
POLITECNICO DI TORINO
Master’s Degree in Artificial Intelligence and Data Analytics

Master’s Degree Thesis

Fine-tuning Deep Language
Models for Zero-Shot Text

Classification

Supervisors
Garza Paolo
Bongiovanni Lorenzo

Candidate
Fontana Elia

Academic year 2022-2023



Abstract

High quality Zero-Shot Text Classification is one of the holy grails of NLP as
it allows to avoid the difficult, time-consuming and expensive process of col-
lecting and labelling data for supervised training. Deep language models have
shown remarkable capabilities in various natural language processing tasks,
but their effectiveness in Zero-Shot Text Classification remains an area of
exploration. Surely, large language model (LLMs), e.g., GPT4 and LaMDA,
have undoubtedly shown stunning generalization capabilities but they are
not open-source and anyway intractable with normal computing resources.
The aim of this thesis is to go deeper and analyze this task, in the context
of tractable, open-source language models.
In particular, we focus on MPNet, a language model pre-trained on exten-
sive general corpora and specialized on the task of Semantic Text Similarity
(STS). We explore the advantages of implementing a supervised contrastive
learning objective during the fine-tuning phase to address the challenge of
Zero-Shot Text Classification.
The main focus of this work is centred on enhancing the model’s Zero-Shot
capability by generating a better-suited vector-based representation for short
sentences like noun phrases, used as labels.
Given a document, such as scientific paper or journal article, consisting of a
title and a description, noun phrases are extracted from title. The framework
aim is to generate embeddings for this short-text keywords in such a way that
they are as close as possible in the semantic vector space to the embedding
of the associated long-text description.
Furthermore, an analysis of alignment and distribution uniformity within
these generated vectors is conducted to gain a deeper understanding of the
semantic vector space generated by MPNet during fine-tuning.
By shedding light on these aspects, this thesis contributes to a deeper under-
standing of Zero-Shot Text Classification and presents novel insights that
may pave the way in enhancing the performance and capabilities of deep
language models in the context of Zero-Shot Text Classification.



Contents

List of Tables 4

List of Figures 5

1 Introduction 9
1.1 Zero-Shot Text Classification . . . . . . . . . . . . . . . . . . . 9
1.2 Semantic Similarity . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Objective of thesis . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Related Works 13
2.1 Word2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Continuous Bag-of-Words (CBOW) . . . . . . . . . . . 15
2.1.2 Skip-gram . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 GloVe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Model Architecture . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Positional Encoding . . . . . . . . . . . . . . . . . . . . 22
2.3.5 Self-Attention . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.6 Multi-headed Attention . . . . . . . . . . . . . . . . . . 23

2.4 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Masked Language Model (MLM) . . . . . . . . . . . . 26
2.4.3 Next Sentence Prediction (NSP) . . . . . . . . . . . . . 26

2.5 MPNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Contrastive learning . . . . . . . . . . . . . . . . . . . . . . . 29

2



3 Dataset 31
3.1 ArXiv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 AG News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Noun phrases extraction . . . . . . . . . . . . . . . . . . . . . 33

4 Methods and metrics 35
4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Weighted Normalized Supervised Contrastive Loss . . . . . . . 36
4.3 Alignment and Uniformity . . . . . . . . . . . . . . . . . . . . 36
4.4 Cosine Similarity . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Normalized Discounted Cumulative Gain (nDCG) . . . . . . . 38
4.6 Precision@K, Recall@K, F1@K score . . . . . . . . . . . . . . 39
4.7 Model architecture . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Experiments and Results 43
5.1 Hyperparameter settings . . . . . . . . . . . . . . . . . . . . . 43
5.2 Dataset subdivision . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.1 Uniformity and Alignment analysis . . . . . . . . . . . 44
5.3.2 Contrastive hyperparameter α . . . . . . . . . . . . . . 48
5.3.3 nDCG Results . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.4 0-Shot Text Classification Results on Taxonomy . . . . 54

6 Conclusion 55
6.1 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography 59

3



List of Tables

5.1 Alignment and Uniformity analysis on both Arxiv and Ag
News dataset. We can notice a similar behaiviour across datasets.
In both cases, Alignment improves, while Cross and Shorts
Uniformity degrade. Since these metrics are losses lower val-
ues indicate better performance. . . . . . . . . . . . . . . . . . 48

5.2 The table illustrates results of nDCG, Precision@K, Recall@K
and F1@K on the unseen taxonomy classification task. An
enhancements across all metrics is observed. . . . . . . . . . . 54

4



List of Figures

1.1 Text can be annotated with labels that describe its various
facets, from the topic treated, to the sentiment that it want
to convey. Positive labels are highlighted in blue. Image from
[19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Schema of the 2 method proposed methods. The CBoW (left
side) technique makes prediction for the current word based
on the surrounding context, on the contrary Skip-gram (right
side) model predicts the surrounding words given the current
word. Image from [13] . . . . . . . . . . . . . . . . . . . . . . 14

2.2 The table presents a comparison of word occurrences for both
’ice’ and ’steam’ in relation to other words. Specifically, it an-
alyzes the conditional probability of these two words and their
ratio. It’s evident that the ratio provides a better extrapola-
tion of information regarding word relevance concerning the
two specified words. In the raw ratio, a higher value indi-
cates a stronger correlation with ’ice’ in the numerator, while
a lower value implies a stronger correlation with ’steam’ in the
denominator. A value close to one signifies that the word ’k’
is not discriminative for either of the two words. Image from
[13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Weighting function f with α = 3/4. Image from [13] . . . . . . 19
2.4 Transformers architecture. Image from [16] . . . . . . . . . . . 21
2.5 Scaled Dot-Product Attention (left side) and Multi-Head At-

tention (right side) that consists of multiple attention layers
running in parallel. Image from [16] . . . . . . . . . . . . . . . 22

2.6 BERT input representation. The input is constructed by com-
bining the token embeddings, segmentation embeddings, and
position embeddings through summation. Image from [6] . . . 25

2.7 BERT Masked Language Model (MLM). Image from [4] . . . . 27
2.8 MLM (a) and PLM (b) models. Image from [14] . . . . . . . . 28

5



2.9 A visual representation that elucidates that explains how con-
trastive learning works. Circles represent embeddings within
a vector space. Positive/entiled samples (in green), are bring
close the anchor (the white circle), while negative samples (in
red), are pushed away. The dashed circles represent the final
(and ideal) position of embeddings after the model’s training
leveraging contrastive learning . . . . . . . . . . . . . . . . . . 30

2.10 Image that better illustrates the supervised contrastive learn-
ing. For each anchor (left side), a set of other samples (right
side) are drawn from the dataset, forming pairs (anchor, sam-
ple to compare with). Entailed phrases (in green) are la-
beled as positive samples, while contradictory one (in red)
are marked as negative samples. Image from [8] . . . . . . . . 30

3.1 Example of hierarchical taxonomy for the macro-classes Com-
puter science and Quantitative Biology. Snapshot from [3] . . 32

3.2 From the title, through spaCy, 4 noun phrases are extracted:
"ADA", "Game-Theoretic Perspective", Data Augmentation",
"Object Detection". Since the single word "ADA" is meaning-
less by itself, it is discarded. . . . . . . . . . . . . . . . . . . . 34

4.1 Visualization of the Alignment (on the right) and Uniformity
(on the left) of feature distributions on the output unit hyper-
sphere.
The image illustrates an ideal scenario where, concerning Uni-
formity, samples exhibit a well-distributed pattern across the
hypersphere. Regarding Alignment, samples with similar fea-
tures are positioned closely within the feature space. Image
from [17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 pipeline used . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1 Plot of Loss, with epochs on the x-axis and loss values on

the y-axis. The horizontal green line corresponds to the value
computed through MPNet without fine-tuning, the blue line
represents the value calculated on the training set, while the
orange line reflects the value determined on the validation set. 45

5.2 Plot of Alignment, with epochs on the x-axis and alignment
values on the y-axis. The horizontal green line corresponds
to the value computed through MPNet without fine-tuning,
the blue line represents the value calculated on the training
set, while the orange line reflects the value determined on the
validation set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6



5.3 Plot of Uniformity short, with epochs on the x-axis and uni-
formity values on the y-axis. The horizontal green line corre-
sponds to the value computed through MPNet without fine-
tuning, the blue line represents the value calculated on the
training set, while the orange line reflects the value determined
on the validation set. . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Plot of Uniformity cross, with epochs on the x-axis and uni-
formity values on the y-axis. The horizontal green line corre-
sponds to the value computed through MPNet without fine-
tuning, the blue line represents the value calculated on the
training set, while the orange line reflects the value determined
on the validation set. . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Plot of nDCG, with epochs on the x-axis and nDCG values on
the y-axis. The horizontal green line corresponds to the value
computed through MPNet without fine-tuning, the blue line
represents the value calculated on the training set, while the
orange line reflects the value determined on the validation set. 47

5.6 Evaluation of nDCG (y-axis) on the variation of alpha (x-axis).
The plot shows an increase in nDCG values, reaching a stable
value around 60. Further increases of alpha beyond 300 do
not yield benefits, leading, in fact, to a decrease in performance. 49

5.7 Comparison of nDCG (on the y-axis) measures between mod-
els trained and tested on ArXiv and AG News dataset (on the
x-axis) both utilizing a ’random split’ subdivision. Blue bars
represent the nDCG values before MPNet fine-tuning, while
orange one depict the nDCGs after the model’s fine-tuning. . . 50

5.8 Comparison of nDCG (on the y-axis) measures between mod-
els trained on ArXiv dataset utilizing different data subdivi-
sion (on the x-axis). The models labeled as ’unseen Math’
(Mathematic) and ’unseen Q-bio’ (Quantitative biology) are
trained by isolating the specific category, that is used for eval-
uation. On the other hand, the ’random’ model employs the
’random split’ strategy for data subdivision. Blue bars repre-
sent the nDCG values before MPNet fine-tuning, while orange
one depict the nDCGs after the model’s fine-tuning. . . . . . . 51

7



5.9 Comparison of nDCG (on the y-axis) measure between models
trained on AG News dataset utilizing different data subdivi-
sion (on the x-axis). The model labeled as ’unseen Business’
is trained by isolating the ’Business’ category, that is used for
evaluation. On the other hand, the ’random’ model employs
the ’random split’ strategy for data subdivision. Blue bars
represent the nDCG values before MPNet fine-tuning, while
orange one depict the nDCGs after the model’s fine-tuning. . . 52

8



Chapter 1

Introduction

1.1 Zero-Shot Text Classification
In last decades supervised text classification has reached great success through
the usage of enormous amount of training data and the introduction of
trasformer-based Deep Language Models. Similarly, Zero-Shot Text Classi-
fication (0SHOT-TC) is an application that has great potential in real word
scenarios and it is somehow less explored than traditional supervised meth-
ods. In conventional text classification the labels of each class are typically
associated with class numerical indices 0,1,2,...,n which does not permit to
exploit the semantic of labels. This approach cannot be exploited in 0SHOT-
TC where labels can be different every time and it is not possible to assume
the presence of labeled examples for training the model. Moreover, we can
categorize a text base on different aspects. For example as depicted in fig-
ure 1.1 a phrase can be interpreted on different levels of meaning, such as
the topic (for example this text discuss a finance or sport argument) or the
emotion (for instance this text express joy or sadness).
For humans, associating multiple and diverse meaning words with a text for
the purpose of categorization, is a straightforward task. This because we have
the capability to interpret word meaning and its contextualization within a
sentence. The idea of Zero-Shot Text Classification is to design a framework
that, much like humans, can determine, for any forthcoming word acting as
a label, whether it can be associated to a text.
To summarize, we define Zero-Shot Text Classification as the task of cate-
gorizing a text according to one ore more labels that have never been seen
by the model during training, relying only on semantics of both the text and
labels themselves. In a way, we can think of this method as a case of transfer

9



1 – Introduction

learning, where a model pre-trained on one task is employed for a different
application.

Figure 1.1. Text can be annotated with labels that describe its various
facets, from the topic treated, to the sentiment that it want to convey.
Positive labels are highlighted in blue. Image from [19]

1.2 Semantic Similarity
One of the key concept in the Zero-Shot Text Classification task is the se-
mantic similarity.
Semantic similarity represent a distance measure between the semantic mean-
ings of pair of words, sentences or document. It is defined over a set of terms
or documents where the concept of distance between items is based on their
similarity in meaning or semantic content rather than their lexicographical
likeness.
In fact, two pieces of text can express very similar concepts despite the words
in them being completely different.
Moreover, semantic similarity is often associated to semantic relatedness.
This concept goes beyond just measuring the semantic similarity (similarity
in meaning), but also involves a wider analysis of the common semantic char-
acteristics/properties between (two) words. For example, the words ‘coffee’
and ‘mug’ may be related to one another closely, but they are not considered
semantically similar whereas the words ‘coffee’ and ‘tea’ are semantically sim-
ilar. The idea is to bring closer entailed word vector representations while

10



1.3 – Objective of thesis

push away not correlated vectors.

1.3 Objective of thesis
Annotation of a dataset is a labor-intensive and time-consuming process. On
top of that, a dataset labelled according to a certain set of labels becomes
useless when new labels are introduced, which is a common in many real
word scenarios and particularly in the scientific field where the introduction
of new terms to describe specific concepts is unavoidable.
This is the main challenge that this work wants to address by leveraging a
Deep Language Model, pre-trained for Semantic Text Similarity (STS), and
specializing it to make it more suitable for the task of Zero-Shot Text Clas-
sification.
To this end, we devise a fine-tuning objective where the model has to learn
to associate some text to a set of relevant keyword related to it, where these
keywords are different for each text. We collect a big dataset of documents,
each one composed by title and abstract/description, where the title is typi-
cally a good summary of the content of the abstract.
Keeping this in mind, we extract noun-phrases from each title, and those
are almost certainly guaranteed to be relevant keywords for the respective
abstract.
The first step consists in extracting noun-phrases (keywords) from the title
of each document, that in a certain way summarized and categorized the
article.
Next, the idea is to train the model to generate a vector-representation for
these keywords in a manner that captures their semantic relevance with re-
spect to the corresponding article.
At the end of this process we want to achieve the following result:
given a text and a list of keywords, we want out model to be able to gen-
erate vector representations such that the more semantically related are the
keywords to the text, the closer are their vectors representations.
To achieve this goal a first analysis was conducted on the performance of the
raw MPNet architecture, without fine-tuning. Then we fine-tune the model
and demonstrate the effectiveness of a contrastive learning approach in gen-
erating embedding representation of keywords that are semantically close to
long-text description of the corresponding abstract.

11



12



Chapter 2

Related Works

In this section, we provide an in-depth exploration of the diverse methodolo-
gies employed in the creation of word embeddings, that play a crucial role in
Semantic Similarity and, consequently, in Zero-Shot Text Classification.

2.1 Word2Vec
In the field of Natural Language Processing (NLP), representing words as
indices in a vocabulary has been a simple and robust way to encode informa-
tion, making it machine-readable. However, this approach lacks the ability to
define properties like similarity between words, limiting its utility for many
tasks. Furthermore, until the introduction of this technique, existing models
struggled to handle large datasets efficiently, resulting in slower processing
speeds.
In the realm of word vector representations, earlier research had already re-
vealed that words exhibit various degrees of similarity. For instance, words
with similar endings often clustered in the same subspace of the original
vector space. Researchers also found that similarity extended beyond mere
syntactic regularities; for example, they demonstrated that operations like
vector(King) – vector(Man) + vector(Woman) produced a vector close to the
Queen vector.
The paper by Mikolov et al. [11] aimed to develop a novel model that not only
maximized the accuracy of vector operations like the one mentioned above,
but also improved the learning of both syntactic and semantic regularities.
To achieve these goals, they introduced two single-layer architectures: Con-
tinuous Bag of Words (CBOW) and Skip-gram.

13



2 – Related Works

Figure 2.1. Schema of the 2 method proposed methods. The CBoW (left
side) technique makes prediction for the current word based on the sur-
rounding context, on the contrary Skip-gram (right side) model predicts the
surrounding words given the current word. Image from [13]

14



2.2 – GloVe

2.1.1 Continuous Bag-of-Words (CBOW)
The CBOW method is a modality for learning Word2Vec embeddings that
consists in training a simple feed forward network where it is removed the
non-liner hidden layer and the projection layer is shared by all words. As
results the projection is not influenced by the order in which words are pre-
sented. As shown in figure 2.1 the architecture, given a window of n words,
attempts to predict the current word (in the middle) based on the other
words that surround it, in essence by leveraging the context. In particular
the architecture exploit both word from past as well as from future (the words
before and after the current). It is called continuous because the representa-
tion learned, i.e. the word embeddings, are continuous dense representation
of the original words. The window input consists of N future and N past
words.

2.1.2 Skip-gram
The other method to learn Word2Vec embeddings is Skip-gram. As shown
in 2.1, it works in the opposite way with respect to CBOW. Given a current
word as input, the model predicts words before and after within a certain
window range. It increase the quality of the generated vector but also the
computational complexity. Moreover, inside a window, words are weighted
based on their distance to the current (central) word, following the principle
that the more words are distant the less they are related. In this context, the
weight represents how often we sample a word and use them for the training.
The architecture employs a range C, in particular, R words form past and R
words form future are sampled in the range < 1, C >.

2.2 GloVe
The main drawback of Word2Vec methods is the inability to capture the
global context. In general, they are not able to explicitly preserve global
information about the statistics of word occurrences because they focus the
attention only on the local context, a small portion (window) of the entire
corpus.
For this reason they totally lost the advantage to consider the vast amount of
data repetition within text or documents, fails in creating statistics on that.
The overcome the aforementioned limitations, the authors of [13] propose

15



2 – Related Works

Global Vectors for Word Representations (GloVe), a global log-bilinear re-
gression model that combines the advantages of both local context window
methods and global matrix factorization.

Before going into detail about how the model works lets define some no-
tation:

• X: word-word co-occurrence count matrix

• Xij : contains the number of time the word j occurs in the context of
word i

• Xi = q
k Xik: number of recurrences of word i within the context of all

the other word

• Pij = P (j|i) = Xij/Xi: probability that given the word i, the word j
appears in the same context

From simple statistics about words co-occurrence it is possible to extract
certain aspects of meaning. An example is proposed to explain better this
concept and clarify in a simple way what are the core elements of the GloVe
architecture. We can consider two word, i = ice and j = steam, and examine
their relationship by studying how often they appear together with respect to
different probe words k. In particular, by analyzing the ratio of co-occurrence
probabilities. As shown in the table 2.2, for a given word k = solid we expect
a strong relation with respect to ice (i) but not steam (j). As consequence,
the ratio Pik/Pjk will be large. On the contrary, for a word k = gas, the ratio
should be small as the word has a stronger correlation with steam. Moreover,
for k words like water or fashion, which in the first case are either related to
ice and steam and in the second to neither, the ratio is close to 0, showing
that this word are irrelevant in the discrimination between the words i, j.

In previous works training was based on probabilities co-occurrence. The
innovation, as illustrated in the example, is to leverage ratio of co-occurrence
probabilities instead.
Based on this principle the aim is to find an objective function that depends
on the three words i,j,k that we can write in a generic form as

F (wi, wj, w̃k) = Pik/Pjk

where w represents word vectors and w̃ ∈ Rd are separate word vectors. In
fact during training the model generates and train two sets of word vectors
W W̃ ∈ Rd. This two vectors differ only on their random initialization. The

16



2.2 – GloVe

Figure 2.2. The table presents a comparison of word occurrences for both
’ice’ and ’steam’ in relation to other words. Specifically, it analyzes the
conditional probability of these two words and their ratio. It’s evident
that the ratio provides a better extrapolation of information regarding word
relevance concerning the two specified words. In the raw ratio, a higher
value indicates a stronger correlation with ’ice’ in the numerator, while a
lower value implies a stronger correlation with ’steam’ in the denominator.
A value close to one signifies that the word ’k’ is not discriminative for
either of the two words. Image from [13]

17



2 – Related Works

final word vectors is obtained by merging W W̃ through a simple addition.
This ticks improve performances reducing overfitting and noise.

Given some consideration about linearity of the vector space it is possible
to encode the information of the ratio Pik/Pjk leveraging vector differences.
Moreover to make both left and right sides compatible, since one represents
vector and the other a scalar value, vectors can be combined through dot
product. We derive the following function:

F ((wi, wj)T w̃k) = Pik/Pjk

Next, F must be homomorphic between (R, +) and (R>0, ×). The solution
is picked the exp as F function, applying then the logarithm; after some
transformation and adding a bias b̃k for w̃k we obtain:

wT
i w̃k + bi + b̃k = log Xik

From the previous equation a weighted least squares regression is finally
defined as:

J =
VØ

i,j=1
f(Xij)(wT

i w̃j + bi + b̃j − log Xij)2

were V is the size of the vocabulary and f is the weighting function that
must respect the following properties:

• f(0) = 0. f must approach zero rapidly as x approaches 0.

• f(x) should exhibit non-decreasing behavior giving excessive importance
to infrequent co-occurrences

• f(x) should be relatively small for large values of x, preventif that fre-
quent co-occurrence are not overweighted.

The function, displayed in figure 2.3, that satisfies the above properties
and works well can be parameterized as:

f(x) =
(x/xmax)α if x < xmax

1 otherwise

where α is an hyperparameter an is set to α = 3/4, while xmax, fixed to
100, is the cutoff.

18



2.2 – GloVe

Figure 2.3. Weighting function f with α = 3/4. Image from [13]

19



2 – Related Works

2.3 Transformers
Originally designed for language translation, the Transformer architecture
[16] marked a paradigm shift, a revolution in the realm/landscape of ma-
chine learning. Transformers employ an attention mechanism, called Self-
Attention, that learns contextual relationships between words within a text.
It has become the basis for state-of-the-art models in virtually all NLP
tasks. Moreover, Transformer architecture has been successfully employed
to achieve the state of the art even into other domains such as Computer Vi-
sion, time-series forecasting, Reinforcement Leaning and many other machine
learning fields.

2.3.1 Model Architecture
The model, as depicted in figure 2.4, is composed by 2 main blocks, encoder
and decoder. The encoder takes as input a sequence of word (represented as
embedding) and generates a series of continuous representation. Given the
output of the encoder the decoder generates an a sequence of word (embed-
ding) one element at a time. The model use the output of the previous step
to generate the next so it’s auto-regressive.

2.3.2 Encoder
Contains a stack of N identical sub-blocks. Each of which is composed by
a multi-headed self-attention layer and a position wise fully connected feed
forward layer. Moreover residual connection are introduced at the end of
each sub-block, combined with a layer normalization.

2.3.3 Decoder
Similarly to the encoder, it is composed by M identical sub-blocks. Each
sub-block introduces a layer that performs a multi-head attention using also
the output of the encoder stack, in addition to the other two blocks ap-
pearing in the encoder. Likewise the encoder, residual connection and layer
normalization are applied. The decoder’s multi-head attention differs from
the encoder in that its tasks is to predict the following token, and therefore it
should be blind to future elements of the sequence that is trying to generate.
To achieve this, it uses a masked input in order to do not take into consid-
eration subsequent position. In this way the current element, at position i,

20



2.3 – Transformers

Figure 2.4. Transformers architecture. Image from [16]

21



2 – Related Works

depends only on all the previous elements but not on the following ones.

2.3.4 Positional Encoding
It is a straightforward but effective way of attaching the information about
word positioning and, as consequence, distances between words. By adopting
this approach, the complexity of understanding word positioning is moved
from the structure of the network (which does not contain convolution neither
recurrence) to the data itself. The concept is store word order as data, not
structure. To add the information to the input, this vector is summed to the
corresponding embedding as illustrated in figure 2.6 before injecting data
into the network. The positional encoding has the same dimension of the
embedding and it is generated using cosine and sine functions:

PE(pos,2i) = sin (pos/100002i/dmodel)

PE(pos,2i+1) = cos (pos/100002i/dmodel)
pos is the word’s position, i is the dimension, while dmodel is the embedding
dimension. The choice of sine and cosine functions is favored for their ver-
satility in handling sequence lengths greater than those encountered during
training.

2.3.5 Self-Attention

Figure 2.5. Scaled Dot-Product Attention (left side) and Multi-Head
Attention (right side) that consists of multiple attention layers running
in parallel. Image from [16]

Used to understand pattern languages or underling meaning. Thanks to
this approach, the model is able to build up a better internal representation

22



2.3 – Transformers

of the language, as the classical conv network does with images. In fact, as
well as the layer of a conv network recognize edges, eyes..., a self-attention
head is able to recognize part of speech, syntactic or semantic rules, learning
gender, plurality and other grammar and syntactic rules.

The approach adopted is called Scaled Dot-Product Attention.
As explained in [9], In the first step, from each of the inputs of the encoder
(input are embedding) the model generate 3 vectors Key (K), Value (V),
Query (Q), by multiplying the input embedding with each corresponding
matrix Wk, Wv, Wq that are trained during the training process. The second
step consists of calculating a score for each word with respect to all the
other words in the sentence. The score determines given a word encoded
in a certain position, how much focus is placed on other parts of the input
sentence. Given a word, for example the word in position 1, we compute the
dot product between Q1 (of a fixed word) and the K vectors of the other
sentence words ( K1 x Q1, K1 x Q2 . . . K1 x Qn ). Then divide by the
square root of the dimension of the K vectors (dk) to have a more stable
gradient and, after that, pass the results through a softmax to normalize the
scores. The softmax score plays a crucial role in determining the level of
expression for each word at this particular position.

Then multiply for each V vector the respective softmax score (in order to
make less relevant value vectors with lower scores) and finally sum up the
weighted value vector. This produces the output value for the first word (Z1
= V1 x Score1 + V2 x Score2 + . . . + Vn x Scoren). All these steps are
done in a matrix form to speed up calculation. This leads to the following
expression:

Attention(Q, K, V ) = sofmax(QKT

√
dk

)V

2.3.6 Multi-headed Attention
Expand the model’s ability to focus on different positions, instead the sim-
ple attention in which the main focus is on the position of the word itself.
Thanks to the multi-head system, each head creates a different represen-
tation subspace. And as the kernel is done, each head learns a particular
pattern, focusing on a specific feature to learn, such as different grammar or
syntactic/semantic rules.

MultiHead(Q, K, V ) = Concat(head − 1, ..., headh)W O

where headi = Attention(QW Q
i , KW K

i , V W V
i )

23



2 – Related Works

The attention is calculated by the different heads (headi) that are ran-
domly initialized and different from each other. After computing the h = 8
Attention vectors, they are merged through a concatenation and finally mul-
tiplied by a W O matrix, in order to be reshaped and fit the feed-forward
layer.

2.4 BERT
Published by Google AI in 2018 [6] represents a key point in the NLP scenario.
It set a new standard for state of the art results for a wide variety of NLP
tasks such as Question Answering (SQuAD), Natural Language Inference
(MNLI) and many others. The powerful thing is the versatility of the model
that, with small adjustments, is able through transfer learning (fine-tuning)
to obtain great performances on a variety of different tasks.

Previous training language models used a directional approach in the next
sentence prediction goals. This method intrinsically limits the context learn-
ing, since the model has no knowledge about the whole sentence. BERT was
designed to get through this problem by exploiting two pre-training strate-
gies: MLM and NSP.

2.4.1 Input

As shown in the figure 2.6 before being fed to the model, the input is pro-
cessed to handle representations for both single or pairs of sentences based
on the task. The input representation is constructed by combining 3 parts:

• About token embeddings, a [CLS] token is inserted at the beginning of
the sequence. It is a special classification token that aggregates sequence
representation, useful for classification tasks. Moreover, a [SEP] token
is placed at the end of each sentence, such as a delimiter.

• A sentence embedding is added to each token, indicating which sentence
each word belongs to.

• As in the Transformers framework, positional embeddings are added to
each token to indicate its position in the sequence.

24



2.4 – BERT

Figure 2.6. BERT input representation. The input is constructed by com-
bining the token embeddings, segmentation embeddings, and position em-
beddings through summation. Image from [6]

25



2 – Related Works

2.4.2 Masked Language Model (MLM)
In order to train a deep bidirectional representation , a percentage of the
words (15%) fed as input to BERT are replaced with a [MASK] token.

Then the model’s aim is to predict the original value of the masked word
by leveraging the context provided by remaining non-masked words in the
sequence. The task of word prediction is the same as the basic Transformer
architecture. However, the BERT Cross Entropy loss function does not con-
sider the entire set of predictions, but rather focuses solely on the prediction
of the masked words.

Moreover, the 15% tokens picked to be masked are not always replaced
with the [MASK] token. This happens 80% of the time. In 10% of cases, it is
substituted by a random token, while in the residual 10% the token remains
unaltered. This technique mitigates mismatch problems with the fine-tuning
step, creating a more robust framework.

From a technical point of view, predicting the output words necessitates:

1. Add on top of the encoder output a classification layer

2. Adjusting the output vector dimension to match the vocabulary size
(multiplying the output vectors by the embedding matrix)

3. Computing, though a sofmax function, the probability of each word in
the vocabulary

Figure 2.7 provides a schema of the previously explained technique.

2.4.3 Next Sentence Prediction (NSP)
Since some important downstream tasks are based on understanding the rela-
tionship between two sentences, the idea was to pre-train the model to solve
a binary next sentence prediction task. Specifically, the architecture receives
as input pairs of sentences and learn to predict the correlation between them.
Concretely, given two sentences A and B, it learns the probability of B being
the subsequent sentence that follows A. During training, 50% of the time
pairs are related (labeled as IsNext) while for the other 50% the second sen-
tence is drawn randomly from the corpus, in order to obtain an uncorrelated
pair (labeled as NotNext). The main steps of this phase are the following
one:

1. The input sequence goes through the architecture.

26



2.4 – BERT

Figure 2.7. BERT Masked Language Model (MLM). Image from [4]

27



2 – Related Works

2. The output of the [CLS] token is transformed into a 2x1 shape vector
(true and false value scores) using a classification layer.

3. The probability of IsNextSequence is computed with a softmax.

2.5 MPNet
Despite its powerful and effective on a lot of natural language tasks, BERT
suffers from some drawbacks. MLM can perceive the positional informa-
tion of the full sentence, however it is not able to capture the dependency
among the predicted tokens. To address this problem, XLNet [18], an auto-
regressive language model based on Transformes, introduces Permuted Lan-
guage Modeling (PLM). This approach consist of a random permutation of
the sequence. The permuted sequence is split into a left non-predicted part
and a right predicted part. Then tokens on the right side are predicted in
an auto-regressive way. For example, as shown in the figure 2.8(b), given
a sequence x = (x1, x2, x3, x4, x5), the permuted x = (x1, x3, x5, x2, x4) is
generated. Next, PLM predicts x2 and x4 auto-regressevely conditioned on
(x1, x3, x5). While this technique can capture the dependencies among the
predicted tokens, it is unable to leverage the positional information of a sen-
tence, which induces a mismatch between pre-training and fine-tuning. The
objective of MPNet (Masked and Permuted language model) [14] is to es-
tablish a unified model that inherits the advantages of both MLM and PLM
avoiding their weaknesses and limitations, and built a stronger pre-trained
model.

Figure 2.8. MLM (a) and PLM (b) models. Image from [14]

28



2.6 – Contrastive learning

2.6 Contrastive learning
Contrastive learning is a versatile technique employed in both computer vi-
sion and natural language processing tasks. Its core objective is to learn
representations of data samples (in our context sentences or words), in a
manner that brings similar samples closer together in the vector space, while
simultaneously pushing dissimilar ones further apart.
Particularly, the fundamental concept, illustrated in 2.9, revolves around the
process of convergence between an anchor, a reference sample, and "positive"
samples in the embedding space, while simultaneously creating separation
between the anchor and multiple "negative" samples. On an unsupervised
task, given the absence of explicit labels, a positive pair typically comprises
augmented versions of the same sample, while negative pairs are constructed
by pairing the anchor with randomly chosen samples from the batch, for
this reason, it is often referred to as self-supervised training. Notably, some
studies [10, 8] introduce a supervised learning approach, which extends the
principles of the contrastive self-supervised literature by incorporating the
valuable label information at hand.
Leveraging this techninque, as illustrated in 2.10, positives are drawn from
samples of the same class as the anchor, in contrast to being generated as data
augmentations of the anchor, as is typically done in self-supervised learning.
Supervised contrastive learning is especially advantageous in NLP. In fact
in computer vision tasks, the augmentation, such as crop, flip or rotation,
almost always preserves the image structure. On the other hand, in NLP,
since we deal with sentences, a sequence can be easily distorted during the
augmentation phase. The exploitation of labels avoid any issues of that na-
ture.

In our context, the supervised contrastive learning setup is achieved by
considering, for each document, the abstract as anchor, the noun phrases
extracted from the relative title as positive samples and the remaining are
labeled as negatives.

29



2 – Related Works

Figure 2.9. A visual representation that elucidates that explains how con-
trastive learning works. Circles represent embeddings within a vector space.
Positive/entiled samples (in green), are bring close the anchor (the white
circle), while negative samples (in red), are pushed away. The dashed cir-
cles represent the final (and ideal) position of embeddings after the model’s
training leveraging contrastive learning

Figure 2.10. Image that better illustrates the supervised contrastive learn-
ing. For each anchor (left side), a set of other samples (right side) are drawn
from the dataset, forming pairs (anchor, sample to compare with). Entailed
phrases (in green) are labeled as positive samples, while contradictory one
(in red) are marked as negative samples. Image from [8]

30



Chapter 3

Dataset

3.1 ArXiv
ArXiv, established in 1991 by Paul Ginsparg and currently maintained and
operated by Cornell University, stands as a remarkable testament to collabo-
rative funding and community support. Over nearly three decades, ArXiv has
steadfastly served both the public and the global research communities by of-
fering unrestricted access to an extensive array of scholarly articles. Its com-
prehensive coverage spans a vast spectrum, encompassing the diverse realms
of physics, the multifaceted subdisciplines within computer science, and a
plethora of other academic domains. Whether one’s interests lie in mathe-
matics, statistics, electrical engineering, quantitative biology, economics, or
the myriad fields that fall in between, ArXiv provides an invaluable repos-
itory of knowledge. The richness and depth of this corpus of information
are truly unparalleled. However, this extensive wealth of knowledge can,
at times, prove daunting and overwhelming to navigate. To address this
challenge and enhance accessibility, a dedicated repository has been meticu-
lously curated on Kaggle [2]. This repository, constantly updated, comprises
1.7 million papers, each tagged with relevant features that facilitate easy dis-
covery, exploration and manipulation. These features include article titles,
author information, category classifications, full-text PDFs, and a wealth of
additional metadata.

The repository’s objective is to generate a more manageable dataset, that
can serve a diverse range of machine learning tasks.

The ArXiv papers have a hierarchical category classification structure.
There are 8 main categories: Computer Science, Economics, Electrical En-
gineering and Systems Science, Mathematics, Physics, Quantitative Biology,

31



3 – Dataset

Quantitative Finance, Statistics. Each macro-category group different cate-
gories as shown in the figure:

Figure 3.1. Example of hierarchical taxonomy for the macro-classes Com-
puter science and Quantitative Biology. Snapshot from [3]

Each paper belongs to one ore more categories, depending on the faced ar-
gument.
As already mentioned the dataset contains a lot of information for each pa-
per. For our purpose the following properties are extracted:

• title: title of the paper

• noun phrases: keywords extracted from the title

• abstract: abstract of the paper, is a summary that explain the paper’s
work

• categories: list of categories, topics covered/ field of interest of the paper

32



3.2 – AG News

3.2 AG News
AG is a collection composed of 1 million news articles gathered from more
than 2000 different news sources. The information were gathered in more
than 1 year through ComeToMyHead [5], an academic news search engine.
The AG news classification dataset [1], exploited in this work, is created by
Xiang Zhang as text classification benchmark for the paper [20].

The dataset is constructed by choosing 4 largest classes: "World", "Sports",
"Business", and "Science". It comprises a total of 120,000 training samples
and 7,600 testing samples, Samples are equally balanced across the classes.
Specifically, each class includes 30,000 training samples and 1,900 testing
samples, ensuring equitable representation for robust evaluation.
Clearly, within this context, our primary focus is not on class classification.
However, given inherent structure of the dataset, it seamlessly aligns with
our specific objectives.

• title: title of the article

• noun phrases: keywords extracted from the title

• description: article describing the news in more detail

• category: general topic of the article (can be: World, Sports, Business,
or Science)

To partially clean the dataset from noise, meaningless words such as the
journal names that frequently appear at the end of titles or articles are filtered
out.

3.3 Noun phrases extraction
Our focus lies in optimizing the creation of embeddings for short sequences
of words. To achieve this, we employ a preprocessing step involving the ex-
traction of noun phrases from the paper titles. This process is facilitated
by the utilization of the spaCy library [15], an open-source natural language
processing (NLP) tool for Python. It is designed to perform various NLP
tasks such as tokenization, part-of-speech tagging, named entity recognition,
syntactic parsing, and more. It is also known for its speed and efficiency,
making it a popular choice among developers and researchers for processing

33



3 – Dataset

and analyzing text data.
Within this context, we leverage spaCy to extract noun phrases from the
titles. Subsequently, we filter out stop words such as articles from the begin-
ning to the end of each noun phrase. This step is finalized at reducing noise
within the data, by eliminating irrelevant words. Moreover, an additional
strategy to reduce noise consists in deliberately discard single words.
This decision is driven by the understanding that such isolated terms may
lack the necessary contextualization and, instead of contributing valuable in-
formation, could introduce further noise. Samples without valid noun phrases
are discarded from the dataset.

Below an example is shown:

Figure 3.2. From the title, through spaCy, 4 noun phrases are extracted:
"ADA", "Game-Theoretic Perspective", Data Augmentation", "Object Detec-
tion". Since the single word "ADA" is meaningless by itself, it is discarded.

34



Chapter 4

Methods and metrics

4.1 Problem Statement
The objective of this study is to create a framework to enhance the Zero-
Shot Text Classification capabilities of deep Language Models by creating
an appropriate self-supervised task, from which the model can learn without
humanly annotated labels, and by harnessing the power of contrastive learn-
ing.
In particular, we fine-tune the MPNet deep Language Model to address this
task, evaluating its performance on both the ArXiv and AGNews datasets.
We explore different data subdivisions 5.2, from a less restrictive setup to
one that closely mirrors real-world conditions.
The primary goal is to refine the generation of vector representations for
keywords, ensuring they are semantically aligned with the associated text
embeddings.
Our main contributions are summarized as follows:

• setting up a framework for self-supervised fine-tuning of a deep Language
Model for the task of Zero-Shot Text Classification, in 3.3 and 4.5;

• introducing a weighted normalization approach for the objective func-
tion, detailed in 4.2;

• conducting an in-depth analysis of the spatial distribution of the gener-
ated embeddings within the vector space, as discussed in 4.3;

• assessing our framework’s effectiveness in a category classification task,
thereby demonstrating its versatility in another Zero-Shot Text Classi-
fication scenario where the model has to categorize text according to an

35



4 – Methods and metrics

unseen taxonomy, in 5.3.4.

4.2 Weighted Normalized Supervised Contrastive
Loss

Taking into account the concepts exposed in 2.6, we take inspiration from
the contrastive loss used in the literature [10],[8] and tailor it to our specific
needs. Particularly, our custom loss differs from the previously mentioned one
as it remains invariant to the number of negative samples. This is because,
in this context, we do not have knowledge a priori of the exact number of
negative samples for each anchor in every batch. The relevance of negative
samples, as we will discuss shortly, is regulated by the hyperparameter α.
The objective function that we want to optimize given a sample xi considered
as anchor is:

li = − log
1

N+
i

qN+
i

j esim(xi,x
+
i,j)/τ

1
N+

i

qN+
i

j esim(xi,x
+
i,j)/τ + α · 1

N−
i

qN−
i

j esim(xi,x
−
i,j)/τ

Were τ is a temperature value, sim represent the cosine similarity between
two embeddings, xi is the anchor, x+

i,j are positive samples while , x−
i,j are the

negative one, finally α is an hyperparameter that balances the weight of neg-
ative samples with respect the positive one.
This loss is computed for each anchor, the final results is obtained by calcu-
lating the mean value.

4.3 Alignment and Uniformity
Both properties serve as quality metrics for assessing the goodness of the
generated embeddings as explained in [17]

Alignment guarantees that in a positive pair, two samples are mapped to
closely located features. It calculates the expected distance between positive
embeddings.

lalign = Ex,x+∼ ppos∥f(x) − f(x+)∥2

where ppos denotes the distribution of positive pairs.

36



4.3 – Alignment and Uniformity

Uniformity measures how uniformly are distributed embeddings within
an hypersphere space, ensuring the preservation of as much information of
the data as possible.

luniform = logEx,y∼ pdata
e−2∥f(x)−f(x+)∥2

where pdata represents the distribution over all data (both positives and nega-
tives), e−2∥f(x)−f(y)∥2 is the Gaussian potential kernel, in particular the Radial
Basis Kernel.

Summarizing, alignment is minimized by that assigning similar features
to similar samples, while uniformity promotes the feature being distributed
over the whole semantic vector space, rather than collapsing into a narrow
subspace. The figure 4.1 better exposes and visualizes this concepts.

Figure 4.1. Visualization of the Alignment (on the right) and Uniformity
(on the left) of feature distributions on the output unit hypersphere.
The image illustrates an ideal scenario where, concerning Uniformity, sam-
ples exhibit a well-distributed pattern across the hypersphere. Regarding
Alignment, samples with similar features are positioned closely within the
feature space. Image from [17]

Recent studies, such as [7], have identified an anisotropy problem in the
semantic vector spaces learned by deep Language Models, that is naturally
connected to uniformity. In particular, these models learn and generate em-
beddings that occupy a narrow cone in the vector space. This is thought
to limit their expressiveness and consequently affect the performance on the
semantic similarity task. While numerous approaches have been suggested
to address this issue, our primary emphasis lies in the investigation of the
contrastive setup.

37



4 – Methods and metrics

4.4 Cosine Similarity
Cosine similarity is a metric that evaluates the similarity between two vectors
defined within a linear vector space. It is essentially the cosine of the angle
formed by these vectors, calculated as the dot product of the vectors divided
by the product of their L2 norm:

sim(x1, x2) = x1 · x2

∥x1∥2 · ∥x2∥2

It is important to highlight that cosine similarity is solely determined by
the angle between the vectors, not by their norm. This metrics consistently
falls within the range of [−1, 1].
In this study cosine similarity is employed to measure distance between em-
beddings. The more the value approaches to 1 the closer are embeddings
in the vector space, indicating, in our context, a higher degree of semantic
similarity.

4.5 Normalized Discounted Cumulative Gain
(nDCG)

Normalized Discounted Cumulative Gain (nDCG) is a measure of ranking
quality, used in information retrieval or recommendation system. Given a
query and a set of items provides an evaluation of a ranking algorithm in
presenting relevant items in the ranking list.
In our context, the query is represented by an abstract while the items are
represented by a set of noun phrases/keywords/labels some related to the
abstract (i.e., extracted from the title relative to that abstract), and some
unrelated (i.e., extracted from titles relative to different abstracts).
These noun-phrases are ranked based on the cosine similarity of their se-
mantic embeddings with respect to the given abstract embedding. We, then,
look at the position in the ranking of the noun-phrases that are related to the
abstract and the higher their position the better nDCG score is obtained.

DCG =
nØ

i=1

reli
log2(i + 1)

Where n is the number of samples taking into account, reli is the relevance
of the sample at position i, it is 1 for a related noun-phrase and 0 for an
unrelated one. As we move down to the ranking positions, the contribution

38



4.6 – Precision@K, Recall@K, F1@K score

that a related noun-phrases gives to DCG decreases, meaning that DCG is
highest when all the noun-phrases relevant to a given abstract are ranked in
the top positions.

nDCG = DCG

IDCG

nDCG is calculated by dividing the discounted cumulative gain (DCG) by
the IDCG. Ideal DCG establish the ideal order of samples. It represent the
best possible value of DCG of the ideal ranked list for a query. nDCG varies
between 0 and 1, greater values correspond to better better-ranked list and
as consequence better performance.

4.6 Precision@K, Recall@K, F1@K score
This set of metrics provides an alternative way to evaluating the model’s per-
formance in a classification task where each sample is associated with more
then one label. We adopt a specific variant of Precision and Recall metrics,
that are commonly employed to measure the effectiveness of recommendation
system, i.e. Precision@K and Recall@K.
In essence, these metrics involve sorting the labels based on a specific crite-
rion, in this context the cosine similarity between noun phrases and abstracts.
Subsequently, the top K elements are designated as recommended, represent-
ing predictions of relevance made by the model. Notably, this metrics share
similarities with the nDCG.
First of all it is important to clarify our criteria for defining a sample as rel-
evant. For our purpose, a sample, better a keywords, is considered relevant
when it is associated to the corresponding abstract’s paper.

We define the Precision@K as the proportion of recommended samples in
the top-K set that are relevant:

p@K = Precision@K = # of our recommendation that are relevant
# of items we recommended

The Recall@K is the proportion of relevant samples founded within the
top-K recommendations:

r@K = Recall@K = # of our recommendation that are relevant
# of all the possible relevant items

39



4 – Methods and metrics

The F1@K metric is a combination of the previous metric:

F1@K = 2 p@K · r@K

p@K + r@K

4.7 Model architecture
The main architecture, as depicted in 4.2, is quite simple. Both noun phrases
and abstracts are input into the frozen MPNet network, the pre-trained
model that generates embeddings for both long and short text sequence.
On the noun phrases side, an additional feed forward layer is introduced and
trained on the top of the model.
This layer remap each embedding through a series of linear and non-linear
transformations, ultimately producing a new vector representation. Subse-
quently, both the long text (abstract) and short text (keyword) embeddings
are employed in the computation of the contrastive loss objective.

Throughout the training process, the FFN undergoes updates with each
epoch, progressively refining the vector representation for short texts pushing
them closer to the respective abstract and contributing to the enhancement
of the model’s performance.

40



4.7 – Model architecture

Figure 4.2. pipeline used

41



42



Chapter 5

Experiments and Results

5.1 Hyperparameter settings

We implement the pipeline described above leveraging the pre-trained MP-
Net, available through the Hugging Face platform [12].
After an exhaustive exploration of various configurations, our final decision
for the Feed Forward Layer led us to a straightforward linear layer, char-
acterized by an input and output size set at 768, aligned with the output
dimensions of the MPNet model.
To ensure an efficient and effective training of the model, early stopping is
employed. This technique basically stops training when there is no substan-
tial improvement in performance, calculated on a validation set, over a set
of consecutive epochs. Our experimentation revealed that, under optimal
conditions, 10 training epochs are quite sufficient to achieve significant en-
hancements in model performance, avoiding the risk of overfitting.
The model is fine-tuned exploiting Stochastic Gradient Descent (SGD), with
a momentum of 0.9, a weight decay set to 0.01 and a learning rate of 0.001.
Further considerations led us to the determination of an optimal batch size,
setting on a value of 128.
As better explained in the subsequent section 5.3.2, the optimal values for
the crucial hyper-parameter alpha is explored, identifying a balanced com-
promise with a value of 200.

43



5 – Experiments and Results

5.2 Dataset subdivision
Random split: Simply subdividing random the dataset without taking into
account any categories subdivision. As results sample from a category in the
train set may appear in the test set. It is important to underling that we
compute and evaluate the metric just on noun phrases, as consequence the
task remain a Zero-Shot Text Classification. (heterogenous dataset)
Unseen category: For this dataset subdivision a category is isolated, and sam-
ples belonging from that category are drawn/selected/picked as test test.
Since in the arxiv dataset papers may have different categories belonging
also to different discipline/subject (aka macro-category) the dataset split is
constructed taking care of removing samples that contains at least another
macro-category that is different from the one we want to isolate. This is the
worst scenario, since test samples belongs to the isolated category the model
do not ever see also a similar terminology.

5.3 Results
In this initial section, our attention is directed towards a relatively less restric-
tive scenario. We specifically consider the dataset’s random split division,
trying to extract valuable insights and evaluating the architecture’s efficacy.

5.3.1 Uniformity and Alignment analysis
As discussed in the preceding chapter 4.3, uniformity and alignment metrics
prove to be valuable measures in contrastive learning, offering a reliable in-
strument to assess the model’s effectiveness in the embeddings generation.
Going into detail, alignment calculates expected distance between embed-
dings of noun phrases with respect to the corresponding abstract embedding.
On the other hand, uniformity measures how well the embeddings are uni-
formly distributed within the vector space.
Specifically, concerning uniformity, we introduce three distinct measures:

• Uniformity Short: Focusing on uniformity between short phrase embed-
dings, also known as noun phrases.

• Uniformity Long: Concentrating on uniformity among long phrase em-
beddings, specifically the abstracts.

44



5.3 – Results

• Uniformity Cross: Evaluating uniformity between short and long phrase
embeddings.

Since all these measures are designed as losses, the lower are values the
better they are.

The subsequent plots provide a visual representation of the evolution of
these properties across epochs. Notably, the loss 5.1 experiences a rapid
decline during the first epochs, followed by a more gradual decrease that
reach a sort of plateau after the 10th epoch.
The alignment 5.2 exhibits a decreasing trend, following the behavior of the
contrastive loss 5.1, in contrast the uniformity metrics 5.3, 5.4 present an
ascending trajectory as the epochs progress.
It is notable that the behavior of uniformity stands in stark contrast to that
one of alignment. This observation suggests that the model and in particular
the designed contrastive loss, primarily focuses on the task of bringing close
associated samples together, with less emphasis on maintaining a uniform
data distribution.

Figure 5.1. Plot of Loss, with epochs on the x-axis and loss values on
the y-axis. The horizontal green line corresponds to the value computed
through MPNet without fine-tuning, the blue line represents the value
calculated on the training set, while the orange line reflects the value
determined on the validation set.

Table 5.1 provides a detailed overview of the metrics, including numerical
values, both before and after the model’s fine-tuning process.
Remarkably, the MPNet architecture, even without fine-tuning, consistently
achieves remarkable values on both ArXiv and AG News datasets.

45



5 – Experiments and Results

Figure 5.2. Plot of Alignment, with epochs on the x-axis and alignment
values on the y-axis. The horizontal green line corresponds to the value
computed through MPNet without fine-tuning, the blue line represents the
value calculated on the training set, while the orange line reflects the value
determined on the validation set.

Figure 5.3. Plot of Uniformity short, with epochs on the x-axis and unifor-
mity values on the y-axis. The horizontal green line corresponds to the value
computed through MPNet without fine-tuning, the blue line represents the
value calculated on the training set, while the orange line reflects the value
determined on the validation set.

46



5.3 – Results

Figure 5.4. Plot of Uniformity cross, with epochs on the x-axis and unifor-
mity values on the y-axis. The horizontal green line corresponds to the value
computed through MPNet without fine-tuning, the blue line represents the
value calculated on the training set, while the orange line reflects the value
determined on the validation set.

Figure 5.5. Plot of nDCG, with epochs on the x-axis and nDCG values on
the y-axis. The horizontal green line corresponds to the value computed
through MPNet without fine-tuning, the blue line represents the value
calculated on the training set, while the orange line reflects the value
determined on the validation set.

47



5 – Experiments and Results

After the fine-tuning phase, we observed a diminishing in the alignment.
This reduction implies that the embeddings of noun phrases are effectively
brought closer to their respective abstract representations.
However, both cross and short uniformity metrics exhibit an increase. This
phenomenon may be attributed to the issues related to anisotropy, as pre-
viously explained in 4.3. In particular, during the fine-tuning process, the
samples are remapped into a narrow cone space, thereby reducing uniformity.
It’s important to note that, while relevant, this topic falls outside the scope
of our current study, as our focus is directed towards other aspects.
Lastly, just for completeness, we also present the uniformity long metric. Ob-
viously since the embeddings for the abstract sentences are not remapped,
the uniformity value remains unaltered through fine-tuning process.

Metrics MPNet raw Fine-tuned model
ArXiv

Alignment 1.151 0.895
Uniformity shorts -3.592 -0.907
Uniformity cross -3.622 -2.447
Uniformity long -3.493 -3.493

AG News
Alignment 1.213 0.879

Uniformity shorts -3.535 -0.99
Uniformity cross -3.724 -2.485
Uniformity long -3.74 -3.74

Table 5.1. Alignment and Uniformity analysis on both Arxiv and Ag News
dataset. We can notice a similar behaiviour across datasets. In both cases,
Alignment improves, while Cross and Shorts Uniformity degrade. Since these
metrics are losses lower values indicate better performance.

5.3.2 Contrastive hyperparameter α

As already explained in the previous section 4.2, the alpha parameter choice
plays a critical role in the behavior of our framework, since it balances the
weights of negative samples with respect to positive ones in the contrastive
loss.

At approximately 60, the improvement levels off, and after 300 further

48



5.3 – Results

increases in the value leads to a slight degradation in performance. After an
exploration of various hyperparameter configurations, we concluded that an
alpha value of 200 best suits our requirements.

Figure 5.6. Evaluation of nDCG (y-axis) on the variation of alpha (x-axis).
The plot shows an increase in nDCG values, reaching a stable value around
60. Further increases of alpha beyond 300 do not yield benefits, leading, in
fact, to a decrease in performance.

5.3.3 nDCG Results
First of all we analyze the model behaviour on a simpler situation, leveraging
a model trained and tested on an heterogeneous dataset.
The bar chart illustrates the results of nDCG over the test set of both arXiv
and AG News datasets. We can noticed as we already seen analyzing the
alingment and uniformity metrics that the base MPNet performs quite well
on the embedding generation, obtaining an already higher classification score
(based on nDCG). Overall we obtain an improvement of performance after
the fine-tuning phase for both datasets. This show the effectiveness of the
adopted approach in solving the presented task.

This bar chart depicts a comparison between two datasets using a series

49



5 – Experiments and Results

Figure 5.7. Comparison of nDCG (on the y-axis) measures between
models trained and tested on ArXiv and AG News dataset (on the x-
axis) both utilizing a ’random split’ subdivision. Blue bars represent
the nDCG values before MPNet fine-tuning, while orange one depict the
nDCGs after the model’s fine-tuning.

of bars. Each dataset is represented by a distinct color. The chart is orga-
nized into categories or groups along the horizontal axis, while the vertical
axis shows the scale for the measured values. The height or length of each
bar corresponds to the value of a specific variable or parameter within each
category. This visual representation allows for a clear comparison between
the two datasets, making it easy to identify any differences or trends in the
data.

Furthermore, we focus our attention on a more restrictive and less ide-
ally situation. We exploit the already mentioned "unseen" split, isolating
sample from a specific category, used as test set and training the model on
the remaining categories. The model performances are evaluated on the test

50



5.3 – Results

Figure 5.8. Comparison of nDCG (on the y-axis) measures between mod-
els trained on ArXiv dataset utilizing different data subdivision (on the
x-axis). The models labeled as ’unseen Math’ (Mathematic) and ’unseen
Q-bio’ (Quantitative biology) are trained by isolating the specific category,
that is used for evaluation. On the other hand, the ’random’ model employs
the ’random split’ strategy for data subdivision. Blue bars represent the
nDCG values before MPNet fine-tuning, while orange one depict the nDCGs
after the model’s fine-tuning.

dataset, in this totally Zero-Shot situation.
In figure 5.8 are compared results obtained using a random split training
dataset and results obtained on an unseen categories. Also for the 2 unseen
configuration we can notice an improvement, however, as expect, is less rel-
evant than the random configuration. In particular, the model is less able
to generate an high resolution vector representation for the "Quantitative
biology" (Q-bio) category samples. As consequence the classification perfor-
mances are lower for that configuration. This lack may be caused by the

51



5 – Experiments and Results

Figure 5.9. Comparison of nDCG (on the y-axis) measure between mod-
els trained on AG News dataset utilizing different data subdivision (on the
x-axis). The model labeled as ’unseen Business’ is trained by isolating the
’Business’ category, that is used for evaluation. On the other hand, the ’ran-
dom’ model employs the ’random split’ strategy for data subdivision. Blue
bars represent the nDCG values before MPNet fine-tuning, while orange one
depict the nDCGs after the model’s fine-tuning.

usage for that paper of a more complex and specific language related to the
argument. On the other hand, for samples under the Mathematic (Math)
category, the score is higher also before the fine-tuning of the model, pointing
out a better model capacity in the embeddings generation for that word or
phrases. Again this situation may be caused by the usage of a language that
is of course specific but maybe more general that the one used in the Q-bio
samples.

For the AG News dataset and its different training settings, we can make
the same consideration done for the ArXiv dataset. As we can see from the

52



5.3 – Results

figure, also in this case the improvement over the "unseen category" samples
is lower with respect to the random configuration but is still relevant. Also
in this case, for the Business category samples, we start from a decent score,
sign of the model capacity in generating good vector representation.

53



5 – Experiments and Results

5.3.4 0-Shot Text Classification Results on Taxonomy
We now turn our focus to the main Zero-Shot Text Classification task, where
the model’s objective is to categorize text according to a set of previously
unseen labels. With this objective in mind, we delve into the task of catego-
rizing academic papers within the ArXiv dataset, according to the taxonomy
defined by ArXiv itself, and comparing our results with the authors’ manual
classifications. In practice, we leverage the model self-trained according to
the framework described in Chapter 4 and 5, to Zero-Shot classify documents
according to ArXiv pre-defined taxonomy. In our evaluation of the model’s
performance within this classification task, we employ the metrics introduced
in 4.6. As mentioned earlier, these metrics provide distinct perspectives on
the model’s accuracy in selecting relevant categories within the top-k ranked
predictions. Relevance, once again, is determined by the cosine similarity
between the category embeddings and the vector representation of the ab-
stract. Higher values in these metrics indicate the model’s improved ability
to predict relevant results.
To provide a comprehensive evaluation, we also present the results in terms
of nDCG, offering additional insights into the relationships between these
metrics.

MPNet raw Fine-tuned model
NDCG 0.4682 0.4807

Precision@5 0.123 0.1315
Recall@5 0.4035 0.4289

F1@5 0.1884 0.2011

Table 5.2. The table illustrates results of nDCG, Precision@K, Recall@K
and F1@K on the unseen taxonomy classification task. An enhancements
across all metrics is observed.

The table 5.2 presents the evaluation results on a top-5 rank (K = 5).
An overall improvement in all metrics, particularly the recall, is clearly
demonstrated. These metric improvements provide strong evidence of the
framework’s efficiency in enhancing classification performance on an unseen
taxonomy.

54



Chapter 6

Conclusion

In conclusion, this study presents an exploratory method for specializing a
deep Language Model into the task of Zero-Shot Text Classification. It aims
to improve text classification performance in cases where the set of classifica-
tion labels used has never been seen before by the model. Our method starts
by defining a self-supervision framework where the model learns to associate
keywords appearing in document title to their relative document abstract.
Our investigation, then, probed the efficacy of supervised contrastive learn-
ing in addressing this challenging task.
Furthermore, we introduced a normalization strategy for the contrastive ob-
jective function. This modification is pivotal, as it renders the framework in-
variant to the variable number of positive and negative samples. It proves to
be a valuable adaptation, particularly suited for scenarios where the number
of samples is not fixed. This flexibility significantly enhances the applicabil-
ity of our approach and stands as an important contribution to the landscape
of Zero-Shot Text Classification.
Our primary objective was to leverage the power of supervised contrastive
learning to enhance the vector representations of keywords. The desired out-
come was to bring these keywords closer to their associated text, effectively
improving the efficiency and precision of Zero-Shot Text Classification. To
achieve this result we fine-tune a transformer-base architecture, MPNet, spe-
cializing it on this downstream task.
The analysis, with a specific focus on alignment and uniformity, provides
evidence of the framework’s effectiveness.
The alignment analysis clearly demonstrates that our approach succeeds in
narrowing the semantic gap between the abstracts or descriptions and the
noun phrases extracted from titles. This reduction in the gap translates to

55



6 – Conclusion

enhanced performance in the downstream task.
However, this alignment improvement did not come without trade-offs. In
fact, as underlined by the uniformity analysis, these metrics revealed a de-
cline, indicating a less desirable distribution of samples within the vector
space. This insight reveals the complexity of the Zero-Shot Text Classifica-
tion task and opens the door to future research.
Finally, we evaluate our model on a standard Zero-Shot Text Classification
task, where the goal is to categorize text according to an unseen taxonomy.
Once again, we observed performance improvements, further demonstrating
the robustness and effectiveness of this approach.

6.1 Future works
In this section, we outline potential avenues for further research and improve-
ments in our model and methodology.

The following are some of the key areas that could be explored in future
works:

• Enhancing data distribution: One promising aspect to enhance the
quality of generated embeddings pertains to their data distribution. The
integration of the uniformity loss into the contrastive objective, could
help in achieving a more uniform distribution of data within the vector
space, which is crucial for our downstream tasks. Investigating how this
addition affects the overall performance of the model would be a valuable
endeavor.

• Addressing anisotropy issue: This point can be directly related to
the previous one. As we discussed, anisotropy in language represen-
tations has been identified as a challenge. Future research can delve
deeper into better understanding and mitigating this problem to en-
hance model performance. Developing techniques or modifications to
the training process that address anisotropy could lead to more expres-
sive and well distributed embeddings and, consequently, better model
results.

• Incorporating Categories: Another avenue to explore is the inclusion
of categories within the training set. By incorporating category informa-
tion, the model can learn to distinguish and associate different categories
with the abstracts. This approach could help in better understanding

56



6.1 – Future works

the relationships between categories and abstracts, ultimately enhancing
the model’s performance in tasks related to category-based analysis.

These are some of the potential directions for future work. Further re-
search and experimentation on these aspects may lead to opportunities for
improving the performance and capabilities of the model.

57



58



Bibliography

[1] Kaggle ag news dataset. https://www.kaggle.com/datasets/
amananandrai/ag-news-classification-dataset.

[2] Kaggle arxiv dataset. https://www.kaggle.com/datasets/
Cornell-University/arxiv.

[3] Arxiv taxonomy. https://arxiv.org/category_taxonomy.
[4] Bert explained state of the art language model

for nlp. https://towardsdatascience.com/
bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270.

[5] Cometomyhead. http://www.di.unipi.it/~gulli/AG_corpus_of_
news_articles.html.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. In North American Chapter of the Association for Compu-
tational Linguistics, 2019.

[7] Kawin Ethayarajh. How contextual are contextualized word represen-
tations? Comparing the geometry of BERT, ELMo, and GPT-2 em-
beddings. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan,
editors, Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pages 55–65,
Hong Kong, China, November 2019. Association for Computational Lin-
guistics.

[8] Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple con-
trastive learning of sentence embeddings. ArXiv, abs/2104.08821, 2021.

[9] illustrated transformer by jalammar. https://jalammar.github.io/
illustrated-transformer.

[10] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong
Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Su-
pervised contrastive learning. ArXiv, abs/2004.11362, 2020.

59

https://www.kaggle.com/datasets/amananandrai/ag-news-classification-dataset
https://www.kaggle.com/datasets/amananandrai/ag-news-classification-dataset
https://www.kaggle.com/datasets/Cornell-University/arxiv
https://www.kaggle.com/datasets/Cornell-University/arxiv
https://arxiv.org/category_taxonomy
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://jalammar.github.io/illustrated-transformer
https://jalammar.github.io/illustrated-transformer


Bibliography

[11] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Effi-
cient estimation of word representations in vector space. In International
Conference on Learning Representations, 2013.

[12] sentence-transformers/all-mpnet-base-v2. https://huggingface.co/
sentence-transformers/all-mpnet-base-v2. Accessed: 2022-12-07.

[13] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. In EMNLP, volume 14, pages
1532–1543, 2014.

[14] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet:
Masked and permuted pre-training for language understanding. ArXiv,
abs/2004.09297, 2020.

[15] spacy. https://spacy.io.
[16] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Neural Information Processing Systems, 2017.

[17] Tongzhou Wang and Phillip Isola. Understanding contrastive represen-
tation learning through alignment and uniformity on the hypersphere.
In International Conference on Machine Learning, 2020.

[18] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan
Salakhutdinov, and Quoc V. Le. Xlnet: Generalized autoregressive pre-
training for language understanding. In Neural Information Processing
Systems, 2019.

[19] Wenpeng Yin, Jamaal Hay, and Dan Roth. Benchmarking zero-shot text
classification: Datasets, evaluation and entailment approach. ArXiv,
abs/1909.00161, 2019.

[20] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level con-
volutional networks for text classification. In Neural Information Pro-
cessing Systems, 2015.

60

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2

	List of Tables
	List of Figures
	Introduction
	Zero-Shot Text Classification
	Semantic Similarity
	Objective of thesis

	Related Works
	Word2Vec
	Continuous Bag-of-Words (CBOW)
	Skip-gram

	GloVe
	Transformers
	Model Architecture
	Encoder
	Decoder
	Positional Encoding
	Self-Attention
	Multi-headed Attention

	BERT
	Input
	Masked Language Model (MLM)
	Next Sentence Prediction (NSP)

	MPNet
	Contrastive learning

	Dataset
	ArXiv
	AG News
	Noun phrases extraction

	Methods and metrics
	Problem Statement
	Weighted Normalized Supervised Contrastive Loss
	Alignment and Uniformity
	Cosine Similarity
	Normalized Discounted Cumulative Gain (nDCG)
	Precision@K, Recall@K, F1@K score
	Model architecture

	Experiments and Results
	Hyperparameter settings
	Dataset subdivision
	Results
	Uniformity and Alignment analysis
	Contrastive hyperparameter 
	nDCG Results
	0-Shot Text Classification Results on Taxonomy


	Conclusion
	Future works

	Bibliography

