
POLITECNICO DI TORINO
Master’s Degree in Data science and Engineering

Master’s Degree Thesis

Vision Graph Neural Networks for
Remote Sensing

Supervisors

Prof. Paolo GARZA

Dott. Luca COLOMBA

Candidate

Giovanni SCIORTINO

ACADEMIC YEAR 2022/2023

Abstract

Modern computer vision approaches mainly relied on convolutions neural networks,
which view the images as regular grid structures. More recently, different approaches
have been proposed to overcome the limitations, such as the lack of flexibility,
and enhance the receptive fields of neural network architectures. To address
these limitations, graph-based neural networks have garnered increasing interest
for computer vision tasks. Instead of a grid, these methods represent images as
graphs that encapsulate relationships between spatial regions. In the graph, nodes
correspond to image patches or regions, while edges characterize the spatial and
semantic connections between them. Consequently, this representation provides a
more adaptable way of encoding both local and long-range dependencies within the
visual scene. In this thesis, we investigate the application of Vision Graph Neural
Network (ViG) architecture for multi-label land cover classification. Moreover,
we evaluate different variation of ViG architecture, analyzing the effectiveness of
different message passing layers compared to the original formulation. We utilize the
large-scale BigEarthNet Sentinel-2 multispectral dataset, one of the largest existing
remote sensing archives. Given the pyramidal architecture of ViG, we examine the
performance of three graph convolutional layers: max-relative, GCN, and graph
attention (GAT) convolution. We further compare the model with and without
relative positional encoding and using all 12 Sentinel-2 spectral bands versus only
the red-green-blue (RGB) bands. Experimental results demonstrate that Pyramid
ViG provides superior performances over architectures like ResNet-101 in terms of
precision, recall, and F1 score. Among the graph layers, max-relative convolution
(i.e., the original formulation of ViG) performs best, and relative positional encoding
improves predictions across all analyzed settings.

i

Acknowledgements

Questo percorso di 5 anni è giunto finalmente al termine. Ripensandoci non è stato
per niente facile. Partendo dall’inizio, perchè è ripensando al pricipio che ognuno
di noi si accorge di quanta strada ha fatto. Il primo anno, un anno di insidie e di
difficoltà, di molti dubbi ma anche di altrettante soddisfazioni. Partendo da un
test d’ingresso che una volta finito riporta una statistica legata il tempo medio
per conseguire una laurea triennale in relazione alla fascia di punteggio ottenuta
nel test. Abbastanza scoraggiante nel mio caso: 4 anni e mezzo. Un numero che
probabilmente non molti ricordano, ma che io continuo a farlo a distanza di 5 anni.

Quindi partendo da "underdog" il primo giorno di lezione mi imbatto in Gioele.
Una persona cinica, le cui ambizioni erano in linea con le mie e con cui ho condiviso
tanto durante il primo anno. Dalle giornate di gennaio passate incessantemente
a studiare e a fare i test di Analisi I ; a quei pomeriggi sotto il sole perchè non
trovavamo un posto in aula studio a maggio, giugno e luglio per preparare Fisica
I ; fino alle notti in videochiamata ad agosto per preparare Algebra lineare. Tutto
ciò con la consapevolezza di non partire in vantaggio, ma anzi che era tutto da
guadagnare. Ebbene Gio, ora mi sento di dire che non ce la siamo cavata male!
Quindi grazie per i momenti di condivisione, sofferenze e difficoltà passate in
quell’anno intenso e anche ai momenti di condivisione gli anni dopo nonostante i
nostri percorsi diversi.

Il secondo anno, 2019/2020, un anno non facile soprattutto dovuto a motivi a
noi conosciuti e che non vorremmo mai rivivere. Nonostante ciò, vorrei ringraziare
di cuore una grandissima persona, Alberto, che durante sia il primo semestre in
presenza che durante il secondo semestre da remoto, mi ha fatto tenere l’asticella
in alto ragionando e confrontandoci nella preparazione dei vari esami.

Al terzo anno, un speciale ringraziamento a Chiara e alle ore in videochiamata
durante i lockdown a studiare e preparare esami non banali. Un grazie anche a
Giulio e ad Alessandro che in quel anno in particolare mi sono diventati sempre
più amici semplicemente confrontandoci e scambiandoci idee che riguardassero
l’università e non solo. Inoltre un grazie va anche a Lorenzo, Giovanni, Pasquale,
Michele, Chiara, Lisa e ai due Andrea, con i quali ho condiviso un progetto di tesi
triennale. È anche grazie al vostro contributo, con i ragionamenti e i confronti avuti

ii

durante i meeting, che sono riuscito a finire il mio percorso triennale ed arrivare
alla fine fin ad ora.

Per quanto riguarda questi ultimi due anni più recenti di magistrale, vorrei
ringraziare di cuore in primis tutti i magnifici, chi più e chi meno, ragazzi del corso
di Data science con cui ho avuto il piacere anche di intrattenere una conversazione in
aula o anche un messaggio per via telematica per confrontarci su esami e argomenti
dei corsi.
Ma partendo dal principio, un grazie enorme a Chiara, Mimmo e Bulfi per le intere
giornate di studio durante la sessione del primo semestre del primo anno. Nel
particolare, Mimmo e Bulfi grazie ancora per avermi fatto tenere l’asticella alta
anche con un pizzico di arroganza nell’affrontare le sfide.
Un grazie al team per il corso di MLDL, con il quale siam riusciti a portare a casa
in modo chirurgico un progetto non semplice durante il secondo semestre.
Un grazie anche ai ragazzi che durante il caldo di giugno e luglio ci son stati durante
le giornate di studio in università e in aula Verdi.
Un grazie in particolare a Pietro che durante la sessione di settembre è stato sempre
presente in aula studio per preparare assieme gli esami.
Un grazie di cuore anche a Pino per i momenti di studio e confronto sui progetti al
primo semestre del secondo anno, a tutte le giornate di studio e ai weekend per
preparare le materie.
Un grazie immenso anche anche ai ragazzi del progetto di Applied Data Science
Project, Lorenzo, Giovanni, Valerio e Arcangelo, con i quali ho avuto condiviso un
esperienza fantastica e li ringrazio per tutto quello fatto durante il progetto.
Un grazie anche ai ragazzi con cui ho studiato le materie date a maggio e a luglio
non ancora citati, Jasmine e Sebastiano e soprattutto un grazie a Stefano per quella
settimana memorabile a luglio fatta di stress, ma anche alla fine di soddisfazioni.

Un grazie al Professor Garza e a Luca per essere stati sempre disponibili fin
dall’inizio per quanto riguarda il lavoro di tesi.

Un grazie vero a Federico, grande amico e coinquilino avuto durante il primo
anno di magistrale con cui ho condiviso tanti momenti e discorsi che mi rimarranno
sempre impressi.

Infine un ringraziamento speciale ai miei genitori, mio fratello e mia nonna che
mi hanno sempre supportato dal principio a cui non sarò mai abbastanza grato per
quello che sono per me e quello che hanno rappresentato fin ora in questo percorso.

Grazie ancora,
un grazie a chi c’è stato,
a chi c’è
e a chi ci sarà,
Giovanni.

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xi

1 Introduction 1

2 Related Work 4
2.1 Computer vision . 4
2.2 Deep learning in computer vision 6
2.3 ResNet . 8
2.4 Graph Neural Network . 9

2.4.1 Neural Message Passing . 11
2.4.2 GCN . 13
2.4.3 GAT . 14
2.4.4 GNNs and its application in Computer Vision 15

2.5 Sentinel-2 . 17

3 Methodology 20
3.1 Vision Graph Neural Network . 21

3.1.1 Graph Structure of Image 21
3.1.2 Graph level processing . 21
3.1.3 ViG Block . 23
3.1.4 Network architecture . 24
3.1.5 Adaptations . 24

3.2 Positional Encoding . 27
3.2.1 Positional and Relative Positional Encoding in ViG 27

3.3 Graph Convolution Layer . 29
3.3.1 GCN and GAT convolution 29

v

4 Experiments 31
4.1 BigEarthNet S-2 . 31
4.2 Experimental Setup . 32

4.2.1 Problem statement and approach 32
4.2.2 Metrics . 36
4.2.3 Libraries and Tools . 36
4.2.4 Settings . 37

4.3 Experimental Results . 38
4.3.1 RGB bands . 39
4.3.2 Multi spectral bands . 41
4.3.3 Qualitative comparison . 44

5 Conclusions 48

Bibliography 50

vi

List of Tables

2.1 Sentinel-2 spectral bands . 18

3.1 Detailed settings of Pyramid ViG series 25

4.1 Class distribution of BigEarthNet S-2 33
4.2 Libraries and versions . 37
4.3 Parameters and values . 38
4.4 RGB results . 40
4.5 Multibands results . 42
4.6 Example of BigEarthNet Sentinel-2 images with the true multi-labels

and the multi-labels assigned by ResNet-101 and ViG/MRGconv
with relative positional encoding. 45

vii

List of Figures

2.1 Images related to computer vision tasks 7
2.2 Training error and test error . 9
2.3 Residual learning building block . 9
2.4 Example network architectures of ResNet. 10
2.5 Overview of message passing . 12
2.6 Structural representation of GAT. 15

3.1 Framework of ViG . 20
3.2 Positional encoding visualization . 28

4.1 Discontinuous urban fabric, Non-irrigated arable land, Complex
cultivation patterns, Land principally occupied by agriculture, with
significant areas of natural vegetation. 34

4.2 Pastures, Moors and heathland, Peatbogs. 34
4.3 Construction sites, Non-irrigated arable land, Pastures, Coniferous

forest, Inland marshes, Water courses. 34
4.4 Discontinuous urban fabric, Pastures, Broad-leaved forest, Conifer-

ous forest, Mixed forest. 34
4.5 Images with labels of BigEarthNet dataset 34
4.6 Pastures, Land principally occupied by agriculture, with significant

areas of natural vegetation, Coniferous forest, Transitional wood-
land/shrub. 35

4.7 Pastures, Coniferous forest, Moors and heathland, Transitional wood-
land/shrub. 35

4.8 Non-irrigated arable land, Pastures. 35
4.9 Burnt areas, Peatbogs. 35
4.10 Images with labels of BigEarthNet dataset 35
4.11 RGB validation loss . 39
4.12 RGB f1 score on validation . 39
4.13 RGB training loss . 40
4.14 Multi-band validation loss . 41

viii

4.15 Multi-band f1 score on validation 42
4.16 Multi-band training loss . 42
4.17 Number of parameters of the models 44

ix

Acronyms

DNN
Deep Neural Network

RNN
Recurrent Neural Network

CNN
Convolutional Neural Network

GNN
Graph Neural Network

ViG
Vision Graph Neural Network

GCN
Graph Convolutional Network

GAT
Graph Attention Network

xi

Chapter 1

Introduction

Land cover classification is a significant task in remote sensing, with important
implications for applications as different as urban planning, environmental moni-
toring, and disaster management. This task involves the assignment of pre-defined
categories or labels to specific land surface elements in an image, such as water,
vegetation, or urban areas. One of the primary difficulties in this task is the
complexity of multi-label classification, where each image patch can be associated
with multiple class labels. Additionally, the high variability and heterogeneity of
remote sensing images increases this complexity.

Traditional convolutional neural networks (CNNs), despite notable successes
in image processing tasks, have limitations in effectively capturing irregular and
complex objects as they view images as regular grid structures. As a result, a
more flexible and expansive approach is needed for complex image recognition
tasks like multi-label land cover classification. This encourages the investigation of
graph-based neural networks, which have been gaining growing attention within
the computer vision community.

Graph Neural Networks (GNNs) offer a high-performance framework for pro-
cessing structured data. In regards to computer vision, GNNs enable images to be
mapped as graphs, encapsulating the relationships between spatial regions. This
approach provides a more adaptive way of encoding both local and long-range
dependencies within the visual scene, potentially overcoming the limitations of
traditional CNNs.

The Vision Graph Neural Network (ViG) is a specific type of GNN developed
for computer vision tasks. The network maps images as graphs, with nodes
corresponding to image patches or regions, and edges denoting the spatial and
semantic relationships between them. The ViG architecture is composed of two
basic modules: a Grapher module, which uses graph convolution to gather and
manipulate graph information, and a Feed Forward Network (FFN) module, which
uses linear layers to transform the features of the nodes.

1

Introduction

The purpose of this research is to examine the viability of applying the ViG
architecture for multi-label land cover classification. To evaluate different varia-
tions of the ViG architecture, we will use the large-scale BigEarthNet Sentinel-2
multispectral dataset and investigate the effectiveness of different message passing
layers compared to the original formulation.

Following this introductory chapter, the thesis is structured as follows:

• Chapter 2 provides a literature review on related work in the field of computer
vision, graph neural networks, and land cover classification.

• Chapter 3 describes the methodology, including the ViG architecture.

• Chapter 4 presents the dataset, and the evaluation metrics, the experimental
setup and results.

• Chapter 5 concludes the thesis and summarizes the key findings.

2

Chapter 2

Related Work

This chapter offers a thorough introduction to important concepts and advancements
in deep learning, specifically focusing on graph neural networks (GNNs) and their
implementation in the field of computer vision. The chapter begins with an
introduction to computer vision, outlining the main tasks and challenges faced
by researchers in this rapidly evolving field. A systematic review of the relevant
literature is presented, detailing the remarkable evolution and groundbreaking
impact of deep learning on state-of-the-art computer vision models over the past
decade. We focus in particular on the architectural innovations of residual networks,
explaining how the introduction of residual blocks enabled the training of far deeper
networks than previously thought possible. The subsequent section of this chapter
delves into the central subject of graph neural networks and describes the principle
of neural message passing as a distinguishing feature of GNNs, which enables
them to model complex relationships within data. Then, we survey the increasing
utilisation of GNNs in computer vision, highlighting their distinct advantages and
proven efficacy in a variety of graph-based tasks. Finally, this paper offers a concise
overview of the Sentinel-2 satellite and its spectral bands, providing a contextual
understanding as we discuss the application of deep learning techniques, including
GNNs, in the rapidly evolving field of remote sensing. The overall objective of this
chapter is to offer an essential overview of key developments in deep learning, and
in particular to explore the revolutionary role and potential of GNNs in shaping
computer vision research and applications in the years ahead.

2.1 Computer vision
Computer vision is a special field of artificial intelligence that aims to enable
computers to extract meaningful information from visual data, such as photographs
and video recordings. This advanced technology allows computers to understand

4

Related Work

and interpret their environment and make intelligent decisions. The central tenet of
computer vision is to equip computers with the ability to observe and comprehend
their surroundings via various sensory devices.

In this context, Figure 2.1 presents some of the most frequent tasks, and a brief
description of each is given below:

• Image and object classification - This involves the classification of images
or three-dimensional objects based on their visually distinctive features. This is
a key step in object detection and classification systems. The process typically
entails deriving features from the image or object and subsequently classifying
it into one of several predefined classes. This task is essential in several areas,
such as medical imaging, autonomous driving, and facial recognition.[1]

• Object detection - This task involves determining the presence of specific
objects in images and locating them with bounding boxes. It is a more
advanced task than image classification since it involves not only categorizing
the objects but also identifying their location within the image. This is
particularly valuable in systems such as surveillance, self-driving cars, and
image retrieval.[2]

• Pose estimation - The task aims to detect the position and orientation of
a person or object, with a specific focus on human pose estimation. This
involves predicting the locations of particular body parts such as the elbows
and hands. This is highly valuable in applications like augmented reality,
where digital objects need to interact convincingly with the real world, and in
motion capture for gaming or film production.[3]

• Image and video generation - It involves generating new synthetic images
or videos by using existing data. This task has various applications in creative
domains such as digital art and animation. Generative Adversarial Networks
(GANs), a type of deep learning model, have achieved notable success in this
field by producing authentic and high-quality media. [4]

• Denoising - This procedure involves eliminating extraneous signals from visual
data, such as images and videos, to restore the original, undamaged data.
It is a necessary process in image restoration and preprocessing, employed
in diverse disciplines including medical imaging, astrophotography, and film
restoration. [5]

• Activity recognition - This task entails the identification of particular
movements or actions within video sequences, serving as a valuable method
in surveillance, sports analysis, human-computer interaction, and healthcare
settings, including patient monitoring and rehabilitation. [6]

5

Related Work

• Semantic segmentation - This process entails labeling each pixel in an
image with a class designation that corresponds to different semantic categories
of objects. Such an approach provides a pixel-level, dense understanding of
a scene, which is critical for autonomous driving, aerial image analysis, and
medical imaging. [7]

• Instance segmentation - This task detects and delimits individual object
instances, providing precise masks rather than just bounding boxes. This is
essential in contexts where distinguished identification of object instances is
imperative, such as medical imaging to isolate overlapping cells, or autonomous
vehicles to detect pedestrians. [8]

• Panoptic segmentation - This is a wide-ranging task that combines semantic
and instance segmentation, assigning both class labels and individual identities
to each pixel in an image. Such an approach provides a holistic understanding
of a scene, which is especially critical in domains like robotics and autonomous
driving, where a meticulous comprehension of the surroundings is crucial. [9]

In this work the main topic is image classification, as in particular multi-label
classification (as will be discussed in Chapter 4). Given an input image fed to the
network, the latter have to associate it into one or more categories.

2.2 Deep learning in computer vision
The area of deep learning, and in particular its application to computer vision,
has undergone a significant transformation in recent years. A continuous wave
of innovative ideas has propelled the field to make rapid strides. A pivotal force
behind this evolution has been the acceptance and honing of Convolutional Neural
Networks (CNNs) [11].

Since the introduction of LeNet [12], CNNs have been used as the fundamental
structure for many successful visual applications. These applications cover a broad
spectrum of tasks, such as image classification, object detection, and semantic
segmentation.

Over the last two decades, the architecture of CNNs has evolved at an unprece-
dented rate. An example of this evolution is the emergence of Residual Networks
(ResNets) [13]. The inclusion of skip connections in ResNets enabled the training
of much deeper networks. This breakthrough addressed the persistent issues of
vanishing and exploding gradients that often inhibit the training of deep networks.

The field of deep learning witnessed progress with the advent of MobileNets
[2], which introduced optimised lightweight models suitable for mobile devices. By
employing depthwise separable convolutions, these models achieved an intricate
balance between computational efficiency and performance, thereby reducing the

6

Related Work

Figure 2.1: Some images related to the following tasks (from left to right and
from top to bottom): Image and object classification [1], object detection [2],
pose estimation [3], image and video generation [4], image denoising [5], activity
recognition [6], semantic segmentation [10], instance segmentation [8], panoptic
segmentation [9]

need for computational resources. This development facilitated the use of deep
learning models for on-device applications.

The emergence of vision transformers (ViTs) in 2020 marked a significant
architectural shift in the field [14]. ViTs adapted the transformer architecture,
originally designed for natural language processing, to handle computer vision tasks.
As a result, numerous ViT variants have since been developed, each seeking to
improve performance through innovative techniques. These included approaches

7

Related Work

such as pyramidal hierarchies [15], local attention mechanisms, and improved
position encodings to capture spatial image structure more effectively.

MLPs gained attention in computer vision following the success of ViTs [16].
When equipped with specially designed modules [17] [18] [19], MLPs have shown
potential for competitive performance in a variety of visual tasks. These range
from traditional challenges such as detection and segmentation to more complex
problems. This demonstrates the versatility and adaptability of MLP architectures
for a wide range of computer vision applications.

2.3 ResNet
Deep residual networks, also known as ResNet, were initially presented by Kaiming
He et al. [13] at the 2015 Conference on Computer Vision and Pattern Recognition
(CVPR).

Before the introduction of ResNets, due to the challenging nature of the problems
and real-world tasks thrown at deep neural networks, it was widely believed that
the size of the networks would have to increase if one wanted to achieve high levels
of accuracy in these tasks. Without considerable depth, the network could not
extract numerous patterns or features for acquiring complex and meaningful input
data representations.

The most apparent solution to address this issue was to expand the network’s
depth to the maximum extent possible, given the resources available for training.
Consequently, the authors of the ResNets paper raised a crucial query: "Can one
learn superior networks by merely stacking more layers?"

As previously mentioned, according to theoretical principles, an increase in the
number of layers within a regular neural network should facilitate the creation
of more complex representations, thereby enhancing the learning process and
resulting in higher accuracy. However, experiments have shown that as network
depth increases, accuracy saturates and then rapidly degrades, but surprisingly
this degradation is not caused by overfitting, as shown in the Figure 2.2.

To tackle the issue, which has been formally identified as the vanishing gradient,
the authors implemented a deep residual learning framework that utilises identity
shortcuts that skip one or more layers, referred to as skip connections. This enables
the gradients to flow directly through the skip connections, thus alleviating the
vanishing gradient problem. The central concept is to encourage the learning of
residual mappings rather than expecting stacked layers to learn mappings directly.

Mathematically, a single residual block is defined as:

y = F (x, {Wi}) + x (2.1)

here x and y are the input and output vectors of the layers considered, the function
F (x, {Wi}) is the residual mapping to be learned. Note that in the equation 2.1

8

Related Work

Figure 2.2: Training error (left) and test error (right) on CIFAR-10 with 20-layer
and 56-layer ’simple’ networks. The deeper network exhibits a higher training error,
implicating a higher test error. Source [13].

the dimensions of x and F must be equal. If it’s not the case (e.g., when changing
the input/output channels), we can perform a linear projection Ws by the shortcut
connections to match the dimensions and the equation can be rewritten as:

y = F (x, {Wi}) + Wsx. (2.2)
A graphical representation of the residual block is in Figure 2.3.

Figure 2.3: A residual learning building block. Source [13].

Moreover, the design of a 34-layer ResNet is shown in Figure 2.4:

2.4 Graph Neural Network
In this section, we examine the fundamental subject of this study, namely, Graph
Neural Networks (GNN). GNN serves as a versatile framework for developing Deep
Neural Networks (DNN) that function on graph data. The fundamental concept
involves generating node representations that rely on the structure of the graph.

9

Related Work

Figure 2.4: Example network architectures of ResNet. Left: a plain network
with 34 parameter layers. Right: a residual network with 34 parameter layers.
The dotted shortcuts increase dimensions. Source [13].

10

Related Work

However, a difficulty arises when attempting to comprehend and construct intri-
cate encoders for graph-structured data due to the lack of suitability of conventional
deep learning techniques. For instance, Recurrent Neural Networks (RNN) are
formulated to work with sequential data, such as text, whereas CNNs are tailored
for grid-structured inputs like images. Therefore, to design a GNN, a new deep
learning structure must be defined.

A possible approach to embedding an entire graph is to use its adjacency matrix
as input. For instance, a flattened adjacency matrix could be input to a Multilayer
Perceptron (MLP) as follows:

zG = MLP(A[1]⊕A[2]⊕ . . .⊕A[|V|]) (2.3)

where A[i] ∈ R|V| represent a single row of the adjacency matrix and ⊕ the vector
concatenation.

The key problem with the previously mentioned method is its reliance on
the order in which the nodes were arranged to create the adjacency matrix. This
impedes the model’s permutation invariance, or equivariance, which is vital in GNNs.
Generalizing across assorted random sequences enables models to concentrate on
the inherent structure of the graph. Mathematically, a desirable function f that
receives an adjacency matrix A as input ought to conform to one of two properties:

f
1
PAP⊤

2
= f(A)(Permutation Invariance) (2.4)

f
1
PAP⊤

2
= Pf(A)(Permutation Equivariance), (2.5)

where P is a permutation matrix. Permutation invariance implies that the func-
tion is independent of the random arrangement of rows/columns in the adjacency
matrix, while permutation equivariance implies that the output of f is consistently
permuted along with the adjacency matrix.

2.4.1 Neural Message Passing

The distinguishing characteristic of a GNN is that it uses a kind of neural message
passing, where vector messages are transferred among nodes and are updated by
neural networks [20]. In the following paragraphs we will dive in the details of
the neural message passing framework. In particular, how the node embeddings
zu,∀u ∈ V are generated from an input graph G = (V , E) along with a set of node
features X ∈ Rd×|V|.

11

Related Work

Overview of the Framework

Figure 2.5: An analysis of the process by which a single node aggregates informa-
tion from its immediate surroundings is carried out. The model focuses primarily
on the acquisition of information from node A’s neighbors (specifically, nodes B, C,
and D). Consequently, the information disseminated by these neighboring nodes is
based on the data they have collated from their respective environments, and this
process persists accordingly. The figure illustrates a two-layer version of a message
passing system. It is worth noting that as the vicinity around the central node
expands, the computational diagram of the Graph Neural Network (GNN) shifts
towards a tree-like structure. Image source [21]

At each stage of message-passing within a GNN, a hidden embedding h(k)
u belonging

to each node u ∈ V is updated according to the aggregated information from its
own neighbor nodes N(u). In mathematical terms, this update to message passing
can be stated as follows:

h(k+1)
u = Update(k)

1
h(k)

u , Aggregate(k)
1î

h(k)
v ,∀v ∈ N (u)

ï22
= Update(k)

1
h(k)

u , m(k)
N (u)

2
.

In this equation, Update and Aggregate are two differentiable functions and mN (u)
is the message vector that is aggregated from node u’s neighbors nodes N (u).

Basically, at the kth iteration of the GNN, from the perspective of a single node
u, the Aggregate function takes as input the embedding of each of its neighbors N (u)
and generates the message m(k)

N (u) from the aggregated neighborhood information.
The Update then merges the message m(k)

N (u) with the embedding of the previous step
h(k−1)

u of node u to generate the updated embedding h(k)
u . The starting embeddings

at k = 0 are fixed to the initial features of all nodes, i.e. h(0)
u = xu,∀u ∈ V . After

running K iterations of GNN message passing, the result of the last layer can be
used to define the embedding of each node, which is the following:

zu = h(K)
u ,∀u ∈ V .

12

Related Work

It is important to note that since the Aggregate function requires a set as input,
GNNs so defined are permutation equivariant by default. The overall Message
Passing framework is displayed graphically in Figure 2.5.

Motivations and Intuitions

The fundamental concept that underpins the GNN message-passing framework
is easily understandable: during each iteration, every node collects data from its
surroundings, and as these iterations proceed, the node embeddings contain more
and more knowledge from distant parts of the graph. To clarify further:

• Following the initial iteration (k = 1), each node embedding incorporates
knowledge from its direct neighborhood, i.e. it incorporates information about
the properties of its direct neighbors that can be reached by a path of length
1 in the graph (1-hop).

• After the second iteration (k = 2), each node embedding includes the embed-
dings from its 2-hop neighbors.

• In general, after a number of k iterations, every node embedding encompasses
information about its k-hop neighborhood.

Node embeddings created by GNN’s message passing contain two primary types
of data. The first type is structural information about the graph. For example,
after k iterations, the embedding h(k)

u of a node u could contain details about the
degrees of all nodes within the k-hop proximity of u. This structural knowledge
can be extremely valuable for a variety of tasks. When examining the shape of
molecules, the degree information can be leveraged to deduce atom types and to
recognize different structural patterns, such as toluene rings.

Furthermore, GNN node embeddings include information based on character-
istics, also called feature-based data. Following k steps of GNN message passing,
each node embedding contains information about its k-hop neighborhood and the
node embeddings take in data about all qualities in their k-jump region. The
feature-aggregation method of GNNs can be compared to the convolutional kernel
method of CNNs. But unlike CNNs, which gather feature data from spatial regions
of an image, GNNs gather data based on local neighborhoods within the graph.

2.4.2 GCN
In order to generalize the convolution operation from standard signal processing to
sigal defined on graphs, in 2016 Thomas N. Kipf and Max Welling proposed the
Graph Convolutional Network (GCN) [22]. The authors define the convolved signal

13

Related Work

matrix X ′ ∈ R|V|×F (where F is the cardinality of the feature maps in output) as
follows:

X ′ = D̂− 1
2 ÂD̂− 1

2 XΘ (2.6)

where X ∈ R|V|×d as defined previously, Â = A + I is the adjacency matrix
with inserted self-loops, D̂ii = q

j=0 Âij its diagonal degree matrix and Θ ∈ Rd×F

is the matrix of filter parameters. So that the node-wise message passing function
is defined as follows:

h(k)
v = Θ⊤ Ø

v∈N (u)∪{u}

hvñ
|N (u)||N (v)|

. (2.7)

The GCN, as shown in the equation above, employs the Kipf normalization, also
known as symmetric normalization, that down-weighting the contributions from
high-degree nodes. This is achieved by introducing a normalization factor based
on the degrees of the nodes involved in each interaction. Specifically, each edge
contribution is divided by the square root of the product of the degrees of its two
nodes. In this way, the nodes with a higher degree have a reduced contribution
and this ensure a more balanced message aggregation.

2.4.3 GAT
Beyond broad set aggregation methods, GNNs often enhance their aggregation
layer through the incorporation of attention mechanisms. This idea was inspired
by the work of Bahdanau et al. [23], who proposed the concept of assigning an
attention weight or relevance to each neighboring node, thereby modulating its
impact during the aggregation process.

The Graph Attention Network (GAT) [24] was the first GNN model to utilize
this attention mechanism. The GAT model leverages attention weights to formulate
a weighted sum of the neighboring nodes as follows:

mN (u) =
Ø

v∈N (u)
αu,vhv. (2.8)

In the equation above, mN (u) represents the aggregated information at node
u. αu, v is the attention weight assigned to neighbor v ∈ N (u) when aggregating
information at node u.

The original GAT paper defines the attention weights αu,v as follows:

αu,v =
exp

1
a⊤ [Whu ⊕Whv]

2
q

v′∈N (u) exp (a⊤ [Whu ⊕Whv′]) . (2.9)

In the above equation, a is a trainable attention vector and W is a trainable
weight matrix. The symbol ⊕ denotes the concatenation operation, which is applied

14

Related Work

to the transformed feature vectors Whu and Whv of the nodes u and v, respectively.
The softmax function ensures the attention weights for the neighbors of each node
sum to 1, providing a normalized measure of importance of each neighbor’s features
in the aggregation process. A structural representation of GAT is displayed in
Figure 2.6.

Figure 2.6: Structural representation of GAT.

2.4.4 GNNs and its application in Computer Vision
GNNs have garnered significant attention in recent years owing to their ability to
model and interpret graphically structured data. Sources [25] and [26] contain the
first references to GNNs. Micheli [27] devised an innovative spatial-based Graph
Convolutional Network (GCN) that integrated non-recursive layers. In more recent
years, many different types of spatial-based GCNs have been built, as discussed
in references [28], [29], [20]. Moreover, Bruna et al. [30] presented a subcategory
of GNNs called spectral-based GCNs, which use spectral graph theory for graph
convolutions. Numerous improvements and extensions to spectral-based GCNs
have been proposed since their introduction, as cited in [31], [32] and [22]. GCNs
have been used in various fields, such as social networks, citation networks, and
biochemical graphs [33] [34], to study and comprehend the complex relationships
present in these graph-structured datasets.

15

Related Work

In computer vision, GCNs have been applied to perform tasks such as point
cloud classification, as highlighted in references [35], [36], [37], and [38]. Point
cloud classification consists of the evaluation of groups of 3D points obtained from
LiDAR scans. For this purpose, GCNs have been intensively investigated ([36],
[39], [40]). Scene graph generation attempts to transform input images into graphs
depicting the relationships between objects. This task commonly employs object
detectors in conjunction with GCNs to enhance precision and efficacy (Yang et
al., 2018; Xu et al., 2017). GCNs have been applied to handle naturally-occurring
graphs that consist of interconnected human joints when recognising how humans
carry out actions [41], [42].

Advantages of GNN in Computer Vision

There are several advantages in employing GNNs in computer vision tasks, some
of them can be outlined in the following:

• Graph as a Universal Data Structure: GNNs exploit the flexibility of
graphs as a data structure. Whereas images can be depicted as grids or
matrices of pixels, graphs offer a more generalised mapping. In a graph-based
model, pixel neighbourhoods can be depicted as nodes interconnected by edges.
Grid and sequence representations are simply specific instances of graphs -
a grid is a regular graph with fixed connection patterns, and sequences are
similar to linear graphs. This flexibility allows GNNs to represent a wide
range of data structures, thereby enabling more comprehensive and in-depth
analysis.

• Increased Flexibility over Grids/Sequences: GNNs offer increased flex-
ibility in modeling irregular shapes, which are often encountered in images
that do not comply with fixed grids. Graphs allow the modeling of arbitrary
interconnections between pixels or regions, a degree of abstraction not possible
with grid-based models. In addition, graph edges can connect non-adjacent
pixels/regions, allowing the modeling of long-range dependencies that are
beyond the reach of grid representations. This makes GNNs particularly
efficient in image analyses where contextual relationships between distant
pixels can be critical.

• Modeling Compositional Structures of Objects: GNNs can efficiently
depict objects that have composite textures. For instance, a plane is composed
of several spatially connected parts. Graphs can eloquently represent these
part-whole relationships between components. Each part or component can be
represented by a node, and edges connecting these nodes can model how these
parts assemble into the whole object. This feature provides a more intuitive

16

Related Work

and effective way of representing complex objects; in fact, it is more in line
with our natural understanding of these objects.

• Transferability Across Disciplines. In contrast to domain-specific models,
the graph-based structure of GNNs allows techniques developed in one disci-
pline to be adapted to others. Findings made using GNNs for social network
analysis or bioinformatics can be retooled to address computer vision chal-
lenges. This cross-disciplinary portability allows computer vision researchers
to build on advances made outside their field. The flexible architecture of
GNNs allows knowledge to be shared across research silos, broadening their
potential applications.

2.5 Sentinel-2
The Sentinel-2 mission, part of the European Union’s Copernicus program, plays
an important role in land monitoring through high-resolution optical imaging.
Consisting of two polar-orbiting satellites, this mission provides continuous and
frequent observations of the Earth’s land and coastal areas. Building on the
legacy of missions such as Landsat and SPOT, Sentinel-2 offers improved spectral
resolution and more frequent revisit times.

The main aim of Sentinel-2 is to observe alterations in vegetation, soil, and
water coverage, with a view to applying the data in agriculture, forestry, and water
management. Furthermore, Sentinel-2 is involved in providing emergency response,
security, and climate monitoring services, extending beyond terrestrial applications.

Each Sentinel-2 satellite bears a MultiSpectral Instrument (MSI) payload, enclos-
ing 13 spectral bands ranging from visible and near-infrared to shortwave infrared
regions. Four of these bands have a spatial resolution of 10 m, six have a resolu-
tion of 20 m, and three have a resolution of 60 m. This comprehensive spectral
resolution across pivotal land surface wavelengths furnishes intricate environmental
information. The shortwave infrared bands offer valuable data on the moisture
content of vegetation and the health of plants. The spectral bands are displayed in
Table 2.1.

Sentinel-2 constitutes a significant development in the field of operational land
monitoring, providing regular revisits, vast coverage, boosted spatial resolution,
and augmented spectral information. The data, which is readily accessible, backs a
range of environmental applications and eases the creation of novel data outputs
and utilities. In carrying on from previous land observation missions, Sentinel-2
supports crucial endeavors of data collection, catering to both scientific research
and practical applications.

17

Related Work

Band Resolution Central wavelength Description
B1 60 m 443 nm Ultra Blue (Coastal and Aerosol)
B2 10 m 490 nm Blue
B3 10 m 560 nm Green
B4 10 m 665 nm Red
B5 20 m 705 nm Visible and Near Infrared (VNIR)
B6 20 m 740 nm Visible and Near Infrared (VNIR)
B7 20 m 783 nm Visible and Near Infrared (VNIR)
B8 10 m 842 nm Visible and Near Infrared (VNIR)
B8a 20 m 865 nm Visible and Near Infrared (VNIR)
B9 60 m 940 nm Short Wave Infrared (SWIR)
B10 60 m 1375 nm Short Wave Infrared (SWIR)
B11 20 m 1610 nm Short Wave Infrared (SWIR)
B12 20 m 2190 nm Short Wave Infrared (SWIR)

Table 2.1: Sentinel-2 spectral bands. Source [43]

18

Chapter 3

Methodology

Figure 3.1: The framework of ViG.

This chapter presents a comprehensive study of the methodology utilized in this
research. Specifically, we investigate the design of ViG, an innovative strategy that
utilizes GNNs to extract graph-level characteristics.

In essence, ViG processes an image as a graph; an image is first divided into equal
portions, which are then treated as nodes of a graph. Information is shared and
modified among these nodes by means of graph convolution operations. The ViG
architecture comprises two key modules: the Grapher module, which gathers and
updates graph data, and the feed-forward network (FFN) module, which transforms
node features. This chapter explains the construction of graph structures from
images, graph-level processing, and the creation of ViG blocks, which are the
central components of the ViG network. A detailed explanation of the methodology

20

Methodology

is provided, supported by mathematical representations.
In the later sections of this chapter, we discuss the adaptations made to the

original structure of ViG for specific applications. These adaptations involve
modifying the graph convolution layer, adjusting the number of heads in the multi-
head update operation, and incorporating relative positional encoding. These
modifications aim to boost the model’s capability to manage intricate visual tasks
and enhance its predictive capabilities. Ultimately, we present options to the
max-relative graph convolution operation, particularly the GCN and the Graph
Attention Network (GAT) convolution techniques in their original formulations.
These alternative methods are examined as feasible alternatives to the graph
convolution operation in the Grapher module in this study.

3.1 Vision Graph Neural Network
Vision Graph Neural Network, in short Vision GNN or ViG, is a novel architecture
proposed by Han et al. [44] to represent an image as a graph to extract graph-level
features for visual tasks.

3.1.1 Graph Structure of Image
Given an image of dimensions H ×W × C, it is divided into N distinct parts,
also called patches. Each patch is transformed into a feature vector, which is
represented as xi ∈ RD.; through this process, a matrix X = [x1, x2, · · · , xN] is
created, where i ranges from 1 to N and D represents the feature dimension. The
transformed features can be viewed as an unordered collection of nodes represented
by V = {v1, v2, · · · , vN}. Each node vi is associated with the identification of the
K closest neighbors, denoted as N (vi). Next, an edge eji is added, directed from
vj to vi, for all vj ∈ N (vi).

This process results in the formation of a graph G = (V , E), where E denotes
the complete set of edges. The process that leads to this graph construction is
denoted as G = G(X). Having established the image as graph data, it is possible
to investigate the application of GNN for the extraction of representative features.

3.1.2 Graph level processing
Once a graph G is created based on the the features X ∈ RN×D, a graph convolu-
tional layer is employed to exchange information between nodes by aggregating
features from its neighboring nodes. In particular, graph convolution operates in
the following manner:

G ′ = F (G,W) = Update (Aggregate (G, Wagg) , Wupdate) . (3.1)

21

Methodology

In this equation, Wagg and Wupdate denote the learnable weights tied to the
aggregation and update operations correspondingly. To be more specific, the
aggregation operation calculates the node’s representation by combining the features
of its neighboring nodes. Then, the update operation merges the aggregated feature
with the existing node representation:

x′
i = h (xi, g (xi,N (xi) , Wagg) , Wupdate) . (3.2)

In this equation, N (xi) signifies the set of neighbor nodes of xi. Following this,
the original ViG paper [44] utilizes the max-relative graph convolution [45] for its
straightforwardness and efficiency, which is formalized as follows:

g(·) = x′′
i = [xi, max ({xj − xi | j ∈ N (xi)}] , (3.3)

h(·) = x′
i = x′′

i Wupdate . (3.4)

In these equations, the bias term is intentionally left out. In the following
sections, the processing at the level of the entire graph will be denoted as X ′ =
GraphConv(X).

Moreover, a multi-head update operation is introduced in this layer, which is
an advanced mechanism for aggregating and transforming node features. In fact,
this operation enhances the model’s ability to capture diverse image features and
spatial relationships. Here a detailed explanation of the process:

• Splitting into Heads: The aggregated feature x′′
i is initially decomposed into

h heads. This division allows for various smaller vectors to be formed, each
capable of learning and concentrating on distinct aspects of the input data.
This implies that concerning attention mechanisms, every head can concentrate
on different parts of the input sequence.

• Updating Heads: These heads are then updated with different weights. Here,
W 1

update , W2
update , · · · , Wh

update are the weight matrices that are specific to
each head. This operation is akin to each head learning its own representation
of the input data.

• Parallel Updating: All heads can be updated in parallel. This is one of the
benefits of this approach, as it supports efficient computation.

• Concatenation: The updated heads are finally concatenated to form the final
output feature vector x′

i. This vector now contains information from all the
different heads, and hence, it is expected to have a richer representation of
the input data.

22

Methodology

We can formalize this operation in the following manner:

x′
i =

è
head1W 1

update , head2W 2
update , · · · , headhW h

update

é
. (3.5)

The incorporation of a multi-head update operation enhances the model’s
capacity to handle intricate visual tasks. This, in turn, allows the model to operate
in multiple representational subspaces simultaneously, resulting in a wider and
more versatile range of image features. As a result, the model excels in capturing
complex spatial relationships and patterns within the image.

3.1.3 ViG Block
A common issue with earlier Deep GCN architectures is the diminishing expressive
power, occurring with an increase in the number of stacked convolutional layers.
This problem is referred to as over-smoothing [46] [47] and occurs due to the
feature vectors’ increasing similarity among the nodes in the graph. Consequently,
prediction performance is severely degraded. To address this occurrence, the
authors of ViG implemented further feature transformations and nonlinear activ

Indeed, to address the aforementioned issue of over-smoothing, the authors of
ViG propose to introduce a linear layer both preceding and following the graph
convolution. The goal of this adjustment is to project the node features into the same
domain, thereby promoting feature diversity. Moreover, to avoid the phenomenon
of layer collapse, a nonlinear activation function is introduced subsequent to the
graph convolution process. The resulting enhanced module is referred to as the
Grapher module. Fundamentally, given an input feature X ∈ RN×D, the expression
for the Grapher module is formulated as follows:

Y = σ (Graph Conv (XWin)) Wout + X (3.6)

where Y ∈ RN×D. Here, Win and Wout denote the weights of fully-connected
layers, while σ represents the activation function, such as ReLU. Please note that
the bias term has been omitted. To further enhance the capacity for feature
transformation, a feed-forward network is applied at the node level. Specifically,
the FFN module is a straightforward multi-layer perceptron comprising two fully-
connected layers:

Z = σ (Y W1) W2 + Y (3.7)

In this equation, Z ∈ RN×D, and W1 and W2 represent the weights of the
fully-connected layers. It is worth noting that the hidden dimension of the FFN is
typically larger than D, the dimension of the node features. Additionally, batch
normalization is applied subsequent to every fully-connected layer within both the

23

Methodology

Grapher and FFN modules, although this detail is omitted from Equations 3.6 and
3.7 for the sake of brevity.

The fundamental unit of the ViG network, termed the ViG block, is composed
of a sequence of Grapher and FFN modules. Given the graph representation of
images and the deployment of the ViG block, the comprehensive ViG network
architecture is depicted in Figure 3.1.

3.1.4 Network architecture
In computer vision, two primary types of network structure are prevalent: isotropic
and pyramid. Each of these architectures has unique characteristics and is suited
to different types of tasks.

Isotropic architectures treat all spatial dimensions equally without accounting
for variations in scale. As a result, the same processing is applied to all parts of the
image regardless of size or level of detail. This architectural approach is employed
by models like the Vision Transformer (ViT) [14] and ResMLP [48]. Although this
architecture is simpler and more uniform, it may not comprehensively capture the
intricate spatial hierarchies that exist in various real-world images.

Conversely, pyramidal architectures are engineered to exploit multiple scales to
capture information at different levels of granularity. The architectures process
distinct image sections at different scales, instead of uniformly treating spatial
dimensions. This enables a better capture of the natural hierarchical structure of
images. ResNet [13] and the Pyramid Vision Transformer (PVT) [15] are models
that showcase the implementation of the pyramid architecture.

During the development of ViG, both isotropic and pyramid network archi-
tectures were tested. Nevertheless, empirical findings have shown that pyramid
architectures are typically more effective for visual tasks [15]. This is most likely
due to their ability to capture and exploit the hierarchical structure of images, a
key feature of many visual challenges.

The developers of ViG have chosen to create four distinct versions of Pyramid
ViG, which include information on their structure, layer configuration, and param-
eters in Table 3.1. Through an analysis of these Pyramid ViG variations, we can
gain a deeper understanding of how a variety of design options can impact the
effectiveness of pyramid structures in visual tasks.

3.1.5 Adaptations
In the previous Subsections 3.1.1, 3.1.2, 3.1.3 and 3.1.4 we outlined the original
structure of ViG [44]. Now we want to mention some adjustment to the archi-
tecture made that will be further explained in detail Chapter 4. Note that all
the considerations are done referring to Pyramid ViG architecture since empirical

24

Methodology

Stage Output size PyramidViG-Ti PyramidViG-S PyramidViG-M PyramidViG-B
Stem H

4 ×
W
4 Conv × 3 Conv × 3 Conv × 3 Conv × 3

Stage 1 H
4 ×

W
4

 D = 48
E = 4
K = 9

× 2

 D = 80
E = 4
K = 9

× 2

 D = 96
E = 4
K = 9

× 2

 D = 128
E = 4
K = 9

× 2

Downsample H
8 ×

W
8 Conv Conv Conv Conv

Stage 2 H
8 ×

W
8

 D = 96
E = 4
K = 9

× 2

 D = 160
E = 4
K = 9

× 2

 D = 192
E = 4
K = 9

× 2

 D = 256
E = 4
K = 9

× 2

Downsample H
16 ×

W
16 Conv Conv Conv Conv

Stage 3 H
16 ×

W
16

 D = 240
E = 4
K = 9

× 6

 D = 400
E = 4
K = 9

× 6

 D = 384
E = 4
K = 9

× 16

 D = 512
E = 4
K = 9

× 18

Downsample H
32 ×

W
32 Conv Conv Conv Conv

Stage 4 H
32 ×

W
32

 D = 384
E = 4
K = 9

× 2

 D = 640
E = 4
K = 9

× 2

 D = 768
E = 4
K = 9

× 2

 D = 1024
E = 4
K = 9

× 2

Head 1 × 1 Pooling & MLP Pooling & MLP Pooling & MLP Pooling & MLP
Parameters (M) 10.7 27.3 51.7 92.6

FLOPs (B) 1.7 4.6 8.9 16.8

Table 3.1: Pyramid ViG series parameters. D is the feature dimension, E is the
hidden dimension ratio in FFN, K is the number of neighbours in GCN, H ×W is
the input image size. ’Ti’ stands for tiny, ’S’ for small, ’M’ for medium, and ’B’ for
base. Source [44]

evidences and the results demonstrated the higher effectiveness of this structure
for image classification task.

Reduction factor

The original pyramid ViG was tailored for 224×224 images (e.g. ImageNet [1]) so
that at each step after the downsample a sufficient number of nodes are present,
which was 9 in the original formulation (see in Table 3.1 the parameter K). However,
when working with smaller images, such as the 120×120 images in the BigEarthNet
dataset [49], precautions had to be taken to maintain a consistent number of
neighbors in the message passing layer.

While it might seem straightforward to just upsample the input images to the
size of 224×224, there are several reasons we decided against this approach.

Firstly, in the context of our application, upsampling would mean artificially
increasing the resolution of the images from the BigEarthNet dataset, which
was originally 120x120. This procedure can introduce interpolation artifacts and
distort the original image content. This could lead to misleading or incorrect

25

Methodology

information being fed into our model. Additionally, upsampling does not provide
extra information to the images; it merely enlarges the existing pixels, which could
lead to the model overfitting to these features rather than learning meaningful
ones.

Furthermore, applying upsampling to each image in the dataset to 224x224
would considerably boost the computational complexity and memory demands
on the model. This could restrict the scalability of our method, rendering it less
efficient and potentially impractical for the extensive datasets we are examining in
this study.

In light of this, we elected to adopt a versatile and more efficient approach, which
entailed adapting the pyramid ViG architecture to suit smaller images. By halving
each dimension of the image after every downsampling stage with a constant reduce
factor, whilst preserving the number of graph convolution layers and the same
number of node neighbors, we were able to maintain the original image resolution
and prevent interpolation artifacts from being introduced.

Furthermore, by maintaining the same number of neighboring nodes throughout
the network, this expansion of the receptive field effectively enhances the model’s
capability to capture both local and global graph patterns. This results in a more
resilient representation of the graph structure, ultimately improving the model’s
discriminative power.

Multi-head update

Moreover, due to the limited resources available to perform the experiments in this
work, which will be detailed in Chapter 4, we have made the decision to set the
number of heads in the multi-head update operation of the graph convolution to 2.
However, it is important to note that increasing this number results in improved
prediction performance. The reason behind this improvement lies in the fact that
by increasing the number of heads, the model’s parameters also increase, enabling
the Grapher module to process node features in different subspaces. This allows
for a more comprehensive exploration of the graph structure and enhances the
model’s ability to capture and leverage diverse information from the nodes, leading
to enhanced predictive capabilities.

Furthermore, the introduction of multiple heads in the graph convolutional layer
introduces parallelism and allows for simultaneous processing of node features from
different perspectives. Each head focuses on a different aspect or viewpoint of the
graph, enabling the model to capture diverse and complementary information. By
incorporating multiple heads, the model gains the ability to learn and aggregate
features at various levels of abstraction.

However, it is important to strike a balance when determining the number of
heads. While increasing the number of heads can enhance performance, there

26

Methodology

is a trade-off with computational complexity and resource requirements. As the
number of heads increases, the overall model size and computational cost also grow.
Therefore, the decision to set the number of heads to 2 in this work takes into
consideration the available resources while still benefiting from the performance
gains achieved through multi-head operations.

3.2 Positional Encoding
Positional encoding is a well-established method for incorporating into Transformer
models [50] information about the relative position of words in a sequence. As
the transformer architecture lacks recurrence or convolution, it has no inherent
awareness of word order. Positional encoding is used to provide further information
on the position of each word, in order to help the model use the sequence order
to improve accuracy. The authors of the study limit their attention to fixed (non-
trainable) positional encoding [51].In particular, the authors use sine and cosine
functions of different frequency to calculate the a value for each input vector in the
following manner:

PE(pos,2i) = sin
1

pos /100002i/dmodel
2

PE(pos,2i+1) = cos
1

pos /100002i/dmodel
2

where pos is the position and i is the dimension; note that each dimension of the
positional encoding corresponds to a sinusoid and that the positional encodings
are added to the input embedding so they have to be of size dmodel .

A very powerful visualization is provided by [52] and is displayed in Figure 3.2.

3.2.1 Positional and Relative Positional Encoding in ViG
In the ViG model we can exploit the above mentioned technique to represent the
position information of the nodes. In particular, given the positional encoding
vector ei ∈ RD, where D is the feature node dimension, for each node:

xi ← xi + ei (3.8)

In the context of Pyramid ViG, we tried to further improve our model by
incorporating the concept of relative positional encoding, a mechanism that was
originally introduced in the Swin Transformer [53]. The relative positional encoding
plays an essential role in capturing the spatial relationships between different
elements in an input sequence, which is particularly beneficial in our case, where
the spatial arrangement of nodes can carry significant information.

Let’s consider two arbitrary nodes, denoted as i and j, in the graph. We can
calculate the relative positional encoding between these two nodes by computing

27

Methodology

Figure 3.2: Positional encoding visualization. Source [52].

the dot product of their individual positional encodings, eT
i ej. The result of this

computation is a scalar value that encapsulates the spatial relationship between
nodes i and j.

This scalar value is then used to modify the feature distance matrix at each
step of the graph convolutional layer, which is responsible for constructing the
graph. Specifically, the relative positional matrix obtained from the previous step
is added to the feature distance matrix. This addition operation essentially infuses
the spatial information captured by the relative positional encoding into the feature
distance matrix, thereby enriching the graph with additional spatial context.

It’s important to note that the relative positional encoding is a static matrix,
i.e., its values are not updated during the training process. This is because it
represents the inherent spatial relationships between different nodes in the graph,
which are independent of the specific task that the GNN is designed to perform.

Given the pyramid architecture of our model, the graph undergoes a down-
sampling process at every step. This effectively reduces the spatial resolution
of the graph, thereby altering the spatial relationships between different nodes.
Consequently, the dimension of the relative positional matrix may vary at each
step of the downsampling process. This variation is accounted for in our model,
ensuring that the relative positional encoding remains accurate and meaningful
throughout the entire graph convolution process.

28

Methodology

3.3 Graph Convolution Layer
In accordance with the details presented in Section 3.1.2, the network under study
initially employed the max-relative graph convolution as its primary operation.
This technique, while effective in certain contexts, has its limitations especially
when dealing with more complex graph structures. Motivated by the need for
more flexible and adaptive graph processing techniques, this work introduces two
alternative graph convolution methods: the Graph Convolutional Network (GCN)
and the Graph Attention Network (GAT) convolutions, as originally formulated in
[22] and [24], respectively.

3.3.1 GCN and GAT convolution
The GCN convolution, as detailed in Section 2.4.2 of Chapter 2, is characterized
by two main features. Firstly, it utilizes a self-loop update mechanism. This inno-
vative approach helps to prevent overfitting by ensuring that a node’s information
remains distinct from its neighbours’ information during the aggregation process.
Secondly, GCN uses a symmetric normalized aggregation technique which tempers
the influence of nodes with a high degree of connections. This ensures a balanced
aggregation process, preventing highly connected nodes from monopolizing the
information flow.

In contrast, the GAT convolution, discussed in detail in Section 2.4.3, employs
an attention mechanism to aggregate information. This mechanism assigns a unique
attention score to each neighbour node, which effectively quantifies its importance
in the context of the given task. This allows the network to focus more on significant
nodes and reduce attention on less relevant ones, leading to more efficient and
targeted information processing.

Moreover, the GAT approach offers the advantage of supporting bipartite
message passing operations. This functionality enables the model to process pairs
of node features—specifically, source and target nodes—as input. This introduces
a broader spectrum of learnable associations, permitting the network to learn more
effective node-level attention coefficients. This process accentuates the importance
of context and structure in the graph, resulting in a more nuanced model that can
adapt to the intricacies of the graph data.

29

Chapter 4

Experiments

In this chapter, we provide an in-depth overview of the exact procedures, specific
details, and comprehensive results related to the experiments conducted in our
research. Our primary resource was the BigEarthNet dataset, leveraging its Sentinel-
2 bands. This multispectral dataset is a robust collection of high-resolution satellite
images, offering a rich variety of spectral features that proved instrumental in our
study.

We present a detailed description of our experimental setup, focusing on the tools
used, the metrics applied, and the specifics of the process. The primarily libraries
used are Pytorch, Pytorch Geometric and Lightning. The main key performance
indicator of this work are precision, recall, and F1-score. We justify the choice of
these metrics within the context of our specific research objectives.

Then we dedicate an important portion of the chapter to a detailed discussion of
the results obtained by comparing the several settings, considering only the RGB
or the whole Sentinel-2 bands. In particular, we displayed some plot regarding the
training performances considering the training loss and the loss and F1 score on
validation per each epochs. Then, we discuss the results on test split. In the end,
we have also a discussion about the models’ trainable parameters and a qualitative
comparison with model predictions along with the images.

4.1 BigEarthNet S-2
In this work, we employed BigEarthNet, which is a multispectral large scale dataset
to train, validate and test the several settings of ViG comparing them also with
ResNet-101 model. In the specifics, BigEarthNet is a multi-label image classification
dataset, where the true label of each image in the archive is associated to one or
more classes that are provided from the CORINE Land Cover (CLC) database.
Moreover, considering the Sentinel-2’s spectral bands in Table 2.1, the total 590,326

31

Experiments

image patches have the following resolution: 120× 120 for 10m bands, 60× 60 for
20m bands and 20× 20 for 10m bands. Note that since BigEarthNet is a Sentinel-2
L2A dataset, the 10th band of the one displayed in Table 2.1 is not included.

For the purposes of our research, we employed Level-3 of the CLC nomenclature,
implying that each image is associated with one to twelve class labels out of a
possible 43. Upon examining the dataset using this particular label nomenclature,
it becomes apparent that the data distribution is imbalanced, as can be observed
from Table 4.1. For instance, broader labels such as Mixed forest and Pastures are
associated with a greater number of images, while more specific labels like Airport
are less represented. In general, 95% of the images are associated with at most five
labels. Several examples of images from the dataset, along with their respective
labels, can be seen in Figure 4.5 and 4.10.

4.2 Experimental Setup

In the following we will describe the metrics, libraries, tools and settings of our
work.

4.2.1 Problem statement and approach

Given the complexity of multi-label classification problems, it is imperative to
discuss the methodological approach for addressing these tasks. In such scenarios,
the number of nodes in the final layer of our model should correspond to the total
quantity of labels. For a conventional classification task, where labels are mutually
exclusive, the softmax function is typically employed to convert the raw output
of the final layer, also referred to as logits, into probabilities. These probabilities,
which collectively sum to one, are then used to identify the class with the highest
confidence as the predicted outcome.

However, this reasoning is not directly applicable to multi-label classification
tasks due to the variable nature of label associations. For instance, in the BigEarth-
Net dataset, the true label count for each image can range from one to twelve
within the full set of potential classes. Therefore, the traditional approach in
such situations involves applying a sigmoid function to each of the output logits,
mapping each input to a value between 0 and 1. A predetermined probability
threshold is then used to classify those values exceeding this limit as the predicted
classes. In our research, we established the threshold value at 0.5, that considering
the characteristics of a sigmoid function, this decision implies that classes with
strictly positive logits are taken into account.

32

Experiments

Class name Number of images
Mixed forest 217,119
Coniferous forest 211,703
Non-irrigated arable land 196,695
Transitional woodland/shrub 173,506
Broad-leaved forest 150,944
Land principally occupied by agriculture, with significant areas of natural vegetation 147,095
Complex cultivation patterns 107,786
Pastures 103,554
Water bodies 83,811
Sea and ocean 81,612
Discontinuous urban fabric 69,872
Agro-forestry areas 30,674
Peatbogs 23,207
Permanently irrigated land 13,589
Industrial or commercial units 12,895
Natural grassland 12,835
Olive groves 12,538
Sclerophyllous vegetation 11,241
Continuous urban fabric 10,784
Water courses 10,572
Vineyards 9,567
Annual crops associated with permanent crops 7,022
Inland marshes 6,236
Moors and heathland 5,890
Sport and leisure facilities 5,353
Fruit trees and berry plantations 4,754
Mineral extraction sites 4,618
Rice fields 3,793
Road and rail networks and associated land 3,384
Bare rock 3,277
Green urban areas 1,786
Beaches, dunes, sands 1,578
Sparsely vegetated areas 1,563
Salt marshes 1,562
Coastal lagoons 1,498
Construction sites 1,174
Estuaries 1,086
Intertidal flats 1,003
Airports 979
Dump sites 959
Port areas 509
Salines 424
Burnt areas 328

Table 4.1: Class distribution of BigEarthNet S-2 Level-3 CLC

33

Experiments

Figure 4.1: Discontinuous urban
fabric, Non-irrigated arable land,
Complex cultivation patterns, Land
principally occupied by agriculture,
with significant areas of natural vege-
tation.

Figure 4.2: Pastures, Moors and
heathland, Peatbogs.

Figure 4.3: Construction sites, Non-
irrigated arable land, Pastures, Conif-
erous forest, Inland marshes, Water
courses.

Figure 4.4: Discontinuous urban
fabric, Pastures, Broad-leaved forest,
Coniferous forest, Mixed forest.

Figure 4.5: Some images along with the labels of BigEarthNet dataset.
34

Experiments

Figure 4.6: Pastures, Land princi-
pally occupied by agriculture, with
significant areas of natural vegetation,
Coniferous forest, Transitional wood-
land/shrub.

Figure 4.7: Pastures, Coniferous
forest, Moors and heathland, Tran-
sitional woodland/shrub.

Figure 4.8: Non-irrigated arable
land, Pastures.

Figure 4.9: Burnt areas, Peatbogs.

Figure 4.10: Some images along with the labels of BigEarthNet dataset.

35

Experiments

4.2.2 Metrics
In order to evaluate the experiments carried out in this work, we considered the
following metrics: precision, recall, and F1 score. Specifically, we considered micro-
aggregation in order to obtain a comprehensive aggregation of these evaluation
metrics. Micro-aggregation, a technique that aggregates the contributions of all
classes, allows us to compute a more holistic average metric.

The metrics are formally defined as follows:

micro-precision =
q TP

(q TP + q FP) , (4.1)

micro-recall =
q TP

(q TP + q FN) , (4.2)

micro-F1 = 2 · micro-precision ·micro-recall
(micro-precision + micro-recall) . (4.3)

In these equations, the terms TP, FP, and FN represent true positive, false
positive, and false negative values, respectively. These terms are cumulatively
summed across all the classes. The micro-aggregation technique ensures equitable
treatment of all instances, irrespective of the class they emerge from. Thus, it
aggregates the contributions of all instances to compute a comprehensive average
metric, rather than calculating metrics for each class in isolation. It is essential to
underline that this particular method of aggregation is particularly suited to our
objective, given the class imbalance in the BigEarthNet dataset, as discussed in
the previous Section (4.1).

4.2.3 Libraries and Tools
The entirety of this work’s code is written in Python, specifically making use of
the renowned deep learning framework, PyTorch [54]. In addition to PyTorch,
we also utilized several libraries that have been built on top of it, these include
PyTorch Lightning [55], PyTorch Geometric [56], and TorchGeo [57]. PyTorch
Lightning, an open-source library, proves to be highly beneficial as it allows us to
organize the code in a manner that enhances clarity and promotes reproducibility.
Furthermore, it enables the model to be hardware agnostic and capitalizes on its
integrated callback system. On the other hand, PyTorch Geometric is specifically
designed to ease the development of deep learning models based on a variety of
geometric structures, such as graphs. Recalling the structure of ViG, the Grapher
module handle the graph level processing through the message passing layer. In
particular, this module was reimplemented from the original formulation with the
built in Class of message passing in Pytorch Geometric library. Moreover, both

36

Experiments

GCN and GAT convolutions layers have been also imported from it to perfom our
investigation. TorchGeo has provided the BigEarthNet dataset for this study. As
we utilized Sentinel-2 images, and the bands possess different spatial resolutions,
this library efficiently upsamples all of them to a resolution of 10 meters. We
also made use of the torchvision package that is part of PyTorch to import the
ResNet101 model and also the scikit learn library for its built-in evaluation metrics.
The most relevant libraries required to replicate the experiments are displayed in
Table 4.2 along with their versions.

During the course of our study, the tool that proved to be exceptionally useful
for monitoring our experiments was Comet.ml. It allowed us to track and compare
our experiments, even in live mode, by providing an array of visualization tools.
Lastly, all of our experiments were conducted using an Nvidia Tesla V100 GPU
with 32GB.

Package Version
Pytorch 2.0.1

Pytorch Geometric 2.3.1
Pytorch Lightning 2.0.2

TorchGeo 0.4.1
Comet ML 3.33.3
Scikit Learn 1.2.2

Table 4.2: The most relevant libraries along with their versions.

4.2.4 Settings

In Table 4.3 the parameters of the training process are displayed. We trained the
models, both ViG with several configurations and ResNet-101, for a maximum of
100 epochs with a batch size of 4. The optimizer chosen is Adam with 10−3 as
learning rate, without weight decay. A step learning rate scheduler was chosen
to reduce it of a factor 10 every 10 epochs. Finally, since we are in a multi-label
classification task we chose a binary cross entropy with logits as loss function.

37

Experiments

Parameter Value
Epochs 100

Batch size 4
Optimizer Adam

Learning rate 0.001
Scheduler StepLR

Loss function BCE with logits loss

Table 4.3: Training parameters along with their values.

4.3 Experimental Results

In this section, we present the results of experiments evaluating three convolutional
layer architectures - GCN, GAT, and Max-Relative convolution - incorporated into
ViG. We assessed the ViG model with these different convolutional layers and with
or without relative positional encoding, using all the Sentinel-2 bands imagery from
BigEarthNet. For comparison, we evaluated also a not pre-trained ResNet-101
model on this dataset to establish baseline benchmark performance.

In addition to that, we decided to conduct further tests using RGB bands. These
experiments were designed to serve as a benchmark test, helping us to understand
the value of the extra information provided by the full Sentinel-2 spectrum. The
same experimental setup and evaluation metrics were used for both the RGB and
full spectrum experiments, ensuring a fair comparison.

We trained, validated, and tested the models using the official split of the
BigEarthNet. Since we did not set a fixed seed in our experiments, we computed
the mean and standard deviation for each model configuration based on three
separate runs. As outlined in Section 4.2.2, we evaluated the models by micro-
averaging the precision, recall, and F1 scores across all classes.

In the following, for each scenario, we will first discuss the training performances
of ViG’s variants, commenting the trends of the training and validation’s losse as well
as the validation’s f1 score during our experiments. To ensure clear interpretation,
only a single run for each model configuration is displayed on the plots. Additionally,
the validation are performed every 2 epochs of the training. Then, we will evaluate
the results using the the mean and standard deviation the of the metrics derived
from the test set over three distinct runs. The seed was changed for each run,
which facilitated a comprehensive comparison of various model configurations.

38

Experiments

4.3.1 RGB bands

Training performances of ViG’s variants

Considering the ViG’s variants, in Figures 4.11, 4.12 and 4.13 are displayed the
validation loss, f1 score and the training loss respectively. First of all, we can
notice that the training loss is decreasing over the epochs reaching a stable value
around 0.12. Considering the validation loss, which is computed every 2 epochs
of training, also in this case considering all the ViG’s configurations it has a
decreasing trend overall, witnessing that our models are able to generalize and are
not overfitting. Then, considering the f1 score on validation we can see that overall
it has an increasing trend, reaching a value of approximately 0.60 with the best
model configuration.

Figure 4.11: RGB validation loss during the epochs.

Figure 4.12: RGB F1 score on validation during the epochs.

39

Experiments

Figure 4.13: RGB training loss during the epochs.

Results

Model configuration F1 score Precision Recall
Mean std Mean std Mean std

ResNet-101 0.5752 0.175 0.7901 0.108 0.4499 0.043
ViG/GCNconv 0.5721 0.091 0.7881 0.134 0.4491 0.059

ViG/GCNconv+RPE 0.5977 0.101 0.7531 0.027 0.4954 0.073
ViG/GATconv 0.5688 0.109 0.7714 0.035 0.4505 0.096

ViG/GATconv+RPE 0.5985 0.127 0.7733 0.062 0.4883 0.088
ViG/MRGconv 0.5868 0.114 0.7896 0.038 0.4669 0.095

ViG/MRGconv+RPE 0.6093 0.126 0.8049 0.040 0.4901 0.091

Table 4.4: RGB results of each of the configuration on BigEarthNet S-2 test set.
MREconv stands for Max-Relative Graph convolution, RPE stands for relative
positional encoding and the mean.

The results derived from using the Red, Green, and Blue bands from the Sentinel-2
bands of BigEarthNet are displayed in Table 4.4. Upon analyzing the results, it is
evident that each configuration of the ViG model surpasses the performance of the
benchmark model, ResNet-101. This superior performance is recorded across all
three evaluation metrics: F1 score, precision, and recall.

Diving deeper into the performance of the three graph convolutional layers,
a distinct pattern emerges. The Max-Relative Graph convolution (MRGconv),
which is the convolutional layer used in the original formulation of the ViG model,
consistently outperforms the other two layers, GCN and GAT. Specifically, the

40

Experiments

improvement in the F1 score when using MRGconv is approximately 3% compared
to GCN and roughly 2% when compared to GAT.

This pattern of superior performance by the MRGconv layer persists when
relative positional encoding is enabled. With this additional feature, the F1 score
of the ViG model with the MRGconv layer increases to an average of 0.6093 across
the three runs. This configuration also achieves the highest precision among all the
model configurations evaluated. However, the highest recall is observed when the
GCN convolutional layer is used with positional bias enabled.

Overall, the implementation of relative positional encoding contributes to su-
perior performance, particularly in terms of the F1 score, across all three graph
convolutional layers examined.

4.3.2 Multi spectral bands

Training performances of ViG’s variants

Considering the Figures 4.14, 4.15 and 4.16 we can see the validation loss, f1 score
and the training loss respectively, in this scenario. In particular, we can make
similar considerations to the ones made previously for the RGB scenario. Also
in this case, both training and validation’s losses have decreasing trends over the
several model configurations witnessing the ability to generalize without overfitting
in the training process. The F1 score on validation plot, on the other hand, have
an overall increasing trend, reaching value of approximately 0.70 for the best model
configuration.

Figure 4.14: Multi-band validation loss during the epochs.

41

Experiments

Figure 4.15: Multi-band F1 score on validation during the epochs.

Figure 4.16: Multi-band training loss during the epochs.

Results

Model configuration F1 score Precision Recall
Mean std Mean std Mean std

ResNet-101 0.6656 0.026 0.8147 0.082 0.5625 0.112
ViG/GCNconv 0.6769 0.046 0.8023 0.099 0.5855 0.129

ViG/GCNconv+RPE 0.6879 0.056 0.7785 0.141 0.6162 0.072
ViG/GATconv 0.6840 0.045 0.8173 0.098 0.5881 0.067

ViG/GATconv+RPE 0.6898 0.104 0.8045 0.033 0.6038 0.086
ViG/MRGconv 0.70465 0.121 0.8120 0.048 0.6223 0.099

ViG/MRGconv+RPE 0.7136 0.124 0.8151 0.051 0.6408 0.082

Table 4.5: Multibands results of each of the configuration on BigEarthNet S-2
test set. MREconv stands for Max-Relative Graph convolution, RPE stands for
relative positional encoding.

42

Experiments

Switching to the analysis to all the bands of Sentinel-2 within the BigEarthNet, the
results of which are also displayed in Table 4.5, we replicate the exact experiments
that were conducted in the RGB scenario.

As we could expect, the trends observed from the RGB scenario are largely
replicated here. The ViG model maintains its superior performance over the
baseline model, ResNet-101, demonstrating its consistent effectiveness. However, it
is important to note that considering all the Sentinel-2 bands, we have observed an
increase in performance, across all the settings, by approximately 10% in terms of
the F1 score. This increase is attributed to the major feature set available in the
input data with respect to the previous setting.

Analogous to the RGB scenario, the MRGconv continues to achieve the highest
F1 scores among the three convolutional layers. This efficient performance is
sustained even when relative positional encoding is enabled. Specifically, the
configuration considering the MRGconv, coupled with positional encoding, yields
the highest F1 score and recall among all the model configurations, with respective
values of 0.7136 and 0.6408. We can also notice that the highest precision in this
context is achieved when the GAT convolutional layer is used, specifically in the
absence of the positional bias.

In summary, the employment of relative positional encoding continues to yield
improved results across all three graph convolutional layers. Among these, the
MRGconv stands out as the most effective, affirming its consistency across varying
experimental conditions.

Model’s parameters

Figure 4.17 shows a quantitative scatter plot illustrating the correlation between
the performance of each model setting and their total number of parameters. The
horizontal axis represents the total number of trainable parameters, while the
vertical axis represents performance in terms of F1 score in a multi-band scenario.
Notably, this axis uses a logarithmic scale due to the significant difference in the
number of parameters between the ResNet-101 and ViG models, with the former
having one order of magnitude higher than the latter.

We can notice that observing the plot the ViG’s variants with the relative
positional encoding enable are not displayed since the positional bias introduce only
static non trainable parameters. Specifically, the configuration with the maximum
relative convolution layer has approximately 2.1 millions parameters, all of which
are trainable. In contrast, relative positional coding introduces approximately 3
millions parameters, none of which are trainable due to the static nature of the
encoding.

Overall, the plot highlights the superiority of the ViG model over the baseline
ResNet-101 model evaluated in this work. Despite having significantly fewer

43

Experiments

parameters, the ViG model outperforms ResNet-101 in terms of the performance
indicator.

Figure 4.17: Scatter plot with axis-X representing the total number of trainable
parameters of each model configurations and axis-Y the F1 score in multi-band
scenario.

4.3.3 Qualitative comparison
To provide a more qualitative comparison between the model variants, we further
examined the multi-label predictions associated with some of the images from
the test split using the ResNet-101 model and the ViG variant using the MRG
convolution with positional bias enabled, both in the multi-band scenario.

In particular, considering Figure 4.6, we can see 5 different Sentinel-2 images
with the associated true multi-label and the several labels assigned by 2 models
taken into consideration. In particular, analyzing one image per time, we can
see that the first one is associated with 2 labels, Non-irrigated arable land and
Pastures, that recalling from the class distribution in Section 4.1 are quite common.
The ResNet-101 model predicts the two labels correctly but in addition, it assigns
another label, while the ViG model predicts them correctly. Considering the second
image our baseline model assigns correctly the two common labels, Pastures and
Sea and ocean, but also in this case assigns other two labels to the image which are
similar to the true classes; in particular Complex cultivation patterns are similar to
Pastures, while Water bodies are similar to Sea and ocean. Considering the third
image, the ResNet model in this case wasn’t able to assign a rare label to the image,

44

Experiments

Test Image True Multi-Label ResNet-101 ViG/MRGconv+RPE

Non-irrigated arable land,
Pastures

Non-irrigated arable land,
Pastures, Annual crops

associated with permanent crops

Non-irrigated arable land,
Pastures

Discontinuous urban fabric,
Pastures, Sea and ocean

Complex cultivation patterns,
Pastures, Sea and ocean,

Water bodies

Discontinuous urban fabric,
Pastures, Sea and ocean

Discontinuous urban fabric,
Sport and leisure facilities,

Pastures

Discontinuous urban fabric,
Pastures

Discontinuous urban fabric,
Sport and leisure facilities,

Pastures

Discontinuous urban fabric,
Pastures, Coniferous forest,

Moors and heathland, Peatbogs,
Sea and ocean

Discontinuous urban fabric,
Pastures, Coniferous forest,

Natural grassland, Sea and ocean

Discontinuous urban fabric,
Pastures, Coniferous forest,

Moors and heathland, Peatbogs,
Sea and ocean

Sea and ocean
Sea and ocean,
Water bodies,

Sparsely vegetated areas
Sea and ocean

Table 4.6: Example of BigEarthNet Sentinel-2 images with the true multi-labels
and the multi-labels assigned by ResNet-101 and ViG/MRGconv with relative
positional encoding.

i.e. Sport and leisure facilities. Moving forward, the fourth image is a particularly
challenging one since the number of true labels is 6 in total. The baseline model
also in this case does not perform well as the ViG model; in fact, it was not able to
predict them all by also replacing the Moors and hearthland class with the Natual
grassland. Finally, the last image presents an ambiguous image since it is only
associated with the label Sea and ocean, while clearly by observing it there is a

45

Experiments

noticeable green land. The ViG model, surprisingly, was able to assign only the
single correct label, while ResNet-101 mistakenly assigned other two unrelated
labels, which are Water bodies and Sparsely vegetated areas.

46

Chapter 5

Conclusions

This research aimed to explore the application of Vision Graph Neural Networks
(ViG), a novel deep learning architecture, for multi-label land cover classification
using remote sensing imagery. Specifically, we leveraged the BigEarthNet Sentinel-2
dataset and examined the performance of different graph convolutional layers within
the ViG model.

We hypothesized that by incorporating different types of graph convolutional
layers into the ViG architecture and by enabling or disabling relative positional
encoding, we could improve the model’s performance on the multi-label classification
task. Furthermore, we conjectured that the use of all Sentinel-2 spectral bands
would render superior results compared to using only the RGB bands.

Through systematic experiments, we validated that the ViG model outperformed
ResNet-101 across all evaluation metrics. Among the graph convolutional layers,
the max-relative convolution from the original ViG formulation achieved the best
results. Enabling relative positional encoding consistently improved performance,
especially the F1 score, for all three graph convolutional layers tested. Using the full
Sentinel-2 bands provided superior accuracy compared to just RGB, demonstrating
the value of the enhanced spectral information.

The results of our research validate the efficacy of the Pyramid ViG model for
multi-label land cover classification tasks. The results presented over the several
setting taken in consideration by varying the convolutional layers and the significant
improvement brought by relative positional encoding underscore the potential of
this approach for remote sensing applications. Moreover, our findings highlight
the importance of using all available spectral bands in Sentinel-2 data to achieve
superior performance.

While our research has made significant strides, several avenues for further
exploration exist. In future works, we plan to:

• Test the ViG model on additional remote sensing datasets of varying types

48

Conclusions

and resolutions to enhance its generalizability.

• Investigate the performance of different types of graph convolutional layers
within the ViG architecture, which could expand our understanding of the
model’s potential.

• Explore variations of relative positional encoding to better understand their
impact.

• Extend the application of the ViG model beyond land cover classification to
assess its versatility in other remote sensing tasks or entirely different domains.

In conclusion, our research provides valuable insights into Vision Graph Neural
Networks and their application in remote sensing. Through systematic experimenta-
tion, we established the effectiveness of the ViG model in outperforming traditional
models like ResNet-101. Our results also underscored the importance of the choice
of convolutional layer and the introduction of relative positional encoding. We
believe our findings pave the way for further exploration and optimization of Vision
Graph Neural Networks, potentially unlocking new advancements in the field of
remote sensing and beyond.

49

Bibliography

[1] Olga Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge.
2015. arXiv: 1409.0575 [cs.CV] (cit. on pp. 5, 7, 25).

[2] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. 2017.
arXiv: 1704.04861 [cs.CV] (cit. on pp. 5–7).

[3] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity
Fields. 2019. arXiv: 1812.08008 [cs.CV] (cit. on pp. 5, 7).

[4] Minguk Kang, Woohyeon Shim, Minsu Cho, and Jaesik Park. Rebooting
ACGAN: Auxiliary Classifier GANs with Stable Training. 2021. arXiv: 2111.
01118 [cs.CV] (cit. on pp. 5, 7).

[5] Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang
Liu, and Houqiang Li. Uformer: A General U-Shaped Transformer for Image
Restoration. 2021. arXiv: 2106.03106 [cs.CV] (cit. on pp. 5, 7).

[6] Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Mingxing Tan,
Matthew Brown, and Boqing Gong. MoViNets: Mobile Video Networks for
Efficient Video Recognition. 2021. arXiv: 2103.11511 [cs.CV] (cit. on pp. 5,
7).

[7] Changqian Yu, Changxin Gao, Jingbo Wang, Gang Yu, Chunhua Shen, and
Nong Sang. BiSeNet V2: Bilateral Network with Guided Aggregation for
Real-time Semantic Segmentation. 2020. arXiv: 2004.02147 [cs.CV] (cit. on
p. 6).

[8] Justin Liang, Namdar Homayounfar, Wei-Chiu Ma, Yuwen Xiong, Rui Hu,
and Raquel Urtasun. PolyTransform: Deep Polygon Transformer for Instance
Segmentation. 2021. arXiv: 1912.02801 [cs.CV] (cit. on pp. 6, 7).

50

https://arxiv.org/abs/1409.0575
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1812.08008
https://arxiv.org/abs/2111.01118
https://arxiv.org/abs/2111.01118
https://arxiv.org/abs/2106.03106
https://arxiv.org/abs/2103.11511
https://arxiv.org/abs/2004.02147
https://arxiv.org/abs/1912.02801

BIBLIOGRAPHY

[9] Zhiqi Li, Wenhai Wang, Enze Xie, Zhiding Yu, Anima Anandkumar, Jose M.
Alvarez, Ping Luo, and Tong Lu. Panoptic SegFormer: Delving Deeper into
Panoptic Segmentation with Transformers. 2022. arXiv: 2109.03814 [cs.CV]
(cit. on pp. 6, 7).

[10] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
Networks for Biomedical Image Segmentation. 2015. arXiv: 1505 . 04597
[cs.CV] (cit. on p. 7).

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. «ImageNet Classifi-
cation with Deep Convolutional Neural Networks». In: Neural Information
Processing Systems 25 (Jan. 2012). doi: 10.1145/3065386 (cit. on p. 6).

[12] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. «Gradient-based learning
applied to document recognition». In: Proceedings of the IEEE 86.11 (1998),
pp. 2278–2324. doi: 10.1109/5.726791 (cit. on p. 6).

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. 2015. arXiv: 1512.03385 [cs.CV] (cit. on
pp. 6, 8–10, 24).

[14] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale. 2021. arXiv: 2010.11929 [cs.CV] (cit. on pp. 7,
24).

[15] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang,
Tong Lu, Ping Luo, and Ling Shao. Pyramid Vision Transformer: A Versatile
Backbone for Dense Prediction without Convolutions. 2021. arXiv: 2102.12122
[cs.CV] (cit. on pp. 8, 24).

[16] Ilya Tolstikhin et al. MLP-Mixer: An all-MLP Architecture for Vision. 2021.
arXiv: 2105.01601 [cs.CV] (cit. on p. 8).

[17] Shoufa Chen, Enze Xie, Chongjian Ge, Runjian Chen, Ding Liang, and Ping
Luo. CycleMLP: A MLP-like Architecture for Dense Prediction. 2022. arXiv:
2107.10224 [cs.CV] (cit. on p. 8).

[18] Dongze Lian, Zehao Yu, Xing Sun, and Shenghua Gao. AS-MLP: An Axial
Shifted MLP Architecture for Vision. 2022. arXiv: 2107.08391 [cs.CV] (cit.
on p. 8).

[19] Jianyuan Guo, Yehui Tang, Kai Han, Xinghao Chen, Han Wu, Chao Xu, Chang
Xu, and Yunhe Wang. Hire-MLP: Vision MLP via Hierarchical Rearrangement.
2021. arXiv: 2108.13341 [cs.CV] (cit. on p. 8).

[20] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. Neural Message Passing for Quantum Chemistry. 2017. arXiv:
1704.01212 [cs.LG] (cit. on pp. 11, 15).

51

https://arxiv.org/abs/2109.03814
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://doi.org/10.1145/3065386
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2102.12122
https://arxiv.org/abs/2102.12122
https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/2107.10224
https://arxiv.org/abs/2107.08391
https://arxiv.org/abs/2108.13341
https://arxiv.org/abs/1704.01212

BIBLIOGRAPHY

[21] William L. Hamilton. «Graph Representation Learning». In: Synthesis Lec-
tures on Artificial Intelligence and Machine Learning 14.3 (), pp. 1–159 (cit.
on p. 12).

[22] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph
Convolutional Networks. 2017. arXiv: 1609.02907 [cs.LG] (cit. on pp. 13,
15, 29).

[23] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine
Translation by Jointly Learning to Align and Translate. 2016. arXiv: 1409.
0473 [cs.CL] (cit. on p. 14).

[24] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph Attention Networks. 2018. arXiv:
1710.10903 [stat.ML] (cit. on pp. 14, 29).

[25] M. Gori, G. Monfardini, and F. Scarselli. «A new model for learning in graph
domains». In: Proceedings. 2005 IEEE International Joint Conference on
Neural Networks, 2005. Vol. 2. 2005, 729–734 vol. 2. doi: 10.1109/IJCNN.
2005.1555942 (cit. on p. 15).

[26] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. «The Graph Neural Network Model». In: IEEE Trans-
actions on Neural Networks 20.1 (2009), pp. 61–80. doi: 10.1109/TNN.2008.
2005605 (cit. on p. 15).

[27] Alessio Micheli. «Neural Network for Graphs: A Contextual Constructive
Approach». In: IEEE Transactions on Neural Networks 20.3 (2009), pp. 498–
511. doi: 10.1109/TNN.2008.2010350 (cit. on p. 15).

[28] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning Con-
volutional Neural Networks for Graphs. 2016. arXiv: 1605.05273 [cs.LG]
(cit. on p. 15).

[29] James Atwood and Don Towsley. Diffusion-Convolutional Neural Networks.
2016. arXiv: 1511.02136 [cs.LG] (cit. on p. 15).

[30] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral
Networks and Locally Connected Networks on Graphs. 2014. arXiv: 1312.6203
[cs.LG] (cit. on p. 15).

[31] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep Convolutional Networks
on Graph-Structured Data. 2015. arXiv: 1506.05163 [cs.LG] (cit. on p. 15).

[32] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filtering. 2017. arXiv:
1606.09375 [cs.LG] (cit. on p. 15).

52

https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1710.10903
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2010350
https://arxiv.org/abs/1605.05273
https://arxiv.org/abs/1511.02136
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1506.05163
https://arxiv.org/abs/1606.09375

BIBLIOGRAPHY

[33] Nikil Wale, Ian A. Watson, and George Karypis. «Comparison of descriptor
spaces for chemical compound retrieval and classification». In: Knowledge
and Information Systems 14 (2006), pp. 347–375. url: https://api.semant
icscholar.org/CorpusID:2596211 (cit. on p. 15).

[34] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive Representation
Learning on Large Graphs. 2018. arXiv: 1706.02216 [cs.SI] (cit. on p. 15).

[35] Danfei Xu, Yuke Zhu, Christopher B. Choy, and Li Fei-Fei. Scene Graph
Generation by Iterative Message Passing. 2017. arXiv: 1701.02426 [cs.CV]
(cit. on p. 16).

[36] Loic Landrieu and Martin Simonovsky. Large-scale Point Cloud Semantic
Segmentation with Superpoint Graphs. 2018. arXiv: 1711.09869 [cs.CV]
(cit. on p. 16).

[37] Yongcheng Jing, Yining Mao, Yiding Yang, Yibing Zhan, Mingli Song, Xinchao
Wang, and Dacheng Tao. Learning Graph Neural Networks for Image Style
Transfer. 2023. arXiv: 2207.11681 [cs.CV] (cit. on p. 16).

[38] Runzhong Wang, Junchi Yan, and Xiaokang Yang. «Learning Combinatorial
Embedding Networks for Deep Graph Matching». In: 2019 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV). IEEE, Oct. 2019. doi:
10.1109/iccv.2019.00315. url: https://doi.org/10.1109%2Ficcv.
2019.00315 (cit. on p. 16).

[39] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein,
and Justin M. Solomon. Dynamic Graph CNN for Learning on Point Clouds.
2019. arXiv: 1801.07829 [cs.CV] (cit. on p. 16).

[40] Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, and Xinchao Wang.
«Distilling Knowledge From Graph Convolutional Networks». In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). June 2020 (cit. on p. 16).

[41] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial Temporal Graph Con-
volutional Networks for Skeleton-Based Action Recognition. 2018. arXiv:
1801.07455 [cs.CV] (cit. on p. 16).

[42] Ashesh Jain, Amir R. Zamir, Silvio Savarese, and Ashutosh Saxena. Structural-
RNN: Deep Learning on Spatio-Temporal Graphs. 2016. arXiv: 1511.05298
[cs.CV] (cit. on p. 16).

[43] Sentinel 2 bands combinations. urldate: 2023-10-18. url: https://gisgeogr
aphy.com/sentinel-2-bands-combinations/ (cit. on p. 18).

[44] Kai Han, Yunhe Wang, Jianyuan Guo, Yehui Tang, and Enhua Wu. Vision
GNN: An Image is Worth Graph of Nodes. 2022. arXiv: 2206.00272 [cs.CV]
(cit. on pp. 21, 22, 24, 25).

53

https://api.semanticscholar.org/CorpusID:2596211
https://api.semanticscholar.org/CorpusID:2596211
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1701.02426
https://arxiv.org/abs/1711.09869
https://arxiv.org/abs/2207.11681
https://doi.org/10.1109/iccv.2019.00315
https://doi.org/10.1109%2Ficcv.2019.00315
https://doi.org/10.1109%2Ficcv.2019.00315
https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/1801.07455
https://arxiv.org/abs/1511.05298
https://arxiv.org/abs/1511.05298
https://gisgeography.com/sentinel-2-bands-combinations/
https://gisgeography.com/sentinel-2-bands-combinations/
https://arxiv.org/abs/2206.00272

BIBLIOGRAPHY

[45] Guohao Li, Matthias Müller, Ali Thabet, and Bernard Ghanem. DeepGCNs:
Can GCNs Go as Deep as CNNs? 2019. arXiv: 1904.03751 [cs.CV] (cit. on
p. 22).

[46] Kenta Oono and Taiji Suzuki. Graph Neural Networks Exponentially Lose
Expressive Power for Node Classification. 2021. arXiv: 1905.10947 [cs.LG]
(cit. on p. 23).

[47] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper Insights into Graph
Convolutional Networks for Semi-Supervised Learning. 2018. arXiv: 1801.
07606 [cs.LG] (cit. on p. 23).

[48] Hugo Touvron et al. ResMLP: Feedforward networks for image classification
with data-efficient training. 2021. arXiv: 2105.03404 [cs.CV] (cit. on p. 24).

[49] Gencer Sumbul, Marcela Charfuelan, Begum Demir, and Volker Markl.
«Bigearthnet: A Large-Scale Benchmark Archive for Remote Sensing Im-
age Understanding». In: IGARSS 2019 - 2019 IEEE International Geoscience
and Remote Sensing Symposium. IEEE, July 2019. doi: 10.1109/igarss.
2019.8900532. url: https://doi.org/10.1109%2Figarss.2019.8900532
(cit. on p. 25).

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. 2023. arXiv: 1706.03762 [cs.CL] (cit. on p. 27).

[51] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N.
Dauphin. Convolutional Sequence to Sequence Learning. 2017. arXiv: 1705.
03122 [cs.CL] (cit. on p. 27).

[52] Understanding Positional Encoding in Transformers. urldate: 2021-05-10. url:
https://erdem.pl/2021/05/understanding-positional-encoding-in-
transformers#positional-encoding-visualization (cit. on pp. 27, 28).

[53] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen
Lin, and Baining Guo. Swin Transformer: Hierarchical Vision Transformer
using Shifted Windows. 2021. arXiv: 2103.14030 [cs.CV] (cit. on p. 27).

[54] Adam Paszke et al. «PyTorch: An Imperative Style, High-Performance Deep
Learning Library». In: Advances in Neural Information Processing Systems
32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.
Fox, and R. Garnett. Curran Associates, Inc., 2019, pp. 8024–8035. url:
http : / / papers . neurips . cc / paper / 9015 - pytorch - an - imperative -
style-high-performance-deep-learning-library.pdf (cit. on p. 36).

[55] William Falcon and The PyTorch Lightning team. PyTorch Lightning. Ver-
sion 1.4. Mar. 2019. doi: 10.5281/zenodo.3828935. url: https://github.
com/Lightning-AI/lightning (cit. on p. 36).

54

https://arxiv.org/abs/1904.03751
https://arxiv.org/abs/1905.10947
https://arxiv.org/abs/1801.07606
https://arxiv.org/abs/1801.07606
https://arxiv.org/abs/2105.03404
https://doi.org/10.1109/igarss.2019.8900532
https://doi.org/10.1109/igarss.2019.8900532
https://doi.org/10.1109%2Figarss.2019.8900532
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1705.03122
https://arxiv.org/abs/1705.03122
https://erdem.pl/2021/05/understanding-positional-encoding-in-transformers#positional-encoding-visualization
https://erdem.pl/2021/05/understanding-positional-encoding-in-transformers#positional-encoding-visualization
https://arxiv.org/abs/2103.14030
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.5281/zenodo.3828935
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning

BIBLIOGRAPHY

[56] Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning
with PyTorch Geometric. May 2019. url: https://github.com/pyg-team/
pytorch_geometric (cit. on p. 36).

[57] Adam J. Stewart, Caleb Robinson, Isaac A. Corley, Anthony Ortiz, Juan M.
Lavista Ferres, and Arindam Banerjee. «TorchGeo: Deep Learning With
Geospatial Data». In: Proceedings of the 30th International Conference on
Advances in Geographic Information Systems. SIGSPATIAL ’22. Seattle,
Washington: Association for Computing Machinery, Nov. 2022, pp. 1–12. doi:
10.1145/3557915.3560953. url: https://dl.acm.org/doi/10.1145/
3557915.3560953 (cit. on p. 36).

55

https://github.com/pyg-team/pytorch_geometric
https://github.com/pyg-team/pytorch_geometric
https://doi.org/10.1145/3557915.3560953
https://dl.acm.org/doi/10.1145/3557915.3560953
https://dl.acm.org/doi/10.1145/3557915.3560953

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Related Work
	Computer vision
	Deep learning in computer vision
	ResNet
	Graph Neural Network
	Neural Message Passing
	GCN
	GAT
	GNNs and its application in Computer Vision

	Sentinel-2

	Methodology
	Vision Graph Neural Network
	Graph Structure of Image
	Graph level processing
	ViG Block
	Network architecture
	Adaptations

	Positional Encoding
	Positional and Relative Positional Encoding in ViG

	Graph Convolution Layer
	GCN and GAT convolution

	Experiments
	BigEarthNet S-2
	Experimental Setup
	Problem statement and approach
	Metrics
	Libraries and Tools
	Settings

	Experimental Results
	RGB bands
	Multi spectral bands
	Qualitative comparison

	Conclusions
	Bibliography

