
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Automatic Classification of Parkinson’s
disease patients vs Healthy controls using

a vision-based finger-tapping test

Supervisors

Prof. Gabriella OLMO

Doc. Gianluca AMPRIMO

Candidate

Seyedeh Neda HARIRI

December 2023

Summary

In recent years, there have been remarkable advancements in machine learning. The
rise in computational power and the abundance of data have made these systems
indispensable in various fields, such as disease follow-up. Parkinson’s disease (PD) is
the second most prevalent neurodegenerative disorder worldwide. The most notable
symptoms of PD are bradykinesia, rest tremor, postural instability, and rigidity.
In clinical practice, a variety of diagnostic techniques, including the finger-tapping
test, the walk test, the gait analysis, and the evaluation of speech impairment, are
used to examine these symptoms.
According to the Movement Disorder Society’s published guidelines, the finger-
tapping test (FTT) is one of the most frequently administered evaluations of
bradykinesia, but manual visual evaluations can result in score discrepancy due to
clinicians’ subjectivity. Moreover, the application of wearable sensors necessitates
physical contact and may inhibit the natural movement patterns of PD patients.
The information related to these patterns was provided in the vision-based 3D
Parkinson’s disease (PD) hand dataset, consisting of 133 finger-tapping video
samples, including recordings of 35 PD patients and 60 healthy controls. This
endeavor has considered the movement of the index and thumb digits toward and
away from one another. Then, Python libraries were used to acquire the distance
and velocity signals of these movements. Utilizing the tsfresh library for feature
extraction was the next step. Identifying and deriving meaningful features from
time series is a time-consuming process because scientists and engineers must take
into account the numerous algorithms of signal processing and time series analysis.
Then to remove redundant features and improve the classification algorithm’s
accuracy, feature selection based on extracted features has been implemented.
Methods of Boruta and Principal component analysis (PCA) were applied to select
meaningful features. Furthermore, several supervised machine learning classification
algorithms have been evaluated to determine whether or not a person has PD.
These algorithms include k-nearest neighbors (KNN), random forest (RF), eXtreme
Gradient Boosting (XGB), and support vector machines (SVM). These algorithms
were selected based on their ability to correspond to medical evaluation criteria,
their visualization capabilities, and the data size and computation constraints of

ii

real-world applications. A 5-fold cross-validation method was exploited to verify
the final classification accuracy in order to quantitatively compare the performance
of distinct classifiers. In fact, two feature selection methods and four machine
learning classifiers were combined to work out accuracy, precision, recall, and
f1-score. These results would lead to the evaluation of the optimal combination
method for diagnosing PD.
According to the results obtained, the combination of Boruta as the feature selector
and Support Vector Machine as the classifier demonstrated the highest performance
across all four metrics. This point should be noted that obtaining 100% in some
metrics is probably due to data scarcity.

iii

Acknowledgements

I wish to express my genuine and profound appreciation and gratitude to my
supervisors, Prof. Gabriella Olmo and Doc. Gianluca Amprimo, for granting me the
opportunity to do research and work under their guidance. I express my gratitude
and fondness towards my parents for their unwavering support and affection that
they have provided me with throughout the entirety of my existence. Lastly, I
would like to extend my gratitude to my colleagues at the Polytechnico di Torino
University for their invaluable assistance in accomplishing my academic pursuits
and thesis. I am extending my gratitude and admiration to those individuals who
have profoundly influenced my life and academic trajectory.

iv

Table of Contents

List of Tables viii

List of Figures x

Acronyms xii

1 Introduction 1

2 Literature Survey 4
2.1 Overview on Parkinson’s Disease 4
2.2 Disease Follow-up . 5
2.3 Finger Tapping Test . 6

3 Data Set and Feature Extraction 8
3.1 Resources and Techniques . 8

3.1.1 System for the acquisition and processing of data 8
3.1.2 Participants and Experimental Session 9

3.2 Python Libraries . 10
3.3 Distance and Velocity Signals . 11
3.4 Feature Extraction by tsfresh Library 11

4 Feature Selection 18
4.1 Overview on Feature Selection . 18
4.2 Boruta . 19
4.3 Principle Component Analysis (PCA) 23
4.4 Scatter Plot . 28

5 Classification 32
5.1 Overview on Machine Learning Classification 32
5.2 K Nearest Neighbor (KNN) . 33
5.3 Random Forest (RF) . 37
5.4 Extreme Gradient Boosting (XGB) 41

vi

5.5 Support Vector Machines (SVM) 45

6 Evaluation 47
6.1 Overview on Evaluation . 47
6.2 Cross-validation . 48
6.3 Metrics . 48

7 Results 50
7.1 PCA for Distance . 51
7.2 PCA for Velocity . 52
7.3 PCA for Distance and Velocity Combination 53
7.4 Boruta for Distance . 54
7.5 Boruta for Velocity . 55
7.6 Boruta for Distance and Velocity Combination 56
7.7 Results Summary . 56

8 Conclusion and Future Development 58
8.1 Conclusion . 58
8.2 Future Development . 59

Bibliography 62

vii

List of Tables

3.1 List of all the feature calculations supported by tsfresh 17

4.1 Selected Features by Boruta for Distance 22
4.2 Selected features by Boruta for Velocity 22
4.3 Selected Features by Boruta for Distance and Velocity Combination 23

5.1 Comparison of Decision Tree vs Random Forest 39

6.1 Confusion matrix: predicted annotation is what the algorithm re-
trieves or annotates and gold annotation is what was marked up or
annotated by a human . 48

7.1 Accuracy of 5 folds of classifiers . 51
7.2 F1 score of 5 folds of classifiers . 51
7.3 Precision of 5 folds of classifiers . 51
7.4 Recall of 5 folds of classifiers . 51
7.5 Accuracy of 5 folds of classifiers . 52
7.6 F1 score of 5 folds of classifiers . 52
7.7 Precision of 5 folds of classifiers . 52
7.8 Recall of 5 folds of classifiers . 52
7.9 Accuracy of 5 folds of classifiers . 53
7.10 F1 score of 5 folds of classifiers . 53
7.11 Precision of 5 folds of classifiers . 53
7.12 Recall of 5 folds of classifiers . 53
7.13 Accuracy of 5 folds of classifiers . 54
7.14 F1 score of 5 folds of classifiers . 54
7.15 Precision of 5 folds of classifiers . 54
7.16 Recall of 5 folds of classifiers . 54
7.17 Accuracy of 5 folds of classifiers . 55
7.18 F1 score of 5 folds of classifiers . 55
7.19 Precision of 5 folds of classifiers . 55
7.20 Recall of 5 folds of classifiers . 55

viii

7.21 Accuracy of 5 folds of classifiers . 56
7.22 F1 score of 5 folds of classifiers . 56
7.23 Precision of 5 folds of classifiers . 56
7.24 Recall of 5 folds of classifiers . 56
7.25 Results summary of PCA . 57
7.26 Results summary of Boruta . 57

ix

List of Figures

3.1 Hand Joints Position . 9
3.2 3D Distance and Velocity between tips of thumb and index fingers

for Healthy and PD cases . 12

4.1 Two distinct main components of PCA 25
4.2 Comulative Explained Variance Plot of PCA for Distance 26
4.3 Comulative Explained Variance Plot of PCA for Velocity 27
4.4 Comulative Explained Variance Plot of PCA for Distance and Ve-

locity Combination . 27
4.5 Scatter Plot of PCA for Distance 29
4.6 Scatter Plot of PCA for Velocity . 29
4.7 Scatter Plot of PCA for Distance and Velocity Combination 30
4.8 Scatter Plot of Boruta for Distance 30
4.9 Scatter Plot of Boruta for Velocity 31
4.10 Scatter Plot of Boruta for Distance and Velocity Combination . . . 31

x

Acronyms

AI
Artificial Intelligence

ML
Machine Learning

PD
Parkinson’s Disease

HC
Healthy Controls

UPDRS
Unified Parkinson’s Disease Rating Scale

MDS
Movement Disorder Society

QOL
Quality of Life

FTT
Finger Tapping Test

FT
Finger Tapping

PCA
Principal Component Analysis

xii

KNN
K Nearest Neighbors

RF
Random Forest

XGB
Extreme Gradient Boosting

SVM
Support Vector Machine

CV
Cross Validation

OOB
Out of the Bag

SRM
Structural Risk Minimization

SD
Standard Deviation

xiii

Chapter 1

Introduction

Parkinson’s Disease (PD) is a neurodegenerative disorder with a prevalence of
1% in the over-65 population, which is projected to increase significantly as the
global population ages [1]. Standardized scales aim to quantify the progression
and severity of disease, symptoms, and quality of life. The Unified Parkinson’s
Disease Rating Scale (UPDRS) is the most common and globally recognized scale
for assessing disease severity. In 2008, the Movement Disorder Society (MDS)
created and published the revised UPDRS scale, also known as the MDS-UPDRS
[2].

The primary symptoms of Parkinson’s disease are bradykinesia, rest tremor,
rigidity, and postural instability. In practice, physicians use a variety of tests,
including the finger-tapping test, gait analysis, and speech impairment examination
to evaluate these symptoms. Among all PD symptoms, bradykinesia is the most
essential according to the guidelines published by the Movement Disorder Society,
and the finger tapping test (FTT) is one of the most extensively used tests to assess
bradykinesia [3].

Clinicians frequently utilize the FTT task. It involves tapping the tips of the
thumb and index finger as swiftly and with as much amplitude as possible for a
predetermined amount of repetitions or seconds. Numerous research intended to
objectively evaluate FTT. Three major categories can be identified: (i) peripheral
device-based solutions, such as including inertial measurement devices and instru-
mented gloves (ii) smartphone-based evaluation wherein the interaction with the
device’s display is translated into an FTT-equivalent; (iii) vision-based systems
employing either RGB, RGB-Depth, or Depth video cameras [1]. The first form of
treatment is typically more invasive, may be impractical in unsupervised settings,
and is therefore difficult for patients to administer on their own. Smartphone-based
solutions discover only indirect correlations between the metrics collected by the
touchscreen and the severity scores, making them difficult to interpret in terms of
the standardized task. Lastly, vision-based approaches utilize video cameras and

1

Introduction

markerless tracking systems based on shallow or deep learning models, which first
estimate a 2D or 3D hand skeleton and then evaluate a series of FTT-descriptive
features. These characteristics may be used to classify subjects or to estimate a
severity score [1].

The initial stage involves capturing the hand movements of healthy and PD
patients. 133 finger-tapping video samples, including recordings of 35 PD patients
and 60 healthy controls, were provided for this study. The details of the experimental
session, participants, and materials used to capture the FFT were taken from a
different study [1]. The data extracted from the recordings were then converted
to JSON format for use in subsequent operations. Then, python libraries have
been used to acquire signals such as distance and velocity. In this undertaking,
the movement of the index and thumb fingers toward and away from one another
has been considered. Distance is the quantitative or occasionally qualitative
measurement of the separation between two objects or points. Velocity is the
measurement of the pace and direction of an object’s motion. A foundational
concept in kinematics, the branch of classical mechanics that studies the motion of
bodies, is velocity. Average velocity equals total distance traveled divided by total
duration Joints 4 and 8 must be analyzed to compute these signals for the thumb
and index finger.

The tsfresh library for feature extraction has been used. Tsfresh is a tool
utilized for the methodical creation of features from time series and other sequential
data [4]. These data have the characteristic of being arranged according to an
independent variable. The predominant independent variable is typically time,
sometimes referred to as a time series.

The next step was feature selection. Feature selection involves the identification
and selection of the most impactful features from a set of features to decrease
the dimensionality of the feature space [5]. It is a crucial undertaking in the field
of statistical pattern recognition. The majority of feature selection algorithms
have been developed using objective functions that are typically intuitive but
may deviate from the fundamental aims of feature selection [6]. The Boruta and
Principal Component Analysis (PCA) methods were utilized to identify significant
features and remove redundant ones.

The classification was the following action. To determine whether a person
has Parkinson’s disease or not, various supervised classification methods in the
field of machine learning have been implemented. Machine Learning categorization
labels input data [7]. Labels divide the data into two groups. The techniques
encompassed in this set are k-nearest neighbors (KNN), random forests (RF),
eXtreme Gradient Boosting (XGBoost), and support vector machine with (SVM).
Machine Learning categorization labels input data. Labels divided the data into
two groups, here. These algorithms were selected based on their capacity to align
with medical assessment standards and their potential for visualization, while

2

Introduction

also taking into account data volume and computational constraints in practical
scenarios [3].

Subsequently, K-fold cross-validation was used to mitigate the problem of
overfitting when there was insufficient data available. During cross-validation, a
subset of training data sets was generated and used to train the machine learning
model. Cross-validation was employed to address the issue of overfitting. The
model was trained using k-1 subsets and subsequently evaluated on the kth subset
of the data. The subset with the kth index was excluded from the training process
[7], [8].

Afterward, accuracy, recall, precision, and f1-score metrics assessed the per-
formance of the classification models and measured the efficacy of a retrieval
mechanism [8].

3

Chapter 2

Literature Survey

2.1 Overview on Parkinson’s Disease

Parkinson’s disease (PD), which affects millions of people worldwide and is becoming
more prevalent as the world’s population ages, is now the second most prevalent
neurological disease after Alzheimer’s disease. Both motor and non-motor symptoms
are experienced by people with Parkinson’s disease (PD). The former include
postural instability, rigidity, bradykinesia, gait impairments, resting tremors, and
relevant alterations in their speech, including articulation, phonation, fluency,
and prosody landmarks. It should be mentioned that these physical limitations
present a significant problem for the patient and their family because these illnesses
affect patients’ moods and attitudes in addition to their motor symptoms and
communication abilities. The latter include anxiety, sadness, and sleep disturbance.
Poor quality of life (QOL), higher health care costs, and a greater load on carers
are always consequences of these symptoms [9], [10].

The literature shows that despite these negative symptoms, many PD patients
have limited access to traditional face-to-face healthcare because of obstacles
including a distance barrier, financial burden, mobility issues, or a lack of time. A
potential health risk resulted from the fact that more than 40% of PD patients
did not obtain specialized care from neurologists soon after diagnosis. Sustainable
healthcare is therefore crucial from a therapeutic perspective for these individuals
since it has the potential to lessen the severity of their PD and improve QOL [9].

On the other hand, patients with neurodegenerative disorders must deal with
comorbidity as another issue because these individuals frequently have many
illnesses, such as cardiovascular disease, incontinence, etc. Therefore, it is essential
to establish multidisciplinary teams to provide patients with growing neurological
impairment with the necessary care. Neurologists should make up these teams or
professional groups for the diagnostic and early stages, general practitioners for the

4

Literature Survey

monitoring phase, and rehabilitation services for the preservation of the patient’s
quality of life [10].

Moreover, the typical wait time between appointments is one of the most impor-
tant aspects of a patient’s treatment. Monitoring long-term patients necessitates
therapeutic activities including pharmacological treatment and rehabilitation pro-
grams that aid patients in maintaining their neuromotor competence, which adds
cost and complexity. In the course of the medical consultation, the professional
only spends about 15 minutes observing the patient. The patient is then given a
specific dose by the neurologist to control their symptoms. The primary problem
with this regimen is that the prescribed dosage won’t be reviewed for a while. It is
important to note that the patient’s medication status (on/off state) has not been
taken into account in the current monitoring of patients. Dyskinesia, bradykinesia,
and other symptoms might not be present at this time for the consultation. This
may lead to incorrect pharmacological treatment or ineffective monitoring. Finally,
if a lesser dose is administered, patients may have less self-autonomy. On the other
hand, if the dose is too high, the effectiveness of the medication may be diminished
quickly [10].

2.2 Disease Follow-up
In light of the current state of Parkinson’s disease management, monitoring tech-
nologies for PD patients have the potential to improve the quality of life (QoL)
through continuous, objective self-monitoring. These technologies also offer crucial
data that might be shared with medical professionals to help them better manage
patient care [11].

For this purpose, there are various mobile applications in marketplaces (Google
Play, Apple App Store, and Windows Store) related to PD [11].

Apps are divided into the following categories based on their intended use:

• 1. PD-related apps: applications that aren’t expressly made for PD but could
be helpful in controlling the condition.

• 2. PD-specific applications, containing three subcategories:

– Informational applications: apps that enlighten users about the illness
and are aimed at medical professionals, patients, families, or caregivers.

– Applications for assessment: These applications include numerous tests for
evaluating people with Parkinson’s disease, analyzing things like speech,
balance, tremors, gait, and upper-limb coordination, among other things.

– Apps for treatment: These apps offer patients and medical practitioners
a set of instructions for pharmacologically treating Parkinson’s disease

5

Literature Survey

(PD) or for neurorehabilitation, such as physiotherapy, cognitive therapy,
and speech therapy [11].

Additionally, the presence of PD and its severity have been determined according
to Data Science. According to its definition, data science is the examination of
enormous amounts of massive and raw data that have the ability to produce insights
that aid businesses in developing through strategic decision-making. Technology-
wise, data science is transforming how many sectors operate, how they use their data,
and how they tackle their issues. Data science is assisting firms in comprehending
their surroundings, analyzing their current problems, and surfacing previously
undiscovered opportunities [12].

The amount of data that is being generated at this rapid rate comes from
a variety of sources, including log files, emails, social media, sales data, patient
information data, sports performance data, sensor data, security alarms, and many
more. Data can be found in both organized and unstructured forms, and both
types of data can reveal a variety of patterns that can be used to generate solutions.
These patterns can also be shown effectively to help comprehend the nature of the
results and suggest subsequent steps [12].

Machine learning can be seen as a subset of artificial intelligence that analyzes
data and makes wise choices using computer algorithms based on its discoveries
without having to be explicitly programmed. Machine learning is what gives
computers the ability to solve issues on their own and generate precise predictions
utilizing the available data [12].

2.3 Finger Tapping Test
The finger tapping (FT) test is a simple and efficient exercise that is commonly
employed in clinical practice to assess motor function, particularly for screening
purposes. The FT test is crucial for diagnosing Parkinson’s disease (PD). Neurolo-
gists in clinical practice assess hypokinesia, fatigue, and particularly slowness by
using a five-point scale ranging from 0 to 4, as outlined in the Movement Disorder
Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS). A score of 0 indicates normal functioning, while a score of 4 indicates
a severe symptom. Additional factors, such as age and medication status, may
have a considerable impact on the mobility of FT. For instance, individuals who
are in good health may experience motor dysfunction as a result of the natural
aging process. In such cases, Levodopa can be employed as an effective treatment
for patients with Parkinson’s disease. Consequently, individuals in good health
may receive a rating of 1 or higher due to the effects of aging in the FT test,
whereas patients with Parkinson’s disease may have a rating of 0 in the ON state.
The diagnostic accuracy of Parkinson’s disease in the population is modest (75 -

6

Literature Survey

85%) due to the similarities between healthy individuals experiencing aging and
patients with Parkinson’s disease. Specifically, the FT score of those with moderate
Parkinson’s disease may be comparable to that of individuals without the disease.
Therefore, it is difficult to identify people with moderate Parkinson’s disease using
the FT task. Furthermore, it is crucial to identify patients with mild Parkinson’s
disease (PD) as early identification and therapy can effectively mitigate the risk of
dyskinesia and significantly enhance their quality of life[13].

7

Chapter 3

Data Set and Feature
Extraction

3.1 Resources and Techniques
The finger-tapping test (FTT) is one of the most often conducted assessments
of bradykinesia, as stated in the published guidelines provided by the Movement
Disorder Society. The information associated with movement patterns was provided
in the vision-based 3D Parkinson’s disease (PD) hand dataset. It entails tapping
the tips of the thumb and index finger as quickly and forcefully as you can for a
predetermined amount of seconds or repetitions. The details of the experimental
session, participants, and materials used to capture the FFT were taken from a
different study [1].

3.1.1 System for the acquisition and processing of data
The GMH-D algorithm serves as the foundation for the finger-tapping acquisition
block, which tracks hand joints during tasks involving the hands in clinical assess-
ments. The combination of Google Mediapipe Hands’ marker-less tracking and the
depth estimation from the Azure Kinect camera enables accurate and impartial
tracking of the trajectories of hand joints even in extremely dynamic tasks like
finger-tapping. This characteristic guarantees excellent accuracy and stability when
estimating features associated with finger motion. Furthermore, through simulated
trials conducted by a group of healthy subjects, the authors demonstrated that the
algorithm can be used to extract features to characterize FT at different speeds
and with altered amplitude, producing good results for automatic classification [1].

The 10-second frontal recordings of FT tasks are obtained using a customized
GMH-D implementation created in Unity® (Unity Technologies, San Francisco,

8

Data Set and Feature Extraction

CA, USA). The mini PC is running Windows 10 and has a 9th generation Intel®
CoreTM processor (2.4 GHz quad-core), 16 GB RAM, NVIDIA GeForce RTX 2060
6GB GDDR6, HDMI, and USB3 ports. The acquisition software processes video
recordings in real-time at a rate of 30 frames per second, resulting in an output
JSON file that includes the trajectories of 21 virtual hand joints. The second block
involves offline data processing in order to: (i) segment the distance between the
Thumb-Tip (TT) and Index-Finger-Tip (IFT) joints in order to identify individual
FT movements; (ii) extract a series of features describing the characteristics of
the mean FT movements and their regularity throughout the task using spectral
properties and the coefficient of variation; (iii) choose the best feature set (Fopt)
to differentiate the PD subjects from the HC group. In the final block of the
system, well-known shallow learning models are used to classify data based on ideal
features. To lessen the potential impact of model overfitting during the testing
stage, the Leave-One-Subject-Out (LOSO) procedure is used for the comparison
and evaluation of these models [1].

The thumb and index finger coordinates have been examined at various time
stamps and in the x, y, and z axes. The entirety of this study has been conducted
using Python and its associated libraries. Figure 3.1 shows, that joints number 4
and 8 were analyzed that point to thumb and index fingers, respectively.

Figure 3.1: Hand Joints Position

3.1.2 Participants and Experimental Session
A controlled experiment was conducted to evaluate the effectiveness of the proposed
system in objectively assessing FT and its ability to assist in the diagnosis and mon-
itoring of PD. The experimental phase encompassed a collective of 95 participants,
comprising individuals with Parkinson’s disease (PD) as well as healthy controls
(HC). 35 individuals diagnosed with Parkinson’s disease, consisting of 15 females

9

Data Set and Feature Extraction

with an average age of 65.1 ± 9.2 years, were recruited from the "Associazione
Amici Parkinsoniani Piemonte ONLUS" in Turin, Italy, to participate in the data
collection. Both the recruitment and the experimental sessions took place at the
Association’s Offices. Therefore, it was not feasible to obtain clinical information
regarding the stage of the disease or the progression of symptoms. The HC group
consisted of 60 individuals (27 females) who were caregivers for PD subjects and
association personnel. The average age of the group was 53.8 ± 7.9 years. None of
the individuals had a history of neurological or cognitive disorders. The exclusion
criteria for both groups encompassed individuals with dementia or any psychiatric
disorders that would hinder their ability to complete the task effectively [1].

The procedure was carried out following the guidelines of the Declaration of
Helsinki and received approval from the Ethics Committee of A.O.U. Citta della
Salute e della Scienza di Torino (Approval No. 00384/2020). Each participant was
given comprehensive information regarding the purpose and implementation of the
study, and they all provided written informed consent for the observational study
[1].

The experimental session was conducted as part of a comprehensive observational
study, involving a large number of items and tasks to evaluate symptoms from
various perspectives. Consequently, each participant in the study carried out only
one acquisition. The control group exclusively completed the task using their
dominant hand. In contrast, the PD subjects, who may experience varying levels of
impairment in their left and right upper limbs due to Parkinson’s disease, performed
the task twice. Specifically, they completed the task once with their right hand
and once with their left hand. Furthermore, as the clinical scoring evaluates each
limb separately, the left and right FT executions were treated as individual data
points in the subsequent analysis [1].

3.2 Python Libraries
Python is a programming language that is designed for universal use and operates
at a high level of abstraction. The design concept of this approach prioritizes code
readability by utilizing considerable indentation [14].

Python is a programming language that supports multiple programming paradigms.
The programming languages completely support both object-oriented programming
and structured programming, with many of their capabilities also accommodating
functional programming and aspect-oriented programming. It provides a collection
of pre-existing mathematical functions, including a comprehensive math module,
which enables you to carry out many mathematical operations on numbers. Li-
braries such as NumPy, Pandas, and Matplotlib allow the effective use of Python
in scientific computing. Python is frequently employed in artificial intelligence and

10

Data Set and Feature Extraction

machine learning endeavors, leveraging packages such as scikit-learn.

3.3 Distance and Velocity Signals
In order to conduct a quantitative analysis of FTT movement, the distance between
the tips of the thumb and index finger, as well as the related velocity, are calculated
as the fundamental signals, similar to previous studies [3].

The term "distance" refers to the quantitative or, on occasion, qualitative
evaluation of the degree to which two things or points are separated from one
another.

The velocity of an object can be used to determine both the speed at which it
is moving and the direction in which it is moving. The idea of velocity is essential
to the study of kinematics, which is the subfield of classical mechanics that focuses
on the movement of bodies. The formula for calculating average velocity is total
displacement divided by total time.

As shown in figure 3.1, 4 and 8 joint positions have been considered, in this study.
For computing distance, the interval between two points 4 and 8 was measured,
and to calculate velocity, the change in distance was divided by the change in time.
Figure 3.2 shows 3D Distance and Velocity between tips of thumb and index fingers
for Healthy and PD cases.

3.4 Feature Extraction by tsfresh Library
Furthermore, to conduct a more comprehensive analysis of this approach, kinematic
characteristics such as amplitude, velocity, and rhythm have been retrieved. Tsfresh
employs 3D distance and velocity data to compute various time series characteristics,
transforming these kinematic parameters into quantitative representations. Tsfresh
is a renowned and efficient machine learning tool designed for extracting time
series features [3]. The input data of tsfresh library consisted of time series with
133 dimensions. Tsfresh provides 63-time series characterization techniques and is
capable of computing 794-time series characteristics[4]. By applying this library,
748 features were produced.

Systematic feature engineering from time series and other sequential data is
accomplished with tsfresh [4]. These data have the characteristic of being arranged
according to an independent variable. The predominant independent variable is
typically time, sometimes referred to as a time series. Additional instances of
sequential data include reflectance and absorption spectra, which are organized
based on their wavelength dimension. To maintain simplicity, all various forms
of sequential data have been categorized as time series. Tsfresh streamlines the
process of extracting features by automatically calculating and returning all of

11

Data Set and Feature Extraction

Figure 3.2: 3D Distance and Velocity between tips of thumb and index fingers
for Healthy and PD cases

those characteristics. Furthermore, tsfresh is fully compatible with the Python
packages pandas and scikit-learn. The retrieved characteristics can be utilized to
characterize the time series, hence providing novel insights into the time series
and their dynamics. Additionally, time series clustering and training of machine
learning models for time series can be accomplished using them.

To use the tsfresh package, the following module has been imported into the
code. This module contains the feature calculators that take time series as input
and calculate the values of the feature.

1 t s f r e s h . f e a tu r e_ex t ra c t i on . f e a t u r e _ c a l c u l a t o r s

The table 3.1 encompasses all the feature computations that are compatible with
the present iteration of tsfresh [15]:

12

Data Set and Feature Extraction

abs_energy(x) Returns the absolute energy of the time
series which is the sum over the squared
values

absolute_maximum(x) Calculates the highest absolute value of
the time series x.

absolute_sum_of_changes(x) Returns the sum over the absolute value
of consecutive changes in the series x

agg_autocorrelation(x, param) Descriptive statistics on the autocorrela-
tion of the time series.

agg_linear_trend(x, param) Calculates a linear least-squares regres-
sion for values of the time series that
were aggregated over chunks versus the se-
quence from 0 up to the number of chunks
minus one.

approximate_entropy(x, m, r) Implements a vectorized Approximate en-
tropy algorithm.

ar_coefficient(x, param) This feature calculator fits the uncondi-
tional maximum likelihood of an autore-
gressive AR(k) process.

augmented_dickey_fuller(x,
param)

Does the time series have a unit root?

autocorrelation(x, lag) Calculates the autocorrelation of the spec-
ified lag, according to the formula

benford_correlation(x) Useful for anomaly detection applications.
Returns the correlation from first digit
distribution when

binned_entropy(x, max_bins) First bins the values of x into max_bins
equidistant bins.

c3(x, lag) Uses c3 statistics to measure non linearity
in the time series

change_quantiles(x, ql, qh, isabs,
f_agg)

First fixes a corridor given by the quan-
tiles ql and qh of the distribution of x.

cid_ce(x, normalize) This function calculator is an estimate for
a time series complexity (A more complex
time series has more peaks, valleys etc.).

count_above(x, t) Returns the percentage of values in x that
are higher than t

count_above_mean(x) Returns the number of values in x that
are higher than the mean of x

13

Data Set and Feature Extraction

count_below(x, t) Returns the percentage of values in x that
are lower than t

count_below_mean(x) Returns the number of values in x that
are lower than the mean of x

cwt_coefficients(x, param) Calculates a Continuous wavelet trans-
form for the Ricker wavelet, also known
as the "Mexican hat wavelet" which is de-
fined by

energy_ratio_by_chunks(x,
param)

Calculates the sum of squares of chunk i
out of N chunks expressed as a ratio with
the sum of squares over the whole series.

fft_aggregated(x, param) Returns the spectral centroid (mean), vari-
ance, skew, and kurtosis of the absolute
fourier transform spectrum.

fft_coefficient(x, param) Calculates the fourier coefficients of the
one-dimensional discrete Fourier Trans-
form for real input by fast fourier trans-
formation algorithm

first_location_of_maximum(x) Returns the first location of the maximum
value of x.

first_location_of_minimum(x) Returns the first location of the minimal
value of x.

fourier_entropy(x, bins) Calculate the binned entropy of the power
spectral density of the time series (using
the welch method).

friedrich_coefficients(x, param) Coefficients of polynomial h(x), which has
been fitted to the deterministic dynamics
of Langevin model

has_duplicate(x) Checks if any value in x occurs more than
once

has_duplicate_max(x) Checks if the maximum value of x is ob-
served more than once

has_duplicate_min(x) Checks if the minimal value of x is ob-
served more than once

index_mass_quantile(x, param) Calculates the relative index i of time
series x where q% of the mass of x lies left
of i.

14

Data Set and Feature Extraction

kurtosis(x) Returns the kurtosis of x (calculated with
the adjusted Fisher-Pearson standardized
moment coefficient G2).

large_standard_deviation(x, r) Does time series have large standard de-
viation?

last_location_of_maximum(x) Returns the relative last location of the
maximum value of x.

last_location_of_minimum(x) Returns the last location of the minimal
value of x.

lempel_ziv_complexity(x, bins) Calculate a complexity estimate based on
the Lempel-Ziv compression algorithm.

length(x) Returns the length of x
linear_trend(x, param) Calculate a linear least-squares regression

for the values of the time series versus
the sequence from 0 to length of the time
series minus one.

linear_trend_timewise(x,
param)

Calculate a linear least-squares regression
for the values of the time series versus
the sequence from 0 to length of the time
series minus one.

longest_strike_above_mean(x) Returns the length of the longest consecu-
tive subsequence in x that is bigger than
the mean of x

longest_strike_below_mean(x) Returns the length of the longest consecu-
tive subsequence in x that is smaller than
the mean of x

matrix_profile(x, param) Calculates the 1-D Matrix Profile[1] and
returns Tukey’s Five Number Set plus the
mean of that Matrix Profile.

max_langevin_fixed_point(x, r,
m)

Largest fixed point of dynamics
:math:argmax_x h(x)=0‘ estimated
from polynomial h(x), which has been
fitted to the deterministic dynamics of
Langevin model

maximum(x) Calculates the highest value of the time
series x.

mean(x) Returns the mean of x
mean_abs_change(x) mean_abs_change(x)
mean_change(x) Average over time series differences.

15

Data Set and Feature Extraction

mean_n_absolute_max(x, num-
ber_of_maxima)

Calculates the arithmetic mean of the n
absolute maximum values of the time se-
ries.

mean_second_derivative_ cen-
tral(x)

Returns the mean value of a central ap-
proximation of the second derivative

median(x) Returns the median of x
minimum(x) Calculates the lowest value of the time

series x.
number_crossing_m(x, m) Calculates the number of crossings of x

on m.
number_cwt_peaks(x, n) Number of different peaks in x.
number_peaks(x, n) Calculates the number of peaks of at least

support n in the time series x.
partial_autocorrelation(x,
param)

Calculates the value of the partial auto-
correlation function at the given lag.

percentage_of_reoccurring_ dat-
apoints_ to_all_datapoints(x)

Returns the percentage of non-unique
data points.

percentage_of_reoccurring_ val-
ues_to_ all_values(x)

Returns the percentage of values that are
present in the time series more than once.

permutation_entropy(x, tau, di-
mension)

Calculate the permutation entropy.

quantile(x, q) Calculates the q quantile of x.
query_similarity_count(x,
param)

This feature calculator accepts an input
query subsequence parameter, compares
the query (under z-normalized Euclidean
distance) to all subsequences within the
time series, and returns a count of the
number of times the query was found in
the time series (within some predefined
maximum distance threshold).

range_count(x, min, max) Count observed values within the interval
[min, max).

ratio_beyond_r_sigma(x, r) Ratio of values that are more than r *
std(x) (so r times sigma) away from the
mean of x.

ratio_value_number_to_
time_series_length(x)

Returns a factor which is 1 if all values
in the time series occur only once, and
below one if this is not the case.

16

Data Set and Feature Extraction

root_mean_square(x) Returns the root mean square (rms) of
the time series.

sample_entropy(x) Calculate and return sample entropy of x.
set_property(key, value) This method returns a decorator that sets

the property key of the function to value
skewness(x) Returns the sample skewness of x (cal-

culated with the adjusted Fisher-Pearson
standardized moment coefficient G1).

spkt_welch_density(x, param) This feature calculator estimates the cross
power spectral density of the time series
x at different frequencies.

standard_deviation(x) Returns the standard deviation of x
sum_of_reoccurring_data_
points(x)

Returns the sum of all data points, that
are present in the time series more than
once.

sum_of_reoccurring_values(x) Returns the sum of all values, that are
present in the time series more than once.

sum_values(x) Calculates the sum over the time series
values

symmetry_looking(x, param) Boolean variable denoting if the distribu-
tion of x looks symmetric.

time_reversal_asymmetry_
statistic(x, lag)

Returns the time reversal asymmetry
statistic.

value_count(x, value) Count occurrences of value in time series
x.

variance(x) Returns the variance of x
variance_larger_than_standard
_deviation(x)

Is variance higher than the standard de-
viation?

variation_coefficient(x) Returns the variation coefficient (stan-
dard error / mean, give the relative value
of variation around the mean) of x.

Table 3.1: List of all the feature calculations supported by tsfresh

17

Chapter 4

Feature Selection

4.1 Overview on Feature Selection
Feature selection is the process of choosing the most impactful features from a set
of features to decrease the dimensionality of the feature space [5].

The input variables provided to the machine learning models are referred to
as features. Every column in the dataset represented a distinct feature. In
order to train an ideal model, it is critical to exclusively utilize the fundamental
features. Excessive inclusion of features in the model can result in the collection of
insignificant patterns and learning from irrelevant data. The process of selecting
the significant parameters of the data is referred to as Feature Selection.

Machine learning models adhere to a fundamental principle: the output is
determined by the input. When inputs of the model have low-quality or irrelevant
data, poor quality or lack of usefulness of output results can be anticipated. Here,
"garbage" denotes extraneous or irrelevant information within the dataset. In
order to train a model, vast amounts of data have been gathered to enhance
the machine’s learning capabilities. Typically, a substantial amount of the data
acquired is irrelevant information, and certain columns in our dataset may not
have a major impact on the performance of our model. Moreover, an abundance of
data can impede the training process and result in decreased model speed. The
model may potentially acquire knowledge from this extraneous data and hence
yield erroneous results. There are two types of feature selection models:

• Supervised Models: Supervised feature selection is an approach that uses the
output label class to pick features. The target variables are utilized to find the
variables that have the potential to enhance the effectiveness of the model.

• Unsupervised Models: Unsupervised feature selection is a method that does
not require the output label class to choose features. Unlabelled data is utilized
for this purpose.

18

Feature Selection

Feature selection is a crucial challenge in various statistical pattern recognition
applications, including image processing, speech recognition, text mining, and
bio-informatics. It typically involves the application of complex combinatorial
mathematics, particularly discrete optimization, to identify the most relevant
features. Feature selection has garnered significant attention in the field of pattern
recognition and machine learning due to its significance in applications and the
obstacles it poses for optimization [6]. In this study, Boruta and PCA feature
selectors have been employed.

4.2 Boruta
The Boruta algorithm is a wrapper method that utilizes the random forest classi-
fication algorithm as its foundation. The Boruta algorithm employs randomness
to introduce variability into the system and gather data from a random sample
set. The random forest classification algorithm is efficient, typically requiring mini-
mal parameter adjustment, and provides a quantitative measure of feature value.
It is a technique that combines numerous unbiased weak classifiers, specifically
decision trees, to achieve classification through a voting process. These trees are
autonomously created using various bagging samples from the training set. The
significance measure of an attribute is determined by the decrease in classification
performance resulting from randomly shuffling attribute values among objects.
The computation is performed individually for each tree in the forest that uses
a specific property for categorization. Next, the mean and standard deviation of
the decrease in accuracy are calculated. Alternatively, the significance measure
can be determined by calculating the Z score, which is obtained by dividing the
average loss by its standard deviation. Regrettably, the Z score does not have a
clear correlation with the statistical significance of the feature importance obtained
from the random forest algorithm, as its distribution does not follow a normal
distribution with a mean of 0 and a standard deviation of 1. However, in Boruta,
the Z score has been used as the measure of relevance because it considers the
variations in the average accuracy loss among the trees in the forest.

As the direct use of the Z score to assess importance is not possible, an external
reference is used to determine if the importance of a specific characteristic is
noteworthy. It is advantageous to ascertain if the importance is distinguishable
from random fluctuations. In order to achieve this objective, the information system
has been expanded by including deliberately randomized attributes. For every
attribute, a corresponding "shadow" attribute is generated by rearranging the values
of the original attribute among different objects. Subsequently, a classification
utilizing all features of this expanded system is conducted and the significance of
each attribute is calculated. The significance of a shadow property can only be

19

Feature Selection

non-zero as a result of random fluctuations. Therefore, the collection of significance
levels of shadow qualities serves as a benchmark for determining the attributes
that are genuinely significant. The significance measure fluctuates as a result of the
inherent randomness in the random forest classifier. Furthermore, it is responsive
to the existence of non-essential features in the information system, including
those that are considered secondary or peripheral. Furthermore, it relies on the
specific manifestation of shadow characteristics. Hence, it is necessary to iterate
the re-shuffling process in order to produce statistically reliable outcomes.

Essentially, Boruta operates on the same principle as the random forest classifier.
It involves introducing randomness into the system and gathering outcomes from a
collection of randomized samples. This approach is useful to mitigate the distorting
effects of random variations and correlations. Here, this additional randomization
results in a more distinct understanding of which traits are truly significant.

This approach leads to reducing the distorting effects of random fluctuations
and correlations. Through iterative processes, the algorithm identifies and elimi-
nates unimportant features by combining the interactions among different features.
Ultimately, it determines the genuinely significant features. The precise sequence
of actions in the Boruta algorithm is as follows:

• The source feature matrix T is created by selecting N vegetation indices. The
shadow feature matrix S is formed by shuffling T. A new feature matrix,
denoted as M, is created by merging matrices T and S.

• The input variable, the new feature matrix M, is used to calculate the Z-value
for each variable. The Z-value is obtained by dividing the average loss by the
standard deviation. This process allows the feature relevance to be determined.

• The highest Z value in the shadow feature denoted as Zmax, is determined
and subsequently compared to the Z value of each variable. If the Z value of a
variable exceeds Zmax, it is designated as significant, while if it is considerably
lower than Zmax, it is designated as insignificant.

• Irreversibly eliminates insignificant attributes from the collection of features.

• Continue iterating through steps (1)-(4) until all variables have been tagged
[16].

In practical scenarios, the temporal complexity of the aforementioned technique is
around O(P·N), where P represents the number of characteristics and N represents
the number of objects. Although it may need a significant amount of time for large
data sets, this endeavor is crucial in order to generate a statistically meaningful
assortment of pertinent characteristics [17].

20

Feature Selection

In this study, after data preparation, the Random Forest classifier was in-
stantiated with specific configuration parameters including n_jobs, class_weight,
max_depth, and max_features. The n_jobs was set to -1 to enable the utilization
of all available processors for parallel processing, resulting in a faster training
process. The parameter class_weight=’balanced’ was used to account for any
imbalances in the classes within the dataset. It ensured that each class had an
equal influence during the training process. The parameter max_depth was set
to 7 to restrict the maximum depth of the decision trees in the Random Forest
algorithm. This was done to manage the complexity of the model and prevent
overfitting and based on the Boruta library explanation, it has been recommended
to set it from 3 to 7. The max_features=None, allowed the algorithm to use
all available features. The Boruta feature selector, named boruta_selector, was
initialized using a preconfigured Random Forest classifier. BorutaPy is a Python
implementation of the Boruta algorithm, which is based on tree-based classifica-
tions, specifically random forests. The Boruta feature selector was employed on
the dataset, using the feature set (X) and target variable (y). This step evaluated
the significance of each feature according to the criteria of the Boruta algorithm.
The boruta_selector.support_ attribute was utilized to determine features that
are considered essential by Boruta. The notable characteristics were subsequently
aggregated into a collection of string elements known as selected_features. In order
to finalize the set, an additional attribute, referred to as the target column, is
added to the list of chosen attributes. The function returned a tuple, which was
essentially a list that included the selected attributes and the total count of those
attributes. The parameter max_iter was established to 100 as its default mode
to specify the upper limit on the number of iterations that the Boruta algorithm
executes. If convergence was reached, it terminated prematurely. The parameter
n_estimators=’auto’ automatically determined the number of trees in the Random
Forest based on the size of the dataset. In addition, verbose=0 regulated the level
of verbosity during the Boruta feature selection procedure, where a value of 0
indicates that no output is displayed. In the following, the selected features by
Boruta are shown in figures 4.1, 4.2, and 4.3 for distance, velocity, and combination
of distance and velocity, respectively:

21

Feature Selection

Boruta for Distance
Distance__has_duplicate
Distance__length
Distance__percentage_of_reoccurring_datapoints_to_all_datapoints
Distance__fft_coefficient__attr_"real"__coeff_45
Distance__fft_coefficient__attr_"real"__coeff_49
Distance__fft_coefficient__attr_"abs"__coeff_50
Distance__fft_coefficient__attr_"angle"__coeff_87
Distance__range_count__max_1000000000000.0__min_0
is_pd

Table 4.1: Selected Features by Boruta for Distance

Boruta for Velocity
Velocity__length
Velocity__percentage_of_reoccurring_values_to_all_values
Velocity__percentage_of_reoccurring_datapoints_to_all_datapoints
Velocity__fft_coefficient__attr_"real"__coeff_89
Velocity__fft_coefficient__attr_"imag"__coeff_17
Velocity__fft_coefficient__attr_"abs"__coeff_17
Velocity__fft_coefficient__attr_"angle"__coeff_87
Velocity__range_count__max_1__min_-1
Velocity__agg_linear_trend__attr_"rvalue"__chunk_len_50__f_agg_"max"
is_pd

Table 4.2: Selected features by Boruta for Velocity

22

Feature Selection

Boruta for Distance and Velocity Combination
Distance__length
Distance__sum_of_reoccurring_values
Distance__fft_coefficient__attr_"abs"__coeff_17
Distance__range_count__max_1000000000000.0__min_0
Velocity__length
Velocity__percentage_of_reoccurring_values_to_all_values
Velocity__percentage_of_reoccurring_datapoints_to_all_datapoints
Velocity__fft_coefficient__attr_"imag"__coeff_17
Velocity__fft_coefficient__attr_"angle"__coeff_87
Velocity__range_count__max_1__min_-1
is_pd

Table 4.3: Selected Features by Boruta for Distance and Velocity Combination

4.3 Principle Component Analysis (PCA)
Dimension reduction is a widely used operation in the mainstream of image process-
ing. The Principle Component Analysis (PCA) model, which is a highly popular
method for reducing dimensions, has found extensive application in image pro-
cessing. This includes tasks such as image reconstruction, image denoising, image
recognition, image fusion, and subspace learning [18].

Principal Component Analysis (PCA) is a widely used unsupervised learning
method that enhances interpretability while simultaneously reducing information
loss. It facilitates the identification of the most prominent characteristics in a
dataset and simplifies the process of visualizing the data in both two and three
dimensions. Principal Component Analysis (PCA) facilitates the identification of a
series of linear combinations of variables.

This method employs dimensional reduction on the input dataset by reducing
the principal components that have less impact on its variance while preserving the
aspects of the dataset that have the greatest influence. Dimensionality refers to the
number of features or variables employed in the investigation. While these traits
may hold significant importance, their relevance may vary based on the specific
application. PCA is a technique used to detect patterns in data and represent the
data in a manner that emphasizes their similarities and differences. Due to the
complexity of high-dimensional data and the absence of graphical representation,
it is challenging to identify patterns in the data. PCA is a potent technique used
to analyze data. It achieves dimensionality reduction by projecting the original
data onto a lower-dimensional space defined by the K dominant eigenvectors of the
data’s covariance matrix [19].

23

Feature Selection

Correlation is a statistical term that quantifies the direction and intensity
of the linear relationship between two variables. In the context of Principal
Component Analysis (PCA), the covariance matrix is computed to represent the
pairwise correlations between all variables in the dataset. This matrix is square.
The primary elements of the data are computed utilizing the eigenvectors. The
eigenvectors of the covariance matrix represent the primary modes of variation in
the data.

Indeed, high-dimensional data, such as datasets with many variables, can make
it hard to see and analyze variable relationships. PCA and other dimensionality
reduction approaches keep the most important data while lowering the number of
variables. PCA transforms the original variables into a set of new variables known as
principal components. These components are formed through linear combinations
of the original variables. Each principle component is a linear combination of the
original variables. The first principal component represents the highest amount of
variation in the data, followed by the second principal component which captures
the second highest amount of variation, and so on. The dimensionality of the dataset
is determined by the number of main components utilized in the investigation. The
goal of PCA is to identify a reduced set of main components that capture the most
significant variation in the data.

Principal Component Analysis (PCA) is a method of linear transformation that
detects the directions in which the data exhibits the most amount of variation.
It then projects the data onto these directions, known as principal components.
Every principal component is a linear combination of the original variables, with
the first principal component capturing the highest amount of variance in the data,
followed by the second principal component capturing the second highest amount,
and so forth. The graph 4.1 displays two distinct main components, PC1 and PC2,
which are not dependent on each other. It should be noted that PC1 corresponds
to the eigenvector that accounts for the majority of the variance in the information.
PC2 represents a smaller amount of information (variance).

Explained variance is a statistical metric that quantifies the amount of variation
in a dataset that can be ascribed to each of the main components (eigenvectors)
produced by the principal component analysis (PCA) technique. The proportion of
the overall variance that is "accounted for" by each component has been informed
by PCA. It is crucial because it enables users to prioritize the components based
on their significance and concentrate on the most significant ones when evaluating
the analysis outcomes.

The concept of explained variance is valuable for evaluating the significance
of each component. Typically, the more the variance accounted for by a major
component, the more significant that component becomes. The measure of explained
variance can be utilized to determine the optimal number of dimensions to retain
in a reduced dataset. Additionally, it can be employed to evaluate the efficacy of

24

Feature Selection

Figure 4.1: Two distinct main components of PCA

the machine learning model. Typically, a model that has principal components
with a high degree of explained variation will have strong predictive capability,
whereas a model with principal components that have a low degree of explained
variance may not be as precise.

The concept of explained variance can be expressed mathematically by calculat-
ing the ratio of a specific eigenvalue to the sum of all eigenvalues associated with
the eigenvectors. If there are N eigenvectors, then the explained variance for each
eigenvector (principal component) can be calculated as the ratio of the eigenvalue
λi of the corresponding eigenvector and the sum of all eigenvalues (λ1 + λ2 + ... +
λn), stated as follows:

λi

λ1 + λ2 + ... + λn

(4.1)

It is important to remember that while performing eigen decomposition on a
transformation matrix, which is the covariance matrix in the case of principal
component analysis (PCA), a collection of eigenvectors and their corresponding
eigenvalues are obtained. The eigenvectors correspond to the principal components
that capture the majority of the information (variance) conveyed by the features
(independent variables). The explained variance ratio quantifies the amount of
variance that can be accounted for by a specific eigenvector.

SciKit-learn offers a useful tool called Pipeline that allows for the sequential
connection of transformers and a final classifier, which has been used in this thesis.
The pipeline consists of two primary components: Principal Component Analysis
(PCA) for reducing dimensionality and a Decision Tree Classifier for performing
classification. A decision tree is a machine learning algorithm that utilizes feature

25

Feature Selection

values to divide the data into branches and make decisions. Here, the decision
tree was employed for the purpose of classification. The Pipeline was created by
iterating through a list of tuples. Every tuple consisted of a name (a sequence of
characters) and an estimator (an object representing a machine-learning model or
transformer). In this instance, it was explicitly stated that the initial step was
Principal Component Analysis (PCA) referred to as ’pca’, and the subsequent step
was a Decision Tree Classifier denoted as ’tree’.

In addition, a graphical method was used to obtain the PCA outcomes, aiding
in the determination of the ideal number of principal components to retain by
considering the explained variance and a specified threshold. After data processing,
the PCA was initialized and fitted on the standardized data. Moreover, the
cumulative explained variance ratio from the PCA results and the first derivative of
the explained variance ratio were computed. Subsequently, the number of selected
features based on the first derivative and a specified threshold (20% of the inter-
quartile range) was determined as shown as 3 bar plots in figures 4.2, 4.3, and
4.4.

Figure 4.2: Comulative Explained Variance Plot of PCA for Distance

26

Feature Selection

Figure 4.3: Comulative Explained Variance Plot of PCA for Velocity

Figure 4.4: Comulative Explained Variance Plot of PCA for Distance and Velocity
Combination

27

Feature Selection

4.4 Scatter Plot
The progress in information technology has produced a surplus of data that typi-
cally exists in tabular formats, such as database tables and spreadsheets. Multiple
visualization techniques exist for representing multivariate or multidimensional
data. Scatter plots are a diverse, polymorphic, and generally beneficial approach. A
scatter plot is a graphical representation that can display two or three variables on a
two-dimensional or three-dimensional coordinate system. Visual characteristics are
commonly employed to depict supplementary values. Scatter plot visualizations are
highly valuable during the initial phases of analysis. They can effectively demon-
strate correlations and patterns in data with few dimensions, while also offering
a concise overview of a substantial amount of data. Landscape visualizations are
less effective than other methods for visual search and visual memory, particularly
when examining the relationship between two variables. Scatter plots have been
thoroughly examined to reduce both non-dimensional and dimensional data. How-
ever, the efficacy of these components declines as the number of dimensions and
data points grows. Furthermore, scatter plots are not effective in representing data
sets with a large number of dimensions due to the restricted mapping dimensions.
The excessive charting and overlapping of data points can impede the accuracy of
the derived information [20].

Scatter Plots of the first three principal components of PCA and the first three
features of Boruta were drawn to show outliers and categorize PD and HC. Outliers,
conversely, are data points that exhibit substantial deviation from the remaining
data. One can ascertain their identity based on their positioning in relation to the
majority of data points in a scatter plot.

Figures 4.5, 4.6, and 4.7 display scatter plots of distance, velocity, distance, and
velocity combination using PCA and figures 4.8, 4.9, and 4.10 display scatter plots
of distance, velocity, distance, and velocity combination using boruta.

28

Feature Selection

Figure 4.5: Scatter Plot of PCA for Distance

Figure 4.6: Scatter Plot of PCA for Velocity

29

Feature Selection

Figure 4.7: Scatter Plot of PCA for Distance and Velocity Combination

Figure 4.8: Scatter Plot of Boruta for Distance

30

Feature Selection

Figure 4.9: Scatter Plot of Boruta for Velocity

Figure 4.10: Scatter Plot of Boruta for Distance and Velocity Combination

31

Chapter 5

Classification

5.1 Overview on Machine Learning Classification

Machine learning is the process of training computers to acquire knowledge and
mimic human behavior through the input of data. It emphasizes the utilization of
information and the replication of human learning processes, systematically striving
for precision. Supervised learning involves training machines by utilizing labeled
data, which is often referred to as training data, in order to make predictions.
"Labeled Data" refers to information that has been assigned one or more names
and is already recognized by the computer. Supervised learning finds use in several
real-world scenarios such as image and object recognition, predictive analytics,
consumer sentiment analysis, spam detection, and numerous more. Supervised
learning models are taught by utilizing labeled data, which is often referred to as
training data, in order to make predictions. The primary purpose of the model
is to identify and classify fresh input data when assessed using a separate input
data set that was not utilized during the following training process. The computer
is equipped with the ability to identify and distinguish various patterns, shapes,
and differences. Moreover, it classifies recently found information by analyzing
similarities, patterns, structure, and differences, and predicts the accurate outcome.

Supervised learning addresses a range of computational challenges that arise in
real-world scenarios, such as spam detection, object and picture recognition, and
numerous others. It leverages historical data to enhance performance and forecast
outcomes based on prior experiences. The training data can be reused unless there
is any alteration in the features.

Supervised learning can be further classified into two problems which are:
Classification and Regression Classification is the systematic procedure of identifying
and segregating newly observed data in order to assign them to specific categories.

Machine Learning classification is the process of assigning a label to a given

32

Classification

input data set. The supplied data is categorized into several groups based on their
label [7]. In this study, the input data was assigned to two labels. "is_pd" has
been allocated labels of "1" or "0" here. If an individual had Parkinson’s disease,
the model predicted that the input data "is_pd" would result in a prediction of "1",
else it would predict "0". Moreover, 75% of the data frame has been designated
for training, while the remaining 25% has been allocated for testing. Furthermore,
the ’random_state’ was set to 80 to determine the seed for the random number
generator.

Supervised learning models can be utilized to build several commercial applica-
tions, some of which are enumerated below:

• Image and object recognition: Supervised learning techniques can be employed
to detect, separate, and categorize items from movies or photographs. They be-
come highly valuable when employed in various computer vision methodologies
and image analysis.

• Predictive analysis: One extensive application of supervised learning models
is in developing predictive analytics systems that provide deep insights into
various business data of interest. This enables enterprises to anticipate precise
results based on a given outcome characteristic, aiding business leaders in
justifying decisions or adapting to serve the organization.

• Customer Sentiment Analysis: By utilizing supervised learning algorithms
and associations, it is possible to extract and organize crucial facts from
vast amounts of information, including context, emotion, and intent, with
minimal human involvement. This can be quite beneficial in gaining a superior
comprehension of client interactions and can be employed to enhance brand
engagement efforts.

• Spam Detection: Companies can utilize classification techniques to construct
data sets that can discern patterns or irregularities in new data, effectively
distinguishing between spam and non-spam communications.

Supervised learning is concerned with creating a machine learning model that
can establish a relationship between the data and the outcome, allowing it to
predict the output for fresh data sources. It is the most precise subset of machine
learning. It is the most commonly employed form of machine learning and has
shown to be an exceptional tool in numerous industries.

5.2 K Nearest Neighbor (KNN)
KNN, short for K Nearest Neighbor, is a commonly used algorithm in the field of
artificial intelligence. It is employed for tasks such as classification and regression.

33

Classification

An exceptional feature of KNN is that it does not explicitly construct a model from
the training data, but rather memorizes the training patterns to make predictions
on new data. KNN operates by identifying the k nearest data points to a given
query point, based on a distance metric such as Euclidean or Manhattan distance.
The calculation assigns the value or importance of most of those k nearest neighbors
to the query location. KNN is a non-parametric algorithm that does not make any
assumptions about the distribution of the data and can do well on small datasets.
However, the effectiveness of KNN can be limited by the problem of dimensionality,
in which the distance between data points becomes less meaningful as the number
of features rises. The KNN algorithm can be employed to impute missing values
for both categorical and continuous data. The KNN algorithm can be employed to
identify the closest neighbors for continuous variables by utilizing the Euclidean
distance or another distance metric. Once the closest neighbors have been identified,
the missing value can be filled in by utilizing those neighbors’ average or middle
values. This approach assumes that the missing value is comparable to the values
of its closest neighbors. Therefore, the mean or median of the nearest neighbors
can be used to replace the missing value. The KNN algorithm can be employed to
identify the k-nearest neighbors of categorical variables. Using a similarity metric,
such as Jaccard similarity or cosine similarity, as a basis [21].

The k-nearest neighbors (k-NN) algorithm is a non-parametric, supervised
learning classifier that uses closeness to classify or predict the grouping of a
given data point. Although it has the capability to handle both regression and
classification issues, this technique is predominantly employed for classification
tasks. It operates on the underlying concept that points with similar characteristics
tend to be located in close proximity to each other. In classification problems, a class
label is assigned based on the majority vote, meaning that the label that appears
most frequently around a given data point is utilized. Although legally classified
as "plurality voting", the term "majority vote" is more frequently employed in the
literature. The differentiation lies in the fact that "majority voting" necessitates a
majority over 50%, which is most effective when there are solely two categories.
When dealing with numerous classes, such as four categories, it is not always
necessary to obtain 50% of the votes in order to determine the class. A class label
can be assigned if the vote exceeds 25%.

In summary, the objective of the k-nearest neighbor algorithm is to determine
the closest neighbors of a specified query location in order to provide a class label
to that point. To do this task, KNN has several prerequisites:

• To identify the data points that are nearest to a specific query point, it is
necessary to compute the distance between the query point and the other data
points. Distance measurements aid in the creation of decision borders, which
divide query points into distinct regions.

34

Classification

• The k value in the K-NN method specifies the number of neighbors that will
be examined to determine the categorization of a given query point. For
instance, when k is equal to 1, the instance will be allocated to the class that
its closest neighbor belongs to. Determining the value of k requires careful
consideration as selecting different values can result in either overfitting or
underfitting. less values of k can exhibit a greater amount of variation, but
have a less amount of systematic error, while bigger values of k can result in a
greater amount of systematic error and a smaller amount of variation. The
selection of k will primarily rely on the characteristics of the input data, as
datasets containing a higher number of outliers or noise are expected to yield
superior results when using larger values of k.

This study has implemented a method to determine the optimal value of k for
the KNN classifier. The approach involved iterating over a range of possible values
using a for loop and selecting the prediction with the highest score. Initially, the
variable prediction was assigned the value of negative infinity (’float(’-info)’). This
was done to guarantee that the initial prediction would consistently be regarded as
an enhancement. The code subsequently entered a loop wherein it iterated through
values of k ranging from 1 to 19, inclusively. The KNN model that has been trained,
was subsequently utilized to generate predictions on the test data by employing the
’predict_with_knn’ method. If the current prediction score exceeded the previous
highest ’prediction’ score, the variable ’prediction’ would be updated with the new
score. Upon the completion of the loop, the method returned the most accurate
’prediction’ obtained from the range of values for k. The optimal prediction was
the one that possessed the highest prediction score.

The K-NN technique has been widely used in various applications, mostly in
the field of classification. Several examples of these applications include:

• Data preprocessing: It involves handling missing values in datasets. One
approach to estimate these missing values is by the use of the KNN algorithm,
which performs a process called missing data imputation.

• Recommendation Engines: The KNN algorithm utilizes clickstream data from
websites to automatically suggest further material to consumers.

• Finance: It has also been applied in various finance and economic scenarios.

• Healthcare: KNN has been applied in the healthcare field to forecast the
likelihood of heart attacks and prostate cancer. The method operates by
computing the gene expressions with the highest probability.

• Pattern recognition: KNN has also been important in detecting patterns,
particularly in the classification of text and digits. This has been particularly

35

Classification

beneficial in discerning handwritten numerals that one may encounter on
documents or postal envelopes.

Similar to other machine learning algorithms, K-NN possesses both advantages
and disadvantages. The suitability of the option depends on the specific project
and its intended use.

• Advantages:

– Simple to execute: Due to the algorithm’s straightforwardness and preci-
sion, it is often one of the initial classifiers that a novice data scientist
will acquire.

– Demonstrates high adaptability: The algorithm adapts to incorporate any
new data by adjusting its parameters when additional training samples
are introduced, as all training data is stored in memory.

– Limited number of hyperparameters: KNN has specifically the k value
and the distance measure. This is in contrast to other machine learning
algorithms, making it relatively simpler.

• Disadvantages:

– Not scalable: Due to its sluggish nature, the KNN algorithm requires more
memory and data storage than other classifiers. This can incur significant
expenses in terms of both time and finances. Increased memory and
storage capacity will result in higher business expenditures, while larger
amounts of data may lead to longer computational times. Various data
structures, such as Ball-Tree, have been developed to tackle computational
inefficiencies. However, the choice of an appropriate classifier depends on
the specific business situation at hand.

– The dimensionality curse: The KNN algorithm is susceptible to the curse
of dimensionality, resulting in poor performance when dealing with high-
dimensional data inputs. This is also known as the peaking phenomenon,
where the algorithm reaches its optimal number of features and any more
features lead to an increase in classification mistakes, particularly when
the sample size is small.

– Susceptible to overfitting: Owing to the "curse of dimensionality", KNN
is also more susceptible to overfitting. Although feature selection and
dimensionality reduction techniques are used to avoid this situation, the
choice of k can also influence the behavior of the model.

36

Classification

5.3 Random Forest (RF)
The Random Forest Algorithm is very popular due to its user-friendly nature and
versatility, which allows it to efficiently address both classification and regression
problems. The algorithm’s efficacy resides in its capacity to manage intricate
datasets and alleviate overfitting, rendering it a viable instrument for diverse
prediction tasks in the field of machine learning.

Random Forrest (RF) is a general principle of solving the classifier combination
problem by utilizing base classifiers constructed like trees. A Random Forrest
Decision Tree is a tree that is generated randomly from a set of potential trees, with
random features being considered at each node. The term "at random" indicates
that each tree in the set has an equal probability of being selected, meaning that
the trees have a "uniform" distribution. The generation of random trees can be
accomplished with high efficiency, allowing for the combination of extensive sets
of trees. Randomly selecting trees typically results in precise models. Random
Forrest is a highly efficient approach for data mining that encompasses the tasks
of categorization and regression. It can categorize an object or instance into a
predetermined group of categories by considering its attributes, such as age or
gender. A Decision Tree begins at the root node and progresses downwards. The
starting point of the tree is called a root node whereas where the chain finishes
is known as the “leaf” node. Each internal node might have multiple branches
extending from it. A node symbolizes a specific attribute, whereas the branches
symbolize a spectrum of values [22].

The algorithm is explained briefly for each of the N iterations (N represents the
number of trees to construct) as follows:

• Sample Data Selection: The bootstrap method should be used to choose the
sample data set that will be used for model training. A bootstrap sample with
the same size as the training data is made for every tree.

• Growing the tree: Using splitting rules, the tree is fully grown on this bootstrap.
The tree is not trimmed.

• Attribute selection: For every node, only a random subset of the features of a
predetermined size is taken into account.

• The tree is preserved in its current state without any pruning. You can use
this tree to classify other types of data.

• Output: Each tree in the forest receives the variable vector as input, and each
tree provides a classification result (also known as a tree’s "votes") for a class.
Out of all the trees in the forest, the classification with the most votes is

37

Classification

chosen by the forest. The majority vote (classification) from each individually
trained tree is used to determine the overall prediction [22].

An ensemble of decision trees makes up a random forest. The ensemble technique
refers to the act of mixing multiple models. A set of models is employed to generate
predictions instead of relying on a single model.
Ensemble employs two distinct methodologies:

• Bagging: It refers to a machine learning ensemble method where multiple
models are trained independently on different subsets of the training data and
their predictions are combined to make a final output. It generates a distinct
subset of training data by randomly selecting samples with replacements, and
the final result is determined by a majority vote process. Bagging, also known
as Bootstrap Aggregation, serves as the ensemble technique in the Random
Forest algorithm.

• Boosting: It enhances the performance of weak learners by constructing sequen-
tial models in order to get the best accuracy in the final model. For instance,
ADA BOOST and XG BOOST. Boosting is an ensemble learning technique.
Multiple boosting techniques exist, with AdaBoost being the pioneering and
highly effective algorithm specifically designed for binary classification. Ad-
aBoost, short for Adaptive Boosting, is a widely used boosting algorithm that
merges numerous "weak classifiers" into a single "strong classifier" There exist
alternative boosting approaches.

The process of the Random Forest algorithm is described in the following:
• Sample data for model training will be selected using the bootstrap method.

A bootstrap sample of the same size as the training data is generated for each
tree.

• Tree growth: The bootstrap method is used to fully build the tree by applying
splitting rules. The tree remains unpruned.

• Attribute selection: Each node only considers a randomly selected subset of
the available characteristics, with a fixed size.

• No pruning is executed, and the tree is preserved in its current state. This
tree can be utilized to categorize more datasets.

• Each tree in the forest receives the variable vector as input and produces a
classification result, which is referred to as the tree’s ’vote’ for a class. The
forest selects the categorization with the highest number of votes, considering
all the trees in the forest. The overall forecast is determined by taking the
majority vote from all the separately trained trees, resulting in a classification
[22].

38

Classification

Key characteristics of Random Forest:

• Diversity: Individual trees are constructed without considering all traits,
resulting in each tree being unique.

• Resistant to the curse of dimensionality: As each tree does not take into
account all the features, the number of features is decreased.

• Parallelization: Each tree is generated autonomously using distinct data and
properties. This implies that we can utilize the entire processing power of the
CPU to construct random forests.

• Train-Test split: In a random forest, there is no need to separate the data into
training and testing sets because there will always be a 30% portion of the
data that is not used by the decision tree.

• Stability: It is achieved through the utilization of majority voting or averaging
to determine the outcome.

The Comparison of Decision Tree vs Random Forest is shown in table 5.1:
Random forest is an ensemble of decision trees; yet, there are notable variations in
their behavior.

Decision trees Random Forest
Decision trees often encounter the issue of
overfitting when they are allowed to develop
without any constraints.

Random forests are constructed using data
subsets, and the final result is determined by
calculating the average or majority ranking.
This approach effectively addresses the issue
of overfitting.

A solitary decision tree exhibits greater com-
putational efficiency.

It has a relatively slower pace.

When a decision tree receives a data set
containing features as input, it will generate
rules to make predictions.

The random forest algorithm collects obser-
vations in a random manner, constructs a
decision tree, and then calculates the average
outcome. It does not employ any predeter-
mined set of formulas.

Table 5.1: Comparison of Decision Tree vs Random Forest

Random forests are significantly more effective than decision trees when the
trees exhibit diversity and meet the required criteria.

Hyperparameters in random forests are utilized to optimize model performance
and predictive accuracy or to improve computational efficiency.
Hyperparameters to increase the predictive power:

• n_estimators: Number of trees the algorithm builds before averaging the
predictions.

39

Classification

• max_features: Maximum number of features random forest considers splitting
a node.

• mini_sample_leaf: Determines the minimum number of leaves required to
split an internal node.

• criterion: How to split the node in each tree? (Entropy/Gini impurity/Log
Loss)

• max_leaf_nodes: Maximum leaf nodes in each tree

Optimizing hyperparameters to enhance the speed:

• The parameter "n_jobs" specifies the number of processors that the engine is
permitted to utilize. When the value is 1, it is restricted to utilizing only one
processor. However, if the value is -1, there are no limitations imposed.

• The parameter "random_state" is used to regulate the level of unpredictabil-
ity in the sample. The model will consistently yield the same outcomes
when it possesses a fixed random state value and is provided with identical
hyperparameters and training data.

• The term "OOB" stands for "out of the bag". The method employed is a
cross-validation technique using a random forest algorithm. In this scenario,
one-third of the sample is allocated for evaluation purposes rather than being
utilized for training the data. These samples are referred to as out-of-bag
samples.

Within the scope of this research, the ’random_forest_classifier_init’ procedure
has encapsulated the procedure of initializing, training, and utilizing a Random
Forest classifier for tasks involving classification using ’train_random_forest_model’
and ’predict_with_random_forest’. Additionally, the scoring_type parameter
denoted that the method may assess the model’s performance using a particular
scoring metric.

Benefits of Random Forest:

• It is applicable in both classification and regression tasks.

• It addresses the issue of overfitting by determining the output through majority
vote or averaging.

• It has strong performance even in the presence of null or missing values in the
data.

• Each decision tree is autonomous and does not rely on the others, demonstrat-
ing the characteristic of parallelization.

40

Classification

• It exhibits excellent stability by aggregating responses from a substantial
number of trees.

• While constructing each decision tree, diversity is maintained by not consider-
ing all traits, however, this may not hold true in every situation.

• It is impervious to the negative effects caused by high-dimensional data. As
each tree does not take into account all the qualities, the feature space is
diminished.

• There is no need to partition the data into training and testing sets because
the decision tree created by Bootstrap will always have 30% of the data that
it has not seen.

Drawbacks of Random Forest:

• Random forest is far more intricate than decision trees, as it involves making
decisions by following the tree’s route.

• The training duration is longer compared to other models because of its
inherent complexity. Every decision tree must produce output for the provided
input data whenever it needs to make a prediction.

In conclusion, the random forest algorithm is an excellent option for those
seeking to construct a model quickly and effectively. One of its notable advantages
is its ability to effectively manage missing values. This technology is highly effective
and frequently utilized in numerous sectors due to its exceptional performance and
efficiency. The system is capable of processing binary, continuous, and categorical
data. In general, the random forest model is characterized by its speed, simplicity,
flexibility, and robustness, however, it does have certain limits.

5.4 Extreme Gradient Boosting (XGB)
Extreme Gradient Boosting (XGB) is a publically accessible library that pro-
ductively and effectively implements the gradient boosting algorithm to enhance
performance [23]. This algorithm utilizes parallel computing to expedite the gener-
ation of decision trees, resulting in increased efficiency. Parallelization is facilitated
by the use of base learners, which can alternate between external and internal loops.
Typically, the outer loop computes inner loop characteristics while generating the
decision tree’s leaves. The XGB algorithm primarily prioritizes depth, resulting
in improved computational performance. Another essential feature of XGB is
that optimizing the space available on the disk increases its usage capacity while
handling big datasets that do not fit in memory [24]. XGBoost is a technique used

41

Classification

for ensemble learning. Occasionally, it may be inadequate to solely depend on
the outcomes of a single machine-learning model. Ensemble learning provides a
methodical approach to merge the prediction capabilities of several learners. Bag-
ging and boosting are popular ensemble learning techniques, as mentioned before.
While these two techniques have the potential to be applied to many statistical
models, their most prevalent application has been in the context of decision trees.

• Bagging: Whereas decision trees are known for their high interpretability,
they also demonstrate significant variability in their behavior. If a single
training dataset is randomly split into two parts, each part can be used to
train a decision tree and obtain two models. When both of these models
are implemented, they will produce distinct outcomes. Decision trees are
commonly linked to high variance as a result of this characteristic.
Bagging or boosting aggregation techniques are effective in mitigating the
variance in any learning algorithm. The base learners of the bagging technique
consist of multiple decision trees that are generated simultaneously. The
learners are trained using data that has been sampled with replacement. The
ultimate forecast is the combined result obtained by averaging the outputs of
all the learners.

• Boosting: During the boosting process, the trees are constructed in a sequential
manner, with each succeeding tree specifically designed to minimize the errors
made by the previous tree. Every tree assimilates knowledge from its ancestors
and adjusts the leftover errors. Therefore, the subsequent tree in the sequence
will acquire knowledge from an enhanced version of the residuals.
The base learners utilized in boosting are weak learners characterized by a
strong bias and a predictive power slightly superior to random guessing. Each
of these weak learners provides crucial information for prediction, allowing the
boosting strategy to create a strong learner by skillfully merging these weak
learners. The ultimate robust learner reduces both the bias and the variation.

Unlike bagging methods such as Random Forest, which allows trees to grow to
their full potential, boosting employs trees with a reduced number of splits. These
small, superficial trees are highly susceptible to interpretation. Optimal selection
of parameters like as the number of trees or iterations, the learning rate of gradient
boosting, and the depth of the tree can be achieved by validation approaches like
k-fold cross validation. The presence of a high quantity of trees can potentially
result in overfitting. Therefore, it is imperative to meticulously select the stopping
criterion for boosting.
The gradient-boosting ensemble technique comprises three straightforward steps:

• A preliminary model, denoted as F0, is established to forecast the target
variable y. This model will be linked to the residual (y – F0).

42

Classification

• A new model, denoted as h1, is fitted to the residuals obtained from the
previous phase.

• Now, the combination of F0 and h1 results in F1, which is an amplified form
of F0. The mean squared error resulting from F1 will be lower than the mean
squared error resulting from F0.

F1(x) < −F0(x) + h1(x)
In order to enhance the performance of F1, we can replicate the residuals of F1

and construct a novel model, F2:

F2(x) < −F1(x) + h2(x)
This process can be repeated for ’m’ iterations until the residuals have been

decreased to the greatest extent possible.

Fm(x) < −Fm−1(x) + hm(x)
Distinctive Characteristics of XGBoost are explained in the following.

• Regularization: XGBoost offers the ability to apply penalties to complex mod-
els using both L1 and L2 regularization techniques. Regularization mitigates
the issue of overfitting.

• Dealing with data that is thinly distributed: Data sparsity can occur due
to missing values or data processing techniques such as one-hot encoding.
XGBoost utilizes a split finding method that is cognizant of sparsity, enabling
it to effectively handle various sorts of sparsity patterns present in the data.

• Weighted quantile sketch: It is a statistical technique used to estimate the
quantiles of a dataset, taking into account the weights assigned to each data
point. The majority of current tree-based algorithms are capable of identifying
the split points when the data points have equal weights, utilizing the quantile
sketch approach. Nevertheless, they lack the necessary capabilities to process
data with assigned weights. XGBoost utilizes a distributed weighted quantile
sketch algorithm to efficiently manage data with weights.

• Block structure for parallel learning: XGBoost has the capability to utilize
several cores on the CPU, which results in faster computing. This is achievable
due to the presence of a block structure in its system design. Information
is organized and stored in memory units known as blocks. Unlike previous
methods, this allows for the reutilization of the data layout in later iterations,
rather than recomputing it. This capability is especially beneficial for tasks
such as identifying splits and subsampling columns.

43

Classification

• Cache awareness: XGBoost necessitates non-sequential memory access to
retrieve gradient statistics based on row index. Therefore, XGBoost has been
specifically engineered to maximize the utilization of hardware resources. The
process involves assigning internal buffers to each thread, which serve as
storage for the gradient statistics.

• Out-of-core computing: This feature enhances the utilization of the available
disk space and maximizes its efficiency when managing large datasets that
exceed the memory capacity.

The advantages of XGBoost are listed subsequently.

• High accuracy: XGBoost is renowned for its exceptional accuracy and has con-
sistently demonstrated its superiority over other machine learning algorithms
in numerous predictive modeling applications.

• Scalability: XGBoost exhibits excellent scalability, enabling it to efficiently
process vast datasets containing millions of rows and columns.

• Efficiency: XGBoost is specifically engineered to possess high computational
efficiency, enabling rapid model training even on extensive datasets.

• Flexibility: XGBoost is capable of handling diverse data types and objectives,
encompassing regression, classification, and ranking tasks.

• Regularization: XGBoost employs regularization methods to prevent overfit-
ting and enhance generalization capabilities.

• Interpretability: XGBoost offers feature importance scores to aid consumers in
comprehending the significance of different aspects in producing predictions.

• Open-source: XGBoost is a freely available library that is extensively utilized
and endorsed by the data science community.

The xg_boost_classifier_init function was used in this study inside a class. The
objective of this procedure was to initialize and train an XGBoost classifier by
utilizing training data, and subsequently employ the trained model to generate
predictions on test data. The train_xg_boost_model was implemented to train an
XGBoost model using the given training data (train_data) and labels (train_labels).
The function produced the trained XGBoost model, referred to as xg_boost_model.
The scoring_type parameter signified that the method may assess the model’s
performance using a particular scoring metric.

44

Classification

5.5 Support Vector Machines (SVM)
Support Vector Machines (SVM) is an innovative statistical learning method that
has gained significant attention in the field of pattern recognition and machine
learning. According to the statistical learning theory, it focuses on the concept of
structural risk minimization (SRM) which enhances the ability to make accurate
predictions in a wide range of situations. SVM is applicable for both classification
and regression applications [25].

The goal of the support vector machine technique is to identify a hyperplane in
N-dimensional space (N being the number of features) that effectively separates the
data points into discrete classes. Support vector machines (SVMs) are a collection of
supervised learning techniques utilized for the purposes of classification, regression,
and the identification of outliers [26].

The benefits of support vector machines include:

• Efficient in spaces with a large number of dimensions.

• Remains effective when the number of dimensions exceeds the number of
samples.

• Utilizes a subset of training points known as support vectors in the decision
function, resulting in efficient memory usage.

• Flexible: many kernel functions can be designated for the decision function.
Standard kernels are available, however, users can also define their own custom
kernels.

The drawbacks of support vector machines encompass:

• When the number of features greatly exceeds the number of samples, it is
vital to carefully select Kernel functions and regularization terms in order to
prevent over-fitting.

• SVMs do not inherently offer probability estimates. Instead, these estimates
are obtained through a computationally intensive process known as five-fold
cross-validation [26].

This research utilized SVC class implementations to perform binary and multi-
class classification on a given dataset. Similar to previous classifiers, SVC, NuSVC,
and LinearSVC require two arrays as input: an array X with dimensions (n_samples,
n_features) containing the training samples, and an array y with class labels
(strings or integers) with dimensions (n_samples). Support Vector Machines
exhibit significant computational and storage demands that escalate proportionally
with the number of training vectors [26].

45

Classification

In this research, svm_model_classifier_init method was initialized within a
class. The objective of this procedure was to initialize and train a Support Vector
Machine (SVM) classifier by utilizing training data, and subsequently employ
the trained model to generate predictions on test data. The train_svm_model
method was used to train an SVM model using the given training data (train_data)
and labels (train_labels). The method yields two outputs: the trained SVM
model (svm_model) and a scaler (scaler) employed for feature scaling. Then the
predict_with_svm function was utilized to generate predictions on the test data
(test_data) using the trained SVM model and the scaler acquired during training.
Also, the scoring_type parameter indicated that the method may assess the model’s
performance using a particular scoring metric.

46

Chapter 6

Evaluation

6.1 Overview on Evaluation

The domain of assessment for information retrieval and natural language processing
systems is intricate. There exist two distinct forms of evaluation: qualitative
evaluation and quantitative evaluation. Qualitative evaluation involves requesting
feedback from users or user groups to determine if the output of an information
retrieval system is satisfactory or not. Qualitative evaluation mostly centers on
the subjective experiences of one or more users regarding a system. Quantitative
evaluation involves using a systematic method to measure and express the outcomes
of an information retrieval system in numerical form [8].

Quantitative evaluation serves various goals. There may also be distinct re-
strictions on the quantity of data utilized for training and evaluation. There are
situations where prioritizing high recall is more important than high precision,
while on other occasions, the converse is true [8].

A development set is utilized during the process of system development. A
development set refers to a collection of data that is used either to create rules
for an artifact or to train a machine learning system. In the field of machine
learning, the development set is commonly referred to as the training set. Its
purpose is to train the machine learning system. A portion of the training set can
be allocated for error analysis of the method, and the machine learning algorithm
can be fine-tuned based on the identified mistakes, a process known as parameter
tuning. This portion of the training dataset is referred to as the development test
set [8].

A separate test set is reserved just for evaluating the performance of the artifact.
This test set is not utilized during the development or training phases and is
commonly referred to as held-out data [8].

47

Evaluation

6.2 Cross-validation
In cases where data is limited, a technique known as k-fold cross-validation is
employed. This involves dividing the entire dataset into k folds, with k-1 folds used
for training and the remaining 1 fold used for evaluation. This process is repeated,
with the folds being switched each time until all folds have been trained and tested
on the remaining k-1 folds. Finally, an average is calculated based on the results.
In cross-validation, a subset of training data sets is generated and used to train
the machine learning model. Cross-validation is employed to address the issue of
overfitting [7], [8].

In this study, the number of folds (k) and random_state was set to 5 and 42,
respectively. The ’random_state’ parameter is frequently utilized in functions that
involve randomness to regulate the initial value for the random number generator.

6.3 Metrics
Precision and recall are two measures utilized to quantify the effectiveness of a
retrieval system. Precision is a metric that calculates the ratio of correct instances
retrieved to all retrieved instances, as shown in formula 6.1. The recall metric
calculates the ratio of correctly retrieved instances to all instances that should have
been retrieved, as shown in formula 6.2. Instances refer to entities within a text
or an entire document within a collection of documents (corpus) that have been
retrieved. A confusion matrix, as shown in the table 6.1, is commonly utilized to
elucidate the distinct entities.

The F1-score is a metric that represents the harmonic mean of precision and
recall. It is often referred to as the F score, which typically refers to the F1-score
specifically. The formula 6.3 provides the calculation for the F1-score. Accuracy
is a metric that quantifies the ratio of correctly identified occurrences, including
both positive and negative, out of all the instances that were identified. Accuracy
is calculated as the weighted average of precision and the inverse of precision, as
shown in formula 6.4 [8].

Positive predicted annotation Negative predicted annotation
Positive gold annotation True positive (tp) False negative (fn)
Negative gold annotation False positive (fp) True negative (tn)

Table 6.1: Confusion matrix: predicted annotation is what the algorithm retrieves
or annotates and gold annotation is what was marked up or annotated by a human

Precision : P = tp

tp + fp
(6.1)

48

Evaluation

Recall : R = tp

tp + fn
(6.2)

F − score : F1 = F = tp

tp + fn
(6.3)

Accuracy : A = tp + tn

tp + tn + fp + fn
(6.4)

49

Chapter 7

Results

This chapter presents the assessment of the feature selectors and classifiers. The
evaluation utilizes four metrics, namely Accuracy, F1 score, Precision, and Recall,
which have been previously specified in the previous chapter.

The results for both feature selectors, PCA and Boruta, have been categorized
into three groups:

• Distance signal

• Velocity signal

• Combination of distance and velocity signals

The data for each group has been partitioned into 5 folds using the cross-
validation technique. Furthermore, with the evaluation metrics for each fold, the
Mean and Standard Deviation (SD) values of the scores across all folds have been
documented for each classifier evaluation.

The number of selected features for each evaluation group is listed below.

• Number of selected features in PCA for distance: 10

• Number of selected features in PCA for velocity: 10

• Number of selected features in PCA for distance and velocity combination: 11

• Number of selected features in Boruta for distance: 9

• Number of selected features in Boruta for velocity: 10

• Number of selected features in Boruta for distance and velocity combination:
11

50

Results

7.1 PCA for Distance

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 0.8571 0.8571 1.0 0.7142 0.8333 0.8523 0.0908
RF 1.0 1.0 1.0 1.0 0.8333 0.9666 0.0666

XGB 1.0 0.8571 0.7142 0.8571 0.8333 0.8523 0.0908
SVM 1.0 1.0 1.0 0.8571 0.8333 0.9380 0.0761

Table 7.1: Accuracy of 5 folds of classifiers

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 0.8571 0.8888 1.0 0.75 0.8 0.8592 0.0850
RF 1.0 1.0 0.8888 1. 0.8 0.9377 0.0812

XGB 0.85714286 0.8571 0.75 0.8888 0.8 0.8306 0.0494
SVM 1.0 1.0 1.0 0.8571 0.8 0.9314 0.0859

Table 7.2: F1 score of 5 folds of classifiers

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 1.0 0.8 1.0 0.75 1.0 0.9099 0.1113
RF 1.0 1.0 0.5714 1.0 0.6666 0.8476 0.1890

XGB 1.0 1.0 0.75 0.8 1.0 0.9099 0.1113
SVM 1.0 1.0 1.0 1.0 1.0 1.0 0.0

Table 7.3: Precision of 5 folds of classifiers

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 0.75 1.0 1.0 0.75 0.6666 0.8333 0.1394
RF 1.0 1.0 1.0 1.0 0.6666 0.9333 0.1333

XGB 0.75 0.75 0.75 1.0 0.6666 0.7833 0.1130
SVM 1.0 1.0 1.0 0.75 0.6666 0.8833 0.1452

Table 7.4: Recall of 5 folds of classifiers

51

Results

7.2 PCA for Velocity

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 0.7142 0.7142 0.7142 0.7142 0.8333 0.7380 0.0476
RF 0.8571 1.0 0.7142 0.7142 0.6666 0.7904 0.1227

XGB 1.0 1.0 0.8571 0.8571 0.8333 0.9095 0.0743
SVM 1.0 0.8571 0.8571 0.7142 0.8333 0.8523 0.0908

Table 7.5: Accuracy of 5 folds of classifiers

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 0.8 0.8 0.8888 0.8 0.8571 0.8292 0.0371
RF 0.8888 1.0 0.75 0.75 0.75 0.8277 0.1015

XGB 1.0 1.0 0.75 0.8888 0.6666 0.8611 0.1337
SVM 1.0 0.8888 0.8888 0.75 0.8571 0.8769 0.0799

Table 7.6: F1 score of 5 folds of classifiers

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 0.6666 0.6666 0.75 0.6666 0.75 0.7 0.0408
RF 1.0 1.0 0.75 0.75 0.6 0.82 0.1568

XGB 1.0 1.0 0.75 0.8 1.0 0.9099 0.1113
SVM 1.0 0.8 0.8 0.75 0.75 0.82 0.0927

Table 7.7: Precision of 5 folds of classifiers

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 1.0 1.0 1.0 1.0 1.0 1.0 0.0
RF 1.0 1.0 0.75 0.75 1.0 0.9 0.1224

XGB 1.0 1.0 0.75 1. 0.6666 0.8833 0.1452
SVM 1.0 1.0 1.0 0.75 1.0 0.95 0.0999

Table 7.8: Recall of 5 folds of classifiers

52

Results

7.3 PCA for Distance and Velocity Combination

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 1.0 0.8571 0.7142 0.5714 0.8333 0.7952 0.1441
RF 1.0 1.0 0.7142 0.7142 0.8333 0.8523 0.1281

XGB 1.0 1.0 0.5714 0.7142 0.8333 0.8238 0.1660
SVM 1.0 1.0 0.8571 0.7142 0.8333 0.8809 0.1085

Table 7.9: Accuracy of 5 folds of classifiers

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 1.0 0.8888 0.8 0.6666 0.8571 0.8425 0.1094
RF 1.0 1.0 0.8888 0.8571 0.8571 0.9206 0.0658

XGB 1.0 1.0 0.75 0.75 0.8571 0.8714 0.1120
SVM 1.0 1.0 0.8888 0.75 0.8571 0.8992 0.0942

Table 7.10: F1 score of 5 folds of classifiers

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 1.0 0.8 0.6666 0.6 0.75 0.7633 0.1367
RF 1.0 1. 0.6666 1.0 0.75 0.8833 0.1452

XGB 1.0 1.0 0.6 0.75 0.75 0.82 0.1568
SVM 1.0 1.0 0.8 0.75 0.75 0.86 0.1157

Table 7.11: Precision of 5 folds of classifiers

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 1.0 1.0 1.0 0.75 1.0 0.95 0.0999
RF 1.0 1.0 1.0 0.75 1.0 0.95 0.0999

XGB 1.0 1.0 0.75 0.75 1.0 0.9 0.1224
SVM 1.0 1.0 1.0 0.75 1.0 0.95 0.0999

Table 7.12: Recall of 5 folds of classifiers

53

Results

7.4 Boruta for Distance

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 1.0 1.0 1.0 1.0 1.0 1.0 0.0
RF 1.0 1.0 1.0 0.9705 1.0 0.9941 0.0117

XGB 0.9705 0.9705 0.9705 0.9705 1.0 0.9764 0.0117
SVM 1.0 1.0 1.0 1.0 1.0 1.0 0.0

Table 7.13: Accuracy of 5 folds of classifiers

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 1.0 1.0 1.0 1.0 1.0 1.0 0.0
RF 1.0 1.0 1.0 0.9703 1.0 0.9940 0.0118

XGB 0.9703 0.9703 0.9703 0.9703 1.0 0.9762 0.0118
SVM 1.0 1.0 1.0 1.0 1.0 1.0 0.0

Table 7.14: F1 score of 5 folds of classifiers

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 1.0 1.0 1.0 1.0 1.0 1.0 0.0
RF 1.0 1.0 1.0 0.9687 1.0 0.9937 0.0124

XGB 0.9687 0.9687 0.9687 0.9687 1.0 0.975 0.0125
SVM 1.0 1.0 1.0 1.0 1.0 1.0 0.0

Table 7.15: Precision of 5 folds of classifiers

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 1.0 1.0 1.0 1.0 1.0 1.0 0.0
RF 1.0 1.0 1.0 1.0 1.0 1.0 0.0

XGB 0.9736 0.9736 0.9736 0.9736 1.0 0.9789 0.0105
SVM 1.0 1.0 1.0 1.0 1.0 1.0 0.0

Table 7.16: Recall of 5 folds of classifiers

54

Results

7.5 Boruta for Velocity

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 0.7941 0.6764 0.7352 0.7941 0.7647 0.7529 0.0440
RF 1.0 1.0 1.0 0.9705 1.0 0.9941 0.0117

XGB 0.9705 0.9705 0.9705 0.9705 1.0 0.9764 0.0117
SVM 1.0 1.0 1.0 1.0 1.0 1.0 0.0

Table 7.17: Accuracy of 5 folds of classifiers

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 0.7939 0.6761 0.7350 0.7939 0.7647 0.7527 0.0440
RF 1.0 1.0 1.0 1.0 1.0 1.0 0.0

XGB 0.9703 0.9703 0.9703 0.9703 1.0 0.9762 0.01185
SVM 1.0 1.0 1.0 1.0 1.0 1.0 0.0

Table 7.18: F1 score of 5 folds of classifiers

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 0.7986 0.7586 0.7588 0.7986 0.7765 0.7782 0.0178
RF 1.0 1.0 1.0 0.9687 1.0 0.9937 0.0124

XGB 0.9687 0.9687 0.9687 0.9687 1.0 0.975 0.0125
SVM 1.0 1.0 1.0 1.0 1.0 1.0 0.0

Table 7.19: Precision of 5 folds of classifiers

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 0.8017 0.7035 0.7491 0.8017 0.7754 0.7663 0.0369
RF 1.0 1.0 1.0 0.9736 1.0 0.9947 0.0105

XGB 0.9736 0.9736 0.9736 0.9736 1.0 0.9789 0.0105
SVM 1.0 1.0 1.0 1.0 1.0 1.0 0.0

Table 7.20: Recall of 5 folds of classifiers

55

Results

7.6 Boruta for Distance and Velocity Combina-
tion

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 0.8823 0.8823 0.9117 0.8823 0.9411 0.9 0.0235
RF 1.0 1.0 1.0 0.9705 1.0 0.9941 0.0117

XGB 0.9705 0.9705 0.9705 0.9705 1.0 0.9764 0.0117
SVM 1.0 1.0 1.0 1.0 1.0 1.0 0.0

Table 7.21: Accuracy of 5 folds of classifiers

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 0.8819 0.8807 0.9116 0.8819 0.9403 0.8993 0.0236
RF 1.0 1.0 1.0 0.9703 1.0 0.9940 0.0118

XGB 0.9703 0.9703 0.9703 0.9703 1.0 0.9762 0.0118
SVM 1.0 1.0 1.0 1.0 1.0 1.0 0.0

Table 7.22: F1 score of 5 folds of classifiers

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 0.8823 0.8807 0.9166 0.8823 0.9403 0.9004 0.0240
RF 1.0 1.0 1.0 0.9687 1.0 0.99375 0.01249

XGB 0.9687 0.9687 0.9687 0.9687 1.0 0.975 0.0125
SVM 1.0 1.0 1.0 1.0 1.0 1.0 0.0

Table 7.23: Precision of 5 folds of classifiers

Classifiers Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev
KNN 0.8877 0.8807 0.9210 0.8877 0.9403 0.9035 0.0231
RF 1.0 1.0 1.0 0.9736 1.0 0.9947 0.0105

XGB 0.9736 0.9736 0.9736 0.9736 1.0 0.9789 0.0105
SVM 1.0 1.0 1.0 1.0 1.0 1.0 0.0

Table 7.24: Recall of 5 folds of classifiers

7.7 Results Summary
In this section, a summary of the reported results is listed to compare the Mean
value for each feature selector and the classifier used in that

56

Results

PCA for Distance (Mean ± Std.Dev.)
Classifiers Accuracy F1 score Precision Recall

KNN 0.8523 ± 0.0908 0.8592 ± 0.0850 0.9099 ± 0.1113 0.8333 ± 0.1394
RF 0.9666 ± 0.0666 0.9377 ± 0.812 0.8476 ± 0.1890 0.9333 ± 0.1333

XGB 0.8523 ± 0.0908 0.8306 ± 0.0494 0.9099 ± 0.1113 0.7833 ± 0.1130
SVM 0.9380 ± 0.0761 0.9314 ± 0.0859 1.0 ± 0.0 0.8833 ± 0.1452

PCA for Velocity (Mean ± Std.Dev.)
KNN 0.7380 ± 0.0476 0.8292 ± 0.0371 0.7 ± 0.0408 1.0 ± 0.0
RF 0.7904 ± 0.1227 0.8277 ± 0.1015 0.82 ± 0.1568 0.9 ± 0.1224

XGB 0.9095 ± 0.0743 0.8611 ± 0.1337 0.9099 ± 0.1113 0.8833 ± 0.1452
SVM 0.8523 ± 0.0908 0.8769 ± 0.0799 0.82 ± 0.0927 0.95 ± 0.0999

PCA for Distance and Velocity combination (Mean ± Std.Dev.)
KNN 0.7952 ± 0.1441 0.8425 ± 0.1094 0.7633 ± 0.1367 0.95 ± 0.0999
RF 0.8523 ± 0.1281 0.9206 ± 0.0658 0.8833 ± 0.1452 0.95 ± 0.0999

XGB 0.8238 ± 0.1660 0.8714 ± 0.1120 0.82 ± 0.1568 0.9 ± 0.1224
SVM 0.8809 ± 0.1085 0.8992 ± 0.0942 0.86 ± 0.1157 0.95 ± 0.0999

Table 7.25: Results summary of PCA

Boruta for Distance (Mean ± Std.Dev.)
Classifiers Accuracy F1 score Precision Recall

KNN 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
RF 0.9941 ± 0.0117 0.9940 ± 0.0118 0.9937 ± 0.0124 1.0 ± 0.0

XGB 0.9764 ± 0.0117 0.9762 ± 0.0118 0.975 ± 0.0125 0.9789 ± 0.0105
SVM 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Boruta for Velocity (Mean ± Std.Dev.)
KNN 0.7529 ± 0.0440 0.7527 ± 0.0440 0.7782 ± 0.0178 0.7663 ± 0.0369
RF 0.9941 ± 0.0117 1.0 ± 0.0 0.9937 ± 0.0124 0.9947 ± 0.0105

XGB 0.9764 ± 0.0117 0.9762 ± 0.0118 0.975 ± 0.0125 0.9789 ± 0.0105
SVM 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Boruta for Distance and Velocity combination (Mean ± Std.Dev.)
KNN 0.9 ± 0.0235 0.8993 ± 0.0236 0.9004 ± 0.0240 0.9035 ± 0.0231
RF 0.9941 ± 0.0117 0.9940 ± 0.0118 0.9937 ± 0.0124 0.9947 ± 0.0105

XGB 0.9764 ± 0.0117 0.9762 ± 0.0118 0.975 ± 0.0125 0.9789 ± 0.0105
SVM 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Table 7.26: Results summary of Boruta

57

Chapter 8

Conclusion and Future
Development

8.1 Conclusion
Parkinson’s disease is a progressive disorder that impacts the neurological system
and the bodily functions regulated by the nerves. This has a significant impression
on a vast number of individuals globally. The onset of symptoms is gradual. So
monitoring and conducting follow-ups on PD are both effective and crucial. As
per the criteria issued by the Movement Disorder Society, the finger-tapping test
(FTT) is commonly used to assess bradykinesia. The data regarding these patterns
was presented in the vision-based 3D Parkinson’s disease (PD) hand dataset. This
dataset comprises 133 video clips of finger-tapping, including recordings of 35
PD patients and 60 healthy controls. This attempt has examined the motion
of the index and thumb digits as they approach and separate from one another.
Subsequently, Python libraries were employed to obtain the distance and velocity
data of these movements. The subsequent activity was employing the tsfresh library
for the purpose of extracting features. The Boruta and Principal Component
Analysis (PCA) methods were applied to identify significant features to remove
redundant features. Moreover, numerous supervised machine learning classification
methods have been assessed to ascertain the presence or absence of Parkinson’s
disease in an individual. The algorithms encompassed in this set are K-Nearest
Neighbors, Random Forests, Extreme Gradient Boosting, and Support Vector
Machine. In addition, Cross-validation with 5 folds was used to mitigate the
problem of overfitting. Ultimately, the machine-learning models were evaluated
using the criteria of accuracy, precision, recall, and f1-score.
According to the results, the highest percentage of evaluating metrics of the classifier
were as follows:

58

Conclusion and Future Development

• PCA:

– For the "Distance" dataset: "RF"
– For the "Velocity" dataset: "XGB"
– For the "Distance and Velocity Combination" dataset: "RF"

• Boruta:

– For the "Distance" classifier: "SVM" and "KNN"
– For the "Velocity" classifier: "SVM"
– For the "Distance and Velocity Combination" dataset: "SVM"

According to the results obtained, the combination of Boruta as the feature selector
and Support Vector Machine as the classifier demonstrated the best performance
across all four metrics. This point should be noted that obtaining 100% in some
metrics is probably due to data scarcity.
In conclusion, this research proposes an approach for conducting a finger-tapping
test for Parkinson’s disease (PD) patients using 3D vision technology. The findings
outlined in this study indicate that the suggested system has the potential to be a
valuable tool for assisting clinicians in Parkinson’s disease follow-up.

8.2 Future Development
This section explores future development prospects aimed at improving patient
quality of life during the Parkinson’s disease period. These advancements have the
potential to significantly enhance patient care and well-being, opening the door to
a more sympathetic and practical method of treating Parkinson’s disease.

• Enhanced Diagnostic Precision
This study serves as a basis on which a vision-based analytic approach for
three-dimensional hand movement can be used to diagnose PD. In the future,
efforts may be aimed at improving the accuracy of the diagnostic model. There
is obvious scope for improvement by widening the data set and encompassing
different phases of disease and minor variances in movement patterns within
Parkinson’s disease. The developmental model could also fine-tune how it
differentiates between distinct levels of illness development in PD.

• Real-Time Monitoring and Early Intervention
Given the advances in technology, developing this model into a real-time
monitoring system would be an interesting area for further research. A real-
time monitoring system may make it possible for early detection of such changes

59

Conclusion and Future Development

that are associated with the progression of PD. This is critical considering
that the success of neurodegenerative disorders management depends on when
one intervenes during this process.

• Incorporation of Multimodal Data
Future developments would involve the inclusion of multi-modal data with
a view to improve the model’s accuracy and resilience. The existing study
is dedicated to the analysis of hand movements; however, integration of
these data with voicing aspects, gait analysis as well as clinical examinations
can potentially yield more precise results regarding diagnosing PD patients.
Integration of these two parameters would provide an improved diagnostic
mechanism that incorporates a wider range of symptoms.

• Personalized Treatment Plans
While the above-mentioned model lays emphasis on diagnosis, the next stage
could focus on individualized therapies. In this regard, the model would
help identify movement patterns that are related to individual answers to
specific therapeutic approaches in order to design tailored therapy strategies
applicable to PD patients. Such an individualized approach can help to
enhance treatment results and enhance general well-being in patients suffering
from Parkinson’s illness.

• Collaboration with Healthcare Professionals
The future is here as machine learning models and healthcare professionals
work together to address AI advances in healthcare. Developers should consider
a smooth flow of the developed mode into the day-to-day clinic. It also includes
close collaboration with health care providers to make sure that the model
matches the present diagnostic procedures and complementary the decisions
made during a clinical situation.

• Assessing Disease Progression
Developing new models that can determine the progression of Parkinson’s
disease is an area worth pursuing in future studies. Using different kinds of
rating scales like the MDS-UPDRS could improve the evaluation of how the
disease progresses over time. The utilization of artificial intelligence algorithms
on movement recordings will give a numerical indication of the degree of insult
and allow tracking of PD progression.

In conclusion, this thesis provided an outline for further insightful investigations
into Parkinson’s disease follow-up. By acknowledging these potentialities, one
can work towards developing more accurate, focused, and efficacious strategies to
address this prevalent neurodegenerative disorder.

60

Conclusion and Future Development

61

Bibliography

[1] Gianluca Amprimo, Irene Rechichi, Claudia Ferraris, and Gabriella Olmo.
«Objective Assessment of the Finger Tapping Task in Parkinson’s Disease
and Control Subjects using Azure Kinect and Machine Learning». In: 2023
IEEE 36th International Symposium on Computer-Based Medical Systems
(CBMS). 2023, pp. 640–645. doi: 10.1109/CBMS58004.2023.00293 (cit. on
pp. 1, 2, 8–10).

[2] Renee M. Hendrick and Mohammad T. Khasawneh. «An Investigation into
the Use and Meaning of Parkinson’s Disease Clinical Scale Scoresn». In: (May
2021). doi: 10.1155/2021/1765220 (cit. on p. 1).

[3] Zhilin Guo, Weiqi Zeng, Taidong Yu, Yan Xu, Yang Xiao, Xuebing Cao, and
Zhiguo Cao. «Vision-Based Finger Tapping Test in Patients With Parkinson’s
Disease via Spatial-Temporal 3D Hand Pose Estimation». In: IEEE Journal
of Biomedical and Health Informatics 26.8 (2022), pp. 3848–3859. doi: 10.
1109/JBHI.2022.3162386 (cit. on pp. 1, 3, 11).

[4] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas Kempa-Liehr.
«Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh
– A Python package)». In: Neurocomputing 307 (May 2018). doi: 10.1016/j.
neucom.2018.03.067 (cit. on pp. 2, 11).

[5] Hongwei Wang. «A method of feature selection for continuous features base
on similarity degrees of interval numbers». In: 2013 International Conference
on Information and Network Security (ICINS 2013). 2013, pp. 1–5. doi:
10.1049/cp.2013.2464 (cit. on pp. 2, 18).

[6] Dingcheng Feng, Feng Chen, and Wenli Xu. «Efficient leave-one-out strategy
for supervised feature selection». In: Tsinghua Science and Technology 18.6
(2013), pp. 629–635. doi: 10.1109/TST.2013.6678908 (cit. on pp. 2, 19).

[7] Vinod Jain and Mayank Agrawal. «Heart Failure Prediction Using XGB
Classifier, Logistic Regression and Support Vector Classifier». In: 2023 Inter-
national Conference on Advancement in Computation Computer Technologies
(InCACCT). 2023, pp. 1–5. doi: 10.1109/InCACCT57535.2023.10141752
(cit. on pp. 2, 3, 33, 48).

62

https://doi.org/10.1109/CBMS58004.2023.00293
https://doi.org/10.1155/2021/1765220
https://doi.org/10.1109/JBHI.2022.3162386
https://doi.org/10.1109/JBHI.2022.3162386
https://doi.org/10.1016/j.neucom.2018.03.067
https://doi.org/10.1016/j.neucom.2018.03.067
https://doi.org/10.1049/cp.2013.2464
https://doi.org/10.1109/TST.2013.6678908
https://doi.org/10.1109/InCACCT57535.2023.10141752

BIBLIOGRAPHY

[8] Hercules Dalianis. «Evaluation Metrics and Evaluation». In: Clinical Text
Mining: Secondary Use of Electronic Patient Records. Cham: Springer Inter-
national Publishing, 2018, pp. 45–53. isbn: 978-3-319-78503-5. doi: 10.1007/
978-3-319-78503-5_6. url: https://doi.org/10.1007/978-3-319-
78503-5_6 (cit. on pp. 3, 47, 48).

[9] Yan-Ya Chen, Bing-Sheng Guan, Ze-Kai Li, Qiao-Hong Yang, Tian-Jiao Xu,
Han-Bing Li, and Qin-Yang Wu. «Application of telehealth intervention in
Parkinson’s disease: A systematic review and meta-analysis». In: Journal of
Telemedicine and Telecare 26.1-2 (2020). PMID: 30153767, pp. 3–13. doi:
10.1177/1357633X18792805. eprint: https://doi.org/10.1177/1357633
X18792805. url: https://doi.org/10.1177/1357633X18792805 (cit. on
p. 4).

[10] Daniel Palacios-Alonso, Guillermo Meléndez-Morales, Agustín López-Arribas,
Carlos Lázaro-Carrascosa, Andrés Gómez-Rodellar, and Pedro Gómez-Vilda.
«MonParLoc: A Speech-Based System for Parkinson’s Disease Analysis and
Monitoring». In: IEEE Access 8 (2020), pp. 188243–188255. doi: 10.1109/
ACCESS.2020.3031646 (cit. on pp. 4, 5).

[11] Jonathan A. Stamford, Peter N. Schmidt, and Karl E. Friedl. «What Engi-
neering Technology Could Do for Quality of Life in Parkinson’s Disease: A
Review of Current Needs and Opportunities». In: IEEE Journal of Biomedical
and Health Informatics 19.6 (2015), pp. 1862–1872. doi: 10.1109/JBHI.2015.
2464354 (cit. on pp. 5, 6).

[12] Surekha Tadse, Muskan Jain, and Pankaj Chandankhede. «Parkinson’s De-
tection Using Machine Learning». In: 2021 5th International Conference on
Intelligent Computing and Control Systems (ICICCS). 2021, pp. 1081–1085.
doi: 10.1109/ICICCS51141.2021.9432340 (cit. on p. 6).

[13] Junjie Li, Huaiyu Zhu, Haotian Wang, Bo Wang, Zhidong Cen, Dehao Yang,
Peng Liu, Wei Luo, and Yun Pan. «A Three-Dimensional Finger-Tapping
Framework for Recognition of Patients With Mild Parkinson’s Disease». In:
IEEE Transactions on Neural Systems and Rehabilitation Engineering 31
(2023), pp. 3331–3340. doi: 10.1109/TNSRE.2023.3296883 (cit. on p. 7).

[14] Saman Siadati. Fundamentals of Python programming. Apr. 2018. doi: 10.
13140/RG.2.2.13071.20642 (cit. on p. 10).

[15] Maximilian Christ. Overview on extracted features. Accessed on 16/07/2023.
2023. url: https://tsfresh.readthedocs.io/en/latest/text/list_of_
features.html#overview-on-extracted-features (cit. on p. 12).

63

https://doi.org/10.1007/978-3-319-78503-5_6
https://doi.org/10.1007/978-3-319-78503-5_6
https://doi.org/10.1007/978-3-319-78503-5_6
https://doi.org/10.1007/978-3-319-78503-5_6
https://doi.org/10.1177/1357633X18792805
https://doi.org/10.1177/1357633X18792805
https://doi.org/10.1177/1357633X18792805
https://doi.org/10.1177/1357633X18792805
https://doi.org/10.1109/ACCESS.2020.3031646
https://doi.org/10.1109/ACCESS.2020.3031646
https://doi.org/10.1109/JBHI.2015.2464354
https://doi.org/10.1109/JBHI.2015.2464354
https://doi.org/10.1109/ICICCS51141.2021.9432340
https://doi.org/10.1109/TNSRE.2023.3296883
https://doi.org/10.13140/RG.2.2.13071.20642
https://doi.org/10.13140/RG.2.2.13071.20642
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html#overview-on-extracted-features
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html#overview-on-extracted-features

BIBLIOGRAPHY

[16] Renjun Wang, Nigela Tuerxun, and Jianghua Zheng. «Scaling effects of chloro-
phyll content in walnut leaves estimations with coupling Boruta algorithm and
machine learning model». In: 2023 11th International Conference on Agro-
Geoinformatics (Agro-Geoinformatics). 2023, pp. 1–5. doi: 10.1109/Agro-
Geoinformatics59224.2023.10233602 (cit. on p. 20).

[17] Miron B. Kursa and Witold R. Rudnicki. «Feature Selection with the Boruta
Package». In: Journal of Statistical Software 36.11 (2010), pp. 1–13. doi:
10.18637/jss.v036.i11. url: https://www.jstatsoft.org/index.php/
jss/article/view/v036i11 (cit. on p. 20).

[18] Danyang Wu, Han Zhang, Feiping Nie, Rong Wang, Chao Yang, Xiaoxue Jia,
and Xuelong Li. «Double-Attentive Principle Component Analysis». In: IEEE
Signal Processing Letters 27 (2020), pp. 1814–1818. doi: 10.1109/LSP.2020.
3027462 (cit. on p. 23).

[19] Wayo Puyati and Aranya Walairacht. «Efficiency Improvement for Uncon-
strained Face Recognition by Weightening Probability Values of Modular
PCA and Wavelet PCA». In: 2008 10th International Conference on Advanced
Communication Technology. Vol. 2. 2008, pp. 1449–1453. doi: 10.1109/ICACT.
2008.4494037 (cit. on p. 23).

[20] Quang Vinh Nguyen, Mao Lin Huang, and Simeon Simoff. «Enhancing Scatter-
plots with Start-plots for Visualising Multi-dimensional Data». In: 2020 24th
International Conference Information Visualisation (IV). 2020, pp. 80–85.
doi: 10.1109/IV51561.2020.00023 (cit. on p. 28).

[21] Rishabh Bathija, Vanshika Bajaj, Chandni Megnani, Jasmine Sawara, and
Sanjay Mirchandani. «Revolutionizing Recruitment: A Comparative Study
Of KNN, Weighted KNN, and SVM - KNN for Resume Screening». In: 2023
8th International Conference on Communication and Electronics Systems
(ICCES) (2023), pp. 834–840. url: https://api.semanticscholar.org/
CorpusID:260387560 (cit. on p. 34).

[22] Ch. Ravi Sekhar, Minal, and E. Madhu. «Mode Choice Analysis Using Random
Forrest Decision Trees». eng. In: Transportation Research Procedia 17 (2016),
pp. 644–652. issn: 2352-1465 (cit. on pp. 37, 38).

[23] Asad Ullah, Huma Qayyum, Muhammad Khateeb Khan, and Fawad Ah-
mad. «Sepsis Detection Using Extreme Gradient Boost (XGB): A Supervised
Learning Approach». In: 2021 Mohammad Ali Jinnah University Interna-
tional Conference on Computing (MAJICC). 2021, pp. 1–6. doi: 10.1109/
MAJICC53071.2021.9526260 (cit. on p. 41).

64

https://doi.org/10.1109/Agro-Geoinformatics59224.2023.10233602
https://doi.org/10.1109/Agro-Geoinformatics59224.2023.10233602
https://doi.org/10.18637/jss.v036.i11
https://www.jstatsoft.org/index.php/jss/article/view/v036i11
https://www.jstatsoft.org/index.php/jss/article/view/v036i11
https://doi.org/10.1109/LSP.2020.3027462
https://doi.org/10.1109/LSP.2020.3027462
https://doi.org/10.1109/ICACT.2008.4494037
https://doi.org/10.1109/ICACT.2008.4494037
https://doi.org/10.1109/IV51561.2020.00023
https://api.semanticscholar.org/CorpusID:260387560
https://api.semanticscholar.org/CorpusID:260387560
https://doi.org/10.1109/MAJICC53071.2021.9526260
https://doi.org/10.1109/MAJICC53071.2021.9526260

BIBLIOGRAPHY

[24] P. Nagaraj, M. Venkat Dass, Erukala Mahender, and Kallepalli Rohit Kumar.
«Breast Cancer Risk Detection using XGB Classification Machine Learning
Technique». In: 2022 IEEE International Conference on Current Development
in Engineering and Technology (CCET). 2022, pp. 1–5. doi: 10.1109/CCET5
6606.2022.10080076 (cit. on p. 41).

[25] Alireza Kazemi, Reza Boostani, Mahmoud Odeh, and Mohammad Rasmi
AL-Mousa. «Two-Layer SVM, Towards Deep Statistical Learning». In: 2022
International Engineering Conference on Electrical, Energy, and Artificial
Intelligence (EICEEAI). 2022, pp. 1–6. doi: 10.1109/EICEEAI56378.2022.
10050469 (cit. on p. 45).

[26] F. Pedregosa et al. «Scikit-learn: Machine Learning in Python». In: Journal
of Machine Learning Research 12 (2011), pp. 2825–2830 (cit. on p. 45).

65

https://doi.org/10.1109/CCET56606.2022.10080076
https://doi.org/10.1109/CCET56606.2022.10080076
https://doi.org/10.1109/EICEEAI56378.2022.10050469
https://doi.org/10.1109/EICEEAI56378.2022.10050469

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Literature Survey
	Overview on Parkinson's Disease
	Disease Follow-up
	Finger Tapping Test

	Data Set and Feature Extraction
	Resources and Techniques
	System for the acquisition and processing of data
	Participants and Experimental Session

	Python Libraries
	Distance and Velocity Signals
	Feature Extraction by tsfresh Library

	Feature Selection
	Overview on Feature Selection
	Boruta
	Principle Component Analysis (PCA)
	Scatter Plot

	Classification
	Overview on Machine Learning Classification
	K Nearest Neighbor (KNN)
	Random Forest (RF)
	Extreme Gradient Boosting (XGB)
	Support Vector Machines (SVM)

	Evaluation
	Overview on Evaluation
	Cross-validation
	Metrics

	Results
	PCA for Distance
	PCA for Velocity
	PCA for Distance and Velocity Combination
	Boruta for Distance
	Boruta for Velocity
	Boruta for Distance and Velocity Combination
	Results Summary

	Conclusion and Future Development
	Conclusion
	Future Development

	Bibliography

