
POLITECNICO DI TORINO
Master of Science Degree in Mechatronic Engineering

Master Degree Thesis

Enabling Autonomous Multi-Floor
Navigation for Robots in ROS2 using

Behavior Trees

Supervisor
Prof. Marina Indri

Candidate
Minchu You

December 2023

Supervisors at LINKS Foundation
Dott. Gianluca Prato
Dott. Francesco Aglieco

Abstract

In today’s rapidly evolving world, service robots are assuming critical roles in diverse
fields, ranging from manufacturing and agriculture to healthcare. These mobile robots
are required to process advanced navigation capabilities, allowing them to move seam-
lessly within multi-floor layouts. While traditional navigation solutions have excellent
development in guiding robots through single-level environments, the challenge lies in
enabling autonomous robots to understand the structural elements connecting different
floors, such as elevators and stairs.

The research work addressing these problems has been developed in collaboration
with the LINKS Foundation, which conducts exploration across various domains, such as
AI, IoT, Cyber-physical and autonomous systems. This thesis aims to investigate exist-
ing navigation approaches and explore novel solutions to recognize and interact with the
environment (e.g., with automated doors, furniture, and elevators) to enable navigation
across floors in a building using Automated Guided Vehicle (AGV). The Robot Operating
System 2 (ROS2) Navigation2 (Nav2) stack serves as a powerful tool for robot naviga-
tion, offering a wide range of functions and algorithms for path planning and obstacle
avoidance. Additionally, behavior trees have emerged as a high-level control framework
for designing and modelling the robot actions, enabling the implementation of complex
behaviors while providing insight into the execution process.

This thesis extends the existing open-source ROS2 libraries by incorporating behavior-
tree based behaviors and navigation planners/controllers to support navigation across
floors. Simulation has been tested in Gazebo and Rviz with the two-storey office build-
ing at LINKS in Turin chosen as the environment. Following that, the application of
these concepts to real-world robot navigation and a discussion on their applicability are
included.

Contents

1 Introduction 4
1.1 Researches on multi-floor navigation . 5
1.2 ROS2 framework . 8

1.2.1 Main innovations . 8
1.2.2 Node-based architecture . 9

1.3 Navigation2 stack . 11
1.3.1 Navigation server . 12
1.3.2 TF tree . 13
1.3.3 Gazebo and Rviz . 15

2 Behavior trees 17
2.1 Behavior trees concepts . 17

2.1.1 History . 17
2.1.2 Nodes and Trees . 19

2.2 Behavior trees in ROS2 . 24
2.2.1 Behavior-tree library . 24
2.2.2 Behavior-tree Navigator . 28

3 Multi-floor navigation 32
3.1 Behavior tree plugin . 35

3.1.1 Action node plugin . 36
3.1.2 Decorator node plugin . 37
3.1.3 Custom behavior tree . 39

3.2 Navigator plugin . 41
3.3 Elevator server . 42

3.3.1 Open door service . 42
3.3.2 Move to floor service . 43

3.4 Simulation . 43

4 Implementation 49
4.1 SwitchBot . 49

4.1.1 MQTT protocol . 51
4.1.2 SwitchBot server . 53

4.2 Turtlebot3 . 57

2

4.2.1 TurtleBot3 Waffle Pi . 57
4.3 Test . 58

4.3.1 Map creating . 59
4.3.2 Real environment test . 63

5 Conclusion 67

3

Chapter 1

Introduction

In the realm of rapidly evolving robotics and autonomous systems, navigating through
complex environments with precision and adaptability is a great challenge. While tradi-
tional navigation solutions have been well-developed in guiding robots through single-level
environments [1], the demand for robots to operate in multifloor layouts has grown signif-
icantly. Such environments typically consist of several flat areas connected by elevators or
stairs, requiring robots to make more intelligent and innovative solutions in the navigation
process.

This thesis is developed in cooperation with LINKS Foundation, a non-profit organi-
zation that aims to promote, lead and strengthen the innovation processes in various areas
such as: Artificial Intelligence, connected systems and IoT, cybersecurity, advanced cal-
culation and satellite systems. The two-storey office building of LINKS in Turin serves as
the simulation environment for multi-floor navigation. The structure’s details and further
information are provided in the main body of the text.

The Robot Operating System 2 is a set of software libraries and tools that are used
to build robot applications. However, the navigation stack it provided does not support
movement in complex multi-floor environments. This work enhances the ROS2 navigation
stack by extending the libraries to enable autonomous robots to traverse between different
floors by applying a novel behavior tree-based control system. Real-world scenarios are
tested following successful simulations to evaluate the practicability of the approach.
Here is a brief description about the content of the chapters.

Chapter 1: This chapter explores the history of multi-floor navigation, outlining the
framework of the ROS2 and its navigation stack.

Chapter 2: This chapter provides the concept of behavior trees and their development
in robotics, with a particular focus on the structure of behavior trees and their integration
with the navigation system.

Chapter 3: This chapter explains the limitations of the default navigation system and
presents the method of integrating new nodes into the behavior tree library to facilitate
an autonomous multi-floor navigation process.

Chapter 4: This chapter discusses the simulation method applied in real-world sce-
narios to evaluate the practicality of the multi-floor navigation process.

4

Introduction

1.1 Researches on multi-floor navigation
The concept of robot navigation has been put forward in the 20th Century. Early robotic
systems relied heavily on physical markers to define paths, and these were the first in-
stances of programmed navigation [2]. These paths were basic and required a simple envi-
ronment where changes were minimal and predictable. The first mobile robot (Fig. 1.1),
known as ’Shakey the Robot’ [3], demonstrated basic navigation and obstacle avoidance
capabilities. It utilized a combination of basic movement and cameras to interact with
its environment. The robot could perform tasks in a simple environment, moving around
and manipulating objects based on its perception and internal map of the world.

Figure 1.1: Shakey the Robot [3]

In these early stages, navigation systems were constrained by the limited processing
ability [4]. Robots processed large amounts of sensor data to understand their surround-
ings, which was a challenge for the computation capabilities of that time. Despite the
limitations, these efforts established the foundation for modern navigation systems, pre-
senting the importance of perception and processing in robotics.

In the 1970s and 1980s, advancements in sensor technology enabled robots to detect
nearby objects with higher precision and to create more accurate maps. The develop-
ment of the Simultaneous Localization and Mapping (SLAM) algorithm attracted great
attention during the 1980s and 1990s. Early SLAM algorithms were based on Extended
Kalman Filters (EKF) [5], which integrated noisy sensor data to produce estimates of
the robot’s position and the map of the environment. As these techniques evolved, they
overcame the challenges of robot localization in areas with unreliable or unavailable GPS
signals by using landmarks to generate maps and determine the robot’s position relative
to these points of reference (Fig. 1.2).

The development of more advanced sensors, like Light Detection and Ranging (LI-
DAR), changed the field. LIDAR provided high-resolution distance measurements, allow-
ing for more detailed and accurate maps [7]. These advancements in hardware required

5

Introduction

Figure 1.2: Landmark-Based navigation using SLAM [6]

improvements in computational methods. Graph-based SLAM methods were developed,
allowing for more robust performance in larger and more complex environments [8]. The
work of Kurt et al. [9] presented an approach for navigation in hybrid maps consisting of a
topological graph overlaid with local occupancy grids, which can be efficiently optimized
for very large environments and deal with changes to the map.

The rise of autonomous mobile robots appeared in the late 20th century. Robots
began transitioning from predetermined paths and manual control to true autonomy,
making decisions based on sensor input and internal models of the world. A significant
development in this field was the invention of Dijkstra’s algorithm, followed by the A*
algorithm, which built upon it. Dijkstra’s algorithm was developed by Edsger W. Dijk-
stra, which is a classic algorithm for finding the shortest path in weighted graphs and
networks [10]. A* was created as part of the Shakey project by Peter Hart et al. [11]
It combines the best features of Dijkstra’s algorithm and achieves better performance by
using intuitive strategies to guide its search.

Multi-floor navigation presents unique challenges in the field of robotics due to the
three-dimensional complexity it introduces. Robots must not only navigate flat surfaces
but also recognize and traverse vertical facilities, like stairs and elevators. The intro-
duction of 3D SLAM technologies allowed robots to perceive and map environments in
three dimensions. This improvement was crucial for multi-floor navigation. Researchers
like Andrew [12] made significant contributions to this field by integrating vision-based
and range-based sensors to create three-dimensional maps. Additionally, Nitin et al. [13]

6

Introduction

introduced the concept of using a cost graph to represent a multi-floor structure, thereby
enabling autonomous multi-floor navigation for a team of robots. Within this framework,
a global planning mechanism calculates and compares the weights of each path, consid-
ering both the travel distance within the same floor and the cost of moving to a different
floor via stairs or an elevator.

Today, multi-floor navigation is no longer limited to the research laboratories but is
significantly enhancing efficiency and functionality in various domains. In the service
and hospitality industry, robots like Savioke’s Relay (Fig. 1.3a) are becoming common
[14]. These robots can autonomously deliver items to guests’ rooms in hotels, navigating
corridors and using elevators. Similarly, in hospitals, robots such as Aethon’s TUG
(Fig. 1.3b) autonomously transport medications and supplies, interfacing with elevators
and automatic doors to move between floors efficiently [15].

(a) Relay Autonomous Delivery Robot [16] (b) TUG Autonomous Mobile Robot [17]

Figure 1.3

In this implementation, the ROS2 Navigation2 packages are employed to execute
the multi-floor navigation process. An elevator server is utilized to transport the robot
between floors. The main innovations include:

• Development of an improved BT (Behavior-Tree) navigator integrated within the
ROS2 Navigation2 framework, capable of identifying whether the destination is on
the current floor or a different one, and adjusting the navigation strategy appropri-
ately.

• Implementation of a decision-making process within the navigation system, allowing
the robot to recognize and adapt to multi-floor environments.

7

Introduction

• Utilization of behavior trees to control the robot’s actions, ensuring smooth and
autonomous navigation across various floors of a structure.

• Introduction of a custom elevator server that communicates with the robot, helping
the use of elevators for efficient vertical traversal in buildings.

1.2 ROS2 framework
ROS2, or Robot Operating System 2, represents a significant evolution in the landscape
of robotics software development. It is an open-source middleware that is specifically
designed to provide a robust framework for the complex and varied demands of robotic
software engineering. As the successor to ROS1, ROS2 preserves the original’s capacity
to promote the development and management of robot systems but also solves and fixes
many of the limitations previously encountered [18].

With ROS2, engineers and researchers can efficiently manage the lifecycle of their
robot’s software, from initial development to deployment and maintenance. The system
architecture of ROS2 is designed with a focus on distributed computing, enabling robots
to operate autonomously within a networked framework.

1.2.1 Main innovations

The inception of the Robot Operating System, commonly referred to as ROS, marked
an important moment in the field of robotics. ROS1 revolutionized the way that robotic
applications were developed and deployed. Nevertheless, with the rapid advancement of
the robotic field, ROS1 was not enough to support the usage in higher-demanding systems
because of its limitations. ROS2, born out of the need for innovation and adaptation, has
emerged as a significant evolution, addressing these limitations and accommodating to
the dynamic and diverse requirements of modern robotic systems. Notable advancements
in ROS2 include:

• Real-Time Capabilities. One of the most notable innovations in ROS 2 is its ability
to support real-time capabilities, addressing the limitations of ROS 1 in this regard
[19]. The need for real-time performance became increasingly significant as robots
moved into more safety-critical and time-sensitive applications, such as autonomous
vehicles and industrial robots.

• Lifecycle Management. ROS2 has an improved focus on the lifecycle management
of nodes, which makes it easier to manage the state and transitions of various
parts of a robotic system. By following a well-defined state machine, nodes behave
predictably, which is essential for debugging and for systems that require high
reliability.

• Middleware Abstraction. ROS2 introduced middleware abstraction as a fundamen-
tal feature, allowing developers to decouple the middleware from the core of the
framework. This innovation enables ROS2 to ingratiate to different deployment
needs by supporting various middleware implementations (e.g., DDS, FastRTPS)
[20]. The difference structure between ROS1 and ROS2 can be seen in Fig. 1.4.

8

Introduction

• Security Enhancements. ROS2 introduces several significant security enhancements
to make it suitable for applications where security is a top priority. The mechanisms
for authentication ensure that nodes can verify the identity of the communicating
process [21]. This helps prevent unauthorized access and data tampering.

• Multiple Language Support. ROS1 mainly centered around the use of the Python
programming language for scripting, while ROS2 introduces support for multiple
programming languages, including C++. This enables the flexibility for developers
to choose the language that best suits the requirements of their robotic application
to enhance the performance.

Figure 1.4: The difference between ROS1 and ROS2 [22]

1.2.2 Node-based architecture

As a powerful framework for robotic development, ROS2 offers a comprehensive set of
core functions and capabilities that allow developers to create, control, and coordinate
complex robotic systems. A node-based architecture serves as the fundamental structure
that underpins the entire framework. In ROS2, a robotic system is composed of individual
units known as nodes [23]. These nodes form the building blocks of the system, each
with a specific role and responsibility. These nodes enable seamless communication,
coordination, and control of robotic components. Here are some applications:

• Publish-Subscribe Communication. Publish-Subscribe communication facilitates
the exchange of data between nodes within a robotic system. In this communication
model, nodes are categorized into publishers and subscribers. Publishers broadcast
messages, while subscribers receive and process those messages. This paradigm
offers an efficient, event-driven method for nodes to share information, making it a
base of ROS2’s communication architecture. The process is shown in Fig. 1.5:

9

Introduction

Figure 1.5: Publish-Subscribe Communication [24]

• Service-Client Communication. Service-Client communication facilitates request-
response interactions between nodes. This communication model allows nodes to
provide and consume services, where the service server offers a particular functional-
ity, and another node (the service client) can request and receive that functionality.
Service-Client communication is essential for arranging actions, making real-time
requests, and executing tasks that involve multiple steps. The process is presented
in Fig. 1.6:

Figure 1.6: Service-Client Communication [25]

10

Introduction

• Action Servers and Clients. Action servers and clients facilitate multi-step, goal-
oriented actions. Actions are more complex compared with the request-response
model of Service-Client communication, typically involving tasks that require mul-
tiple steps or feedback. This process consists of three parts: a goal, feedback and
a result. In this communication model, one or more nodes act as action servers,
offering specific action capabilities, while others act as action clients, requesting
and monitoring the progress of these actions. The process is displayed in Fig. 1.7:

Figure 1.7: Action Servers and Clients [26]

• Parameter Management. Parameter management enables nodes to store and share
configuration settings, variables, and other runtime parameters. Parameters are
used to adjust and configure the behavior of nodes and the overall robotic system.
ROS2 provides a centralized and standardized way to manage parameters (e.g.,
integers, floats, booleans, strings), making it easier to maintain and reconfigure
nodes and applications.

1.3 Navigation2 stack

The Navigation2 stack is a critical and essential part of ROS2 framework. It addresses
the significant challenges of enabling robots to navigate autonomously in diverse and un-
predictable environments. As a core element of ROS2’s ecosystem, Navigation2 includes
a set of packages and libraries that equip robots with the ability to move, sense, and re-
act in real time. The package provides an extensive collection of tools and algorithms to
handle complex robotic tasks, such as path planning, obstacle avoidance and sensor data

11

Introduction

processing. Moreover, it makes use of the ROS2’s architectural foundations, including its
node-based architecture and communication functions, which enhance its effectiveness.

1.3.1 Navigation server

The navigation server serves as the foundation of the overall structure of Navigation2
stack. It is designed to guide robots through real-world spaces and is responsible for
planning, controlling, and executing the autonomous movement of robots in diverse en-
vironments [27]. The structure of Navigation2 is present in Fig. 1.8. Controllers and
planners are the "brain" of a navigation process. Recovery behaviors deal with the prob-
lem when robots encounter difficulties, offering solutions to potential issues and enhancing
the system’s fault tolerance. Smoothers optimize the planned path. A detailed introduc-
tion to these components and their roles in the navigation process is provided in this
section.

Figure 1.8: Nav2 architecture [28]

Planner Server

The primary function of the planner server is to consider the current location of a robot
and its target position in terms of coordinates, and then to calculate optimal routes
for guiding the robot to that predefined destination within a complex environment. The
routes could be the shortest path, a complete coverage path, or along sparse or predefined
routes, depending on the configuration of the planners. The objective of all routes is to
enable robots to navigate safely, efficiently, and intelligently.

12

Introduction

Controller Server

The controller server, previously known as local planners in ROS1, is responsible for
ensuring the precise execution of navigation routes generated by the planner server. While
the planner server calculates high-level navigation paths, the controller server translates
these paths and breaks them down into a series of control commands that guide the
robot’s movements. Its primary function is to supervise the execution of these plans,
adjusting the robot’s trajectory as it navigates through the dynamic and challenging
environment.

Behavior Server

The behavior server is integrated with the behavior trees, allowing for a dynamic ap-
proach to managing robot actions. One of the significant aspects of the behavior server
is handling recovery behaviors. The recovery behavior server is designed to deal with
unknown or failure conditions that robots may encounter during navigation. The obsta-
cles may include dynamic objects, temporary blockages, or items that did not initially
appear on the navigation map. While the planners and the controllers focus on guiding
the robot through a known and expected environment, the recovery server manages the
unforeseen challenges to ensure that the robot can recover gracefully. This could involve
backing up or spinning in place, attempting an alternative path, or even moving from a
poor location into free space.

Smoother Server

The general task of a smoother server is to receive a path from the planner server and
output an enhanced version. It concentrates on improving the path’s quality by consider-
ing factors that may influence the robot’s movement, such as kinematics and acceleration.
One of the crucial functions of the smoother server is to solve issues related to abrupt
movements that may arise when following the navigation path. It aims to minimize these
sudden changes in velocity or direction, and to increase the distance from obstacles and
high-cost areas.

Waypoint Following

Waypoint following is often utilized in conjunction with planners. A path is typically
represented as a sequence of waypoints that define the route for the robot. The primary
function of waypoint following is to provide precise control of the robot’s movement.

1.3.2 TF tree

The TF tree (transform tree) in Nav2 is a data structure that organizes the frames in a
robot system and manages the relationships between them dynamically [29]. Each frame
represents a coordinate system through which the positions of robots, sensors, and other
objects can be expressed.

The TF library in ROS2 is responsible for maintaining the TF tree. It works by
broadcasting and listening to transform messages that describe the relationships between

13

Introduction

different frames. These messages contain the relative positions and orientations between
a child frame and its parent frame.

For instance, a simple robot (Fig. 1.9) might have a "base_link" frame representing
its mobile base center, and a "base_laser" frame for the center of a mounted laser sensor.
Data from the laser is transformed from the "base_laser" frame to the "base_link" frame
to help the robot avoid obstacles. This relationship is defined in the TF tree,

Figure 1.9: Base_link and base_laser frame in a robot

The structure of the TF tree used in the navigation process is presented in Fig. 1.10,
with explanations provided for some of the main frames.

Figure 1.10: TF tree in Navigation2

• map frame: A global frame that represents a stationary reference on the map where
all static objects are assumed to be fixed.

• odom frame: A local frame that represents the position and orientation of the
robot based on odometry, which can move over time and provides relative motion
information.

• base_footprint frame: This is usually a two-dimensional projection of the robot on
the ground. It’s the reference for the robot’s contact with the floor or the ground.

14

Introduction

• base_link frame: This is the robot’s main body frame, from which positions and
motions of all other parts of the robot are defined.

• base_scan frame: This frame is associated with a laser scanner or LIDAR sensor
on the robot. It’s the reference point from which scan data is measured.

1.3.3 Gazebo and Rviz

In the realm of robot navigation, the importance of testing and validation can not be
ignored. Ensuring that robots navigate in the environment with accuracy and safety is a
complex task that requires extensive experimentation. To facilitate this, some powerful
tools are utilized: Gazobo and Rviz.

Gazebo is an open-source, 3D robotics simulator that has gained popularity in the re-
search and development communities. It offers a comprehensive, physics-based simulation
environment, enables the modeling of complex building structure and robotic platforms
[30]. It also supports the integration of various sensors, such as LiDAR and cameras,
which makes it a powerful tool for testing perception capabilities.

ROS Visualization (Rviz) is another necessary tool that complements Gazebo in the
simulation environment. It enables real-time visualization of robot sensor data, assisting
in the assessment of the navigation process performance [31]. With its interactive inter-
face, users can manipulate robots and environments during the development and testing
phases.

Fig. 1.11 is an example of the interface of Gazebo and Rviz. It is better to supply
Rviz with a map for robot navigation. The map typically consists of two files: a PGM file
and a YAML file. The PGM file is a gray scale image where black indicates obstacles, white
represents free space, and shades of gray represent unknown areas. This file serves as
the visual layout of the map. The accompanying YAML file (Listing 1.1) contains detailed
data for the PGM file, including the path to the image file, the map’s spatial resolution, a
3-element array that defines the 2D pose of the lower-left pixel in the map, and thresholds
for occupied and free spaces. Pixels with an occupancy probability above the ’occupied’
threshold are considered fully occupied, while those below the ’free’ threshold are consid-
ered completely free.

1 image : turtlebot3_world .pgm
2 resolution : 0.050000
3 origin : [-10.000000 , -10.000000 , 0.000000]
4 negate : 0
5 occupied_thresh : 0.65
6 free_thresh : 0.196

Listing 1.1: Turtlebot3_world.yaml

15

Introduction

(a) Gazebo interface

(b) Rviz interface

Figure 1.11: Tools utilized in the simulation

16

Chapter 2

Behavior trees

The aim of this chapter is to give a comprehensive understanding of Behavior Trees. It
begins with a historical overview, tracing the origins of behavior trees from the video
game industry and their transition into the domain of robotics and AI. Then a detailed
introduction about the nodes and structure of behavior trees is provided. Following
this, the chapter focuses on the integration of behavior trees and ROS2, understanding
the tools, libraries, and methodologies that have emerged within the ROS2 system to
facilitate the implementation of BTs.

2.1 Behavior trees concepts

A Behavior Tree is a hierarchical and graphical representation of decision-making logic,
mainly used to control the flow of decisions and actions in artificial agents. The tree
structure includes a series of tasks and breaks them into nodes. Each node represents a
decision or an action, and the tree effectively decides the sequence or priority in which
these tasks should be executed.

One of the obvious advantages of behavior trees, compared with traditional decision-
making structures like Finite State Machines (FSMs), is their modularity and flexibility
[32]. Behavior trees allow for additions, modifications, or deletions of nodes without
interfering with the overall flow of the tree, ensuring consistent performance when the
environment or state changes.

2.1.1 History

The roots of behavior trees can be traced back to the video game industry of the early
2000s [33]. Game developers had an increased demand for non-player characters (NPCs)
to exhibit more complex and realistic behaviors. They needed NPCs to react dynamically
to player actions, environmental changes, and even other NPCs. At that time Finite State
Machines were the model for NPC’s behavior. However, as the number of states increased
to accommodate the more sophisticated behaviors, FSMs became not only harder to
manage but also difficult to modify or add new behaviors. As in the example illustrated
in Fig. 2.1, when adding or removing a state, it is necessary to change the conditions of

17

Behavior trees

all other states that have a connection to the new or old one, which makes it easier to
pass errors unconsciously.

Figure 2.1: Finite State Machine [34]

When Bungie Studios began developing "Halo 2" [35], a 2004 first-person shooter
game, they realized the FSM system used in the original "Halo" game would be insufficient.
They wanted to provide more dynamic combat and smarter AI NPCs. Damian Isla, a
notable AI developer at Bungie, supported the use of Behavior Trees for "Halo 2". A
simplified BT of "Halo 2" is present in Fig. 2.2. BTs offered a hierarchical structure,
allowing developers to define behaviors at multiple levels. This meant that high-priority
behaviors (like taking over when in danger) would interrupt lower-priority behaviors (like
patrolling an area), making NPCs more reactive and intelligent. The success of BTs in
"Halo 2" led to their continued use in subsequent "Halo" games and served as a model for
other game developers [36].

Researchers in robotics were facing challenges similar to game developers. Robots
need to operate in dynamic environments, interact with unpredictable elements and make
decisions in real time. The foundational idea for behavior-based control in robotics was
proposed by Rodney Brooks [37]. He introduced a list of behaviors that could function
alternatively, laying the foundation for behavior-based control in robotics. This initial
concept was later expanded into a more structured, tree-like organization of behaviors.
This structure allowed for more complex and dynamic control systems for robots. Recent

18

Behavior trees

Figure 2.2: Simplified Halo 2 behavior tree

works propose BTs as a multi-mission control framework for various types of robots,
including UAVs (Unmanned Aerial Vehicles) [38], robotic manipulation systems, and
multi-robot systems [39].

ROS used the early integration of BTs as plugins or packages [40], which reduced the
difficulty of the design and execution of complex robotic behaviors. ROS2 was designed
with modularity, real-time capabilities, and enhanced security. These features are suited
perfectly to the principles of BTs. ROS2 used deeper integration for BTs with tools and
libraries, making it easier to create and design complex and layered robotic behaviors.

2.1.2 Nodes and Trees

Nodes are the core function of behavior trees, which represent tasks or decisions. The
process by which a BT executes its nodes is controlled by a concept known as a "tick"
[41]. A tick is actually a signal that activates a node, informing it to perform its function.
During a BT’s execution cycle, ticks are propagated from the root of the tree down to
its branches, visiting nodes by sequence. When a node receives a tick, it executes its
callback and returns a status: SUCCESS, FAILURE, or RUNNING. RUNNING means that the

19

Behavior trees

action needs more time to return a valid result. This status determines how the tree
continues its execution. There are several different types of nodes. Root node is where
the tick starts. Every behavior tree has one root, and it determines which child nodes
get ticked based on the logic and their status. Detailed information about other nodes is
presented below.

Control Node

• Sequence Node. The sequence node ticks its children sequentially, from left to right.
It fails as soon as one child returns FAILURE and only succeeds if all children return
SUCCESS. Sequence node includes "Sequence", "ReactiveSequence", and "SequenceS-
tar" [42]. The difference between them can be found in Table 2.1. "Restart" means
that the entire sequence is restarted from the first child of the list, and "Tick again"
means that the next time the sequence is ticked, the same child is ticked again.
Previous children, which returned SUCCESS already, are not ticked again.

Type of SequenceNode Child returns FAILURE Child returns RUNNING
Sequence Restart Tick again

ReactiveSequence Restart Restart
SequenceStar Tick again Tick again

Table 2.1: Type of SequenceNode

The tree in Fig. 2.3 represents the behavior of a robot entering a room. In this
example, the first tick from the root node sets the Sequence node to RUNNING.
Then the sequence node ticks the first child "OpenDoor", which returns SUCCESS.
As a result, "EnterRoom" and later "CloseDoor" are ticked. Once the last child
is completed, the sequence node changes from RUNNING to SUCCESS. If any child
returns FAILURE, the subsequent children will not be ticked and the sequence node
will switch from RUNNING to FAILURE.

• Fallback Node. Fallback node ticks its children from left to right, but succeeds
as soon as one child returns SUCCESS. It only fails if all children return FAILURE.
Fallback node includes "Fallback" and "ReactiveFallback" [43]. The difference be-
tween them can be found in Table 2.2. "Restart" means that the entire fallback
is restarted from the first child of the list, and "Tick again" means that the next
time the fallback is ticked, the same child is ticked again. Previous children, which
returned FAILURE already, are not ticked again.

Type of FallbackNode Child returns RUNNING
Fallback Tick again

ReactiveFallback Restart

Table 2.2: Type of FallbackNode

20

Behavior trees

Figure 2.3: Example of a sequence node.

The tree in Fig. 2.4 represents different strategies to enter a room. In this exam-
ple, the fallback node gets ticked by the sequence node and changes its status to
RUNNING. If the first child returns SUCCESS, the subsequent children will not be
ticked and the fallback node will return SUCCESS. On the contrary, if the first child
returns FAILURE, "OpenDoor" and "SmashDoor" will be ticked. If all the children
return FAILURE, the fallback node will return FAILURE and "EnterRoom" will not
be ticked.

Figure 2.4: Example of a fallback node.

21

Behavior trees

Decorator Node

It modifies the behavior or the status of their single child. A decorator can only have
one child. Examples include "InverterNode", "RepeatNode", and "RetryNode" [44]. "In-
vertNode" will return SUCCESS if the child fails and return FAILURE if the child succeeds.
"RepeatNode" ticks the child up to a preset time as long as the child returns SUCCESS,
while "RetryNode" ticks as long as the child returns FAILURE.

The tree in Fig. 2.5 presents an example of decorator nodes. An inverter with a
node "IsDoorOpen" is the same with "IsDoorClosed". The times of repeating or retrying
are got from the port. In this case, the number is 3. The logic of this behavior tree
is: Detecting whether the door is closed, and if so, try to open the door three times.
Returning FAILURE if all attempts failed.

Figure 2.5: Example of decorator nodes.

Leaf Node

• Action Node. It represents an actual task, like "move forward" or "open the door".

• Condition Node. It checks a specific condition, like "is battery low?" or "Is the door
open?".

22

Behavior trees

Behavior Trees

A behavior tree is composed of nodes with a hierarchical structure. The root node is at
the top and the leaf nodes are at the bottom. Control flow nodes and decorator nodes act
as intermediaries, deciding the flow and behavior of ticks [45]. In each execution cycle,
a tick is propagated from the root node, traveling through the tree based on node logic
and statuses. The behavior tree is usually a XML file. Listing 2.1 is an example.

1 <root main_tree_to_execute =" MainTree ">
2 <BehaviorTree ID=" MainTree ">
3 <Sequence >
4 <OpenDoor />
5 <EnterRoom />
6 <CloseDoor />
7 </ Sequence >
8 </ BehaviorTree >
9 </root >

Listing 2.1: A simple behavior tree

Behavior Trees provide ports and a blackboard to ensure that data is appropriately
shared and accessed by nodes during the tree’s execution. They facilitate communication
and data exchange within the tree, allowing for more dynamic and intelligent behaviors.
The blackboard can be thought of as a data storage center or a shared memory space for
the Behavior Tree. Ports can be used as the "input" and "output" interfaces of a node.
They define what data a node needs to read from the blackboard (input) and what data
it might write to the blackboard (output). An example of the usage of the blackboard
and ports is represents in Listing 2.2. The frequency of the "RateController" is got from
the port "hz", which is 1.0. The "ComputePathToPose" reads the "goal" and "path" from
blackboard.

1 <root main_tree_to_execute =" MainTree ">
2 <BehaviorTree ID=" MainTree ">
3 <PipelineSequence name=" NavigateWithReplanning ">
4 <RateController hz="1.0">
5 <ComputePathToPose goal="{goal}" path="{path}" planner_id =" GridBased "/>
6 </ RateController >
7 <FollowPath path="{path}" controller_id =" FollowPath "/>
8 </ PipelineSequence >
9 </ BehaviorTree >

10 </root >

Listing 2.2: A behavior tree illustrating the blackboard utilization and ports integration

"BehaviorTree.CPP" is one of the most popular open-source libraries designed to im-
plement Behavior Trees in C++ [46]. It provides a clean API to define custom nodes
(both actions and conditions). With "BehaviorTree.CPP", ROS2 nodes (actions or ser-
vices) can be integrated as action or condition nodes within a Behavior Tree. This allows
developers to use existing ROS2 functionalities directly within the trees.

Using an additional tool named "Groot" [47], developers can visually design and create
behavior Trees. It is part of the BehaviorTree.CPP suite. Groot2 includes a Behavior Tree
editor that allows users to create and edit trees using a simple drag-and-drop interface.
Fig. 2.6 is the behavior tree structure displayed in "Groot" corresponding to the forward
XML file.

23

Behavior trees

Figure 2.6: Behavior tree in Groot

2.2 Behavior trees in ROS2

The behavior trees in ROS2 allow developers to describe robotic tasks in a hierarchical
and modular way. With Behavior trees, robots can make decisions based on real-time
data [48]. For instance, a robot might choose a different path if the original path is
blocked by obstacles, without needing to recompute the entire plan. Another advantage
is the integration with ROS2 actions and services. With behavior trees, these actions can
be utilized as nodes, allowing the tree to set goals and supervise the progress. Service
also can be called by the nodes of a tree. For instance, clear the entire costmap or get
new costmap.

2.2.1 Behavior-tree library

The Navigation2 stack provides a variety of behavior trees to enable a robot to nav-
igate from an initial position to a goal pose. The tree files can be found in folder
nav2_bt_navigator/behavior_trees. In this subsection the focus is primarily on navi-
gate_to_pose_w_replanning_and_recovery.xml and navigate_to_pose_w_replanning
_goal_patience_and_recovery.xml. The former is the default behavior tree of nav2,

24

Behavior trees

and the latter provides inspiration for the implementation of multi-floor navigation.

navigate_to_pose_w_replanning_and_recovery

It provides a detailed, step-by-step plan for a robot to reach the goal pose while con-
tinuously replanning its path. This structure enables the robot to deal with unforeseen
obstacles and environment changes. Additionally, when the robot meets situations it
cannot handle by replanning, recovery behaviors will be used to solve the problems. The
behavior tree navigate_to_pose_w_replanning_and_recovery is displayed in Fig. 2.7.

Figure 2.7: Navigate_to_pose_w_replanning_and_recovery.xml

The entire behavior tree can be divided into two parts: Navigation and Recovery. The
navigation subtree is responsible for the core function of moving the robot from its current
position to the goal pose. The structure is illustrated in Fig. 2.8. "PipelineSequence" is a
control plugin based on the sequence node. It ticks the first child until it succeeds, then
ticks the first and second children until the second child succeeds. The "RecoveryNode"
has two children. It returns SUCCESS if and only if the first child returns SUCCESS. The
second child will be ticked only if the first child returns FAILURE and if the second child
succeeds, the first child will be executed again. In addition, it includes the following
components:

• Path Planning. It generates a global path to the goal using algorithms like Dijkstra
or A*. The path is written into the blackboard.

25

Behavior trees

Figure 2.8: Navigation subtree of "Navigate To Pose"

• Local Planner. It takes the global path and computes velocity parameters to follow
it. Makes dynamic adjustments to the path to adapt moving obstacles or changes
in the environment.

• Goal Checker. It monitors the robot’s position to determine whether the goal has
been reached by calculating the distance between the robot and the goal.

• Replanning. It asks the path planning component to generate a new path to the
goal in a specific frequency.

The recovery subtree is triggered when there is a failure in the navigation process.
The structure is featured in Fig. 2.9. The "RoundRobin" node ticks its children in a
round-robin [49] fashion until a child returns SUCCESS. It will give each child a chance to
run before restarting the cycle. The primary functions of the recovery subtree include:

• Goal Updated. It is activated when a new goal has been passed to the navigation
system through a preemption.

• Failure Detection. It determines when the navigation process cannot proceed as
planned. For example, detecting that the robot has not moved for a certain amount
of time.

26

Behavior trees

Figure 2.9: Recovery subtree of "Navigate To Pose"

• Recovery Action. It aims at moving the robot from a stuck position. For example,
spinning in place or backing up a little.

• Clearing Behavior. It initializes the global costmap and local costmap after clearing
them.

There is another default behavior tree provided by the Navigation2 stack: navigate_
through_poses_w_replanning_and_recovery.xml, which is used in navigation starting
from an initial pose, through some intermediary poses, to the final pose. It accepts and
stores a list of waypoints into the blackboard and plans the path from the previous point
to the next point. This behavior tree was initially analyzed as a potential solution, consid-
ering that multi-floor navigation could be viewed as a composition of several navigation
processes. However, a more effective solution was eventually identified.

navigate_to_pose_w_replanning_goal_patience_and_recovery.

This behavior tree is an extension to the "Navigate To Pose", which not only directs a
robot towards a goal but also allows the robot to adapt its path in response to dynamic
changes. The structure is presented in Fig. 2.10.

27

Behavior trees

Figure 2.10: Navigate_to_pose_w_replanning_goal_patience_and_recovery.xml

The robot will pause the navigation and wait for a specific time when an obstacle
(e.g., person, cargo) suddenly appears close to the goal. If the obstacle has moved during
the wait time, the robot will follow the original path to the target. Otherwise, the robot
will plan a new path which is longer than the old one.

This behavior tree is similarly divided into two sections: Navigation and Recovery.
The structure of the navigation subtree is displayed in Fig. 2.11, and the recovery part
is the same as "Navigate To Pose". It can be noticed that there is a new branch called
"MonitorAndFollowPath", which is used by the node "PathLongerOnApproach". This
particular node continuously checks if the global planner has planned a significantly
longer path than the current one for the robot to approach the goal. If there is no longer
path, "FollowPath" will be ticked, resulting in the robot’s behavior being identical when
employing the "Navigate To Pose" strategy.

Once there is a significantly longer path, the child of "PathLongerOnApproach" is
ticked. This decorator node ticks the sequence node to stop the robot and wait. When
the "CancelControl" node is ticked, the controller server stops the further navigation of
the robot. The wait time is defined through a port. Since the "MonitorAndFollowPath"
is a ReactiveSequence node, the "PathLongerOnApproach" needs to return SUCCESS so
that the "FollowPath" node can be ticked again.

2.2.2 Behavior-tree Navigator

The behavior tree navigator primarily serves as the interface between the movement re-
quest and the corresponding logic, which is detailed in the behavior tree’s XML. This
involves implementing a specific action server for actions like "Navigate to Pose" or "Nav-
igate Through Pose". It translates the abstract action "navigate to this goal" into specific

28

Behavior trees

Figure 2.11: Navigation subtree of "Navigate To Pose and Pause Near Goal-Obstacle"

steps that the robot must perform, manages the lifecycle of this process, and handles
communication between the navigation stack and other components that are requesting
navigation actions. The typical functions and their descriptions are presented below:

• configure(): It allocates and initializes resources that the node will use, including ini-
tializing parameters, setting up the blackboard, creating clients for communication,
and more. For example, create a client to subscribe to the goal topic (Listing 2.3).

1 // navigate_to_pose .cpp
2 bool
3 NavigateToPoseNavigator :: configure (
4 rclcpp_lifecycle :: LifecycleNode :: WeakPtr parent_node ,
5 std :: shared_ptr < nav2_util :: OdomSmoother > odom_smoother)
6 {
7 [...]
8 goal_sub_ = node -> create_subscription < geometry_msgs :: msg :: PoseStamped >(
9 " goal_pose ",

10 rclcpp :: SystemDefaultsQoS () ,
11 std :: bind (& NavigateToPoseNavigator :: onGoalPoseReceived , this , std ::

placeholders :: _1));
12 return true;
13 }

Listing 2.3: Configuration function within navigate_to_pose.cpp file

The Navigation2 stack involves a variety of messages for communication, among
which goal_pose uses the message type geometry_msgs/PoseStamped. This mes-
sage type is designed to represent a pose in 3D space. It consists of two main parts:

29

Behavior trees

a header and a pose. The header specifies the frame_id of the goal, while the pose
itself is divided into position and orientation. The position is defined by the "Point"
message, which represents the 3D coordinates (x, y, z). The orientation is described
by the "Quaternion" message, determining the orientation in space.

• getDefaultBTFilepath(): It provides a default Behavior Tree XML file path that the
navigator can use in case a specific path hasn’t been provided by configuration files
(Listing 2.4).

1 // navigate_to_pose .cpp
2 std :: string
3 NavigateToPoseNavigator :: getDefaultBTFilepath (
4 rclcpp_lifecycle :: LifecycleNode :: WeakPtr parent_node)
5 {
6 std :: string default_bt_xml_filename ;
7 auto node = parent_node .lock ();
8 if (! node -> has_parameter (" default_nav_to_pose_bt_xml ")) {
9 std :: string pkg_share_dir =

10 ament_index_cpp :: get_package_share_directory (" nav2_bt_navigator ");
11 node -> declare_parameter <std :: string >(
12 " default_nav_to_pose_bt_xml ",
13 pkg_share_dir +
14 "/ behavior_trees / navigate_to_pose_w_replanning_and_recovery .xml");
15 }
16 node -> get_parameter (" default_nav_to_pose_bt_xml ", default_bt_xml_filename);
17 return default_bt_xml_filename ;
18 }

Listing 2.4: Function to set the behavior tree file path

• goalReceived(): It gets triggered when a new navigation goal is received by the
action server, and checks if the received goal is valid (Listing 2.5).

1 // navigate_to_pose .cpp
2 bool
3 NavigateToPoseNavigator :: goalReceived (ActionT :: Goal :: ConstSharedPtr goal)
4 {
5 auto bt_xml_filename = goal -> behavior_tree ;
6 if (! bt_action_server_ -> loadBehaviorTree (bt_xml_filename)) {
7 RCLCPP_ERROR (
8 logger_ , "BT file not found : %s. Navigation canceled .",
9 bt_xml_filename . c_str ());

10 return false ;
11 }
12 initializeGoalPose (goal);
13 return true;
14 }

Listing 2.5: Initilize the goal after receiving

• onLoop(): It is commonly used within a loop to repeatedly execute tasks that must
be checked or updated continuously during the node’s operation.

• onPreempt(): This function is triggered when a new goal has been received while
another goal is currently being processed. It stops the current behavior tree execu-
tion, cleans up resources or processes that were dedicated to the previous goal, and
initiates the navigation process for the new goal (Listing 2.6).

30

Behavior trees

1 // navigate_to_pose .cpp
2 void
3 NavigateToPoseNavigator :: onPreempt (ActionT :: Goal :: ConstSharedPtr goal)
4 {
5 RCLCPP_INFO (logger_ , " Received goal preemption request ");
6 if (goal -> behavior_tree == bt_action_server_ -> getCurrentBTFilename () ||
7 (goal -> behavior_tree . empty () &&
8 bt_action_server_ -> getCurrentBTFilename () == bt_action_server_ ->

getDefaultBTFilename ()))
9 {

10 initializeGoalPose (bt_action_server_ -> acceptPendingGoal ());
11 } else {
12 bt_action_server_ -> terminatePendingGoal ();
13 }
14 }

Listing 2.6: Function for preempting goals

• goalCompleted(): It is called when the navigation has successfully reached its goal
or if the goal is completed due to a cancel request.

31

Chapter 3

Multi-floor navigation

This chapter focuses primarily on the execution of a multi-floor simulation process. ROS2
humble on Ubuntu 22.04 has been selected as the operating environment [50]. Gazebo
and Rviz are utilized to build the simulation environment. The initial part discusses
the default navigation process, examining its operation and its limitations in the context
of multi-floor navigation. Subsequently, a behavior tree-based solution is introduced.
Custom behavior tree nodes have been created and integrated as plugins, which serve
as the foundation for a new behavior tree architecture. Additionally, a novel navigator
based on "NavigateToPose" has been implemented.

Fig. 3.1 presents the architecture of the LINKS building, serving as the simulation
environment for the navigation exercise. This building includes two floors interconnected
via an elevator system. The robot navigates from an initial position located at the first
floor, employing the TurtleBot3 Waffle as the robotic model.

Figure 3.1: LINKS office in Gazebo

32

Multi-floor navigation

The maps of both floors are exhibited in Fig. 3.2. By default, the map that Rviz
initializes reflects the floor 0, correlating with the robot’s initial starting point.

(a) Floor 0 in Rviz

(b) Floor 1 in Rviz

Figure 3.2: Simulation environment of LINKS in Rviz

The initial section of the navigation procedure, after the launch of both Gazebo and
Rviz, involves establishing the robot’s initial pose. This step can be accomplished by

33

Multi-floor navigation

utilizing the 2D Pose Estimate function in Rviz, or by issuing a command to publish
on the /initialpose topic using ros2 topic pub. After the initial pose setting, the
bt navigator along with the costmap server is activated automatically. Following this,
the navigation goal can be assigned either through the "Nav2 Goal" tool in Rviz or by
publishing to the /goal_pose. The distinction is that: employing Nav2 Goal conveys the
goal directly to the "NavigateToPose" action server, thereby using the default behavior
tree in the navigation process. On the other hand, publishing over the topic sends the
goal to the bt navigator defined within the configuration file, allowing for customized
behavior tree usage.

Figure 3.3: A navigation process in Gazebo and Rviz using the default behavior tree

34

Multi-floor navigation

The challenges presented by the default navigation process are evident from the pre-
vious scenario. Key issues include:

• Sending a navigation goal located on a different floor from where the robot currently
is.

• Planning a path to this goal and interfacing with the elevator system.

• Switching the map and navigating to the goal once the robot reaches the target
floor.

Here is the solution proposed by the thesis for multi-floor navigation:

Figure 3.4: A simplified version of the multi-floor navigation method

3.1 Behavior tree plugin

Behavior tree plugins are a powerful mechanism for extending the functionality of the
Navigation2 stack, enabling the customization of robot behavior to suit a wide range of
applications. These plugins can be classified based on their function and role within the
behavior tree: action plugin, condition plugin, control plugin, and decorator plugin.

35

Multi-floor navigation

3.1.1 Action node plugin

Action plugin executes operations such as moving the robot to a goal, following a path.
These plugins are responsible for the active tasks in the behavior tree. Action nodes can
be divided into two categories: those related to a ROS2 topic and those related to a ROS2
service. An action node associated with a ROS2 topic publishes a message each time it
is ticked, while an action node using a ROS2 service calls the service upon being ticked.
The action nodes utilized in this project include:

• Load new map. The "Load New Map" service node is designed to switch the active
map to a new one, which is necessary when the robot transits to a different floor.
Once ticking, this node triggers Rviz to load the specified new map. The file path for
the new map must be supplied. Listing 3.1 is a detailed description of its structure:

1 // load_map_service .cpp
2 LoadMapService :: LoadMapService (
3 const std :: string & service_node_name ,
4 const BT :: NodeConfiguration & conf)
5 : BtServiceNode < nav2_msgs :: srv :: LoadMap >(service_node_name , conf)
6 {
7 }
8
9 void LoadMapService :: on_tick ()

10 {
11 server_timeout_ *= 3;
12 mappath = config (). blackboard ->get <std :: string >(" map_path ");
13 request_ -> map_url = mappath ;
14 increment_recovery_count ();
15 }
16
17 # include " behaviortree_cpp_v3 / bt_factory .h"
18 BT_REGISTER_NODES (factory)
19 {
20 factory . registerNodeType < nav2_behavior_tree :: LoadMapService >(" LoadMap ");
21 }
22
23 // load_map_service .hpp
24 # include " nav2_behavior_tree / bt_service_node .hpp"
25 # include " nav2_msgs /srv/ load_map .hpp"

Listing 3.1: BT service node: Load a new map

The nav2_behavior_tree package includes the bt_service_node.hpp library, which
standardizes the structure of service nodes. This library creates clients for desig-
nated services and sends requests when ticked. Additionally, it assesses the response
from the service call and converts it into corresponding behavior tree statuses. In
the end the Behaviortree_CPP library is used for node registering, which is neces-
sary for all behavior tree plugins.

• Send a goal. The "Send a goal" action node is responsible for transmitting a new
navigation goal. This action node has the function of sending a new navigation
goal. This node possesses preemptive capabilities and will interrupt any ongoing
navigation processes. When ticked, the robot initiates navigation towards the spec-
ified goal. This node is particularly useful after the robot has utilized the elevator
and needs to proceed to its final destination. Meanwhile, the floor of the robot

36

Multi-floor navigation

gets updated since it has moved to the target floor. The implementation details are
displayed in Listing 3.2.

1 // send_goal_node .cpp
2 SetGoal :: SetGoal (
3 const std :: string & name ,
4 const BT :: NodeConfiguration & conf)
5 : BT :: SyncActionNode (name , conf)
6 {
7 node_ = config (). blackboard ->get < rclcpp :: Node :: SharedPtr >("node");
8 publisher_ = node_ -> create_publisher < geometry_msgs :: msg :: PoseStamped >("

goal_pose ", 10);
9 }

10
11 BT :: NodeStatus SetGoal :: tick ()
12 {
13 RCLCPP_INFO (node_ -> get_logger () , "Set the goal");
14 goal_final = config (). blackboard ->get < geometry_msgs :: msg :: PoseStamped

>(" goalwithfloor ");
15 floorofrobot .pose. position .z = goal_final .pose. position .z;
16 config (). blackboard ->set < geometry_msgs :: msg :: PoseStamped >("

floor_robot ", floorofrobot);
17 goal_final .pose. position .z = 0;
18 publisher_ -> publish (goal_final);
19 return BT :: NodeStatus :: SUCCESS ;
20 }
21
22 # include " behaviortree_cpp_v3 / bt_factory .h"
23 BT_REGISTER_NODES (factory)
24 {
25 factory . registerNodeType < nav2_behavior_tree :: SetGoal >(" SetGoal ");
26 }
27
28 // set_goal_node .hpp
29 # include " behaviortree_cpp_v3 / action_node .h"

Listing 3.2: BT action node: Send a goal

In the constructor, the publisher for the corresponding topic is initialized. When
the node is ticked, it publishes a message with the coordinates of the goal provided
by the Blackboard. Unlike the service node, the status of the action node must be
defined inside the tick() function.

• Interact with the elevator. The interaction with the elevator system includes com-
mands to open the elevator door and to move the elevator to the desired floor. The
elevator server facilitates these two functions. To utilize these services, the robot
must specify the current floor when requesting the "OpenDoor" service and the tar-
get floor when requesting the "MoveToFloor" service. The architecture of this node
closely mirrors that of the "Load New Map" service node.

3.1.2 Decorator node plugin

Decorator plugin modifies the behavior of its child node by adding conditions, changing
the success or failure logic, or limiting the number of times a child can run. The behavior
tree navigate_to_pose_w_replanning_goal_patience_and_recovery., referenced in
Section 2.2.1, incorporates a decorator node "PathLongerOnApproach". This node’s
purpose is to find out whether a newly calculated path is longer than the one currently

37

Multi-floor navigation

being traversed. Similarly, a decorator node could be utilized to determine whether the
robot is positioned in front of the door or has entered the elevator by checking if the
robot’s distance to a predefined point, representing the door or the elevator, falls below
a specified threshold. The detailed structure is as follows:

The constructor initializes the behavior tree node, specifying its type along with the
global and robot frame references (Listing 3.3).

1 // robot_near_door .cpp
2 RobotNearDoor :: RobotNearDoor (
3 const std :: string & name ,
4 const BT :: NodeConfiguration & conf)
5 : BT :: DecoratorNode (name , conf),
6 global_frame_ ("map"),
7 robot_base_frame_ (" base_link ")
8 {
9 auto node = config (). blackboard ->get < rclcpp :: Node :: SharedPtr >("node");

10 node_ = config (). blackboard ->get < rclcpp :: Node :: SharedPtr >("node");
11 tf_ = config (). blackboard ->get <std :: shared_ptr < tf2_ros :: Buffer >>("

tf_buffer ");
12
13 getInput (" global_frame ", global_frame_);
14 getInput (" robot_base_frame ", robot_base_frame_);
15 }

Listing 3.3: Configuration function of the decorator node

Listing 3.4 obtains the robot’s current position and establishes a distance threshold,
subsequently verifying whether the distance between the robot and the door is less than
this threshold.

1 // robot_near_door .cpp
2 bool RobotNearDoor :: isRobotNearDoor ()
3 {
4 geometry_msgs :: msg :: PoseStamped current_pose ;
5 nav2_util :: declare_parameter_if_not_declared (
6 node_ , " goal_reached_tol ",
7 rclcpp :: ParameterValue (0.5));
8 node_ -> get_parameter_or <double >(" goal_reached_tol ", goal_reached_tol_ ,

0.5);
9 tf_ = config (). blackboard ->get <std :: shared_ptr < tf2_ros :: Buffer >>("

tf_buffer ");
10 node_ -> get_parameter (" transform_tolerance ", transform_tolerance_);
11 if (! nav2_util :: getCurrentPose (current_pose , *tf_ , global_frame_ ,

robot_base_frame_ , transform_tolerance_))
12 {
13 RCLCPP_DEBUG (node_ -> get_logger () , " Current robot pose is not available

.");
14 return false ;
15 }
16 pose_door = config (). blackboard ->get < geometry_msgs :: msg :: PoseStamped >("

doorpose ");
17
18 double dx = pose_door .pose. position .x - current_pose .pose. position .x;
19 double dy = pose_door .pose. position .y - current_pose .pose. position .y;
20 return (dx * dx + dy * dy) <= (goal_reached_tol_ * goal_reached_tol_);
21 }

Listing 3.4: Function to calculate the distance between the robot and the door

A flag is established to ensure that this node is ticked only when the robot is in front
of the door for the first time. The status of this node is determined based on varying

38

Multi-floor navigation

situations. The child node should include the interface with the elevator system for
opening the door (Listing 3.5).

1 // robot_near_door .cpp
2 inline BT :: NodeStatus RobotNearDoor :: tick ()
3 {
4 if (status () == BT :: NodeStatus :: IDLE)
5 {
6 first_time_ = true;
7 }
8
9 setStatus (BT :: NodeStatus :: RUNNING);

10 passed_door_ = config (). blackboard ->get <bool >(" doorflag ");
11
12 if (! passed_door_ && isRobotNearDoor () && ! first_time_)
13 {
14 const BT :: NodeStatus child_state = child_node_ -> executeTick ();
15 switch (child_state)
16 {
17 case BT :: NodeStatus :: RUNNING :
18 return BT :: NodeStatus :: RUNNING ;
19 case BT :: NodeStatus :: SUCCESS : {
20 passed_door_ = true;
21 config (). blackboard ->set <bool >(" doorflag ", passed_door_);
22 return BT :: NodeStatus :: SUCCESS ;
23 }
24 case BT :: NodeStatus :: FAILURE :
25 return BT :: NodeStatus :: FAILURE ;
26 default :
27 return BT :: NodeStatus :: FAILURE ;
28 }
29 }
30 first_time_ = false ;
31 return BT :: NodeStatus :: SUCCESS ;
32 }
33
34 # include " behaviortree_cpp_v3 / bt_factory .h"
35 BT_REGISTER_NODES (factory)
36 {
37 factory . registerNodeType < nav2_behavior_tree :: RobotNearDoor >(" RobotNearDoor ");
38 }

Listing 3.5: Conditions for ticking the child node

3.1.3 Custom behavior tree

The new behavior tree implements the process of navigating between different floors. It
includes two parts: a navigation subtree and a recovery subtree. The navigation subtree
is responsible for the multi-floor navigation process and the recovery subtree handles the
unexpected problems. The structure of the behavior tree and part of the corresponding
file is shown below:

1 <!-- navigate_between_floors_w_replanning_and_recovery .xml -->
2 ...
3 <ReactiveSequence name=" MonitorAndFollowPath ">
4 <RobotNearDoor global_frame ="map" robot_base_frame =" base_link ">
5 <RetryUntilSuccessful num_attempts ="1">
6 <SequenceStar name=" OpenTheDoor ">
7 <OpenDoor name=" OpenTheDoorOfElevator " service_name ="/ open_door "/>
8 <CancelControl name=" ControlCancel "/>
9 <Wait wait_duration ="7"/>

10 <MoveIntoElevator name=" MoveInsideElevator "/>

39

Multi-floor navigation

11 </ SequenceStar >
12 </ RetryUntilSuccessful >
13 </ RobotNearDoor >
14 <RobotInsideElevator global_frame ="map" robot_base_frame =" base_link ">
15 <RetryUntilSuccessful num_attempts ="1">
16 <SequenceStar name=" ControlElevator ">
17 <SequenceStar name=" CancelingControlAndWait ">
18 <CancelControl name=" ControlCancel "/>
19 <Wait wait_duration ="4"/>
20 <MoveToFloor name=" UseElevatorToMoveToGoalFloor " service_name ="/

move_to_floor "/>
21 <Wait wait_duration ="3"/>
22 </ SequenceStar >
23 <SequenceStar name=" ChangingActions ">
24 <LoadMap name="LoadMap - Context " service_name =" map_server / load_map "/>
25 <Wait wait_duration ="1"/>
26 <SetGoal name=" SetNewGoal - Context "/>
27 </ SequenceStar >
28 </ SequenceStar >
29 </ RetryUntilSuccessful >
30 </ RobotInsideElevator >
31 <RecoveryNode number_of_retries ="1" name=" FollowPath ">
32 <FollowPath path="{path}" controller_id =" FollowPath "/>
33 <ClearEntireCostmap name=" ClearLocalCostmap - Context " service_name ="

local_costmap / clear_entirely_local_costmap "/>
34 </ RecoveryNode >
35 </ ReactiveSequence >
36 ...

Listing 3.6: The navigation subtree and the recovery subtree of "navigate between floors"

Figure 3.5: Navigate_between_floors_w_replanning_and_recovery

During navigation, as the robot approaches the elevator door, the first branch of
"MonitorAndFollowPath" is ticked(Fig. 3.6). The robot stops its movement and holds
its position. Subsequently, it calls the service to open the door and remains stationary
until the door is fully open. Following this, a new point located inside the elevator is

40

Multi-floor navigation

designated as a preemptive goal, prompting the robot to enter and proceed towards its
objective.

As the robot enters the elevator and moves near the current goal, the second branch is
ticked. The robot halts all movement and waits for further instructions. It then requests
the "Move to Floor" service. Concurrently, it calls the service to update the navigation
map to the new floor. Once the elevator reaches the destination floor and the map is
updated, the final navigation goal is sent to the robot, converting the process into a
single-floor navigation task.

Figure 3.6: "MonitorAndFollowPath" branch of the behavior tree

3.2 Navigator plugin

The newly developed navigator, "Navigate between floors," operates in conjunction
with the behavior tree navigate_between_floors_w_replanning_and_recovery. It
subscribes to the "goal_pose" topic, passing the goal to the behavior tree and triggering
the navigation process. A primary function of this navigator is to determine whether the
goal is on the same floor as the robot. This determination is facilitated by the fallback
function "goalReceived", which uses the z-coordinate to represent floor level. Once re-
ceiving a goal, the function compares the z-coordinate of the goal with that of the robot’s
current position. If they match, indicating that the navigation goal is on the same floor,
the goal is sent directly to the behavior tree. Conversely, if they are different, the goal is
stored in the Blackboard as the final destination. Meanwhile, the pose of the elevator on
the robot’s current floor is sent as the intermediate goal to the behavior tree, prompting
the robot to navigate toward the elevator until the "MonitorAndFollowPath" branch is
ticked.

An additional function of the navigator, as described in Section 3.1.2, is to reset

41

Multi-floor navigation

the flag that ensures the robot stops only once in front of the door during a navigation
task. This flag must be reset after the completion of the navigation process to ready the
system for subsequent navigation tasks. The resetting occurs within the goalCompleted
callback function. The values of these flags are maintained on the blackboard, allowing
decorator nodes to access them as needed. The detailed structure is shown Listing 3.7:

1 void
2 NavigateBetweenFloorsNavigator :: goalCompleted (
3 typename ActionT :: Result :: SharedPtr /* result */ ,
4 const nav2_behavior_tree :: BtStatus /* final_bt_status */)
5 {
6 auto blackboard = bt_action_server_ -> getBlackboard ();
7 door_flag_ = false ;
8 blackboard ->set <bool >(" doorflag ", door_flag_);
9 elevator_flag_ = false ;

10 blackboard ->set <bool >(" elevatorflag ", elevator_flag_);
11 std :: cout << "SET THE Flags OF DOOR AS " << door_flag_ << std :: endl;
12 std :: cout << "SET THE Flags OF ELEVATOR AS " << elevator_flag_ << std :: endl;
13 }

Listing 3.7: Function to reset the flags after a navigation process

3.3 Elevator server
LINKS provides an API for interacting with the elevator system. The two services used
in the navigation process are "OpenDoor" and "MoveToFloor". The "OpenDoor" service
contains the steps to open the door, hold it open for a specified duration, and then close
the door. The "MoveToFloor" service manages the elevator’s movement to the designated
floor, including the steps to open the door upon arrival, maintain it open for a set time,
and subsequently close the door. To integrate the elevator system with the navigation
package, an elevator server must be established to serve as the intermediary between the
behavior tree nodes and the elevator system.

3.3.1 Open door service

Considering the scenario where the robot may not be on the same floor as the elevator,
the request must contain information about the robot’s current floor. Upon receiving the
request, the server first calls for the elevator to move to the robot’s floor and then opens
the door to allow the robot to enter. Listing 3.8 is the message type for the "OpenDoor"
service and Listing 3.9 is the detailed architecture of the server.

1 int32 rfloor # stand for robot ’s current floor
2 ---
3 bool success # indicate successful run of open door service

Listing 3.8: OpenDoor.srv

1 void opendoor_handle_service (
2 const std :: shared_ptr < rmw_request_id_t > request_header ,
3 const std :: shared_ptr < OpenDoor :: Request > request ,
4 const std :: shared_ptr < OpenDoor :: Response > response)
5 {
6 (void) request_header ;

42

Multi-floor navigation

7 RCLCPP_INFO (g_node -> get_logger () ,"Call the service to open the door");
8 elevetor_pub . moveToFloor (request -> rfloor);
9 // elevetor_pub . openDoor ();

10 response -> success = true;
11 }

Listing 3.9: Open door service

The functionality of the "OpenDoor" service could be enhanced by introducing a param-
eter that indicates the elevator’s current floor. Upon receiving a request, the server could
then compare the elevator’s floor with the robot’s floor. If they match, the server would
simply execute the "OpenDoor" service; if not, it would proceed with the "MoveToFloor"
service.

3.3.2 Move to floor service

The floor level within the elevator system is determined by height. For instance, if the
vertical distance between two adjacent floors is 4 meters, moving to the first floor would
involve elevating 4 meters above the ground level, while reaching the second floor would
require ascending 8 meters. If the elevator already resides on the requested floor, it will
execute the same sequence as the "OpenDoor" service. Listing 3.10 is the message type
for the "MoveToFloor" service and Listing 3.11 is the detailed structure of the server.

1 int32 floor # stand for request floor
2 ---
3 bool success # indicate successful run of move to floor service

Listing 3.10: MoveToFloor.srv

1 void movetofloor_handle_service (
2 const std :: shared_ptr < rmw_request_id_t > request_header ,
3 const std :: shared_ptr < MoveToFloor :: Request > request ,
4 const std :: shared_ptr < MoveToFloor :: Response > response)
5 {
6 (void) request_header ;
7 RCLCPP_INFO (g_node -> get_logger () ,"Call the service to move to floor %" PRId32 ,

request -> floor);
8 elevator_pub . moveToFloor (request -> floor);
9 response -> success = true;

10 }

Listing 3.11: Move to floor service

The results of sending the request to floor 1 and floor 2 are presented in Fig. 3.7.

3.4 Simulation

After developing the behavior tree node plugins and the new bt navigator, the subsequent
step involves integrating them into the navigation process. The behavior tree nodes must
be added to the library in the CMakeList file. Within the parameter file, both the
path to the default behavior tree and the names of the node plugins should be specified.
Listing 3.12 is the BT navigator structure in the parameter file.

43

Multi-floor navigation

(a) Move to Floor 1

(b) Move to Floor 2

Figure 3.7: Execution of the "MoveToFloor" service

1 # multi_floor_nav2_params .yaml
2 bt_navigator :
3 ros__parameters :
4 use_sim_time : True
5 global_frame : map
6 robot_base_frame : base_link
7 odom_topic : /odom
8 bt_loop_duration : 10
9 default_server_timeout : 20

10 # Simulation behavior tree
11 default_nav_between_floors_bt_xml : "/ home/links - webots / ros2_ws /src/ navigation2

/ nav2_bt_navigator / behavior_trees / navigate_between_floors .xml"
12 plugin_lib_names :
13 - nav2_robot_inside_elevator_bt_node
14 - nav2_robot_near_door_bt_node

44

Multi-floor navigation

15 - nav2_load_map_service_bt_node
16 - nav2_get_costmap_service_bt_node
17 - nav2_set_initial_pose_bt_node
18 - nav2_set_goal_bt_node
19 - nav2_move_into_elevator_bt_node
20 - nav2_open_door_service_bt_node
21 - nav2_move_to_floor_service_bt_node
22 - nav2_press_door_service_bt_node
23 - nav2_press_target_service_bt_node
24 [...]

Listing 3.12: BT navigator configuration file

To enhance practicality, an additional parameter file (Listing 3.13) is created to specify
the robot’s initial floor and other parameters used in navigation. Within this file, the
coordinates of the elevator and its doors on each floor are stored in arrays, while the map
paths are kept in a string array.

1 # nav2_multi_params .yaml
2 bt_navigator :
3 # simulation params
4 ros__parameters :
5 initial_floor : 0
6
7 x_elevator : [4.0 , 4.0]
8 y_elevator : [6.5 , 6.5]
9

10 x_door : [3.0 , 3.0]
11 y_door : [5.0 , 5.0]
12
13 floor_maps : ["/ home/links - webots / ros2_ws /src/

links_office_multifloor_simulation /maps/ links_floor0_open .yaml",
14 "/ home/links - webots / ros2_ws /src/

links_office_multifloor_simulation /maps/ links_floor1_open .yaml "]

Listing 3.13: Parameters used in the navigation

In this example, the coordinates of the elevator on the floor 0 are (4.0, 6.0), and the
door is at (3.0, 5.0). The coordinates for the elevator and door remain consistent for floor
0 and floor 1 because the position of the map frame does not change between these two
levels (Fig. 3.8).

Figure 3.8: Map frame in floor 0 (left) and floor 1 (right))

45

Multi-floor navigation

To utilize this file in navigation, it must be declared in configuration files (List-
ing 3.14). Within the nav2_bringup folder, there is a launch file named navigation_
launch.py, which is responsible for starting up various components required for the Nav2
stack. This launch file also allows for the configuration of various parameters and set-
tings, crucial for customizing the navigation behavior. The file nav2_multi_params.yaml
is included in these declarations.

1 # navigation_launch .py
2 def generate_launch_description ():
3 [...]
4 # Create our own temporary YAML files that include substitutions
5 multi_configured_params = RewrittenYaml (
6 source_file = multi_params_file ,
7 root_key =namespace ,
8 param_rewrites = param_substitutions ,
9 convert_types =True)

10 declare_multi_params_file_cmd = DeclareLaunchArgument (
11 ’multi_params_file ’,
12 default_value =os.path.join(bringup_dir , ’params ’, ’nav2_multi_params .yaml

’) ,
13 description =’Full path to the ROS2 parameters file to use for all launched

nodes ’)
14 [...]

Listing 3.14: Declare the parameters in the launch file

Use the following command to launch Gazebo and Rviz. This navigation process runs
locally.

1 ros2 launch links_multifloor_simulation gazebo_sim . launch .py world :=/ home/links -
webots / ros2_ws /src/ links_office_multifloor_simulation / worlds /
links_office_multi_half . world

Listing 3.15: Launch Gazebo

1 ros2 launch links_multifloor_simulation tb3_multifloor_sim . launch .py use_simulator
:= False params_file :=/ home/links - webots / ros2_ws /src/ behavior_tree / params /
multi_floor_nav2_params .yaml multi_params_file :=/ home/links - webots / ros2_ws /src
/ navigation2 / nav2_bringup / params / nav2_multi_params .yaml

Listing 3.16: Launch Rviz

After starting the elevator server and setting the robot’s initial position, the naviga-
tion goal can be transmitted via the "goal_pose" topic. The z-coordinate of the goal
corresponds to the floor information. An example of the robot’s response to goals on
different floors is illustrated in Fig. 3.9.

Fig. 3.10 is the entire process of a multi-floor navigation from floor 0 to floor 1.

46

Multi-floor navigation

Figure 3.9: Single floor navigation(up) and multiple floor navigation(down)

47

Multi-floor navigation

(a) Navigate to the elevator in floor 0

(b) Navigate into the elevator and use it to move to floor 1

(c) Navigate to the final goal in floor 1

Figure 3.10: An entire multi-floor navigation process in Rviz

48

Chapter 4

Implementation

Building on the success of the multi-floor navigation simulation, this chapter introduces
the transition from the virtual models to the real world application. Initially, the method-
ology employing a SwitchBot for elevator interaction is presented. Then this chapter
introduces the TurtleBot used for testing, explaining the difference between the DWB
(Dynamic Window Approach - B) controller and the MPPI (Model Predictive Path Inte-
gral) controller. Lastly, the creation of the map is described, followed by the test results.

4.1 SwitchBot

SwitchBot is a technology company focused on developing products that aim to enrich
people’s lives by enhancing interaction with the environment around them [51]. It offers
devices that allow users to control home appliances via smartphones or voice commands,
promote a smarter living experience. Their offerings include a variety of Bluetooth-
compatible devices such as the SwitchBot Curtain, SwitchBot Blind Tilt (Fig.4.1).

(a) SwitchBot Curtain 3 [52] (b) SwitchBot Blind Tilt [53]

Figure 4.1: SwitchBot products

49

Implementation

One of the important products, the SwitchBot Bot (Fig.4.2), is a mechanical button
pusher that can turn traditional appliances into smart devices [54]. It is designed for
simplicity, with easy setup and compatibility with Android and iOS platforms. The
device operates on a CR2 3V battery and can communicate over Bluetooth, making it a
flexible addition to any smart home system.

Figure 4.2: SwitchBot Bot [55]

Fig. 4.3 presents the work process of a SwitchBot Bot. It has a mechanical finger that
can push or flip buttons and switches on various devices. SwitchBot is utilized to make
interaction with the elevator throughout the navigation process. When the robot arrives
in front of the elevator door, the first SwitchBot is activated to call the elevator. Once
the door opens, the robot proceeds into the elevator, and a second SwitchBot is deployed
to press the button for the desired floor.

Figure 4.3: Use SwitchBot to turn on a light

Several methods exist for activating a SwitchBot device. The simplest approach is to

50

Implementation

manually control the device using the SwitchBot app on a smartphone, which connects via
Bluetooth and is subject to a limited operating range. Alternatively, with the addition
of a SwitchBot Hub, the device can be controlled remotely from any location via the
internet. In this thesis, a MQTT broker is employed to issue commands to the SwitchBot
locally.

4.1.1 MQTT protocol

MQTT (Message Queuing Telemetry Transport) is a protocol widely adopted for IoT
communications, promoting data exchange between devices like sensors and actuators
over the internet [56]. It is designed to be lightweight and efficient, demanding mini-
mal resources, which makes it ideal for devices with limited processing capabilities and
operating over networks with low bandwidth. Key components and features of MQTT
include:

• MQTT Clients. These are devices or applications that publish messages to a broker
or subscribe to message topics to receive information. Clients are lightweight and
can be efficiently deployed on constrained devices.

• MQTT Broker. The broker is the server that receives all messages from the clients
and then distributes them to the relevant subscribers. It acts as an intermediary
that ensures messages are directed to the right destinations based on the topic
subscriptions [57].

• Quality of Service (QoS) Levels. MQTT supports three levels of QoS to ensure
message delivery even over unreliable networks: QoS 0: At most once delivery, QoS
1: At least once delivery, QoS 2: Exactly once delivery.

Figure 4.4: Working example of MQTT [58]

51

Implementation

The MQTT broker is created through Docker, an open-source platform that automates
the deployment of applications inside software containers, providing an additional layer
of abstraction and automation of OS-level virtualization on Linux. Listing 4.1 is the
detailed structure. This will create an MQTT broker on a local IP address (Fig. 4.5).

1 version : "3.7"
2 services :
3 mosquitto :
4 container_name : mosquitto
5 image : eclipse - mosquitto
6 ports :
7 - "1883:1883" # default mqtt port
8 volumes :
9 - ./ config :/ mosquitto / config :rw

10 - ./ data :/ mosquitto /data:rw
11 - ./ log :/ mosquitto /log:rw

Listing 4.1: Docker-compose.yaml

Figure 4.5: Creation of an MQTT broker

Fig. 4.6 presents an example demonstrating the use of the Mosquitto broker for pub-
lishing and receiving messages. In this example, the broker’s address is "10.10.10.52".
The command mosquitto_pub is used to publish a message ’Hello’ to the topic ’test’.
The broker then transmits this message to all clients subscribed to this topic.

Figure 4.6: Communication in the MQTT broker

52

Implementation

4.1.2 SwitchBot server

To integrate the SwitchBot into the navigation process, a corresponding server, as the
elevator server used in the simulation, must be established. This SwitchBot server pro-
cesses requests from the robot to activate the Bot, thereby fulfilling the "OpenDoor" and
"MoveToFloor" services. To accomplish this, multiple libraries are utilized.

paho-mqtt

The "paho-mqtt" library is a client library for the MQTT protocol [59], providing an
implementation for Python. It enables the development of applications that can com-
municate with an MQTT broker to publish messages to the broker, and to subscribe to
topics and receive published messages (Fig. 4.7).

This library offers a module designed for the creation and utilization of a client,
enabling the client to either publish or subscribe to a topic. An example of its usage is
provided in Listing 4.2.

1 # client_sub_test .py
2 import context # Ensures paho is in PYTHONPATH
3 import paho.mqtt. client as mqtt
4 [...]
5 mqttc = mqtt. Client ()
6 mqttc . on_message = on_message
7 mqttc . on_connect = on_connect
8 mqttc . on_publish = on_publish
9 mqttc . on_subscribe = on_subscribe

10
11 mqttc . connect (" 10.10.10.52 ", 1883 , 60)
12 mqttc . subscribe ("paho/test", 0)
13
14 mqttc . loop_forever ()

Listing 4.2: Use paho-mqtt to create an MQTT client

Figure 4.7: Communication in a mosquitto broker using paho-mqtt library

53

Implementation

switchbot-mqtt

The ’switchbot-mqtt’ library is an MQTT client for controlling SwitchBot automation
buttons and curtain motors, and it’s compatible with Home Assistant’s MQTT Switch
and MQTT Cover platform [60]. It can send ’ON’ or OFF commands to a specified
MQTT topic to control SwitchBot devices. There’s also functionality to fetch and report
the battery level of the devices. It is also created through Docker.

1 version : ’3.8’
2 services :
3 switchbot -mqtt:
4 image : switchbot -mqtt
5 container_name : switchbot -mqtt
6 network_mode : host
7 userns_mode : host
8 environment :
9 - MQTT_HOST = localhost

10 - MQTT_PORT =1883
11 #- MQTT_USERNAME = username
12 #- MQTT_PASSWORD = password
13 #- FETCH_DEVICE_INFO =yes
14 restart : unless - stopped
15 privileged : true

Listing 4.3: Docker-compose.yaml

Once it is activated, the "switchbot-mqtt" automatically scans the devices and creates
an MQTT topic for each one, uniquely identified by their MAC address. Request to turn
on or off the Bot can be sent to the topic homeassistant/switch/switchbot/ADDRESS.

Figure 4.8: Using switchbot-mqtt to turn on a Bot

ROS2 SwitchBot service

The integration of SwitchBot into the ROS2 nav2 package requires the use of a SwitchBot
server. This server establishes a client connection with the MQTT broker and sends
requests to activate the SwitchBot as required. The service call message must include

54

Implementation

details of both the robot’s current floor and the target floor, corresponding to the actions
needed to call the elevator and press the desired floor button.

1 int32 rf # represent the floor information
2 ---
3 bool success # indicate successful run of open door service

Listing 4.4: PressDoor.srv

1 from elevator_interfaces .srv import PressDoor
2 import paho.mqtt. client as mqtt
3 import rclpy
4
5 def press_door_callback (request , response):
6 global g_node
7 floor_info = request .rf
8 # broker_address = "10.10.10.52"
9 broker_address = " 192.168.0.177 "

10 client = mqtt. Client ("P1") # create new instance
11 print (" connecting to broker ")
12 client . connect (broker_address) # connect to broker
13 print (" Publishing message to topic ")
14 if floor_info == 0:
15 g_node . get_logger ().info(" press the floor 0 button ")
16 client . publish (" homeassistant / switch / switchbot /C2:E8 :38:2 D :03:59/ set","ON"

)
17 elif floor_info == 1:
18 g_node . get_logger ().info(" press the floor 1 button ")
19 client . publish (" homeassistant / switch / switchbot /D1 :35:33:35:43:8 F/set","ON"

)
20 return response
21 [...]

Listing 4.5: Press door service

Before invoking the service, ensure that the Mosquitto broker and the SwitchBot-
mqtt library are launched (Fig. 4.9). If set up correctly, the SwitchBot will activate upon
receiving the command (Fig. 4.10).

Figure 4.9: Using ROS2 service to turn on a Bot

55

Implementation

Figure 4.10: The process by which a Bot is activated

To integrate the service into the navigation process, a corresponding behavior tree
node must be added. This node replaces the one that interacted with the elevator server
in the simulation. The new node is designed to activate the SwitchBot when the robot
requires elevator usage. Fig. 4.11 is part of the behavior tree implemented in the real-
world test.

Figure 4.11: The branch that interacts with the elevator in behavior tree navi-
gate_between_real_floors.xml

56

Implementation

4.2 Turtlebot3
The TurtleBot3 is a collaborative project that represents the evolution of the TurtleBot
series [61]. The original TurtleBot, introduced around 2010, was designed as an afford-
able, personal robot kit primarily for educational and research purposes. It was designed
to be easy to assemble and program. In 2012, TurtleBot2 was released. It was equipped
with better sensors, a more robust platform, and was designed to be more user-friendly.
TurtleBot 2 continued to support ROS, which allowed users to take advantage of the
growing ROS software packages [62]. The TurtleBot3, developed by ROBOTIS in collab-
oration with Open Robotics - the organization behind ROS, was officially announced in
2017.

The TurtleBot3 is a popular robotic platform, especially within the context of ROS2.
It serves as an ideal choice for conducting real-world simulations and experiments in the
field of robotics research. The TurtleBot3 is available in different models, like Burger,
Waffle, and Waffle Pi, each with varying specifications (Fig. 4.12). Common components
to all models include a Raspberry Pi as the main controller, sensors like a 360-degree
LIDAR, and motors with encoders for precise movement control.

Figure 4.12: TurtleBot3 various models [63]

4.2.1 TurtleBot3 Waffle Pi

The TurtleBot3 Waffle Pi model has been selected to use in this test. Offering greater
computing power, the Waffle Pi is capable of handling more complex computational
tasks. It is equipped with a comprehensive set of sensors, enhancing its navigation and
perception capabilities. In addition to the 360-degree LIDAR (LDS-01), it typically
includes a camera, an inertial measurement unit (IMU), and other sensors that enable
sophisticated operations. This makes the Waffle Pi an excellent choice for advanced
robotics projects. The primary components are presented in Fig. 4.13 and some important
parameters of the TurtleBot3 Waffle Pi are displayed in Table 4.1

Sensors play an important role in the functionality of the TurtleBot3, particularly in
its navigation and mapping capabilities. They emit laser beams to measure distances
to objects in the surrounding environment. By rotating and scanning, these sensors
construct a 2D map that represents the distances to various obstacles and features. The

57

Implementation

Figure 4.13: TurtleBot3 Waffle Pi main components [64]

Items Waffle Pi
Maximum Translational Velocity 0.26m/s

Maximum Rotational Velocity 1.82rad/s (104.27deg/s)
Maximum Payload 30kgs

Size (L*W*H) 281mm*306mm*141mm
Sensor Raspberry Pi Camera, 360-degree LIDAR

Table 4.1: TurtleBot3 Waffle Pi main specifications

data gathered is crucial for SLAM algorithms, providing essential information for both
mapping the environment and determining the robot’s location within it.

For the test, a modified version of the TurtleBot3 was used, as shown in Fig. 4.14.
The primary modification lies in the sensor: the test’s Waffle Pi model is equipped
with an RPLIDAR A3M1 sensor, replacing the standard LDS-01 sensor. The RPLIDAR
A3M1 offers advantages such as a longer detection range and higher resolution [65],
enabling it to detect objects at greater distances and provide more detailed environmental
data. Additionally, its higher scanning rate and frequency contribute to more precise and
comprehensive environmental mapping. Table 4.2 compares these two sensors.

4.3 Test
The successful execution of the entire navigation process in a real-world environment relies
on maintaining a stable connection between the TurtleBot and a controlling computer.

58

Implementation

Figure 4.14: TurtleBot3 Waffle Pi used in test

Feature RPLIDAR A3M1 LDS-01
Range Up to 25 meters Up to 3.5 meters

Sample Rate 16000-64000 samples per second 2000 samples per second
Angular Resolution 0.225°to 0.9° 1°
Scanning Frequency 10-20 Hz 5-10Hz

Table 4.2: Comparison chart for RPLIDAR A3M1 and LDS-01

For this purpose, a laptop and a mobile hotspot are utilized. The laptop is responsible for
executing the navigation process and sending commands to activate the SwitchBot. This
connection between the SwitchBot and the laptop is established using the SSH (Secure
Shell) protocol.

4.3.1 Map creating

The chosen environment for this test is the two-floor leisure area in LINKS (Fig. 4.17).
These floors are connected by an elevator.

The initial step before the navigation involves creating the map and updating the
elevator’s position within it. Throughout this process, the SLAM Toolbox is utilized.
Establish a connection with the TurtleBot and execute the commands to launch Rviz
and the toolbox. Subsequently, control the robot to explore different areas.

1 ros2 launch nav2_bringup navigation_launch .py

Listing 4.6: Launch Navigation2

59

Implementation

(a) Floor 1

(b) Floor 0

Figure 4.15: LINKS office

1 ros2 launch slam_toolbox online_async_launch .py

60

Implementation

Listing 4.7: Launch SLAM Toolbox

1 ros2 run rviz2 rviz2 -d $(ros2 pkg prefix nav2_bringup)/ share / nav2_bringup /rviz/
nav2_default_view .rviz

Listing 4.8: Launch Rviz

Fig. 4.16 illustrates the process of mapping floor 1. As the TurtleBot navigates, the
unknown areas gradually decrease until the entire floor is mapped, including the interior
of the elevator.

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 4.16: Floor1 map creation

Before utilizing the maps for navigation, two additional steps are required. The first
step involves verifying whether the elevator door is marked as a permanent obstacle on
the map. The map obtained from the map server is shown in Fig. 4.17a. In this figure,
the elevator door is represented as a black line, indicating an impassable barrier for the
robot, even when the door is open. A feasible solution to this issue is to use a photo editor
to remove this line. A comparison of the maps, before and after editing, is displayed in
Fig. 4.17b.

The second step involves adjusting the position of the map frame. When the robot
transits to a new floor and the map is changed, its coordinates remain unchanged. For
instance, if the robot’s coordinates in the elevator on floor 0 are (1.5, 2.5), these coordi-
nates will persist even after switching to the floor 1 map. However, this location on floor

61

Implementation

(a) Before editing the door (b) After editing the door

Figure 4.17: Floor 0 map comparison

1 might not correspond to the elevator but to a different area. Therefore, it is necessary
to adjust the map frame’s position to ensure the robot is accurately placed within the
correct area after the map changes.

This adjustment can be made by modifying the YAML file associated with the map.
The ’origin’ parameter in this file, specified as [x, y, yaw], determines the coordinates of
the map’s bottom-left corner and its orientation. Appropriately defining these parameters
is crucial for accurately positioning the map frame. Fig. 4.18 presents the map utilized
in the navigation.

1 [...]
2 # origin : [-5.37 , -11.2 , 0] # before
3 origin : [-10.37 , -7.2, 0] # after

Listing 4.9: floor1_open.yaml

(a) Map of floor 0 (b) Map of floor 1

Figure 4.18: LINKS maps used in navigation

62

Implementation

4.3.2 Real environment test

By default, ROS2 Humble employs eProsima’s Fast DDS as its middleware. However,
for enhanced performance and more stable connectivity, Eclipse Cyclone DDS has been
selected. Cyclone DDS is designed to be both simple and lightweight, which makes it an
ideal choice for applications with limited resources or where simplicity is a priority. It is
known for its good performance, especially in terms of latency and throughput, making
it suitable for real-time applications.

Another difference from the simulation relates to the selection of the controller. In
Nav2, the default controller is the DWB controller. As a local planner, the DWB con-
troller is responsible for making immediate, short-term decisions to navigate the robot
along a global path while avoiding dynamic obstacles. It calculates the robot’s velocities
by taking into account its current velocity, acceleration limits, and the destination. These
velocities are optimized to avoid obstacles while efficiently navigating towards the goal.
The process of using DWB controller to navigate to the elevator on floor 0 is displayed
in Fig. 4.19.

(a) Step 1 (b) Step 2 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 6

(g) Step 7 (h) Step 8 (i) Step 9

Figure 4.19: Navigation using DWB controller

63

Implementation

The MPPI Controller generates multiple trajectories based on a random process,
evaluates them, and selects the best trajectory considering both the current state and
future predictions. MPPI can be used for both local and global planning, offering a more
integrated approach to path planning and obstacle avoidance. The process of using the
MPPI controller to navigate to the elevator in floor 0 is displayed in Fig. 4.20.

(a) Step 1 (b) Step 2 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 6

(g) Step 7 (h) Step 8 (i) Step 9

Figure 4.20: Navigation using MPPI controller

It can be observed that the path from the robot’s position to the goal is mostly a
direct line. During the navigation task, the MPPI controller directed the robot along
the shortest, most direct route to the goal, in contrast to the DWB controller, which
took a more complex path to achieve the same objective. The observed behavior of the
DWB controller suggests a preference for certain velocities or directions, possibly due to
its design focusing on local velocity planning and obstacle avoidance. This result might
indicate a limitation or a configuration issue in the DWB approach when navigating in
specific environments. Conversely, the MPPI controller’s effective and direct approach
can be attributed to its model predictive capabilities, evaluating and selecting optimal
trajectories based on future state estimations. This feature allows it to navigate efficiently

64

Implementation

and directly towards the goal in clear environments. Therefore, the MPPI controller has
been selected to use in the test.

The test began on floor 1 and proceeded to floor 0. After the initial pose of the
TurtleBot was set, the command detailed in the Listing 4.10 was used to publish the
goal. The entire navigation process could be divided into several distinct stages.

1 ros2 topic pub / goal_pose geometry_msgs / PoseStamped "{ header : { stamp : {sec: 0},
frame_id : ’map ’}, pose: { position : {x: -5.0, y: -2.0, z: 0.0} , orientation :
{}}}" -1

Listing 4.10: Publish a goal

• The TurtleBot navigated from its initial pose on floor 1 to the elevator, where the
first SwitchBot interacted with the elevator system (Fig. 4.21).

(a) Step 1 (b) Step 2 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 6

Figure 4.21: Stage 1 of the multi-floor navigation process

• The TurtleBot navigated inside the elevator, and the second SwitchBot pressed the
button for the target floor (Fig. 4.22).

• The elevator went down to floor 0, and the TurtleBot navigated to the final goal
(Fig. 4.23).

65

Implementation

(a) Step 1 (b) Step 2 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 6

Figure 4.22: Stage 2 of the multi-floor navigation process

(a) Step 1 (b) Step 2 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 6

Figure 4.23: Stage 3 of the multi-floor navigation process

66

Chapter 5

Conclusion

The concept of multifloor navigation in robotics has evolved significantly over the years.
Initially, robotic navigation was largely limited to single-level environments, focusing on
challenges like obstacle avoidance and path optimization. As technological advancements
in robotics and software development progressed, the need for more complex navigation
capabilities, including multifloor navigation, became apparent. This thesis contributes to
this evolving field by implementing and testing a multifloor navigation system in ROS2
using behavior trees. This approach not only addresses the complicated challenges of
navigating between different floors but also presents the adaptability and efficiency of
behavior trees in complex robotic tasks.

In the simulation part, a new navigator and a custom behavior tree are created.
The navigator plays an important role in analysing the goal information and sending
the goal to the behavior tree. It integrated with the behavior tree, ensuring an efficient
navigation process. This tree is designed to handle the complex process required for
multifloor navigation. The behavior tree’s architecture allows for a dynamic and flexible
response to varying environmental conditions. A critical component in the simulation
is the incorporation of an elevator server. This server is responsible for controlling the
simulated elevator’s movements to transition the robot between floors.

Then the theoretical concepts and software developed in the simulation are applied to
the real world test. A Turtlebot is selected as the model for its reliability and adaptability
in various environments. To interact with the elevator in the real world, a SwitchBot is
employed. This solution allows the robot to physically interact with the elevator buttons,
a necessary function for transitioning between floors. This real world test is crucial in
validating the effectiveness of the custom behavior tree and the new navigator developed
in the simulation, proving their applicability beyond the theory.

As a component of LINKS projects, this thesis serves as a foundational basis for
potential future works in various directions.

In the simulation, the local controller encounters challenges when the robot traverses
to the first floor or higher. One possible explanation for this issue is that the robot’s
z-coordinate exceeds the local controller’s threshold when the robot is transported to a
higher floor via the elevator. A solution involves utilizing a TF broadcaster to maintain
a consistent z-coordinate. Additionally, enhancing the elevator server could be beneficial.

67

Conclusion

Incorporating a function that communicates the current floor information to the robot
would enable it to decide whether it has reached the correct floor.

In the real world test at the LINKS office, which includes only two floors, the initial
plan involved positioning one SwitchBot on floor 0 and another on floor 1. The idea was
to activate the SwitchBot on the current floor when the robot needed to use the elevator,
and then, after the robot entered the elevator, to activate the SwitchBot on floor 1 instead
of pressing the button for floor 1. However, this approach encountered a problem due
to the limited range of Bluetooth connectivity, which could not support the connection
between floors. Moreover, in environments with more than two floors, this method would
be impractical with a traditional elevator system. To address this, developing a smart
elevator system that could be integrated into the Nav2 package might be a solution.

68

Bibliography

[1] A. Pandey, S. Pandey, and DR Parhi. "mobile robot navigation and obstacle avoid-
ance techniques: A review". International Robotics Automation Journal, 2, 2017.

[2] R. Crespo, J.C. Castillo, O.M. Mozos, and R. Barber. "semantic information for
robot navigation: A survey". Applied Sciences, 10(2), 2020.

[3] SRI Internatiional. Shakey the Robot. https://www.sri.com/hoi/
shakey-the-robot/. [Online; accessed April 2023].

[4] H. Choset, K.M. Lynch, S. Hutchinson, G.A. Kantor, W. Burgard, L.E. Kavraki, and
S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations.
The MIT Press, 2 edition, 2005.

[5] J. Sola. "simulataneous localization and mapping with the extended kalman filter:
A very quick guide". 2014.

[6] X. Lei, B. Feng, G. Wang, W. Liu, and Y. Yang. A novel fastslam framework based
on 2d lidar for autonomous mobile robot. Electronics, 9(4):695, April 2020.

[7] T. Raj, F.H. Hashim, A.B. Huddin, M.F. Ibrahim, and A. Hussain. A survey on
lidar scanning mechanisms. Electronics, 9(5), 2020.

[8] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard. "a tutorial on graph-based
slam". IEEE Intelligent Transportation Systems Magazine, 2(4):31–43, winter 2010.

[9] K. Konolige, E. Marder-Eppstein, and B. Marthi. "navigation in hybrid metric-
topological maps". 2011 IEEE International Conference on Robotics and Automa-
tion, 2011.

[10] H. Wang, Y. Yu, and Q. Yuan. "application of dijkstra algorithm in robot path-
planning". 2011 Second International Conference on Mechanic Automation and
Control Engineering, 2011.

69

https://www.sri.com/hoi/shakey-the-robot/
https://www.sri.com/hoi/shakey-the-robot/

BIBLIOGRAPHY

[11] S. Sedighi, D. Nguyen, and K. Kuhnert. "guided hybrid a-star path planning algo-
rithm for valet parking applications". 2019 5th International Conference on Control
Automation and Robotics (ICCAR), pages 570–575, 2019.

[12] Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and Olivier Stasse. Monoslam:
Real-time single camera slam. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(6):1052–1067, 2007.

[13] N. K. Dhiman, D. Deodhare, and D. Khemani. "a ros based framework for multi-floor
navigation for unmanned ground robots". AIR 2019: Proceedings of the Advances
in Robotics 2019, (44):1–6, July 2019.

[14] J. Huang, T. Lau, and M. Cakmak. Design and evaluation of a rapid programming
system for service robots. In 2016 11th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 295–302, 2016.

[15] R. Bloss. Mobile hospital robots cure numerous logistic needs. Industrial Robot,
38(6):567–571, 2011.

[16] Steve Cousins. 5 ways relay autonomous delivery robots are so
cost-effective. https://www.relayrobotics.com/blog/2019/11/6/
5-ways-relay-autonomous-delivery-robots-are-so-cost-effective. [Online;
accessed April 2023].

[17] Tug autonomous mobile robots for healthcare and hospitality. https://aethon.
com/products/. [Online; accessed April 2023].

[18] Ros1 vs ros2, practical overview for ros developers. https://roboticsbackend.
com/ros1-vs-ros2-practical-overview/. [Online; accessed April 2023].

[19] J. Kay and A.R. Tsouroukdissian. "real-time control in ros and ros 2.0". ROSCon15,
2015, 2015.

[20] Y. Liu, Y. Guan, X. Li, R. Wang, and J. Zhang. "formal analysis and verification
of dds in ros2". 2018 16th ACM/IEEE International Conference on Formal Methods
and Models for System Design (MEMOCODE), 2018.

[21] V. Mayoral-Vilches, R. White, G. Caiazza, and M. Arguedas. "sros2: Usable cyber
security tools for ros 2". 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), December 2022.

70

https://www.relayrobotics.com/blog/2019/11/6/5-ways-relay-autonomous-delivery-robots-are-so-cost-effective
https://www.relayrobotics.com/blog/2019/11/6/5-ways-relay-autonomous-delivery-robots-are-so-cost-effective
https://aethon.com/products/
https://aethon.com/products/
https://roboticsbackend.com/ros1-vs-ros2-practical-overview/
https://roboticsbackend.com/ros1-vs-ros2-practical-overview/

BIBLIOGRAPHY

[22] Ros teaching series (3) - the difference between ros 1 and ros 2. https:
//www.circuspi.com/index.php/2022/09/26/ros1-ros2-difference/. [Online;
accessed April 2023].

[23] Understanding nodes. https://docs.ros.org/en/humble/Tutorials/
Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.
html. [Online; accessed April 2023].

[24] Understanding topics. https://docs.ros.org/en/humble/
Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/
Understanding-ROS2-Topics.html. [Online; accessed April 2023].

[25] Understanding services. https://docs.ros.org/en/humble/
Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/
Understanding-ROS2-Services.html. [Online; accessed April 2023].

[26] Understanding actions. https://docs.ros.org/en/humble/
Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/
Understanding-ROS2-Actions.html. [Online; accessed April 2023].

[27] Navigation concepts. https://navigation.ros.org/concepts/index.html#
navigation-servers. [Online; accessed April 2023].

[28] Nav2 nav2 1.0.0 documentation. https://navigation.ros.org/. [Online; accessed
April 2023].

[29] Tully Foote. tf: The transform library. In 2013 IEEE Conference on Technologies
for Practical Robot Applications (TePRA), pages 1–6, 2013.

[30] N. Koenig and A. Howard. "design and use paradigms for gazebo, an open-source
multi-robot simulator". 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CH37566), February 2005.

[31] H.R. Kam, SH. Lee, and T. Park. "rviz: a toolkit for real domain data visualization.".
Telecommun Syst 60, pages 337–345, 2015.

[32] M. Colledanchise and P. Ogren. Behavior trees in robotics and AI: An introduction.
CRC Press, 2018.

[33] Y. Fu, L. Qin, and Q. Yin. A reinforcement learning behavior tree framework for
game ai. In Proceedings of the 2016 International Conference on Economics, So-
cial Science, Arts, Education and Management Engineering, pages 573–579. Atlantis
Press, 2016/08.

71

https://www.circuspi.com/index.php/2022/09/26/ros1-ros2-difference/
https://www.circuspi.com/index.php/2022/09/26/ros1-ros2-difference/
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://navigation.ros.org/concepts/index.html#navigation-servers
https://navigation.ros.org/concepts/index.html#navigation-servers
https://navigation.ros.org/

BIBLIOGRAPHY

[34] State machines vs behavior trees: designing a decision-making ar-
chitecture for robotics. https://www.polymathrobotics.com/blog/
state-machines-vs-behavior-trees. [Online; accessed May 2023].

[35] Halo 2 - wikipedia. https://en.wikipedia.org/wiki/Halo_2. [Online; accessed
May 2023].

[36] M. Nicolau, D. Perez-Liebana, M. OâNeill, and A. Brabazon. "evolutionary behavior
tree approaches for navigating platform games". IEEE Transactions on Computa-
tional Intelligence and AI in Games, 9:227–238, 2017.

[37] R. Brooks. A robust layered control system for a mobile robot. IEEE Journal on
Robotics and Automation, 2(1):14–23, 1986.

[38] P. Ogren. Increasing modularity of uav control systems using computer game behav-
ior trees. AIAA Guidance Navigation and Control Conference, pages 13–16, 2012.

[39] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ogren. Towards a unified behav-
ior trees framework for robot control. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 5420–5427, 2014.

[40] Behavior tree - ros wiki. https://wiki.ros.org/behavior_tree. [Online; accessed
May 2023].

[41] K. French, S. Wu, T. Pan, Z. Zhou, and O.C. Jenkins. Learning behavior trees
from demonstration. In 2019 International Conference on Robotics and Automation
(ICRA), pages 7791–7797, 2019.

[42] Nodes library: Sequences. https://www.behaviortree.dev/docs/3.8/
nodes-library/SequenceNode. [Online; accessed May 2023].

[43] Nodes library: Fallbacks. https://www.behaviortree.dev/docs/3.8/
nodes-library/FallbackNode. [Online; accessed May 2023].

[44] Nodes library: Decorators. https://www.behaviortree.dev/docs/3.8/
nodes-library/DecoratorNode. [Online; accessed May 2023].

[45] A.J. Champandard and P. Dunstan. Game AI Pro 360: Guide to Architecture: The
Behavior Tree Starter Kit. CRC Press, 1st edition edition, 2019.

[46] About | behaviortree.cpp. https://www.behaviortree.dev/docs/3.8/intro. [On-
line; accessed May 2023].

[47] Groot2. https://www.behaviortree.dev/groot. [Online; accessed May 2023].

72

https://www.polymathrobotics.com/blog/state-machines-vs-behavior-trees
https://www.polymathrobotics.com/blog/state-machines-vs-behavior-trees
https://en.wikipedia.org/wiki/Halo_2
https://wiki.ros.org/behavior_tree
https://www.behaviortree.dev/docs/3.8/nodes-library/SequenceNode
https://www.behaviortree.dev/docs/3.8/nodes-library/SequenceNode
https://www.behaviortree.dev/docs/3.8/nodes-library/FallbackNode
https://www.behaviortree.dev/docs/3.8/nodes-library/FallbackNode
https://www.behaviortree.dev/docs/3.8/nodes-library/DecoratorNode
https://www.behaviortree.dev/docs/3.8/nodes-library/DecoratorNode
https://www.behaviortree.dev/docs/3.8/intro
https://www.behaviortree.dev/groot

BIBLIOGRAPHY

[48] R. Ghzouli, T. Berger, E.B. Johnsen, A. Wasowski, and S. Dragule. "behavior trees
and state machines in robotics applications". IEEE Transactions on Software Engi-
neering, 49:4243–4267, September 2023.

[49] Rasmus V. Rasmussen and Michael A. Trick. Round robin scheduling â a survey.
European Journal of Operational Research, 188(3):617–636, 2008.

[50] Matti Kortelainen. A short guide to ros 2 humble hawksbill. 2023.

[51] Switchbot - your simple switch to a smart home. https://eu.switch-bot.com/.
[Online; accessed September 2023].

[52] Switchbot curtain 3 | automatic curtain opener, supports matter. https://eu.
switch-bot.com/products/switchbot-curtain-3. [Online; accessed September
2023].

[53] Switchbot electric blind tilt | make existing blinds smart. https://eu.switch-bot.
com/products/switchbot-blind-tilt. [Online; accessed September 2023].

[54] T.V. Tran, H. Takahashi, T. Narabayashi, and H. Kikura. An application of iot
for conduct of laboratory experiment from home. In 2020 IEEE International IOT,
Electronics and Mechatronics Conference (IEMTRONICS), pages 1–4, 2020.

[55] Switchbot bot | smart button pusher. https://eu.switch-bot.com/products/
switchbot-bot. [Online; accessed September 2023].

[56] D. Soni and A. Makwana. A survey on mqtt: a protocol of internet of things (iot).
In International conference on telecommunication, power analysis and computing
techniques (ICTPACT-2017), volume 20, pages 173–177, 2017.

[57] B. Mishra. Performance evaluation of mqtt broker servers. In International Con-
ference on Computational Science and Its Applications, pages 599–609. Springer,
2018.

[58] What is mqtt? definition and details. https://www.paessler.com/it-explained/
mqtt. [Online; accessed September 2023].

[59] M. Bender, E. Kirdan, M.O. Pahl, and G. Carle. Open-source mqtt evaluation.
In 2021 IEEE 18th Annual Consumer Communications & Networking Conference
(CCNC), pages 1–4. IEEE, 2021.

[60] switchbot-mqtt 3.3.1. https://pypi.org/project/switchbot-mqtt/. [Online; ac-
cessed September 2023].

73

https://eu.switch-bot.com/
https://eu.switch-bot.com/products/switchbot-curtain-3
https://eu.switch-bot.com/products/switchbot-curtain-3
https://eu.switch-bot.com/products/switchbot-blind-tilt
https://eu.switch-bot.com/products/switchbot-blind-tilt
https://eu.switch-bot.com/products/switchbot-bot
https://eu.switch-bot.com/products/switchbot-bot
https://www.paessler.com/it-explained/mqtt
https://www.paessler.com/it-explained/mqtt
https://pypi.org/project/switchbot-mqtt/

BIBLIOGRAPHY

[61] R. Amsters and P. Slaets. Turtlebot 3 as a robotics education platform. In Robotics
in Education: Current Research and Innovations 10, pages 170–181. Springer, 2020.

[62] A. Koubaa, M.F. Sriti, Y. Javed, M. Alajlan, B. Qureshi, F. Ellouze, and A. Mah-
moud. Turtlebot at office: A service-oriented software architecture for personal
assistant robots using ros. In 2016 International Conference on Autonomous Robot
Systems and Competitions (ICARSC), pages 270–276, 2016.

[63] Turtlebot3. https://www.turtlebot.com/turtlebot3/. [Online; accessed Septem-
ber 2023].

[64] Turtlebot3 waffle pi | ros components. https://www.roscomponents.com/en/
mobile-robots/turtlebot-3-waffle. [Online; accessed September 2023].

[65] M. Bouazizi, C. Ye, and T. Ohtsuki. Activity detection using 2d lidar for healthcare
and monitoring. In 2021 IEEE Global Communications Conference (GLOBECOM),
pages 01–06. IEEE, 2021.

74

https://www.turtlebot.com/turtlebot3/
https://www.roscomponents.com/en/mobile-robots/turtlebot-3-waffle
https://www.roscomponents.com/en/mobile-robots/turtlebot-3-waffle

Acknowledgements

I’d like to start by thanking Professor Marina Indri for all the help and advice on my
thesis. The guidance has been a huge part of this project, and I really appreciate it.

Then a big thank you to Dott. Gianluca Prato and Dott. Francesco Aglieco for their
help with decision-making and coding. Their expertise has been incredibly helpful and
has really helped me get through some tough parts of my work.

I also want to thank Assistant Professor Pangcheng David Cen Cheng for the help in
polishing up the writing in my thesis, which has made a big difference.

A special Thanks to the LINKS office for providing a great place to work and all the
equipment that needed for the tests.

To my parents, thanks for the love and support. The encouragement have been my
power throughout this journey.

To Olivia Zhang, thank you for your patience, love, and understanding. Your support
and encouragement have meant a lot.

And to my friends, thank you for all the laughs, the chats, and for always being there.
You guys have been a source of strength and joy.

To everyone who has supported me, whether I’ve named you here or not, thank you
from the bottom of my heart. Your support has been key in getting this thesis across the
finish line.

75

	Introduction
	Researches on multi-floor navigation
	ROS2 framework
	Main innovations
	Node-based architecture

	Navigation2 stack
	Navigation server
	TF tree
	Gazebo and Rviz

	Behavior trees
	Behavior trees concepts
	History
	Nodes and Trees

	Behavior trees in ROS2
	Behavior-tree library
	Behavior-tree Navigator

	Multi-floor navigation
	Behavior tree plugin
	Action node plugin
	Decorator node plugin
	Custom behavior tree

	Navigator plugin
	Elevator server
	Open door service
	Move to floor service

	Simulation

	Implementation
	SwitchBot
	MQTT protocol
	SwitchBot server

	Turtlebot3
	TurtleBot3 Waffle Pi

	Test
	Map creating
	Real environment test

	Conclusion

