
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Scene Graph Generation in Autonomous
Driving: a Neuro-symbolic approach

Supervisors

Prof. Lia MORRA

Prof. Fabrizio LAMBERTI

Candidate

Paolo Emmanuel Ilario DIMASI

December 2023

Abstract

The 2022 study on traffic fatalities in Italy by the Italian National Institute of
Statistics (ISTAT) reports 454 daily fatalities and 561 injuries, primarily due to
distractions. Then, the success of Autonomous Driving depends on intelligent
perception systems to enhance road safety, with vision systems playing a critical
role throughout its history.

In the field of Computer Vision, Deep Learning has gained mainstream accep-
tance for its ability to model complex problems like Object Detection and Instance
Segmentation. More recently, Scene Graph Generation has emerged as a novel
paradigm, where scenes are depicted as graphs with objects as nodes and their
relationships as edges. This area has seen substantial research, but only a limited
fraction of it pertains to autonomous driving applications and most of it focuses on
specific traffic scenarios, limiting diversity. A comprehensive effort for incorporating
all relevant objects in traffic scenarios resulted in the creation of the Traffic Genome
dataset. However, it suffers from bias due to uneven relationship frequency, which
can lead to the misclassification of rare events. This thesis addresses this issue
by infusing prior knowledge into scene graph generation using neuro-symbolic ap-
proaches. Relational Transformer network is used as baseline, due to its state-of-art
results in the one-stage approaches.

Two methodologies for knowledge injection are adopted. The first involves exter-
nal knowledge injection through Knowledge Graph Embedding (KGE) techniques,
using PandaSet, an autonomous driving dataset released by Hesai and Scale AI,
as the foundational knowledge base due to its rich multi-modal information. The
second approach utilizes the Logic Tensor Network (LTN) for constraint satisfaction,
employing axioms as constraints during training.

Results indicate that both methods improve performance, with the choice
depending on the trade-off between deployment speed and accuracy: KGE methods
are faster to develop but limited by available relationships in the knowledge base,
while LTN potentially can outperform them but requires more time to design
optimal axioms based on domain expertise.

i

Acknowledgements

First and foremost, I would like to express my gratitude to my advisors, Prof.
Fabrizio Lamberti, for providing me with this opportunity, and Prof. Lia Morra,
for her availability, patience, and guidance throughout this thesis. Her mentorship
has been instrumental in introducing me to the fascinating realm of explainable AI
systems, which is increasingly vital for the ethical success of AI.

I extend heartfelt thanks to my parents and sisters for their support throughout
these years. Their encouragement has been a constant source of motivation.

A big thanks also to all friends and colleagues with whom we have shared joy
and suffering during these years of university.

Lastly, but by no means least, I extend my gratitude to the student teams
DRAFT PoliTO and Squadra Corse Driverless for providing me with the incredible
opportunity to work on cutting-edge technology within the context of perception
systems for Autonomous Driving. A special acknowledgment goes to PhD. Simone
Godio, PhD. Students Francesco Marino and Stefano Favelli, whose efforts have
played a pivotal role in making this opportunity a reality.

ii

Table of Contents

List of Tables v

List of Figures vii

Acronyms x

1 Introduction 1

2 Embedding prior knowledge in deep learning 4
2.1 Neuro-Symbolic AI . 4
2.2 Fuzzy Logic . 4
2.3 Knowledge Graph . 7
2.4 Logic Tensor Network . 9

2.4.1 Real Logic . 9
2.4.2 Methodology . 11

3 Review of the state-of-art 12
3.1 Base Architecture . 12

3.1.1 Conditional Random Field 12
3.1.2 Graph Convolutional Neural Network 13
3.1.3 Recurrent Neural Networks 14
3.1.4 Transformer . 15
3.1.5 Baseline networks . 17
3.1.6 Prior Knowledge as a solver for biased predictions 21
3.1.7 Total Direct Effect . 21
3.1.8 Graphical Contrastive Losses 22
3.1.9 Label Semantic Knowledge Distillation 23
3.1.10 Relation-aware message parsing 24

4 Datasets 28
4.0.1 Knowledge Graph . 28

iii

4.0.2 Traffic Genome . 31

5 Methods 37
5.0.1 Relational TRansformer (RelTR) 37

5.1 Knowledge Graph Embedding . 39
5.1.1 Loss formulation . 39

5.2 Knowledge base of LTN . 40
5.3 Experiments . 43

5.3.1 Data-augmentation . 43
5.3.2 Setup . 43
5.3.3 Metric . 43

6 Results 44
6.1 Hyper-parameter selection . 44

6.1.1 Analysis . 46
6.2 Neuro-symbolic training . 51

6.2.1 Knowledge alignment . 51
6.2.2 Satisfiability of logical constraints 55

6.3 Qualitative Results . 64
6.4 Comparison with the start-of-the-art 66

7 Conclusion 67

A Appendix 69
A.1 KGE Generation . 69
A.2 Taxonomy alignment . 69

Bibliography 72

iv

List of Tables

2.1 Common Fuzzy Operators on T and S-norms 6
2.2 Common Fuzzy implications I(x, y) = and their classes, where N

denotes the negation of the S-implication 6
2.3 Fuzzy Aggregator extending T and S-norms 11

4.1 Statistics on diversity inside PandaSet KG 31
4.2 A comparison between Traffic Genome and Visual Genome from [10] 33
4.3 Statistics of Traffic Genome after data-augmentation 33

5.1 Constraints sets used in LTN-based approach 42

6.1 Statistics on Traffic Genome label distribution 44
6.2 RelTR configuration 0 . 45
6.3 Performance under End-Of-Sequence (EOS) weight variation under

100 epoch . 46
6.4 Performance under variation of Feature Encoder lencoder and Entity

Decoder ldecoder layers during 100 epochs 46
6.5 Performance under variation of the relationship loss coefficient during

100 epochs . 47
6.6 Performance under relationship loss coefficient variation λrel when

wEOS = 0.4 and cost bounding box set to 10 47
6.7 Performance by duplicating Matcher’s bounding box cost Kbbox when

wEOS = 0.4 . 47
6.8 Performance with different learning rate when wEOS = 0.4 and

Kbbox=10 . 47
6.9 Performance under relationship loss coefficient variation λrel when

wEOS = 0.4 and Kbbox=8 . 48
6.10 mean recall of the baseline . 48
6.11 RelTR baseline: configuration . 49
6.12 Performance under different GPUs 49
6.13 Performance under different KGE-based strategies 51

v

6.14 R@100: baseline versus KGE-8 . 54
6.15 mAP and mR scores under different policy 56
6.17 Performance under different constraints’ strategy 61
6.16 Recall analysis across relationships with large constraints set; report-

ing only the best values . 62
6.18 Maximum scores under different negative constraints’ formulation

when pAUQ is high . 64
6.19 Comparison with state-of-the-art methods on Traffic Genome test-set 66

A.1 PandaSet attribute after taxonomy alignment 70
A.2 Visual Genome Entity taxonomy alignment 71

vi

List of Figures

1.1 An example of a scene graph and its grounding 2

2.1 KENN: a refinement layer known as Knowledge Enhancer (KE)
integrates symbolic knowledge from a clause into the Clause Enhancer
module using hyperparameters δi and wi 11

3.1 The basic structure of CRF-based SGG models[31] has: object
detection (s and o) and relationship prediction (r) module 13

3.2 The basic structure of GCN, where Yi, Xi, Zi are respectively the
labels, the inputs and output nodes of the network 14

3.3 The basic structure of Transformer 16
3.4 The structure of MotifNet . 17
3.5 The structure of BiTreeLSTM used in VCTree 19
3.6 IMP schema . 20
3.7 Schema of the TDE approach, where Yx̄,z(u) = Y (do(X = x̄)|u) . . 21
3.8 Example of Counterfactual Thinking: the visual features of dog and

surfboard are removed . 21
3.9 Two-stage SGG: common issues . 22
3.10 SGG before and after Graph Constrastive Losses 23
3.11 The pipeline of two self-Knowledge Distillation learning strategies.

When training in t epoch, student model trained at t − 1 epoch
becomes the teacher model. Dotted lines indicate that the model
weights are frozen, while f are the object features 24

3.12 An example of the LSD of a missing-annotated triplet 25
3.13 HetSGG schema: Given an image, a heterogeneous graph is con-

structed based on the objects detected by an object detector, i.e.
Faster R-CNN, from which feature vectors for objects and predi-
cates are extracted. RMP propagates relation-aware messages to the
representations of objects and predicates. Finally, the scene graph
predictor generates a heterogeneous scene graph 25

3.14 SrTR schema . 26

vii

4.1 A sample from the PandaSet dataset. Left: Camera images with
multimodal projection retrieved by the LiDAR’s pointcloud. Right:
Point cloud from sensor fusion of 2 LiDARs 29

4.2 Total number of object per class in PandaSet. Note that Ped =
Pedestrian, while Ped∗ = Pedestrian with object, M Truck = Medium-
Sized Truck; RC = Rolling Container 29

4.3 Total number of LiDAR points for each semantic segmentation class
in PandaSet. Other S-O = Other Static Object; M Truck = Medium-
Sized Truck; Other R-M = Other Road Marking, LLM = Lane Line
Marking . 30

4.4 Proportion of attribute annotations for Car (left) and Pedes-
trian(right). Note that Left: P = Parked, S = Stopped, M =
Moving, St = Standing, W = Walking, Si = Sitting, L = Lying . . 30

4.5 Image samples from Traffic Genome with bounding box annotations 32
4.6 Distribution of Traffic Genome dataset 34
4.7 Effect of data augmentation on the training set 35
4.8 Effect of data augmentation into train-set for labels with low frequency 36

5.1 RelTR schema . 38
5.2 Schema of KGE: given the entity logits the filter select the candidate

to be aligned to KGE anchor . 40

6.1 Best configuration: validation set performance 50
6.2 Attention Heat-map of Entity Queries for critical example 0: images

report baseline (left) and KGE-8 (right) inference 52
6.3 Attention Heat-map of Entity Queries for critical example 2: images

report baseline (left) and KGE-8 (right) inference 53
6.4 Entity Loss under different setups 56
6.5 Relationship Loss under different setups 57
6.6 Satisfiability of different negative constraints formulation 58
6.7 Satisfiability of positive constraints under different Negative Con-

straints formulations . 59
6.8 Satisfiability of relationship axiom under different negative con-

straints formulations . 60
6.9 Satisfiability error in large constraints set 63
6.10 Satisfiability error in large constraints set under high AUQ 63
6.11 Visual Relationship Detection of traffic scene 64
6.12 Visual Relationship Detection of scene without vehicles 65

A.1 TransE performance during training 69

viii

Acronyms

AI
Artificial Intelligence

AUQ
Aggregator norm of Universal Quantifier

CEL
Cosine Embedding Loss

CNN
Convolutional Neural Network

CRF
Conditional Random Field

CSA
Coupled Self-Attention

DEA
Decoupled Entity Attention

DVA
Decoupled Visual Attention

EC
Easy Constraints

FNC
First Negative Constraints

x

FOL
First Order Logic

HC
Hard Constraints

HEL
Hinge Embedding Loss

GCN
Graph Convolutional Network

GRU
Gated Recurrent Unit

IMP
Iterative Message Parsing

IoU
Intersection over Union

KG
Knowledge Graph

KGE
Knowledge Graph Embedding

LiDAR
Light Detection And Ranging

LSD
Label Semantic Distributions

LSTM
Long Short-Term Memory

LTN
Logic Tensor Network

xi

mAP
mean Average Precision

MHA
Multi-Head Attention

MPNN
Message Passing Neural Network

MLP
Multi-Layer Perception

mR
mean Recall

NAS
Neural Search Architecture

NeSy
Neuro-Symbolic AI

NLP
Natural Language Processing

NMS
Non-Max Suppression

PredCLS
Predicate CLaSsification

RDF
Resource Description Framework

RMP
Relation-aware Message Passing neural network

RNN
Recurrent Neural Network

xii

SAE
Society of Automotive Engineer

SGG
Scene Graph Generation

SLD
Simulated Label Distributions

SNC
Second Negative Constraints

SOTA
State Of The Art

TDE
Total Direct Effect

xiii

Chapter 1

Introduction

The scene graph definition is credited to Johnson et al.[1]. A scene graph is a data
structure that describes the contents of a scene, i.e. it encodes object instances,
attributes of objects, and relationships between objects. Formally, given a set of
object classes C, a set of attribute types A, and a set of relationship types R, a
scene graph G is a tuple G = (O, E) where O = {o1, ..., on} is a set of objects and
E ⊆ O × R × O is a set of edges. Each object has the form oi = (ci, Ai) where
ci ⊆ C is the class of the object and Ai ⊆ A are the attributes of the object. Note
that the graph is directed since symmetric relationship usually does not holds: a
nose can belong to a person, but the contrary is impossible in our world. Figure
1.1 shows an example of scene graph: the object instances are people (girl), places
(tennis court), things (shirt) and parts of other objects (arm). This example
demonstrates that scene graph can represent the detailed semantics of a dataset
of scene, achieving a high number of visual tasks, including action recognition[2],
image captioning[3] and visual relationship detection[4]. Furthermore, this semantic
richness could be a game charger in Autonomous Driving, particularly for achieving
the SAE-5 level of autonomy[5]. Enhancing the safety of Visual-Controllers by
preemptively understanding relationships between objects can significantly improve
risk assessment. Consider a scenario where a child rushes onto the road to retrieve
a ball unintentionally kicked out of a park; with prior relationship detection be-
tween the ball and the child, the controller can swiftly predict the danger and
initiate a braking maneuver. Currently, in the Autonomous Driving domain few
researches have been conducted in the realm of of Scene Graph Generation (SGG)
and the majority of them present several issues: focus on specific sub-task[6, 7,
8, 9] with lack of generalization; usage of spatial relationships derived by manual
heuristic[6, 8]. These problems hinder the understanding of the effectiveness of

1

Introduction

Figure 1.1: An example of a scene graph and its grounding

different methodologies and the applicability of state-of-the-art methods trained
on datasets not specifically tailored for Autonomous Driving, like Visual Genome.
Only [10] introduces a public benchmark dataset, Traffic Genome, offering a more
comprehensive scenario by incorporating a high number of entities and relation-
ships.
The focus of this work will be on visual relationship detection application in Au-
tonomous Driving scenario based on Traffic Genome dataset. The visual relationship
detection is mainly composed of two steps: object detection and relationship de-
tection. Given an image I, an object detector D is used to gather the bounding
boxes B from it. From the features maps, the class labels xi are predicted. After
collecting all the objects Oi in the image, the next passage is to link them using
predicates. In the pair, a subject si and an object oi are defined because the graph
must be directed. Thus, the model focuses on learning a predicate p capable to link

2

Introduction

two objects oi and oj , where one of them is defined as the subject and the other the
object. At the end of this step, a triplet <subject, predicate, object> is created.
This operation is repeated for all pairs in the image to generate the final scene
graph. In literature are presented two techniques employing these steps: two-stage
method, where object and relationship detection are done asynchronously by sepa-
rate networks; one-stage method, where the goal is to design a network capable
of doing all these passages at once in a synchronous way. Due to the complexity of
visual relationship detection task, several issue can occurs during its realization.
Hereby, we reported the main ones:

Missing annotations in noisy dataset both Visual Genome Dataset[4], the
most used dataset, and Traffic Genome have missing annotations, i.e. dataset
reports just one possible predicate even when more than one predicate could
be correct for a pair of objects, leading problems during training because while
the model could correctly detect the triplets in the image, they will considered
wrong since they do not appear in the dataset.

Long-tailed relationship distribution the relationship distributions of avail-
able datasets are exponential distributions (Visual Genome Dataset, Visual
Relationship Detection[11], Traffic Genome), i.e. the most frequent relation-
ships have higher values in respect to the other ones. This leads the model
to focus on the top frequent classes rather than the rest. To mitigate this
problem several prior-knowledge infusion techniques and metric have been
introduced.

The structure of thesis is organized as follows:

Chapter 1 contains an introduction to the thesis’ topic.

Chapter 2 illustrates Neuro-Symbolic AI and its prior-knowledge approaches.

Chapter 3 reviews of SOTA for Scene graph generation.

Chapter 4 illustrates the datasets used for experiments.

Chapter 5 reports the methods used for experiments.

Chapter 6 shows the results of the experiments over autonomous driving dataset.

Chapter 7 after a brief results’ discussion proposes possible future works.

3

Chapter 2

Embedding prior knowledge
in deep learning

2.1 Neuro-Symbolic AI
Neuro-symbolic AI, the so-called 3rd wave[12], is a branch of machine learning that
aims to build hybrid AI systems that infuse commonsense reasoning into neural
networks exploiting symbols, i.e. high-level representation of the dataset instances.
Thanks to symbolic representation, Neuro-symbolic AI can overcome the main
issues of deep learning:

Lack of explainability having a formally defined computational semantics in-
creases the trustworthiness of AI systems.

Lack of parsimony requiring far less data and computational power at training
time drastically decreasing energy consumption.

2.2 Fuzzy Logic
In the year 1965, Lotfi Zadeh introduced the concept of fuzzy logic as a means
to articulate and comprehend imprecise or vague propositions [13]. Fuzzy logic
can be viewed as an expansion upon the conventional framework of Boolean logic:
in classical Boolean logic, the output is binary, while in fuzzy logic considers
a continuous interval, specifically the range [0, 1]. This approach enables the
representation of a spectrum of truth values, thereby accommodating varying
degrees of veracity. Within the realm of fuzzy logic, the extremities of this spectrum,
namely 1 and 0, correspond to the utmost levels of truth and falseness, respectively,
providing a nuanced and flexible framework for the analysis of imprecise data and

4

Embedding prior knowledge in deep learning

ambiguous scenarios, such as control of complex system whose dynamic is difficult
to model in a conventional approach. Hereby are reported the main definition of
fuzzy logic.

Definition F1 Let X be a space of points. A fuzzy set A in X is characterized by
a membership function µA(x) which associates with each point x ∈ X a real
number in the interval [0, 1], with the value of µA(x) at x representing the
grade of membership of x in A. Thus, the nearer the value of µA(x) to unity,
the higher the grade of membership of x in A.

Definition F2 Given two fuzzy sets A and B, they are equal if and only if ∀x ∈
X µA(x) = µB(x)

Definition F3 Given two fuzzy sets A and B, they are equal if and only if ∀x ∈
X µA(x) = µB(x)

Definition F4 The complement of a fuzzy set A is denoted by A’ and is defined
by fA′(x) = 1− µA(x)

Definition F5 A is contained in B if and only if µA(x) ≤ µB(x)

Definition F6 A fuzzy set is empty if and only if its membership function is
identically zero on X

Definition F7 The union of two fuzzy sets A and B with respective member-
ship functions µA(x) and µB(x) is a fuzzy set C, written as C = A ∪ B,
whose membership function is related to those of A and B by fC(x) =
max(µA(x), µB(x)), x ∈ X

Definition F8 The intersection of two fuzzy sets A and B with respective member-
ship functions µA(x) and µB(x) is a fuzzy set C, written as C = A ∩ B,
whose membership function is related to those of A and B by fC(x) =
min(µA(x), µB(x)), x ∈ X

Definition F9 [14] Let T be a membership function such that T : [0, 1]2 → [0, 1].
T is a triangular-norm (also called T-norm) if and only if is ∀x, y, z ∈ [0, 1]:

T1 T (x, y) = T (y, x),
T2 T (x, T (y, z)) = T (T (x, y), z),
T3 T (x, y) ≤ T (x, z) whenever y ≤ z,
T4 T (x, 1) = x.

5

Embedding prior knowledge in deep learning

Definition F11 [14] Let S be a membership function such that T : [0, 1]2 → [0, 1].
S is a triangular-conorm (also called S-norm) if and only if is ∀x, y, z ∈ [0, 1]:

T1 S(x, y) = S(y, x),
T2 S(x, S(y, z)) = S(S(x, y), z),
T3 S(x, y) ≤ S(x, z) whenever y ≤ z,
T4 S(x, 0) = x.

Definition F10 T-norm Łukasiewicz is defined as T (x, y) := max (0, x + y − 1)

From the above definitions it is clear that fuzzy logic permits to map each constant
and formula into numerical features, which can be used in further computations.
Below are summarized the main logical connector formulations using T and S-norms.
Note that in this work only strong implications are used, i.e. given the symbol x, y,
then x→ y = ¬x ∨ y

Name Operations
x ∧ y x ∨ y x→ y

Goedel min(x, y) max(x, y) max(1− x, y)
Goguen/Product x · y x + y − x · y 1− x + x · y

Łukasiewicz max(x + y − 1,0) min(x + y, 1) min(1− x + y, 1)

Table 2.1: Common Fuzzy Operators on T and S-norms

Name I(x, y) S-Implication
Kleene-Dienes

IKD
max(1− x, y) S = SM

N = NS

Reichenbach
IR

1− x + xy
S = SP

N = NS

Łukasiewicz
ILuk

min(1− x + y, 1) S = SL

N = NS

Table 2.2: Common Fuzzy implications I(x, y) = and their classes, where N
denotes the negation of the S-implication

6

Embedding prior knowledge in deep learning

2.3 Knowledge Graph
The concept of knowledge graphs traces back to diagrammatic knowledge repre-
sentation methods, with roots dating to ancient greek, notably Aristotle, Euler
and Venn. With the advent of digital computers, formal reasoning and knowledge
representation shifted to computational programs. Pioneering works by Ritchens
(1956) [15], Quillian (1963) [16], and Travers and Milgram (1969) [17] focused on
formalizing natural language, information, and knowledge representations. These
early efforts faced limitations due to limited computational resources. In the 1970s,
significant developments occurred, including Minsky’s introduction of frames (1974)
[18], Brachman[19] and Woods formalizing semantic networks (1977, 1975) [20],
and Sowa proposing conceptual graphs (1979) [21]. These works aimed to integrate
formal logic with diagrammatic knowledge representations but faced challenges in
providing precise semantics. Thus, it is clear to see the definition of a knowledge
graph remains contentious; here we reported the one adopted by Hogan et Al. in
[22]:

A graph of data intended to accumulate and convey knowledge of the real
world, whose nodes represent entities of interest and whose edges represent
relations between these entities. By knowledge, we refer to something that
is known. Such knowledge may be accumulated from external sources, or
extracted from the knowledge graph itself.

Note that knowledge may be composed of simple statements, such as Nietzsche
is a philosopher, or quantified statements, such as all dogs are animals. Simple
statements can be accumulated as edges in the data graph. But, when quantified
statements have to be represented in Knowledge Graph a formal expression based on
ontologies or rules is required. Knowledge Graph has gain a vast popularity in the
neuro-symbolic community thanks to easiness of First Order Logic representation.
In fact, given a triplet <subject, relationship, object> it can be translated into a
edge that goes from a head entity (subject) to an tail entity (object) if there is a
link (relationship) between them.

Infusion methods
Although, effectiveness of FOL translation into KG, the resulting symbolic nature
lead to difficulty when manipulation is need, specially in case of complex query. To
tackle this problem, several techniques have been proposed through the years, in
particular Knowledge Graph Embedding methods[23], which have quickly gained a
massive consent due to intrinsic simple nature. Suppose it is given a KG consisting
of n entities and m relations, where facts observed are stored as a collection of triples
D+ = {(h, r, t)}. Let E denote the set of entities and L the set of relations, then

7

Embedding prior knowledge in deep learning

each triple is composed of a head entity h ∈ E, a tail entity t ∈ E, and a relation
r ∈ R between them, e.g. (Paolo, IsMemberOf, SquadraCorseDriverless). KG
embedding aims to embed entities and relations into a low-dimensional continuous
vector space to simplify computations on the KG. Most of the currently available
techniques use facts stored in the KG to perform the embedding task, enforcing
embedding to be compatible with the facts. Typically, a KG embedding technique
is generally composed of three steps:

Modelization of entity and relationship to create a suitable form representa-
tion in a continuous vector space, whose vectors (or tensors depending to the
space dimension) can be either deterministic or stochastic.

Definition of a scoring function to measure the plausibility of both observed
and unobserved facts.

Learning entity and relation representation is formulated as an optimiza-
tion problem that maximizes the total plausibility of observed facts.

Following the classification introduced by [23], embedding techniques are clustered
into two macro-groups: Translational distance models based on distance scoring
function; Semantic matching models that employ similarity scoring function. In
this work we focus only on Translational distance models, specifically on TransE[24],
which is able to capture the rule of KG although its simplicity and it can be easily
trained.

TransE

Given a training set S of triplets < h, r, t > where h and t are entities from the set
E, and r is a relationship from the set L, TransE learns vector representations for
these entities and relationships. These representations are vectors in the real space
Rk, where k is a hyperparameter of the model. The core concept to model the
functional relation induced by the r-labeled edges as translation of the embedding:
h + r ≈ t when the triplet (h, r, t) holds, meaning that t should be a nearest
neighbour to h+ l in the vector space; conversely, when (h, r, t) does not hold, h+r
to be significantly distant from t. This idea is formalized through an energy-based
approach, wherein the energy associated with each triplet d(h + r, t) is defined
as a dissimilarity measure, utilizing either the L1 or L2 norm. Here below, it is
reported the algorithm related to the learning phase.

8

Embedding prior knowledge in deep learning

Algorithm 1 Learning TransE
Require: Training set S = {(h, r, t)}, entities and relation sets E and L, margin

γ, embedding dimension k, number of epoch N .
1: Initialize r ← uniform(− 6√

k
, 6√

k
) for each r ∈ L.

2: r← r
k
· r

k
for each r ∈ L.

3: e← uniform(- 6√
k
, 6√

k
) for each entity e ∈ E.

4: while epoch<N do
5: e← e

∥e∥ for each entity e ∈ E.
6: Sbatch ← sample(S, b) ▷ Sample a minibatch of size b.
7: Tbatch ← ∅ ▷ Initialize the set of pairs of triplets.
8: for (h, r, t) ∈ Sbatch do
9: (h′, r, t′)← sample(S(h, r, t)) ▷ Sample a corrupted triplet.

10: Tbatch ← Tbatch ∪ {(h, r, t), (h0, r, t0)}
11: end for
12: Update embeddings w.r.t.

Ø
(h,r,t),(h′,r,t′)∈Tbatch

[∇γ + d(h + r, t)− d(h′ + r, t′)]+

13: epoch ← epoch + 1
14: end while

2.4 Logic Tensor Network
Firstly introduced by Serafini and Garcez[25], logic tensor networks integrate FOL
into a differentiable framework based on Real Logic to ease employment of FOL in
deep learning architectures.

2.4.1 Real Logic
Real Logic is based on first order language L whose signature is composed of set C
of constant symbols, a set F of functional symbols, a set P of predicate symbols
and a set X of variable symbols. Real Logic uses the sentences of L to express
relational knowledge based on fuzzy connectors and it interprets (grounds, see
definition below) them as tuples of real numbers.

9

Embedding prior knowledge in deep learning

Definition R1 Let n > 0. A grounding G for a first order language L is a
function from the signature of L to the real numbers that satisfies the following
conditions:

1. G(c) ∈ Rn for every constant symbol c ∈ C.

2. G(f) ∈ Rn·m −→ Rn for every f ∈ F and m is the arity of f .

3. G(P) ∈ Rn·m −→ [0,1] for every P ∈ P and m is the arity of P .

A novelty introduced by Real Logic is the aggregation semantics (see Definition R2)
that aggregates the several statements (axioms) formulated. Several aggregators
for universal and existential quantification respectively based on T and S-norms
can be found in literature, in this works the ones used are reported in Table 2.3.

Definition R2 Let ϕ(x) be a clause of L that contains a k-tuple x = ⟨x1, . . . , xk⟩
of k distinct variables. Let T be the set of all k-tuples t = ⟨t1, . . . , tk⟩ of closed
terms of L, then G(ϕ(x)) = αt∈TG(ϕ(t)), where α is an aggregation operator
from [0,1]|T | → [0,1]

Definition R3 Let ϕ be a clause in L, G a grounding, and v ≤ w ∈ [0,1]. We
say that G satisfies ϕ in the confidence interval [v, w], written G |=w

v ϕ, if
G(ϕ) ∈ [v, w]. A partial grounding, denoted by Ĝ, is a grounding that is defined
on a subset of the signature of L. A grounding G is said to be an extension of
a partial grounding Ĝ if G coincides with Ĝ on the symbols where Ĝ is defined.

Definition R4 A grounded theory or knowledge base is a pair ⟨K, Ĝ⟩ where K is
a set of pairs ⟨[v, w], ϕ(x)⟩, where ϕ(x) is a clause of L containing the set x
of free variables, and [v, w] ⊆ [0,1], and Ĝ is a partial grounding.

Definition R5 A grounded theory ⟨K, Ĝ⟩ is satisfiable if there exists a grounding
G, which extends Ĝ such that for all ⟨[v, w], ϕ(x)⟩ ∈ K,G |=w

v ϕ(x).

From the above definitions it easy to understand that constraints’ satifiability
cannot be just checked using Definition R5 since its computing power is finite.
Thus, a partial sasfiability should be verified limiting to regulars groundings and
number of clause instantiations. Then, the best grounding is the one that minimizes
the satisfiability error on all the clauses in the knowledge base.

10

Embedding prior knowledge in deep learning

Type Definition
Minimum T-norm ATM

(x1, . . . , xn) := min (x1, . . . , xn)
Probabilistic Sum T-norm ATP

(x1, . . . , xn) := rn
i=1 xi

Łukasiewicz T-norm ATL
(x1, . . . , xn) := max (qn

i=1 xi − n + 1,0)
Minimum S-norm ASM

(x1, . . . , xn) := max (x1, . . . , xn)
Probabilistic Sum S-norm ASP

(x1, . . . , xn) := 1−rn
i=1 (1− xi)

Łukasiewicz S-norm ASL
(x1, . . . , xn) := min (qn

i=1 xi, 1)

Table 2.3: Fuzzy Aggregator extending T and S-norms

2.4.2 Methodology
Currently, LTN methods can be classified as

Trainer module whose functionality is limited to verification of constraints satis-
fability during training, in particular for image task relevant works are[26, 27,
28].

Refinement layer where additional layers inject knowledge bases directly into
target network[29].

Figure 2.1: KENN: a refinement layer known as Knowledge Enhancer (KE)
integrates symbolic knowledge from a clause into the Clause Enhancer module
using hyperparameters δi and wi

11

Chapter 3

Review of the state-of-art

SGG’s architecture can be clustered into two main approach: two-stage approach,
where the object and relationship detection modules are trained separately; one-
stage approach, where object and relationship detection modules are jointly trained.
Concerning the relationship detection module, SOTA architecture are based on
Conditional Random Field, Graph Convolutional neural Networks (GCN), Recur-
rent Neural Network (RNN) and Transformers. Due to the complexity of the visual
relationship detection task, datasets present several issues. In particular, the main
ones are missing annotations and long-tailed relationship distribution. In literature,
the methodologies used to solve these issues can be divided into 4 main categories:

Statistical Learning Approach reduces bias by looking on the dataset distribu-
tion and exploiting techniques from Statistical Learning such as Conditional
Random Field.

External Knowledge integration reduces bias by integrating knowledge from
external source, such as Knowledge Graph Embedding, Distillation Knowledge
or Visual-linguist Prior.

Novel Losses integration to account the common issues of SGG.

Tailored Message Parsing to improve current message parsing in GCN-based
network to enhance relationship predictions.

3.1 Base Architecture

3.1.1 Conditional Random Field
Within the realm of visual relationship triples, denoted as ⟨s− r − o⟩, a notable
and robust statistical correlation emerges between the relationship predicate and

12

Review of the state-of-art

the object pair. Leveraging this valuable statistical insight holds immense potential
in enhancing the accuracy and efficiency of visual relationship recognition.
One of the established methodologies for harnessing these statistical relationships
is the Conditional Random Field(CRF)[30]. The CRF offers a sophisticated
modelisation method for effectively incorporating statistical relationships into the
task of discrimination. In the context of visual relationship, the CRF can be
represented as follows[31]:

P (rs→o | X) = 1
Z

exp (Φ (rs→o | X; W)) , X = xr, xs, xo (3.1)

where xr denotes appearance features and spatial configuration of the object pair,
while xs and xo denote the appearance features of the subject and object respectively.
W is the parameter of the model, Z is a normalization constant and F represents
the joint potential.

Figure 3.1: The basic structure of CRF-based SGG models[31] has: object
detection (s and o) and relationship prediction (r) module

3.1.2 Graph Convolutional Neural Network
The scene graph can be modelled as graph, thus a straightforward approach
would be improving the SGG task based on the graph theory, in particular Graph
Convolutional Neural Network[32]. Let G be a graph G = (V , E), where V represents
the node and E the relationship between them. Each node has a number of
predefined features Xi, which are all stacked in a matrix X. Let be adjacency matrix
A ∈ RN×N , Dii degree matrix and Laplacian ∆ of G, then Graph Convolutional
Network Z = f (X, A) composed of l-layers has the layer-wise propagation rule:

H(l+1) = σ
1
D̃− 1

2 ÃD̃− 1
2 H(l)W (l)

2
where Ã = A + IN represent the adjacency matrix of the graph G with added
self-connections represented by the identity matrix IN , D̃ is the degree matrix of
Ã, W (l) is trainable weight matrix of the l-layer and σ(·) denotes an activation

13

Review of the state-of-art

function. Recall that D̃− 1
2 ÃD̃− 1

2 is the spectral graph convolution. In Fig.3.2 is
possible to view such schema.
SGG process based on GCN can be factorized into three parts:

P (< V, E, O, R > |I) = P (V |I) ∗ P (E|V, I) ∗ P (R, O|V, E, I) (3.2)

where V is the set of nodes (objects in images), E is the edges(relationships between
objects) in a graph. Based on this basic conditional form, several methods optimize
the terms of P (E|V, I) and P (R, O|V, E, I) by designing relevant modules, and
GCN-based networks are designed for the graph labeling process P (< V, E, O, R >
|I)[31].

Figure 3.2: The basic structure of GCN, where Yi, Xi, Zi are respectively the
labels, the inputs and output nodes of the network

3.1.3 Recurrent Neural Networks
RNNs[33] are a class of neural networks specifically designed for sequential data
processing. They are characterized by their ability to maintain hidden state
information, which is updated at each time step and depends on previous time
steps. A RNN consists of an input sequence X = (x1, x2, . . . , xt), hidden state ht

updated recurrently and an output sequence Y = (y1, y2, . . . , yt). Here, the hidden
state update formula is reported

ht = f(ht−1, xt; θ) (3.3)

14

Review of the state-of-art

RNNs suffer from the vanishing gradient problem, making it challenging to capture
long-range dependencies in sequences. To tackle this issue, several improvement
such as LSTM (Long Short-Term Memory)[34], a variant with gated cells designed
to capture long-term dependencies, GRU (Gated Recurrent Unit)[35], a simplified
version of LSTM with fewer gates.

3.1.4 Transformer
Firstly, introduced in 2017 by Vaswani et al.[36] the Transformer revolutionized
the field of Natural Language Processing (NLP) by addressing the limitations
of RNN and CNNs: a notable drawback of RNNs is their reliance on sequential
processing, which often leads to the loss of important information across lengthy
sequences, while CNNs are not capable of retaining temporal information of neural
network state; Transformers solve this issue by introducing into a encoder-decoder
architecture the concept self-attention modelled as follows:

Attention(Q, K, V) = softmax
A

QKT

√
dk

B
V (3.4)

where Q represents queries from the decoder, while K and V are keys and values
derived from the encoder’s output. The dimensions of keys and queries are denoted
as dk and the values have dimension dv. The multihead attention mechanism,
which connects the encoder and the decoder, is an aggregation of multiple attention
heads:

multihead(Q, K, V) = concat(head1, . . . , headh)Wo (3.5)

Each individual attention head headi, is computed using Equation 3.4 with query
projections W Q

i , key projections W K
i and value projections W V

i . The multihead
attention layer performs computations invariant to the sequence position, loosing
one of the major benefit common both to CNNs and RNNs. To address this
issue a positional encoding is added after the embedding layers. Sine and cosine
functions, as defined in below equations, are employed for positional encoding.
These functions vary with the position in the sequence and provide a unique value
for each word’s position, which is then added to the embedding layer’s output.

PE(pos,2i) = sin
3

pos

10000 · 2(i
dmodel)

4
(3.6)

PE(pos,2i + 1) = cos
3

pos

10000 · 2(i
dmodel)

4
(3.7)

where pos is the position in the sequence and i is the i-th feature in the embedding.
Since the wavelengths form a geometric progression from 2π to 2000π each feature
of every word extracted according to the embedding layer is mapped into a different

15

Review of the state-of-art

Figure 3.3: The basic structure of Transformer

16

Review of the state-of-art

value. Due to the high information volume captured by transformers, they can
achieve SOTA performance both for two and one-stage approaches.

3.1.5 Baseline networks
Here are reviewed the SGG networks, whose performance on Traffic Genome dataset
is available in the literature.

MotifNet

Figure 3.4: The structure of MotifNet

In Fig.3.4 is it possible to visualized the general schema of MotifNet. MotifNet is
the first method that tries to solve long-tailed distribution problem. It decomposes
the probability of a graph G (made up of a set of bounding regions B, object labels
O, and labeled relations R) into three factors:

P (G|I) = P (B|I)P (O|B, I)P (R|B,O, I) (3.8)

The bounding box model (P (B|I)) is a standard object detection model(Faster
R-CNN[37]), which retrieves also feature vector fi and non-contextualized vector li

of object label probabilities for bounding box oi. The object model (P (O|B, I))
conditions on a potentially large set of predicted bounding boxes, B. Thus, object
detector outputs is linearized into a sequence [(b1, f1, l1), . . . , (bn, fn, ln)] that an

17

Review of the state-of-art

LSTM can process to create a contextualized representation C of each box using
the following equation:

C = biLSTM ([fi; W1li]i=1,...,n) (3.9)

C = [c1, . . . , cn] contains the final LSTM layer’s hidden states for each element in
the linearization of B, and W1 is a parameter matrix that maps the distribution of
predicted classes, li, to R100. This structure allows all elements of B to contribute
information about potential object identities. Then, the context is used to decode
the labels according to the previous labels:

hi = LSTMi([ci; ôi−1]) (3.10)

ôi = argmax(Wohi) ∈ R|C|(one-hot) (3.11)

Only the object class commitments ôi are used in the relation model (Section 4.3).
During the relations modeling (P (R|B,O, I)), the set of predicted labeled objects
O is linearized again and processed with another LSTM to create a representation
of each object in context:

D = biLSTM([ci; W2ôi]i=1,...,n) (3.12)

where the edge context D = [d1, . . . , dn] contains the states for each bounding
region at the final layer, and W2 is a parameter matrix mapping ôi into R100. For
each possible edge, let say between bi and bj, it is computed the probability the
edge will have label xi→j (including BG). The distribution uses global context, D,
and a feature vector for the union of boxes, fi,j:

gi,j = (Whdi)⊙ (Wtdj)⊙ fi,j (3.13)
P (xi→j|B,O) = softmax(Wrgi,j + woi,j

) (3.14)

Wh and Wt project the head and tail context into R4096, woi,j
is a bias vector specific

to the head and tail label.

VCTree

Introduced by Tang et al.[38] VCTree aims to learn a score matrix S, which
approximates the task-dependent validity between each object pair by memorizing
the object correlation by all pair of objects. Each element of the S matrix is
formulated to be complaint with the following principles:

1. Inherent object correlations should be maintained.

2. Task related object pairs have higher score than irrelevant ones.

18

Review of the state-of-art

Figure 3.5: The structure of BiTreeLSTM used in VCTree

Therefore, each element of S is defined as follows
Sij = f (xi, xj) · g (xi, xj, q) ,
f (xi, xj) = σ (MLP (xi, xj)) ,
g (xi, xj, q) = σ (h (xi, q)) · σ (h (xj, q)) ,

− (3.15)

where f (xi, xj) is the product of the object correlation and g (xi, xj, q) is the
pairwise task-dependency, σ(·) is the sigmoid function and q is the task feature.
The overall S matrix is assumed to be symmetric, then the maximum spanning
tree is obtained using the Prim’s algorithm. Note that the object detection is done
before the construction of VCTree. Once that VCTree has been constructed, a
BiTreeLSTM[39] is adopted as context encoder-decoder to learn object and relation
context as summarized in the Figure 3.5.

Iterative Message Parsing (IMP)

Introduced by Xu et. al[40], IMP is one of the earliest example that employs
Message Parsing in SGG to capture contextual information. Let be BI the set
of object bounding box proposals from the image I detected by Region Proposal
Network, then for each BI are associated three types of variables, that must be
inferred, which are:

1. xcls
i the object class label.

19

Review of the state-of-art

Figure 3.6: IMP schema

2. xbbox
i the box coordinates.

3. xi→j the relationship between all possible pairing of boxes

Let x done the set of all the aforementioned variables, then the solution of SGG
problem can be formalized as optimal x∗ = arg maxx P (x|I,BI). Let be Q(x|·) the
probability of each variable x, which at each iteration depends on the current state
(denoted by hi) of nodes and edges, Then, modeling the probability by means of
mean field, the overall expression is:

Q(x|I, BI) =
nÙ

i=1
Q(xcls

i , xbbox
i |hi)Q(hi|f v

i)
nÙ

i=1
Q(xi→j|hi→j)Q(hi→j|f e

i→j) (3.16)

where f v
i and fi→j are respectively the visual features of ith node and the edge

from the i-th node to the j-th node. Note that this distribution is learnt through
the GRUs. Message parsing is employed as follows: firstly, the visual features of
nodes(f v) and edges(f e) are passed to the GRU units(see Figure 3.6); then, each
time a new GRU hidden state is formulated based on incoming messages and the
previous hidden state. GRU’s weights are shared only between the same set, i.e.
the GRUs nodes and GRUs edges. The overall structure creates a bipartite graph,
where each subgraphs is the dual of others: the primal graph, the set of nodes,
creates messages from edge GRUs to be injected into node GRUs, while the dual
graph, the set of edges defines channels, does the opposite. Finally, an innovative
message pooling method is introduced to dynamically combine the hidden states of
the GRUs into messages through a process of iterative weight updates.

20

Review of the state-of-art

3.1.6 Prior Knowledge as a solver for biased predictions
Here are summarized the the most relevant techniques employed in SGG to tackle
unbiased prediction due to tailed-distribution.

3.1.7 Total Direct Effect

Figure 3.7: Schema of the TDE approach, where Yx̄,z(u) = Y (do(X = x̄)|u)

Figure 3.8: Example of Counterfactual Thinking: the visual features of dog and
surfboard are removed

To address the issue of biased predicates, Tang et al.[41] introduced an innovative
unbiased approach called Total Direct Effect(TDE). The idea behind this model is
rooted in the concept of counterfactual causality[42]. Initially, the model retrieves
biased predicate predictions using the original scene, which is defined as factual
scene; subsequently, the visual features of the objects in the image are removed
(this intervention is denoted as do (·)) to generate a new scene, the counterfactual

21

Review of the state-of-art

scene, and its related predicate predictions as shown in Figure 3.8. The difference
between these predictions aims to remove the biased prediction of predicates, and
these resulting logits are the one employed by SGG methods. Thus, TDE can be
formalized as follows:
Let be u the scene graph of an image I, x the visual features of a specific object in I
and z its object class; then given Y the logits of u and x̄ resulting variable after the
intervention on x, the unbiased logits Yxe(u) is

Yxe = Yx(u)− Y (do(X = x̄)|u) (3.17)

3.1.8 Graphical Contrastive Losses

(a) Entity Instance Confusion (b) Proximal Relationship Ambiguity

Figure 3.9: Two-stage SGG: common issues

In scene graph parsing, given an image, the goal is to deduce a graph with
entity categories and their pairwise relationships. Typically, this involves detecting
⟨subject, predicate, object⟩ triplets, such as ⟨man, holds, guitar⟩ in Figure 3.10.
Two-stage approach models often encounter two main issues. The first is Entity
Instance Confusion, where the model struggles to distinguish between instances
of the same class when the subject or object is related to one of many such instances.
An example is shown in 3.9a, where the model correctly identifies the man holding
a wine glass but fails to determine which of the three visually similar wine glasses
he is holding. The second type of error is Proximal Relationship Ambiguity,

22

Review of the state-of-art

(a) Before (b) After

Figure 3.10: SGG before and after Graph Constrastive Losses

which arises when the image contains multiple subject-object pairs with similar
interactions, and the model cannot identify the correct pairing (see Figure 3.9b as
an example). [43] proposes novel Graphical Contrastive Losses to address the two
aforementioned issues:

Class Agnostic Loss contrasts positive and negative entity pairs regardless of
their relation.

Entity Class Aware Loss deals with entity instance confusion by maximizing
the margins between instances of the same entity class, i.e. subject or object.

Predicate Class Aware Loss deals with proximal relationship ambiguity by fo-
cusing on entity pairs with the same potential predicate.

Note that the authors define the affinity for the Constrastive Learning term as:

Φ(s, o) = 1− p(pred = ∅|s, o) (3.18)

where p(pred|s, o) is output distribution over predicate classes conditioned on a
subject (s) and object (o) pair and ∅ is the class symbol representing no relationship.
In figure 3.10 it is possible to see a graphical outcome from this approach.

3.1.9 Label Semantic Knowledge Distillation
Most existing SGG models adopt a common training approach, treating object
and predicate classification as single-label tasks with one-hot target labels. This
training paradigm overlooks two key dataset characteristics:

1. Positive samples may involve multiple reasonable predicates for specific subject-
object instances.

23

Review of the state-of-art

Figure 3.11: The pipeline of two self-Knowledge Distillation learning strategies.
When training in t epoch, student model trained at t−1 epoch becomes the teacher
model. Dotted lines indicate that the model weights are frozen, while f are the
object features

2. Negative samples often lack annotations.

Despite these challenges, SGG models are prone to confusion and errors. To
address this, Li at al.[44] introduce a novel model-agnostic method called Label
Semantic Knowledge Distillation (LS-KD) for unbiased SGG(see Figure 3.11).
LS-KD dynamically generates soft labels for subject-object instances by merging
predicted Label Semantic Distributions (LSD) with original one-hot labels and
uses a Softmax function to create Simulated Label Distributions (SLD). The SLD
replaces one-hot vectors as soft target labels for relation classifier training (see
Figure 3.12. LSD captures correlations between instances and multiple predicate
categories. Besides, two self-KD strategies are proposed: iterative self-KD, where
the student model becomes its own teacher iteratively to utilize past predictions
for informative supervision, and synchronous self-KD, where the student and
teacher models share the same relation encoder but employ two pseudo-siamese
classifier heads.

3.1.10 Relation-aware message parsing
Recent SGG frameworks focus on learning complex object relationships in images.
Message Passing Neural Networks (MPNNs) are key representation modules due to
their modeling of high-order interactions. However, existing MPNN-based models
treat scene graphs as homogeneous graphs, limiting context awareness for visual
relations. Homogeneous graphs treat all nodes and edges as a single type, causing
relations to strongly depend on associated objects. For example, in the triplet

24

Review of the state-of-art

Figure 3.12: An example of the LSD of a missing-annotated triplet

⟨kid, riding, elephant⟩, an elephant does not usually ride a kid because Human
typically rides Animal. Yool et al. propose[45] an unbiased Heterogeneous Scene
Graph Generation(HetSGG) framework using Relation-aware Message Passing
neural networks (RMP) to capture context by considering predicate types (see
Figure 3.13). RMP treats each relation differently, using relation type-specific

Figure 3.13: HetSGG schema: Given an image, a heterogeneous graph is con-
structed based on the objects detected by an object detector, i.e. Faster R-CNN,
from which feature vectors for objects and predicates are extracted. RMP prop-
agates relation-aware messages to the representations of objects and predicates.
Finally, the scene graph predictor generates a heterogeneous scene graph

projection matrices. Its aim is to capture relation-aware context, updating object
and relation representations. It comprises two steps:

Edge-wise update for relations where RMP generates relation-specific mes-
sages to refine relation representations.

25

Review of the state-of-art

Node-wise update for objects where RMP aggregates messages based on re-
lation types (intra-relation aggregation) and combines relation type-specific
object representations to obtain final object representations.

Visual Linguistic Prior into Transformer

Figure 3.14: SrTR schema

One-stage scene graph generation methods are highly efficient, inferring effective
relations using sparse proposals and few queries. However, they often overlook
subject-predicate and predicate-object relationships and lack self-reasoning abilities.
Furthermore, they tend to neglect linguistic modality knowledge, which is crucial
for enhancing reasoning capabilities. To address these limitations, Zhang et al. [46]
propose a Self-reasoning Transformer with Visual-linguistic Knowledge (SrTR).
SrTR consists of three components:

Backbone and Entity Decoder encodes multi-scale visual context, denoted as
Me, using a CNN and Deformable DETR encoder[47]. It is then delivered to
the Deformable DETR decoder, which interacts with the entity query Qe to
produce entity representations He and their corresponding bounding boxes
Be.

Self-reasoning Decoder to obtain multi-scale entity visual features, the bound-
ing boxes Be are mapped back to multi-scale space. Triplet queries, initiated
through cross-attention with entity visual features Feae to embed visual and
location information, are then split into subject query Qs, predicate query Qp,
and object query Qo. These queries are input into a self-reasoning decoder for
two-by-one self-reasoning training.

26

Review of the state-of-art

Visual-linguistic Alignment the class names of subjects and objects, along
with the triplets they form with predicates, create a semantic space with
visual-linguistic priors using a CLIP encoder[48]. A visual-linguistic alignment
strategy is designed to map the triplet representation to the semantic space,
facilitating semantic prior auxiliary relational reasoning.

27

Chapter 4

Datasets

In Scene Graph Generation the main benchmark datasets are Visual Relationship
Detection[11] and Visual Genome[4]. None of those have sufficient labels to be
employed in Autonomous Driving scenario and there is a significant lack of spatial
relationships; all these issues lead to the creation of another benchmark dataset,
Traffic Genome[10]. PandaSet is chosen as KG of TranSE due its richness and
variety of information in the Autonomous Driving domain.

4.0.1 Knowledge Graph
PandaSet

PandaSet[49] is a multimodal dataset featuring high-precision sensors with a 360-
degree field of view. It is the world’s largest open-source dataset to include both
mechanical spinning and forward-facing LiDARs and cameras. The dataset offers
28 annotation classes and 37 semantic segmentation labels, meticulously labeled
through multi-sensor fusion. In Figures 4.2, 4.3 and 4.4 it is possible to see the label
distribution. PandaSet captures complex urban driving environments, including
various challenges like traffic, pedestrians, construction zones, and changing lighting
conditions with the aim to cover all driving conditions necessary to reach SAE Level
4 and 5. Its variety of information makes it suitable to generated a Knowledge
Graph in the Autonomous Driving domain.

28

Datasets

Figure 4.1: A sample from the PandaSet dataset. Left: Camera images with
multimodal projection retrieved by the LiDAR’s pointcloud. Right: Point cloud
from sensor fusion of 2 LiDARs

Figure 4.2: Total number of object per class in PandaSet. Note that Ped =
Pedestrian, while Ped∗ = Pedestrian with object, M Truck = Medium-Sized Truck;
RC = Rolling Container

29

Datasets

Figure 4.3: Total number of LiDAR points for each semantic segmentation class
in PandaSet. Other S-O = Other Static Object; M Truck = Medium-Sized Truck;
Other R-M = Other Road Marking, LLM = Lane Line Marking

Figure 4.4: Proportion of attribute annotations for Car (left) and Pedestrian(right).
Note that Left: P = Parked, S = Stopped, M = Moving, St = Standing, W =
Walking, Si = Sitting, L = Lying

30

Datasets

KG Generation

Since the PandaSet taxonomy differs from the Traffic Genome one a manual
taxonomy alignment has been executed whenever possible, for further details the
reader is refereed to the appendix (see Table A.1).

KG Dataset split

As shown in Table 4.1 the low dimension of the dataset leads to 99%− 1% split
ratio respectively for train and test.

Number
Unique entities 7423
Total entities 580154

Unique Relationships 13
Total relationships 754

Table 4.1: Statistics on diversity inside PandaSet KG

4.0.2 Traffic Genome
Traffic Genome is a traffic scene graph dataset comprised of 1000 scenes selected
from Cityscapes dataset[50]. Specifically, there are 34 semantic object classes and 51
relationships. In comparison to Visual Genome dataset, objects and relationships
in Traffic Genome are denser and the attribute coverage is higher as shown in
Table 4.2, which aims to have an higher perception about relationships in the
environment. Note the majority of relationships are focused on spatial relationships
(43.85%), such as in left of, and area relationships (42.04%), such as driving on
and walking on.

Data-augmentation to mitigate bias

Detailed analysis of Traffic Genome entity distribution shows that only 74% of the
entities classes are really used (see Figure 4.6), which degrades training performance
during regardless of SGG network employed. Even more, Transformers are data-
hungry. Then, it clear that classical data augmentation cannot solve this problem.
Thus, Traffic Genome train-set is extended using another dataset, Visual Genome.
Since Visual Genome is a dataset with a more general visual domain than Traffic
Genome, whose domain it is restricted to Autonomous Driving, pruning and
taxonomy alignment are required. Since a manual inspection was not feasible
a heuristic rule is defined: a scene belongs to an autonomous driving scenario

31

Datasets

Figure 4.5: Image samples from Traffic Genome with bounding box annotations

whenever at least specific valid entity classes are presented. Valid entity classes
are bike, bus, car, motorcycle, sidewalks, truck and vehicle. Valid relationship
classes are: above, against, along, at, attached to, behind, belonging to, between,
carrying, covered in, growing on, hanging from, has, holding, in, in front of, looking
at, lying on, mounted on, near, on, on back of, over, parked on, part of, riding,
sitting on, standing on, under, using, walking on, watching, with. For detailed
information about the taxonomy alignment rules the reader is referred to the
appendix (see Table A.2). As it shown by Figures 4.7 and 4.8 data-augmentation

32

Datasets

Dataset Traffic Genome Visual Genome
Images 1000 108077

Object Categories 34 33877
Total Instances 25146 3843636

Total Instances in Scene Graph 19,291 2254357
Percentage of Instances in Scene Graph 76.71% 58.65%

Instances in Scene Graph per Image 19.29 20.85
Relationship 51 36550

Total Relationship 29191 1531448
Relationship per image 29.19 14.17

Relationships per Instance in Scene Graph 3.02 1.36

Table 4.2: A comparison between Traffic Genome and Visual Genome from [10]

does not eliminated bias since there is still a tailed-distribution both for entities
and relationships, though less pronounced. Besides, this issue is useful to determine
the effectiveness of the neuro-symbolic approaches. In addition, gamma correction,
color jitter and normalization are used.

Set Dataset Image Relationship

training
Pruned Visual Genome 2387 4287

Traffic Genome 630 18805
Augmented 3017 23092

validation
Pruned Visual Genome NA NA

Traffic Genome 70 1671
Augmented NA NA

test
Pruned Visual Genome NA NA

Traffic Genome 300 643
Augmented NA NA

Table 4.3: Statistics of Traffic Genome after data-augmentation

33

Datasets

(a) Entity distribution

(b) Relationship distribution

Figure 4.6: Distribution of Traffic Genome dataset

34

Datasets

(a) Entity distribution

(b) Relationship distribution

Figure 4.7: Effect of data augmentation on the training set

35

Datasets

(a) Entity distribution

(b) Relationship distribution

Figure 4.8: Effect of data augmentation into train-set for labels with low frequency

36

Chapter 5

Methods

In this chapter the different neuro-symbolic techniques for SGG are illustrated.
Specifically, RelTR is adopted as the baseline thanks to its states-of-the-art results
in one-stage approach. The proposed neuro-symbolic approach aims to introduce a
new loss to improve the overall network performance:

Lfinal = LRelTR + αLNeSy (5.1)

where α is an hyperparameter that control how much the neuro-symbolic loss LNeSy
influences training.

5.0.1 Relational TRansformer (RelTR)
RelTR[51] uses an encoder-decoder architecture based on DETR, where the encoder
reasons about the visual feature context and the decoder infers a fixed-size set
of triplets subject-predicate-object using different types of attention mechanisms.
One key aspect of RelTR is its one-stage approach, which directly predicts sparse
scene graphs without combining entities and labeling all possible predicates. This
approach allows for efficient and rapid inference. RelTR also introduces a set
prediction loss that performs matching between the ground truth and predicted
triplets, optimizing the triplet prediction-ground truth assignment during training.
Specifically, the loss function is formulated as follows:

Ltriplet = Lsub + Lobj + Lprd
cls (5.2)

Lsub =
NtØ
i=1

Θ
5
Lcls + ✶{ci

sub /=ϕ}Lbox

6
(5.3)

Lobj =
NtØ
i=1

Θ
5
Lcls + ✶{ci

obj /=ϕ}Lbox

6
(5.4)

37

Methods

Figure 5.1: RelTR schema

where Lprd
cls is the cross-entropy loss for predicate classification, Lsub the subject

loss, Lcls the object loss, ci
sub the i-th class object and ci

sub the i-th class subject.
Note that Θ is 0, when is assigned to the subject or object but the label is predicted
correctly and the box overlaps with the ground truth IoU above a predefined
threshold; in other cases, Θ is 1. The success of RelTR is based on 3 modules:

Coupled Self-Attention (CSA) captures the context between triplet proposals
and the dependencies between subjects and objects in scene graph generation
using their latent encoding Et, Es, Eo, which are learnt during training.

Decoupled Visual Attention (DVA) extracts visual features independently for
subject and object queries representations in scene graph generation. DVA
operates in a decoupled manner, where the computations of subject and object
representations are independent of each other. This approach allows for the
extraction of fine-grained visual information and enhances the localization
and classification of subjects and objects.

Decoupled Entity Attention (DEA) improves the localization and classifica-
tion of subjects and objects by utilizing entity detection results from the entity
decoder.

38

Methods

5.1 Knowledge Graph Embedding

Dataset are biased, especially in a Autonomous Driving scenario where scenes
usually are extracted from videos, which associate to a scene several frames and
their labeling is biased by human annotator. Furthermore, recordable entities and
relationships depend on multiple factors such as traffic, weather and privacy-issue,
making difficult to capture of all nuances. In the realm of Computer Vision, various
researches have been conducted to mitigate bias by introducing external knowledge
as Knowledge Graph Embedding. In this case, the most relevant prior works
are [52] and [53]: the first tries to tackle bias by imposing semantic relationship
between KGE and DETR’s embedding; the latter shows a practical example of
KGE integration in the Autonomous Driving domain. In this work KGE is used to
align Entity Decoder embedding to prior-knowledge whenever the predicted entities
from the RelTR are in the external knowledge. In this way, the network is highly
penalized when the entities associated to a relationship are not compliant with
prior-knowledge: in the latent space of the embedding, distance between entities
depends on the relationships in the knowledge base; then, learning the proper entity
representation ease the learning of subject and object queries representation by
Multi-Head Attention (MHA) modules.
The Knowledge Graph is generated from the PandaSet, utilizing First-Order Logic
(FOL) representation within the Resource Description Framework (RDF) language.
This Knowledge Graph is used by TransE to generate the Knowledge Graph
Embedding.

5.1.1 Loss formulation

The alignment of Entity Decoder to KGE is based on the concept of anchor and
candidates. Here, the anchor is defined as the entity prediction given by KGE,
while candidates are the entity predictions retrieved by the Entity Decoder, which
can be positive or negative depending on the anchor matching. Two loss functions
are employed to determine the most effective alignment approach:

Cosine Embedding Loss (CEL) measures the cosine similarity between the an-
chor and candidates, introducing a margin as a hyperparameter to regulate
the similarity threshold.

Hinge Embedding Loss (HEL) based on the Hinge Loss, it calculates the simi-
larity between anchor and candidates that is defined according to the margin,
which serves as a hyperparameter.

39

Methods

Figure 5.2: Schema of KGE: given the entity logits the filter select the candidate
to be aligned to KGE anchor

5.2 Knowledge base of LTN
In this section the knowledge base employed by the LTN is presented. Given an
image I, the grounding of the subject x, object y and relationship z done by the
corresponding logits of RelTR network:

G(x) = fx(I) = x̂ (5.5)

G(y) = fy(I) = ŷ (5.6)

G(z) = fz(I) = ẑ (5.7)

here fx, fy, fz denote respectively the logits of subjects, objects and relationships.
Two types of predicates are defined: IsOfClass to evaluate the class membership
and InSet to evaluate the set-membership. Grounding of predicates is done as
follows:

G(IsOfClass) : x, l→ l⊺softmax(x) (5.8)

G(InSet) : x,S →
Ø
s∈S

s⊺softmax(s) (5.9)

where x, l represent the predicted class and one-hot enconding label, while S the
set of admissible labels that are express through one-hot encoding. The class
membership of relationship z to its ground-truth lz is evaluated by relationship
axiom:

∀Diag (z, lz) (IsOfClass(G(z), lz)) (5.10)

40

Methods

To evaluate the set-membership to specific subjects and objects given a relation-
ship, two type of axioms are introduced: positive constraints and negative
constraints. Note both positive constraints and negative constraints are
range constraints that respectively focus on positive and negative domain. Once
defined the sets of subjects Sx and object Sy that a relationship z can have and the
sets of subjects Wx and object Wy that it cannot have, positive constraints can be
verified through the axiom:

∀Diag (x, y, z, lz,Sx,Sy)3
IsOfClass(G(z), lz) =⇒ InSet(x,Sx) ∧ InSet(x,Sy)

4 (5.11)

Conversely, negative constraints satisfaction can be verified through the axiom:
∀Diag (x, y, z, lz,Wx,Wy)3

IsOfClass(G(z), lz) =⇒ ¬InSet(x,Wx) ∨ ¬InSet(x,Wy)
4 (5.12)

Note that this constraint relaxes penalty of wrong association: it is required to
respect at least one InSet predicate to have high-degree of truth. In this way,
it possible to investigate which set of relationships is difficult to learn and act
accordingly. Even more, an alternative version of negative constraints is formulated
to study the effect of above sub-optimal constraint:

∀Diag (x, y, z, lx, ly,Wz)3
IsOfClass(G(x), lx) ∧ IsOfClass(G(y), ly) =⇒ ¬InSet(G(z),Wz)

4 (5.13)

here Wz denotes set of wrong relationships for a specific couple of subject x, object
y. To verify axioms 5.11 and 5.12 the sets of subjects and objects have been defined
accordingly to ground-truth triplets. Even in case of axiom 5.13 the set of wrong
relationships has been defined accordingly to the ground-truth triplets: due to high
combination of subject and object for a specific wrong relationship, we limited
them to same subject and object classes used during the generation of entities to be
verified by axiom 5.12. For the sake of readability the First Negative Constraints
formulation proposed is denoted as FNC, while the second one as SNC. If the
network predicts a triplet <sky, watching, road> the positive constraint is not met
since the set of subjects for relationship watching is composed of human-being,
i.e. person and rider in Traffic Genome labeling, though road belongs to set of
watchable objects. Even more, in this case while FNC would be met since at least
the object is not associated to wrong set, SNC would not because the relationship
does not hold for those subject and object.
The fuzzy connectors used are Diagonal Quantification, stable Reichenbach Implies,
Łukasiewicz And and Or. Positive and negative constraints are employed under
two policies:

41

Methods

Ground-truth Policy evaluates negative and positive constraints based on the
ground-truth subject and object, i.e. if the predicted triplet is <person, over,
road>, but the ground-truth is <car, over, road>, during satisfiability the
network evaluates that car and road are possible subject and object for the
relationship over.

Prediction Policy evaluates negative and positive constraints based on the pre-
dicted subject and object, i.e. if the predicted triplet is <person, over, road>,
but the ground-truth is <car, over, road>, during satisfiability the network
evaluates whether person and road are possible subject and object for the re-
lationship over. Non Max Suppression (NMS) is applied to restrict evaluation
only of significantly different bounding boxes.

Thus, while the ground-truth policy focuses on learning coherent labels with respect
to the ground truth, the prediction policy focuses on matching coherent subject
and object predictions with respect to the relationship. Of course, the two policies
coincide whenever the predictions for object and subject are correct, in other words
whenever the network predicts correct classes for each bounding box. All axioms
have been evaluated through LTNTorch framework[54].
Note that while the relationship axiom is evaluated on all relationship classes,
negative and constraints are restricted to specific ones. Here two versions are
analysed: the first one included 41 relationships arbitrary chosen, while the second
only relevant tailed relationships in Traffic Genome (see Figure 4.6). In Table 5.1
are reported the details.

Constraint set Relationships under verification
large above , access_around , access_between, access_in the center of,

access_in the front of, access_in the left of, access_in the right of, access_in two side of,
along, attached to, behind, belonging to,
between, carrying, driving in, growing on,

hanging from, has, holding, in front of,
in the back-left of, in the back-right of, in the front-left of, in the front-right of,

in the left of, in the right of, in/on, near,
occluded, occluding, on back of, over_something,

part of, ride on, riding, sitting on,
standing on, to, under, watching, with

tail above, access_around, access_between, access_in the center of,
access_in the front of, access_in the left of, access_in the right of, access_in two side of,

along, attached to, behind, belonging to,
between, carrying, growing on, hanging from,

has, holding, in the back-left of, in the back-right of,
in the front-left of, in the front-right of, near,

occluded, occluding, on back of, over_something,
part of, ride on, riding, sitting on,

standing on, to, under, watching, with

Table 5.1: Constraints sets used in LTN-based approach

42

Methods

5.3 Experiments
Here we briefly discuss the data-augmentation and setup used. For precise details
about hyper-parameters selection the reader is refereed to section 6.1.

5.3.1 Data-augmentation
Data-augmentation is applied only in Traffic Genome, as extensively show in chapter
4. In addition, gamma correction, color jitter and normalization are used.

5.3.2 Setup
For the experiments number of workers is set to 2, while the batch size is 10. TranSE
training is done on a Intel Core i9-9940X CPU. While, hyper-parameter selection
of RelTR is performed on a NVIDIA(c) V100 GPU provided by HPC@POLITO,
neuro-symbolic training are performed on NVIDIA(c) RTX 4090. The detailed
description of hyper-parameters is reported in Section 6.1.

5.3.3 Metric
The metrics used during the experiments varies according to the task: Hit for
KGE generation; mean Average Precision (mAP) and mean Recall(mR) for SGG.
Note that mR is evaluated according to entities’ Intersection over Union (IoU),
i.e. if a relationship is right, but entities generated are wrong under IoU=0.5, the
relationship is discarded. Finally, Predicate CLaSsification (PredCLS) is employed
to compare our methods to the ones available in literature.

43

Chapter 6

Results

In this chapter after discussing the selection of the hyper-parameters of RelTR,
the performances of neuro-symbolic approaches are shown. Eventually, the best
approaches are compared to the methods available in literature.

6.1 Hyper-parameter selection

Label Mean Max
Entity 25 131

Relationship 29 135

Table 6.1: Statistics on Traffic Genome label distribution

Based on statistics reported in Table 6.1, the following parameter are fixed:

Entity queries of the Entity Decoder are fixed to 140.

Number of triplet are set to 140 to size the dimension of embeddings of subject
and object queries according to number of triplets available in the dataset.

Introducing a number of labels (entities and triplets) higher than the dataset keeps
a safe margin between maximum number of labels in the dataset and the ones that
be predicted. From RelTR configuration reported in Table 6.2, hyper-parameters
effect is individually evaluated for 100 epochs; then, combinations of parameters are
evaluated till there is clear overfitting. In this phase the metric used for comparison
is mAP@50. Here, the Matcher is the module responsible for assigning each ground-
truth triplet to a prediction based on the Hungarian algorithm. Hereby, λx denotes
the weight of a specific loss x.

44

Results

Parameter Value
Learning rate schedule Linear
Learning rate dropout 100 epoch

Learning rate backbone 1e-5
Weight decay 1e-4

Positional Embedding sine
Feature map dimension 2048

Hidden dimension of entity decoder 256
Number of Encoder Layers 6
Number of Decoder Layers 6

Number of Entities 140
Number of Triplets 140
Matcher’s cost class 1

Matcher’s cost bounding-box 5
Matcher’s cost GIoU 2

Matcher’s IoU Threshold 0.7
λbbox 2
λGIoU 2
λrel 1

wEOS 0.2

Table 6.2: RelTR configuration 0

45

Results

6.1.1 Analysis
Starting from configuration 0 several parameters variations have been explored.

<no-object> class misclassification importance of <no-object> misclassfica-
tion weight is studied under moderate variation to avoid prioritizing its
prediction over actual classes present in the dataset. Table 6.3 shows that this
parameter improves entity detection, when its contribution is small; in the
range adopted 0.4 shows better performance.

Experiment wEOS best epoch mAPval@0.50
configuration 0 0.1 36 13.6

EXP-1 0.4 11 13.7
EXP-2 0.6 25 11.7
EXP-3 0.7 NO 11.5
EXP-4 0.8 5 4.78

Table 6.3: Performance under End-Of-Sequence (EOS) weight variation under
100 epoch

Attention Head in Encoder-Decoder modules Table 6.4 shows that increas-
ing the complexity model in terms of attention head leads the network to
prioritize approximation error over the estimation error of dataset distribution.
We believe this fact is caused by the small dataset dimension that makes
difficult to generalize when model complexity increases.

Experiment lencoder ldecoder best epoch mAPval@0.50
configuration 0 6 6 36 13.6

EXP-5 4 6 NO 12.5
EXP-6 4 4 70 11.9
EXP-7 6 8 54 4.26
EXP-8 8 6 35 11.9
EXP-9 8 8 25 5.94

Table 6.4: Performance under variation of Feature Encoder lencoder and Entity
Decoder ldecoder layers during 100 epochs

Relationship loss weight an exponential increasing of the relationship loss
weight does not improve performance (see Table 6.5), even when Multi-Head
Attention varies (see Table 6.6), indicating that the association of relationships
does not linearly affect entity detection.

46

Results

Experiment wLrel Best epoch mAPval@0.50
configuration 0 1 36 13.6

EXP-10 2 14 11.2
EXP-11 4 26 12.3
EXP-12 8 11 10.7

Table 6.5: Performance under variation of the relationship loss coefficient during
100 epochs

Experiment lencoder λrel Best epoch mAPval@0.50
EXP-12 6 1 204 19.0
EXP-13 6 2 160 20.1
EXP-14 6 4 130 19.6
EXP-15 4 1 130 19.6
EXP-16 4 2 106 21.7
EXP-17 4 4 101 20.8

Table 6.6: Performance under relationship loss coefficient variation λrel when
wEOS = 0.4 and cost bounding box set to 10

Cost assignment of bounding box to classes since entity detection is highly
correlated with the association of entity classes to bounding boxes, increasing
the cost assignment of bounding boxes to their rightful classes improves the
mAP score.

Experiment Kbbox Best epoch mAPval@0.50
EXP-4 5 11 13.7
EXP-18 10 150 21.6

Table 6.7: Performance by duplicating Matcher’s bounding box cost Kbbox when
wEOS = 0.4

Influence of learning rate the choice of cyclic learning rate is preferable over a
linear one, even when overfit happens early, to reach higher performance as
shown by Table 6.8.

Experiment Learning rate Best epoch mAPval@0.50
EXP-1 linear 150 21.6
EXP-19 cyclic 106 22.0

Table 6.8: Performance with different learning rate when wEOS = 0.4 and Kbbox=10

47

Results

Thanks all above considerations, we found a trade-off solution between model
complexity and the relevance of loss weights, which constitutes the baseline model
for neuro-symbolic comparison (see Table 6.9). In Table 6.10 the performance are
reported with respect to mean recall. Finally, Table 6.11 summarizes all parameter’s
values of the baseline. Figure 6.1 shows the performance on validation set.

Experiment lencoder λrel Best epoch mAPval@0.50
EXP-20 5 1 195 22.7

EXP-21(baseline) 5 1.5 170 23.3

Table 6.9: Performance under relationship loss coefficient variation λrel when
wEOS = 0.4 and Kbbox=8

mRval@20 mRval@50 mRval@100
15.5 20.9 23.2

Table 6.10: mean recall of the baseline

48

Results

Parameter Value
Learning rate schedule Cyclic

Minimum Learning rate 1e-5
Maximum Learning rate 1e-3
Learning rate backbone 1e-5

Weight decay 1e-4
Positional Embedding sine

Feature map dimension 2048
Hidden dimension of entity decoder 256

Number of Encoder Layers 5
Number of Decoder Layers 6

Number of Entities 140
Number of Triplets 140
Matcher’s cost class 1

Matcher’s cost bounding-box 8
Matcher’s cost GIoU 2

Matcher’s IoU Threshold 0.7
λbbox 5
λGIoU 2
λrel 1.5

wEOS 0.4

Table 6.11: RelTR baseline: configuration

The experiments on hyper-parameter selection have been executed on a NVIDIA
V100 using a seed s=18095109307583507207, PyTorch 2.1 and batch size of 12.
Instead, neuro-symbolic training was performed on an NVIDIA RTX 4090. Due
to its limited RAM capacity, the batch size had to be reduced to 10. To ensure
consistent comparisons within the employed architecture, the baseline was also
trained on the RTX 4090, revealing noticeable differences only in terms of mAP@0.50
and mR@50 (see Table 6.12).

Experiment GPU RAM (GB) CUDA Version batch size mAPval@0.50 mRval@20 mRval@50 mRval@100
baseline V100 32 11.8 12 23.3 15.5 20.9 23.2
baseline RTX 4090 24 11.8 10 20.3 13.5 19.8 23.2

Table 6.12: Performance under different GPUs

49

Results

(a) mR score

(b) mAP score

Figure 6.1: Best configuration: validation set performance

50

Results

6.2 Neuro-symbolic training
In the baseline overfitting becomes pronounced at the 171st epoch. To assess
performance systematically within this critical epoch range, the number of training
epochs is set to 170. This allows for a comprehensive comparison of different
neuro-symbolic methods to identify the most effective in enhancing performance.
Metrics exceeding baseline values are highlighted in bold for clarity. In this section
both mAP and mR are analysed to see how the neuro-symbolic approaches affect
the visual relationship detection tasks in all his task, i.e. entity and relationship
detection.

6.2.1 Knowledge alignment

Experiment Loss α Margin mAPval@0.5 mRval@100
KGE-1 CEL 1 0.22 19.7 24.9
KGE-2 CEL 1 0.42 20.5 22.5
KGE-3 CEL 1 0.52 19.7 24.4
KGE-4 CEL 0.1 0.52 21.0 23.9
KGE-5 CEL 1 0.70 20.0 22.8
KGE-6 HEL 1 0.22 19.9 24.9
KGE-7 HEL 1 0.42 20.7 22.6
KGE-8 HEL 1 0.52 21.1 26.0
KGE-9 HEL 0.1 0.52 14.7 22.1
KGE-10 HEL 1 0.70 19.4 21.7
baseline / / / 20.3 23.2

Table 6.13: Performance under different KGE-based strategies

In this section, we introduce various KGE-based methods. The comparison in
Table 6.13 reveals a decrease in mAP score when aligning the Entity Decoder
closely with KGE. Figures 6.2 and 6.3 visually demonstrate this effect, showing
that relaxing the Attention mechanism for rare entities expands the analyzed area
to predict relationships that better align with external knowledge. RelTR achieves
a high mR score under specific conditions, particularly when the margin is small
or contained, regardless of the loss function used. This highlights the challenge
faced by RelTR in distinguishing between the true class and the <no-object>
entity, a common occurrence due to the standard deviation in entity distribution
per image, influenced by diverse scenarios captured by Traffic Genome. Table
6.14 compares recall per class between the best-performing KGE method and the
baseline, emphasizing improvements and deterioration driven by the Knowledge

51

Results

Graph. Spatial relationships, frequently represented in the Knowledge Graph, show
enhancement, while relationships involving entities with lower frequency exhibit
degradation, underscoring the Knowledge Graph’s limitations in representing less
common scenarios.

Figure 6.2: Attention Heat-map of Entity Queries for critical example 0: images
report baseline (left) and KGE-8 (right) inference

52

Results

Figure 6.3: Attention Heat-map of Entity Queries for critical example 2: images
report baseline (left) and KGE-8 (right) inference

53

Results

Relationship Rbaseline@100 RKGE@100
access_around 0.0 0.0
access_between 70.7 85.9

access_in the back of 0.0 0.0
access_in the center of 0.0 0.0
access_in the front of 27.8 11.1
access_in the left of 12.5 12.5

access_in the right of 30.8 38.5
access_in two side of 0.0 100.0

against 0.0 0.0
along 0.0 0.0

at 0.0 0.0
attached to 0.0 0.0

behind 0.0 0.0
belonging to 0.0 0.0

between 0.0 0.0
carrying 0.0 0.0

covered in 0.0 0.0
driving in 65.1 69.5
growing on 53.9 34.2

hanging from 0.0 0.0
has 50.0 48.3

holding 0.0 0.0
in front of 50.8 47.9

in the back-left of 0.0 0.0
in the back-right of 0.0 0.0
in the front-left of 0.0 0.0

in the front-right of 0.0 11.1
in the left of 5.8 27.2

in the right of 27.9 21.6
in/on 50.6 50.6

looking at 0.0 0.0
lying on 0.0 0.0

mounted on 0.0 0.0
near 0.0 20.0

occluded 0.0 0.0
occluding 75.0 73.5
on back of 0.0 0.0

over_something 0.0 0.0
parked on 50.8 49.8

part of 0.0 0.0
ride on 37.5 44.4
riding 73.6 63.9

sitting on 0.0 0.0
standing on 52.8 47.7

to 0.0 0.0
under 30.5 41.6
using 0.0 0.0

walking on 67.2 67.5
watching 0.0 0.0

with 50.0 20.0

Table 6.14: R@100: baseline versus KGE-8

54

Results

6.2.2 Satisfiability of logical constraints

In this section, the influence of LTN during training is examined through two
distinct policies: the ground-truth policy and the prediction policy. They are
individually analyzed varying the loss’ weight and then compared to determine
the more suitable approach, if any. In all experiments, the aggregator norm for
satisfiability is fixed at 2, while the Aggregator norm for the Universal Quantifier
(AUQ) is incremented by 2 at every 50 epochs. Two version of constraints set are
employed: a large version, where 41 relationships are evaluated and a tailed one,
where only tailed relationships are verified. Two negative constraints versions are
compared: FNC and SNC. NMS threshold is set 0.5 to discard similar bounding
boxes to refine only the better one, which are supposed to get closer to ground-truth
labels during training.

Policy comparison

In order to establish an effective experimental strategy, a thorough comparison is
conducted between ground-truth and predictions by varying the weights of the loss
function and the set of axioms for verification. The diverse behaviors exhibited by
mAP and mR during training are illustrated in Table 6.15. This phenomenon stems
from the neuro-symbolic formulation, where the axioms emphasize relationship
verification over entities. Notably, the verification of entity class-membership occurs
solely concerning triplets rather than the ground-truth. Conversely, relationship
verification is conducted in both cases. The approach assumes that the cross-entity
loss of the RelTR model is potent enough to enforce entity classification, which
is proven not to be the case. During optimization, RelTR prioritizes relationship
detection over entity detection to achieve an optimal solution. This phenomenon
becomes evident in the validation loss (see Figures 6.4 and 6.5), where the cross-
entropy loss of entities continues to decrease while the relationship loss overfits.
Given these observations, policy decisions and adjustments to loss weights are
based solely on the mR metric. Consequently, the neuro-symbolic loss parameter α
is set to 0.1 and policy to predict for all subsequent experiments, as it has shown
superior performance in terms of mR scores across various thresholds.

55

Results

Experiment α Policy Constraints’ version mAPval@0.50 mRval@20 mRval@50 mRval@100
LTN-1 1 prediction FNC 20.0 14.0 22.2 24.9
LTN-2 1 prediction SNC 21.1 14.8 23.5 26.4
LTN-3 1 ground-truth FNC 20.3 15.1 21.8 24.8
LTN-4 1 ground-truth SNC 21.1 13.9 18.9 21.6
LTN-5 0.1 prediction FNC 20.8 13.3 20.0 22.4
LTN-6 0.1 prediction SNC 21.0 15.6 24.2 26.6
LTN-7 0.1 ground-truth FNC 21.6 15.4 20.5 23.0
LTN-8 0.1 ground-truth SNC 20.5 14.5 19.8 23.3

baseline / / / 20.3 13.5 19.8 23.2

Table 6.15: mAP and mR scores under different policy

(a) Prediction Policy

(b) Ground-truth Policy

Figure 6.4: Entity Loss under different setups

To comprehend the behavior of LTN under different policies, we compute the
satisfiability of negative and positive constraints during training. It is important
to note that these satisfiability measurements are not included in the final loss but
serve to assess how the network learns triplet predictions.

56

Results

(a) Prediction Policy

(b) Ground-truth Policy

Figure 6.5: Relationship Loss under different setups

To monitor the elimination of NMS by subjects and objects that are not highly
confident in the batch size, we redefine satisfiability by assigning -1 when this
phenomenon happens in the batch. Thus, when the satisfiability is lower than
0, it indicates that several bounding boxes are highly unconfident. Figure 6.6
demonstrates that the sub-optimality of FNC affects both the satisfiability of
negative and positive constraints, resulting in inferior performance compared to
SNC. Only the ground-truth policy is able to partially mitigate this when the neuro-
symbolic loss is 1. The ground-truth policy’s constraints satisfiability significantly
degrades when AUQ is high. In most case the same phenomenon occurs for the
satisfiability of the relationship axiom (see Figure 6.8). A possible interpretation
could be that emphasizing only prediction coherence to the ground-truth and
not governing the rules themselves is not suitable to influence network learning
optimally. No significant difference in the satisfiability of the relationship axiom

57

Results

is noticeable in Figure 6.8a under the prediction policy when changing α. This
observation arises because the network primarily focuses on negative and positive
constraints.

(a) Prediction Policy

(b) Ground-truth Policy

Figure 6.6: Satisfiability of different negative constraints formulation

58

Results

(a) Prediction Policy

(b) Ground-truth Policy

Figure 6.7: Satisfiability of positive constraints under different Negative Con-
straints formulations

59

Results

(a) Prediction Policy

(b) Ground-truth Policy

Figure 6.8: Satisfiability of relationship axiom under different negative constraints
formulations

60

Results

Constraints’ set variation

In this section, the effect of constraints set variation is studied under AUQ to un-
derstand to determine which is the most effective. For all experiments α, the weight
of neuro-symbolic loss, is set to 0.1. Only prediction policy is analyzed. Particular
attention is given to mitigate sub-optimality formulation of FNC. Specifically, two
methods are analyzed:

Diversity among universal quantification the analysis of individual relation-
ship recall, as detailed in Table 6.16, reveals varying degrees of learning
difficulty for different relationships. Consequently, AUQ of positive and neg-
ative constraints is differentiate according to learning difficulty, i.e. pAUQ,0
is higher when relationships are difficult to respect. Here, Hard Constraints
(HC) denotes the constraints on relationship difficulty to respect, while Easy
Constraints (EC), the others. The approach is applied only on large con-
straints set. Note that for the sake of readability only relationships available
in validation set are reported in Table 6.16.

Reduction to tailed constraints to understand whether the reduction of con-
straints to rare relationship helps learning.

Table 6.16 illustrates that performance enhancement is achieved by stratifying
constraints based on the ease of relationship detection. However, prioritizing tailed
relationships proves to be more effective. By adopting a strategy in which the
network exclusively concentrates on challenging examples from the beginning,
the learning process becomes more efficient and effective compared to dividing
examples based on their difficulty. In fact, the satisfiability error difference in the
validation set among AUQ based on constraints difficulty is minimal, as shown in
Figure 6.9.

Experiment Constraints’ set pAUQ,0 - EC pAUQ,0 - HC mAPval@0.50 mRval@100
LTN-6 large 2 2 20.8 22.4
LTN-9 large 2 4 21.3 21.7
LTN-10 tail 2 2 20.4 23.8
LTN-11 tail 4 4 20.6 20.9
baseline / / / 20.3 23.2

Table 6.17: Performance under different constraints’ strategy

61

Results

Relationship Rval,baseline@100 Rval,LT N−1@100 Rval,LT N−2@100
access_around 0 0 0
access_between 90.2 91.3 90.2

access_in the back of 0 0 0
access_in the front of 27.0 37.0 31.5
access_in the left of 25.0 37.5 37.5

access_in the right of 46.2 46.2 46.2
access_in two side of 0 100.0 0

against 0 0 0
along 0 0 0

at 0 0 0
attached to 0 0 0
belonging to 0 0 0

carrying 0 0 0
driving in 69.1 75.4 75.5
growing on 64.5 61.8 61.8

hanging from 0 0 0
has 50.0 51.7 56.9

in front of 52.8 52.5 53.4
in the back-right of 0 0 0
in the front-left of 7.7 7.7 11.5

in/on 60.0 61.0 60.0
looking at 0 0 0
lying on 0 0 0

mounted on 0 0 0
near 40.0 20.0 20.0

occluded 0 0 0
on back of 11.1 22.2 27.8

over_something 0 37.5 12.5
part of 0 0 0
ride on 41.7 50.0 44.4

sitting on 0 0 0
standing on 59.1 64.4 60.5

to 0 0 0
under 35.6 44.1 35.2
using 0 0 0

walking on 79.8 85.5 84.9
watching 0 0 0

with 58.3 31.7 35.0

Table 6.16: Recall analysis across relationships with large constraints set; reporting
only the best values

62

Results

Figure 6.9: Satisfiability error in large constraints set

Furthermore, an analysis is conducted to assess the performance of the two
versions of constraints under the condition of severe penalization of low degrees
of truth for the axioms, utilizing a high value for the AUQ. Given the substantial
improvement demonstrated by the tailored constraints’ set, the analysis is confined
to this specific set of constraints. In this configuration, the value pAUQ,0 is set to 6.
Generally, performance degrades around 150, specifically when pAUQ is set to 12, as
evidenced by an increase in satisfiability error during validation (see Figure 6.10).
This suggests that in this particular setting, the network encounters difficulties in
the learning process.
It is noteworthy that sub-optimal constraints within the FNC are inferior to those
in the SNC. The inherent complexity of the learning task is further complicated by
relaxing constraints, resulting in increased confusion and hindering the network’s
capacity for improvement. Notably at 160-th epoch the network is unable to
generate valid bounding boxes, producing zero-point boxes, rendering the Hungarian
algorithm and the overall training unfeasible. In Table 6.18 the maximum score
registered during these training sessions is reported.

Figure 6.10: Satisfiability error in large constraints set under high AUQ

63

Results

Constraints’ version pAUQ,0 mAPval@0.50@epoch mRval@100@epoch
FNC 6 21.3@151 23.5@130
SNC 6 19.6@170 24.7@170

Table 6.18: Maximum scores under different negative constraints’ formulation
when pAUQ is high

6.3 Qualitative Results
In the section a qualitative analysis is performed on the best configurations found.
For sake of readability, we denote the configuration LTN-12 as RelTR and KGE-8
as RelTR-KGE. In this context, a confidence threshold of 0.3 is applied, and the
analysis focuses on the top 4 predictions. The results illustrated in Figures 6.11
and 6.12 indicate challenges in the network’s ability to accurately resize bounding
boxes, particularly the primary one, given the low mAP. All methods are able
to predict coherent triplets, but only RelTR-LTN select bounding boxes which
are the most reliable. It is worth noting that in the absence of a vehicle, both
neuro-symbolic approaches successfully capture coherent triplets, while the baseline
falls short in this regard.

(a) RelTR

(b) RelTR-KGE

(c) RelTR-LTN

Figure 6.11: Visual Relationship Detection of traffic scene

64

Results

(a) RelTR

(b) RelTR-KGE

(c) RelTR-LTN

Figure 6.12: Visual Relationship Detection of scene without vehicles

65

Results

6.4 Comparison with the start-of-the-art
In this section, we compare the best-performing neuro-symbolic methods with the
SOTA model reported in [10], which reports exclusively their Predicate CLassifica-
tion (PredCLS). Compared to the two-stage approaches, in our formulation RelTR
is not enable to surpass all SOTA methods, though the employment of NeSy reduces
this gap, specially in the LTN-based approach. A possible interpretation arises
from the model complexity of RelTR, where object and relationship detection occur
simultaneously in a transformer-based architecture. Introducing prior knowledge
only to the relationship detection task is insufficient, as the network prioritizes it
over the ensemble framework of Visual Relationship Detection. Extending neuro-
symbolism to modules responsible for visual feature extraction, such as the Feature
Encoder, may enhance Attention on visual features.

Method Loss PredCLS
mR@20 mR@50 mR@100

IMP[10] Cross Entropy 7.03 11.62 15.44
two-stage Motif[10] Cross Entropy 12.13 18.55 21.64

VCTree[10] Cross Entropy 13.48 19.79 24.85
VCTree - TDE[10] Cross Entropy 12.82 18.33 22.79

Cross Entropy (Baseline) 11.66 16.61 18.81
one-stage RelTR (ours) Cross Entropy + KGE 11.83 17.97 20.81

Cross Entropy + LTN 11.10 17.42 22.61

Table 6.19: Comparison with state-of-the-art methods on Traffic Genome test-set

66

Chapter 7

Conclusion

In this study, for first time we explore the feasibility of employing neuro-symbolic
one-stage Scene Graph Generation methods within the domain of Autonomous
Driving. The results obtained from the neuro-symbolic models reveal that in-
corporating prior knowledge can enhance performance. However, the proposed
formulations need refinement for practical applicability. Transformer models ex-
hibit a high data dependency, and the integration of external labeled data alone is
insufficient to achieve acceptable performance in real scenarios, as demonstrated.
This underscores the essential role of prior knowledge. The Attention mechanism
of Transformer is notably sensitive to prior knowledge and its introduction shows a
divergent behaviour respect to task involved: introducing prior-knowledge only in
relationship detection shows that during learning the network prioritizes relation-
ship detection over entity detection. A possible solution could be the integration of a
trainable layers in the Feature Encoder which imposes constraint on visual features
extraction to improve the features context, which is used by the other Attention
modules. Thus, these trainable layers would refine prior knowledge directly before
evaluating misclassifications as done in [29]. Furthermore, KGE are biased with
respect to facts which are rares in their knowledge base; then, the contribution of
KGE should be leveraged accordingly. LTN, on the other hand, exclusively relies
on the quality of the constraints design. This distinctive characteristic may more
effectively counterbalance biases present in the dataset, favoring its applicability in
Autonomous Driving, where safety is a crucial aspect.

67

Appendix A

Appendix

A.1 KGE Generation
The hidden dimension of KGE has been fixed to 256, the dimension of RelTR’s
Entity Decoder, to employ KGE alignment. Hit@k is evaluated at k=10 to retrieve
a robust KGE model. After a trail and error procedure the number of total number
of training epoch is set to 200 due to convergence (see Figure.A.1).

Figure A.1: TransE performance during training

A.2 Taxonomy alignment
Here are reported the taxonomy alignments used during the creation of the Knowl-
edge Graph.

69

Appendix

Type Label Frequency

Category Car 1,040,268
Truck 75,987
Road 120,834
Static 66,914
Person 159,450
Object 48,575
Rider 1
Bicycle 15,047
Dynamic 17,111
Bus 11,552
Caravan 3,598
Motorcycle 10,119
Fence 53,920

Relationship Parked 843,722
Translation 4,361,898
Size 4,361,898
Rotation 1,453,966
Stopped 85,305
Moving 244,471
In/On 120,834
Walking 106,346
Sitting 2,488
Standing 26,281
With 56,061
Without 17,680
Lying 80

Table A.1: PandaSet attribute after taxonomy alignment

70

Appendix

Visual Genome Label Traffic Genome Label alignment
bike bike

building building
bus bus
car car

fence fence
motorcycle motorcycle

pole pole
sidewalk sidewalk

sign traffic sign
street road
train train
truck truck

vehicle dynamic
woman person
child person
girl person
kid person
lady person
man person
men person

person person
people person

cat static
cow static
dog static
rock static
sheep static
tree static

vegetable static
wire Static

Table A.2: Visual Genome Entity taxonomy alignment

71

Bibliography

[1] Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David A. Shamma,
Michael S. Bernstein, and Li Fei-Fei. «Image retrieval using scene graphs». In:
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2015), pp. 3668–3678 (cit. on p. 1).

[2] Eren Erdal Aksoy, Alexey Abramov, Florentin Wörgötter, and Babette Dellen.
«Categorizing object-action relations from semantic scene graphs». In: 2010
IEEE International Conference on Robotics and Automation (2010), pp. 398–
405 (cit. on p. 1).

[3] Somak Aditya, Yezhou Yang, Chitta Baral, Cornelia Fermüller, and Yiannis
Aloimonos. «From Images to Sentences through Scene Description Graphs
using Commonsense Reasoning and Knowledge». In: ArXiv abs/1511.03292
(2015) (cit. on p. 1).

[4] Ranjay Krishna, Yuke Zhu, Oliver Groth, and et al. «Visual Genome: Con-
necting Language and Vision Using Crowdsourced Dense Image Annotations».
In: International Journal of Computer Vision 123 (2017), pp. 32–73 (cit. on
pp. 1, 3, 28).

[5] SAE Taxonomy. «Definitions for terms related to driving automation sys-
tems for on-road motor vehicles. Publication J3016_202104». In: Society of
Automotive Engineers (2021) (cit. on p. 1).

[6] Huijie Wang et al. «OpenLane-V2: A Topology Reasoning Benchmark for
Unified 3D HD Mapping». In: NeurIPS. 2023 (cit. on p. 1).

[7] Tianyu Li et al. «Graph-based Topology Reasoning for Driving Scenes». In:
arXiv preprint arXiv:2304.05277 (2023) (cit. on p. 1).

[8] Arnav Vaibhav Malawade, Shih-Yuan Yu, Brandon Hsu, Harsimrat Kaeley,
Anurag Karra, and Mohammad Abdullah Al Faruque. «roadscene2vec: A
tool for extracting and embedding road scene-graphs». In: Knowledge-Based
Systems 242 (2022), p. 108245. issn: 0950-7051. doi: https://doi.org/10.
1016/j.knosys.2022.108245. url: https://www.sciencedirect.com/
science/article/pii/S0950705122000739 (cit. on p. 1).

72

https://doi.org/https://doi.org/10.1016/j.knosys.2022.108245
https://doi.org/https://doi.org/10.1016/j.knosys.2022.108245
https://www.sciencedirect.com/science/article/pii/S0950705122000739
https://www.sciencedirect.com/science/article/pii/S0950705122000739

BIBLIOGRAPHY

[9] Arnav Vaibhav Malawade, Shih-Yuan Yu, Junyao Wang, and Mohammad
Abdullah Al Faruque. «RS2G: Data-Driven Scene-Graph Extraction and
Embedding for Robust Autonomous Perception and Scenario Understanding».
In: arXiv preprint arXiv:2304.08600 (2023) (cit. on p. 1).

[10] Zhixuan Zhang, Chi Zhang, Zhenning Niu, Le Wang, and Yuehu Liu. «Ge-
neAnnotator: A Semi-automatic Annotation Tool for Visual Scene Graph».
In: (2021). arXiv: 2109.02226 [cs.CV] (cit. on pp. 2, 28, 33, 66).

[11] Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-Fei. «Visual Re-
lationship Detection with Language Priors». In: Computer Vision – ECCV
2016. Ed. by Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling. Cham:
Springer International Publishing, 2016, pp. 852–869 (cit. on pp. 3, 28).

[12] Artur S. d’Avila Garcez and L. Lamb. «Neurosymbolic AI: the 3rd wave». In:
Artificial Intelligence Review (2023) (cit. on p. 4).

[13] Lotfi A. Zadeh. «Fuzzy Sets». In: Inf. Control. 8 (1965), pp. 338–353 (cit. on
p. 4).

[14] Erich Peter Klement, Radko Mesiar, and Endre Pap. «Triangular norms.
Position paper I: basic analytical and algebraic properties». In: Fuzzy Sets
Syst. 143 (2004), pp. 5–26 (cit. on pp. 5, 6).

[15] R. H. Richens. «General program for mechanical translation between any two
languages via an algebraic interlingua». In: Mechanical Translation 3 (1956),
p. 37 (cit. on p. 7).

[16] R G Quillian. «A notation for representing conceptual information. An appli-
cation to semantics and mechanical English paraphrasing». In: 1963 (cit. on
p. 7).

[17] Jeffrey Travers and Stanley Milgram. «An Experimental Study of the Small
World Problem». In: Sociometry 32.4 (1969), pp. 425–443 (cit. on p. 7).

[18] Marvin Minsky. A Framework for Representing Knowledge. Tech. rep. 306.
(1974). Santa Monica: MIT-AI Memo, 1974, p. 76 (cit. on p. 7).

[19] Ronald J. Brachman. «A Structural Paradigm for Representing Knowledge».
PhD thesis. Harvard University, 1977 (cit. on p. 7).

[20] William A. Woods. «What’s in a Link: Foundations for Semantic Networks».
In: Representation and Understanding. Ed. by Daniel G. Bobrow and Allan
Collins. Elsevier, 1975, pp. 35–82 (cit. on p. 7).

[21] John Sowa. «Semantics of Conceptual Graphs». In: 17th Annual Meeting of
the Association for Computational Linguistics. Ed. by Norman K. Sondheimer.
University of California at San Diego, La Jolla, CA, USA: The Association
for Computational Linguistics, 1979, pp. 39–44. url: https://www.aclweb.
org/anthology/P79-1010/ (cit. on p. 7).

73

https://arxiv.org/abs/2109.02226
https://www.aclweb.org/anthology/P79-1010/
https://www.aclweb.org/anthology/P79-1010/

BIBLIOGRAPHY

[22] Aidan Hogan et al. «Knowledge Graphs». In: ACM Computing Surveys
(CSUR) 54 (2020), pp. 1–37 (cit. on p. 7).

[23] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. «Knowledge Graph Em-
bedding: A Survey of Approaches and Applications». In: IEEE Transactions
on Knowledge and Data Engineering 29 (2017), pp. 2724–2743 (cit. on pp. 7,
8).

[24] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and
Oksana Yakhnenko. «Translating Embeddings for Modeling Multi-relational
Data». In: NIPS. 2013 (cit. on p. 8).

[25] Luciano Serafini and Artur S. d’Avila Garcez. «Learning and Reasoning with
Logic Tensor Networks». In: AI*IA 2016 Advances in Artificial Intelligence.
Ed. by Giovanni Adorni, Stefano Cagnoni, Marco Gori, and Marco Maratea.
Cham: Springer International Publishing, 2016, pp. 334–348 (cit. on p. 9).

[26] Francesco Manigrasso, Filomeno Davide Miro, Lia Morra, and Fabrizio Lam-
berti. «Faster-LTN: A Neuro-Symbolic, End-to-End Object Detection Ar-
chitecture». In: Artificial Neural Networks and Machine Learning – ICANN
2021. Ed. by Igor Farkaš, Paolo Masulli, Sebastian Otte, and Stefan Wermter.
Cham: Springer International Publishing, 2021, pp. 40–52 (cit. on p. 11).

[27] Simone Martone, Francesco Manigrasso, Fabrizio Lamberti, and Lia Morra.
«PROTOtypical Logic Tensor Networks (PROTO-LTN) for Zero Shot Learn-
ing». In: 2022 26th International Conference on Pattern Recognition (ICPR).
2022, pp. 4427–4433. doi: 10.1109/ICPR56361.2022.9956239 (cit. on p. 11).

[28] Ivan Donadello and Luciano Serafini. «Compensating Supervision Incomplete-
ness with Prior Knowledge in Semantic Image Interpretation». In: IJCNN.
IEEE, 2019, pp. 1–8 (cit. on p. 11).

[29] Alessandro Daniele and Luciano Serafini. «Knowledge Enhanced Neural
Networks for Relational Domains». In: AIxIA 2022 – Advances in Artificial
Intelligence. Ed. by Agostino Dovier, Angelo Montanari, and Andrea Orlandini.
Cham: Springer International Publishing, 2023, pp. 91–109 (cit. on pp. 11,
67).

[30] John D Lafferty, Andrew McCallum, and Fernando CN Pereira. «Conditional
random fields: Probabilistic models for segmenting and labeling sequence
data». In: Proceedings of the 18th International Conference on Machine
Learning. 2001, pp. 282–289 (cit. on p. 13).

[31] Xiaojun Chang and al. «A Comprehensive Survey of Scene Graphs: Generation
and Application». In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 45.1 (2023), pp. 1–26 (cit. on pp. 13, 14).

74

https://doi.org/10.1109/ICPR56361.2022.9956239

BIBLIOGRAPHY

[32] Thomas N. Kipf and Max Welling. «Semi-Supervised Classification with
Graph Convolutional Networks». In: International Conference on Learning
Representations (ICLR). 2017 (cit. on p. 13).

[33] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Tech. rep. ICS 8504. San Diego,
California: Institute for Cognitive Science, University of California, Sept. 1985
(cit. on p. 14).

[34] Sepp Hochreiter and Jürgen Schmidhuber. «Long Short-Term Memory». In:
Neural Comput. 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667 (cit. on
p. 15).

[35] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. «Learning Phrase Repre-
sentations using RNN Encoder–Decoder for Statistical Machine Translation».
In: Conference on Empirical Methods in Natural Language Processing. 2014
(cit. on p. 15).

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. «Attention is All you
Need». In: Advances in Neural Information Processing Systems. Ed. by I.
Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett. Vol. 30. Curran Associates, Inc., 2017 (cit. on p. 15).

[37] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. «Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks». In:
arXiv:1506.01497 [cs] (June 2015). arXiv:1506.01497. 1, 2, 4, 5 (cit. on p. 17).

[38] Kaihua Tang, Hanwang Zhang, Baoyuan Wu, Wenhan Luo, and Wei Liu.
«Learning to Compose Dynamic Tree Structures for Visual Contexts». In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). June 2019 (cit. on p. 18).

[39] Kai Sheng Tai, Richard Socher, and Christopher D. Manning. «Improved
Semantic Representations From Tree-Structured Long Short-Term Memory
Networks». In: ArXiv (2015) (cit. on p. 19).

[40] Danfei Xu, Yuke Zhu, Christopher B. Choy, and Li Fei-Fei. «Scene Graph
Generation by Iterative Message Passing». In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017, pp. 3097–3106
(cit. on p. 19).

[41] Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi, and Hanwang
Zhang. «Unbiased Scene Graph Generation From Biased Training». In:
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2020), pp. 3713–3722 (cit. on p. 21).

75

BIBLIOGRAPHY

[42] Judea Pearl and Dana Mackenzie. The Book of Why: The New Science of
Cause and Effect. Basic Books, 2018 (cit. on p. 21).

[43] Ji Zhang, Kevin J. Shih, Ahmed Elgammal, Andrew Tao, and Bryan Catan-
zaro. «Graphical Contrastive Losses for Scene Graph Parsing». In: CVPR.
2019 (cit. on p. 23).

[44] Lin Li, Jun Xiao, Hanrong Shi, Wenxiao Wang, Jian Shao, An-An Liu, Yi
Yang, and Long Chen. «Label Semantic Knowledge Distillation for Unbiased
Scene Graph Generation». In: IEEE Transactions on Circuits and Systems
for Video Technology (2023) (cit. on p. 24).

[45] Kanghoon Yoon, Kibum Kim, Jinyoung Moon, and Chanyoung Park. «Unbi-
ased Heterogeneous Scene Graph Generation with Relation-aware Message
Passing Network». In: AAAI. 2023 (cit. on p. 25).

[46] Yuxiang Zhang, Zhenbo Liu, and Shuai Wang. «SRTR: Self-Reasoning Trans-
former with Visual-Linguistic Knowledge for Scene Graph Generation». In:
(Dec. 2022). arXiv preprint. arXiv: 2212.09329 [cs.CV] (cit. on p. 26).

[47] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. «De-
formable DETR: Deformable Transformers for End-to-End Object Detection».
In: arXiv preprint arXiv:2010.04159 (2020) (cit. on p. 26).

[48] Alec Radford, Karthik Narasimhan, Tim Rocktäschel, Lenny Wu, Jong Wook
Kim, and Ilya Sutskever. «Learning Transferable Visual Models From Natural
Language Supervision». In: arXiv preprint arXiv:2103.00020 (2021) (cit. on
p. 27).

[49] Pengchuan Xiao et al. «PandaSet: Advanced Sensor Suite Dataset for Au-
tonomous Driving». In: 2021 IEEE International Intelligent Transportation
Systems Conference (ITSC). 2021, pp. 3095–3101 (cit. on p. 28).

[50] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.
«The Cityscapes Dataset for Semantic Urban Scene Understanding». In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2016, pp. 3213–3223 (cit. on p. 31).

[51] Yuren Cong, Michael Ying Yang, and Bodo Rosenhahn. «Reltr: Relation
transformer for scene graph generation». In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (2023) (cit. on p. 37).

[52] Christopher Lang, Alexander Braun, and Abhinav Valada. «Contrastive Ob-
ject Detection Using Knowledge Graph Embeddings». In: ArXiv abs/2112.11366
(2021) (cit. on p. 39).

76

https://arxiv.org/abs/2212.09329

BIBLIOGRAPHY

[53] Alessandro Oltramari, Jonathan M Francis, Cory Andrew Henson, Kaixin Ma,
and Ruwan Wickramarachchi. «Neuro-symbolic Architectures for Context
Understanding». In: Knowledge Graphs for eXplainable Artificial Intelligence.
2020 (cit. on p. 39).

[54] Tommaso Carraro. LTNtorch: PyTorch implementation of Logic Tensor Net-
works. Version 1.0.0. Mar. 2022. doi: 10.5281/zenodo.6394282. url: https:
//doi.org/10.5281/zenodo.6394282 (cit. on p. 42).

77

https://doi.org/10.5281/zenodo.6394282
https://doi.org/10.5281/zenodo.6394282
https://doi.org/10.5281/zenodo.6394282

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Embedding prior knowledge in deep learning
	Neuro-Symbolic AI
	Fuzzy Logic
	Knowledge Graph
	Logic Tensor Network
	Real Logic
	Methodology

	Review of the state-of-art
	Base Architecture
	Conditional Random Field
	Graph Convolutional Neural Network
	Recurrent Neural Networks
	Transformer
	Baseline networks
	Prior Knowledge as a solver for biased predictions
	Total Direct Effect
	Graphical Contrastive Losses
	Label Semantic Knowledge Distillation
	Relation-aware message parsing

	Datasets
	Knowledge Graph
	Traffic Genome

	Methods
	Relational TRansformer (RelTR)
	Knowledge Graph Embedding
	Loss formulation

	Knowledge base of LTN
	Experiments
	Data-augmentation
	Setup
	Metric

	Results
	Hyper-parameter selection
	Analysis

	Neuro-symbolic training
	Knowledge alignment
	Satisfiability of logical constraints

	Qualitative Results
	Comparison with the start-of-the-art

	Conclusion
	Appendix
	KGE Generation
	Taxonomy alignment

	Bibliography

