes they are supposed to implement. These
methods usually are set to return null, regardless of the return type, if they
are meant to return an object (so that the code compiles but no indications are
provided on how they ought to be completed), or they are left empty if no return
value is needed. This means that the higher the mark a student receives, the more
requirements they have solved, the more of these methods they have changed from
this issue-raising initial version to a more complete one.

4.3.2 Difference between the means of issue found and issue
not found groups

The second kind of analysis, performed using the t-test statistic, aimed at high-
lighting the significant differences between the average mark of the students who
incurred a specific issue and the one of those who did not. The test found 9 issues
where this difference is significant, i.e. where the P(T<=t) two-tail value is less
than alpha, the chosen significance level, whose value is 0.05.

Issue type Issue P(T<=t) two-tail Average mark
Issue found Issue not found

Bug Zero should not be a possible denominator 0.001827194 24.1335 21.10857143
Code smell Cognitive Complexity of methods should not be too high 0.034694501 22.79709677 21.15264865
Code smell "Stream.toList()" method should be used when unmodifiable list needed 3.62281E-07 22.39086667 19.11090909
Code smell Lambdas should be replaced with method references 9.90753E-05 22.995625 20.71203947
Code smell Local variables should not be declared and then immediately returned or thrown 0.030967272 20.20148936 21.71881657
Code smell Local variables should not shadow class fields 0.011513761 23.03206897 21.13379679
Code smell Multiple variables should not be declared on the same line 0.01877768 22.4634375 20.93611842
Code smell Methods should not be empty 9.92511E-10 18.22571429 22.4956875
Code smell Empty arrays and collections should be returned instead of null 6.29166E-05 20.64159509 23.68622642

Table 4.71: Single issues t-test analysis

This being a two-tailed t-test, nothing can be said regarding which mean is statisti-
cally higher than the other: it can be noted, however, that either these issues had
an impact on the final mark or, vice versa, the variation in the received mark had
an influence in finding more or less of said bugs and code smells.
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Chapter 5

Conclusions

Getting to the end of this thesis, it is possible to draw some conclusions on the
work that has been done and on possible future further developments.

The work done throughout the thesis has proven useful for two different necessities
and contexts: for students and for teachers.

5.1 The students perspective
For the students, the existing pipeline that builds and tests the programming
assignments has been expanded with a new stage that verifies the software quality.

Possible future developments could be, at first, to design a way for students to
access the results of the analysis. This was not done as the goal of the thesis shifted
towards understanding whether the concepts of technical debt and static program
analysis could generally be applied in this context, and this of course had to be
done from a teacher’s perspective first and then proposed to the students only after
properly investigating the idea.

Letting the students access the results of the analysis initiated by the pipeline would
not be a trivial matter: at first the problems of authentication and authorization
would need to be solved. Every student would need to have a set of credentials to
access the information, either the ones provided by the university (in which case an
integration with the university login system would need to be developed) or specific
ones (in which case the problem of creating and delivering the credentials would
be posed). Then, after logging in, each student would need to be able to access
only the results relative to their analyses, and not the ones of the other students.
It then should be evaluated whether to give students access directly to SonarQube
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or to develop a specific application: this would feasible using SonarQube’s APIs and
could allow to better customize the information displayed to the student that, being
new to technical debt, static program analysis and code smells, could probably
benefit from a simplified environment.

After this first step, a further analysis could be conducted to understand how
students absorb these changes, whether a full analysis report is too difficult to
comprehend and whether technical debt is actually useful in pointing out deficiencies
in the preparation and in understanding how to solve them.

Contextually, it should be verified whether all rules SonarQube checks against are
appropriate for a student at their first approach to programming. This thesis only
selected the commonest rules to be analysed, all of which were deemed quite related
to the context, but it should probably be verified how every rule is interpreted and
understood by the students.

5.2 The teachers perspective
It is on the teachers side where this thesis focused the most and revealed interesting
results.

Firstly, automating a massive static program analysis revealed to be beneficial to
the teachers. The commonest problems, where students could probably benefit
from additional help, were in fact highlighted: all the found bugs and code smells,
or at least the most widely spread ones, are credible as issues produced by students
at their initial approach with programming or, specifically, with object-oriented
programming; even more so considering the time constraints of the exam.
This kind of analysis can be an important tool to evaluate the students preparation,
both throughout the course and at the final exam. Teachers can run this kind of
analysis rather quickly and can find out what elements might need to be revised in
class.

It might be interesting, as a possible future further investigation, to ask a significant
group of teachers to test this idea and to report their feedback, to try and understand
what is the real experience with applying this idea "in the wild". This would also
help understand whether all rules SonarQube uses are suitable for an analysis of
this kind, although it has to be said that, differently from the students, teachers
will likely have no problem in quickly distinguishing which rules are of any interest
and which ones are not relevant to their use case.

Subsequently, an in-depth statistical analysis was performed on the data retrieved
from a real exam analysis: generally speaking, it can be said that the final mark
is not correlated to the quality of the software. This is because the evaluation is
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mostly performed using automated tests that simply were not written to verify the
quality of the software.

A change that could be made in the future, after developing a way to let students
peruse their analyses, could be to award an assignment with great software quality
(so, with few bugs and code smells) with bonus points. This could probably be only
a small component of the final mark: it should be considered whether achieving
good software quality could be introduced as a goal of the course or only as a
bonus, if the course is still early on in the students approach to programming. This
would in any case help increase the correlation between the number of bugs and
code smells found in code and the final evaluation received by the students.

5.3 In the end
To conclude, this thesis showed that applying the concept of technical debt to
students’ programming assignments can be done and can prove useful. Specifically,
the real benefit is not found in the concept of technical debt itself, which is a
metaphor much more useful in large companies to describe the imperfections found
in code and the initial lack of and then ever-growing understanding of the problem
at hand, but in applying the same methods used in said companies to recognize
technical debt to students’ programming assignments to identify the major issues
and to guide hypothesis on how to address them: these modalities proved beneficial
in highlighting the commonest problems amongst the students and in painting a
general picture of the students situation.

After proving the usefulness of this approach, now a wider and deeper integration
could be carried out in a more thorough way, introducing the students too to these
concepts and methodologies, proposing it to more teachers of different courses and
subjects or including the considerations gathered from the analysis in the final
evaluation.
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Appendix A

Scripts and code used

A.1 Initial files for students’ repositories CI/CD
These are the initial files for running the CI/CD pipeline, prior to any modification.

Initial gitlab-ci.yml
1 # Build JAVA a p p l i c a t i o n s us ing Apache Maven ( http :// maven . apache . org

)
2 # For docker image tags s ee https : // hub . docker . com/_/maven/
3 #
4 # For gene ra l l i f e c y c l e in fo rmat ion see https : // maven . apache . org /

gu ides / i n t r oduc t i on / int roduct i on −to−the− l i f e c y c l e . html
5

6 v a r i a b l e s :
7 # This w i l l suppres s any download f o r dependenc ies and p lug in s or

upload messages which would c l u t t e r the conso l e l og .
8 # ‘ showDateTime ‘ w i l l show the passed time in m i l l i s e c o n d s . You

need to s p e c i f y ‘−−batch−mode ‘ to make t h i s work .
9 MAVEN_OPTS: "−Dhttps . p r o t o c o l s=TLSv1 . 2 −Dmaven . repo . l o c a l=

$CI_PROJECT_DIR/ .m2/ r e p o s i t o r y −Dorg . s l f 4 j . s impleLogger . l og . org .
apache . maven . c l i . t r a n s f e r . S l f 4 jMavenTrans f e rL i s t ene r=WARN −Dorg .
s l f 4 j . s impleLogger . showDateTime=true −Djava . awt . h ead l e s s=true "

10 # As o f Maven 3 . 3 . 0 in s t ead o f t h i s you may d e f i n e these opt ions in
‘ .mvn/maven . con f i g ‘ so the same c o n f i g i s used

11 # when running from the command l i n e .
12 # ‘ insta l lAtEnd ‘ and ‘ deployAtEnd ‘ are only e f f e c t i v e with re cent

ve r s i on o f the cor re spond ing p lug in s .
13 MAVEN_CLI_OPTS: "−−batch−mode −−e r r o r s −− f a i l −at−end −−show−ve r s i on

−Dinstal lAtEnd=true −DdeployAtEnd=true "
14

15 # This template uses jdk11 f o r v e r i f y i n g and dep loy ing images
16 image : maven :3 .8 .3 − adoptopenjdk −11
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17

18 # Cache downloaded dependenc ies and p lug in s between bu i l d s .
19 # To keep cache ac r o s s branches add ’ key : "$CI_JOB_NAME" ’
20 cache :
21 paths :
22 − .m2/ r e p o s i t o r y
23

24 v e r i f y :
25 s tage : t e s t
26 s c r i p t :
27 − ’mvn $MAVEN_CLI_OPTS v e r i f y ’
28 a r t i f a c t s :
29 when : always
30 r e p o r t s :
31 j u n i t :
32 − t a r g e t / s u r e f i r e −r e p o r t s /TEST−∗.xml
33 − t a r g e t / f a i l s a f e −r e p o r t s /TEST−∗.xml

Initial pom.xml
1 <p r o j e c t xmlns=" h t tp : //maven . apache . org /POM/ 4 . 0 . 0 " xmlns :x s i=" h t tp : //

www. w3 . org /2001/XMLSchema−i n s t anc e " xs i : s chemaLocat ion=" h t tp : //
maven . apache . org /POM/ 4 . 0 . 0 h t t p s : //maven . apache . org /xsd/maven
−4 . 0 . 0 . xsd ">

2 <modelVersion>4 . 0 . 0</ modelVersion>
3 <groupId>lab . oop . p o l i t o . i t</ groupId>
4 <a r t i f a c t I d>OOP_LAB_DietExtended_sol</ a r t i f a c t I d>
5 <ver s i on>0.0.1 −SNAPSHOT</ ve r s i on>
6

7 <dependenc ies>
8 <!−− h t t p s : // mvnrepository . com/ a r t i f a c t / j u n i t / j u n i t −−>
9 <dependency>

10 <groupId>j u n i t</ groupId>
11 <a r t i f a c t I d>j u n i t</ a r t i f a c t I d>
12 <ver s i on>4 . 1 3 . 2</ ve r s i on>
13 <scope>t e s t</ scope>
14 </dependency>
15 </ dependenc ies>
16

17 <bui ld>
18 <sourceD i r e c to ry>s r c</ sourceD i r e c to ry>
19 <te s tSou r c eD i r e c t o ry>t e s t</ t e s tSou r c eD i r e c t o ry>
20 <plug in s>
21 <plug in>
22 <a r t i f a c t I d>maven−compi ler−p lug in</ a r t i f a c t I d>
23 <ver s i on>3 . 8 . 1</ ve r s i on>
24 <c o n f i g u r a t i o n>
25 <r e l e a s e>11</ r e l e a s e>
26 <encoding>UTF−8</ encoding>
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27 </ c o n f i g u r a t i o n>
28 </ plug in>
29 <plug in>
30 <groupId>org . apache . maven . p lug in s</ groupId>
31 <a r t i f a c t I d>maven−s u r e f i r e −p lug in</ a r t i f a c t I d>
32 <ver s i on>2 . 2 2 . 0</ ve r s i on>
33 <dependenc ies>
34 <dependency>
35 <groupId>org . apache . maven . s u r e f i r e</ groupId>
36 <a r t i f a c t I d>s u r e f i r e −j u n i t 4</ a r t i f a c t I d>
37 <ver s i on>2 . 2 2 . 0</ ve r s i on>
38 </dependency>
39 </ dependenc ies>
40 <c o n f i g u r a t i o n>
41 <i n c l u d e s>
42 <inc lude>∗∗/∗ . java</ inc lude>
43 </ i n c l u d e s>
44 </ c o n f i g u r a t i o n>
45 </ plug in>
46 <plug in>
47 <groupId>org . apache . maven . p lug in s</ groupId>
48 <a r t i f a c t I d>maven−s i t e −p lug in</ a r t i f a c t I d>
49 <ver s i on>3 . 9 . 1</ ve r s i on>
50 <c o n f i g u r a t i o n>
51 </ c o n f i g u r a t i o n>
52 </ plug in>
53 </ p lug in s>
54 </ bu i ld>
55 <repo r t i ng>
56 <plug in s>
57 <plug in>
58 <groupId>org . apache . maven . p lug in s</ groupId>
59 <a r t i f a c t I d>maven−s u r e f i r e −report −p lug in</ a r t i f a c t I d>
60 <ver s i on>2 . 2 2 . 0</ ve r s i on>
61 </ plug in>
62 </ p lug in s>
63 </ repo r t i ng>
64 </ p r o j e c t>

A.2 Modified files for students’ repositories
CI/CD

These are the modified files for running the CI/CD pipeline, including an added
second stage for the static program analysis with SonarQube.
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Modified gitlab-ci.yml
1 s t ag e s :
2 − t e s t
3 − codequa l i ty
4

5 v a r i a b l e s :
6 MAVEN_OPTS: >−
7 −Dhttps . p r o t o c o l s=TLSv1 . 2
8 −Dorg . s l f 4 j . s impleLogger . showDateTime=true
9 −Djava . awt . h ead l e s s=true

10 −XX:+DisableAttachMechanism
11

12 MAVEN_CLI_OPTS: >−
13 −−batch−mode
14 −−e r r o r s
15 −− f a i l −at−end
16 −−show−ve r s i on
17 −−no−t r a n s f e r −prog r e s s
18

19 image : maven :3 .8 .3 − adoptopenjdk −11
20

21 v e r i f y :
22 s tage : t e s t
23 tags :
24 − oop
25 s c r i p t :
26 − ’mvn $MAVEN_CLI_OPTS te s t ’
27 a r t i f a c t s :
28 when : always
29 r e p o r t s :
30 j u n i t :
31 − t a r g e t / s u r e f i r e −r e p o r t s /TEST−∗.xml
32

33 sonarqube :
34 s tage : codequa l i t y
35 tags :
36 − oop
37 v a r i a b l e s :
38 SONAR_HOST_URL: " http : / / 1 7 2 . 1 7 . 0 . 2 : 9 0 0 0 "
39 SONAR_TOKEN: "85 df9fae1b73e56abee20330db2528e5cd9a6e9a "
40 SONAR_USER_HOME: " ${CI_PROJECT_DIR}/ . sonar " # Def ine s the

l o c a t i o n o f the a n a l y s i s task cache
41 s c r i p t :
42 − mvn c l ean i n s t a l l sonar : sonar
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Modified pom.xml
1 <p r o j e c t xmlns=" h t tp : //maven . apache . org /POM/ 4 . 0 . 0 " xmlns :x s i=" h t tp : //

www. w3 . org /2001/XMLSchema−i n s t anc e " xs i : s chemaLocat ion=" h t tp : //
maven . apache . org /POM/ 4 . 0 . 0 h t t p s : //maven . apache . org /xsd/maven
−4 . 0 . 0 . xsd ">

2 <modelVersion>4 . 0 . 0</ modelVersion>
3 <groupId>i t . p o l i t o . oop . lab</ groupId>
4 <a r t i f a c t I d>Univers i ty −So lu t i on</ a r t i f a c t I d>
5 <ver s i on>1 . 0 . 0</ ve r s i on>
6

7 <p r o p e r t i e s>
8 <p r o j e c t . bu i ld . sourceEncoding>UTF−8</ p r o j e c t . bu i ld .

sourceEncoding>
9 <sonar . core . codeCoveragePlugin>jacoco</ sonar . core .

codeCoveragePlugin>
10 <sonar . j acoco . reportPath>${ p r o j e c t . ba s ed i r } / . . / t a r g e t / jacoco .

exec</ sonar . j acoco . reportPath>
11 <sonar . language>java</ sonar . language>
12 </ p r o p e r t i e s>
13

14 <dependenc ies>
15 <!−− h t t p s : // mvnrepository . com/ a r t i f a c t / j u n i t / j u n i t −−>
16 <dependency>
17 <groupId>j u n i t</ groupId>
18 <a r t i f a c t I d>j u n i t</ a r t i f a c t I d>
19 <ver s i on>4 . 1 3 . 2</ ve r s i on>
20 <scope>t e s t</ scope>
21 </dependency>
22 </ dependenc ies>
23

24 <bui ld>
25 <sourceD i r e c to ry>s r c</ sourceD i r e c to ry>
26 <te s tSou r c eD i r e c t o ry>t e s t</ t e s tSou r c eD i r e c t o ry>
27 <plug in s>
28 <plug in>
29 <a r t i f a c t I d>maven−compi ler−p lug in</ a r t i f a c t I d>
30 <ver s i on>3 . 8 . 1</ ve r s i on>
31 <c o n f i g u r a t i o n>
32 <r e l e a s e>11</ r e l e a s e>
33 </ c o n f i g u r a t i o n>
34 </ plug in>
35

36 <plug in>
37 <groupId>org . apache . maven . p lug in s</ groupId>
38 <a r t i f a c t I d>maven−s u r e f i r e −p lug in</ a r t i f a c t I d>
39 <ver s i on>2 . 2 2 . 0</ ve r s i on>
40 <dependenc ies>
41 <dependency>
42 <groupId>org . apache . maven . s u r e f i r e</ groupId>
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43 <a r t i f a c t I d>s u r e f i r e −j u n i t 4</ a r t i f a c t I d>
44 <ver s i on>2 . 2 2 . 0</ ve r s i on>
45 </dependency>
46 </ dependenc ies>
47 <c o n f i g u r a t i o n>
48 <i n c l u d e s>
49 <inc lude>∗∗/∗ . java</ inc lude>
50 </ i n c l u d e s>
51 </ c o n f i g u r a t i o n>
52 </ plug in>
53

54 <plug in>
55 <groupId>org . sonar source . scanner . maven</ groupId>
56 <a r t i f a c t I d>sonar−maven−p lug in</ a r t i f a c t I d>
57 <ver s i on>3 . 7 . 0 . 1 7 4 6</ ve r s i on>
58 </ plug in>
59 </ p lug in s>
60 </ bu i ld>
61 </ p r o j e c t>

A.3 Files for the batch analysis of an assignment

A.3.1 Multi-project batch analysis
For the multi-project batch analysis approach, the previously modified pom.xml
file is needed, alongside a sonar-project.properties configuration file.

sonar-project.properties
1 sonar . projectKey=Mult ipro j ec t −LAB03−Diet
2

3 sonar . s ou r c e s=LAB03_Diet_s000001/ s r c / d ie t , LAB03_Diet_s000002/ s r c /
d ie t , LAB03_Diet_s000003/ s r c / d i e t

A.3.2 Multi-module batch analysis
For the multi-module batch analysis approach, the parent POM file resides inside
the parent folder, whereas the child POM file resides inside every submodule folder.
The Bash script automates the setup of the POM files, compiles the project and
runs the analysis.
The SQL script, on the other hand, retrieves all students numbers and the occur-
rences of the bug or code smell being considered for each student: this is helpful
to retrieve how many occurrences of every bug or code smell were found for every
student.
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parent_pom.xml
1 <?xml ve r s i on=" 1 .0 " encoding="UTF−8" s tanda lone=" no " ?>
2 <p r o j e c t xmlns=" h t tp : //maven . apache . org /POM/ 4 . 0 . 0 "
3 xmlns :x s i=" h t tp : //www. w3 . org /2001/XMLSchema−i n s t anc e "
4 xs i : s chemaLocat ion=" h t tp : //maven . apache . org /POM/ 4 . 0 . 0 h t tp : //maven .

apache . org /xsd/maven −4 . 0 . 0 . xsd ">
5

6 <modelVersion>4 . 0 . 0</ modelVersion>
7 <packaging>pom</ packaging>
8

9 <groupId>i t . p o l i t o . oop</ groupId>
10 <a r t i f a c t I d>p a r e n t A r t i f a c t I d</ a r t i f a c t I d>
11 <ver s i on>1 . 0 . 0</ ve r s i on>
12

13 <p r o p e r t i e s>
14 <p r o j e c t . bu i ld . sourceEncoding>UTF−8</ p r o j e c t . bu i ld . sourceEncoding

>
15 <sonar . language>java</ sonar . language>
16 <sonar . java . source>17</ sonar . java . source>
17 <sonar . host . u r l>ht tp : // l o c a l h o s t : 9 0 0 0</ sonar . host . u r l>
18

19 <!−− exc lude a l l f i l e s conta in ing @Test ( t e s t f i l e s ) −−>
20 <sonar . i s s u e . i gno r e . a l l f i l e>r1</ sonar . i s s u e . i gno re . a l l f i l e>
21 <sonar . i s s u e . i gno r e . a l l f i l e . r1 . f i l eRegexp>@Test</ sonar . i s s u e .

i gno r e . a l l f i l e . r1 . f i l eRegexp>
22

23 <!−− exc lude a d d i t i o n a l f i l e s −−>
24 <sonar . e x c l u s i o n s>∗∗ . html , ∗ ∗ . xml</ sonar . e x c l u s i o n s>
25

26 <!−− exc lude code d u p l i c a t i o n and coverage −−>
27 <sonar . cpd . e x c l u s i o n s>∗∗</ sonar . cpd . e x c l u s i o n s>
28 <sonar . coverage . e x c l u s i o n s>∗∗</ sonar . coverage . e x c l u s i o n s>
29

30 <!−− d i s a b l e Source Control Manager −−>
31 <sonar . scm . d i s ab l ed>true</ sonar . scm . d i s ab l ed>
32 </ p r o p e r t i e s>
33

34 <modules>
35 <module>module</module>
36 </modules>
37

38 </ p r o j e c t>

child_pom.xml
1 <p r o j e c t xmlns=" h t tp : //maven . apache . org /POM/ 4 . 0 . 0 "
2 xmlns :x s i=" h t tp : //www. w3 . org /2001/XMLSchema−i n s t anc e "
3 xs i : s chemaLocat ion=" h t tp : //maven . apache . org /POM/ 4 . 0 . 0 h t t p s : //

maven . apache . org /xsd/maven −4 . 0 . 0 . xsd ">
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4 <modelVersion>4 . 0 . 0</ modelVersion>
5

6 <parent>
7 <groupId>i t . p o l i t o . oop</ groupId>
8 <a r t i f a c t I d>p a r e n t A r t i f a c t I d</ a r t i f a c t I d>
9 <ver s i on>1 . 0 . 0</ ve r s i on>

10 </ parent>
11

12 <groupId>i t . p o l i t o . oop</ groupId>
13 <a r t i f a c t I d>c h i l d A r t i f a c t I d</ a r t i f a c t I d>
14 <ver s i on>1 . 0 . 0</ ve r s i on>
15

16 <dependenc ies>
17 <!−− h t t p s : // mvnrepository . com/ a r t i f a c t / j u n i t / j u n i t −−>
18 <dependency>
19 <groupId>j u n i t</ groupId>
20 <a r t i f a c t I d>j u n i t</ a r t i f a c t I d>
21 <ver s i on>4 . 1 3 . 2</ ve r s i on>
22 </dependency>
23 </ dependenc ies>
24

25 <bui ld>
26 <sourceD i r e c to ry>.</ sourceD i r e c to ry>
27 <plug in s>
28 <plug in>
29 <a r t i f a c t I d>maven−compi ler−p lug in</ a r t i f a c t I d>
30 <ver s i on>3 . 8 . 1</ ve r s i on>
31 <c o n f i g u r a t i o n>
32 <r e l e a s e>11</ r e l e a s e>
33 </ c o n f i g u r a t i o n>
34 </ plug in>
35

36 <plug in>
37 <groupId>org . apache . maven . p lug in s</ groupId>
38 <a r t i f a c t I d>maven−s u r e f i r e −p lug in</ a r t i f a c t I d>
39 <ver s i on>2 . 2 2 . 0</ ve r s i on>
40 <dependenc ies>
41 <dependency>
42 <groupId>org . apache . maven . s u r e f i r e</ groupId>
43 <a r t i f a c t I d>s u r e f i r e −j u n i t 4</ a r t i f a c t I d>
44 <ver s i on>2 . 2 2 . 0</ ve r s i on>
45 </dependency>
46 </ dependenc ies>
47 <c o n f i g u r a t i o n>
48 <i n c l u d e s>
49 <inc lude>∗∗/∗ . java</ inc lude>
50 </ i n c l u d e s>
51 </ c o n f i g u r a t i o n>
52 </ plug in>
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53

54 <plug in>
55 <groupId>org . sonar source . scanner . maven</ groupId>
56 <a r t i f a c t I d>sonar−maven−p lug in</ a r t i f a c t I d>
57 <ver s i on>3 . 7 . 0 . 1 7 4 6</ ve r s i on>
58 </ plug in>
59 </ p lug in s>
60 </ bu i ld>
61

62 </ p r o j e c t>

script.sh
1 #! / bin /bash
2

3 p a r e n t A r t i f a c t I d=$1
4 sonarToken=$2
5

6 i f [ " $pa r en tAr t i f a c t Id " = " " ] ; then
7 echo " Miss ing p r o j e c t name in arguments . "
8 e x i t
9 f i

10

11 i f [ " $pa r en tAr t i f a c t Id " = " p a r e n t A r t i f a c t I d " ] ; then
12 echo " Pro j e c t name not a l lowed . "
13 e x i t
14 f i
15

16 i f [ " $sonarToken " = " " ] ; then
17 echo " Miss ing SonarQube token in arguments . "
18 e x i t
19 f i
20

21 echo " Prepar ing the nece s sa ry POM f i l e s to bu i ld the submodules . . . "
22

23 # s u b s t i t u t e the a r t i f a c t I d in the parent pom
24 sed " s |< a r t i f a c t I d >parentAr t i f a c t Id </a r t i f a c t I d >|< a r t i f a c t I d >

$parentArt i f a c t Id </a r t i f a c t I d >| " . / templates /parent_pom . xml >pom.
xml

25

26 # f i n d only d i r e c t o r i e s in cur rent f o l d e r , exc lud ing hidden ones
27 s u b f o l d e r s=$ ( f i n d . −mindepth 1 −maxdepth 1 −type d −regex ’

\ . / [ ^ \ . ] . ∗ ’ )
28

29 f o r d i r in $ s u b f o l d e r s ; do
30 i f [ " $d i r " = " . / t a r g e t " ] | | [ " $d i r " = " . / templates " ] ; then
31 cont inue
32 f i
33
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34 c h i l d A r t i f a c t I d=$ ( echo " $d i r " | cut −d ’ / ’ −f 2) # cut the
s t r i n g on / and take the second f i e l d ( the f o l d e r name)

35

36 i f [ " $ c h i l d A r t i f a c t I d " = " c h i l d A r t i f a c t I d " ] | | [ "
$ c h i l d A r t i f a c t I d " = " module " ] ; then

37 echo " Subfo lder name $ c h i l d A r t i f a c t I d not a l lowed . "
38 e x i t
39 f i
40

41 # c r e a t e the c h i l d pom
42 cd " $d i r " | | {
43 echo " Di rec tory $d i r not found ! "
44 e x i t
45 }
46 sed " s |< a r t i f a c t I d >parentAr t i f a c t Id </a r t i f a c t I d >|< a r t i f a c t I d >

$parentArt i f a c t Id </a r t i f a c t I d >| " . . / templates /child_pom . xml >tmp .
xml

47 sed " s |< a r t i f a c t I d >c h i l d A r t i f a c t I d </a r t i f a c t I d >|< a r t i f a c t I d >
$ c h i l d A r t i f a c t I d </a r t i f a c t I d >| " tmp . xml >pom. xml

48 rm tmp . xml
49 cd . .
50

51 # add the submodule to the parent pom
52 cp pom. xml tmp . xml
53 sed " s |<module>module</module>|<module>$ c h i l d A r t i f a c t I d </module>\

n <module>module</module >| " tmp . xml >pom. xml
54 rm tmp . xml
55 done
56

57 # f i n a l i z e parent pom
58 cp pom. xml tmp . xml
59 sed "/<module>module<\/module>/d" tmp . xml >pom. xml
60 rm tmp . xml
61

62 # run a n a l y s i s
63 echo " Bui ld ing and then running the a n a l y s i s . . . "
64 mvn c l ean i n s t a l l −− f a i l −never sonar : sonar −Dsonar . token=" $sonarToken

" # b u i l d s a l l the submodules ( sk ipp ing the ones that f a i l ) and
then launches the a n a l y s i s

This script is intended to work with version 10 of SonarQube and subsequent ones:
for prior versions, the -Dsonar.token parameter at line 64 should be substituted
with -Dsonar.login.
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The command to launch the script needs, as parameters, the parent’s artifact id
and the SonarQube token for authentication.

1 s c r i p t . sh p a r e n t A r t i f a c t I d sonarToken

issues_per_student_by_rule.sql
1 −− s e l e c t a l l s tudents numbers ( having at l e a s t one i s s u e ) , then l e f t

j o i n to append number o f i s s u e s o f the student ( i f p re sent )
2 SELECT DISTINCT SUBSTRING( kee , 31 , 7) AS student , i s sues_per_student .

count
3 FROM components
4 LEFT JOIN (
5 −− s e l e c t student number and number o f i s s u e s f o r every student

f o r a s p e c i f i c r u l e
6 −− the components t ab l e conta in s the name o f the f o l d e r ( the

component , in the column kee ) : that i s , the student number
7 SELECT SUBSTRING(C. kee , 31 , 7) AS student , COUNT(∗ ) AS count
8 FROM i s s u e s I , components C
9 WHERE I . component_uuid = C. uuid AND C. kee LIKE ’ i t . p o l i t o . oop :

Exam_2023−06−27: s%’
10 AND rule_uuid = ’AYgvIl4PPrvCAqFZdVNH ’
11 GROUP BY SUBSTRING(C. kee , 31 , 7)
12 ) AS issues_per_student ON SUBSTRING( components . kee , 31 , 7) = student
13 WHERE kee LIKE ’ i t . p o l i t o . oop : Exam_2023−06−27: s%’
14 ORDER BY student
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Appendix B

GitHub repository

The GitHub repository for this thesis contains files, code and data used through-
out the work. The repository is located at https://github.com/alessiomason/
masters-degree-thesis.

Folders content

The "Initial analysis" folder contains a short presentation and summary of the
gathered data and a subfolder containing all the projects analyzed for this initial
phase.

The "Multi-project analysis" folder contains the commands to create the Docker
container hosting SonarQube and to run the analysis, in addition to a folder used
for testing the hierarchy and placement of folders and files needed for this solution.

The "Multi-module analysis" folder again contains a test folder (with all subfolders
and files correctly placed to verify the viability of this solution), the templates for
the parent and child POM, the script to automate the analysis and the command
to launch it.

The "Exam 2023-06-27 analysis" folder contains a presentation of the major bugs
and code smells found in the analysis, the SQL scripts employed to retrieve the data
from the database SonarQube uses and two Excel files summarizing all gathered
data, which were used to perform the statistical analysis - one file containing all the
analysed students and the other only the ones who actually received an evaluation
for the exam.
The actual folder containing all the analysed projects is not included due to privacy
concerns for the students (in the Excel files the students numbers are anonymized).
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