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Abstract

Channel networks are ubiquitous in our world. They are found in biological systems
as intricate blood capillary structures, in natural landscapes as river drainage
patterns, and even in various human transport designs such as urban water supply
networks. This thesis embarks on a comprehensive exploration of over a century of
Optimal Channel Networks (OCNs) literature. Our aim is to formulate a unified
model that captures and generalizes the cumulative efforts done in this field. We
have provided a complete mathematical description of the optimization process,
arguing that the commonly assumed ’principle of local optimality’ is, probably,
dispensable. Our generalization not only synthesizes the existing knowledge about
optimal networks but also try to introduce fresh perspectives, including a new
explanation for the formation of loops even in a stationary regime, a modern picture
of the optimal network landscape and the revelation of a phase transition within the
ground state topology of these networks. This findings enhances our understanding
of the intricate interplay between channel networks structure and optimization,
shedding light on previously unexplored facets of this fascinating field.
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Chapter 1

Introduction

The problem of efficiently distributing (or draining) resources among numerous
receivers (donors) represents a challenge that must be addressed frequently in our
world. This happens in nature, where living organisms have to develop in a way
to constantly supply every cell with fundamental vital substances. River drainage
networks, with their interesting geometries, are an other example of natural solution
to this problem. Moreover, the same issue is faced in engineering, for instance, in
the design of effective electrical distribution implants or water supply/drainage
networks. In general, if the elements that require (furnish) the supplies are very
close to the source (collector), diffusion is the best transport mechanism that
can guarantee an efficient transfer of resources. Conversely, often we deal with
situations where the size of the system is not so small to make diffusion efficient.
Channel networks arise to overcome this inefficiency of diffusion for large-scale
transport (Fig. 1.1). In particular, in this thesis, we studied Optimal Channel
Networks (OCNs). We call them ’Optimal’ since, in principle, there are many
ways to realize those linkage structures, but not all possible designs are equally
convenient. We expect, for instance, that nature, during eras of evolution, has
managed to design very specific and efficient channel arrangements. Therefore, on
the other hand, when we address technological problems, we would like to be able
to plan intelligent solutions. The theoretical research on OCNs has always been
deeply influenced by natural evidence, and one major goal in this field still is to
try to capture the evolutionary wisdom we previously discussed. Besides that, our
progress in the comprehension of this problem seems to point out that, usually,
nature follows a good constructional design, but maybe not the best one. This is
due to the complex path that every natural system has to pass through during
its development. Therefore, in the end, in this field are very important both the
’best designs’, that we hope to be able to employ for technological applications,
and either the statistics of the just ’good designs’, that can be reached through
imperfect search in the complex space of networks arrangements.
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Introduction

Our discussion starts by giving a historical perspective in Chapter 2. Beginning
with the early 1900s, we are going to explore the major contributions and key
ideas that we found in literature. The first steps in this field were directed towards
understanding the local optimal properties of OCNs, famously giving rise to the Hess-
Murray law. Only in a second moment, the global network features assumed great
interest. In particular, the differences coming from stationary or time-dependent
transport regimes are quite relevant. Notably, it is in the time-dependent regime
where optimal solutions exhibit the emergence of non-trivial loops. Furthermore,
this chapter ends with the brief exploration of an alternative methodology, the
so-called adaptive approach.

Figure 1.1: Examples of channel networks: close view of leaf venations (upper
left corner), above view of the Guadalquivir river (upper right corner), X-ray of the
human lungs (lower left corner) and the map of London sewers (lower right corner).

In Chapter 3, the discussion of our true research begins. We are going to
propose the description of a unified model for OCNs. Here, we first give the
mathematical characterization of our proposal, and then we try to present a
systematic picture of the optimization framework. This chapter also explores the
dichotomy existing between constrained or unconstrained models. Notably, we
challenge the conventional belief in the ’principle of local optimization,’ arguing its
real necessity. In the end, we discuss some new behaviors that seem to arise from
our model.
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Introduction

Chapter 4 addresses the technical description of the algorithms toolkit we
employed to generate optimal networks. All the presented algorithms have been
coded in Python during the time devoted to this thesis, and they served as a means
to evaluate numerically our model. We present various strategies, outlining their
advantages and defects.

A crucial point of our discussion is the definition of a cost function to evaluate
different network performances. Chapter 5 is dedicated to an investigation into the
current state of knowledge concerning the minima landscape of the mentioned cost
function. The latter is defined in a very high-dimensional space, and furthermore,
it can be shown that the number of its minima grows exponentially with the
dimension of the domain. We try to resume the findings gathered in the literature
in a unique phase diagram while introducing novel details. Most notably, we show
the existence of a phase transition within the topologies of networks at their ground
state.

In the concluding chapter, we synthesize our results and present together the
threads that we hope to deepen in future research. This thesis tries to offer
a comprehensive view of optimal channel networks, passing through historical
antecedents, contemporary optimization methodologies, and numerical analyses
towards a modern picture of OCNs.
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Chapter 2

Optimal channel networks

In nature, it is frequent to see intricate network structures designed for the efficient
transport of resources. These networks are exemplified by the human circulatory
system, the lymphatic networks found in plants, or the complex channel systems
associated with river drainage basins. The great elegance and functionality of these
interconnected systems have moved scientific curiosity and started an inquiry for
practical applications. In this chapter we will provide a concise overview of the
pivotal ideas that have contributed to our understanding and modeling of optimal
channel networks, tracing the evolution of knowledge from its inception to the
contemporary state of research.

2.1 Local optimality and Hess-Murray law
The research history of optimal channel networks has its roots in the work of two
pioneering physiologists, Walter Rudolf Hess and Cecil Dunmore Murray. They
both worked in the early 900’ trying to understand the local (about each channel
separately) characteristics that make natural network efficient. Hess, a Swiss
physiologist and Nobel prize winner, first proposed the principles of what would
later become known as the Hess-Murray Law. In his 1914 doctoral thesis Hess
introduced the concept of a "work minimization" principle governing the circulation
of blood or lymph within living organisms. Using this idea he was able to determine
the vessel radius that would incur the least energy expenditure for an organism.
Just as an historical remark, we can mention that in his 1808 Croonian Lecture
[1], Thomas Young, proposed the same result found by Hess [2] without providing
any theoretical justification. Later on, Cecil D. Murray, an American physiologist,
"rediscovered" the Hess-Murray Law in 1926 [3], further expanding its significance.
Murray’s analysis was primarily focused on identifying the most efficient means of
oxygen transport within the human body. Murray echoed Hess’s ideas by starting
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Optimal channel networks

with the assumption that the power required in a single vessel, of length l and
radius r, can be written as:

J = ∆PQ + bV = c1
Q2

r4 + blr2 (2.1)

where ∆P is the pressure gradient in the pipe, Q is the volumetric flow, b is
a constant and V is the volume of the vessel. Note that the second equality
is obtained in hypothesis of laminar flow. Thus Murray took into account two
contribution to the power. The first is straightforwardly the energy needed to
sustain the flow in the vessel. The second is the metabolic cost of building and
maintaining the conduit. From (2.1) it is then a simple mathematical problem to
obtain that it exists an optimal value for the vessel radius:

rú =
32c1

bl

4 1
6

Q
1
3

rú Ã Q‘ ‘ = 1
3

(2.2)

it should be stressed that, this first fundamental result on the optimal structure of
networks, is therefore completely ’local’. In the sense that it is only related to any
individual channel but it is not telling us anything about the global structure of
the net. Despite that, we can even see another interesting consequence of (2.2) by
considering continuity at bifurcations (Fig.2.1):

Q0 = Q1 + Q2

r3
0 = r3

1 + r3
2

(2.3)

the latter is precisely the relation commonly referred to as Hess-Murray law. In the
following years this law has been widely discussed [4]. Uylings [5] showed that (2.2)
can be generalized to turbulent flows obtaining ‘ = 3/7. An exponent ‘ = 1/2 can
be derived in pulsatile flow [6]. Miguel [7] showed that the optimal radius depends
on the “degree of non-Newtonianity” of the fluid, Ê, and than (2.2) can be more
generally rewritten using an exponent ‘ = 2/(3Ê + 3) (with Ê = 1 =∆ Newtonian
fluid). Several experimental findings, as documented in references [8], [9], [10],
[11], and [12], have been gathered. These studies took into consideration vascular
and aerial networks in various animal species, as well as lymphatic networks in
plants. The collective results of these experiments suggest that the exponent ‘
could exhibit a range between 1/3 and 1/2, with some studies even extending this
variability further.
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Optimal channel networks

Figure 2.1: Network bifurcation

Notably, the predictions of the H-M Law were found to be more accurate for smaller
vessels, such as arterioles and capillaries, underscoring its significance, as well as
its limits, in understanding the design of circulatory and branching systems within
living organisms. The Hess-Murray Law continues to be an important concept in
the study of optimal transport networks, keeping track of the fundamental work of
these two physiologists and their enduring impact on the field. In conclusion, in
order to stress one last time the importance of this law, we can recall the words
that Sherman used in a well-documented review [13] of the Hess-Murray Law:

Murray’s law for connecting large vessels to small is as memorable as
Pythagoras’ edict on right triangles

Thomas F. Sherman [13]
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Optimal channel networks

2.2 The stationary problem
Subsequent years witnessed a shift in focus from local structures to the examination
of global organizational principles within transport networks. Researchers began
representing these networks as conductance graphs, introducing the concept of total
energy cost, i.e. the cumulative energy per unit time required for the establishment
and maintenance of the whole network. A conductance graph is a weighted graph
where each link represent a pipe of the network and the relative weight stands for the
conductance of that link. We will define more properly the conductance in chapter
3, but for the moment let’s just think that a pipe with higher conductance allow for
a larger flow, whereas as the conductance goes to zero the link can accommodate
less and less flow. If a link is not present in the network its conductance is null.
Additionally, at each node in the network, an exogenous flux is defined. This
concept is significant for various applications. In biological systems, it can represent
the idea that each node either demands or supplies a specific quantity of resources.
In the context of river drainage networks, this exogenous flux may symbolize the
input of rainfall. In human systems, these exogenous fluxes correspond to the
demands of individual entities within the network. This conceptual framework
provides a foundation for understanding the common characteristics of various
types of transport networks, it provides the basis to try to understand how resources
are distributed within these complex systems.

There is in particular one research group that was able to reach decisive break-
throughs and helped to develop a rich picture of OCNs, working continuously
on this field for the last thirty years. The principal authors of this group are
Rodríguez-Iturbe, Rinaldo, Banavar and Maritan. The first great step ahead was
due to the establishment of some principles postulated behind the structure of
optimal networks. Those principles were thought as intuitions arising from the
experience gathered with experimental evidence on natural networks. In particular
in the 90’ Rinaldo and Rodríguez-Iturbe [14] [15] [16] [17] stated the existence of
a ’principle of local optimality’ and a ’principle of global optimality’. The first is
essentially just equivalent to say that the network should fulfill the Hess-Murray
optimality condition (2.2) at each edge. Note that this is far from obvious the
edges being not independent. The second states that the network should minimize
a global cost of the form:

J =
ÿ

e

Je (2.4)

where the sum span all the edges and the term Je is the cost of the e-th edge.
The application of the ’local optimality’ principle is fundamental since it simplifies
dramatically the mathematical description of the system. In particular if we
constrain our analysis only to network fulfilling (2.2) at each edge, it can be easily
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shown that (2.4) can be written only in terms of the flows as:

J =
ÿ

e

fe(Qe) (2.5)

this is a central result that soon would have lead to deep consequences. In fact not
much later, in 2000, Banavar rigorously proved [18] an analytical result which still
remains the foundation for current research in this field. His demonstration showed
that the optimal structure of a network, with a cost function in the form of (2.5),
is dependent solely on the concavity of the functions {fe}. Note that it is crucial,
for Banavar’s well-known proof to hold, that the global cost can be expressed
solely as a function of the flows Qe. This idea led to the following conclusion:
there exist two distinct categories of Optimal Channel Networks, characterized
by fundamentally different properties, corresponding to convex and concave cost
functions, respectively. If all {fe} functions are convex, the unique minimum of
the cost corresponds to a completely looped geometry. On the other hand, if the
functions are concave, there is a high redundancy of local minima, with every
spanning tree representing a local optimum. It should be further considered that,
the authors of the mentioned research group, were originally interested mostly in
river networks. This is the reason why, if we go in depth into their formulation, they
make use of a very specific shape for the cost function (2.5) that can be derived
in the context of river flows. Despite that, in the following years, researchers
attempting to study the optimal networks problem, even in different scenarios
and for different kind of flows, were influenced by the great results just discussed.
Notably a study by Bohn and Magnasco published in 2007 [19] showed that, even
by starting with the well known models aiming to describe biological networks, at
the end, using the same principles just discussed, the problem falls into the issue of
minimizing a function in the form (2.5). Typically (more on that in Chapter 3) it
can be shown that under the previous assumptions the global cost can be written
as:

J Ã
ÿ

e

QΓ
e (2.6)

meaning that functions {fe} are simple power laws, all featuring the same exponent
Γ, that therefore is responsible for their concavity. So the exponent Γ assumed a
great interest since it is the parameter that allows for completely different kind
of behaviours. Following the exact results by Banavar, one can say that, for Γ <
1, a huge number of local minima emerges, yet all maintain a tree-like structure.
Conversely, for Γ > 1, a singular OCN configuration, where all links are present,
dominates the others. In this regime, it became more economical to construct
numerous links with small conductance values.
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Optimal channel networks

Figure 2.2: Results obtained by Bohn and Magnasco [19], in (a) we see the OTN
for Γ > 1 while in (b) the Γ < 1 case is displayed

Let’s conclude this section with a couple of remarks:

Remark 1. Nowadays this result (phase transition between loopy and tree networks)
is widely accepted and it is often taken as starting point for further analysis. On
the other hand the initial set of arbitrary principles that lead to this conclusions
has been no more questioned. It seems to us that the very roots of all the recent
discussion about OCNs are often disregarded and just given as granted. But as we
will show in next chapter we believe that it is now possible to go beyond the initial
scheme of assumptions we presented in this section, towards a more general and
lighter set of principles.

Remark 2. Beside its importance, this outcome underscores some intrinsic lim-
itation of the described approach. In particular the hierarchical loop structures
commonly observed in real-world natural networks can’t be understood in this frame-
work. The intricate complexities of these networks cannot be fully explained through
the optimization of steady-state resource transport alone.
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2.3 Adding fluctuations and the appearance of
loops

In recent times, the exploration of incorporating stochasticity and fluctuations
into network models has gained significant interest. This development holds broad
relevance because the classical assumption of stationary flow, commonly employed
in the study of optimal networks, is an idealization that diverges from real-world
complexities. In a work by Corson in 2010 [20], the concept of fluctuations was
introduced by considering the vector of sources, representing resources injected at
each point in the network, as a random variable.

In this stochastic framework, where the cost function is expressed in terms
of average quantities, fluctuations gave rise to an entirely distinct category of
optimal structures. These structures exhibited a blend of loops coexisting with the
hierarchical organization of trees. Concurrently, in the same year, Katifori studied
fluctuations through a distinct perspective [21]. First, he pursued a path analogous
to Corson’s approach, except that he introduced randomness by considering sinks,
representing demands, as random variables rather than sources. Second, he explored
the interesting concept of fluctuations as random damage to the network. Under
this premise, any edge could potentially be eliminated with a certain probability
and we can think to be optimizing the network also with respect to its robustness
to stochastic malfunctioning or physical damage.

Figure 2.3: Results obtained by Corson [20], the same fluctuations strength
characterize the three pictures whereas: in (a)Γ = 2

5 , (b) Γ = 6
7 , (c) Γ = 10

9

Remarkably, in both of these distinct approaches, fluctuations leaded to a
profound influence on the optimal structure of the network, favoring the presence
of loops. Despite that, while hierarchical loops emerged in both models, the
quantitative characteristics of the resulting networks exhibited clear disparities.

10
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This exploration of fluctuations has expanded our understanding of optimal net-
work topologies, underscoring the interplay between stochasticity and the formation
of loopy structures.

Recently (2021-2023) Facca and Lonardi [22] [23] have shown that the appearance
of loops is more generally the hallmark of non stationary flows. The same effect can
be seen, as a particular case, by introducing stochasticity only because fluctuations
lead to a non stationary regime.

Figure 2.4: Results obtained by Katifori [21]. We can see the appearance of
loops as a result of optimizing under damage to links (left column) and under a
fluctuating load (right column). Note also that the colour scale marks the pressure
gradient and “ does not exactly coincides with the previous discussed exponent
Γ. But it can be shown that Γ = 2“

“+1 . In particular since “ = 1 ≈∆ Γ = 1 they
both denote a overall change of behaviour in a similar way.
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2.4 The dynamical approach
It is important to stress that the conceptual pathway we are pursuing is not
the sole approach that has been considered to address this problem. In a recent
publication by Lu and Hu in 2022 [24] it is emphasized that historically, two distinct
perspectives have guided investigations into this field.

The first approach, which is given by the trajectory we have explored in previous
articles, is centered around the formulation of a cost function and an analytical
optimization. Researchers operating within this paradigm imagine that nature,
through an evolutionary process, has somehow managed to construct optimal
network structures. Although the focus is not directly on the physical process that
allow to realize an optimal network but just on the final outcome. The difficulty of
this methodology lies in defining a proper cost function and subsequently solving
an optimization problem to deduce the network’s ideal configuration.

Conversely, the second approach [25] [26] [27] [28] [29] [30] directs its attention
toward understanding the dynamic processes underlying network construction and
optimization. The necessary starting point to proceed with this idea is to make an
ansatz for the dynamical evolution of each pipe:

ˆCi

ˆt
= F (Qi, Ci) (2.7)

where Ci is the conductance of the i-th edge, Qi is the flow passing thought the pipe
and F is an ansatz function defining the dynamics. Usually the specific form of F
is chosen giving some intuitive arguments and assumptions. The main recurrent
ideas are that:

• the conductance should increase over time if a big flow pass into it (positive
feedback)

• if the flow is too small is instead better to prune the vessel (C æ 0)

• the dynamics is governed by the wall shear stress and the system is in equilib-
rium ( ˆ

ˆt = 0) when the latter is uniform

Typically, the dynamical process is divided into two phases: initialization and
adaptation. During the initialization phase, the organism forms the primitive
structure of the network before it becomes fully functional. Subsequently, when
the network commences resource transport, an adaptation process comes into
play, facilitating further optimization. All these ideas are motivated by a set of
experimental observations. Just as a notable example we can refer to the slime
mold Physarum polycephalum study that has gathered a lot of attention in last
years [8] [31] [30] [32](Fig. 2.5).

12
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Figure 2.5: Time images following the development of a venation network by
Physarum mold [8]. Note that some food is placed out from the circular domain
and the network develop in order to evacuate the area and seek the resources.

Physarum is a slime mold that was shown to be able to react dynamically to the
environment, forming a transport network, in order to find the most favorable way
to seek food (Fig. 2.5). More in general it has been observed that, this adaptation
process can lead to optimization and even vessel pruning in a variety of biological
networks [33] [25] [34]. Furthermore, from experimental observations it also emerges
that, under the pressure of natural selection, living systems have evolved diverse
mechanisms to optimize the total energy consumption for mass transportation. In
the context of plants, the structural optimization of the network primarily occurs
during the initiation process, owing to the confinement of cells that cannot move
freely. In contrast, animals predominantly achieve structural optimization through
the adaptation process. Notably, endothelial cells from pruned vessels can be reused
to form new vessels, facilitating dynamic adjustments.

Despite the distinctions between the two approaches we have outlined, i.e. cost
optimization and dynamical adaptation, they can be integrated into a unified model
when we incorporate the gradient flow of total energy cost into the adaptation
dynamics. In simpler terms, it can be demonstrated that, during the process of
adaptation dynamics, there is always a reduction in a globally defined energy cost.

13
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Therefore, even within the dynamic approach, the core objective is, in fact, the
minimization of a specific cost. More precisely, we can select the function F in
equation (2.7) in such a manner that this implicit cost aligns with the cost function of
the previously discussed optimization approach. In this scenario, both descriptions
lead to identical outcomes. The optimal network structures are ultimately achieved
as the adaptation dynamics steady states.

Remark 1. It’s worth emphasizing that this adaptation process, which is guided by
the gradient flow and local stimuli, concord remarkably well with experimental ob-
servations. Despite that, this macroscopic dynamic process is influenced exclusively
by macroscopic signals, such as wall shear stress in blood vessels. The underlying
cellular mechanisms responsible for driving this adaptation remain hidden within
this broader framework.

Remark 2. It is important to highlight that, the selection of the ansatz dynamics
(2.7) in a manner that it aligns the adaptation description precisely with the opti-
mization approach, is quite natural. The underlying principles that typically inform
the choice of a particular dynamics rule (discussed previously) are fundamentally
equivalent with the principles governing both local and global optimization within
the alternative framework.

14



Chapter 3

A unified model for discrete
optimal networks

In the last chapter we briefly summarized the extensive literature of Optimal
Channel Networks (OCNs), by reviewing the fundamental ideas that have been
explored during time and acknowledging the contributions of major authors. Now,
we are prepared to get to the heart of this thesis by starting to present in what
consisted our research. The first goal that we tried to achieve was the description
of a comprehensive model for optimal networks. Our aim was to propose a model
able to include different cases already discussed in literature and possibly to explain
new scenarios. Despite the fact that our idea was to provide a generalized picture,
we still had to consider a minimum set of initial assumptions. In particular, we set
as ground hypothesis that we are always dealing with:

• discrete networks on a 2D cubic lattice geometry

• single inlet networks

• a stationary regime ( d
dt = 0)

The discrete formulation of the optimal transport problem we considered, can be
simply stated as following:

given a set of N points that either require or furnish a resource, what is the
optimal design for a network able to connect them in a way to fulfill all the
requirements?

To answer this question it is fundamental to choose a geometry. Here with ’geometry’
we mean a graph where each node represent one of the N points requiring or
supplying the resource and every edge is a possible channel connecting them. We
will work always with a single inlet, meaning that there is a single node (source)
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A unified model for discrete optimal networks

in which a positive flux of resources s0 enter the system. On the other hand all
the others nodes (sinks) have to be supplied by an homogeneous amount of flux
si = ≠ s0

N≠1 . Therefore we will work with boundary conditions represented by the
vector of load requirements {s0, s1 = ≠ s0

N≠1 , ..., sN = ≠ s0
N≠1}. The resource (for

example water, blood, sap) flows in the channels following hydrodynamic rules in
a stationary regime. The final optimal network will be a connected subgraph of
the chosen geometry. Note that when constructing this subgraph we should always
take all the N nodes but instead each link (channel) can be either taken or not, as
well as the final network is connected.

We considered a 2D cubic lattice geometry (Fig. 3.1).

Figure 3.1: 18x18 square grid, each node represent an inlet, outlet or bifurcation
of the network whereas every link is a possible channel

Figure 3.2: Example of a transport network with 2D cubic lattice geometry

16



A unified model for discrete optimal networks

Instead in Fig. 3.2 it is displayed an example of channel network realized on the
selected 2D cubic geometry. Note that in general it exists a huge number of channel
structures able to link all the nodes in a given geometry and to fulfill their loads
requirements. But, in order to speak of ’optimal networks’ it is necessary to define
a cost function, i.e. a performance measure for nets. In fact, only after having
established a proper metric we can proceed to compare various channel designs
and to discriminate between different degrees of optimality. Nevertheless, before
starting to think at the actual form of the cost function, we will start the following
discussion by providing a complete mathematical description of channel networks.

3.1 The space of feasible networks

In this section we will try to build a rigorous mathematical description for OCNs.
Moreover, we will describe all the equations that rule their dynamical functioning
and we will discuss some general analytical properties related to flows distributions
inside channel networks. The initial question that we are treating is the following:

What is the space of parameters in which it is embedded every feasible network?

If our goal is to characterize a space in which every point represent exactly
one network, we can just start from the geometric properties describing each edge.
Let’s say that all the geometrical properties of the i-th edge can be described by
the vector q̄i. Then every network can be represented exactly as a vector q̄ = {q̄i},
encoding all the information about every edge. In the most simple case we can
consider networks of smooth cylindrical pipes. In this case q̄i = (ri, li), where ri and
li are respectively the radius and the length of the i’th edge. In order to simplify as
much as possible our discussion we will furthermore consider li = 1, ’i. Therefore,
qi = ri, i.e. every edge is uniquely defined by his radius, and a particular network
can be identified simply as a vector of radii {r1, r2, r3, ..., rNedges

}.

It’s worth noting that networks capable of meeting the loads requirements at
each node are either spanning trees of our lattice or connected loopy networks that
traverse each node (Fig. 3.3). This implies that the space of all feasible networks Ω
can be represented as a subset of the space of all possible radii ΩÕ : RNedges . Where
a feasible configuration is just a configuration that link all nodes (Fig. 3.4).
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(a) (b) (c)

Figure 3.3: Examples of transport networks: (a) Tree, (b) Loopy network, (c)
Unfeasible network.

Figure 3.4: Illustrative representation of the radii space, R is a feasible network
whereas R’ is a disconnected one

Importantly, for every network in Ω we are always able to assign some fluxes at
each edge in order to fulfill the load requirements {si}. This distribution of flows
depends on the dynamical regime in which we are operating but is than unique for
each configuration. The existence and uniqueness of a flow distribution is an issue
of fundamental importance. Before going in depth into it we need to define the
notion of conductance.
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3.1.1 The conductance

If we consider only small radii, the Reynolds number is sufficiently low and the
flow in the tubes can be well approximated by the Poiseuille flow:

v(r) = ∆P

4µL
(R2

0 ≠ r2) (3.1)

where µ is the viscosity of the fluid, ∆P the pressure drop, L the tube length, and
R0 the tube radius. In this case the volumetric flow rate Q = 2fi

s R0
0 v(r)r dr can

be written as:

Q = ∆Pfi(2R0)4

128µL
(3.2)

the resistance R of a pipe and the conductance C, are than naturally defined as:

R = ∆P

nQ
= 128µL

nfiD4 = 1
C

(3.3)

where n can be introduced to account for the possibility of parallel tubes bundles
(Fig. 3.5).

Figure 3.5: Structure of different biological transport networks. (A) Vascular
network in mammals, (B) xylem channels in plants.

For blood vessels, n is usually equal to 1, whereas for vessels in plants such as
leaf veins, n is greater than 1. In the following we will consider n=1 without any
loss of generality. In this regime the flows are thus characterized by:
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Q = C(r)∆P, laminarflow (3.4)

where we wrote C = C(r) to stress that, once the properties of the fluid are known
and considering our L = 1 setting, the conductance is essentially a function of the
radius. So, the conductance is well defined for laminar flow but what happens if
we go towards other regimes? Let start by recalling that in general the pressure
gradient can be written as:

∆P = ⁄
fl

4fi2
Q2

r5 l (3.5)

where fl is the density and ⁄ (called f in famous Moody’s work, 1944 [35]) is the
dimensionless friction coefficient, and can be written as:

⁄ Ã
A

r

Q

Bk

(3.6)

in order to be concise we omitted the proportionality constant that depends only
on the roughness of the tube and on the Reynolds number. Instead what is truly
important for us is the behaviour of k. Importantly k is constrained in the range
0 Æ k Æ 1. A value of k = 1 corresponds to laminar flow. As the shift from laminar
to turbulent flow occurs, k continuously diminishes, reaching k = 0 in the case of
completely turbulent flow. From (3.5) the flow dynamical equation (3.4) now reads:

Q = C(r)∆P –

– = 1
2 ≠ k

(3.7)

where the flow in a tube is now a non linear function of the pressure gradient with
an exponent – that range from 1 (laminar flow) to 1/2 (completely turbulent flow).
The latter allow to define the conductance even out of the simple laminar flow as:

C(r) = KC r3–+1 (3.8)

where KC is a constant and (3.8) highlights the power law dependence on r.
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3.1.2 Possible flow distributions

Following the definitions established in last section, we can say thet given a flow
regime and particular fluid properties, there is a bijective mapping between radii
and conductances. Therefore, for any given configuration {r1, r2, r3, ...rNedges

}, we
are always able to find a unique configuration {C1, C2, C3, ...CNedges

}. This implies
that given the radii, we can compute the conductances at each edge and then use
the characteristic flow equation of the system to fix fluxes. Regardless of the flow
regime, we can always adjust the pressure gradients to achieve a distribution of
fluxes that satisfies the local load requirements {si}. While doing that, in order to
generate a valid flows distribution, we must take care that three sets of equations
holds:

Y
__]

__[

q
jœNi

Qij = si , ’i
q

ijœloopk
∆Pij = 0 , ’k

Qij = Cijf(∆Pij) , ’(ij)
. (3.9)

where Ni is the set of neighbours of node i (Fig. 3.6), loopk is the k-th independent
loop in the network and note that here we introduced the double index notation
(ij). In this case the indices (ij) refer to the edge that link the nodes i and j.
Sometimes it is way more useful to use this notation, that is related directly to the
nodes and is even directional, therefore in the following we will use both the double
and single index notations in order to label edges, but we will always make clear
our choice. The first set of equation represent in (3.9) a continuity constraint for
each node. The second relation is the set of Kirchoff’s equations that assure we are
constructing loops in accord with a valid pressure field P̄ . Finally the last group of
equations are the dynamical flow equations we discussed in previous section.

Let’s now prove some interesting properties about this distribution of fluxes
that will come usefull later.

Lemma 1. Given a set of conductances {C1, C2, C3, ...CNedges
} and a vector of load

requirements {s1, s2, s3, ...sNnodes
} for a connected network in laminar regime, the

distribution of flows {Q1, Q2, Q3, ...QNedges
} satisfying (3.9) exists and it is unique.

Proof. To prove it we can show that the valid distribution of flows is the unique
solution of a linear system of equations. Remember that if we have a set of k
linearly independent equations for k unknown then the solution is proven to exist
and to be unique. For a network of N nodes we have N linear continuity equations
that must hold. However only N-1 are linearly independent, the reason of that
if the additional property that the total current flowing in the system must be a
constant. If the network is a tree then Nedges = N ≠ 1, thus in this case we have
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(a)

(b)

Figure 3.6: Schematic of a network. (a) Close view on a bifurcation, note that
here Ni = {l, n, m, q}, si is the outlet at node i and at each node is defined a
pressure P (i). (b) Full view of a small network, where generally we consider a inlet
flux of resource at the bottom left node and an homogeneous distribution of outlets
elsewhere. Note that each node i can have at most 4 neighbours.

N ≠ 1 variables (∆Pi) and exactly N ≠ 1 linearly independent constraints, there
is therefore only one solutions for ∆̄P . For every independent loop we add to the
network the number of variables grow Nedges = N ≠ 1 + nloops. But at the same
time for every such loop we have an independent Kirchoff’s (linear) equation to
satisfy. So at the end even in this case the only valid solution ∆̄P is the output
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of a linear system of equations of size Nedges = N ≠ 1 + nloops. We can end our
proof just observing that for a set of conductances C̄ and the unique solution
for pressure gradients ∆̄P , flows can than be uniquely determined via the flow
dynamical equation (3.9).

If we consider instead a turbulent regime the system of equations we have to
solve in order to fix the flows become non-linear. In general the behaviour of non
linear systems is quite complex. Luckily, exploiting the increasing monotonicity of
the dynamical flow equations, we can use the results developed by Duffin [36] for
non-linear resistive networks. The latter assure that the existence and uniqueness
of a solution for the flows can be generalized also to the turbulent case.

Lemma 2. If the network is a tree the unique solution depends only on the tree
structure and not on the exact values of each conductance.

Proof. We can prove it straightforwardly just by observing that if the network is
a tree the linear system that determines the unique solution for the flows can be
written only using the continuity equations at each node. Thus the linear system
do not depend in any way to the conductances values but only on the connection
pattern. We can alternatively prove it by induction starting from the leaves of the
tree and showing that at any point the flux entering a node depends only on the
entering fluxes.

We can now end this section with some summary remarks.

Remark 1. For a given geometry (lattice), every feasible network can be represented
as a radii vector: {r1, r2, r3, ...rNedges

}

Remark 2. Given the flow regime and the specific fluid properties (or the properties
of whatever is flowing), we can map each net from the radii space to the conductance
space. Each network is thus uniquely represented by: {C1, C2, C3, ...CNedges

}

Remark 3. For each tree network, there is a unique feasible solution for the fluxes
that does not depends on the conductances values but only on the linkage pattern of
the tree.

Remark 4. For loopy networks, there is always a unique solution for the flows at
each edge and it depends on the specific values of the conductances C̄.

Remark 5. The above discussion began with the assumption of cylindrical pipes
on a homogeneous lattice, but this hypothesis can be relaxed in order to account
for more complex scenarios. If we are willing to do that, we can simply replace ’r’
with other geometric parameters of the edges such as hydraulic radius and allow for
non-uniform lattice spacing.
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3.2 The cost function
To find a good model for the cost function, describing network ’optimality’, is
a pivotal point of this research field. During the last century of studies several
proposals have been presented. However, after a wide analysis of the literature,
we developed the idea that all those models had more similarities than differences.
We than tried to propose a general model able to summarize the efforts previously
done on OCNs. In this section we will present our proposal. The latter seems to be
able to well explain a lot of the previous models. Furthermore we hope that this
description could help to establish a clear and modern picture of the OCNs problem,
revealing some new insights and promising for interesting future developments.

3.2.1 Formulation in terms of conductances

In order to build such kind of general model we have to understand well what
are the key ideas about OCNs that can be find transversely in the literature.
Perhaps, one of the most crucial aspects that every formulation must address, is
the establishment of a performance measure for networks. To start, we can say
that the standard assumption on the cost function is that it can be written as the
sum of two terms:

J = J (D) + J (“) =
ÿ

ij

[Qij∆Pij + bC“
ij] (3.10)

here J (D) represent the sum of the energies, per unit time, needed to sustain the
flows at each edge, while J (“) is the cost necessary to physically build and sustain
the network. Note that here we used the double indices (ij) to label edges and b is
a dimensional constant that in the literature is frequently addressed to as metabolic
constant. This shape for the cost function, although being quite arbitrary, has a
very intuitive meaning. The fact to consider as first term the energetic cost needed
to simply ’make work’ the net is clearly the most natural thing to do, and, on the
other hand, it is easy to see that considering this term alone would lead only to
naive considerations. In general, if the conductance Cij increases, it allows the
same flow Qij to be achieved with a smaller pressure gradient ∆Pij. This implies
that, without a penalty (J (“)) for enlarging the pipes, the optimization problem
would naturally lead to constructing the largest possible network, as it can be
graphically understood looking at Fig 3.7.

Alternatively, another approach is to consider only J (D) as the cost function
while introducing a global constraint related to limited resources in the system, i.e.
J (“)=cost. Both methods yield similar conclusions. For now, we will proceed with
the unconstrained formulation and we will revisit the comparison later.
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Figure 3.7: The cost function for a single edge as a function of his conductance
C. Note that the current passing through the edge is fixed and “ = 1.

Now, since we know that every network is represented as a conductances vector,
we can write the dissipation term J (D) in term of conductances depending on the
dynamical regime in which we are operating. We can do that by using the general
form of the dynamical flow equation (3.7). The dissipation, in a general case,
therefore reads:

J (D) =
ÿ

ij

Q
–+1

–
ij C

≠ 1
–

ij (3.11)

then, by considering all together, the final cost function can be expressed as:

J =
ÿ

ij

[Q
–+1

–
ij C

≠ 1
–

ij + bC“
ij] (3.12)

note that the latter is able to describe every hydraulic flow regime between the
laminar-turbulent transition and can account for a wide range of conductance
costs J (“) as well. Additionally, this model extends its applicability to other flow
scenarios, including those involving non-Newtonian fluids, pulsatile flow, plug flow,
heat and electrical flows, and 1D Fick’s diffusion (mass flow). In these instances,
it is essential to recognize that equation (3.8) may not maintain its validity. The
relationship between conductances and radii needs to be adjusted to account for
the specific physics of each process. Nevertheless, in the mentioned cases, we can
still assume a power-law dependence, expressed as C(r) Ã rm.
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3.2.2 Formulation in terms of radii

An alternative formulation, often present in the literature, is to write the cost using
the radii, as J = J({Qij}, {rij}) instead of J = J({Qij}, {Cij}). We can easily
modify (3.12) to achieve such description by recalling (3.8). We thus have:

J Ã
ÿ

ij

[Q
–+1

–
ij r

≠ 3–+1
–

ij + bÕr(3–+1)“
ij ] (3.13)

from this formulation the second term, related to the metabolic cost of a channel,
is expressed directly as a function of its geometrical dimension. Note that if “
can be chosen freely in order to account for different type of constraints, instead
the overall exponent of the second term depends on the specific flow regime in
which the network is operating. This aspect is crucial. In general, the selection of
“ may seem quite arbitrary. Writing the maintenance energy cost of a pipe with
conductance Cij, as C“

ij, appears reasonable, but connecting the exponent “ with
real scenarios can be challenging. This is why, especially in seminal papers, the
maintenance cost is frequently expressed in terms of the radius (as in eq. 3.13). In
fact, through the radii description, it is then easier and more intuitive to justify an
exponent in the second term of the cost function. One can for example argue that
such maintenance cost is proportional to the volume of a pipe [3], or to his cross
section [37], i.e. respectively (3– + 1)“ = 2, 1.

So we have seen that using the formulation in terms of radii it is more easy to
gather some intuition about the meaning of a particular choice for the term J (“)

and this will lead to some interesting consequences in the following (Sec. 3.4.1). As
last comment, let’s just observe that instead, in both formulations, the dissipation
term J (D) can be nicely represented graphically [38]. The idea is to construct a
schematic as the one represented in Fig. 3.8 for a simple 4 nodes network. Note that
each vertical line represent a bifurcation and the construction procedure is wisely
designed in a way that the constraints (3.9) are geometrically enforced. Kirchoff’s
equations for the pressure gradients ∆Pi are naturally satisfied if the left and right
sides of the full figure have the same length. Similarly, the continuity equation at
each node are enforced by preserving the total section of the picture. At last, the
dynamical flow equations at each edge are represented inside each white rectangle
and are naturally fulfilled by construction. In the laminar regime observe that the
slopes of the rectangle diagonals represent the resistances (1/C) of each edge. The
interesting graphical property of this kind of schematics is that now the dissipation
cost J (D) assume the interpretation of an area, i.e. the sum of white rectangle areas
in Fig. 3.8. Furthermore one can even think that all the possible configurations of
the network are now represented by all the possible ways in which we can strain
the whole schematic while preserving his rectangular shape. This is even another
way to see the effect of to do not consider a price for conductances. In fact it is
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easy to see that if we send all Ci æ Œ the slopes of all the diagonals go to 0 and
graphically the white area representing the cost vanishes too. Finally, note that
such schematics can be easily built even in a turbulent flow regime, one just have
to consider that the flow dynamical equation will change (Fig. 3.8). Thus even in
turbulent flow we can provide this intuitive graphical interpretation of J (D).

(a) (b)

(c)

Figure 3.8: (a) 4 node network, (b) geometrical construction that represent the 4
nodes network in laminar flow, (c) geometrical construction that represent the 4
nodes network in turbulent flow

27



A unified model for discrete optimal networks

Remark 1. Note that all this discussion started from an ansatz on the form of
the cost function. We wrote it as the sum of two contribution, J (D) and J (“).
In principle one can add other terms attempting to describe more sophisticated
effects. For example one could add an energetic cost due to turbulent dissipation on
bifurcations or a term lowering the cost for networks that are able of perform an
efficient diffusion at lower scales. Nevertheless (3.12) seems to us the simplest and
most intuitive ’minimal model’ that can be adopted. For this reason, as suggested
by the Occam’s razor, we believe that the core principles of transport nets can be
well captured in this framework without adding other extravagant assumptions.

Remark 2. Note that both for trees and loopy networks the cost depend uniquely on
the conductances, the fluxes being automatically fixed by load constraint as shown
in section 3.1.2.

Remark 3. The equivalent formulation of the model with a global constraint
approach would be:

J =
ÿ

ij

Q
–+1

–
ij C

≠ 1
–

ij , K =
ÿ

ij

C“
ij (3.14)

where K represent the amount of resources available in the system to build the
network.
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3.3 The optimization problem
Now that we have established a model, we can finally compare networks. The
important question that naturally arises is:

What are the stationary points of our model and what does influence their
stability properties in the space of feasible networks?

Figure 3.9: Schematic of the cost landscape

We are interested in these points because we operate on the assumption that our
model (3.12) effectively captures the performance of different networks. Therefore,
the absolute minimum will represent the best network that we can possibly describe.
The latter is usually referred to as the principle of global optimization. Furthermore,
model (3.12) features a very complex landscape of local minima (as displayed for
providing a qualitative intuition in Fig. 3.9). These points are interesting as well
since, in many cases, reaching the absolute minimum is unlikely, and the truly
relevant issue is the overall behavior of the intricate minima landscape. Despite
their relevance, the problem of determining all the minima of model (3.12) is
quite challenging, and for this reason, the customary strategy is to resort to a
second principle: the principle of local optimality. In the following section, we will
present this principle and then we will show how to employ it in order to obtain
fundamental information about the behavior of the cost minima.

3.3.1 The local optimization

The most intuitive approach to the presented problem is to start by imposing
the stationarity of (3.12) with respect to conductances Cij. Note that, since the
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conductances are decoupled, this minimization leads to a set of local (one for every
edge ij) stationarity constraints of the type Cú

ij = f(Qij). For this reason, we will
refer to this step as ’local optimization’ from now on. The result is:

Cú
ij = AcQ

–+1
–“+1
ij (3.15)

Ac = 1
–“b

–
–“+1

(3.16)

this relation holds for every conductance independently, meaning that we can build
a global stationary point by considering a network for which (3.15) is enforced at
each edge, explicitly:

C̄ú = (Cú
1 , Cú

2 , ..., Cú
Nedges

) (3.17)

we can then proceed with the second derivative analysis:

ˆ2J

ˆC2
ij

= 1 ≠ –

–2 Q
–+1

–
ij C

≠ 1
– ≠2

ij + b“(“ ≠ 1)C“≠2
ij (3.18)

since Cij and Qij are always positive (to compute dissipation we take all currents
in the positive sense) and – Æ 1, the only way to get (3.18) to be Æ 0 is to take
0 Æ “ Æ 1. However, even in this case one obtain that at the stationary point
the second derivative (3.18) is always positive. At the end, we can conclude that
indeed (3.15) describe always minima.

Nevertheless, we have to be very careful to interpret this result. In fact during all
this derivation we considered fixed flows. Therefore, the above characterization of
the local minima, holds only if we are able to change the values for the conductances
without affecting the flows Qij, but this is in general unfeasible. One can think to
redo the computations considering simply Qij = Qij(Cij) in order to account to
the fact that also currents change in response to conductances fluctuations. But
again this is problematic since the currents change in a non-trivial way in order
to fulfill equations (3.9). In particular, it is easy to see that the perturbation
of a single conductance can affect all the currents in a loop, and thus it has
furthermore a non-local effect that depends on the specific overall structure of
the net, making this approach intractable. The difficulty to deal with this aspect
in a straightforward way is exactly the reason why this point was always poorly
discussed in literature, and often simply bypassed. What is instead commonly done
it is to just assume that the optimal networks should satisfy (3.15) at every edge.
This is exactly the mentioned principle of local optimality. The implications of
considering this assumption are profound. In particular that allows to prove that
the overall behaviour of the minima depends only on “, as we will show in detail in
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section 3.3.4. We tried to deepen our understanding of that issue, with the aim of
providing a proof that the principle of local optimality is indeed unnecessary, as
already implied by global optimality.

In Appendix A, we presented a methodology for precisely solving the problem in
the case of a simple loop involving two channels. For this specific configuration, we
achieved an exact and fully analytical solution, demonstrating that the stationary
points (3.17) are indeed the unique local optima in the whole Ω domain, and their
stability is solely dependent on “. Notably, in this context, the application of a
principle of local optimality is unnecessary, as we established that the local optimal
constraints naturally align with the global optimality.

As we progress to more complex scenarios involving larger loops, the strategy
outlined in Appendix A becomes progressively more and more cumbersome. Han-
dling such situations may necessitate the assistance of numerical software, and the
approach struggles to generalize results to any scale. In Appendix B we proposed
a reasoning leading to the conclusion that, even enlarging the size of the possible
loops, stationary points (3.17) maintain the usual stability properties driven by
“. However, we still fail to prove that in that scenario there are no other possible
candidate local minima, and therefore, a conclusive proof that the local principle
of optimality is always exactly coming from the global one remain elusive.

Before concluding this section, let’s consider some important implications of
stationary points (3.17). In fact, if we recall that it exists a power law dependence
between conductances and radii (3.8), the stationarity constraints can be expressed
even for each radius:

Cij Ã rm
ij (3.19)

rú
ij Ã Q

–+1
m(–“+1)
ij = Q‘

ij (3.20)

where (3.19) is the more general version of (3.8), holding for a wide range of physical
transport flows. Relation (3.20) is very insightful and it represents a generalization
of the Hess-Murray’s law. In particular if we substitute the ansatz of Murray
(– = 1, m = 4, “ = 1/2) we get exactly ‘ = 1/3, in accord with his findings [3].
Moreover, we can substitute the latter in the continuity equation for the flows at a
bifurcation and we find:

r
1
‘
0 =

ÿ

k

r
1
‘
k (3.21)

here, r0 denotes the radius of the parent vessel, while rk refers to the radii associated
with the channels originating in the bifurcation. Therefore, ‘ plays a crucial role in
determining the local branching characteristics of the network, representing a truly
meaningful parameter.
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3.3.2 The global optimization

By embracing the principle of local optimality, i.e. restricting the feasible networks
to those defined by (3.17), we can dramatically reduce the space of configurations
to take into account. It’s noteworthy that the local optimal constraint is trivially
fulfilled for (Qij, Cij) = (0,0), allowing every conceivable connected linkage pattern
to be a minimum. In this scenario, we can still find some ulterior general properties,
on the behavior of local minima, by prosecuting on an analytical path. In fact, if
we substitute the constraint (3.15) inside our model (3.12), we are able to write
the total cost of a network as a function of the currents alone:

J = AJ

ÿ

ij

Q
–“+“
–“+1
ij Ã

ÿ

ij

QΓ
ij (3.22)

AJ = [A≠ 1
–

c + bA“
c ] (3.23)

note that “ > 1 ≈∆ Γ > 1 and vice versa. This is particularly valuable, especially
considering that for such models, Banavar has already provided robust analytical
results [18].

Figure 3.10: Schematic for a four node network [39]. (A) The four-node arrange-
ment, with indications on the currents that respect continuity (note that a unit flux
is injected at each node). The dot is the outlet. Here, the current a is taken as the
parameter regulating the entire distribution of fluxes owing to continuity. (Lower
Left) The only loopless configurations of the system are generated by integer values
of a: possible trees correspond to the cases a = 0, ≠1,1,2. (B) Plot of the function E
vs. a from E = |a|“ + |a+1|“ + |1≠a|“ + |2≠a|“ (with “ = 0.5), which is derived by
computing energy dissipation after implementation of continuity at the nodes. In
particular, the plot of E(a) highlights that there are local minima in correspondence
with one of the four currents being zero (a = 2,1,0, ≠1), corresponding to the four
trees shown in Lower Left. (C) Energy functions E(a) for the cases “ = 0.5,0.75,1,2.
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Specifically, when Γ > 1, the absolute minimum is clearly defined and, as
demonstrated by Banavar, corresponds to a fully looped network. On the other
hand, if 0 < Γ < 1, all the spanning trees of our geometry are local minima and
the exact global minimum is difficult to characterize. To understand better this
result we can look at Fig. 3.9 illustrating the situation in the simple case of a four
nodes network. This is indeed the ultimate analysis that one can perform from
an analytical point of view. We should now just manually compare the minima
looking for the absolute one. Unfortunately the number of local minima grows
exponentially with the dimension of the domain, meaning that from now on the
accuracy of our results, and in particular the location of the absolute minimum,
depends on the quality of the numerical methods we use to navigate into such
exponentially growing space.

3.3.3 The constrained formulation

Let’s take a look at what would have been the result if we had work with the
constrained problem (3.14). Skipping the minimization steps (performed using the
Lagrange multipliers), we would have find:

S

U J (constraint,ú) = A(constraint)
J

q
ij Q

–“+“
–“+1
ij

=∆ J (constraint,ú) Ã q
ij QΓ

ij

(3.24)

S

WU
C(constraint,ú)

ij = A(constraint)
c Q

–+1
–“+1
ij

=∆ r(constraint,ú)
ij Ã Q

–+1
m(–“+1) =‘

ij

(3.25)

therefore, we obtain equations analogues to the unconstrained problem with the
same exponents (Γ, ‘). This means that the global properties of the landscape of min-
ima do not change in the two approaches. Nevertheless, the two problem are exactly
equivalent only if the proportionality constants (Ac, AJ) = (Aconstraint

c , Aconstraint
J )

coincides. We can require that the scaling of conductances/radii is exactly the
same by imposing: C

Ac = A(constraint)
c

=∆ b = µ
(3.26)

or instead we can require that the costs are exactly the same by enforcing:
C

AJ = A(constraint)
J

=∆ b = µ[–“+1
–“ ]≠(–“+1) (3.27)

where µ is the Lagrange multiplier that is employed in the constrained approach
and is equal to:

µ = K≠ “–+1
–“

“–
[
ÿ

ij

Q
–“+“
–“+1
ij ]

“–+1
–“ (3.28)
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However, (3.26) and (3.27) can’t hold at the same time. This mean that model
(3.12) and (3.14), even if closely related and sharing the same general behavior and
properties, are therefore intrinsically different. Note that, if instead we propose a
new model in the form:

J =
ÿ

ij

[Q
–+1

–
ij C

≠ 1
–

ij + bÕC“
ij], K =

ÿ

ij

C“
ij (3.29)

this new formulation can be exactly identified with model (3.12) just by considering:
S

U
b = bÕ + µ

µ = K
≠ “–+1

–“

“– [qij Q
–“+“
–“+1
ij ]

“–+1
–“

(3.30)

Let’s end this section with some interesting remarks:

Remark 1. At the end, we can wrap together our analytical findings by saying that
all the overall properties of the local minima lanscape depends on the two exponents
(Γ, ‘). In particular for Γ > 1 the problem is completely solved and we are able
to characterize the behaviour of the unique absolute minimum. Instead for Γ < 1
the absolute minimum should be searched numerically but we know that we have
to look only between trees. In both cases the radius scaling and thus the branching
properties of the network are described by ‘.

Remark 2. From a theoretical point of view the framework we developed depends
only on the two underlying principles of local and global optimality. Despite that,
we should also recall that there are several other assumptions that come into play
if we want to use this model in particular physical scenarios. Let’s recall that for
every specific application:

1. Even knowing exactly the flow regime (i.e. –) one still has to make an asatz
on the form of J (“) by choosing arbitrarly a value for “.

2. The flow should be stationary and it should occur in cylindrical pipes on a
uniform lattice geometry (i.e. li = 1, ’i)

3. We should be able to express the flow in a pipe as a function of its radius and
the ∆P in a factorized form Q = C(r)f(∆P ). Where the function depending
on r is our definition of conductance whereas f is a power law.

4. Furthermore, even C(r) is a power law.

5. We should be able to write the power needed to sustain the flows as J (D) = Q∆P
.
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3.4 The strength of the model
Finally, we are ready to show all the interesting properties that arises from our
unified description. As fist thing let’s show that it is able to generalize successfully
a variety of different proposals that have been advanced in the last century of
research. As we emphasized earlier, the overall properties of a model essentially
depend on the scaling exponents (‘, Γ). Conversely, our model describes a specific
situation only when we set its parameters (–, “, m). For instance, we can describe
a laminar flow with a metabolic cost proportional to the volume by considering
(– = 1, “ = 1/2, m = 4). To facilitate the comparison between the previous
formulations and ours, the following table compiles the (‘, Γ) exponents predicted
in the literature, followed by the specific cases that the authors considered, expressed
in terms of the parameters of our model.

Literature review

r Ã Q‘ J Ã q
QΓ –, “, m

Present work ‘ = –+1
m(–“+1) Γ = “(–+1)

(–“+1) /

Murray [3] ‘ = 1
3 /

– = 1, “ = 1
2

m = 4

Uylings [5] ‘ = 3
7 /

– = 1
2 , “ = 4

5

m = 5
2

Bohn [19]
Katifori [21]
Corson [20]
Hu [25]
Lonardi [22]
Ronellenfitsch
[29]

‘ = 1
2(“+1) Γ = 2“

“+1
– = 1, “

m = 4
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r Ã Q‘ J Ã q
QΓ –, “, m

Durand [40] / Γ = 2n
n+mÕ

– = 1, “ = 2n
m

m = 2mÕ

West [6] ‘ = 1
2 /

– = 1
2 , “ = 1

m = 2

Almeida [26] / Γ = 4
3

– = 1, “ = 1
2

m = 4

Facca [23] / Γ = 1
– = 1, “ = 1
m = 4

Moreover, our model seems to be the first that can fully account for the local
and global properties of:

• the laminar-turbulent transition (– œ [1/2,1], m = 3– + 1)

• non-Newtonian fluids tubular flows (– = 1/Ê, m = 3 + 1/Ê)

• heat conduction (– = 1, m = 2)

• plug flow (– = 1, m = 2)

• 1D Fickian diffusion (mass flow) (– = 1, m = 2)

where Ê is the degree of non-Newtonianity of a fluid. Among the latter, the
possibility to describe the laminar-turbulent transition in particular open some
interesting avenues. In the following sections, we will analyze two possible scenarios
that can arise as a consequence of the interplay between (–, “, m), specifically, in
the laminar-turbulent situation.
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3.4.1 The laminar-turbulent transition

In this section, we aim to explore the implications of considering a network with
a laminar-turbulent transition taking place as the channel scale decreases. This
choice is justified by the fact that the Reynolds number, dictating the flow regime,
is dependent on the radius of the tube where the flow occurs. Smaller radii result
in lower Reynolds numbers, favoring laminar flow, while larger tubes promote
turbulence. Moreover, let’s assume that we want to maintain a consistent geometric
constraint as expressed in (3.13). This implies that the cost of maintaining an edge,
with respect of its size, should keep the same behaviour across different scales of the
network. To adhere to this assumption, we need to adjust “ to accommodate the
effect of changes in flow regimes. For instance, if we aim to keep the maintenance
cost proportional to the volume in various flow regimes, i.e. scales within the
network, we must modify the exponent “ accordingly, as follows:

J (“) Ã r“m (3.31)

“ = 2
3– + 1 (3.32)

where it should be recalled that for the turbulent-laminar transition m = 3– + 1.
We can clearly see that in laminar flow (– = 1) the latter can be satisfied if “ = 1/2
(Murray). Instead in the case of completely turbulent flow (– = 1/2) we get
“ = 4/5 (Uylings). Therefore, by considering that the metabolic cost of a channel
is proportional to its volume, “ change but remains always lower than 1. This is
unable to provide a significant change in the branching behaviour. If instead we
consider a more general scenario where we want to account for J (“) Ã rk we should
consider:

“ = k

3– + 1 (3.33)

notably, we than see that if k > 5/2 the exponent “ can go beyond 1 during
the laminar-turbulent transition. This is very important. In fact if the system is
working in a situation in which k > 5/2 then we can predict that at some scale
“ will grow beyond 1, changing completely the characteristics of the network as
shown in Fig. 3.11. This behavior represents a theoretical implication that could
therefore manifest itself in practical scenarios, whether in natural systems or in the
context of technological applications.
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Figure 3.11: Bistable branching behaviour in a network featuring laminar-
turbulent flow transition for m > 5/2

3.4.2 Expensive/Cheap channels transition

Another similar transitioning behaviour can be explained by analyzing the new
degrees of freedom that our description can offer. In particular, let’s think this
time to consider a network working on a unique regime, for instance laminar. But
now, we can force “ to vary along different scales as an effect of a variation in the
metabolic cost of maintaining the channels. This is intuitively reasonable. We
can for example think that, as the pipes becomes very thick, they develop a more
expensive geometrical scaling. In this case we should write:

“ = k

4 (3.34)

where – is considered equal to 1 since we set the assumption of laminar flow and
now is k that is changing with the scale of the network. When k become bigger
than 4 the branching behaviour change as depicted before but in the opposite
dependence with the channels dimension. This behaviour is exemplified in Fig. 3.12.
In this case we see that the network develop a loopy structure when the channels
are sufficiently small. Therefore the following phenomenological explanation could
represent an additional tool to understand the functioning of biological networks
where we see exactly this behaviour. Finally, one can also think that, the two
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effects described in sections 3.4 and 3.4, can combine together furnishing a even
richer description of possible transitioning behaviours across different scales.

Figure 3.12: Bistable branching behaviour in a network featuring a transition
between expensive and cheap channels with size
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Chapter 4

Tree search toolkit

In last chapter we treated the optimization problem in an analytical way, trying
to extend as far as possible the exact results we can get. We were finally able to
characterize the main properties of model (3.12) minima. Despite the power of the
framework we described, we still are left with a huge collection of local minima
that, as for every optimization problem, we should compare ’by hand’. In particular
when 0 < “ < 1 each tree is a local optimum of our model (3.12). Note that the
number of spanning trees on a 2D square cubic lattice grows exponentially with the
number of nodes N. This means that from now on the quality of the description we
are able to give, about the landscape of minima, depends on our numerical ability
to explore this exponentially growing space of trees. In this section we are going
to give a technical description of all the algorithm we used to face this task. The
collection of all this methods represent the toolkit we built in order to explore the
trees landscape, in the following chapter we will than see how the combination
of this search methods is able to provide an overall picture of the optimal states
properties.

4.1 EveryTree algorithm

After the description given in Chapter 3, It should be now clear that for every
value of “ the local minima are always fulfilling the local optimal constraints
(3.15) at each edge. At the same time, for sure, they have as well to fulfill the
hydrodynamical fundamental requirements (3.9). Therefore, one idea to find a
minimum is to start from a random initial configuration and iteratively impose,
first the local optimality and then the hydrodynamical equations (Alg. 1). The fix
point of this procedure will be a network for which both (3.15) and (3.9) holds, i.e.
a local optimum.
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Algorithm 1 EveryTree optimizer
1: procedure EveryTree(‡, Ÿ)
2: Û ‡ is the randomization strength
3: Û Ÿ is the initialization mean value for conductances
4: Cinit Ω Initialize the conductances matrix of the net Û every Ci is chosen

randomly around the mean value Ÿ with randomization strength ‡
5: while C not converged do
6: impose local optimality on C
7: impose hydrodynamical equations on C
8: end while
9: return C Û Optimized conductance matrix

10: end procedure

As starting states for the optimization procedure we used random generated
grid networks as the one represented in Fig. 4.1.

Figure 4.1: Random inizialized grid network (18x18 lattice)

In this initialization, weights (Ci) are picked, with an homogeneous probability
distribution, in the interval [Ÿ ≠ ∆C, Ÿ + ∆C]. We observed that the ratio between
the radius of the interval and the mean value represent an important parameter,
strongly linked to the qualitative shape of the final network. For this reason, we
decided to define the randomization strength ‡ as:

‡ = ∆C
Ÿ
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note that ‡ œ [0,1]. With this algorithm we were successfully able to verify the
phase transition occurring at “ = 1. Indeed, we observed a huge variety of local
optimal trees for “ < 1 whereas, for “ > 1, the only solution was always the
completely looped network (Fig. 4.2).

(a) (b)

(c)

Figure 4.2: Three local optimum found with EveryTree on a 18x18 lattice. (a)
“ = 0.5, ‡ = 1 (b) “ = 0.5, ‡ = 0 (c) “ = 2, ‡ = 1

This algorithm update at every step all the conductances and stop on the first
tree it finds. For this reason we call it ’EveryTree’. It is not the best in terms of
performance (nor timing nor closeness to global optimum) but still, playing with
his main parameter, i.e. the randomization strength ‡, we are able to visit a wide
set of topologies.
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4.2 Greedy optimization

Since we know that the minima are all trees, we can even focus only on the space
of networks without loops. We can then try to design a procedure in order to travel
in the space of trees along trajectories on which the cost function is decreasing.
Greedy algorithm does exactly that (Alg. 2).

Algorithm 2 Greedy optimizer
1: procedure Greedy algorithm(maxiter)
2: Û maxiter is the maximum number of trial states that can be rejected
3: Start from a random tree T
4: compute his cost J(T)
5: while iter < maxiter do
6: produce a trial configuration T’
7: if T’ is loopless
8: compute the cost of T’
9: if J(T’)<J(T)

10: T Ω T Õ Û accept T’ as new state
11: else
12: iter += 1
13: end while
14: return T
15: end procedure

The idea is to start from an initial loop-less random configuration spanning the
whole domain, evaluate its cost, and then to look for close trees that can provide
a cost benefit. Of course this procedure depends on how we define the ’close
trees’ that we can propose as new trial configurations. In the greedy optimization
algorithm we consider as neighbours accessible configurations all the trees that
we can reach by randomly changing the position of a single edge. This procedure
can’t propose as future trial state a tree generated by a collective displacement of
multiple edges and it is exactly from this strict rule for selecting the neighbours
accessible states that arises its name. At each iteration, a random change in the
configuration it is tried. If this change results in a loop-less configuration, the
cost function J is computed. If the change reduces the numerical value of J, it
is accepted; otherwise, the change is reversed. This process is repeated until the
system is able to find a more favorable state in less that a given number of iterations
maxiter (Fig. 4.3).
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Figure 4.3: Example of cost trajectory produced using Greedy algorithm

The resulting network are often referred as quasi-optimal states because they
are somehow optimal with respect of their neighborhood in the space of trees.
The characteristics of those quasi-optimal trees however depends strongly on the
choice of maxiter, as shown in Fig. 4.4. The Greedy algorithm, with its cautious
approach, efficiently explores the space of loop-less tree configurations while seeking
out optimal solutions.

(a) (b)

Figure 4.4: Two local optimum found with Greedy algorithm on a 100x100 lattice.
(a) “ = 0.5, maxiter = 100 (b) “ = 0.5, maxiter = 1000
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4.3 Metropolis algorithm
The Greedy algorithm is quite efficient but it is constrained to travel in the space
of trees only following trajectories in which the cost decrease. This feature makes
this algorithm unable to overcome even small cost barriers, potentially hiding more
favorable region of the cost landscape. For this reason it is convenient to dispose
of an algorithm that can either accept, with a given probability, some trial states
that increase the cost J. We can do that by implementing the famous algorithm
Metropolis (Alg. 3). It is just sufficient to slightly adjust the Greedy procedure
(Alg. 2), the trial states are produced in the same way but now the acceptance
rule is the following:

St+1 =

Y
]

[
S(T ) e

J(St)≠J(S(T ))
· > r

St otherwise
(4.1)

Algorithm 3
1: procedure Metropolis(·, maxiter)
2: Û · is the fictitious temperature
3: Û maxiter is the maximum number of iterations that do not produce an

overall improvement
4: Start from a random tree T
5: Compute his cost J(T)
6: Jbest Ω J(T )
7: while iter < maxiter do
8: produce a trial configuration T’
9: if T’ is loopless

10: compute the cost of T’
11: sample r œ [0,1] from the uniform distribution
12: if e

J(T )≠J(T Õ)
· > r

13: T Ω T Õ Û accept T’ as new state
14: if J(T ) < Jbest

15: Jbest Ω J(T )
16: else
17: iter += 1
18: end while
19: return T
20: end procedure
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where St is the network obtained at the t-th iteration of the algorithm, S(T ) is the
trial state proposed, · is a fictitious temperature and r in a number uniformly
sampled between 0 and 1. The fictitious temperature is a parameter that symbolize
the amount of ’energy’ present in the system. For · æ Œ every trial state can
be accepted whereas for · æ 0 the algorithm accept only states that decrease
the cost (reducing to the Greedy strategy). For this reason the performance of
Metropolis algorithm strictly depends on our choice of · . As shown in Fig. 4.5 if
the temperature is sufficiently low the system decrease his cost and then stabilize
its behaviour on an average value with some noise. Instead if the temperature is
too high the cost rapidly change exploiting the big thermal fluctuations and in
general goes towards values even bigger than the random initial condition.

(a)

(b)

Figure 4.5: Two cost trajectories generated with Metropolis algorithm (a) · = 0.1
(b) · = 10
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4.4 Simulated annealing

In order to fully exploit the possibility of overcoming cost barriers, introduced
with Metropolis algorithm , we can further act on the fictitious temperature. In
fact if we do not keep · fixed we can better employ the power of the ’thermal
energy’ for our ends. This is precisely the idea behind the famous optimization
strategy called Simulated Annealing [41]. Thus, we can do the following, we use
algorithm Metropolis starting from an high temperature, then after a given number
of iterations niter we lower · . This scheme is repeated for a given number of times
nbatch until we reach a sufficiently low temperature. However this procedure is far
more complex than it can seems. In particular the quality of the result depends
strongly on how do we decrease the temperature. The scheme we use to perform
the annealing, i.e. the choice of the initial themperature, nbatch,niter and other
parameters, is commonly called cooling schedule. We based the selection of the
initial temperature on the work of Ben-Ameur [42]. The idea is essentially just
to compute the ratio f between proposed and accepted states and to increase the
temperature until we reach f ¥ 0.8. Instead for performing the cooling we followed
the path presented by Atiqullah [43] where the temperature is lowered as shown in
Fig. 4.7. In this cooling schedule we can distinguish between three separate phases
(Fig. 4.6). At first, we allow for large energy fluctuations, in order to explore freely
the tree space. Then, we start our landing towards a local region, and in this phase
we still are able to accept trial states that increase the cost. Finally, we perform a
fine tuning in the niche of the cost landscape we ended up in.

Figure 4.6: Example of cost trajectory produced using Simulated Annealing. Is
easy to see the separation between the three main phases: free exploration (red),
descent toward a local region (orange) and fine tuning (green)

47



Tree search toolkit

Figure 4.7: Cooling schedule designed following Atiqullah’s proposal [43]

Algorithm 4
1: procedure Simulated Annealing(C̄S)
2: Û C̄S is the vector of parameters needed to implement the cooling schedule,

in the simplest case we can consider as example: C̄S = TI , TF , nbatch,niter

3: Start from a random tree T
4: Compute his cost J(T)
5: Jbest Ω J(T )
6: for t œ 1 : nbatch do
7: while iter < niter do
8: produce a trial configuration T’
9: if T’ is loopless

10: iter += 1
11: compute the cost of T’
12: sample r œ [0,1] from the uniform distribution
13: if e

J(T )≠J(T Õ)
· > r

14: T Ω T Õ Û accept T’ as new state
15: if J(T ) < Jbest

16: Jbest Ω J(T )
17: end while
18: · = · ≠ TI≠TF

nbatch

19: end for
20: return T
21: end procedure
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Chapter 5

The present knowledge of
the minima landscape

After having presented various search methods in Chapter 4, we are now ready to
explore the domain of (local) optimal networks. Exploiting the code we developed,
we successfully reproduced all the behaviors documented in literature. In this
chapter, our goal is to present a comprehensive overview of the present under-
standing of the minima landscape. We aim to devise an effective representation
that consolidates the key understandings gathered by previous researchers and,
additionally, we will try to augment our comprehension by introducing novel details.
In particular, we will provide a characterization of an interesting behavior occurring
at the ground state.

5.1 Different degrees of optimality

In order to give an effective idea of the possible characteristics that different nets
are able to exhibit it is fundamental to find a good set of parameters that can well
capture the separation between specific behaviours. In fact the original space of
networks, described in section 3.1, is an incredibly high dimensional space that
is impossible to take into account directly. The true challenge is instead to find
the mentioned set of parameters that naturally separate networks families in a low
dimensional space, providing a more intuitive picture. The first parameter that
we will consider is “. In fact “ is well known to be responsible for the transition
between a completely loopy network and tree structures (Fig. 5.1).
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Figure 5.1: The role of “ here illustrated in a schematic.

This property arise from the application of the local optimality principle and
it is analytically described through the famous Banavar’s proof, as discussed in
Chapter 4. For “ > 1 the topology that minimize the cost is unique. The specific
characteristics of the channels can still vary but maintaining the completely looped
arrangement. For “ < 1 instead all the trees are local minima. Despite that, we
have to consider that by modifying “ and other parameters as well, the relation
existing between this different minima can change. Now we will focus on the case
0 < “ < 1 that is the most interesting one. We are interesting in introducing a
parameter that accounts for different degrees of optimality of the system. Of course
the cost function J previously described appears to be a perfect candidate for that
role. But here we decided to use instead another variable that can more effectively
cover the same meaning. In order to present our choice we have to introduce first
the thermodynamical interpretation of channel networks.

5.1.1 Thermodynamics of channel networks

It proves advantageous to draw an analogy with classical thermodynamics, as
undertaken by Rinaldo and Troutman [44] [45]. This connection offers an effective
means to discern essential features within certain families of minima. However, it
is crucial to be cautious in considering this link, given the absence of a rigorous
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physical microscopic description of the system. Therefore, this analogy serves as
purely illustrative purpose and all the phenomenological conclusion that we can
draw are rather speculative. Let’s call S the set of all the spanning trees rooted in
the lower left corner (as in our setup). For every tree s œ S we can thus define a
Boltzmann-like probability:

P (s) Ã e
≠J(s)

· (5.1)
where · is a fictitious temperature that mimic the role of the real temperature T
for classic thermodynamic systems. At this point, if we call N(Ji) the number of
spanning trees that share exactly the same cost (energy in the thermodynamic
language) Ji, we can also define the probability of a configuration with energy Ji:

P (s | J(s) = Ji) Ã N(Ji) e
≠Ji

·

Ã e
≠(Ji≠· lnN(Ji))

·

Ã e
≠F (Ji)

·

(5.2)

where we have defined, in analogy with the classic statistical mechanics formulation,
an entropy S(J) = lnN(J) and a free energy F (J) = J ≠ · S(J). Note that we
are just employing the thermodynamic analogy in order to better capture different
network properties. This description is able to artificially introduce the effect of
entropy and imperfect search in our formulation. This is fundamental in order to
reproduce the same phenomenology observed in nature. A wide range of behaviours
can be reproduced changing · and exploring the spanning tree space with the
toolkit of simulation algorithm described in Chapter 4. Later on we will explore
the consequences of fully exploiting this thermodynamic framework. But, before
going in detail into that, there is still another important concept that we must
define: the notion of contributing area.

5.1.2 The contributing area

The contributing area is a quantity holding a profound meaning that has been
widely studied specifically in the domain of river drainage networks [46] [47] [48].
However, its relevance is transversal since it represents an aggregate measure able
to well capture some overall characteristics of a general channel network. In the
discrete case, the one we are considering, the contributing area can be defined at
each node as:

ai =
ÿ

jœNi

ajWji + si (5.3)

where Ni is the neighbours set of node i, si is the load demand at i-th node and
Wji is equal to 1 if the flux is directed from j towards i and it is instead null
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otherwise. Thus intuitively ai, for us, is just the total flow entering (or exiting) the
i-th node. Now, it should be considered that there exist several empirical laws such
as the famous results of Horton [49] and Hack [50] that pointed out the existence of
scaling relations in natural networks [51]. Moreover, several experimental findings
have in particular outlined a scaling behaviour for the contributing area in natural
river networks across several scales (as shown in Fig. 5.2 [39]).

Figure 5.2: Statistical evidence of the cumulative contributing area P (A > a)
scaling behavior studied by Rinaldo et al. [39]

Interestingly in the 90’ some studies showed that the empirical laws and the
practical evidence could be all related together and explained by proposing a finite
scaling ansatz for the contributing area distribution [52] [53] [45] [17]. The latter
can be stated as follow:

P (a) = a≠tf( a

AC
) (5.4)

here, f(x) represent a scaling function that incorporate finite size effects, while
AC denote the characteristic area of the system. Note that f(x) is assumed to
exhibit the following properties: as x approaches infinity, f go to zero sufficiently
fast to ensure normalization; when x tends to zero, f approach a constant, yielding
a power law. Moreover this scaling behaviour has been widely observed also in the
numerical outcomes of OCNs models (Fig. 5.3).
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Figure 5.3: Our results showing the existence of scaling for P (A > a) in the OCN
model. The graph show the ensemble average of 100 networks, with size 100x100,
produced with the greedy algorithm for (– = 1, “ = 0.5). Note that the scaling
exponent — = 0.42 is the one found in average also in natural networks.

The latter provided a promising sign that the OCN formulation, relying on its
energy minimization principles, is indeed able to well capture the behaviour of
natural networks. Notably if we consider together the idea of energy minimization
and scaling ansatz we are able [52] to find the scaling exponents that theoretically
assure the minimum energy (cost). This is the best analytical result we can dispose
nowadays about the features of the absolute minimum. In particular the latter told
us that the optimum solution should feature a scaling of the cumulative contributing
area P (A > a) with an exponent — equal to 0.5 [54].

5.1.3 The role of ·

Now, we can go back to the issue of finding the right parameters to construct a
meaningful phase diagram. We have already discussed the significance behind the
choice of “ and explained why it provides fundamental information. The next
parameter we are going to consider is · , the fictitious temperature introduced
within the thermodynamic analogy in section 5.1. This parameter enables us to
distinguish between classes of very interesting behaviors. All the key results are
summarized in Fig. 5.4. Let’s closely examine it.
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Figure 5.4: The role of · here illustrated in a schematic.

Beginning with high values of · , we can comprehend the properties of an
ensemble of networks generated by maximizing entropy. In this ’high temperature’
regime it is the degeneration N(Ji) that dominates over the energy (cost) Ji. The
interesting feature of those network is that they are clearly fractals. Even at
eyesight their self-similar geometry is evident. Note that one can produce those
networks using the Metropolis algorithm (Chapter 4) by choosing a sufficiently
high value for · and evolving the network for a high number of iterations. Let’s go
on and examine what happens if we lower · . The striking fractal behaviour goes
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away and we start seeing quite inefficient trees that do not show any particular
interesting property. They are just expensive valid solution of the channel problem
that can typically be produced using the EveryTree algorithm described in Chapter
4. Then if we continue to lower · an interesting behaviour emerge. The trees start
developing again self similarity on a growing number of scales. We can capture
this self similar behaviour through the scaling law of the cumulative contributing
area. Here it is fundamental to note that if we either use the Greedy algorithm
or the Metropolis one, with a low · , (Chapter 4) we produce network ensembles
that match very well with experimental data of natural networks. Specifically, they
match the scaling exponent — ¥ 0.42 found commonly in rivers. On the other
hand, if we push the minimization to the edge of our capabilities, using Simulated
Annealing (Chapter 4), we approach the scaling exponent — = 0.5. Finally, the last
bottom picture in Fig. 5.4, display a Peano’s fractal. This space filling geometry is
one of those described by Giuseppe Peano, originally from Turin, at the end of the
19’th century. Since it features exactly the scaling exponent — = 0.5 it is commonly
taken as an upper bond for the ground state energy. The recursive construction
procedure of the Peano fractal is dysplaied in Fig. 5.6.

Figure 5.5: Construction of the Peano fractal [55], T represent the iterations of
the procedure whereas the numbers written near each node correspond to their
contributing areas.
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At the bottom line · seems to us a good parameter to describe networks
properties for two main reasons. Firstly, because we are able to better visualize
some asymptotic behaviours. For example taking · = 0 we can always directly refer
to the proprieties of the global minimum whereas, instead, the exact cost J of the
absolute optimum would change in different conditions and is not generally even
known. This allow us to represent in a easier way the ground state of the model. In
the opposite limit, taking · æ Œ we can instead visualize the entropy dominated
networks that are more interesting than the structures simply maximizing J. On
the other hand, by using · we are able to more effectively describe real world
scenarios in which the appearance of a structure is both related to its cost and its
probability. In next section we are going to examine more carefully the ground
state.

5.2 The ground state

The ground state represent the absolute minimum (or minima) of the cost function,
corresponding to the limit · = 0 in the thermodynamic interpretation. Its properties
can vary while changing the parameters of the model and they are clearly of great
interest. Despite that, there is still a lot of mystery beside its exact features. The
best analytical result is provided under the scaling hypothesis discussed in section
5.1.2. The latter suggest that the absolute optimum is reached when the scaling
exponent — of the cumulative contributing area P (A > a) is exactly equal to 0.5
as for the Peano fractal basin. However, as we discussed, the Peano geometry
represent only a theoretical upper bond to the real solution, since it is obtained in
the contest of the scaling ansatz. More in general, if we want to go beyond that,
our only possibility is to recur to numerical results.

5.2.1 The fish bone network

What we noticed is that it is possible to deepen our knowledge of the ground state
(GS) by studying how it changes with the number of nodes N. But, in contrast with
previous results, we found that there is a region of the GS phase diagram were the
absolute optimum seems to be a specific geometry that do not exhibit scaling. The
latter is the topology we called ’fish bone network’ (Fig. 5.6). One can think that
this limit is reached when the dimension of the domain do not allow for scaling to
appear because the influence of the geometrical boundary conditions is too strong.
It should although be stressed once more that this result isn’t analytical but it
arises as the outcome of an intense set of numerical observations.
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Figure 5.6: The fish bone network

Additionally, we noticed that the complete breaking of scaling and the emergence
of the fish bone network, as the best candidate for the GS, depends not only on
the size N of the system, but also on the “ exponent. We were therefore able to
draw a transition line that mark this shift on the GS behaviour across the (L, “)
plane (Fig. 5.7). Where L is the number of nodes on an edge, specifically N = L2.

.

Figure 5.7: The (L, “) Ground state diagram

Note that, as we stay below the blue line in Fig. 5.7, we consistently end always
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on the same minima, the fish bone network, by using all the methods in our toolkit
(Chapter 4). On the other hand, if we cross that boundary either by enlarging
the size of the domain or by lowering “, the numerical methods start to produce a
variety of different solutions at each run and it is impossible to outline a global
minimum geometry. As last comment, let’s just point out that, even if for bigger
networks the fish bone geometry is not a good candidate as global minimum (in
fact it gets in general very expensive), still, we can recognize something similar at
the lower scales. To understand this qualitative remark let’s look at Fig. 5.8.

.

Figure 5.8: Zoom in a network of size 100x100 obtained with simulated annealing
for “ = 0.5

In fact, we can think that each time a subbranch is created during a bifurcation,
the optimal solution for that subbranch could be computed as a variation of
the original problem, but with a reduced number of nodes and a more irregular
domain shape. Consequently, as the branching scale approaches the limit where
the fish bone topology represents the absolute minimum, one might expect it to
emerges. However, what is observed at the lower scales, in our low cost networks,
is not precisely the fish bone structure, but rather an ’antenna-like’ arrangement,
highlighted in red in Figure 5.8. Although sharing similarities with the fish bone
pattern, it is distinct. This observation could imply that the fish bone solution might
be superior but is highly improbable to be observed with the current algorithms.
Alternatively, it can suggest that the system tends to adopt different boundary
conditions for organizing smaller subbranches compared to our usual setup, i.e., a
square domain with a single inlet placed in a corner.
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5.2.2 The whole picture

Finally, we can consider all together in order to provide the comprehensive picture
we promised at the beginning of this section. All the behaviours we discussed can
be regrouped in the (“, ·, N) phase diagram displayed in Fig. 5.9.

.

Figure 5.9: The (“, ·, N) phase diagram

It is important to underline that this representation is able to show us, in a
concise schematic, all we know about OCNs phenomenology. However, it is evident
that our knowledge is not exhaustive. The families of networks we have managed
to characterize delineate certain key behaviors within the exponentially expanding
space of trees. Yet, it is reasonable to presume that there are still other meaningful
clusters of networks awaiting identification and careful investigation. Furthermore
it would be important to comprehend the mechanisms governing the transition
between different groups of networks. For the moment it is qualitatively clear

59



The present knowledge of the minima landscape

that changing · act on the number of scales on which self similarity is observed.
Either originating the typical self similar behaviour exhibited by entropy dominated
networks or instead the one of quasi-optimal OCNs. But for example the behaviour
at the proximity of the blue line in Fig. 5.9, representing the transition line
under which the fish bone network is the global optimum, is poorly understood.
Moreover we should recall that, our analysis operates within the assumption of
a 2D square lattice geometry, featuring a unique inlet located in the lower left
corner. Preliminary investigations suggest a non-trivial shift in the scenario when
the domain’s shape, lattice geometry, or the number and positions of inlets are
changed. The symmetry of the system appears to yield significant influence, yet
this, too, remains a subject for future exploration.

60



Chapter 6

Conclusions

The study of Optimal Channel Networks represent a fertile domain that has already
been extensively explored from diverse perspectives. However, still today there
are numerous open questions and new avenues to be explored. We examined the
path that brought to the contemporary knowledge of OCNs, reviewing the most
significant stages. During this journey we gathered different ideas and results
coming from a wide range of perspectives. From the local approach of Hess and
Murray to the more modern inquiry for the overall topological features of networks.
From the natural river inspired perspective of Rodriguez-Iturbe and Rinaldo to
the biological network studies of Bohn and Corson. From the analytical results
of Banavar to the thermodynamical approach of Maritan. We gathered the key
findings of more than a century of research making benefits of many intuitions
crafted with different approaches and aims. In the end, we tried to draw an
overall picture, with the goal to show that, the mentioned studies, could be well
summarized in a unified discussion. Moreover, in delineating this comprehensive
picture, we were able to extend further the generalization, allowing to gave birth
to new results and to provide an original contribution.

At the bottom line our research can be summarized in three fundamental
points: the derivation of a unified model for OCNs, the description of a systematic
optimization framework and the proposal of a phase diagram that try to capture the
contemporary understanding of channel networks. For what concern the first issue,
we proposed a new model for the networks cost function that well reproduce many
previous separate findings. Furthermore, our model seems to be the first able to
fully account for some other flow processes. Specifically, it can be used to define the
OCN problem in the whole laminar-turbulent transition. This detail is interesting
since it allows to account for networks featuring a dynamical transitioning behaviour.
We showed how this aspect is able to explain the emergence of hierarchical loopy
branching either at the low scales or at the big ones. In particular, the latter could
provide a new tool for explaining the well documented appearance of loops at the
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low scales of natural channel networks. It is worth to stress that this would be a
good result since it is the first time that a hierarchical structure featuring loops
can be explained in the context of stationary regimes.

Our second effort was to establish a clear description of the optimization frame-
work. In particular, we underlined how the optimization process should pass
through two fundamental principles: the principles of local and global optimality.
While the second is indispensable and should be considered as the basis of any
OCN model, we tried to argue that the first one is actually unnecessary. We gave
an exact proof for a simple case and we developed some arguments for the general
situation. Nevertheless, a decisive demonstration remain the goal of future research.

Finally, we developed a solid toolkit of numerical algorithms in order to map the
networks space and try to understand it. Our aim was the one of identifying a mini-
mum set of essential parameters able to well capture all the network phenomenology
present in the literature. We then proposed a (·, “, L) phase diagram, showing that
it can be used to summarize the current knowledge and to introduce a new curious
effect as well. In fact, by making use of the latter representation, we observed a
transition happening in the phase space: the global optimum is well-defined for
sufficiently small networks, coinciding with the structure we referred to as the ’fish
bone network’. This result seems to represents the first numerically achieved global
optimum and it is also of significant interest for gaining further insights into the
smallest scale of larger networks.

We hope that with this thesis, we were able to contribute valuable ideas to the
understanding of Optimal Channel Networks (OCNs) and foster further exploration
in this research field. We achieved a few new results, which we aim to publish in a
journal paper, and we have uncovered many intriguing avenues of research that we
are eager to explore. Despite its longstanding roots, the optimal channel networks
problem continues to offer ample opportunities for further investigation.
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Appendix A

The two resistor loop

In this appendix we will consider the complete analytical solution for the simplest
possible network we can think of: the two resistor loop. The latter, can be
represented as shown in Fig. A.1. Therefore, we have only two node and the loads
requirements are just (s1 = x, s2 = ≠x).

Figure A.1: The two resistor loop

Given that we are dealing with only two edges, we can try to graphically
represent the cost landscape. The problem is that it is not intuitive to guess how
does J(C1, C2) behave for every combination of C1 and C2. Despite that, for sure
we know, in analogy with our very definition of cost (see section 3.2), how J(C1, C2)
should look like when either C1 or C2 are equal to zero. We expect that on this
case, showed in Fig. A.2, we are completely able to solve the minimization problem
just by imposing stationarity in terms of the conductances. The reason why we
can do that is because the flow distribution is fixed, since all the entering current
is forced to pass across the only non null conductance.
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Figure A.2: 3D representation of J(C1, C2). In the picture the cost is displayed
only on the planes for which either C1 or C2 are equal to zero.

As mentioned in section 3.2, the minimization is complicated in general by the
fact that as we change the values for C1 and C2 also the currents flowing in the
two channels change, by affecting the total cost.

Figure A.3: Representation of Ω, the space of all possible networks, in this simple
case. Note that we also considered some boundary values for the conductances.

An idea to overcome this problem if to exploit the following trick. Note that,
if we change the values for C1 and C2 while keeping their ratio (—) equal to a
constant, the flow distribution do not change and thus we are able to solve exactly
the optimization problem (Fig. A.3). Therefore hopefully we can solve the problem
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for a generic ratio and then mature an overall understanding on the cost functional
behavior. The latter can be done by using the Lagrange multiplier method and
considering the constraint of constant ratio. Graphically it amounts on solving
the original problem but with the additional constrain to remain on the violet line
(Fig.A.3) of the domain. We can thus write:
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ÿ
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(A.1)

where we defined a Lagrangian and we considered his stationarity both with respect
to C1 and C2. Interestingly, it can be easily shown that C1/C2 = — =∆ Q1/Q2 = —.
We can find the exact value for the Lagrange multiplier µ by substituting Cú

1 and
Cú

2 in the stationarity conditions. Furthermore, it is easy to verify that, for our
constant ratio scenario, the currents are exactly:

Y
]

[
Q1 = 1

1+—

Q2 = —
1+—

(A.2)

By substituting those information we finally get the optimal values for the
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conductances as a function of their ratio:
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(A.3)

Equation (A.3) is a generalization of the stationarity condition (3.17) that now
holds for every particular value of —. Thus, since by changing — we are able to span
all the domain Ω, we can now rigorously reduce the candidate minima to all the
points fulfilling (A.3). Note that in this case the application of the principle of local
optimality would reduce the points to take into account to only three configuration:
the configuration (Cú

1 ,0), (0, Cú
2) and the symmetrical one. Those are exactly the

cases in which (A.3) and (3.17) match, respectively related to — = 0,1, Œ. But
now we are able to express exactly a whole line of stationary points as shown in
Fig. A.3. Therefore, the last thing that we have to do to completely solve our
problem is to consider what happens on this line. We can do that in two steps.
The first is to rewrite the cost by using (A.3) in order to consider only the points
on the stationary line. In doing that we will be able to finally write J(Cú

1 , Cú
2) as

a function of the ratio — alone. Subsequently, the second step will be to consider
the derivative of J(—) in terms of —, to completely understand its behaviour all
over the domain Ω. Let’s start by substituting (A.3) in our model (remember that
C2 = —C1 and Γ = “(– + 1)/(–“ + 1)):
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ÿ
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(A.4)

where C̃ is just a constant. We managed to write J as a function of — for the points
on the stationary line. Now, we can conclude our exam by taking the derivative of
the cost with respect to the ratio —:
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since — is always positive it is easy to see that g(—, –, “) is a positive non null
function for every value of its arguments. Thus we can rewrite:

ˆJ(—)
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—“≠1(1 + —)“ ≠ (1 + —“)(1 + —)“≠1

È
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(A.6)

the only stationary point is obtained for — = 1. This correspond to the symmetric
loop configuration represented by the yellow point in Fig. A.3. Note that therefore,
the only candidate minima for the model, are: the case for which — = 1, as just
mentioned, and the case — = 0, Œ that should be taken into account since they
represent the extremal points of the stationary line on which we carried the final
optimization. Hence, we have already proven that in the two resistor case the
principle of local optimality is unnecessary and naturally come from the global
optimization. Moreover, one can study the sign of A.5, that amounts on studying
the sign of the numerator in A.6, and the final result, as expected, is that for
“ > 1 the symmetrical loop is the absolute minimum, whereas for 0 < “ < 1
we got the two solutions (Cú

1 ,0) and (0, Cú
2), that represent the only two trees

that we can generate in this scenario. As last thing we were able to actually
draw the cost function for this simple problem and it is displayed in Fig.A.4-A.5.
Note that the bold line represent exactly the line of stationary points, marking a
valley in the cost landscape. Even at eyesight we can verify the behaviour that we
proved analytically. This approach can be further generalized in order to try to
demonstrate the redundancy of the local optimality principle. However, as the size
of the loops nloop grow the computation become more and more cumbersome, in
particular the number of constraints that we must consider in order to write the
initial Lagrangian gets equal to nloop ≠ 1.
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Figure A.4: 3D representation of J(C1, C2) for “ = 0.5

Figure A.5: 3D representation of J(C1, C2) for “ = 2
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Appendix B

Stability of stationary points

The reason why the stability of the stationary points (3.17) is delicate relies on the
fact that the local perturbation of a conductance Cij, in general, lead to a global
perturbation of currents {Qij}. Thus even by perturbing only one conductance the
currents have to adjust in a non trivial way that respect both the loads requirements
and the Kirchoff’s equation (3.9). At the end, the resulting flow Ī Õ will be the
only possible solution for the new set of conductances C̄ Õ = {C1, C2, ..., Ci +
”C, ..., CNedges

}. As discussed previously, a straightforward analytical approach is
problematic, thus let’s try to follow another path.

In order to understand more clearly this issue, we can consider separately two
different kind of conductances perturbations.

Definition 1. Call A the set of edges in a network that are not part of any loop.
Than all the perturbations ¯”C of the type:

”Ci =

Y
]

[
0, i œ E \ A

”i, i œ A
(B.1)

are called tree-like fluctuations.

Lemma 3. The stationary points (3.17) are stable to tree-like fluctuations.

Proof. To prove it we can start from a generic loopy network and erase all the
edges that are part of some loop. We should do that by imagining to exchange
every loop with a single node, see Fig. B.1.

Note that, the fluxes exiting and entering the loop at each node, are always fixed.
Furthermore, the flux entering a loop is unique (if not, it is because of another
loop that we should erase first), and during the ’shrinking procedure’ we have to
modify its value to QÕ

in = Qin ≠ nloop + 1, where nloop is the number of nodes in the
loop. This will account for the nodes we are erasing, i.e. (nloop ≠ 1) is the amount
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Figure B.1: Loop shrinking

of resources needed to feed the loop. Hence, the new network we have built is a
tree that has exactly A as edges set. Now, for this tree it holds Lemma 2 meaning
that a change of the conductances would not affect the currents. This imply that
the stationary point (3.17) is stable on this network. But, since the currents don’t
change, the loop we have erased do not have a way to feel a perturbation of the
conductances in A. Finally the latter imply that also in the original network, the
stationary point (3.17) is stable to fluctuations of Ci with i œ A, i.e. tree-like
fluctuations.

Note that the perturbation of any edges for which Cij = 0 would lead to a loop.
That’s why this kind of perturbation are not tree-like.

Definition 2. Call B the set E \ A, where E is the set of all possible edges in our
lattice. All the perturbations ¯”C for which::

÷i œ B | ”Ci /= 0 (B.2)

are called loop-like fluctuations.

Lemma 4. Loop-like fluctuations make stationary points (3.17) unstable. For
“ < 1 they can destruct loops whereas for “ > 1 they can generate them.

To rigorously prove Lemma 4 would be an important step in order to demonstrate
the redundancy of the local optimality principle. However, we were unable to provide
such exact proof, in the following we develop only some instructive arguments.
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We know that in this scenario the fluctuation of conductances lead also to a
modification of the currents. An idea is then to start from a stationary point (3.17)
and try to change the conductances in a way that the new state is still a stationary
point of the same form for the new set of currents Q̄Õ. The difficulty is that the
currents can change only following some constraints, i.e. loads requirements and
Kirchoff’s equations (3.9). So let’s try to describe a valid perturbation Q̄Õ = Q̄+ ¯”Q
’by hand’. We can generate it starting from a feasible flow distribution Q̄Õ and
adding a constant flow ”Q at each edge of any loop as shown in Fig. B.2.

Figure B.2: Valid current fluctuation for a small loop

Note that if ≠Q1 Æ ”Q Æ Q4 Kirchoff’s equation can hold. We have thus built
manually a valid perturbation of the currents (that nevertheless must have been
generated by a conductances perturbation):

”Qi =

Y
]

[
0 , i /œ loopk, ’k

”k , i œ loopk

(B.3)

note that we are implicitly defining a direction (clockwise or counterclockwise)
for every loop and then the quantity ”k is added for every edge (of the k’th loop)
following the chosen direction. Furthermore observe that perturbation (B.3) can
modify currents on all loops, also the ones we can build using some edges in witch
Qi = 0, i.e. this kind of fluctuation can actually form new loops.

At this point we can ask ourselves what should be the related stationary point
for conductances. Using (3.15) we can write:
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C Õ
i = Ci + ”Ci = Ac(QÕ

i)
–+1

–“+1 = Ac(Qi + ”Q)
–+1

–“+1 (B.4)

but now from B.4, considering that ”Q is a small perturbation (i.e. ”Q
Q « 1), we

can compute what should be the initial perturbation on the conductances in order
to produce a currents variation ”Q :

”Ci ¥ Ac
– + 1

–“ + 1Q
–+1

–“+1 ≠1
i ”Q (B.5)

= c Q
–(1≠“)
–“+1

i ”Q , c > 0 (B.6)

thus, the flows fluctuation (B.3) can be produced by the conductances fluctuation:

”Ci =

Y
]

[
0 , i /œ loopk, ’k

c Q
–(1≠“)
–“+1

i ”k , i œ loopk

(B.7)

we have reached a good result but we still lack something. In fact we still haven’t
proven that the perturbation (B.7) lead to (B.3) following the constraints (3.9). In
fact, we should reason in the opposite sense. Let’s start with a loop-like fluctuation
as (B.7). Now, as we proven in Lemma 1, there will be an unique distribution of
pressure gradients fulfilling the Khirchoff equations. So a new pressure gradient
∆pÕ

i = ∆pi + ”(∆pi) is defined at all edges of the perturbed loop. Then the unique
solution for the flows is enforced by the dynamical flow equation:

QÕ
i = C Õ

i∆pÕ
i

Qi + ”Qi = (Ci + ”Ci)(∆pi + ”(∆pi))
=∆ ”Qi ¥ Ci”(∆pi) + ”Ci∆pi

=∆ ”Qi ¥ BCi”(∆pi)

(B.8)

where we used for ”Ci and ∆pi the expressions valid at the stationary point and B
is a constant. Furthermore, we can observe that in order to fulfill even the loads
requirements (i.e. the continuity equation), the only valid perturbation of the
currents is a constant perturbation ”Q with the same sign in a given direction of
the loop. So in the end we can consider ”Qi = ”Q. Taking a sum on the loop in
(B.8) we can show that we are able to generate exactly a flows perturbation of type
(B.3) , where ”Q is:

”Q Ã 1
nloop

ÿ

iœloop

Ci”(∆pi) (B.9)
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the latter can be seen as a self-consistent equation for ”Q if we consider that the
fluctuations in the pressure gradients depends on ”Q. Unfortunately we weren’t
able to prove that it exists a ”Q satisfying such self-consistent equation. Although,
the satisfiability of (B.9) would imply that we are able to manually describe a
fluctuation of the conductances (B.7) for which flows change in a valid way (B.3),
following all the constraints (3.9). Most importantly both the starting and the
ending states (C̄, Ī) and (C̄ + ¯”C, Ī + ¯”C) are stationary points (3.17) and therefore
we can draw a continuous stationary line in the Ω space as displayed in Fig. B.3.

Figure B.3: Stationary line in Ω space

If we postulate the existence of such line, there are two ways to actually prove
Lemma 4. The first consist in observing that a chain of fluctuations, as the ones
we just described, allows a flow in the Ω space along the stationary line. On this
trajectory we can rewrite the total cost function using (3.15), we obtain:

J Ã
ÿ

ij

QΓ
ij

with Γ > 1 … “ > 1 and 0 < Γ < 1 … 0 < “ < 1
(B.10)

but this model has been exactly studied by Banavar [39], who has proven that
for Γ > 1 the only minimum of the cost function is the completely loopy network,
whereas for 0 < Γ < 1 the trees are the only minima. This prove that for “ > 1 loop-
like fluctuations will allow for every loop to generate, while instead for 0 < Γ < 1
the same fluctuations can destroy any loop and thus the only stable stationary
points are tree-like nets.
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Proof. - Version 2 - On the other hand, we can also proceed in another direction
without using Banavar results. We included this reasoning because we find it
illustrative and because it represent an alternative original version of the central
Banavar’s proof. We can use (B.3) and (B.7) to approximate the change in the
cost function (B.10):

J Õ Ã
ÿ

ij

(Qij + ”Qij)Γ

¥ J +
ÿ

ij

[ΓQΓ≠1
ij ] ”Qij

= J + ”J

(B.11)

now, we can look at what happens at ”J , for different values of Γ, when we try
to generate or destroy a loop. Let’s for instance consider the case 0 < Γ < 1. We
start from a stationary loopy network and try to destroy a loop. To do so one of
the edges of the loop, let’s call it Cj0 should go to zero. Can a fluctuations chain of
the type we just described be able to destroy an edge? The answer is yes. We can
show it by perturbing the loop in which there is Cj0 and looking at the behaviour
”J , in fact from eq (B.12) we can write:

”J ¥
ÿ

iœloop

[ΓQΓ≠1
i ] ”Qi

= [ΓQΓ≠1
j0 ] ”Qj0 +

ÿ

iœloop\j0

[ΓQΓ≠1
i ] ”Qi

(B.12)

remember that if we want to destroy a loop, Qj0 should go to zero, implying
Qj0 π Qi. Thus we have:

lim
Qj0 æ0

QΓ≠1
j0 ”Q =

Y
]

[
π QΓ≠1

i ”Q Γ > 1
∫ QΓ≠1

i ”Q 0 < Γ < 1
(B.13)

the latter is a truly insightful relation that tell us what is the relative weight of
terms in (B.12) when we try to lead one conductance to zero. Now if we start from
the case 0 < Γ < 1 (0 < “ < 1), we see that the leading term is the one related to
Qj0 , implying that in this case we can further simplify (B.12) as:

”J ¥ [ΓQΓ≠1
j0 ] ”Qj0 (B.14)

but, since Qj0 > 0 and ”Q should be negative if we want to destroy the loop, ”J
is negative too. Thus, indeed in this regime loop-like fluctuations can destroy
loops. For the same reason a loop can’t be originated from a tree in this regime
(”Q > 0 =∆ ”J > 0).
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Stability of stationary points

On the other hand, the situation is slightly more complex for Γ > 1 (“ > 1). In
this case (B.12) reads:

”J ¥
ÿ

iœloop\j0

[ΓQΓ≠1
i ] ”Qi (B.15)

let’s say that now we want to start from a tree and try to create a loop ’switching
on’ a new edge. In this case the sign of ”J is more complicated to capture because
each term in (B.15) can either be positive or negative. In fact ”Qi is equal in
modulus for each edge but can represent either a growth or a decrease for different
edges in the loop. The interesting thing is that even if ”J > 0, for sure, if we
consider a similar fluctuation in which we invert the sign of the extra perturbation
current ”Q we are sending in the loop, now ”J < 0. Meaning that if we want
to switch on a current on the (ij) edge we can always do it either in the i æ j
direction or in the j æ i one. Note that this mean that there exist some unstable
loops too, but is easy to show that any unstable loop can evolve toward a stable
one. This proves that for “ > 1 loop-like fluctuations can generate new loops and
thus the only stable stationary point is the completely loopy network.
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