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“The important thing is not to stop questioning. Curiosity has
its own reason for existing. One cannot help but be in awe
when he contemplates the mysteries of eternity, of life, of the
marvellous structure of reality. It is enough if one tries merely
to comprehend a little of this mystery every day.”

—Albert Einstein
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Summary

Quantum physics is widely recognized as the most successful but counterintuitive
physical theory. It has enabled significant technological advancements across di-
verse fields by providing incredibly accurate predictions about the behaviour of
microscopic particles. However, despite its success, many quantum phenomena are
still beyond our classical intuition. Since the 1980s, the scientific community has
undergone a paradigm shift in the way they study quantum phenomena. Instead
of treating them as inexplicable conundrums, they are now viewed as useful re-
sources. This shift led to the emergence of quantum information science, which
explores the advantages that quantum theory can offer in processing and transfer-
ring information. One of the most useful and still fascinating features of quantum
physics is entanglement. It occurs when a quantum state of two or more particles
becomes correlated in such a way that the states of the individual particles cannot
be described independently; instead, the overall system must be described as a
whole. Entanglement is a key resource in quantum information theory, enabling
tasks beyond classical resources. It can be manipulated, broadcast, controlled, and
distributed. For this reason, it is important to somehow measure the amount of
entanglement present in a certain system. However, until now only entanglement
for bi-partite systems has been extensively studied and understood.
Understanding and quantifying entanglement for multipartite states remain an
ongoing and crucial pursuit in advancing our comprehension of quantum phe-
nomena and leveraging quantum information science for practical applications.
Its complexity stems from the myriad ways entanglement can manifest among
multiple particles. In the thesis, I start exploring the partitionability of a system
of N elements. I point out its connection with entanglement, which showcases
the multifaceted nature of multipartite quantum systems. The variety of possible
partitions within an N -partite system highlights the diverse nature of multipartite
entanglement, leading to numerous distinct types and degrees of entanglement. My
first attempt in this thesis is to generalize entanglement of formation -a measure of
bipartite entanglement- to the multipartite case. I term it k-NonSep entanglement
since it quantifies entanglement in k-non-separable states. This formulation extends
the concept of entanglement from bipartite scenarios by measuring the mixedness
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of subsystems within N -partite systems. Proofs of its well-defined properties in
accordance with three axioms (A1−3) of a valid entanglement measure demonstrate
its consistency as a fruitful entanglement measure. However, this measure manifests
limitations and downsides. Remarkably, it is not able to take into account the
deeper properties of entanglement, such as whether a state belongs to a certain
entanglement class under LOCCs. I highlight its inability to distinguish between
the classes of the states |GHZ⟩ and |W ⟩.
This limitation prompts the introduction of an alternative approach. I cope with
the genuine k–partite entanglement of a quantum state, and I first investigate its
physical interpretation. It represents how this state differs from the one that can
be constructed through LOCCs by the N laboratories when these are divided into
subsets of at most k laboratories: it is within these subsets that the state is formed
beyond the limitations imposed by LOCC. I propose a novel framework for quanti-
fying genuine multipartite entanglement. It is a generic construction of a measure
based on the idea of partitioning a multipartite system into groups of at most k
qubits and, for each group, evaluating the sum of bipartite entanglement between
each particle. This refined approach successfully rectified the prior limitations.
Moreover, due to its construction, the measure satisfies the desiderata properties of
an entanglement measure. Further, the evaluation of this entanglement measure for
key states corroborates its efficacy in delineating genuine multipartite entanglement,
reaffirming its applicability and relevance in characterizing complex quantum states.
This methodological framework adds to the toolkit of quantum information theory,
aiding in the systematic exploration and understanding of multipartite entangle-
ment in quantum systems. Further research can explore its evaluation for more
general multipartite quantum states and its connections to other entanglement
measures. Furthermore, it would be intriguing to explore potential applications
in quantum computing tasks and idealize experiments to measure entanglement
for multipartite states, which could confirm or refute the predicted value with this
measure.
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Chapter 1

Introduction

“The inner mysteries of quantum mechanics require a willing-
ness to extend one’s mental processes into a strange world of
phantom possibilities, endlessly branching into more and more
abstruse chains of coupled logical networks, endlessly extending
themselves forward and even backwards in time.”

—J. C. Ward [1]

Quantum theory emerged in the early 20th century and evolved into a fully-
fledged physical theory during the 1920s and 1930s. Its impact was felt not only
in science but also on a philosophical level. The elementary units that constitute
our world adhere to quantum mechanical laws that contradict what human beings
naturally experience. Although it has been incredibly successful in practical appli-
cations, our understanding of quantum mechanics is still incomplete and remains
an important objective of physics research.
As technology evolves, we will increasingly depend on the quantum world [2].
Therefore, it is essential to develop a solid understanding of the boundary between
quantum and classical. Quantum computation and quantum information offer
new types of resources that are fundamentally different from traditional resources
in classical information theory. One of the best-understood of these resources
is quantum entanglement, which is a quantum correlation that is stronger than
classical correlation and is believed by many to embody the essence of quantum
mechanics.
We say ‘best understood’, but that is not saying a whole lot! Although we have not
yet developed a general theory of quantum entanglement, there has been promising
progress towards it. This progress has revealed an interesting structure of the
entangled states and some remarkable connections between the properties of noisy
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Introduction

quantum channels and various types of entanglement transformation. However,
developing a general theory of entanglement in multi-partite systems is still a
challenge. In this thesis, I aim to contribute to the understanding of quantum
systems made up of many subsystems by presenting a measure that quantifies its
entanglement.
An early account of such a composite quantum system and the possibility of the
paradoxical behaviour of this system was pointed out by Albert Einstein, Boris
Podolsky, and Nathan Rosen in 1935 [3]. The phenomenon described in the EPR
paper was named entanglement by Schrodinger in the same year [4] and qualitatively
analyzed by John Bell in 1964 [5]. First experiments to test the nonlocal nature of
quantum mechanics were proposed and performed by John F. Clauser and coworkers
[6, 7] and Alain Aspect and coworkers [8]. In the 1980s and 1990s, entanglement
gained renewed attention and became a crucial component of quantum information
theory, the field of research that it belongs to [9]. It is now widely recognized
that entanglement is not only a topic for philosophical debates, but it has also
emerged as a new quantum resource. Entanglement can be manipulated, controlled,
broadcasted, and distributed. It is noteworthy that, while entanglement itself does
not carry information, it can be used to accomplish a variety of tasks. Thus, it is
important to establish a means of quantifying the amount of entanglement present
in a given system.
Initially, entanglement measures were developed based on the entanglement-
separability paradigm. However, it has been recently discovered that there are
other kinds of quantum states that also exhibit nonclassical features aside from
entangled states (for more details, refer to [10]). While entanglement is the foun-
dation of many fundamental quantum tasks and is often considered synonymous
with quantum correlations in early studies, it is now recognized that the notion
of quantum correlations has a much broader scope. Entanglement, in particular,
is the most important type of quantum correlations since it can be identified as
nonlocal quantum correlations.

The fields of quantum computation and quantum information theory are at the
forefront of a remarkable scientific endeavour. This endeavour seeks to bridge the
gap between quantum mechanics and their respective classical counterparts and
explore the physics of information in the quantum realm. It holds great promise for
developing groundbreaking technological applications. Central to these pursuits is
the phenomenon of entanglement, which lies at the heart of quantum mechanics and
plays a pivotal role in the advancement of quantum information science. The aim
of this thesis is to find a suitable measure to quantify entanglement in multipartite
systems. This measure must satisfy certain properties to be valid. To accomplish
this objective, an introductory chapter will lay out the fundamental theoretical
concepts and mathematical tools necessary to understand the subsequent chapters.
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Chapter 2

Introduction to
entanglement

“In any field, find the strangest thing and then explore it.”
—J.A. Wheeler

2.1 Quantum information theory
Quantum mechanics is considered the most precise and comprehensive explanation
of the universe we know. It also forms the foundation for understanding the princi-
ples of quantum information theory, a field that explores the fundamental aspects
that govern the transmission, processing, and storage of information using quantum
systems. Unlike classical information theory which deals with bits and classical
logic gates, quantum information theory leverages the unique properties of quantum
mechanics, such as superposition and entanglement, to offer new computational
paradigms and secure communication protocols.
At the core of quantum information theory are quantum states, which describe
the properties of a quantum system (a detailed description of them is given in
section 2.2). Unlike classical bits, which can only exist in one of two states (0 or
1), quantum systems can exist in superpositions of multiple states simultaneously.
This superposition enables quantum systems to process information in parallel,
potentially leading to computational speed-ups in certain tasks. Operations on
quantum systems are done through quantum gates, the quantum analogs of clas-
sical logic gates, allowing for the manipulation and transformation of quantum
information.
The hallmark of quantum mechanics is its non-deterministic feature. Measurements
of quantum systems are probabilistic and affect the state of the system. Observables,
such as position, momentum, or spin, correspond to the properties of a system
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Introduction to entanglement

that can be measured. The outcomes of measurements are obtained as eigenvalues
of the corresponding observables, and the associated probabilities are given by
the squared absolute values of the coefficients in the superposition, on the basis
of the eigenvectors of the observable being measured. The measurement process
“collapses” the system’s state to one of the possible measurement outcomes.
Quantum transformations which are plagued by errors are called quantum channels.
These channels can be noisy, introducing errors and disturbances during transmis-
sion. The study of quantum error correction codes and fault-tolerant quantum
computation aims to mitigate the effects of noise and ensure reliable quantum
information processing.

Quantum information theory also involves the development of measures to
quantify various properties of quantum states, channels, and processes. These
measures provide insights into the amount of information contained in quantum
systems, the degree of entanglement, the efficiency of quantum algorithms, and
the capacities of quantum channels. Quantum complexity theory explores the
computational resources needed to solve problems on quantum computers. It
includes investigating classes of problems that can be solved efficiently with quantum
algorithms.
Moreover, quantum information theory has significant implications for secure
communication. Quantum cryptography protocols utilize quantum mechanics
principles, such as the no-cloning theorem and quantum entanglement, to achieve
information-theoretic security.

We have said that one of the properties of quantum mechanics that empowers
quantum information theory is entanglement. It is a unique property of quantum
systems and plays a central role in quantum information theory. It occurs when
the quantum states of two or more particles become correlated in such a way that
the states of the individual particles cannot be described independently. Instead,
the overall system must be described as a whole (more details can be found in
section 2.4). Entangled states possess non-classical correlations, and they can be
exploited for various quantum information tasks, including quantum communication,
teleportation, and quantum cryptography.
The next sections of this chapter provide the necessary background knowledge of
quantum mechanics and information theory needed for a thorough grasp of the
phenomenon of entanglement.
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Introduction to entanglement

2.2 Quantum states

At a first stage, quantum mechanics can be formulated using the language of state
vectors |Ψ⟩. Indeed, associated with any isolated physical system is a complex
vector space with inner product, which is a Hilbert space H, known as the state
space of the system, and the system is completely described by its state vector,
which is a unit vector in the system’s state space.
The simplest quantum mechanical system, and the system which quantum com-
puting is most concerned with, is the qubit. A qubit has a two-dimensional state
space. Suppose |0⟩ and |1⟩ form an orthonormal basis for that state space. Then
an arbitrary state vector in the state space can be written as

|Ψ⟩ = a |0⟩ + b |1⟩ (2.1)

where a and b are complex numbers. The condition that |Ψ⟩ be a unit vector,
⟨Ψ|Ψ⟩ = 1, is therefore equivalent to |a|2 + |b|2 = 1. This condition is called
normalization condition for state vectors.
Quantum mechanics allows also the construction of multiparticle systems through
tensor product, which is a way of putting vector spaces together to form larger vector
spaces. Suppose V and W are Hilbert spaces of dimension m and n respectively.
Then V ⊗ W is an mn dimensional Hilbert space. The elements of V ⊗ W are
linear combinations of tensor products |v⟩ ⊗ |w⟩ of elements |v⟩ of V and |w⟩ of W .
We often use the abbreviated notations |v⟩ |w⟩, |v, w⟩ or even |vw⟩ for the tensor
product |v⟩ ⊗ |w⟩. This can be extended to the general case of a composite system
made up of k constituents, for which the Hilbert space is the tensor product of the
Hilbert spaces of the component systems H = ⊗k

i=1Hi
1, and the joint state vector

of the total system has the form |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ · · · ⊗ |ϕk⟩ and its linear combinations,
where |ϕi⟩ is the state for system i.

An alternate formulation is possible using a tool known as the density matrix
operator ρ̂, which is mathematically equivalent to the state vector approach, but
it provides a much more convenient language for thinking about some commonly
encountered scenarios in quantum mechanics. Indeed, state vector formulation
makes sense only for pure states, but in quantum mechanics, there can be also
mixed states, which cannot be represented by state vectors. Let us analyze their
analogies and differences.
Suppose we know precisely that a quantum system is a state |Ψ⟩. We shall call
this situation a pure state. The density matrix operator related to |Ψ⟩ is defined

1throughout this thesis, we will assume that all Hilbert spaces are finite-dimensional unless
stated otherwise.
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as its outer product of the state vector with itself

ρ̂ = |Ψ⟩ ⟨Ψ| 2. (2.2)

Instead, suppose now that we do not know exactly in which quantum state the
system is. We call this situation a mixed state. We could think of M virtual
copies of the system, where each copy is in a different state |Ψm⟩. Our ignorance
about the actual state of the system is described by a density matrix operator
characterized by a statistical distribution of pure state density matrices

ρ̂ =
Ø
m

pm ρ̂m =
Ø
m

pm |Ψm⟩ ⟨Ψm| (2.3)

where |Ψm⟩ ⟨Ψm| is the density matrix operator related to the m-th possible state,
pm are a set of real non-negative numbers (0 ≤ pm ≤ 1 and qm pm = 1) describing
the probabilities that the system is in the state |Ψm⟩.
Both pure and mixed density matrix operators fulfill some fundamental properties:

1. Hermiticity
ρ̂ = ρ̂†

- for pure states:

(|Ψ⟩ ⟨Ψ|)† = |Ψ⟩ ⟨Ψ| ⇐⇒ ρ̂† = ρ̂

- for mixed states:
each single pure state ρ̂m = |Ψm⟩ ⟨Ψm| is Hermitean (ρ̂m = ρ̂†

m) and the
weights pm are real numbers, then

ρ̂ =
Ø
m

pmρ̂m ⇒ ρ̂ = ρ̂†

2. Trace equals 1
Tr ρ̂ = 1

- for pure states:
using any basis Φα of the Hilbert space such that |Ψ⟩ = q

α cα |Φα⟩,

Tr ρ̂ = Tr(|Ψ⟩ ⟨Ψ|) = Tr
AØ

α

cα |Φα⟩ c∗
α ⟨Φα|

B
=

=
Ø
α

cαc
∗
α Tr(|Φα⟩ ⟨Φα|) =

Ø
α

cαc
∗
α =

Ø
α

|cα|2 = 1

2In this section I stress the notation for which operators in quantum mechanics are marked
with the hat symbol .̂ In the next sections, I will neglect this notation, giving it as implicit when
we are in the presence of operators.
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- for mixed states:

Tr ρ̂ = Tr
AØ

m

pmρ̂m

B
=
Ø
m

pm Tr ρ̂mü ûú ý
=1

=
Ø
m

pm = 1

3. Positivity
⟨Φ| ρ̂ |Φ⟩ ≥ 0 ∀ state Φ

- for pure states:

⟨Φ| ρ̂ |Φ⟩ = ⟨Φ|Ψ⟩ ⟨Ψ|Φ⟩ = | ⟨Ψ|Φ⟩ |2 ≥ 0

- for mixed states:

⟨Φ| ρ̂ |Φ⟩ = ⟨Φ|
Ø
m

pmρ̂m |Φ⟩ =
Ø
m

pmüûúý
≥0

⟨Φ| ρ̂m |Φ⟩ü ûú ý
≥0

≥ 0

The density matrix operator is, therefore, a positive semi-definite, Hermitian matrix
with unit trace which provides a comprehensive representation of the quantum
states, both pure or mixed. But, actually, there is a criterion to distinguish a pure
state from a mixed one. For a pure state, the density matrix is equal to its square
(and to any of its integer powers)3:

ρ̂2 = |Ψ⟩ ⟨Ψ|Ψ⟩ü ûú ý
=1

⟨Ψ| = |Ψ⟩ ⟨Ψ| = ρ̂

⇒ ρ̂2 = ρ̂

While this is not true for mixed states:

ρ̂2 =
AØ

m

pm |Ψm⟩ ⟨Ψm|
BAØ

n

pn |Ψn⟩ ⟨Ψn|
B

=

=
Ø
m,n

pmpn |Ψm⟩ ⟨Ψm|Ψn⟩ü ûú ý
δm,n

⟨Ψn| =

=
Ø
m

p2
m |Ψm⟩ ⟨Ψm| /=

Ø
m

pm |Ψm⟩ ⟨Ψm|ü ûú ý
=ρ̂

3This is precisely the property of projector operators, P̂n = P̂ (idempotence). Indeed, the
pure state density matrix operator ρ̂ related to |Ψ⟩ is a projection operator, in the sense that its
action on a generic state |Φ⟩ of the system is to return the state obtained by projecting |Φ⟩ along
the direction of |Ψ⟩,

ρ̂ |Φ⟩ = |Ψ⟩ ⟨Ψ|Φ⟩ü ûú ý
coeff

and the result is thus a state “directed along the direction of |Ψ⟩”.
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⇒ ρ̂2 /= ρ̂

From the idempotence and property 2, for pure states we have Tr ρ̂2 = 1. Instead,
for mixed states we have

Tr ρ̂2 = Tr
AØ

m

p2
m |Ψm⟩ ⟨Ψm|

B
=

=
Ø
m

p2
m Tr(|Ψm⟩ ⟨Ψm|)ü ûú ý

=1

=

=
Ø
m

p2
m < 1

Thus, a useful criterion to distinguish pure states from mixed ones is given by
evaluating the trace of the square of the density matrix:

Tr ρ̂2 = 1 ⇐⇒ pure state

Tr ρ̂2 < 1 ⇐⇒ mixed state
(2.4)

We have seen that we have a pure state when we know precisely that the
quantum system is in a state |Ψ⟩. However, when we measure an observable A
in an experiment, still the result is not deterministic. Indeed if we repeat the
experiment many times, by preparing every time the system in the same state |Ψ⟩,
we obtain in general different outcomes. The possible outcomes are the set {aα} of
eigenvalues of the operator Â associated with the observable A we are considering.
This lack of determinism is an intrinsic feature of Quantum Mechanics4 and is
unavoidable, even for pure states.
Instead, in the case of mixed states, we have a twofold uncertainty: a Statistical
uncertainty, related to the fact that we do not know in which state the system is
(this is similar to the case of a classical system); a Quantum uncertainty, related
to the fact that, even if we knew in what state the system is, the outcomes of an
experiment would, in general, be not deterministic.
Through the density matrix formalism, we can predict the statistics of experimental
outcomes, though. Indeed, both for pure and mixed states, the expectation value
of an observable A is given by

⟨Â⟩ = Tr
1
ρ̂Â
2

= Tr
1
Âρ̂
2
. (2.5)

This relation shows that, once the density matrix operator ρ is known, we can
compute the expectation value of any observable A as a trace.

4With his famous statement “Gott würfelt nicht”, Einstein expressed his doubts about the
completeness of such a non-deterministic theory.
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Another advantage of dealing with density matrix representation is that, as
far as pure states are concerned, using the wavefunction Ψ or the related density
matrix operator ρ̂ = |Ψ⟩ ⟨Ψ| is exactly equivalent, with the additional advantage of
the lack of phase factor ambiguity. Indeed, for any operator Â, the expectation
value is given by

⟨Â⟩ =
Ú
dRΨ∗(R)ÂΨ(R) = Tr

1
ρ̂Â
2
;

this means that the density matrix operator ρ̂ = |Ψ⟩ ⟨Ψ| provides the same physical
information as the wavefunction Ψ(R). Furthermore, while the wavefunction Ψ(R)
is always determined up to an overall phase factor eiθ, the density matrix operator
does not have such ambiguity---eiθΨf ee−iθΨ

--- = |Ψ⟩ ⟨Ψ| .

It is useful to introduce here a specific mixed state: the completely mixed density
operator. It is denoted as ρmixed and represents a maximally mixed state where all
pure states are equally probable. In other words, it corresponds to a state with no
distinguishable features or coherence. Each diagonal element of the density operator
is equal for a maximally mixed state in a d-dimensional space, indicating an equal
probability for each pure state. Let us denote this probability as p, which is the
same for all pure states. Since the trace of the density operator should be equal
to 1, we have Tr(ρmixed) = d ∗ p = 1; solving for p, we get p = 1/d. The diagonal
elements of the density operator ρmixed can be written as ρmixed(i, i) = p = 1/d for
all i, where i ranges from 1 to d. Therefore, the completely mixed density operator
in d-dimensional space is given by

ρmixed = 1
d
I (2.6)

where I is the d× d identity matrix. We will see in section 2.3 that the completely
mixed state is the state with maximal entropy in a d-dimensional Hilbert space.

We have already seen that quantum mechanics allows also the construction of
multiparticle systems through tensor product and we have shown the joint state
vector of a system composed of n subsystem has the form |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ · · · ⊗ |ϕn⟩
or all its linear combinations. This can be reformulated also in terms of density
matrix operators: the joint state of the total system is ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn.
Namely, n-qubit states can be written as a linear combination of tensor products of
Pauli matrices:

ρ = 1
2n

nØ
i1,...,in=0

ti1...in σ
1
i1 ⊗ · · · ⊗ σnin (2.7)

where σ0 is the identity operator in the Hilbert space of qubit k, and the σkik
correspond to the Pauli operators for three orthogonal directions ik = 1, 2, 3.

9
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Perhaps the deepest application of the density operator is as a descriptive tool
for subsystems of a composite system. Such a description is provided by the reduced
density operator. Suppose we have physical systems A and B, whose state is
described by a density operator ρAB. The reduced density operator for system A is
defined by

ρA = TrB(ρAB) (2.8)

where TrB is a map of operator known as the partial trace over system B. The
partial trace is defined by

TrB(|a1⟩ ⟨a2| ⊗ |b1⟩ ⟨b2|) = |a1⟩ ⟨a2| Tr(|b1⟩ ⟨b2|) (2.9)

where |a1⟩ and |a2⟩ are any two vectors in the sate space of A, and |b1⟩ and |b2⟩
are any two vectors in the state space of B. This can be generalized for a general
n-composite quantum system.

To sum up, we have observed that expressing quantum mechanics in terms of the
density operator is mathematically equivalent to using the state vector. However,
the density operator approach has two significant advantages when it comes to
understanding quantum mechanics: firstly, it is useful for describing quantum
systems whose state is uncertain, which can be done through mixed state density
matrices; secondly, it is helpful for describing subsystems of a composite quantum
system using reduced-density matrices.

10
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2.3 Entropy and information
A breakthrough in quantum information theory is treating quantum states as
information and asking information-theoretic questions about them.
We first start by presenting the classical information theory. Its main measure is
the Shannon entropy. It is used to quantify the information in a source X that
produces messages xi with probabilities pi:

H(p) = −
Ø
i

pi log(pi)5. (2.10)

That is, the Shannon entropy measures the uncertainty associated with a classical
probability distribution.
The joint entropy, given a pair of random variables X and Y , is given by

H(X, Y ) = −
Ø
x,y

p(x, y) log p(x, y) (2.11)

and may be extended in an obvious way to any vector of random variables.
The relative entropy is a useful measure (see [11]) of the closeness of two
probability distributions {pi} and {qi} from the same source X:

H(p||q) =
Ø
i

pi log
A
pi
qi

B
. (2.12)

It can be proved that the relative entropy is non-negative, H(p||q) ≥ 0.
Correlations between two different random variables X and Y are measured by the
Shannon mutual information:

H(X : Y ) = H(X) +H(Y ) −H(X, Y ) = H(X) −H(X|Y ) (2.13)

where H(X, Y ) = −q
ij pij log(pij) is the joint entropy and pij is the probability of

outcomes xi and yj both occurring. The mutual information measures how much
information X and Y have in common, so it is intuitively clear that this is a good
measure of correlations, since it shows how far a joint distribution is from the
product one in which all the correlations have been destroyed, or alternatively, how
distinguishable a correlated state is from a completely uncorrelated one. Indeed, it
may also be defined as a special case of the relative entropy, since it is a measure

5Given two observables A and B with corresponding probabilities p(ai) and p(bj) of observable
A of being ai and ofB being bj , then S(A) = −

q
i p(ai) log p(ai) = −

q
ij p(ai, bj) log

q
j p(ai, bj),

same for S(B) = −
q

j p(bj) log p(bj) = −
q

ij p(ai, bj) log
q

i p(ai, bj), where we have used the
fact that

q
j p(ai, bj) = p(ai) and

q
i p(ai, bj) = p(bj).

11
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of how distinguishable a joint probability distribution pij is from the completely
uncorrelated pair of distributions pipj,

H(pij||pipj) = H(pi) +H(pj) −H(pij). (2.14)

The conditional entropy is given by

H(X|Y ) = H(X, Y ) −H(Y ) = H(X) −H(X : Y ) (2.15)

and it measures how uncertain we are, on average, about the value of X given that
we know the value of Y .

In physics, the main contrast between quantum and classical systems can be
observed in the superposition principle. While classical systems can only exist in
a single state, quantum systems can exist in states that involve combinations of
different elements of a basis. This unique characteristic of quantum systems is what
makes information theory based on quantum mechanics fundamentally different
from the classical information theory that has been described so far. [12]. Thus,
the Shannon entropy is replaced with the Von Neumann entropy:

S(ρ) = −Tr(ρ log ρ). (2.16)

The von Neumann entropy is the quantum equivalent of the Shannon entropy,
representing the number of qubits required to transmit quantum states from a
statistical source. Formally, S(ρ) = H(λ) = −q

i λi log λi, where λ = {λi} are the
eigenvalues of the state ρ.
The quantum relative entropy of a state ρ with respect to another state σ is
defined as

S(ρ||σ) = −S(ρ) − Tr(ρ log σ). (2.17)

It can be shown that the quantum relative entropy, as the classical one, is non-
negative, S(ρ||σ) ≥ 0.
In a d-dimensional Hilbert space the entropy is at most log d. The entropy is
equal to log d if and only if the system is in the completely mixed state I/d shown
in eq. (2.6). This result follows from the non-negativity of the relative entropy,
0 ≤ S(ρ||I/d) = −S(ρ) + log d.
Suppose a composite system AB is in a pure state, then S(A) = S(B). This can be
shown in the following way. From the Schmidt decomposition, we know that the
eigenvalues of the density operators of systems A and B are the same6. Since the

6For the Schmidt decomposition, if |ψ⟩ is a pure state of a composite system, AB, then there
exist orthonormal states |iA⟩ for system A, and orthonormal states |iB⟩ of system B such that
|ψ⟩ =

q
i λi |iA⟩ |iB⟩.

12
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entropy is determined completely by the eigenvalues, we have S(A) = S(B). This
property of the von Neuman entropy will be used in section 2.4.3 for the definition
of an entanglement measure, the entropy of entanglement.
The joint entropy S(ρAB) for a composite system ρAB with two subsystems A
and B is given by

S(ρAB) = −Tr(ρAB log ρAB). (2.18)

When one system learns information about another, their states become correlated.
The degree of correlation can be quantified by the Von Neumann mutual
information between the two subsystems:

I(ρA:B) = S(ρA) + S(ρB) − S(ρAB). (2.19)

This is usually used to measure the total correlations between the two subsystems of
a bipartite quantum system. As in the classical case (2.14), the mutual information
is the relative entropy between ρAB and ρA ⊗ ρB.
Quantum entropy fulfills the following properties:

1. additivity: S(ρA ⊗ ρB) = S(ρA) + S(ρB)

2. concavity: S(qi λiρi) ≥ q
i λiS(ρi)

3. subadditivity: S(ρAB) ≤ S(ρA) + S(ρB)

4. strong subadditivity: S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC).

The first property is the same as in classical information theory, namely the entropies
of independent systems add up. The concavity simply reflects the fact that “mixing
increases uncertainty”. It is also worth mentioning that the consequence of the
strong subadditivity is the so called weak subadditivity described by the Araki Lieb
inequality [13]:

S(ρA) + S(ρB) ≥ S(ρAB) ≥ |S(ρA) − S(ρB)|. (2.20)

Physically, the left-hand side -subadditivity- implies that we have more information
(less uncertainty) in an entangled state than if the two states are treated separately.
This arises naturally since by treating the subsystems separately we have neglected
the correlations (entanglement). We note that if the composite system is in a pure
state, then S(ρAB) = 0, and from the right-hand side it follows that S(ρA) = S(ρB).
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2.4 Entanglement
“I would not call [entanglement] one but rather the charac-
teristic trait of quantum mechanics, the one that enforces its
entire departure from classical lines of thought.”

—Erwin Schrödinger [14]

Quantum mechanics violates daily intuition not only because the measured out-
come can only be predicted probabilistically but also because of a quantum-specific
correlation called entanglement, which is usually said to be the characteristic trait
of quantum mechanics. All started with the recognition by Einstein, Podolsky, and
Rosen (in the original paper [3], the authors didn’t consider qubits but position and
momentum operators, here I present the reformulation awarded to David Bohm
[15]) that two-qubit states such as the superposition |ψ⟩ = |00⟩ + |11⟩, where |0⟩
and |1⟩ are the eigenstates of σz, have some kind of non-local “action at a distance”
since a measure of the first qubit somehow “changes” the state of the second qubit,
no matter how far away it is: if I measure one qubit and obtain |0⟩ (|1⟩), I know
immediately that a measurement on the other, on the same basis, will also return
the state |0⟩ (|1⟩).
Inspired by the EPR paper, Schrodinger analyzed the physical consequences of
quantum formalism. He noticed that the two-particle EPR state does not allow for
individual states of the subsystems. This can be shown for any of the Bell states

---Ψ±
f

= |00⟩ ± |11⟩√
2

,
---Φ±

f
= |01⟩ ± |10⟩√

2
(2.21)

which are considered to be the unit of entanglement (also called e-bit) for bipartite
systems. For example, let’s consider |Ψ+⟩ = |00⟩ + |11⟩ (where we are neglecting a
normalization factor 1√

2) and two generic single qubit states |a⟩ = a0 |0⟩ + a1 |1⟩
and |b⟩ = b0 |0⟩ + b1 |1⟩, then we have

|a⟩ |b⟩ = a0b0 |00⟩ + a0b1 |01⟩ + a1b0 |10⟩ + a1b1 |11⟩ ;

if |Ψ+⟩ = |a⟩ |b⟩, then we must have a0b0 = 1, a0b1 = 0, a1b0 = 0, a1b1 = 1 since
{|ij⟩} is an orthonormal basis. If a0b1 = 0, then a0 = 0 or b1 = 0; but a0 = 0 is
contradiction to a0b0 = 1 and b1 = 0 is contradiction to a1b1 = 1. Thus Bell states
cannot be written as a product state of two single-qubit states---Ψ+

f
/= |a⟩ |b⟩ .

Then Schrödinger concluded: “Thus one disposes provisionally (until the entan-
glement is resolved by actual observation) of only a common description of the
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two in that space of higher dimension. This is the reason that knowledge of the
individual systems can decline to the scantiest, even to zero, while that of the
combined system remains continually maximal. The best possible knowledge of
a whole does not include the best possible knowledge of its parts — and this is
what keeps coming back to haunt us” [4]. A pictorial example of this can be given
considering again the Bell states |Ψ±⟩ and |Φ±⟩. These are pure states of joint
systems AB. Their density matrices are given by

ρΨ
AB =

---Ψ±
f e

Ψ±
--- = 1

2(|00⟩ ⟨00| ± |00⟩ ⟨11| ± |11⟩ ⟨00| + |11⟩ ⟨11|),

ρΦ
AB =

---Φ±
f e

Φ±
--- = 1

2(|01⟩ ⟨01| ± |01⟩ ⟨10| ± |10⟩ ⟨01| + |10⟩ ⟨10|).

The reduced density matrices are given by

ρΨ
A = TrB(

---Ψ±
f e

Ψ±
---) = 1

2(|0⟩ ⟨0| + |1⟩ ⟨1|) = I
2 ,

ρΦ
A = TrB(

---Φ±
f e

Φ±
---) = 1

2(|0⟩ ⟨0| + |1⟩ ⟨1|) = I
2 .

The latter are mixed states, being Tr
1
( I

2)2
2

= 1/2 ≤ 1 (we used the criterion (2.4)).
So, for all the Bell states, while the state of the composite system ρAB is pure and
so we have the complete possible knowledge of it, the states of the subsystems are
completely mixed and so highly uncertain. This is another hallmark of quantum
entanglement: the whole is more definite than the parts, and it turns out to be a
criterion to identify entanglement for pure states (we will define this criterion in
section 2.4.1): entangled states provide information about the whole system and
subsystems through a profoundly nonclassical relationship.
Schrödinger’s observation that an entangled state gives us more information about
the total system than about subsystems can be quantified simply by using von
Neumann entropy. Let us consider a pure state of a composite system |AB⟩. We
have that |A⟩ is a pure state if and only if there is no entanglement.7 Hence,
S(A) /= 0 if and only if |AB⟩ is entangled. The conditional entropy is given by
S(B|A) = S(A,B) −S(A) and, as S(A,B) = 0 since |AB⟩ is a pure state, we have

7Let show this property. (⇐) Suppose there is no entanglement, then we can write the state
as a product state ρAB = |a⟩A ⟨a|A ⊗ |b⟩B ⟨b|B; the reduced density matrix is ρA = TrB ρAB =
|a⟩ ⟨a| Tr(|b⟩ ⟨b|) = |a⟩ ⟨a|, so we have Tr

!
ρ2

A

"
= 1 and thus ρA is a pure state. (⇒) Suppose now

|A⟩ is a pure state; because |AB⟩ is a pure state, we can use the Schmidt decomposition and
write |AB⟩ =

q
i λi |iA⟩ |iB⟩; then ρA = TrB(|AB⟩ ⟨AB|) =

q
i,j λiλj |iA⟩ ⟨jA| Tr(|iB⟩ ⟨jB |) =q

i,j λiλj |iA⟩ ⟨jA| δi,j =
q

j λ
2
j |jA⟩ ⟨jA|; then, because ρA is a pure state, we have λj = 1 and

otherwise 0 for others i /= j; it follows that |ψ⟩ = |jA⟩ |jB⟩, thus |ψ⟩ is a product state and there
is no entanglement.
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therefore S(B|A) = −S(A). Thus we obtain that S(B|A) < 0 if and only if |AB⟩
is entangled, that is S(A) ≥ 0. So, when the conditional entropy is negative, it
implies that the joint system AB has less entropy than what would be expected
if the subsystems A and B were independent. As we said, this distinct property
of entangled states can be used as a criterion to distinguish them from separable
states. However, this is a sufficient condition only for pure bipartite states. There
are many other criteria to detect entanglement. I will mention some of them later
in this thesis (see Chapter (2.4.1)).

Among the criteria used to detect entanglement is the violation of Bell’s in-
equalities, which have an interesting historical origin. After the EPR paper showed
the strange property of entanglement (that Einstein called ‘spooky action at a
distance’), among physicists there was a general discomfort stemming from the
apparent conflict between quantum mechanics and the reigning opinion that a
complete physical theory should be local and realistic. According to such a theory,
(i) a measurement made at one point in space should not be influenced by anything
outside its past light cone; (ii) physical properties should have a well-defined value
whether they are measured or not (it is believed Einstein once said “I like to think
that the moon is there even if I am not looking at it”). The idea that observations
made on one part of an entangled pair could instantaneously project the other
into a well-defined quantum state contradicts both these axioms, suggesting (i)
that faster-than-light communication is possible, and (ii) that physical quantities
lack objective reality. Quantum mechanics was therefore deemed incomplete, and
local ‘hidden variable’ (LHV) models were proposed to explain the manifestation
of this ‘spooky action at a distance’. After many years of heated debate, British
physicist John Bell concluded that empirical evidence alone would resolve the
controversy and in 1966 published details of an experiment designed to test the
deterministic worldview [16]. The key result of this publication was a measurable
inequality, derived independently of any type of mathematical formalism, which
should be respected by any LHV. A more general version of Bell’s inequality was
measured for the first time in the 1980s in a series of experiments by Aspect et
al. [8], whose results conclusively precluded the existence of local hidden variables,
therefore ascribing to quantum mechanics the characteristics of a non-local theory.
Since its inception, most of Bell’s experiments have yielded similar conclusions:
the crucial factor in the Bell theorem is the disparity between the quantum and
classical descriptions of correlations, which becomes increasingly apparent. On a
fundamental level, nature presents us with a new type of statistical correlations
that do not carry any meaningful information, and are encoded in the quantum
states of compound systems through entanglement. They are “non-local” in the
sense, that

(i) they cannot be described by a LHVM;
(ii) they are non-signalling as the local measurements performed on spatially
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separated systems cannot be used to transmit messages.
Thus It has become evident that entanglement is not only a topic of philosophical
discussions but also a novel quantum resource that cannot be replicated through
classical resources. Remarkably, entanglement is a resource that, though it does
not carry information itself, can help in such tasks. One of the applications that
shows the operational capabilities of entangled states is quantum teleportation. It is
a technique for moving quantum states around, even in the absence of a quantum
communications channel linking the sender of the quantum state to the recipient,
but only via sharing a maximally entangled state and a classical channel between
the two parties.

Unfortunately, quantum entanglement has three disagreeable but fascinating
features: it has a complex structure, is fragile to the environment, and cannot
be increased on average when systems are spatially separated. In recent years
considerable effort has been expended on the characterization, manipulation, and
quantification of entanglement, attempting to give answers to fundamental questions
as: i) how to detect entanglement theoretically and in laboratory; ii) how to prevent
an inevitable process of degradation of entanglement; iii) how to characterize,
control, and quantify entanglement. In this dissertation, I will stress more on
quantification of entanglement, since I will focus on finding a suitable measure for
entanglement for multipartite systems.

Until now, though, we mentioned only the case of bipartite systems. Traditionally,
starting with Bell, the example which has been most studied was that of non-
local correlations between two remote quantum particles. However, it is now
clear that the correlations among more than two remote particles present novel
and highly nontrivial aspects compared to two-particle entanglement (see for
example the correlations displayed by GHZ state [17]). Multipartite states refer to
quantum states that involve more than two subsystems or particles; for example, a
tripartite state would involve three subsystems, so a multipartite state can involve
an arbitrary number of subsystems. These states describe the collective quantum
properties of the entire system, including entanglement between the subsystems.
When considering multipartite scenarios, the phenomenology becomes much more
complex compared to the bipartite case. There are super-exponentially many ways
to partition the constituents of an N -partite quantum system into non-overlapping
groups, with each such partitioning giving rise to a legitimate locality constraint.
As a result of this complexity, the theory of multi-partite entanglement is much
less canonical than the bipartite version. By this, we mean that in the two-party
case questions like “What is a natural unit of entanglement?” or “When is there a
maximally entangled state ” tend to have unambiguous natural answers, while this
is always never true for more than two subsystems. In addition, there is a basically
unique way of quantifying bipartite pure state entanglement, whereas the “right”
multi-partite measure strongly depends on the intended use of the entangled states,
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as shown in [18]. Another fundamental property of multipartite entanglement is
monogamy, which restricts entanglement distribution among subsystems. In simple
terms, it means that if two subsystems are maximally entangled with each other,
they cannot be maximally entangled with any other subsystems simultaneously.
This property is often referred to as “entanglement monogamy”. It reflects the
fact that entanglement is a limited resource in quantum systems. When distributing
entanglement between subsystems, the amount available for sharing with other
subsystems is reduced.
We will deepen these features of multipartite systems in chapter 3, while a detailed
definition of multipartite entangled state is already given in the next section 2.4.1,
where criteria to detect entanglement will be presented, followed by a description
of how entanglement can be manipulated and, mainly, quantified, even if still for
the simplistic case of bipartite states.

2.4.1 Entanglement characterization

From the passage from classical to quantum, the “effect” of the replacement of
the classical concept of phase space by abstract Hilbert space creates a gap in
describing composite systems. Indeed, consider a multipartite system comprising N
subsystems. According to classical description, the total state space of the system
is the Cartesian product of the N subsystem spaces implying that the state of the
entire system can always be expressed as a product of the states of each of the
N individual systems. On the opposite, according to the principles of quantum
mechanics, the total Hilbert space, denoted as H, is represented as a tensor product
of the subsystem spaces

H = H1 ⊗ H2 ⊗ · · · ⊗ HN , (2.22)

where H1,H2, . . . ,HN are separable complex Hilbert spaces which are associated
with the quantum systems 1, 2, . . . , N , respectively.

For a bipartite system, determining if it is entangled should not, at least ideally,
be difficult. Indeed, in the case of pure bipartite state |ΨAB⟩ ∈ HAB = HA ⊗ HB,
we have an entangled state if and only if it can not be written as a product of two
vectors corresponding to Hilbert spaces of subsystems:

|ΨAB⟩ /= |ϕA⟩ |ψB⟩ . (2.23)

In the opposite case the state is called product state. In general, if the vector |ΨAB⟩

18



Introduction to entanglement

is written in any orthonormal product basis {|eiA⟩ ⊗
---ejBf} as follows8

|ΨAB⟩ =
dAØ
i=1

dBØ
j=1

AΨ
ij

---eiAf⊗
---ejBf ,

then it is product if and only if the matrix of coefficients AΨ = {AΨ
ij} is of rank

one.
In the case of mixed bipartite state, we have an entangled state if and only if it
can not be written as a mixture of product states:

ρAB /=
kØ
i=1

piρ
i
A ⊗ ρiB (2.24)

where the Caratheodory bound9 is kept: k ≤ (dimHAB)2. In the opposite case the
state is called separable.

Let’s now focus on the case of systems made of more than two subsystems.
The superposition principle allows us to write the total state of the system in the
following form

|ψ⟩ =
Ø
iN

ciN
|iN⟩ , (2.25)

where iN = i1, i2, . . . , iN is the multi-index and |iN⟩ = |i1⟩ ⊗ |i2⟩ · · · ⊗ |iN⟩, which
cannot be, in general, described as a product of states of individual subsystems10

|ψ⟩ /= |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψN⟩. This means that it is generally impossible to assign
a single state vector to any of the N subsystems. This formally expresses the
phenomenon of entanglement which, in contrast to classical superposition, allows
the construction of exponentially large superpositions with only a linear amount of
physical resources. This property is often referred to as “quantum parallelism” and
it is just what allows us to perform nonclassical tasks.
In practice we mostly encounter mixed states rather than pure. When dealing with
mixed states, entanglement is no longer just equated to non-product states as it is
with pure states. Rather, a mixed state of N systems is considered entangled if it
cannot be expressed as a combination of product states. This is referred to as a
convex combination

ρ /=
Ø
i

pi ρ
i
1 ⊗ · · · ⊗ ρiN . (2.26)

8here the orthonormal basis {
--ei

X

,
} spans subspace HX , X = A,B.

9The Caratheodory theorem states that the number l in the convex combination can be
bounded by the square of the dimension of the global Hilbert space (see [19]).

10Sometimes instead of notation |ψ⟩⊗ |ϕ⟩ we use simply |ψ⟩ |ϕ⟩ and for |i⟩⊗ |j⟩ even the shorter
|ij⟩.
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The states that are not entangled according to the above definition are referred to
as separable.
However, compared to the bipartite case, the qualitative definition of separability
and entanglement is wide-ranging in the multipartite case. There are many types
of separability, including full separability which generalizes bipartite separability.
Indeed, there are multiple ways of partitioning a many-body system. In particular,
the number of ways of partitioning an N -partite system is given by the Bell number
and it scales exponentially as N grows (in Appendix A a code for evaluating the
total number of partitioning a set into disjoint subsets and the Bell number is
shown). Let’s see what a partition consists of. Given a N -partite quantum system
XN =

î
X[1],X[2], . . . ,X[N ]

ï
11, a k-partition (with k = 2, 3, . . . , N) of a quantum

system H given in (2.22) is a set
î
X1, . . . ,Xk

ï
of nonempty subsets of {1, . . . , N}

which satisfies:

a) Xi ∩ Xj = ∅ for all i /= j (with i, j ∈ {1, . . . , k}) and X1 ∪ X2 ∪ · · · ∪ Xk =
{1, . . . , N};

b) HX1 ⊗ HX2 ⊗ · · · ⊗ HXk = H1 ⊗ H2 ⊗ · · · ⊗ HN , where HXi = oki
j=1 Hnij

if
Xi = {ni1 , ni2 , . . . , niki

} with ni1 < ni2 < · · · < niki
.

Throughout this thesis, a k-partition is denoted by X1|X2| . . . |Xk. For the sake of
clarity and to become familiar with the notation adopted, we provide an example for
the case N = 4. The quantum system is given by X4 =

î
X[1],X[2],X[3],X[4]

ï
. The

1-partition is simply given by X1234. The 2-partitions are: X12|X34, X13|X24, X14|X23.
The 3-paritions are: X1|X23|X4, X1|X24|X3, X1|X34|X2, X2|X14|X3, X2|X13|X4, X3|X12|X4.
The 4-parition is given by X1|X2|X3|X4.
A pure state |Ψ⟩ is called k-separable if there exists a k-partition X1|X2| . . . |Xk

of H such that |Ψ⟩ can be written as the product of at most k ≤ N states
---ψXi
i

f
belonging to a set of non overlapping partitions i = 1, . . . , k:

|Ψ⟩ =
---ΨX1

1

f
⊗
---ΨX2

2

f
⊗ · · · ⊗

---ΨXk
k

f
(2.27)

where
---ΨXi

i

f
∈ HXi is a pure state of HXi . Instead, an m-partite mixed state ρ is

called k-separable if it can be written as a convex combination of k-separable
pure states:

ρ =
Ø
i

pi |Ψi⟩ ⟨Ψi| , (2.28)

11For the sake of clarity, let us point out the notation adopted: X[i] indicates a single subsystem
i; Xi indicates a subset of subsystems, that is Xi =

)
X i

[1],X
i
[2], . . . ,X

i
[mi]
*

; then XN indicates the
full set of subsystems.
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where |Ψi⟩ might be k-separable under different k-partitions, and pi ≥ 0, qi pi = 1.
In particular, for an N -partite quantum state ρ, if it is N -separable, it is called
fully separable

ρ =
lØ

i=1
pi ρ

i
1 ⊗ · · · ⊗ ρiN (2.29)

where the Caratheodory bound is kept: l ≤ (dimHX1...XN
)2. Instead, if it is not k-

separable for any k > 1 (or, equivalently, not 2-separable), we say it is a genuinely
mulipartite entangled state.

In this way, we obtain a hierarchy for entanglement, where k-separable classes
are considered to be more entangled than the l-separable ones for k < l. Indeed,
there exist different classes of entangled states depending on how many parties are
entangled across certain partitions. For example a pure state of three parties A,
B, C of the form |Ψ⟩ABC = |ϕ⟩AB ⊗ |χ⟩C is in general entangled, as long as |ϕ⟩AB
is entangled, however party C is not correlated with A and B and in this sense
state |Ψ⟩ABC is not fully or genuinely multipartite entangled. In other words, every
subsystem in a genuinely multipartite entangled state is entangled with the others.
Besides the level of multipartite entanglement, a further complication to the
complete characterization of the entanglement of a state may be which particular
parties are entangled. Indeed, consider a tripartite state σABC and suppose it is
biseparable. It remains then to know which particular decomposition it admits, for
instance, can it be expressed as σ = p1σA ⊗ σBC + p2σAB ⊗ σC? Then, we will call
a state decomposable with respect to a set of partitions of the parties if it can be
written as a convex combination of states which are separable with respect to any
of these (and only these) partitions.

Therefore, it is now plain to see that, in practice, it is hard to decide if a
given state is separable or entangled based on the definition itself. Indeed, one of
the fundamental problems concerning entanglement is the so-called separability
problem. Some operational criteria have been defined to identify separable
states, even if their straightforward application is for the bipartite case, while
their generalization for the multipartite case is hard and not obvious. Below some
separability criteria for the bipartite case are reported:

1. Entropy inequalities
We have already seen that one of the aspects of entanglement involves a
profoundly nonclassical relationship between the information entangled states
provide us about the entire system and the information they provide us
about subsystems. Indeed, we have that for separable states these α-entropy
inequalities hold:

Sα(ρAB) ≥ Sα(ρA), Sα(ρAB) ≥ Sα(ρB) (2.30)
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where Sα(ρ) = (1 − α)−1 log Tr ρα is the α-Renyi entropy for α ≥ 0 [20], here
ρA = TrB(ρAB) and similarly for ρB. If α tends to 1 decreasing, one obtains
the von Neumann entropy S1(ρ) = S(ρ) as a limiting case. Thus, the entropy
of a subsystem can be greater than the entropy of the total system only when
the state is entangled.

2. Positive partial transpose (PPT) criterion
It was proposed in [21] and states that if ρAB is separable then the new matrix
ρTB
AB, where the operation TB is called partial transpose, with matrix elements

defined in some fixed product basis as

⟨m| ⟨µ| ρTB
AB |n⟩ |ν⟩ = ⟨m| ⟨ν| ρAB |n⟩ |µ⟩ ,

is a density operator (i.e. has nonnegative spectrum), which means automati-
cally that ρTB

AB is also a quantum state (it also guarantees positivity of ρTA
AB

defined in an analogous way). A fundamental fact is that PPT condition is
a necessary and sufficient condition for separability of 2 ⊗ 2 and 2 ⊗ 3 cases.
Thus it gives a complete characterization of separability in those cases.

3. Separability via positive, but not completely positive maps
It has been recognized that a state ρAB is separable if and only if this condition

[I ⊗ ΛB](ρAB) ≥ 0 (2.31)

is satisfied for all P but not CP12 maps Λ: B(HB) → B(HA) where HA, HB

describe the left and right subsystems of the system AB.

4. Separability via entanglement witnesses
Entanglement witnesses are observables that completely characterize separable
states and have been found very important in experimental detection of
entanglement. Their origin stems from geometry: the convex sets can be
described by hyperplanes (see Fig. 2.1). This translates into the statement
that the state ρAB belongs to the set of separable states if it has nonnegative
mean value Tr(WρAB) ≥ 0 for all observables W that (i) have at least one
negative eigenvalue and (ii) have nonnegative mean value on product states
or, equivalently, satisfy the nonnegativity condition ⟨ψA| ⟨ϕB|W |ψA⟩ |ϕB⟩ ≥ 0
for all pure product states |ψA⟩ |ϕB⟩.

12The map Λ is completely positive if and only if I ⊗ Λ is positive for identity map I on any
finite-dimensional system.
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Figure 2.1: The big blue circle represents all possible states, and the smaller
red one represents separable states. The line corresponds to the hyperplane
representing the entanglement witness W . All states that are located to
the right of this hyperplane or belong to it, including all separable states,
provide a non-negative mean value of the witness. This can be expressed
as Tr(Wρsep) ≥ 0. On the other hand, states that are located to the left of
the hyperplane are considered entangled states and can be detected by the
witness.

There are many other criteria to detect separable states. A detailed list of them
can be found in [19].
In the multipartite case, as we have seen, the qualitative definition of separability
and entanglement is much richer than in the bipartite case. The characterization
of separability in terms of positive but not completely positive maps and witnesses
generalizes naturally, but the extension of separability criteria to the multipartite
case is not straightforward and, in general, more difficult.

2.4.2 Entanglement manipulation
Entanglement is by no means a comprehensively understood phenomenon. How-
ever, despite its more esoteric characteristics, it is now well-established as a real
physical resource. Unfortunately, entanglement is often somewhat fragile and can
be diminished or destroyed if the entangled systems experience contact with a noisy
environment. By the way, entanglement can be manipulated under various sets of
operations, even if a complete understanding of what is possible and impossible
has not been reached yet.
It was realized (see [22]) that a natural way to manipulate entanglement is through
local operations and classical communication (LOCC), which cannot create en-
tanglement for free. Using LOCC operations to study resource transformation is
best illustrated in the quantum teleportation process: here, all the distant parties
(Alice and Bob) are allowed to perform arbitrary local quantum operations and
send classical information: It is not allowed to transfer quantum systems between
labs. This is because classical bits are unable to carry quantum information or
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create entanglement. Therefore, entanglement processing is a natural class for
manipulating entanglement as a resource.
So LOCCs are a special subset of all physically realizable operations on the global
system (a more detailed analysis can be found in [23]). Those are implemented in
such a way that a multipartite quantum system is restricted to acting locally on its
respective subsystems by performing measurements and more general quantum op-
erations; however in order to enhance their measurement strategies, the parties are
free to communicate any classical data, which includes the sharing of randomness
and previous measurement results (see Fig. 2.2). One then distinguishes various
subclasses of operations in general, as described in [19].

Figure 2.2: In a standard quantum communication scenario, Alice and Bob
can perform localized generalized measurements in their respective labs and
communicate classically. The brick wall signifies the impossibility of coherent
exchange of quantum particles between Alice and Bob. This set of operations
is generally referred to as LOCC. (reference [24])

The most general quantum operation that transforms one quantum state into
the other is a probabilistic or stochastic physical operation of the type

ρ −→ Λ(ρ)
Tr(Λ(ρ)) (2.32)

with trace nonincreasing CP map, i.e. a map satisfying Tr(Λ(ρ)) ≤ 1 for any state
ρ, which can be expressed in the form

Λ(ρ) =
Ø
i

ViρV
†
i (2.33)

with qi V
†
i Vi ≤ I. The operation above takes place with the probability Tr(Λ(ρ))

which depends on the argument ρ. The probability is equal to one if and only if
the CP map Λ is trace-preserving (which corresponds to qi V

†
i Vi = I in (2.33)); in

such a case Λ is called deterministic or a quantum channel.
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(a) From two partially entan-
gled states to one completely
entangled state

(b) From a completely entan-
gled state to two partially en-
tangled states

Figure 2.3: Entanglement Distillation (a) and Dilution (b)

So established distant lab (or LOCC) paradigm plays a fundamental role in
entanglement theory. Important results have been achieved within this paradigm,
including a framework for manipulating pure states. Then, since in the laboratory
one usually meets mixed states representing noisy entanglement, not much useful for
quantum information processing, it has been demonstrated that pure entanglement
can be distilled from noisy entanglement in the asymptotic regime, a process
called entanglement distillation, which converts a partially entangled state to
a maximally entangled state (Fig. 2.3a). The other is entanglement dilution,
which converts a maximally entangled state to a given partially entangled state
(Fig. 2.3b). These two processes will then be used in the next section 2.4.3 to
define operational measures of entanglement.

2.4.3 Entanglement measures

Measures of entanglement play a crucial role in quantifying and characterizing the
degree of entanglement present in quantum systems. The question remains open
about how much entanglement a certain state contains. However, this question is
not entirely well defined unless we state what physical circumstances characterize
the amount of entanglement. Indeed entanglement is a multifaceted and complex
phenomenon, and there is no single measure that captures all its aspects perfectly.
Thus researchers have developed various entanglement measures based on different
mathematical frameworks, such as entropy-based measures, geometric measures,
and operational measures. Moreover, entanglement theory is an active area of
research, and new measures continue to be proposed and explored. This ongoing
development is driven by the need to deepen our understanding of entanglement
and uncover new properties.
An entanglement measure is a mathematical quantity that should capture the
essential features that we associate with entanglement and ideally should be related
to some operational procedure. To be more precise, an entanglement measure E(ρ)
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is a mapping from density matrices into positive real numbers:

ρ → E(ρ) ∈ R+.

There are some fundamental axioms that every entanglement measure has to satisfy:

(A1) E(ρ) = 0 if and only if ρ is separable;

(A2) local unitary operations leave E(ρ) invariant;

(A3) E(ρ) does not increase over LOCC.

Any function E satisfying these conditions is called entanglement monotone.
The origin of condition (A1) is that separable states are known to contain no
entanglement (as shown in section 2.4.1). The reason for condition (A2) is that
local unitary transformations represent a local change of basis only and leave
quantum correlations unchanged, so this ensures that a local change of basis does
not affect the amount of entanglement. Formally, for a N -partite system we have
E(ρ) = E(U1 ⊗ U2 ⊗ · · · ⊗ UN ρ U †

1 ⊗ U †
2 ⊗ · · · ⊗ U †

N). The reason for condition
(A3) is that any increase in correlations achieved by LOCC should be classical (see
section 2.4.2) and therefore entanglement should not be increased.
For reasons of mathematical convenience, there can be some additional requirements
for entanglement measures, such as:

- Convexity: for a mixed state ρ = q
i piρi where the pi are the weights of the

different ρi components, an entanglement measure is convex if

E

AØ
i

piρi

B
≤
Ø
i

piE(ρi). (2.34)

Requiring this mathematical useful property is sometimes justified as capturing
the loss of information, i.e. describing the process of going from a selection of
identifiable states ρi that appear with rates pi to a mixture of these states of
the form ρ = q

i piρi.

- Additivity: given a state ρ, we say an entanglement measure is additive if

E(ρ⊗n) = nE(ρ) (2.35)

is satisfied for all integers n. Some significant entanglement measures do not
satisfy this condition, and for this reason, additivity is not included as a basic
axiom.
A much stronger requirement could be to demand full additivity, by which we
mean that for any pair of states σ and ρ we have E(σ ⊗ ρ) = E(σ) + E(ρ).
This requirement may not be satisfied by all quantities that meet the basic
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properties. Indeed, even such basic measures as distillable entanglement (it
will be treated later) may not satisfy this property. For this reason, we have
not included the full additivity in our set of properties.

Some entanglement measures have an operational definition. Others are con-
structed on the basis of the above axioms, and not all have a physical interpreta-
tion.The following summary of entanglement measures is intended as a qualitative
overview, rather than a mathematically detailed discussion. I have focused on
measures relevant to the present work - entanglement of formation - or have an
intuitive physical interpretation - distance-based measure -, and I have dealt only
with the bipartite case, being this case the simplest one and being the generalization
to the multipartite case the objective of the next chapter. I refer the reader to [25,
24, 26] and references therein for a more comprehensive and fully mathematical
treatment.
So here is a brief list of the most commonly used entanglement measures in the
bipartite case:

• Distillable entanglement
Entanglement distillation is an entanglement purification protocol whereby
Alice and Bob share n copies of an entangled state ρ, perform LOCC and
obtain k < n copies of a Bell state. The distillable entanglement is defined
as the optimal ratio k/n yielded by this process in the limit of large n. It is
interesting to note that all entangled bipartite states can be distilled, however
this may require the help of an activator state. Activator states, on the other
hand, cannot be distilled; their entanglement is inaccessible, hence the term
‘bound entanglement’ by which we refer to these states.

• Entanglement cost
It represents the number of singlet states N one has to share to distil an
arbitrary state, such that errors become infinitesimal in the limit of large N . It
is therefore defined in relation to a process that is the opposite of distillation.

• Distance-based measure
The entanglement of a bipartite quantum state ρAB may be quantified by how
distinguishable it is from the ‘nearest’ separable state,

E(ρ) = min
σ∈S

D(ρ||σ) (2.36)

where D is any measure of distance between the two density matrices ρ and
σ such that E(ρ) satisfies the axioms reported previously, and S is the set
of separable states. To satisfy condition (A1) it is sufficient to demand that
D(ρ||σ) = 0 if and only if ρ = σ. Due to the invariance of D under local
unitary transformations, condition (A2) is automatically satisfied: D(ρ||σ) =
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D(UρU †||UσU †). For condition (A3) to be satisfied it is sufficient to demand
that D(ρ||σ) has the property that it is non-increasing under every completely
positive trace-preserving map Θ, i.e. D(Θρ||Θσ) ≤ D(ρ||σ)13. This can easily
be seen in the following. If σ∗ is a separable density operator that realizes the
minimum of eq. (2.36), then because ΘS ⊂ S we find E(ρ) := D(ρ||σ∗) ≥
D(Θρ||Θσ∗) ≥ minσ∈S D(Θρ||σ) = E(Θρ).
The amount of entanglement given by eq. (2.36) can be interpreted as finding
a state σ∗ in S that is closest to ρ under the measure D (see Fig. 2.4 for
pictorial representation).

Figure 2.4: The set of all density matrices, T , is represented by the outer
circle. Its subset, a set of separable states S is represented by the inner
circle. A state ρ belongs to the entangled states, and σ∗ is the separable
state that minimizes the distance D(ρ||σ), thus representing the amount of
entanglement in ρ.

Entanglement can be measured using relative entropy as a distance measure
[27]. The relative entropy is a non-negative quantity (see section 2.3) and, due
to this property, it often appears in the context of distance measure though
technically it is not a distance, e.g. it is not symmetric. Relative entropy
of entanglement, defined as

ERE(ρAB) = min
σAB∈S

S(ρAB||σAB) (2.37)

has been shown to be a useful measure of entanglement and that fulfils the
three fundamental properties (A1−3).

• Entropy of entanglement
This measure is applied to pure bipartite state, and says that entanglement E
is defined as the von Neumann entropy of either of the two subsystems A and

13Indeed, CPTP maps are more general than unitary operations. Thus if condition (A3) is
satisfied for CPTP maps, it is satisfied also for unitary operations.
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B:

E(|ψ⟩) = S(ρA) = − Tr(ρA log2 ρA)
= S(ρB) = − Tr(ρB log2 ρB)

(2.38)

where ρA is the partial trace of |ψ⟩ ⟨ψ| over subsystem B, and ρB is defined
similarly. We have already shown in 2.3 why for pure bipartite states we have
S(ρA) = S(ρB).
Let’s now show that the entropy of entanglement fulfills the three axioms and
so is a suitable measure:

(A1) We have already shown in section 2.4 that if a pure bipartite state has no
entanglement, then its subsystems are pure states; thus if |ψ⟩ is a pure
product state, then E(|ψ⟩) = S(ρA) = S(ρB) = 0.

(A2) Since the eigenvalues of the reduced density matrix of subsystems are
invariant under local unitary transformation, so its von Neumann entropy
is also invariant under local unitary operation, so E(|ψ⟩) is invariant
under local unitary operation: E(UA ⊗UBρABU

†
A ⊗U †

B) = E(ρAB), where
ρAB = |ψ⟩ ⟨ψ|.

(A3) Let us prove monotonicity under LOCC by exploiting the fact that quan-
tum operations never increase mutual information: suppose AB is a
composite quantum system and E is a trace-preserving quantum operation
on system B; let I(A : B) denote the mutual information between system
A and B -as defined in (2.19)- before E is applied to system B, and
I(A′ : B′) the mutual information after E is applied to system B. Then
I(A′ : B′) ≤ I(A : B).

Proof. The action of E on B may be simulated by introducing a third
system C, initially in a pure state |0⟩, and a unitary interaction U between
C and B (see [12]). The action of E on B is equivalent to the action of U
followed by discarding system C. Letting primes denote the state of the
systems after U has acted we have I(A : B) = I(A : B,C) because C starts
out in a product state with AB, and clearly I(A : B,C) = I(A′ : B′, C ′).
Discarding systems cannot increase mutual information, so I(A′ : B′) ≤
I(A′ : B′, C ′). Putting it all together gives I(A′ : B′) ≤ I(A : B), as
required.

Since in our case AB is a pure state, we have S(ρAB) = 0 and S(ρA) =
S(ρB). Thus from I(A′ : B′) ≤ I(A : B) we obtain E(|ψ′⟩) ≤ E(|ψ⟩).

• Entanglement of formation
This measure was introduced in [28] and its principal objective is of quan-
tifying the entanglement of mixed states, i.e. states which are a mixture of
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entangled pure states. Indeed, we have already shown that entanglement of
pure bipartite states can be evaluated via the entropy of entanglement (2.38),
thus entanglement of formation for a pure state |ψ⟩ is simply given by

EF (|ψ⟩) = S(ρA) = S(ρB) (2.39)

where ρA = TrB |ψ⟩ ⟨ψ| and ρB = TrA |ψ⟩ ⟨ψ|. Once imposed a measure on
pure states, the entanglement of formation (EoF) for mixed states is built by
convex roof and is then defined as the minimal average entanglement over all
pure state decompositions:

EF (ρAB) = min
{pi,|ψi⟩}

Ø
i

pi EF (|ψi⟩) (2.40)

where the minimum is taken over all ensembles {pi, |ψi⟩}, that is over all the
possible realizations of the state ρAB = q

i pi |ψi⟩ ⟨ψi|, EF (|ψi⟩) is given by
(3.3), and pi represents the probability associated with each pure state.
It can be acknowledged that EoF satisfies the essential axioms (A1−3) for
being an entanglement measure since the entropy of entanglement -so the
entanglement of formation for pure states- satisfies them.

As was said, the above quantities only focus on measuring bipartite entanglement,
though multipartite generalizations can sometimes be derived. In particular, in the
next chapter, I will generalize the entanglement of formation in the multipartite
case.
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Chapter 3

Multipartite entanglement

“The enormous usefulness of mathematics in natural sciences
is something bordering on the mysterious, and there is no
rational explanation for it. It is not at all natural that “laws of
nature” exist, much less that man is able to discover them. The
miracle, of the appropriateness of the language of mathematics
for the formulation of the laws of physics is a wonderful gift
which we neither understand nor deserve.”

—Eugene P. Wigner

Multipartite entanglement, in addition to being a captivating phenomenon, is a
crucial aspect of quantum computation because it permits a speed-up over classical
computation, as pointed out by Jozsa and Linden [29]. However, identifying
entanglement in multipartite states is challenging due to exponentially increasing
degrees of freedom. On the other hand, though the N -number of quantum systems
can have various kinds of entanglement, much effort has been devoted to detecting
its strongest form, genuine multipartite entanglement (GME), since it has multiple
applications in quantum information and computational tasks (see [19]). Two
widely studied multipartite entangled states are (i) Greenberger-Horne-Zeilinger
(GHZ) [17] and (ii) W states [30]. These two states are inequivalent, i.e. they cannot
be transformed into each other by LOCCs. Maximally entangled states have found
applications in diverse fields, such as quantum teleportation [31], quantum secret
sharing [32], superdense coding [33], and enhancing the computational power [34].
The stronger non-locality displayed by maximally multipartite entangled states also
leads to many theoretical and experimental interests in quantum physics. However,
the occurrence of genuine multipartite entanglement is not straightforward and
easily detectable. A complete characterization and quantification of multipartite
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entanglement is an ongoing goal in quantum information theory. With this thesis,
I aim to contribute to these scientific endeavours.

We already introduced in section 2.4.1 the characterization of entanglement
through separability. That was sufficient to characterize entanglement in bipartite
states. However, in the multipartite case, this is no longer sufficient to provide a
complete description of entanglement. Indeed, while an N -partite (mixed) Genuine
Multipartite Entangled state is necessarily N -partite entangled, if for example
it is found to be bi-separable it remains to be resolved what kind of k-partite
entanglement exists in this state: being bi-separable just implies that k ranges
from ⌈N/2⌉ to N − 1. A N -partite state which is found to be k-separable can
exhibit anything from ⌈N/k⌉ to (N − k + 1)-partite entanglement. Thus, we will
introduce some mathematical concepts from partitioning theory to have a more
comprehensive and useful characterization of a multipartite quantum system.

We will see that there are two different ways to characterize the entanglement
of N -partite quantum systems [35], one is according to the question “How many
partitions are separable?”, the other is “How many particles are entangled”. The
former is described by k-separability (as we have already seen in chapter 2), and
the latter leads to k-partite entanglement. k-separability provides fine graduation
of entanglement of states according to their degrees of separability, so we will
introduce a measure to quantify the entanglement of such states. We will start
by introducing a measure for k–non-separable states. Then we will manage to
extend that definition in the case of k–producible states. However, we will see that
such an extension does not bring any useful description of entanglement. Thus
we will present another general construction of a measure suitable for quantifying
genuine multipartite enetanglement. These tasks will be accomplished through the
exploitation of the concepts of partionability and producibility [36].
In this way, we will analyze two different manifestations of multipartite entangle-
ment: k–non-separable entanglement and k–partite entanglement. These are two
different concepts of multipartite entanglement, although 2–non-separable entan-
glement is equivalent to genuine N–partite entanglement and N–non-separable
entanglement is equivalent to 2–partite entanglement. So, both k–non-separable
and k–partite entanglement can be used to characterize multipartite entanglement.
In the upcoming section, we will illustrate that these two occurrences of entan-
glement stem from two different ways of partitioning an N–partite system XN :
a partition X1|X2|X3| . . . (where a part Xi is a subsystem, possibly consisting of
several elementary subsystems, e.g. particles) is k–partionable if the number of
subsystems is at least k (X1|X2| . . . |Xk), while it is k–producible if all the subsys-
tems contain at most k elementary subsystems (Xi =

î
X[1],X[2], . . . ,X[l]

ï
with

l ≤ k for each i).
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3.1 Partitioning a N-partite quantum system

A finite dimensional N -partite quantum system, XN =
î
X[1],X[2], . . . ,X[N ]

ï
1, is

described by a density matrix ρN , being ρ[i] the states of the subsystems X[i],
i = 1,2, . . . , N . Thus, the state of the total system ρN belongs to the Hilbert space
H that decomposes into a direct product of N subspaces H = H1 ⊗ H2 ⊗ · · · ⊗ HN ,
where the dimension of the Hilbert space Hi is assumed to be finite.
Given aN -partite quantum system XN , we may distinguish between k-partitionability
and k-producibility of entanglement - the latter also called entanglement depth.
Namely, k–partitionability is about the number of subsystems separable from
one another, and not sensitive to the size of entangled subsystems. In the previous
chapter, it was understood that when we talked about k–partition in section 2.4.1
we meant k–partitionable partition. The notion of k–producibility, instead, is
designed to be sensitive to the question ‘how many particles are entangled?’, so
it is about the size of the largest entangled subsystem, and not sensitive to the
number of subsystems separable from one another (for more details, see [37, 38]).
Thus, the degree of two different aspects of multipartite entanglement can be
described. They arise from two different ways of partitioning an ensemble of N
subsystems: those that cannot be factorized in at least k parts, and those that
cannot be factorized in parts of size at most k, respectively.
The k–producibly separable states will be simply called k–producible states, while
k–partitionibly separable states will be called k–separable states, as we got used
to. However, as we can see from their definitions and in the examples shown in
Figure 3.1, it is not clear how partitionability and producibility are related to each
other in entanglement theory. To better understand them, let us point out their
properties.

3.1.1 k-partitionability
Let us start by analyzing the properties of partitionability. The concept of parti-
tionability is linked to the separability problem already covered in section 2.4.1. A
N–partite pure state |ψ⟩ ∈ H is called k–separable (or, extensively, k–partitionably
separable) if there is a k–partitionable partition X1|X2| . . . |Xk of {1, 2, . . . , N} into
k pairwise disjoint subsets: XN = ∪k

i=1Xi with Xi =
î
X i

[1],X i
[2], . . . ,X i

[mi]

ï
such that

|ψk−sep⟩ = |ψ⟩X1
|ψ⟩X2

. . . |ψ⟩Xk
(3.1)

1For the sake of clarity, let us point out the notation adopted: X[i] indicates a single subsystem
i; Xi indicates a subset of subsystems, that is Xi =

)
X i

[1],X
i
[2], . . . ,X

i
[mi]
*

; then XN indicates the
full set of subsystems.
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Figure 3.1: The down-sets corresponding to k–partitionability and
k–producibility, illustrated for N = 2, 3 and 4. The two kinds of down-
sets contain the elements below the specific green and blue dashed lines.

where |ψ⟩Xi
is the state of subsystems X i

[1],X i
[2], . . . ,X i

[mi] in HXi
= omi

j=1 Hj. That
is, an N–partite pure state is k–separable, if and only if it can be written as a
product of k substates. Then, an N–partite mixed state ρ is called k–separable if
it can be written as a convex combination of at most k–separable pure states

ρk−sep =
Ø
i

pi
---ψik−sep

f e
ψik−sep

--- (3.2)

where
---ψik−sep

f
might be k–separable under different partitions. That is, an N -

partite mixed state ρ is k–separable if and only if it has a decomposition into
k-separable pure states. In particular, an N–partite state is referred to as fully
separable, if and only if it is N -separable. While it is called genuinely N–partite
entangled if and only if it is not bi–separable (2–non-separable).
So, each k–separable state with k < N has some degree of entanglement. For this
reason, we will identify k–partitionability with k–non-separable entanglement.
Indeed, if any k–partitionable subset of a state has some degree of entanglement,
then it means that that state is not k–separable.
In section 2.4.3 we have presented entanglement measures for bi-partite states
(k = 2). Bi–partite entanglement is well understood and, now, accessible from
an experimental viewpoint too. Instead, multi–partite entanglement (k > 2)
characterization and quantization is still not very understood and it is currently one
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of the ever-expanding horizons of quantum information. This is also because, in an
N–partite state, there are many ways to share entanglement. For example, there
are N(N − 1)/2 different pairs of particles that can display bipartite entanglement.
In general, there are A

N

k

B
= N !
k!(N − k)!

different kinds of k–partitionable entanglement in an N–partite state, where N ≥ k,
given by the different ways of realizing a k–partitonable partition.
In general, k–separable mixed states are not separable within any subset, which
makes k-separability - and so k–partitionable entanglement - even more difficult
to detect. As an example, we see bi-separable states that are entangled with
respect to a fixed bipartition. It has been observed that certain states, which are a
combination of other states that are separable with respect to some bipartition,
still exhibit entanglement. This means that such states cannot be expressed as a
combination of separable states with respect to a fixed bipartition, nor can they be
expressed as a combination of fully separable states. For example, three-qubit states
|ψ1⟩ = 1√

2(|00⟩ + |11⟩)23 |0⟩1, |ψ2⟩ = 1√
2(|00⟩ + |11⟩)13 |0⟩2, and |ψ3⟩ | = 1√

2(|00⟩ +
|11⟩)12 |0⟩3 are 2-separable under 2–partitionable partitions 1|23, 13|2, and 12|3,
respectively. Their convex combinations ρ = p1 |ψ1⟩ ⟨ψ1| + p2 |ψ2⟩ ⟨ψ2| + p3 |ψ3⟩ ⟨ψ3|
(with pi > 0,q3

i=1 pi = 1) are mixtures of bi–separable states with respect to
different partitions, and therefore bi–separable. However, as can be easily checked,
ρ is entangled with respect to each fixed bipartition, that is, it can not be written
as a convex combination of bi-separable states with respect to a fixed bipartition.

To summarize, the study of partitionability in quantum systems offers insights
into the intricate nature of entanglement. Partitionability delineates the ability to
decompose multipartite quantum states into smaller subsystems and characterizes
the entanglement present within these partitions. A state is considered k-separable
if it can be factored into k substates, each pertaining to a distinct partition, thus
revealing a form of entanglement within each subset. This task is quite demanding
since the number of possible partitions of a set of N elements grows exponentially
with N . Detecting k-separability in mixed states becomes even more arduous, since
such states might not exhibit separability within any individual subset. Even states
that are k-separable under certain partitions can be entangled when considered
in different partitions. For instance, mixtures of bipartite-separable states across
various partitions can still retain entanglement, making their characterization
complex and challenging.
In the next chapter we will present a measure capable of quantifying this manifesta-
tion of entanglement: it will be a generalization of the entanglement of formation for
multipartite states and it will be suitable for evaluating the degree of entanglement
in k–non-separable quantum states.
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3.1.2 k-producibility
Let us now analyze the properties of producibility. We will adhere to the formulation
Girolami, Tuffarelli, and Susa provided in [39]. As we have seen before, a finite
dimensional N -partite quantum system XN = {X[1],X[2], . . . ,X[N ]} is described by
a density matrix ρN , being ρ[i] the states of the subsystems X[i], i = 1,2, . . . , N . Let
us consider clusters, described by density matrices ρkj

, forming a coarse grained
partition {Xk1 ,Xk2 , . . . ,Xkm}, with qm

j=1 kj = N , kj ≤ k, where each cluster Xkj

includes up to k subsystems, e.g. Xkj
= {X[1],X[2], . . . ,X[kj ]}. Now we consider the

set of all k-producible partitions of a state ρN :

Pk =
I
ρN =

mp
j=1

ρkj
,

mØ
j=1

kj = N, k = max {kj}
J
. (3.3)

The complete chain for producibility hierarchy reads P1 ⊂ P2 ⊂ · · · ⊂ PN−1 ⊂ PN ;
an illustrative representation is given in Fig. 3.2.

Figure 3.2: Multipartite producibility hierarchy. Given a system of N par-
ticles (blue spheres), the sets Pk, k = 1, 2, . . . , N , consist of states displaying
up to k-partite entaglement. The green k spheres identify the largest subset
of a coarse-grained partition (the dashed red lines separate each cluster).

We say that a pure N–partite state |ψN⟩ is k–producible, or producible by
k–partite entanglement, if it belongs in Pk and it can be expressed as

|ψk−prod⟩ = |ψ⟩Xk1
⊗ |ψ⟩Xk2

⊗ · · · ⊗ |ψ⟩Xkm
, (3.4)

where each |ψ⟩Xki
is a pure state corresponding to the cluster Xki

and they are
states of maximally k parts. So, in this definition m ≥ N/k has to hold. To
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the sake of clarity, this has to be verified in order to |ψ⟩ being k–producible:
∃Xk1|Xk2| . . . |Xkm ∋ |ψ⟩Xki

is the state of subsystems X ki

[1],X
ki

[2], . . . ,X
ki

[p] in HXki
=op

j=1 Hj and p ≤ k.
Then, we then say that a mixed state ρ is k–producible if and only if it can be
expressed as a convex combination of k–producible pure states like in (3.4):

ρ =
Ø
i

λi
---ψik−prod

f e
ψik−prod

--- , (3.5)

where qi λi = 1, λi ≥ 0. That is, a mixed state which is k–producible requires
only the generation of k–partite entangled states and mixing for its production.
Consequently, a mixed state ρ contains k–partite entanglement if and only if it
cannot be decomposed into a convex sum of products of density matrices with
all density matrices involving less than k particles: at least one of the terms is a
k–partite entangled density matrix.
With this formalism, a state is genuine k–partite entangled if it is k–producible
but not k + 1–producible.
An extension of producibility is the concept of depth of entanglement (see [37]):
it is the minimal k for which a given multipartite state ρ admits a decomposition
such as (3.5). It characterizes the minimal number of particles that are entangled.
More precisely, for a pure k–product state such as in (3.1):

|ψk−sep⟩ = |ψ⟩X1
|ψ⟩X2

. . . |ψ⟩Xk

with tXi =
î
X[1],X[2], . . . ,X[N ]

ï
and Xi ∩ Xj = ∅ for i /= j, the entanglement

depth of |ψk−sep⟩, denoted by D(ψk−sep), is defined as the largest cardinality of Xi.
And an N -particle state ρN has entanglement depth D if, for all decomposition of
ρN = q

i pi |ψiN⟩ ⟨ψiN |, there exists one pure state |ψiN⟩ that has at least D–particle
entanglement. More precisely, the entanglement depth of ρN is defined as follows

D(ρN) = min
ρN =

q
pi|ψi⟩⟨ψi|

max
i
D(ψiN) (3.6)

where each |ψiN⟩ is an N–particle pure state and D(ψiN ) is the entanglement depth
of |ψiN⟩ ⟨ψiN |. That is, ρN has genuine D–partite entanglement. Obviously in
general, all 1 ≤ D(ρN) ≤ N are possible for ρN . An N -partite density matrix ρN
has entanglement depth at least ⌈N/k⌉ if it is not k–separable. The entanglement
depth D(ρN) = 1 corresponds to a fully separable state (N -separable), and the
entanglement depth D(ρN) = N corresponds to a genuine N–partite entangled
state (i.e. not biseparable).In this sense, the entanglement depth characterizes the
minimum number of particles that cannot be separated within the system.
In systems lacking spatial ordering, entanglement depth is a crucial variable for
characterizing entanglement properties. However, in systems with spatial order such
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as spin chains, or in the presence of gradient fields, the dynamics of a system may
also depend on whether entanglement exists only between neighbouring particles
or also between distant particles.The concept of entanglement width will be used
to describe the property of entanglement (see [40] for more details). The width of
entanglement w of a pure state |ψ⟩ = o

j |ψj⟩ is defined as the maximal distance
w of two entangled particles within the states |ψj⟩. A completely separable state
exhibits an entanglement width of w = 1. The entanglement width of a mixed
state is defined by the minimum with w overall decomposition ρ = q

j pj |ψj⟩ ⟨ψj|,
that is

w(ρ) = minq
j
pj |ψj⟩⟨ψj |

[max
j

{w(ψj)}]. (3.7)

By definition, the entanglement depth is a lower bound of the entanglement
width (even if the entanglement width does not make any statement about the
entanglement depth). In Fig. 3.3 an exemplary representation of entanglement
depth and width is shown.

Figure 3.3: Comparison of entanglement depth (a) and entanglement width
(b) of the state |ψ⟩ = |ψ 3,6⟩ ⊗ |ψ4,5⟩ ⊗ |ψ2⟩. While entanglement depth
disregards spatial ordering, entanglement width requires it, e.g. in a spin
chain. The entanglement depth of the state |ψ⟩ in (a) is given by D(ψ) = 3,
since maximally three particles are entangled. This is a lower bound on the
entanglement width in (b), which equals w = 6, since entanglement occurs
between particles that are six units apart in the chain.

To summarize, the presented analysis delves into the properties of producibility
within multipartite quantum systems. The concept explores the hierarchical
nature of multipartite entanglement through the lens of k-producible partitions.
These partitions, forming a coarse-grained description of the system, highlight the
emergence of entanglement among subsystems. Pure states are deemed k-producible
if they can be expressed as products of pure states within clusters of at most k
elements, while mixed states are k-producible when they can be expressed as convex
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combinations of such pure k-producible states. Genuine k-partite entanglement is
defined for states that are k-producible but not (k + 1)-producible.

After having introduced the notions of partitionability and producibility along
with their properties, in the next sections we will exploit these concepts to define
measures of entanglement suitable to describe the two manifestations of multipar-
tite entanglement: the k–non-separable entanglement and the k–partite one. For
the latter, we will start with an already proposed measure for k–non-separable
entanglement: we will generalize it and show that it is a valid measure of entangle-
ment, even if not able to give satisfying insights into entanglement of multipartite
states. Then, we will build on a generic construction for a genuine multipartite
entanglement measure.

3.2 Entanglement measure for k–non-separable
states

In [41] a k–entanglement measure Ek based on the use of the von Neumann entropy
was proposed, with k the size of a split of a N–partite system. Here, I will propose
a variation of that formula, which will be a generalization of the entanglement of
formation in the multipartite case able to quantify the entanglement in k–non-
separable states, and then I will prove that it is a well-defined entanglement measure.
This approach is based on the fact that, since a bipartite state is entangled if and
only if its subsystems are mixed (as shown in chapter 2), then it is at least plausible
to generalize this approach for the multipartite scenario and to think that "the
more mixed the marginals, the more entangled is the state". Thus a measure of
mixedness (entropies) of the subsystems should lead to a motivated measure of
entanglement of the whole N -partite system. One possibility is that if one considers
the entanglement with respect to a k–separable partition, then one simply sums
up the measures of mixedness of the subsystems with respect to that partition.
So, let |ψ⟩ ∈ H1 ⊗ · · · ⊗ HN be a N–partite pure state, the entanglement for
multipartite k–non-separable state ρN = |ψ⟩ ⟨ψ| (simply denoted as k–NonSep
entanglement, E(k)) is defined as follows:

E(k)(ρN) = min
{X1|X2|...|Xk}

1
k

kØ
i=1

S(ρXi
), (3.8)

where the minimum is taken over the set of all k–partitionable partitions of
ρN , {X1|X2| . . . |Xk}, S(ρXi

) = − Tr(ρXi
log ρXi

) is the von Neumann entropy of
ρXi

= TrX̄i
(|ψ⟩ ⟨ψ|), and X̄i is the complementary set of Xi in {X1,X2, . . . ,Xk}.

The factor 1/k takes into account the fact that, for higher orders of k, so for higher
orders of partitionable partitions, the entanglement of the state is expected to be
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lower. So we can interpret this measure as given by the k–partition of ρN that
minimizes the average of the entropy of all the subsystems Xi, i = 1, . . . , k, that
compose that partition.
Then, thanks to the convex roof construction, for a mixed state ρN the k–NonSep
entagnlement is defined as:

E(k)(ρN) = inf
{pj ,|ψj⟩}

Ø
j

pjE
(k)(|ψj⟩ ⟨ψj|), (3.9)

where the infimum is taken over all ensemble decompositions of ρN .
Now we have to prove that k–NonSep entanglement is a well-defined entanglement

measure. Thus, we have to prove that it fulfils the three axioms (A1−3) presented in
section 2.4.3. Before these, we will prove an additional property (A0), convexity, for
which we have that mixing of states does not increase entanglement of formation.

(A0) Consider two N–partite quantum systems ρ, σ ∈ H = H1 ⊗ · · · ⊗ HN and
t ∈ [0,1], then E(k) is convex with respect to input states:

E(k)
1
tρ+ (1 − t)σ

2
≤ tE(k)(ρ) + (1 − t)E(k)(σ). (3.10)

Proof.
Let us start by considering ρ and σ as pure states. In this case, the proof
is obvious because of the convex roof construction by which the k–NonSep
entanglement (3.9) is defined.
Now let us consider the case in which ρ and σ are mixed states. Let us denote by
Q1 = {pi, |ψi⟩} the set of pure states decomposition of ρ, and Q2 = {qj, |ϕj⟩}
the set of pure states decomposition of σ, such that ρ = q

i pi |ψi⟩ ⟨ψi|, σ =q
j qj |ϕj⟩ ⟨ϕj|. Consider γ = tρ + (1 − t)σ. By construction, one pure state

decomposition of γ is given by the pure state decomposition of ρ plus the one
of σ: tqi pi |ψi⟩ ⟨ψi| + (1 − t)qj qj |ϕj⟩ ⟨ϕj|. However, γ may have other pure
states decomposition γ = q

l rl |ηl⟩ ⟨ηl|, and among them there can be some
that provide the infimum of the k–NonSep entanglement of γ. This can be
expressed more formally by noting that, if we denote as Q = {rl, |ηl⟩} the set
of pure states decomposition of γ, we have Q1 ∪Q2 ⊆ Q, and so

E(k)(tρ+ (1 − t)σ) = inf
Q

Ø
l

rlE
(k)(|ηl⟩ ⟨ηl|)

≤ inf
Q1∪Q2

è
t
Ø
i

piE
(k)(|ψi⟩ ⟨ψi|) + (1 − t)

Ø
j

qjE
(k)(|ϕj⟩ ⟨ϕj|)

é
= tE(k)(ρ) + (1 − t)E(k)(σ).

(3.11)
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(A1) Given an N–partite quantum state ρ ∈ H = H1 ⊗ · · · ⊗ HN , then it is
k–separable if and only if E(k)(ρ) = 0.

Proof.
Let us first demonstrate this property for a pure state ρ = |ψ⟩ ⟨ψ|.

(⇒) If ρ = |ψ⟩ ⟨ψ| is a k–separable pure state relative to a k–partition
X1|X2| . . . |Xk, it is clear that S(ρXi

) = 0 for all i = 1,2, . . . , k. So
E(k)(|ψ⟩ ⟨ψ|) = min{X1|X2|...|Xk}

1
k

qk
i=1 S(ρXi

) = 0.

(⇐) If E(k)(|ψ⟩ ⟨ψ|) = 0, then there exist a k–partition X1|X2| . . . |Xk such
that S(ρXi

) = 0 for all i, which holds if and only if each ρXi
is pure, i =

1,2, . . . , k. Let us prove that this implies that ρ = |ψ⟩ ⟨ψ| is k–separable.
To do so we will use an iterative procedure, showing first that ρ is
bi–separable, then 3–separable, until showing that it is k–separable.
Let us split the N–partite quantum system into a bipartition according
to X1, such that H = HX1 ⊗ HX̄1 . Let

|ψ⟩ =
Ø
i

λ
(1)
i

---aX1
i

f ---bX̄1
i

f

be the Schmidt decomposition of |ψ⟩ with respect to the 2–partition X1|X̄1.
Then we have

ρ =
Ø
i,j

λ
(1)
i λ

(1)
j

---aX1
i

f e
aX1
j

---⊗ ---bX̄1
i

f e
bX̄1
j

---
ρX1 = TrX̄1(ρ) =

Ø
i

(λ(1)
i )2

---aX1
i

f e
aX1
i

---
ρX̄1 = TrX1(ρ) =

Ø
i

(λ(1)
i )2

---bX̄1
i

f e
bX̄1
i

--- .
Since ρX1 is a pure state, there exist i such that λ(1)

i = 1 and λ
(1)
j = 0

for all j /= i. Consequently, we have ρX1 =
---aX1
i

f e
aX1
i

---, ρX̄1 =
---bX̄1
i

f e
bX̄1
i

---.
Then we have

ρ =
---aX1
i

f e
aX1
i

---⊗ ---bX̄1
i

f e
bX̄1
i

--- = ρX1 ⊗ ρX̄1 ,

so ρ is 2–separable with respect to the 2–partition X1|X̄1.
Next we split the subsystem X̄1 into a bipartition according to X2, such
that HX̄1 = HX2 ⊗HX̄1\X2 , where X̄1 \X2 is the complement of X2 in X̄1 =î
X2,X3, . . . ,Xk

ï
. Repeating the same argument as before, we consider the
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Schmidt decomposition of
---ψX̄1

f
with respect to the 2–partition X2|{X̄1 \

X2} of X̄1 ---ψX̄1

f
=
Ø
i

λ
(2)
i

---cX2
i

f ----dX̄1\X2
i

>
and

ρX̄1 =
Ø
i,j

λ
(2)
i λ

(2)
j

---cX2
i

f e
cX2
j

---⊗ ----dX̄1\X2
i

>=
d

X̄1\X2
j

----
Since ρX2 is a pure state, we have Tr

è
TrX2(ρX̄1)

é2
= Tr

è
TrX̄1\X2(ρX̄1)

é2
= 1,

and then
ρX̄1 = ρX2 ⊗ ρX̄1\X2 ;

so ρ is 3–separable:
ρ = ρX1 ⊗ ρX2 ⊗ ρX̄1\X2 .

Continuing this procedure, in the end we obtain that ρ = |ψ⟩ ⟨ψ| is
k–separable:

ρ = ρX1 ⊗ ρX2 ⊗ · · · ⊗ ρXk
.

Let us now demonstrate this property for a mixed state ρ = q
i pi |ψi⟩ ⟨ψi|.

(⇒) If ρ is k–separable, then each |ψi⟩ is k–separable, with E(k)(|ψi⟩ ⟨ψi|) = 0,
and by the convex roof construction shown in (3.9) we have E(k)(ρ) = 0.

(⇐) If E(k)(ρ) = 0, then, due to the definition (3.9), there exists an opti-
mal ensemble decomposition {pi, |ψi⟩}, such that E(k)(ρN) = inf{pi,|ψi⟩}q
i piE

(k)(|ψi⟩ ⟨ψi|) = 0, that is qi piE
(k)(|ψi⟩ ⟨ψi|) = 0. This implies that,

for every i, we have E(k)(|ψi⟩ ⟨ψi|) = 0, that is |ψi⟩ is k–separable for
every i, so ρ = q

i pi |ψi⟩ ⟨ψi| is k–separable.

The axiom (A1) provide that if E(k)(ρ) > 0 then ρ is not k–separable, from
which the name “entanglement of formation for multipartite k–nonseparable
state” derives.

(A2) Given an N–partite quantum state ρ ∈ H = H1 ⊗ · · · ⊗ HN , if U1,U2, . . . ,UN
are unitary operators acting on H1,H2 . . . ,HN respectively, then E(k)(ρ) is
invariant under local unitary transformation:

E(k)
1
U1 ⊗ U2 ⊗ · · · ⊗ UN ρ U †

1 ⊗ U †
2 ⊗ · · · ⊗ U †

N

2
= E(k)(ρ). (3.12)
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Proof.
For a pure state |ψ⟩, since the eigenvalues of the reduced density matrices of the
subsystems X1,X2, . . . ,Xk (the subsystems of the k–partition that minimizes
1
k

qk
i=1 S(ρXi

)) do not change under local unitary operations, so their von
Neuman entropy are also invariant and as a consequence even E(k)(|ψ⟩ ⟨ψ|) is
invariant under local unitary transformations.
For a mixed state ρ = q

i pi |ψi⟩ ⟨ψi|, this property stems directly from the
pure states case, due to the convex roof construction shown in (3.9).

(A3) Given an N–partite quantum state ρ ∈ H = H1 ⊗ · · · ⊗ HN , if E is a local
operation and classical communication (LOCC) procedure, then E(k)(ρ) does
not increase over E :

E(k)
1
E(ρ)

2
≤ E(k)(ρ). (3.13)

Proof.
We have already proven in section 2.4.3, in the case of a bipartite state, the
validity of this property for the entropy of entanglement and, consequently, for
the entanglement of formation. We will exploit that result for the following
proof.
Let us start from the pure state case ρ = |ψ⟩ ⟨ψ|. Let X1|X2| . . . |Xk be a
k–partition of {X[1],X[2], . . . ,X[N ]}. Now we consider all the k bipartitions
Xi|X̄i for i = 1, . . . , k, and we assume that Ei(|ψ⟩ ⟨ψ|) = S(ρXi

) is the entan-
glement of formation (as defined in (3.3)) of ρ = |ψ⟩ ⟨ψ| with respect to the
2–partition Xi|X̄i.2 For what we have already proven in the bipartite case, we
have Ei

1
E(|ψ⟩ ⟨ψ|)

2
≤ Ei(|ψ⟩ ⟨ψ|). So

E(k)
1
E(|ψ⟩ ⟨ψ|)

2
:= min

{X1|X2|...|Xk}

1
k

kØ
i=1

Ei
1
E(|ψ⟩ ⟨ψ|)

2

≤ min
{X1|X2|...|Xk}

1
k

kØ
i=1

Ei(|ψ⟩ ⟨ψ|) := E(k)(|ψ⟩ ⟨ψ|).

Now let us consider the mixed state case ρ = q
j pj |ψj⟩ ⟨ψj|. Here we will use

2We remember that for a bipartite system H = HA ⊗ HB , the entanglement of formation of a
pure state ρAB = |ψ⟩ ⟨ψ| is simply given by EF (ρAB) = S(ρA) = S(ρB).
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the previous result for pure states and convexity property (A0):

E(k)
1
E(ρ)

2
= E(k)

1Ø
j

pjE(|ψj⟩ ⟨ψj|)
2 (A0)−−→

≤
Ø
j

pjE
(k)
1
E(|ψj⟩ ⟨ψj|)

2 pure states−−−−−−→

≤
Ø
j

pjE
(k)(|ψj⟩ ⟨ψj|).

So we have E(k)
1
E(ρ)

2
≤ inf{pj ,|ψj⟩}

q
j pjE

(k)(|ψj⟩ ⟨ψj|) := E(k)(ρ).

Now we present two examples to show this entanglement measure in action. We
will deal with the |GHZ⟩ and the |W ⟩ states, which are the three qubits states
with maximum entanglement [42], so we expect that the k–NonSep entanglement
is consistent with that. Let us start with the |GHZ⟩ state

|GHZ⟩ = |000⟩ + |111⟩√
2

. (3.14)

Its density matrix is given by

ρ
GHZ

ABC = 1
2
1
|000⟩ ⟨000| + |000⟩ ⟨111| + |111⟩ ⟨000| + |111⟩ ⟨111|

2
. (3.15)

In order to address the partitions useful for the evaluation of the k–NonSep
entanglement of |GHZ⟩, we compute its reduced density matrices by taking the
partial trace over the subsystems A,B and C:

ρ
GHZ

AB = TrC(ρGHZ

ABC) = 1
2
1
|00⟩ ⟨00| + |11⟩ ⟨11|

2
= ρ

GHZ

AC = ρ
GHZ

BC

(3.16)

ρ
GHZ

A = TrBC(ρGHZ

ABC) = 1
2
1
|0⟩ ⟨0| + |1⟩ ⟨1|

2
= ρ

GHZ

B = ρ
GHZ

C

(3.17)

The von Neumann entropies are:

S(ρGHZ

AB ) = S(ρGHZ

AC ) = S(ρGHZ

BC ) = −1
2 log 1

2 − 1
2 log 1

2 = 1

S(ρGHZ

A ) = S(ρGHZ

B ) = S(ρGHZ

C ) = −1
2 log 1

2 − 1
2 log 1

2 = 1
(3.18)

Thus, the measures of k–NonSep entanglement of |GHZ⟩ are:

E(3)(|GHZ⟩ ⟨GHZ|) = min
S3

1
3

3Ø
i=1

S(ρi) = 1
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E(2)(|GHZ⟩ ⟨GHZ|) = min
S2

1
2

2Ø
i=1

S(ρi) = 1

where with Sk we indicated the set of the k–partitions of the system ABC (S2 =
{AB|C,AC|B,BC|A}, S3 = {A|B|C}). So we obtained that |GHZ⟩ is not fully
separable (E(3) /= 0), and it is not 2–separable (E(2) /= 0), thus |GHZ⟩ displays
genuinely three-partite entanglement, as we expected.
Let us now consider the |W ⟩ state

|W ⟩ = |001⟩ + |010⟩ + |100⟩√
3

(3.19)

and let us repeat the same procedure of |GHZ⟩. We expect that also |W ⟩ is
genuinely entangled. The density matrix is given by

ρ
W

ABC = 1
3
1

|100⟩ ⟨100| + |100⟩ ⟨010| + |100⟩ ⟨001| +

|010⟩ ⟨100| + |010⟩ ⟨010| + |010⟩ ⟨001| +
|001⟩ ⟨100| + |001⟩ ⟨010| + |001⟩ ⟨001|

2
.

(3.20)

The reduced density matrixes are:

ρ
W

AB = ρ
W

AC = ρ
W

BC = 1
3
1

|00⟩ ⟨00| + |10⟩ ⟨10| +

|10⟩ ⟨01| + |01⟩ ⟨10| + |01⟩ ⟨01|
2 (3.21)

ρ
W

A = ρ
W

B = ρ
W

C = 1
3
1
2 |0⟩ ⟨0| + |1⟩ ⟨1|

2
(3.22)

The von Neumann entropies are (this quantities are evaluated also in Appendix B):

S(ρW

AB) = S(ρW

AC) = S(ρW

BC) = −1
3 log 1

3 − 2
3 log 2

3 = 0.918

S(ρW

A ) = S(ρW

B ) = S(ρW

C ) = −1
3 log 1

3 − 2
3 log 2

3 = 0.918
(3.23)

Thus, the measures of k–NonSep entanglement of |W ⟩ are:

E(3)(|W ⟩ ⟨W |) = min
S3

1
3

3Ø
i=1

S(ρi) = 0.918

E(2)(|W ⟩ ⟨W |) = min
S2

1
2

2Ø
i=1

S(ρi) = 0.918.
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ρN E(2) E(3)

|GHZ⟩ 1 1
|W ⟩ 0.9 0.9

Table 3.1: k–non-separable entanglement values for GHZ and W state.

In Table 3.1 the values computed for the two canonical states GHZ and W are
reported. So we obtained that |W ⟩ is not fully separable (E(3) /= 0), and it is not
2–separable (E(2) /= 0), thus |W ⟩ is genuinely entangled, as we expected. As we
can see, we have got reasonable results. We have obtained that these states are
genuinely three partite entangled.

In summary, we have introduced a multipartite entanglement measure termed
as k-NonSep Entanglement, a generalization of entanglement of formation for
multipartite systems that quantifies entanglement in k-non-separable states. The
formulation extends the concept of entanglement from bipartite scenarios by measur-
ing the mixedness of subsystems within N -partite systems. Proofs of its well-defined
properties in accordance with three axioms (A1−3) demonstrate its consistency
as a bona fide entanglement measure. Further, exemplification with key states
such as the |GHZ⟩ and |W ⟩ states corroborates its efficacy in delineating genuine
multipartite entanglement, reaffirming its applicability and relevance in charac-
terizing complex quantum states. This methodological framework adds to the
toolkit of quantum information theory, aiding in the systematic exploration and
understanding of multipartite entanglement in quantum systems.
However, it is important to note that this measure has its limitations and downsides.
One of the main limitations is that it does not take into account the deeper proper-
ties of entanglement, such as whether a state belongs to a certain entanglement class
under LOCC (see [30]). For example, using solely this measure we would not be
able to distinguish between |GHZ⟩ and |W ⟩. Indeed, we know that they belong to
two different LOCC classes: |W ⟩ from |GHZ⟩ are distinguished by the robustness
over particle loss, in the sense that |W ⟩ retains bipartite entanglement when one if
its particle is traced out, on the contrary of |GHZ⟩. This behaviour is not reflected
in any way by the k–NonSep measure. In addition, calculating the k-NonSep
measure is a complex task for states with more than three particles. This is because
the measure involves adding the entropies of all the possible separable portions
of the substate, which grows exponentially as the number of particles increases.
Therefore, calculating the k-NonSep measure becomes extremely challenging for
states with more than three particles.
In the next section, we address the problem of defining a more suitable and useful
measure of multipartite entanglement. We will do this for the k–partite entan-
glement. We will use a framework similar to the one in [39], which identifies
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distance-based measures to describe genuine multipartite correlations in classical
and quantum systems. We instead will use solely a measure of bipartite entangle-
ment to describe genuine multipartite entanglement.

3.3 Generic construction of genuine multipartite
entanglement measure

Given the measure of entanglement for k–non-separable states, it is at least legiti-
mate to generalize that measure to the case in which we have k–producible states,
thus managing to measure genuine multipartite entanglement of quantum systems.
To do so, we will adopt the formulation used in [39], where a framework to describe
genuine multipartite correlations in classical and quantum systems was proposed
through the identification of distance-based measures.
Let us start with the pure state ρN = |ψ⟩ ⟨ψ|. Similarly to equation (3.8), we define
the measure of genuine entanglement of order higher than k as follows:

Ek→N(ρN) = min
Pk

1
m

mØ
i=1

S(ρi) (3.24)

where the minimum is taken over all the k–producible partitions Pk =
îom

i=1 ρki
,qm

i=1 ki = N, k = max{ki}
ï

, m ≤ ⌈N
k

⌉ is the number of marginals ρki
= TrN−ki

(ρN )
belonging in the k–producible partition that fulfil the minimization, and the
introduction of the factor 1/m has the same meaning of the introduction of 1/k for
the k–non-separable entanglement (3.8), thus getting the meaning of an arithmetic
mean of the entropy of the subsystems.
Then, thanks to the convex roof construction, for a mixed state ρN the genuine
entanglement of order higher than k–is defined as:

Ek→N(ρN) = inf
{pj ,|ψj⟩}

Ø
j

pjE
k→N(|ψj⟩ ⟨ψj|) (3.25)

where the infimum is taken over all ensemble decompositions of ρN .
The fulfilment of properties A1−3 is straightforward since this measure is a general-
ization of the already proved measure for k–non-separable states.

Now, as an illustrative example, we evaluate this measure of entanglement for
the |GHZ⟩ and |W ⟩ states, and we verify that this measure is consistent with what
we expect. We make use of the calculations performed in the previous section 3.2.
So, for the |GHZ⟩ state, we have

E2→3(|GHZ⟩ ⟨GHZ|) = min
P2

1
m

mØ
i=1

S(ρi) = 1
2(1 + 1) = 1
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ρN E2 E3

|GHZ⟩ 0 1
|W ⟩ 0 0.9

Table 3.2: k–partite entanglement values for GHZ and W state using
measure (3.24).

E1→3(|GHZ⟩ ⟨GHZ|) = min
P1

1
m

mØ
i=1

S(ρi) = 1
3(1 + 1 + 1) = 1,

while for the |W ⟩ state we have

E2→3(|W ⟩ ⟨W |) = min
P2

1
m

mØ
i=1

S(ρi) = 1
2(0.918 + 0.918) = 0.918

E1→3(|W ⟩ ⟨W |) = min
P1

1
m

mØ
i=1

S(ρi) = 1
3(0.918 + 0.918 + 0.918) = 0.918.

On the other hand, it is more interesting and useful to measure the amount of
genuine k–partite entanglement rather than the genuine entanglement of order
higher than k. To do so, we could use the same formulation pointed out in [39]
and define the genuine k–partite entanglement of formation as follows:

Ek(ρN) = Ek−1→N(ρ) − Ek→N(ρ). (3.26)

However, we can already see that this is not consistent with what we know about
the |GHZ⟩ and |W ⟩ states. Indeed, we expect to have only tripartite entanglement
for the |GHZ⟩ state, while both bipartite and tripartite entanglement for the |W ⟩
state (see [42]), i.e. the entanglement of |W ⟩ is more robust under particle loss
than the one of |GHZ⟩. But, while this is true for the |GHZ⟩ state

E3(ρGHZ ) = E2→3(ρGHZ ) = 1

E2(ρ
GHZ ) = E1→3(ρGHZ ) − E2→3(ρGHZ ) = 0,

instead for the |W ⟩ we do not obtain what we expect:

E3(ρW ) = E2→3(ρW ) = 0.918

E2(ρW ) = E1→3(ρW ) − E2→3(ρW ) = 0.

These values are also reported in Table 3.2 which gives a more direct glimpse of
the erroneous similar behaviour of GHZ state and W one.
Thus, using the definition of genuine entanglement of formation of order higher
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than k (3.24) and formula (3.26) we were not able to describe the presence of
bipartite entanglement in the |W ⟩ state. The origin of this setback can be found in
the fact that for both the |GHZ⟩ and the |W ⟩ state the reduced density matrices
ρAB and ρA have the same entropy (see calculations in (3.18),(3.23)), thus there is
no effective way to distinguish between the entanglement of formation defined in
(3.24) for 1–producible partition and 2–producible one. This implies that formula
(3.26) gives zero genuine bipartite entanglement for both |GHZ⟩ and |W ⟩.

Hence, a different formulation for a measure of genuine multipartite entanglement
is needed. We will propose a generic construction of genuine k–partite entanglement
measures. It exploits the concept of producibility and is solely based on a generic
measure of bipartite entanglement. Thus, for construction, it will fulfil the known
properties for a valid entanglement measure. Then, we will present some examples
that validate the measure for some canonical quantum states.

In the first chapter, we have shown that entanglement in a bipartite system
represents how far a state is from the one created through LOOC between two
laboratories. We first address the problem of extending this interpretation to the
case of a multipartite system, and of defining a construction to measure its genuine
multipartite entanglement. For genuine k–partite entangled state we intend a
multipartite state for which there are groups of at most k entangled particles. So
it comes in handy to use the concept of producibility. We will use a framework
similar to the one in [39], which identifies distance-based measures to describe
genuine multipartite correlations in classical and quantum systems. We instead
will use solely a measure of bipartite entanglement to describe genuine multipartite
entanglement.

Let us start with the interpretation of k-partite entanglement. Let us consider
a multipartite quantum system XN of N qubits distributed among remote parties
(laboratories) that can only interact via LOCC. In a similar way to the bipartite
entanglement, k–partite entanglement of a state represents how this state differs
from one that can be constructed through LOCC by the N laboratories when these
are divided into subsets of at most k laboratories. In other words, it is within these
subsets that our state is formed beyond the limitations imposed by LOCC.
Now we describe the construction of a measure of genuine k–partite entanglement.
First, we partition the system into groups of at most k qubits, thus k laboratories,
by considering the set of k–producible partitions Pk (3.3). To take into account
the entanglement present in each group, so in each marginal state ρki

, we sum the
bipartite entanglement between each individual qubit and the other qubits. But,
to avoid redundancy while evaluating the entanglement between one qubit and
the other qubits, we trace out the qubits for which the bipartite entanglement has
been already taken in. In other words, by considering the bipartite entanglement
between each qubit and the remaining ones, this approach takes into account
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how the marginal state of k qubits ρk differs overall from the state that can be
created through LOCC between each individual laboratory and the remaining
k − 1 laboratories, so if only LOCC were allowed between the k laboratories. This
procedure is then repeated for all the marginal states ρki

composing the k–producible
partition of the system XN . A pictorial representation of this construction in the
case of a system with four qubits is illustrated in Figure 3.4. In this way, we obtain

Figure 3.4: Construction of genuine multipartite entanglement of order
lower or equal than k, E1→k, in the case of a system with four qubits
(green spheres). Each row is related to a different way of partitioning the
system of four qubits: four, three, and two producible partitions. Subsets
of the partitions are encased in black lines. Blue zigzag lines indicate the
possible entanglement present between two qubits. Red arches represent the
bipartition for which the entanglement between one qubit and the remaining
ones is evaluated. Light green spheres indicate the qubits traced out once
their bipartite entanglement has been considered. So, genuine multipartite
entanglement of order equal or lower than k, E1→k, is assessed by evaluating
the maximum of the sum of all bipartite entanglements over the different
k, k − 1, . . . , 2 producible partitions.

the genuine multipartite entanglement of order equal or lower than k, which is
defined as:

E1→k(ρN) = max
Pk

mØ
i=1

E(ρki
), (3.27)

where the maximum is taken over all the k-producible partitions of ρN and E(ρki
)

is given by the sum of the bipartite entanglement of formation of ρki
and of all its
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ρN E2 E3 E4

|GHZ3⟩ 0 1
|W3⟩ 0.5 0.9

|ψ±/ϕ±⟩ ⊗ |ψ±/ϕ±⟩ 2 0 0
|GHZ4⟩ 0 0 1

Table 3.3: Genuine k–partite entanglement values for GHZ state of three
qubits, W3 state, a state given by the tensor product of two Bell states
|ψ±⟩ / |ϕ±⟩, GHZ of four qubits.

ki − 2 subsystems obtained tracing out one subsystem at a time:

E(ρki
) = max

;
EX[1](ρki

) +
ki−1Ø
j=2

EX[j]

1
TrX[1],...,X[j−1](ρki

)
2<
, (3.28)

where the maximum is taken over all the possible permutations of the subsystems
X[1], . . . ,X[ki] composing ρki

, obviously E(ρ[l]) = 0 that is the entanglement of a
single subsystem is zero, and EX[l] is the bipartite entanglement with respect to
subsystem X[l]: if ρki

describes the state of the quantum systems X[1], . . . ,X[ki],
then its bipartite entanglement with respect to X[l] is:

EX[l](ρki
) = E2(X[l] : X[1] . . .X[l−1]X[l+1] . . .X[ki]). (3.29)

Any of the measures fulfilling properties A1−3 can be used to measure bipartite
entanglement E2 in (3.29).
Then, the genuine k-partite entanglement is given by the difference between mul-
tipartite entanglement of order equal or lower than k and the one equal or lower
than k − 1:

Ek = E1→k − E1→k−1. (3.30)

It is straightforward to see that measure (3.27), and consequently also (3.30),
satisfy the desiderata properties A1−3 for an entanglement measure. Indeed, by
construction, (3.27) is given by the sum of bipartite entanglements. Thus, assuming
that the used measure of bipartite entanglement fulfills the properties A1−3, then
those properties are also accomplished by (3.27). In particular, the measure of
genuine k–partite entanglement Ek is always bigger or equal to zero, since we
always have E1→k ≥ E1→k−1.

To check the validity of this measure, now we evaluate the genuine k-partite
entanglement for some canonical examples. As a bipartite entanglement measure,
we use the entanglement of formation:

E2(|ψ⟩) = S(ρA) = S(ρB)
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for pure states ρAB = |ψ⟩ ⟨ψ| and

E2(ρAB) = min
{pi,|ψi⟩}

Ø
i

pi E2(|ψi⟩)

for mixed states ρAB = q
j pj |ψj⟩ ⟨ψj|. Here are the quantum states considered:

• the GHZ state, for which we obtain E1→3
1
ρ

GHZ

3

2
= 1, E1→2

1
ρ

GHZ

3

2
= 0;

• similarly, for the GHZ state of N qubits, E1→N
1
ρ

GHZ

N

2
= 1 and EN

1
ρ

GHZ

N

2
= 1;

• the W state of three qubits, for which E1→3
1
ρ

W

3

2
= 1.4, E1→2

1
ρ

W

3

2
= 0.5;

• we evaluate also the genuine tripartite and bipartite entanglement values for
the states given by the linear combinations of |GHZ⟩ and |W ⟩. Their values
for different combinations are shown in Fig. 3.5, which exhibits some peculiar
behaviors;

• another sanity check is verifying that a state given by the tensor product of
N Bell states, so with 2N qubits, has bipartite entanglement equal to N and
k–partite entanglement equal to 0 for k ≥ 2. In the case N = 2, we have
E1→2 = 2, E1→3 = 2, E1→4 = 2.

The genuine k–partite entanglement values for all these cases are reported in Table
3.3. For all these cases we get values in agreement with what we expected.

In this comprehensive discussion on measuring genuine multipartite entangle-
ment, a novel approach is proposed to construct a measure for genuine k–partite
entanglement in quantum systems. Initially, an attempt was made to extend
an existing measure, as described in equation (3.26), to assess genuine k–partite
entanglement. However, this measure exhibited shortcomings when applied to
canonical states like the |GHZ⟩ and |W ⟩ states. Specifically, it failed to delineate
bipartite entanglement accurately within these states, a pivotal distinction. This
limitation prompted the introduction of an alternative approach. This method
leverages the concept of producibility and relies solely on a generic measure of
bipartite entanglement, addressing the limitations posed by LOCC. The developed
measure, described by equations (3.27) to (3.30), successfully satisfies the desired
properties for a valid entanglement measure. Notably, the proposed measure is
corroborated through rigorous evaluations of various canonical quantum states,
such as GHZ and W states, and even linear combinations of these states. The
results obtained are in accordance with the expected behaviour, validating the
effectiveness of the devised measure.
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Figure 3.5: Genuine tripartite and bipartite entanglement values for the
states given by the linear combinations of |GHZ⟩ and |W ⟩.
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Chapter 4

Conclusions and future
developments

Entanglement is a unique property of quantum systems and plays a central role in
quantum information theory. While bi-partite entanglement has been extensively
studied and experimentally observed, multi-partite entanglement presents a chal-
lenging frontier in quantum information theory. Understanding and quantifying
entanglement for multipartite states remains an ongoing and crucial pursuit in
advancing our comprehension of quantum phenomena and leveraging quantum
information science for practical applications. Its complexity stems from the myriad
ways entanglement can manifest among multiple particles. The exploration of
partitionability and its connection to entanglement showcases the multifaceted
nature of those quantum systems. The variety of possible partitions within an
N -partite system highlights the diverse nature of multipartite entanglement, leading
to numerous distinct types and degrees of entanglement.
In this thesis, we have first introduced a generalization to the multipartite case of
the entanglement of formation measure. We termed it k-NonSep entanglement and
pointed out how it quantifies entanglement in k-non-separable states. This formu-
lation extends the concept of entanglement from bipartite scenarios by measuring
the mixedness of subsystems within N -partite systems. Proofs of its well-defined
properties in accordance with three axioms (A1−3) of a valid entanglement measure
have demonstrated its consistency as a fruitful entanglement measure. However,
this measure manifested limitations and downsides. Remarkably, it was not able to
take into account the deeper properties of entanglement, such as whether a state
belongs to a certain entanglement class under LOCC. For instance, we remarked
on the inability of this measure to distinguish between the states |GHZ⟩ and |W ⟩.
This limitation prompted the introduction of an alternative approach. First, we
investigated the physical interpretation of genuine k–partite entanglement of a
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quantum state. It represents how this state differs from the one that can be con-
structed through LOCC by the N laboratories when these are divided into subsets
of at most k laboratories: it is within these subsets that the state is formed beyond
the limitations imposed by LOCC. Then, we presented a generic construction for
a genuine multipartite entanglement measure. This construction is based on the
idea of partitioning a multipartite system into groups of at most k qubits and, for
each group, evaluating the sum of bipartite entanglement between each particle.
Due to this construction, the measure satisfies the desiderata properties of an
entanglement measure. Further, the evaluation of this entanglement measure for
key states corroborated its efficacy in delineating genuine multipartite entangle-
ment, reaffirming its applicability and relevance in characterizing complex quantum
states. This methodological framework adds to the toolkit of quantum information
theory, aiding in the systematic exploration and understanding of multipartite
entanglement in quantum systems.

In summary, we have proposed a novel framework for quantifying genuine multi-
partite entanglement leveraging the concept of producibility and relying solely on
a measure of bipartite entanglement. This refined approach successfully rectified
the prior limitations, exhibiting consistency and accuracy when evaluated across a
spectrum of quantum states. Particularly, it was possible to distinguish between
different entanglement classes in states like |W ⟩ and |GHZ⟩. Moreover, the for-
malism satisfies the properties required to be fulfilled by any valid entanglement
measure.
Our method offers a promising avenue to explore and quantify multipartite en-
tanglement, providing a robust tool applicable to various quantum states, further
advancing our understanding of multipartite correlations in quantum mechanics.
Further research can explore its evaluation for more general multipartite quantum
states and its connections to other entanglement measures. Furthermore, it would
be intriguing to explore potential applications in quantum computing and idealize
experiments to measure entanglement for multipartite states, which could confirm
or refute the predicted value of our measure.
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Appendix A

Code for counting partitions

First, we show the Python code for counting the number of ways to partition a set
into k disjoint subsets.
For example, let us consider the case with N = 3 and k = 2. The set is given by
{1,2,3}. We can partition it into 2 subsets in following ways:
{{1,2}, {3}}, {{1}, {2,3}}, {{1,3}, {2}}. So we have in total 3 different ways of
partitioning a set of 3 elements into 2 disjoint subsets.
The following code is based on a recursive approach which is explained here. There
are two cases:

1. The previous N − 1 elements are divided into k partitions, i.e S(N − 1, k)
ways. Put this nth element into one of the previous k partitions. So, count
= k ∗ S(N − 1, k)

2. The previous N−1 elements are divided into k−1 partitions, i.e S(N−1, k−1)
ways. Put the N -th element into a new partition (single element partition).
So, count = S(N − 1, k − 1)

3. Total count = k ∗ S(N − 1, k) + S(N − 1, k − 1).

1 % # A Python3 program to count the number o f p a r t i t i o n s o f a s e t with
N elements in to k subse t s

2

3 # Returns count o f d i f f e r e n t p a r t i t i o n s o f n e lements in k subse t s
4

5 de f countP (N, k ) :
6

7 # Base ca s e s
8 i f (N == 0 or k == 0 or k > n) :
9 re turn 0
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10 i f ( k == 1 or k == n) :
11 re turn 1
12

13 # S(N+1, k ) = k∗S(N, k ) + S(N, k−1)
14 re turn ( k ∗ countP (N−1, k ) +
15 countP (N−1, k−1) )

Since two recursive functions are called for every value of N, then the time complexity
of the above code is exponential. More specifically, the time complexity is O(2N).

More efficient solutions can be devised by exploiting dynamic programming.
Indeed, the solution can be optimized by reducing the overlapping subproblems.
This can be done by avoiding the recomputation of the same subproblems by
constructing a temporary array dp[ ][ ], as it is shown in the code below.

1 # A Dynamic Programming based Python3 program to count the number o f
p a r t i t i o n s o f a s e t with N elements in to k subse t s

2

3 # Returns count o f d i f f e r e n t p a r t i t i o n s o f N elements in k subse t s
4 de f countP (N, k ) :
5

6 # Table to s t o r e r e s u l t s o f subproblems
7 dp = [ [ 0 f o r i in range ( k + 1) ]
8 f o r j in range (N + 1) ]
9

10 # Base ca s e s
11 f o r i in range (N + 1) :
12 dp [ i ] [ 0 ] = 0
13

14 f o r i in range ( k + 1) :
15 dp [ 0 ] [ k ] = 0
16

17 # F i l l r e s t o f the e n t r i e s in dp [ ] [ ] in bottom up manner
18 f o r i in range (1 , n + 1) :
19 f o r j in range (1 , k + 1) :
20 i f ( j == 1 or i == j ) :
21 dp [ i ] [ j ] = 1
22 e l s e :
23 dp [ i ] [ j ] = ( j ∗ dp [ i −1] [ j ] + dp [ i −1] [ j −1])
24

25 re turn dp [N ] [ k ]

The time complexity of the dynamic programming code is O(N × k).

Now we show the Python code for evaluating the Bell number, that is the total
number of ways to partition a set of N elements into k subsets. The value of N -th
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Bell Number is the sum of S(N, k) for k = 1 to N : Bell(N) = qN
k=1 S(N, k).

For example, let us consider the case with N = 3. The set is given by {1,2,3}. We
can partition it in the following ways:
{{1}, {2}, {3}}, {{1,2}, {3}}, {{1}, {2,3}}, {{1,3}, {2}}, {{1,2,3}}. So we have in
total 5 different ways of partitioning a set of 3 elements.

1 # python program to f i n d the number o f ways o f p a r t i t i o n i n g i t
2 N = 5
3 s = [ [ 0 f o r _ in range (N+1) ] f o r _ in range (N+1) ]
4 f o r i in range (N+1) :
5 f o r j in range (N+1) :
6 i f j > i :
7 cont inue
8 e l i f ( i==j ) :
9 s [ i ] [ j ] = 1

10 e l i f ( i==0 or j==0) :
11 s [ i ] [ j ]=0
12 e l s e :
13 s [ i ] [ j ] = j ∗ s [ i −1] [ j ] + s [ i −1] [ j −1]
14 ans = 0
15 f o r i in range (0 ,N+1) :
16 ans+=s [N ] [ i ]
17 pr in t ( ans )

59



Appendix B

Qiskit code

The following Qiskit code is useful for the evaluation of the reduced density matrices
and the entropies for the W state.

1 # import ing l b r a r i e s
2 from q i s k i t import QuantumCircuit , Aer , execute , quantum_info ,

QuantumRegister , C l a s s i c a l R e g i s t e r
3 from q i s k i t . quantum_info import DensityMatrix , S ta t evec to r
4 import numpy as np
5

6 # c r e a t i n g the W s t a t e
7 q = QuantumRegister (3 )
8 ro t = 2∗ np . a r c s i n (1/np . sq r t (3 ) )
9 c i r c u i t = QuantumCircuit ( q )

10 c i r c u i t . ry ( rot , q [ 0 ] )
11 c i r c u i t . x ( q [ 0 ] )
12 c i r c u i t . ch ( q [ 0 ] , q [ 1 ] )
13 c i r c u i t . x ( q [ 1 ] )
14 c i r c u i t . ccx ( q [ 0 ] , q [ 1 ] , q [ 2 ] )
15 c i r c u i t . x ( q [ 1 ] )
16 c i r c u i t . x ( q [ 0 ] )
17

18 backend = Aer . get_backend ( ’ s t a t evec to r_s imu la to r ’ )
19 r e s u l t = execute ( c i r c u i t , backend ) . r e s u l t ( )
20 s t a t e v e c t o r = r e s u l t . g e t_s ta tevec to r ( )
21 density_matrix = DensityMatrix ( s t a t e v e c t o r )
22

23 # eva lua t ing the reduced dens i ty matrix t r a c i n g out 1 qubit
24 qubits_to_trace_out_1 = [ 0 ]
25 reduced_density_matrix_1 = quantum_info . p a r t i a l _ t r a c e ( density_matrix ,

qubits_to_trace_out_1 )
26 entropy_1 = quantum_info . entropy ( reduced_density_matrix_1 )
27
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Qiskit code

28 # eva lua t ing the reduced dens i ty matrix t r a c i n g out 2 qub i t s
29 qubits_to_trace_out_2 = [ 1 , 2 ]
30 reduced_density_matrix_2 = quantum_info . p a r t i a l _ t r a c e ( density_matrix ,

qubits_to_trace_out_2 )
31 entropy_2 = quantum_info . entropy ( reduced_density_matrix_2 )
32

33 # eva lua t ing the entanglement o f format ion o f \rho_AB
34 E_AB = quantum_info . entanglement_of_formation (

reduced_density_matrix_1 )
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PPT
Positive partial transpose

CP
Completely positive

CPTP
Completely positive trace preserving

GME
Genuine multipartite entanglement

GHZ
Greenberger-Horne-Zeilinger

EPR
Einstein-Podolski-Rosen

LHV
Local hidden variable

POVM
Positive operator-valued measure
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