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Abstract

The brain is a complex system organized across multiple spatial and temporal scales.

Emergent cortical oscillations and slowly evolving large-scale functional states coor-

dinate the fast neuronal spiking activity. Concurrently, the firing of a few neurons

has the potential to reshape the organization of billions of others. In between these

macro- and microscopic levels of observation, recurrent motifs are observed at several

mesoscopic scales. Recently, it has been conjectured that the brain might operate

at the edge of a phase transition, due to mounting evidence of scale-free behavior

in neuronal activity. Here, we will explore the interaction between critical states at

different scales of a modeled neuronal network, to set the base to understand how,

were the criticality hypothesis be proven correct, the brain may extract functional

advantages such as efficiency in information elaboration and transmission.
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1 Introduction

The brain is one of the most striking examples of a complex system found in nature.

Its activity is the product of microscopic interactions of simpler units, giving rise

to coordinated behavior which displays emergent properties, ranging from motor

behavior to consciousness. Neurons are generally regarded as the basic brain unit,

exchanging information across a nested network in the form of electric and chemical

signals. Neuronal traffic occurs within a complex biophysical environment, wherein

brain tissues, chemical neuromodulators, and non-neuronal cells, including glial cells,

collectively contribute structural support to the optimal functioning of neurons.

Neurons exhibit complex collective activity, organized across multiple spatial and

temporal scales. Observing the brain at a larger and coarser scale reveals the presence

of emergent cortical oscillations and slowly evolving large-scale functional states,

which coordinate the fast neuronal spiking activity. Indeed, cortical neurons tend to

display synchronized activities, giving rise to coherent brain waves that offer a basic

mechanism of communication across distant neuronal populations [1–4].

Even at rest, whole-brain activity has been shown to evolve according to non-

trivial dynamics, displaying recurrent network motifs corresponding to the cofluc-

tuation of neuronal signals occurring almost simultaneously in brain regions that

can be also very distant from each other [5]. These large-scale brain states are gen-

erally identified using functional connectivity (FC) measures [6]. For example, FC

can be extracted by evaluating the instantaneous correlation between brain regions

from functional Magnetic Resonance Imaging (fMRI) experiments measuring the

slow fluctuations of oxygenated blood flow (having period of some seconds), a proxy

of neuronal activity. Such groups of strongly correlated brain regions, also known as

resting state networks (RSNs), have been consistently observed across several mam-

malian species [7–9], and their characteristic dynamics has been related to cascades

of activity at the neuron population level [10].

In general, the observation of neuronal synchrony suggests that brain computa-

tions can occur at the coarse scale of mesoscopic neuronal populations [11]. However,

the neuron is a complex unit, capable of performing non-linear operations, which can
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have far-reaching impacts on a distributed and sometimes very large subpopulation

of neurons. In fact, the firing of a few neurons has the potential to reshape the

organization of billions of others, as is the case when our eyes pick up an image in a

glimpse and the detection of a few photons can drastically change our entire behav-

ior. How single neurons manage to stand out in such an intricate noisy environment,

and how whole-brain phase space can reduce its dimensionality in order to produce

energetically efficient outputs remain open questions.

One of the forward steps in the understanding of this multi-scale activity was

envisioned when Beggs and Plenz [12] described a new operating mode observed

in neuronal recordings, which they named neuronal avalanches. These consist of

aperiodic bursts of activity spreading across the population in coordinated events

characterized by scale-invariant size and duration, a property which hints at the

possibility that the brain self-organizes around a critical point. In fact, a similar

phenomenology of cascading avalanches was already observed in sandpile models

[13], earthquakes [14], and forest fires [15], and it generally arises in systems of inter-

connected, nonlinear elements evolving over time around a critical state where event

sizes are scale-free and thus characterized by power law distributions. These systems

are often described as networks of simple units with an activation threshold, inte-

grating inputs and then redistributing energy back into the system. Indeed, neurons

operate in a similar way, i.e., integrating inputs from thousands of other neurons

and, after reaching a threshold, distributing their activity back to the network in

the form of electrical impulses or spikes. Also, it is worth noting that many of the

aforementioned systems can be modeled as branching processes that organize close

to a critical point [16].

In light of these observations, the brain criticality hypothesis has garnered signif-

icant attention in the field of neuroscience, emerging as a promising unifying physics

framework for characterizing brain dynamics. Indeed, the concept of the brain op-

erating at the edge of a phase transition holds the potential to elucidate various

neurobiological phenomena, offering functional advantages, such as efficiency in in-

formation elaboration, maximal sensitivity to inputs, or large dynamical repertoires

[17–21]. For example, it is well known in statistical mechanics that correlation length
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exhibits a diverging behavior close to phase transitions, which may have a role in

maximizing information transfer across the network.

Following these initial conjectures, scale-free avalanches have been sought and

identified investigating brain activity across imaging modalities with different spa-

tial and temporal resolutions: using local field potential (LFP), electrocorticography

(ECoG), magneto- and electroencephalography (M/EEG), fMRI, and calcium imag-

ing (Ca2+) [22–33]. Therefore, it is clear that such critical dynamics intervene at var-

ious levels of brain organization. In this work, we aim to study the relation between

the “local” critical state of a population of interconnected neuronal units—which

can be recorded by placing a multielectrode array (MEA) of microscopic electrodes

distributed on a small surface of a few mm2—and the “global” critical activity mea-

sured via whole-brain imaging modalities (e.g., fMRI, M/EEG). Understanding the

interplay between these two levels of description may shed light on the multiscale

mechanisms governing brain functioning and explain how the brain efficiently com-

municates across micro- and macroscale.

To do so, we adopted computational-modeling techniques allowing the simula-

tion of brain activity at both levels: local populations and whole-brain network. In

general, brain simulations can be performed in bottom-up and top-down fashions.

In the former, modeling starts from the microscopic scale and provides detailed bio-

physical descriptions of single neuronal cells, e.g., the celebrated Hodgkin-Huxley

neuron model. While offering precious insights into microscopic dynamics, the reso-

lution of such models comes at the expense of scalability: on the one hand, including

all biophysical details in large networks carries an enormous computational cost; on

the other hand, increasing the complexity of simulations hinders interpretability of

results. Indeed, one of the great challenges of neuroscience is to develop the means

to interpret and understand the huge amount of activity and signals taking place

in the brain, should they ever be recorded in full detail. It should be noted that,

as of today, empirical recordings of brain activity are only possible at very limited

spatial or temporal resolutions. For example, electrophysiological recordings with

whole-brain coverage (e.g., M/EEG) have a very good temporal resolution, ∼1000

Hz, but a very poor spatial resolution, ∼3 cm3, whereas techniques such as fMRI
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are capable of reaching ∼1 mm3 resolution, at the expense of temporal resolution,

which is quite poor at ∼0.5 Hz. Even in this best-case scenario, it is estimated that a

single fMRI voxel contains around 500 thousand interconnected neurons, which form

complex interactions of their own, making extremely hard the inference of the causal

links between the neuronal organization and whole-brain activity.

Based on these considerations, a top-down approach to modeling offers a viable

alternative for whole-brain simulations: this consists of a coarse-grained description

where most microscopic details are abandoned in favor of a greater scale depic-

tion, aimed at capturing essential features of the system. This allows us to perform

whole-brain simulations, describing regions with simplified mathematical mean-field

models—also referred to as neural mass models (NMMs) [34, 35]—and studying their

interactions. In such models, each region is described by a set of a few differential

equations governing the local dynamics of a neuronal population (e.g., the mean

membrane potential). Such populations are then coupled through neuroanatomi-

cal links, whose weights can be empirically measured, effectively yielding a set of

coupled differential equations. The numerical resolution of this system allows the

simulation of whole-brain activity in terms of region-level signals that can eventually

be compared to empirical recordings. In this work, we adopt a top-down mean-field

approach, connecting together neural populations individually tuned around a critical

point to represent local criticality, coupling them via empirical structural connectiv-

ity links extracted from mice experiments, and simulating critical-like whole-brain

activity, global criticality. Using this setup we explore how the global critical dy-

namics unfolding over a realistic connectome impact the local critical dynamics of

neuronal populations within a brain region.
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2 The criticality hypothesis

The hypothesis that the brain operates at the edge of a phase transition originated

from the observation of neuronal avalanches, i.e., short-lived aperiodic bursts of neu-

ronal activity involving distributed networks, whose size and duration follow a scale-

free distribution [12]. In this section, we provide an overview of the substantiating

evidence for the brain criticality hypothesis, followed by an examination of its the-

oretical underpinnings. While the precise nature of such transition is still debated,

several models have been proposed, generally positing the critical point between a

highly ordered phase and a disordered one. Roughly speaking, these phases corre-

spond to periods of high activity and quiescence. However, as discussed at the end

of this chapter, a more nuanced understanding of the hypothesized phase transition

may offer a more robust account of empirical evidence.

2.1 Evidence for avalanche behavior in neuronal networks

The idea that brain networks could be operating in between phases was already

suggested by several modeling studies simulating criticality in neuronal networks

[36–39].

Conducting MEA experiments in vitro, Beggs and Plenz made the remarkable

discovery of synchronized bursts of neural activations cascading through the brain

network in scale-free patterns, whose statistics resemble the sandpile avalanches orig-

inally studied in the context of self-organized criticality (SOC) [40]. For this reason,

these salient neuronal events were termed neuronal avalanches.

In general, the algorithm to extract neuronal avalanches from brain data consists

of a binarization that focuses on rare salient events. In order:

• Raw data is collected from several brain sites, e.g., in the form of electric

potentials; for each source, the signal is z-scored by subtracting its mean and

dividing it by its variance.

• The z-scored signals are binarized by assigning 1 to each time point where the

signal surpasses a fixed threshold and 0 otherwise. Such threshold is generally
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considered around 3 standard deviations, resulting in a sparsification of the

data with only a minority of “active” above-threshold data points.

• A temporal coarse-graining is applied by dividing each binarized signal into

time bins of equal size and assigning 1 to time bins containing at least one

activation, 0 otherwise. A standard choice for the bin size corresponds to the

average inter-event interval, i.e., the average time between two consecutive

activity events. However, different choices can be applied depending on the

imaging modality [41].

• Avalanches are defined as sets of contiguous time bins where at least one of

the recorded units is active; their size corresponds to the number of such active

units, whereas their duration is identified as the number of active bins.

Using this definition, Beggs and Plenz [12] showed that the avalanche size distri-

bution, P (S), obeys a power law of the form P (S) = S−τ , with τ measured to be

3/2. This result was robustly observed, independently of the size of the electrode

array used for measurements. Also, as expected, the distribution featured a cutoff for

values of the size S approaching the instrument size, again consistently with different

sizes of the measurement arrays, suggesting that the law would be range-free for an

infinite array. Moreover, as theory predicted [16], avalanche duration distribution,

P (T ), followed a power law with an exponential cutoff, with an initial slope given

by P (T ) = T−α, α = 2.

This discovery set in motion the look for more evidence of such behavior across

other imaging modalities, which was expected across a wide range of spatial and

temporal scales, in virtue of the scale-free nature of critical phenomena. In fact,

evidence of critical avalanches was found in LFP recordings [22–25] (which have a

spatial resolution in the range of some millimeters and recording frequency of around

300 Hz), as well as in modalities capable of covering the entire brain, including

eletrocorticography [26], (∼1 cm3 spatial resolution, 200 Hz sampling frequency),

M/EEG [27–29] (∼3 cm3, 1000 Hz), fMRI [30–32] (∼1 mm3, 0.5 Hz), and calcium

imaging [33] (∼1 µm, 1000 Hz).
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2.2 Self-organized criticality

Self-organized criticality (SOC) is a phenomenon observed and named by Bak et

al. [40] to describe those systems that spontaneously organize into a critical state,

in contrast to typical second-order phase transitions, where scaling behavior occurs

only when a parameter is fine-tuned close to a critical value. Bak and colleagues

introduced this concept when studying a cellular automaton model, known today

as the sandpile model. It features a two-dimensional lattice hosting cells that can

hold up to three grains of sand before toppling. When a fourth grain is added,

a site is driven over the threshold and topples, distributing one grain to each of

its neighboring cells, which will cause any of them to topple if it has reached the

threshold. Bringing the system out of equilibrium by slowly adding grains of sand,

the sandpile approaches a critical slope, where a single grain of sand can trigger sand

cascades of variable sizes. At this critical point, the distribution of cascade sizes

approaches a power law. In other words, no predominant temporal or spatial scale

can be identified for these events, whereby in this regime cascades of different sizes

and durations spontaneously occur, triggered by microscopic fluctuations. It has

been argued that sandpile models share a number of features with systems having

many absorbing states [42], and certain self-organized forest-fire models are related

to dynamical percolation [43]. Morevore, the essential ingredients to obtain this

behavior should be many nonlinear threshold units connected to each other and a

separation of driving and relaxation time scales, such that the addition of sand (the

driver) occurs very slowly relative to the duration of avalanches (relaxation) [44].

In fact, neurons within a network can be thought of as coupled, nonlinear thresh-

old units: a neuron fires after receiving above-threshold inputs, then an action po-

tential is generated and propagates through its axon, at the end of which synapses

connect it with the target neurons, to which the signal is transmitted. Such connec-

tions can be excitatory or inhibitory (i.e., they can increase or decrease the excitation

state of the target) but in both cases target neurons integrate the receive signals and

fire once a threshold is reached. Upon firing, they redistribute activity to the network

and enter a refractory period.
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Beggs and Plenz proposed a branching process close to its critical point as a model

to describe the spreading of avalanches in a neuronal network. A branching process

is a stochastic process in which every active unit has, on average, probability σ, the

branching parameter, to spread its active state to its neighbors. Therefore, σ can

also be interpreted as the average fraction between active units at a time step and

at the previous one. For values of σ lower than 1, the activity evoked by a random

supra-threshold activation will die out quickly, whereas for values greater than 1 it

will explode and reach the size of the whole network. It is for values close to 1

that a critical evolution of the process is observed, as activity will proceed somehow

constantly, until stochastic fluctuations will cause instantaneous σ to momentarily be

close to zero, interrupting it. Every time this happens, an avalanche is ended, and,

owing to stochastic fluctuations, avalanche events can start spontaneously, propagate

through the network, and die out after a variable lifetime with no characteristic scale.

Therefore, the network is thought to operate in the transition between an absorbing

state, where all units are inactive, and a non-zero activity phase.

2.3 Mean-field directed percolation

Branching processes belong to the directed percolation (DP) universality class, as

stochastic transmission models having a unique absorbing state and no further sym-

metries usually do [45–47]. Furthermore, if the network has a topological dimension

above 4, such as random or complete graphs, the model usually belongs to the mean-

field directed percolation (MF-DP) universality class, a special case of DP for which

critical exponents values can be analytically determined owing to its mean-field na-

ture.

The values of the exponents of the power laws registered by Beggs and Plenz in

2003 matched very closely those predicted by statistical mechanics theories for a DP

process. Correspondence in numerical values is a very significant discovery, as renor-

malization group theory states that values of the critical exponents—i.e., exponents

describing the behavior of physical quantities near continuous phase transitions—

are determined by the general properties of the system under study. In particular,
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different systems can exhibit the same behavior close to a critical point, i.e., close

to specific values of macroscopic parameters that govern the transition between dif-

ferent states of the system. This is because, as a result of the interaction between

countless simple units, emergent behavior does not strictly depend on microscopic

details of the system, but is rather characterized by general aspects of the ensemble

phenomenon. Therefore, it is said that systems displaying the same critical behavior,

in spite of different microscopic organizations, belong to the same universality class,

which is characterized by its critical exponents values, among other properties.

An experimentally verified branching parameter close to 1 strengthened Beggs

and Plenz’s claim. To evaluate it, they defined d as the ratio between active units

in a time bin of an avalanche and its predecessor. it was computed for every pair of

consecutive bins, to then compute its expected value:

σ =
∑
d

d p(d) (1)

Note that, in their work, p(d) differed from the simple empirical frequency of d for

a factor introduced to correct for the refractory period of recording electrodes; this

will not be reported here for the sake of simplicity.

Nonetheless, to resize the plausibility of such a claim, Touboul and Destexhe [48]

argued that power-law distributions alone are insufficient hallmarks of a critical phase

transition, as they are observable in non-critical systems as well. They suggested a

fundamental scaling relation was to be tested, the so-called crackling noise relation.

Crackling is a phenomenon in which systems react with discrete events of a variety

of sizes to slow changes in external inputs [49]. For instance, violent and intermit-

tent earthquakes are generated as two tectonic plates slowly contact one another, a

magnetic material in a changing external field magnetizes in a series of jumps, or

a piece of paper emits intermittent, sharp noises (“crackling noise”) as it is slowly

crumpled. These individual events span many orders of magnitude in size, showing

no characteristic size scale. Considering all avalanches of a certain duration T in

an experiment, they will have a distribution of sizes S, PT (S), centered around an

average ⟨S⟩(T ) =
∫
S PT (S) dS. Assuming that the system fulfills scale invariance,
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such average values at different spatial and temporal scales should be the same. This

can be expressed as:

⟨S⟩(T ) = A ⟨S⟩(T/B) (2)

where A and B are scaling factors for space and time, respectively. Considering the

timescale to be expanded by a small factor B = 1/(1− δ), it is safe to assume that

the rescaling of the size will also be small, as A = 1 + aδ. Hence:

⟨S⟩(T ) = (1 + aδ)⟨S⟩((1− δ)T ) (3)

⟨S⟩(T ) = ⟨S⟩((1− δ)T ) + aδ⟨S⟩((1− δ)T )

aδ⟨S⟩((1− δ)T ) = ⟨S⟩(T )− ⟨S⟩(T − δT )

a⟨S⟩((1− δ)T ) = T
⟨S⟩(T )− ⟨S⟩(T − δT )

δT

a⟨S⟩(T ) = T
d⟨S⟩
dT

, (4)

assuming δ to be small. Such expression admits the solution:

⟨S⟩(T ) = S0T
a, (5)

where the critical exponent a is a universal prediction of a given theory. Considering

the DP universality class, scaling theory shows that a = 1/σνz, i.e., a combination

of other critical exponents, and provides the scaling relation mentioned above as the

crackling-noise relation (see [49]):

α− 1

τ − 1
=

1

σνz
. (6)

This relation is crucial as its validity is necessary to propose that an observed neu-

ronal activity pattern is indeed a hallmark of a phase transition.

Afterward, there have been studies producing similar findings in voltage imaging

recordings of the mouse cortex [50] and in two-photon imaging of the rat cortex

[51], in which MF-DP critical exponents were accurately retrieved. However, other

experimental results disagreed on the exponents values, such as ex-vivo recordings
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of the turtle visual cortex [52], spike avalanches of rats under ketamine-xylazine

anesthesia [53] or M/EEG recorded avalanches in humans [28, 54], among others.

Nonetheless, Carvalho et al. [55] showed that exponents possibly differ from those

predicted by the MF-DP universality class due to subsampling effects.

As a final remark, it is worth noting that since many kinds of systems can be-

long to the same universality class, thus producing the same critical exponents and

scaling relations, branching processes are not the only candidate models to describe

avalanche spreading in neuronal networks. As a matter of fact, the quiescent-to-

active transition interpretation these models imply has been challenged because too

simplistic to explain the complex repertoire of dynamics observed in neural record-

ings. Moreover, SOC models rely on the hypothesis of an extremely large separation

of dynamical timescales, as mentioned above, which might not be a realistic assump-

tion for neuronal networks [56, 57].

2.4 Advantages of critical behavior

What advantages could an avalanche operating mode bring to a neuronal network?

From an analytical perspective, an important consequence of power law distributions

is that they are heavy-tailed, meaning that realizations drawn from these distribu-

tions are not concentrated around their mean. This appears evident from an explicit

calculation of the expected value, which is diverging for values of the exponent lower

than 2, as shown by:

⟨S⟩ =
∫
S P (S) dS =

∫ S=∞

S=S0

S S−α dS =

∫ S=∞

S=S0

S1−α dS. (7)

This implies that avalanches of every length are expected, even though shorter

ones will be more likely, and this has consequences on maximizing information trans-

mission, as shown in [12, 19, 58].

Moreover, in their first paper covering the topic [12], Beggs and Plenz simulated

a feed-forward neural network architecture embedded in a random graph, where

each edge has probability pi to transmit activity to its target node, and found that
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configurations that reproduced values of σ close to 1 maximized information trans-

mission. It is worth noting that the choice of a feed-forward network was supported

in their case by the nature of the tissue they were studying. Also, when a recurrent

branching network is tuned to the critical point, the number of significantly repeating

avalanche patterns is maximized [59], which may contribute to optimal information

storage. This idea can be intuitively understood by considering that scale-invariance

involves complex patterns, akin to those seen in fractal shapes. Maximum storage

capacity may be found within these intricate patterns.

Similarly, through the variation of synaptic weights variance in a spiking net-

work model, Bertschinger and colleagues [58, 60] generated networks with damped,

sustained, and expanding activity. When the variance of synaptic strengths is low,

the activity originating from a specific neuron results in downstream effects that

are relatively consistent, leading to stable activity patterns. Conversely, when such

variance is high, the activation of downstream targets by a single neuron varies with

each occurrence, giving rise to highly unpredictable activity patterns. This study

revealed that computational processes rely on a delicate balance between order and

variability. In instances where a network exhibits excessive order, it is constrained

in its ability to perform diverse mappings between inputs and outputs, thereby lim-

iting its computational capacity. On the other hand, if randomness in a network

is exaggerated, this may have a broader range of mappings, but their reliability is

compromised, ultimately hindering effective computation.

Finally, Shew et al. [61] performed in-vivo experiments as well as computational

simulations to measure the relation that occurs in a neuronal network between in-

formation transmission and a statistical index, κ, which they used to measure the

distance of the observed distribution of events from avalanche behavior. Their re-

sults showed that entropy and information transmission are maximized for κ ≈ 1,

a condition under which neuronal avalanches emerge. For a more detailed review

of how avalanche behavior can be shown to maximize dynamic range, information

transmission, and information capacity, readers can refer to [18].
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3 Modeling a critical brain

Modeling the scale-invariant behavior observed in neural tissues through neuronal

network simulations opens up the possibility of reproducing the phenomenology of

critical avalanches, studying the system’s features as functions of the model parame-

ters, and addressing theoretical questions about the brain’s organizational principles.

In this chapter, we will introduce brain models aimed at addressing a specific open

question: how does the “global” criticality measured at the whole-brain level (e.g.,

via M/EEG) relate to the “local” criticality measured at the level of small cortical

patches (e.g., via MEA)?

As mentioned before, experimental measures of global and local criticality rely on

technologies capable of different spatial and temporal resolutions. In most cases, the

local scale includes fine-grained details about neuronal activity, whereas the global

scale is studied at a coarser spatiotemporal resolution of mesoscopic populations.

Similarly, in theoretical models, the local scale is generally described as a densely

connected neuronal network, whereas the global scale can be modeled as mesoscopic

neural masses connected via structural connections. In either case, the choice of

which details are to be included in the model impacts its predictive power, compu-

tational feasibility, and interpretability of results.

In the following sections, we will describe brain models reproducing critical-like

behavior across these different scales. Finally, we will link the two scales, thereby

addressing the multiscale mechanisms of criticality in the brain.

3.1 The microscale: neuronal network models

A local neuronal population can be modeled at the microscopic level as a neuronal

network of densely connected neurons. Since synchrony is a recurrent feature of

neural recordings, a standard modeling choice is the phenomenological phase syn-

chronization model: the Kuramoto model. It consists of a population of N coupled
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phase oscillators described by φi(t) whose dynamics are governed by

φ̇i(t) = ωi +
N∑
j=1

Kij sin [φi(t)− φj(t)] , i = 1, . . . , N, (8)

where ωi is the natural frequency of the i-th oscillator, drawn from a distribution

p(ω), and Kij is the coupling strength between units i and j. Here, each neuron is

modeled as a phase oscillator, i.e., a point confined on the unit circle, spontaneously

rotating at a specific natural frequency, while the coupling tends to synchronize

it with all the others. When the coupling is sufficiently weak, the oscillators run

incoherently, whereas beyond a certain coupling threshold collective synchronization

emerges. A particularly simple case, amenable to in-depth analytical analysis, is that

of the mean-field coupling between oscillators, i.e., Kij = J/N > 0, ∀ i, j. In this

case, it is convenient to define the Kuramoto order parameter:

Z(t) = ⟨eiφj(t)⟩j =
1

N

N∑
j=1

eiφj(t) = R(t)eiψ(t), (9)

where R(t) ∈ [0, 1] measures the coherence of the oscillator population and ψ(t) the

average phase. Under this definition, Eq. 8 can be written as:

φ̇i(t) = ωi + JR(t) sin [ψ(t)− φi(t)] , (10)

which reveals that oscillators are coupled to the common average phase ψ(t) through

a coupling coefficient given by JR(t).

In the thermodynamic limit, N → ∞, units may be expected to be distributed

according to a probability density ρ(φ, ω, t), leading to the following definition of the

order parameter:

Z(t) =

∫ π

−π
eiφ

(
1

N

N∑
j=1

δ(φ− φj)

)
dφ =

∫ π

−π

∫ +∞

−∞
eiφρ(φ, ω, t)p(ω)dφdω, (11)

where the first identity is a convenient rewriting of the definition of Z and the second
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one stems from writing the sum as an integral in the continuous limit. This equation

illustrates how Z provides information on the oscillators’ synchronization. Indeed,

two significant limits can be identified:

J → 0 : φi(t) = ωit+ φi(0), (12)

the uncoupled limit, in which the integration of Eq. 10 easily provides the evolution

of φi(t) and, thus, letting φ ≈ ωt in Eq. 11 yields R(t) → 0 as t → ∞, implying

that oscillators are not synchronized. In the opposite case,

J → ∞ : φi(t) ≈ ψ(t) ∀ i, (13)

the strong coupling limit, oscillators become synchronized to the average phase ψ(t)

and thus Eq. 11 gives R(t) → 1 for t→ ∞ [62].

Disregarding node heterogeneity and adding a noise term, which is a customary

ingredient in modeling neural dynamics, a simpler yet meaningful model is obtained,

named the annealed Kuramoto model, which reads:

φ̇i(t) = ω +
J

N

N∑
j=0

sin[φj(t)− φi(t)] + σni(t), i = 1, . . . , N. (14)

In it, ω is a common intrinsic frequency, ni(t) is a zero-mean unit-variance Gaus-

sian white noise multiplied by the noise amplitude σ, and J is the constant coupling

strength among all neighbors on a fully connected network. Eq. 14 exhibits a syn-

chronization phase transition where the synchronization (Kuramoto) order parameter

Z(t) = ⟨eiφj⟩j experiences a supercritical Hopf bifurcation from a fixed point to a

limit cycle, revealing the emergence of collective oscillations [62, 63]. However, com-

putational analyses revealed that neither at the critical point of Eq. 14 nor around

it scale-free avalanches can be found, even though, as expected for phase transitions,

other standard quantities are known to exhibit scale-invariant behavior [64].

Buend́ıa et al. [64] proposed a variant of the annealed Kuramoto model, Eq.

14, capable of displaying scale-free avalanches in concomitance with incipient os-
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cillations. In it, every node is modeled by Eq. 15, as its dynamical evolution is

an oscillation with a phase-dependent angular velocity, a characteristic feature of

spike-like behavior.

φ̇ = ω + a sinφ (15)

As a remark, a system is described as excitable when it presents a single, stable

equilibrium, but a sufficiently strong input can drive the system in a large excursion

in phase space before returning to the stable fixed point [65–67]. In describing

neuronal models, different excitability classes have been named, among which type-I

excitability is characterized by the continuous growth of the spiking rate when the

input current is continuously increased, while type-II excitability involves a sudden

jump in the spiking rate under the same circumstances. In bifurcation theory, type-

I excitability arises when the corresponding limit cycle appears with a vanishing

frequency, i.e., infinite-period bifurcations, whereas in type-II excitability limit cycles

emerge with a finite, nonvanishing frequency [65].

In Eq. 15, which is the canonical form of type-I excitable units, the parameter

a is named excitability. For a > ω the deterministic dynamics of each isolated

unit exhibits a stable fixed point at φ∗ = − arcsin(ω/a), as well as a saddle point

at −φ∗. The addition of a stochastic term σn(t) can induce fluctuations beyond

the saddle, thus generating large excursions of the phase before relaxing back to

its equilibrium. Conversely, for a < ω, the system oscillates with phase-dependent

angular velocity and, as the saddle-node into invariant circle (SNIC) bifurcation point

ac = ω is approached, the frequency of the oscillations vanishes, implying that the

period becomes infinite, while the amplitude remains constant.

Thus, introducing noise and standard Kuramoto coupling, the whole model on a

fully connected network reads:

φ̇i(t) = ω + a sinφi(t) +
J

N

N∑
j=0

sin[φj(t)− φi(t)] + σni(t). (16)

Computational simulations of a fully connected network of N = 5000 neurons

produce the phase diagram in Fig. 1. It reveals that there are two main types of
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collective dynamical regimes: oscillations, i.e., synchronous states, in the lower-left

region, and stable fixed points, corresponding to either high-activity asynchronous

states in the upper part of the diagram or low-activity states in the lower-right part.

These low-activity states are characterized by susceptibility to collective reaction to

external inputs and constitute the so-called collective-excitability phase. Further-

more, where the three phases meet, a fourth, triangular region displaying bistability

is found and, at the crossing between that and the synchronous region, scale-invariant

avalanches can be identified.

3.2 The mesoscale: mean-field models

The complex patterns observed in large-scale experimental recordings include col-

lective oscillations emerging out of neural synchronization, as well as highly hetero-

geneous (avalanche-like) outbursts of activity interspersed by periods of quiescence.

In search for a mean-field model capable of reproducing such patterns of activity, di

Santo et al. employed a Landau-Ginzburg (LG) model to describe the mean-field

behavior of the fundamental units capable of scale-invariant whole-brain oscillations

Figure 1: a) Phase diagram and bifurcation lines of the type-I excitable Kuramoto model,
Eq. 16, computed via simulations on a fully connected network of N = 5000 units, setting
ω = 1, J = 1. The bistability region was identified by solving numerically Eq. 24, assuming
Z51 = 0. In the inset, the bistability region is shown and a star marks a point where scale-
free avalanches were detected. b) Sketch of the analytically derived phase diagram for the
mean-field approximation of Eq. 16. The bistability region, whose size has been increased
for clarity, is drawn in green, delimited by three transition lines and three vertices: the BT
point, the SNL and the cusp. FIG. 1 and 2 of [64].
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[68].

Landau and Ginzburg pioneered the study of phases of matter and their transi-

tions with a parsimonious, coarse-grained approach, in which most microscopic de-

tails are safely neglected. The addition of space-dependent fluctuations to describe

inhomogeneous systems completes the picture, creating a solid theory for phase tran-

sitions. Following a similar approach, di Santo et al. proposed a model in which two

state variables describe the neural population: the excitatory activity, ρ, and the

available synaptic resources, R. The dynamical evolution of the first variable follows

an equation already proposed by Wilson and Cowan [69], which is a power series

truncated to the third order, as prescribed by Landau’s principle of parsimony:

ρ̇(t) = [−a+R(t)]ρ(t) + bρ2(t)− ρ3(t) + h, (17)

where a > 0 controls the spontaneous decay of activity, balanced by new activity

generated proportionally to available synaptic resources. b > 0 controls nonlinear

integration effects, while the cubic term imposes saturation of the activity, preventing

its unbounded growth, and h models an external driving field. The second variable

follows a well-known equation modeling synaptic plasticity proposed by Tsodyks and

Markram [70]:

Ṙ(t) =
1

τR
(ξ −R(t))− 1

τD
R(t)ρ(t), (18)

where ξ is the baseline level of synaptic resources and τR, τD are the characteristic

recovery and depletion times. It is worth noting that the equation for the activity ρ

is the minimal form of a first-order phase transition with hysteresis or saddle-node

bifurcation, upon fixing the number of synaptic resources R. It displays a quiescent

or “down” state ρ = 0 when R ≤ a and an active or “up” state for R > a. On the

other hand, the second equation accounts for the dynamics of the level of synaptic

resources and includes a slow recovery term, dominating when activity is low, and

a fast consumption one, which dominates the dynamics in the presence of activity

ρ ̸= 0.

Analyzing Eqs. 17 and 18 it is possible to show that the system behavior depends
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on the value of the maximum allowed synaptic resources, ξ. For ξ < a, the only fixed

point is a quiescent state of low activity. For larger values of ξ, the two nullclines

intersect at an unstable fixed point, giving rise to a limit cycle, i.e., to relaxation

oscillations in which both ρ(t) and R(t) oscillate. If ξ is large enough, an ”up”

state emerges: a fixed point with nonvanishing activity. At ξc = a an infinite-period

homoclinic bifurcation into a limit cycle is observed. Finally, as the control parameter

ξ is further increased, one encounters another homoclinic bifurcation at which the

limit cycle disappears, giving rise to an ”up” fixed point. Isolated units of this LG

model can produce spikes even when they are slightly below the threshold owing to

the effect of noise; in other words, they behave as type-I excitable units. As a remark,

we note that type-I excitability can rely either on a SNIC bifurcation, as in equation

Eq. 15, or on a homoclinic bifurcation, as in this LG model. Both cases exhibit the

common relevant feature of generating spike-like infinite-period oscillations at the

bifurcation point [65].

Another noteworthy mean-field model can be obtained analytically from the

model described in the previous section, Eq. 16, which also allows for a more in-depth

understanding of its phase diagram. Furthermore, through a mean-field approach, a

mesoscale description of an ensemble of spike-like oscillators can be derived, allowing

the description of a neuron population in terms of a few mean-field variables.

In the following, the derivation of the mean-field model for Eq. 16 is presented.

Parameters ω and J are considered to be fixed to 1; a choice which can be shown not

to impact the results [64]. Owing to the presence of the term a sin(φi), which induces

even uncoupled units to spend more time around some particular phase values, the

simple average Z is inadequate to describe the collective state of the system and,

thus, cannot allow to correctly identify synchronization. In order to circumvent

this problem analytically, it is convenient to consider the hierarchy of higher-order

moments of the variable eiφj , the so-called Kuramoto-Daido parameters:

Zk = ⟨eikφj⟩j =
1

N

N∑
j=0

eikφj = Rke
iψk , k ∈ N. (19)
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Using standard trigonometric relations, Eq. 16 can be rewritten as a function of

Z1(t) = R1(t)e
iψ1(t), leading to the following set of Langevin equations:

φ̇j(t) = ω + a sinφj(t) + JR1(t) sin[ψ1(t)− φj(t)] + σn(t), (20)

in which the mean-field nature of the coupling is evident.

In order to solve these equations, the first step is to consider a large number of

oscillators N → ∞, so that the system can be described in the continuum limit using

the probability density to find an oscillator around any given phase value φ, P (φ).

The evolution of such probability density is governed by the following Fokker-Planck

equation:

∂tP (φ, t) =
σ2

2
∂2φP (φ, t)− J∂φ[(ω + a sinφ+

Z1e
−iφ + Z1e

iφ

2i
)P (φ, t)]. (21)

Here, R1 sin(ψ1−φ) = (Z1e
−iφ+Z1e

iφ)/2i has been used. Due to its periodicity,

it is convenient to expand the probability density P (φ, t) in Fourier series:

P (φ, t) =
1

2π

+∞∑
k=−∞

pk(t)e
ikφ, (22)

where pk = p̄−k. It can be shown that the Kuramoto-Daido parameters can be

mapped onto the Fourier coefficients:

Zk =

∫ 2π

0

P (φ, t)eikφdφ = p−k. (23)

Plugging the series expansion, Eq. 22, into the Fokker-Planck equation yields

an infinite set of differential equations, one for each of the parameters Zk. To

obtain them, after performing the derivatives, all the terms must be written as

(2π)−1
∑

k f(Zk, Zk+1, Zk−1, . . .)e
ikφ for some function f . Then, since the exponen-

tials eikφ are the Fourier-basis elements, all parameters can be identified mode by

mode, leading to an equation for the evolution of each Kuramoto-Daido order pa-
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rameter. The resulting set of equations,

ŻkZk(iωk −
k2σ2

2
) +

ak

2
(Zk+1 − Zk−1) +

Jk

2

(
Z1Zk−1 − Z̄1Zk+1

)
, (24)

constitutes a complete description of the system. In order to proceed analytically,

given that all equations are coupled, a closure is needed to truncate the infinite

hierarchy. In the literature, different low-dimensional closures have been explored,

the simplest of which is the well-known Ott-Antonsen (OA) ansatz, which amounts

to expressing each moment as a power of the first:

Zk(t) = [Z(t)]k . (25)

This scheme becomes exact in a deterministic, noise-free system. In general,

using the OA ansatz and letting Z(t) = R(t)eiψ(t) leads to the following mean-field

equations:

Ṙ =
1

2
R
[
J
(
1−R2

)
− σ2

]
− 1

2
a
(
1−R2

)
cosψ,

ψ̇ = ω +
a (1 +R2) sinψ

2R
, (26)

which describe the system at an approximation of order O(σ2) [71]. Remarkably,

these equations match those obtained by Childs and Strogatz in the case of deter-

ministic oscillators with heterogeneous frequencies distributed as a Lorentzian [72].

Indeed, the OA ansatz is equivalent to the assumption of a Lorentzian distribution

for the angles: assuming P (φ, t) to be a Lorentzian distribution, and following the

same procedure, one recovers the OA ansatz result. Furthermore, it is worth noting

that, for a fixed value of R, the equation of the collective phase ψ is the normal form

of a saddle-node into an invariant circle (SNIC) bifurcation. On the other hand, the

equation for Ṙ is almost the same as in the annealed Kuramoto model, with the

addition of a perturbation proportional to the excitability parameter a.

Using this mean-field description, it is possible to analytically obtain a phase

diagram for the type-I excitable oscillators model, reported in Fig. 1. This confirms
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the presence of three phases for the system: a synchronous one, a high-activity asyn-

chronous regime, and a collective-excitability phase, separated by different types of

bifurcation lines. In particular, for low noise amplitudes σ, as the control parame-

ter a is increased, there is a collective SNIC bifurcation from the oscillatory regime

to a phase characterized by a stable fixed point with very low spiking activity, but

susceptible to collectively react to external inputs: the collective-excitability phase.

In analogy with the classification of excitability types, this is called type-I synchro-

nization transition, as oscillations emerge at the transition point with zero frequency

(infinite period) and finite amplitude. On the other hand, for small values of a, by

increasing σ, a collective Hopf bifurcation to a high-activity asynchronous state is

encountered. It is referred to as a type-II synchronization transition, since oscil-

lations arise with a fixed nonvanishing frequency. Remarkably, due to topological

reasons [65], the aforementioned type-I and type-II bifurcation lines do not intersect,

meaning there is no such thing as a “tricritical” point. Instead, in the region where

they come close to each other, the triangular-shaped region of bistability shown by

simulations is retrieved, delimited by three bifurcation lines and three codimension-2

bifurcations. In particular, there are:

• A Bognadov-Takens (BT) point, where the Hopf-bifurcation line finishes, col-

liding tangentially with a line of saddle-node bifurcations,

• A saddle-node-loop (SNL) where the line of SNIC bifurcations ends, becoming

a standard saddle-node line,

• A cusp, where the two saddle-node bifurcation lines collide.

As a further remark, the bistability region is divided into two halves by the Hopf-

bifurcation line, so that the regime of collective excitability coexists with either

oscillations below the Hopf line or the high-activity asynchronous state above it.

In other words, in this region, the Hopf bifurcation occurs in one of the branches

of two coexisting solutions, i.e., in concomitance with bistability. Notably, the non-

trivial triangular-shaped structure described above is rather universal and emerges in

other models displaying both type-I and type-II transitions, such as the broadly used
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Wilson-Cowan model of excitatory-inhibitory networks [73]. Furthermore, the pe-

culiar phenomenology of collective excitability alongside codimension-2 bifurcation

points is not model-specific and has been featured in various models for neuronal

activity [74].

To summarize the important implications of this model, one can state that gen-

eral synchronization transitions must be analyzed considering not just the standard

type-I and type-II cases, but also more complex scenarios, including the case in which

the transition to synchrony occurs in concomitance with bistability, i.e., when incip-

ient oscillations coexist with low-activity asynchronous states. Such a scenario has

been named hybrid-type (HT) synchronization transition and allows for a richer phe-

nomenology, owing to the presence of codimension-2 bifurcations and bistability. It

has been hypothesized [64] that the above-described LG theory, and possibly other

models [75], exhibit scale-free avalanches at the edge of synchronization precisely

because some kind of bistability is present around the synchronization transition.

As a final remark, an aspect of this model that might need to be revisited is that

here there are no true absorbing states, i.e., states from which the system cannot

exit, neither as a consequence of the deterministic dynamics nor as the result of

stochasticity. Usually, absorbing states are expected when the noise is multiplicative,

as was the case for the LG model, meaning that noise amplitude is proportional to

activity and thus vanishes in its absence. This requires a well-defined zero activity

state, which cannot be easily implemented in Eq. 16 due to the periodicity of the

phase state variable. On the other hand, it is well established that absorbing states

are needed to generate branching-process exponents [76]. Thus, further work is still

needed to elucidate what happens in these kinds of modeling approaches if absorbing

states are included.

3.3 The macroscale: connectome-based models

Reducing the complexity of the brain is essential to achieve an effective description

of large-scale neuronal networks for critical behavior. To this end, the brain can

be parceled into regions of interest (ROIs), which usually correspond to anatomical
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regions of the brain. This allows to represent the whole brain as an ensemble of few

discrete interacting elements. Each region is treated as a point in space, described

by a few state variables bound to follow dynamical equations, coupled to each other

in a structural network. Equations describing the behavior of nodes can be obtained

based on phenomenological considerations or through mean field approximations of

microscopic single-neuron models.

The graph in which the model is embedded may be a 2D one, when anatomical

considerations support it, or an empirically extracted connectome, i.e., a weighted

graph in which each weight represents the connection strength between two nodes,

based on experiments which measure how much couples of selected regions interact.

Using this approach and calling xi = (xi, yi, ...) the vector of state variables of region

i, entries Wij of the connectome customarily enter the coupled differential equations

for state variables in the following way:

ẋi(t) = f i(xi) +G
∑
j ̸=i

Wij g(xi,xj) (27)

where f i governs the uncoupled dynamical evolution of xi, G is the global coupling

constant, determining the amount of the impact of the network coupling on the

evolution of its units, and g is some pairwise interaction function. For G = 0, neural

masses are decoupled, while for increasingly higher values of G their behavior will

deviate ever more from the uncoupled scenario.

A successful example of this approach is the study, performed by di Santo and

colleagues, of a network of LG neural masses [68] embedded in a 2D square lattice,

with the addition of a multiplicative noise and diffusive coupling, resulting in:

ρ̇i(t) = (−a+Ri(t))ρi(t) + bρ2i (t)− ρ(t)3i + h+D∇2ρi(t) + σ
√
ρi(t)ni(t)

Ṙi(t) =
1

τR
(ξ −Ri(t))−

1

τD
Ri(t)ρi(t), (28)

where ∇2ρi =
∑

j∈n.n.i (ρj − ρi), and the diffusion constant D and the noise coeffi-

cient σ are set to 1 without loss of generality. For values of ξ which brought the

system to the edge between the oscillation phase and the up-state regime, scale-
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invariant avalanches were detected, revealing how this model displays critical behav-

ior at a synchronization phase transition, a crucial difference with previous models

which proposed a quiescent-to-active transition.

In conclusion, the core message that can be drawn from the models explored in

this chapter is that, to achieve a description of the avalanche phenomenon in a whole-

brain network, different modeling scales need to be combined. The network can be

represented as a connectome, hosting in every node a mean-field model describing a

mesoscale population of neurons. This model can be derived as an approximation of

more detailed microscopic models, in which single neurons are considered, as is the

case in our work and is discussed in the next chapter.
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4 A connectome-based model

In this work, we implemented a connectome-based model, describing the brain as

a network of regions (nodes) connected via structural pathways (links). The set

of all structural links is provided by the structural connectivity (SC), which can

be derived from experiments measuring the number of white-matter tracts (link’s

weight) connecting any pair of brain regions. Neuronal activity is modeled as a NMM

i.e., a set of differential equations describing the mean-field activity of a brain region.

A whole-brain simulation consists of NMMs coupled through the SC, and brain

dynamics can be obtained by solving the coupled system of differential equations. In

the following sections, we describe the details of our connectome-based simulation.

4.1 The structural connectivity

The SC is an N by N matrix whose entries Wij represent the connection strength

from region i to j in the chosen brain parcellation, normalized to obtain relative

weights such that Wij ∈ [0, 1] ∀ i, j. In this work, we adopted a mouse connectome

obtained by processing tracer experiments from the Allen Institute [77] resulting in

a directed graph. This graph is generally fully connected, with weight distribution

spanning across a wide range: most links are weak, but there are a few strong

links that constitute a characteristic structural backbone of the network. Notice

that the Allen Institute mouse connectome is obtained from experiments on a large

population of ∼2000 mice, and therefore it is not “personalized”. Other experiments

are available for personalized connectomes, such as Diffusion Tensor Imaging (DTI),

which can also be performed on humans. However, DTI is generally less precise than

tracer experiments and it does not provide information about the structural link

directionality.

Here, following up on the work of Melozzi et al. [78], we define the link strength

between two brain regions according to the anterograde tracing information provided

by the Allen Institute. More in detail, the axonal projections from a localized portion

of brain tissue are mapped by injecting in adult male C57Bl/6J mice the recombi-

nant adeno-associated virus, which expresses the EGFP anterograde tracer. The
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tracer migration signal is then detected with a serial two-photon tomography sys-

tem. This approach is repeated systematically to collect information on the tracer

migration from several injection sites in the right hemisphere to target regions in

both hemispheres, repeating the experiment several times for each injection site.

The Allen Institute provides its data through an internet-accessible interface,

namely the Allen Software Development Kit (Allen SDK), from which we retrieved

data on all experiments involving brain regions of the parcellation we were interested

in, consisting ofN = 92 regions of the cortex and of the thalamus. The Allen Institute

also provides different kinds of data regarding tracer experiments, such as:

• Injection density, Idi: the fraction of infected voxels in the source region, with

respect to the total number of voxels belonging to such region,

• Projection energy, Pej: the intensity of detected voxels in the target region

normalized with respect to the total number of voxels belonging to that region,

• Projection density, Pdj: the number of detected pixels in the target region,

again normalized with respect to the total voxel number.

We defined the structural weights as Wij = Pdj/Idi, where the mean is performed

over all experiments where both source region i and target region j are involved.

Doing so, we account for the pervasiveness with which the source communicates

with the target as well as for how much the injection of each experiment succeeded

in diffusing in the source region. Furthermore, as stated above, experiments of the

Allen Institute only consider source regions located in the right hemisphere, therefore,

to obtain a complete connectome, we assumed total symmetry between connections

starting from the right hemisphere and those starting from the opposite one, an

assumption justified by the fact that the mouse brain shows a high degree of lateral

symmetry [79]. Hence,

Wij = Wkl ∀ k = i+N/2, l = j +N/2

Wij = Wkl ∀ k = i+N/2, j = l +N/2, (29)
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assuming regions to be sorted first by hemisphere and then following the same order

for the two hemispheres. This effectively amounts to stating that the resulting SC

matrix can be divided into four quadrants, where the first and third ones are identical,

as are the second and fourth ones. The resulting connectome is shown in Fig. 2.

We confirmed that the weights Wij were approximately distributed across orders

of magnitude, following a power law trend with an exponential cutoff (see Fig. 2).

4.2 A layer-specific connectome

The number of brain regions considered, N = 92, is limited by the resolution of the

experiments. However, a high resolution for the structural connectome is a desirable

feature, since the brain—and in particular the cortex—presents a characteristic lay-

ered structure that is believed to be fundamental to explaining brain function. In the

mouse cortex, anatomical brain regions are divided into 4–6 layers, each presenting

different anatomical and thus functional features. With the development of finer tech-

nology, the resolution of available data has increased, allowing for the definition of

more precise connectomes. While this data is available at the Allen Institute, to our

knowledge the full layered connectome was never extracted before. In our work, we

Figure 2: a) Connectome obtained using mouse connectivity data from experiments per-
formed by the Allen Institute for Brain Science; each entry Wij represents the connection
strength between two brain regions. b) Distribution of the values of Wij , in a loglog plot.
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contributed to this important piece of information by extracting high-precision data

from the Allen Institute and building the mouse SC with layer-specific resolution,

composed of more than 500 regions. Although we chose not to base our simulations

on this finer connectome, owing to the challenge it posed in terms of computational

capacity, future work may very well consider its implementation for the sake of more

accurate results, e.g., in the search for network-wide critical behavior.

4.3 The model

To simulate cortical activity, we opted for using the same NMM on every site of

the network, guided by the simplifying assumption that all portions of cortical tissue

can be described by the same model (although regional heterogeneity is an important

feature of brain tissues). We chose the mean-field oscillator model derived from Eq.

16 using the OA ansatz, i.e.,

Ṙ(t) =
1

2
R(t)[J(1−R(t)2)− σ2]− 1

2
a(1−R(t)2) cosψ(t)

ψ̇(t) = ω +
a(1 +R(t)2) sinψ(t)

2R(t)
. (30)

This minimal unit of our model is meant to represent a neuronal population op-

erating around its critical regime. In fact, Buend́ıa and colleagues showed that direct

simulations of the neuron-population activity, Eq. 16, displayed critical avalanche

behavior at the crossing of the transition line separating the bistability regime from

the synchronous-activity phase. Hence, we first looked for the combination of param-

eters a and σ which would reproduce a bistable regime for the neural mass. To this

purpose, we performed 1000 simulations of the time evolution of Eq. 30, spanning

the parameter space in the range a ∈ [0.75, 1.2], σ ∈ [0.50, 0.80].

Furthermore, following up on Buend́ıa’s work, we determined analytically the

bifurcation lines of the uncoupled unit to identify the bistability region. Results

are reported in Fig. 3. In the following, a brief account of the derivation of the

bifurcation lines is reported.

The values of ω and J can be fixed to 1 without loss of generality. In the annealed
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Kuramoto limit, a = 0, the system undergoes a Hopf bifurcation; on the other hand,

uncoupled oscillators, i.e., for J = 0, exhibit a SNIC bifurcation. Hence, due to

the continuity of the solutions, two branches of these two types of bifurcations are

expected in the phase diagram. Letting Q be the Jacobian evaluated at a fixed

point, at Hopf bifurcations Tr(Q) = 0 while at saddle-node ones det(Q) = 0. Thus,

imposing one of these conditions, together with the fixed point definition Ṙ = ψ̇ =

0, leads to a set of equations for the parameters of the system as a function of

the fixed point values R∗ and ψ∗. Since such values are bounded, these equations

constitute parametric equations of the bifurcation curve and don’t require explicit

computation of the values of the fixed points and their stability. With regards to the

Hopf bifurcation, solving for Ṙ = ψ̇ = Tr(Q) = 0 leaves three unknowns. Solving

for R and cosψ turns out to be highly convenient, yielding the parametric curve

aH(ω, J, σ):

aH =

√
J − σ2

J + σ2

√
4ω2(J + σ2)2 + J2(J − σ2)2

2J
. (31)

Concerning the saddle-node bifurcation curves, solving Ṙ = ψ̇ = det(Q) = 0 for ω

Figure 3: a) Bifurcation lines for the single-unit mean-field model described by Eq. 30,
featuring a Hopf bifurcation and two saddle-node lines, as obtained by Eqs. 31 and 32.
The red dot highlights the chosen operating point, inside the bistability region. b) Flow
in phase space for Eq. 30. The nullclines intersect in two stable points, as expected in
the bistability region. c) Attractor basins for the phase space diagram of (b), obtained
simulating the time evolution of Eq. 30 with random initial conditions.
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and cosψ leads to a set of two equations:

ωS =
(1 +R∗2)3/2

2(1−R∗2)2

√
J(1−R∗2) (2σ2 − J(1−R∗2)2)− σ4(1 +R∗2)

aS =

√
2R∗2

(1−R∗2)2

√
(J(1−R∗2)− σ2) (2σ2 − J(1−R∗2)2), (32)

where R∗ ∈ [0, 1]. Since ωS is forced to be 1, by exploring all possible values of R,

two free parameters are left in the system of equations, which effectively provides a

relation for the curves aS(σ).

Merging the results of these two analyses, we chose as values for the parameters

J = 1.25, to slightly enhance the width of the single-unit bistability region, ω = 1 as

in [64], a = 0.975 and σ = 0.67 to tune uncoupled neural masses at the bistability

regime.

We then proceeded to simulate more accurately the evolution of an uncoupled

neural mass operating at the bistability regime to confirm the expected behavior.

Two stable fixed points are present in the phase space: a node and a spiral, as

expected in the bistability region. The introduction of additive noise on the second

state variable, ψ, produces excursions of the activity from the stable node to the

second attractor. Furthermore, depending on noise amplitude, activity can be driven

beyond the second point and circle back to the first one, passing close to the origin.

The noise intensity necessary to drive activity out of the basin of attraction of the

first point ends up also being sufficient to push it out of the second one quite quickly,

thus never allowing the system to relax to the second attractor. To identify these

rare events, R proves to be a good evaluation parameter, as the two fixed points

differ in the value of this variable. Simulation results are reported in Fig. 4.

Having chosen a fully connected weighted graph in which every node obeys the

same equations, the model needs just the definition of a coupling function to be

complete. To remain coherent with standard oscillator models—a choice operated

also by Buend́ıa and colleagues—we opted for a sinusoidal coupling function and

additive Gaussian noise, both acting on the second state variable of every unit: its
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Figure 4: Simulations of the activity of the uncoupled NM, Eq 30. a), b) Noiseless
trajectories ending respectively onto the stable node/spiral. c), d) Simulations showing
excursions of the activity from the stable node to the second attractor caused by additive
noise on state variable ψ. Depending on noise amplitude, activity can be driven beyond
this second point and circle back to the first one, passing close to the origin. The graphs
show how small values of R allow the identification of such excursions.

35



phase ψi. The full model thus reads:

Ṙi(t) =
1

2
Ri(t)

[
J(1−R2

i (t))− σ2
]
− 1

2
a(1−R2

i (t)) cosψi(t) (33)

ψ̇i(t) = ω +
a(1 +R2

i (t)) sinψi(t)

2Ri(t)
+G

N∑
j=1

Wij sin [ψj(t)− ψi(t)] + ηni(t),

where ni(t) is a unit-variance zero-mean Gaussian noise, η is the amplitude of the

resulting noise and G is the global coupling strength, which governs how far away

from uncoupled-unit dynamics the network evolution will be. G and η are the free

parameters explored in our analysis and search for avalanche behavior in the network.

The appropriateness of the chosen coupling function may be verified by simulat-

ing the activity of two or more numerous populations of microscopic units, Eq. 16,

suitably coupled inter- and intra-population, to compare the results with the simula-

tion of the same number of coupled neural masses; such analysis is left for elsewhere

(see section 6.2).
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5 Simulating a whole-brain network

In this chapter, readers can find an overview of the methods used in this work to

simulate neuronal activity and to analyze the resulting data. Our first objective

was to identify values of the parameters G and η for which scale-invariant avalanche

behavior emerged at the network level.

We performed all simulations of neuron activity using The Virtual Brain (TVB)

[80], a software largely developed and maintained at the host institution in the con-

text of the Human Brain Project, available at the EBRAINS platform. TVB is

intended to implement connectome-based simulations of neuronal models and thus

supports: the use of a SC as the underlying graph through which units interact;

several well-knows NMMs, as well as the possibility to define a custom one; vari-

ous up-and-running integration schemes, to simulate deterministic time evolution or

to include additive or multiplicative noise; the possibility to extract time-averaged

data or signals suitable to be compared with neurobiological recordings (e.g., BOLD

signals), other than plain state-variable time series. We chose to employ a Heun

integrator scheme and to collect all data points for the two state variables of every

region, Ri(t) and ψi(t). The resulting simulated activity showed spike-like behavior

for the state variable R, as shown in Fig. 5.

Figure 5: Activity of the first state variable, R, of one node of the simulated network,
displaying spike-like behavior.
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5.1 Avalanche detection

The protocol implemented to detect avalanches in the simulated network activity

closely matches the one described and employed by Buend́ıa et al. to analyze a

network of oscillators, which in turn was inspired by the first approach of Beggs and

Plenz [12]. An illustrative description of the analysis process is reported in Fig. 6

and its steps can be summarized as follows:

1. An initial transient is discarded. Then, the activity of region i is defined as the

z-score of Ri(t), named zi. This choice was motivated by the observation that

single-unit dynamics exhibit bistability and a dynamical evolution concentrated

mostly around the first attractor, visiting rarely the second one, as explained

in Fig. 4. Thus, the z-score of R proves quite useful to identify these events as

the two attractors are positioned at different values for this state variable.

2. A threshold, zth, is chosen to determine when regions are undergoing a “spiking

event”, i.e., when |zi| > zth. Its value is determined as that which would mark

one percent of the total points across all time series as part of an event.

3. The total integral of |zi| − zth during the above-threshold window is the size ski

of the event happening at the initiation time tk, where k numbers the observed

events such that tk+1 ≥ tk ∀ k. A raster plot for the events can be constructed

as a matrix R with entries Rtk,i = I[∃ ski ], effectively binarizing event sizes.

Here, I denotes the indicator function of a proposition:

I[A] = 1 ⇐⇒ A, I[A] = 0 ⇐⇒ ¬A. (34)

4. Inter-event intervals are computed as the difference between tk of all couples

of consecutive events and the average inter-event interval, ⟨IEI⟩, is computed.

Note that multiple tk could have the same value, in which case they contribute

one time each to the distribution of IEI.

5. The event raster is binned over time, using ⟨IEI⟩ as bin size. Effectively, sizes

ski having tk belonging to the same time bin are summed.
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6. An avalanche is defined as a sequence of contiguous time bins having at least

one active region each. Its size, S, will correspond to the sum of all event

sizes contributing to the avalanche, while its duration, T , will be the number

of bins it consists of. Size and duration of all avalanches are computed. Also,

the number of active regions, nj, for every bin in the avalanche is stored,

corresponding to nj =
∑

i I[∃ ski ∧ tk ∈ binj], where j numbers the bins.

5.2 Analysis of criticality measures

To analyse the distributions of avalanche metrics, meaning their size, S, and duration,

T , we employ a Python package named powerlaw, realized by Jeff Alstott and first

described in [81]. Owing to the large fluctuations that occur in the tail of the

distribution, representing large but rare events, and to the difficulty of identifying

the range over which power-law behavior holds, the detection and characterization of

power laws is nontrivial. The toolbox we use takes advantage of maximum-likelihood

fitting methods with goodness-of-fit tests based on the Kolmogorov-Smirnov statistic,

as well as likelihood ratios, to provide a more reliable classification of distributions.

Moreover, as prescribed by the theory on DP, we check the adherence of our

findings on critical exponents to the crackling-noise scaling relation, Eq. 6, and we

compute the branching parameter from the activity of every simulation. It is defined

as:

bp =
∑
d

d p(d), (35)

i.e., the expected value of the observable d, defined as the ratio between the number

of active units in a time bin and in its predecessor. This definition is only applicable

to couples of contiguous active time bins, thus necessarily belonging to the same

avalanche. The distribution of d, p(d), was estimated from activity recordings as:

p(d) =
∑
k

I[dk = d] na(k), (36)

where k indexes all time bins, dk = na(k + 1)/na(k), and na(k) is the number of

39



active units in the k-th time bin. Under this definition, bp essentially corresponds

to the weighted average of d, where the weights are the number of active regions in

every time bin.
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Figure 6: The figures show different steps of the algorithm used to detect avalanches.
a) Discarding of an initial transient and z-score thresholding. b) Event identification and
integration of the super-threshold signal. c) The resulting event raster. d) Inter-event
interval distribution. e) Detection of avalanches and their metrics: size and duration; all
data points belonging to one avalanche have been highlighted in orange.
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6 Discussion

6.1 Results

In this work, we paved the way for the study of interactions between the critical

state of mesoscopic neuron populations and that of the whole brain network they are

embedded in.

We first constructed a connectome, or SC, capable of representing realistic white-

matter connections between cortical and thalamic regions in the mouse brain, leaving

open the possibility of selecting different regions for future analyses.

Secondly, we confirmed the presence of a bistability region in the mean-field

oscillator model derived from a modified type-I excitable Kuramoto model [64] using

the OA ansatz, identified the values of the parameters a and σ which set the model in

the bistable regime, and tested whether it could effectively represent a population of

neurons at the edge of a particular synchronization transition, where scale-invariant

avalanche behavior emerges alongside incipient oscillations.

We then proceeded to set up a pipeline to simulate network activity and analyze

it in search of the values of parameters G and η which produce avalanche behav-

ior, developing methods to identify critical behavior in simulated neuronal activity.

We implemented the analysis of avalanche metrics distributions, p(S) = S−τ and

p(T ) = T−α, evaluating critical exponents τ and α and checking their adherence

to theory-provided scaling relations, Eq. 6, as well as computing the branching

parameter, bp. The correspondence of these metrics to known values represents a

minimal requirement to identify critical behavior and constitutes the basis for fur-

ther analysis aimed at clarifying whether a second-order phase transition, or some

other mechanism, is at play in the system.

Finally, we computed a layer-specific SC from mouse-tracer data provided by the

Allen Institute of Brain Science, which constitutes a high-resolution realistic graph

in which simulations of cortical activity can be embedded. To our knowledge, this

constitutes the first instance of such a detailed connectome, a tool which can prove

useful to implement ever more realistic models to analyze brain activity.
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6.2 Future directions

This work leaves many open doors to future development.

In the first place, the chosen coupling function for the full-network model can be

the subject of validation tests. As the single-unit NMM is meant to represent an

ensemble of type-I excitable Kuramoto oscillators, the activity of two such coupled

units can be simulated in parallel to that of two suitably-coupled actual populations

(e.g., of 5000 oscillators), to determine whether the two scenarios behave similarly

and thus asses the appropriateness of sinusoidal coupling between regions.

Furthermore, the first immediate objective of the pipeline we set up, and de-

scribed above, is the identification of a regime of global criticality, where scale-free

avalanches appear and satisfy all criticality criteria described in section 5.2. Upon

identification of the values of the parameters G and η which yield this regime, the

critical state of any single node, subject to the network input, can be investigated.

This can be done, similarly to the case of the coupling function, simulating directly

the population of neurons represented by the node and feeding to it the actual input

provided by the network, to analyze its collective behavior and determine whether

it is super- (or sub-) critical, and how far from the critical point it is operating at

various times.

Finally, the metrics used to assess whether a network is actually operating in a

critical state are a crucial point of this work. Maximal care is required in this step,

in order not to mistakenly attribute the feature of “critical” to simulated activity.

One of the improvements to this classification will be the implementation of shape

collapse detection in recorded avalanches. Shape collapse is a phenomenon predicted

by field theory, in which the profile of, e.g., the number of active regions over the time

bins of an avalanche is described by a scaling function, i.e., a function whose profile

is similar for all detected avalanches, upon appropriately rescaling the axis. The

identification of this phenomenon can further strengthen the claim that an observed

pattern of activity is indeed critical.

These forward steps will allow for a fuller description of the system under study

and a deeper analysis of its features, shortening the way to tackle open questions
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such as: are critical states related to which regions are most active at a given time?

And are RSNs, identified via FC measures, represented in the local critical states

of brain regions? Moreover, it has been shown that local alterations (e.g, lesions of

a brain region or alteration of the ecxcitation/inhibition rate of neurons inside it)

produce change in the network behavior, even at rest. How would such alterations

impact on the global critical state, as well as on the local state of other, possibly

distant but highly connected, regions?

This and other hypothesis will be tested in the pursuit of the ambitious goal of

understanding the interplay between local and global critical states in the brain.
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