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Summary

Nowadays, data privacy plays a key role in the context of the Cloud services,
Artificial Intelligence, Internet of Things and other applications. Among all the
different approaches in the field of information security and cryptography for pre-
serving the privacy and the secrecy of data, one of the most promising is Fully
Homomorphic Encryption (FHE). In fact, FHE enables users to perform compu-
tations directly on encrypted data without having to first decrypt it, ensuring
confidentiality and preventing the exposure of sensitive information.
This thesis presents a use case application for FHE, more specifically, a homomor-
phic implementation of the currently most used hash function, SHA256.
The initial part of this thesis is focused on the study of FHE, initially going over
some basic fundamentals of cryptography, and then introducing various Homo-
morphic Encryption schemes, culminating in the FHE scheme called TFHE (Fully
Homomorphic Encryption over the Torus).
In the second part of this thesis we present our implementation of SHA256 that
operates homomorphically on encrypted input. We then integrate this work in the
context of a client-server architecture where the server can compute the hash func-
tion without knowing the input giving by the client. We develop this application
using the ZAMA Concrete compiler based on the TFHE scheme.
Given the continuous progress in the development of FHE applications, we believe
that a homomorphic version of SHA256 might be extremely helpful as a foundation
for future complex applications, aiming to increase users’ privacy.
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Chapter 1

Cryptographic Preliminaries

This chapter aims to provide a basic understanding of cryptography, clarifying
the fundamental concepts and terminologies that will be the basis for subsequent
chapters.
In addition to the more general concepts regarding cryptography, we will delve
into what symmetric 1.2 and asymmetric systems 1.3 are, by understanding
their differences and the different purposes that they can accomplish.
In the last part we will discuss hash functions 1.4, giving an overview of existing
functions of this type and focusing on the currently most important ones, by
comparing their pros and cons.

1.1 Terminology

To introduce the concept of cryptography, we can refer to the following definitions:

"Cryptography is the discipline that embodies the principles, means, and meth-
ods for the providing information security, including confidentiality, data integrity,
non-repudiation, and authenticity" [34].
"Cryptography is the art and science of keeping messages secure, and it is practiced
by cryptographers. It differs from cryptanalysis, which is the art and science
of breaking a cipher code. The study of secure and secret communication, which
includes both cryptography and cryptanalysis is called cryptology" [46].

A cryptographic system is based on the following elements and operations:
• Plaintext: "Intelligible data that has meaning and can be understood without

application of decryption" [2].
Generally it corresponds to the message whose confidentiality you want to
protect.

• Ciphertext: Encrypted text transformed from plaintext.
5
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• Encryption: Operation which is the transition from plaintext P to cipher-
text C using an encryption algorithm Enc and a key K.

• Decryption: Operation which is the reverse transition from ciphertext C to
plaintext P using a decryption algorithm Dec and a key K ′, which may be
different from that used previously.

• Key: String of bytes which when processed through a cryptographic algo-
rithm allows to randomize a plaintext in order to obtain a ciphertext.

In cryptography, a cryptosystem is a "suite of cryptographic algorithms needed
to implement a particular security service, such as confidentiality" [37].
Tipically it consists of three algorithms: Key Generation, Encryption and Decryp-
tion.

There is an important principle in cryptography, called Kerckhoffs’s principle
[26], that states that security of a cryptosystem is based on a strong secret key
and its secrecy rather than the secrecy of the algorithm itself. In other word a
cryptosystem should remain secure even if all the details of the encryption and
decryption algorithms are publicly known, as long as the key remains secret.
This principle is the opposite of the concept of "security through obscurity", that is
based on the total secrecy of the algorithms. Kerckhoffs’s principle had a profound
influence on the design of cryptosystems, promoting the development of algorithms
that prioritize the secrecy and the strength of the key over the secrecy of the
algorithm itself.

1.2 Symmetric Cryptography

In a Symmetric (or Private/Secret Key) Cryptosystem the same key K is
used for both encryption and decryption.

Example Let assume that a sender wants to exchange data with a receiver.
The process begins with a secret key K shared only between the sender and the
receiver. The key K is used to encrypt, through Enc, the plaintext P and then
the result (Ciphertext C) is an unintellegible text that is sent to the receiver.

C = Enc(K, P )

When the encrypted data is delivered to the receiver, it can be decrypted, through
Dec, using the same key K.

P = Dec(K, C)
If a different key is used, an output may be available, but it will not coincide with
the original plaintext.
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Figure 1.1. Symmetric Criptography

1.2.1 Algorithms

The most used symmetric algorithm is the Advanced Encryption Standard (AES)
[33], it is a variant of the Rijndael cipher with three different possible key lengths
(128, 192 and 256 bit). Other important and historical symmetric key algorithms
to mention are the Data Encryption Standard (DES) [15] developed in the early
1970s, and the Triple DES (3DES) [31] which is a variant that applies the previ-
ous one three times to plaintext, but nowadays they are both deprecated by the
National Institute of Standards and Technology (NIST). Another popular cryp-
tosystem was the Rivest Cipher 4 (RC4) [41], that was known for its simplicity
and speed in software, but that is now deprecated.

1.2.2 Advantages and limitations

One of the main advantages of symmetric cryptography is its efficiency. The
same key is used for both encryption and decryption, the process is relatively fast
and requires fewer computational resources.
The disadvantage of symmetric cryptography is that it assumes two parties have
agreed on a key and have been able to securely exchange that key over a insecure
channel prior to communication.
To achieve a balance of security and speed, symmetric algorithms are frequently
combined with another tecnique called public key cryptography.
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1.3 Public Key Cryptography

In a Public Key (or Asymmetric) Cryptosystem each user has a key pair,
that consists of a sK (Secret Key) and a pK (Public Key) that are mathematically
related to each other.

• The Secret Key sK is the key that must be remain secret and it is known
only to the person who generated it, the security of this cryptosystem is based
on the key’s secrecy.

• The Public Key pK is the key that can be publicly distributed without
compromising security [48]

Figure 1.2. Public Key Criptography

Example If in a communication channel the sender wants to send a secret message
to the receiver, the sender will encrypt the message with the receiver’s public key
(pK distributed previously by the receiver) and at this point only the receiver will
be able to decrypt the encrypted message with his secret key (sK ) as shown in
figure 1.2.

1.3.1 Characteristics

The security of public key encryption algorithms is based on one-way functions:
these functions f are easy to compute but difficult to invert: given x it is easy to
compute y = f(x), but given y = f(x), it is difficult to retrieve x.
The security of these algorithms is guaranteed by the fact that no one, as far as we
know, has yet solved the underlying mathematical problems: this also means that
if someone were to solve them, these algorithms would suddenly become insecure.
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One possible threat to the security of these algorithms is the advent of quantum
computers, whose high computational power could lead to the resolution of these
mathematical problems [6].
As the scientific community disseminates and circulates information about its find-
ings, this is seen as a guarantee that if one day these problems are solved the fact
will immediately be in the public domain [5]. One of the most important algorithm
of public key cryptography is Rivest Shamir Adleman (RSA) [44], first described
in 1978, where the security relies on the practical difficulty of factoring the product
of two large prime numbers, the so-called "integer factoring problem".

This kind of cryptography has a high computational load, so it is usually used
to distribute symmetric secret keys and to create digital signatures, it is
not used for encrypting large amount of data.

1.4 Hash Functions

Definition. Given Σ an alphabet and Σ∗ the set of all words (of arbitrary length)
obtainable from Σ, and n an integer, we define a hash function as H : Σ∗ → Σn.

A hash function is a map from an arbitrary binary string to a binary string with
a fixed size of n bits, where typically n =128, 256, 384 or 512.
The value h = H(m) is also called hash value, hash code or digest.
This hash value h is usually regarded as fingerprint of the input m.

Figure 1.3. Hash Function

The use of hash functions in cryptography is widespread: they are used in dig-
ital signatures, public-key encryption, integrity verification, message authentica-
tion, password protection, key agreement protocols, and many other cryptographic
protocols [1].
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1.4.1 Properties

The security level of a cryptographic hash function has been defined using the
following properties [37]:

• One-way: Given a hash value h and a hash function H, it should be difficult
to find any message m such that h = H(m) (Pre-image Resistance)

• Collision Resistance: It should be difficult to find two different messages
m1 and m2 such that H(m1) = H(m2).

• Second Pre-image Resistance: Given an input m1, it should be difficult
to find a different input m2 such that H(m1) = H(m2).

1.4.2 Hash Algorithms

Among the most widely used and famous cryptographic hash functions there
is MD5 [43], devised by Ronald Rivest in 1991, successor to the earlier and less
performant MD4 (1990) [42]. As a European alternative to MD4 and MD5, in the
1994 was devised RIPEMD (Hans Dobbertin, Antoon Bosselaers and Bart Preneel)
[40]. There are several versions, each with different hash lengths. The most used
is the one called RIPEMD-160. Over the years, collisions of the original version
of RIPEMD have been found, but to date there is no evidence that RIPEMD-160
has ever been broken [3].

Some of the most used hash functions are those in the family of Secure Hash
Algorithm (SHA) which includes several cryptographic hash functions developed
beginning in 1993 and published by NIST as a federal standard by the U.S. gov-
ernment.
The SHA family includes [35]:

• SHA-1: A 160-bit hash function, developed by the National Security Agency
(NSA), which resembles the earlier MD5 algorithm. A cryptographic weak-
ness was discovered in SHA-1 [30] and its use is now deprecated.

• SHA-2: The 4 algorithms that are referred to generically as SHA-2 are SHA-
224, SHA-256, SHA-384 and SHA-512, they produce a digest of bit length
equal to the number indicated in their abbreviation.

• SHA-3 [36]: A hash function based on the Keccak permutation that supports
the same hash lengths as SHA-2, but its internal structure differs significantly
from the rest of the SHA family.
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SHA-3 has the advantanges to be cheap to implement in specialized hardware
and to have excellent performance on dedicated circuits, but at the same time it
is slower than SHA-2 on general-purpose processors [27].
The adoption of SHA-3 is currently proceeding slowly given its very recent in-
troduction and the difficulty of the integration process into existing systems and
protocols, also due to the costs associated with the transition from SHA-2.

In contrast, SHA-2 has been widely adopted because of its well-established op-
timizations, and its software implementations generally demonstrate superior per-
formance, making it an efficient choice for various applications.
Furthermore, the prevalence of SHA-2 is also due to its extensive integration into
hardware components like CPUs, GPUs, and cryptographic modules.
Its long-standing presence in cryptographic protocols and applications has solidi-
fied its role as the de facto standard hash function in various domains.
The ample diffusion of SHA2, together with the confidence in its security, are the
reasons why we chose to implement a homomorphic version of this hash function,
as we will show in chapter 4.
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Chapter 2

Homomorphic Encryption

In this chapter we will introduce the concept of Homomorphic Encryption,
starting with an introduction 2.1 where we will explain why it is of great interest
nowadays by bringing some real-life use cases as examples, then we will move on
to a more in-depth description.
In particular, in section 2.2, we will provide a background to better under-
stand Homomorphic Encryption (HE), introducing the core concepts (2.2.1) and
an overview of different families of the existing HE schemes (2.2.2), including their
origins and historical development (2.2.3).
In section 2.3 we will focus on a specific family of HE, called Fully Homomorphic
Encryption (FHE), introducing a formal definition of it (2.3.1) and explaining the
notion of bootstrapping (2.3.2). Later, we will provide an overview of different
FHE schemes that have been proposed and developed (2.3.4) over the last few
years, after understanding the general distinctions between them (2.3.3), showing
the diversity of approaches in achieving FHE.
In the end, in section 2.4, we will examine a precise FHE scheme called TFHE, on
which the library of the main project of this thesis is based. Specifically, we will
cover the types of TFHE ciphertexts (2.4.1) and the operations (2.4.2) that can be
performed on them, including the description of the programmable bootstrap-
ping procedure (2.4.3).

2.1 Introduction

Since data exchange, manipulation and storage are essential to many aspects
of modern technology-driven society, this leads to an increasing attention to the
security and privacy aspects of data as more and more sensitive and private data
are involved. The importance of data cannot be underestimated, the information
power drives and improves service quality across all sectors of society.
However, this abundance of data requires safeguards to protect individuals and
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organizations from breaches, unauthorized access, and improper uses. The prolif-
eration of data has increased need for solutions to provide access to services that
use personal data while protecting its privacy, for this reason information secu-
rity is focused on developing new strategies for ensuring data confidentiality and
efficiently implementing them [47]. Encryption is often an essential safeguard for
the privacy of sensitive data, but in order to process data (e.g. apply a Machine
Learning model, compute statistics) it is necessary to decrypt it, thus exposing it
to external attackers or malicious service providers.
Among all the different approaches in the field of information security and cryp-
tography trying to preserve the privacy and the secrecy of data, one of the most
promising is Homomorphic Encryption (HE). In fact, it enables users to per-
form computations directly on encrypted data without having to first decrypt it,
ensuring the property of data confidentiality and preventing the exposure of sen-
sitive information.

Real-world applications of HE are in continuos development and several imple-
mentations of possible solutions to the challenges encountered are already available
in various domains: Databases, Healthcare Research, Cloud Computing, Machine
Learning, IoT Computing, Blockchain etc.
The most general use case of HE involves databases management, that is the start-
ing point for the other applications. Companies, governments, and organizations
store vast amounts of sensitive data in databases, ranging from personal identifiers
to financial records. In this context a potential misuse of data managed by third
parties is cause of concern, especially when confidentiality agreements and data
privacy regulations are violated without the user’s permission.
In this context HE would enable the management of data in the database and
all subsequent operations to be performed on it so as to ensure the protection
of sensitive data and a significantly increase of data confidentiality, privacy and
integrity preventing unauthorized access to the stored data.

For example, we can consider the healthcare sector as a good field of applica-
tion for HE where healthcare providers could perform complex data analysis on
patient records without ever exposing sensitive medical information. HE allows
computations on encrypted health data, enabling medical professionals to collab-
orate securely while preserving patient privacy. This technology can lead to the
development of predictive healthcare models, enhancing diagnosis accuracy and
the overall quality of care.
Additionally, in the finance sector, where secure data processing is critical. HE
can enable banks and financial institutions to conduct risk assessments, fraud
detection, and other financial security processes, while keeping client financial in-
formation confidential.

13
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We can also mention the technology’s field of Cloud Computing, which refers
to the practice of accessing IT resources via the Internet paying only for what
is used, where services are provided by cloud providers such as Amazon Web
Services, Google Cloud Provider, Azure, etc. Since cloud providers are unreliable
third parties, it is necessary to keep cloud data encrypted to ensure the privacy of
user data while allowing cloud services to be able to perform operations on it.
HE technology facilitates the management of ciphertext data while maintaining
privacy. It can retrieve and manipulate ciphertext in the cloud and provide the
results to users as ciphertext without exposing the processed data to the cloud
provider. Compared to methods that decrypt data for manipulating them, an
ideal HE algorithm can reduce the cost of communication and computation by
eliminating the need for frequent encryption and decryption between the cloud
and users.

Figure 2.1. HE used in Cloud Computing [47]

Another field of technology where HE can be of great use is Machine Learning, an
area of research of Artificial Intelligence concerned with the development and study

14
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of statistical methods and algorithms capable of generalizing and performing tasks
without explicit instructions. Machine Learning models try to create predictions
and decisions based on identified patterns and previous experiences which derive
from analyzing massive volumes of data. It is used in various technologies such as
facial recognition software and language translation tools.
The training of the machine learning models depend on a large amount of data,
which frequently contains sensitive or personal information. The storage and usage
of this type of data must be done in secure manner to guarantee an high grade of
confidentiality and to prevent potential damage to the users.
In this context, HE allow the computation for all necessary analysis to be done
directly on the encrypted data.

Leading companies and research institutions have embraced the potential of HE,
utilizing this technology to address challenges related to data security and privacy.
Below, we will present some examples of companies and projects making use of
Homomorphic Encryption.
Microsoft is one of the tech giants that has heavily invested in Homomorphic En-
cryption through the Simple Encrypted Arithmetic Library (SEAL) project [32].
SEAL is a open-source library that provides a set of homomorphic encryption
libraries. This enables software engineers to build end-to-end encrypted data stor-
age and computation services where the customer never needs to share their key
with the service.
IBM is another big tech company that has developed its set of products for Ho-
momorphic Encryption with the service called "Security Homomorphic Encryption
Services", contributing to the practical adoption of this technology. An example
of products released are the Toolkit for database in 2020 [23] and the most re-
cent service HE4Cloud Beta Version [22] in 2022 for integrating the HE in Cloud
Computing. These IBM’s products are based on HELib [24], a free library and
open-source platform software written in C++ that implements various forms of
HE developed by IBM.
For the last example we present ZAMA that is a cryptography company building
open source homomorphic encryption solutions for blockchain and AI [52]. The
main product of ZAMA company is a compiler called Concrete that simplifies the
use of HE for developers and permits programming functionalities through python
API and provides many other features in writing HE programs.
In the development of the main project of this thesis we chose ZAMA Concrete
compiler. We will discuss about it in chapter 3.

15



Homomorphic Encryption

2.2 Background

2.2.1 Homomorphic Encryption

The term Homomorphism is used in different areas but its etymology comes
from ancient Greek from the words "oµoσ" and "µoϱφη", meaning respectively
"same" and "shape". In abstract algebra a homomorphism is a structure-preserving
map between two algebraic structures of the same type (i.e. two groups, two
rings ecc.), where a map is simply a function, where elements of one set (inputs)
are transformed into elements of a second set (outputs) while maintaining the
relationships between the elements.

In the field of cryptography, with the term Homomorphic Encryption (HE)
we mean a type of encryption technique that enables a third party, such as a cloud
provider or service provider, to carry out certain computable operations on the
encrypted data while maintaining the features and the structure of the encrypted
data.

Example Now an example of HE scheme over a operation of addition; given two
elements m1 and m2, and Enc the encryption operation, the following expression
turns out to be valid:

Enc(m1) + Enc(m2) = Enc(m1 + m2)

In this case the additive operation can be applied directly to the encrypted elements
without first decrypting them, obtaining the same result.

More formally, we can define a homomorphic encryption scheme as follows [45]:

Definition. Let M be the set of plaintexts, C the set of ciphertexts and the two
operations

∗ : M × M → M and • : C × C → C
An encryption scheme E : M → C is called homomorphic with respect to "∗"
and "•" if it holds:

E(m1) • E(m2) = E(m1 ∗ m2) ∀m1, m2 ∈ M

Because addition and multiplication are functionally complete sets over finite
sets, it is sufficient to merely include these operations in an encryption system
in order to enable the homomorphic evaluation of any function. In particular,
only XOR (addition) and AND (multiplication) gates are needed to express any
boolean circuit, which is a mathematical model based on combinations of logic
gates (corresponding to boolean functions) to implement a certain function.

16
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A HE scheme can be created to use different keys for encryption and decryption
(asymmetric) or it can also be built to utilize the same key for both operations
(symmetric).

2.2.2 Families of HE schemes

An HE scheme is defined by four main operations: Key Generation (KeyGen),
Encryption (Enc), Decryption (Dec) and Evaluation (Eval).

• KeyGen: Operation that generates the single key for the symmetric version
of a scheme or the key pairs for the asymmetric version.

• Enc: Operation of Encryption using the key generated by KeyGen.
• Dec: Operation of Decryption using the key generated by KeyGen.
• Eval: Specific operation for the HE scheme that represent the Homomorphic

Property. It takes the ciphertexts as input and return as output the evaluated
ciphertexts, it evaluates a function over the ciphertexts without knowing the
plaintexts.

The different HE schemes devised over the years can be categorized according to
their main operations, how they execute homomorphic encryption and the related
limitations in three families called Partially Homomorphic Encryption (PHE),
Somewhat Homomorphic Encryption (SWHE) and Fully Homomorphic Encryp-
tion (FHE).

Figure 2.2. HE Families

In the following parts of this section each of the HE families is explored in order
to better understand their main properties and characteristics.

17
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Partially Homomorphic Encryption

The schemes that are part of the Partially Homomorphic Encryption
(PHE) family allow only one type of operation with no bound on the number of
usages. In particular PHE schemes support Eval function for only either addition
or multiplication.

RSA as PHE One early example of PHE scheme is the public key cryptosystem
RSA [44], that is only homomorphic over multiplication.

• KeyGen: For large primes numbers p and q, n = pq and ϕ = (p − 1)(q − 1)
are computed. Then e is chosen such that gcd(e, ϕ) = 1 and d is calculated
such that ed ≡ 1 mod ϕ. At this point we have the secret key and the public
key of the key pair respectively sK = (d, n) and pK = (e, n).

• Enc: Given a message 0 ≤ m < n, compute ciphertext C as:

C = Enc(m) = me mod n

• Dec: Using the sK = (d, n) the message m can be recovered from C as follows:

m = Dec(C) = Cd mod n

• Eval: The Homomorphic property is verified as follows:

Enc(m1) · Enc(m2) =
= ((m1)e mod n) · ((m2)e mod n) =
= (m1 · m2)e mod n = Enc(m1 · m2)

It shows that Enc(m1 · m2) can be directly evaluated by using Enc(m1) and
Enc(m2) without decrypting them, hence RSA results homomorphic over mul-
tiplication but it does not allow homomorphic addition of ciphertexts.
In fact, given Enc(m1) + Enc(m2) = ((m1)e mod n) + ((m2)e mod n)
and Enc(m1 + m2) = ((m1 + m2)e mod n) the homomorphic property is not
verified:

((m1)e mod n) + ((m2)e mod n) /= (m1 + m2)e mod n

18
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Somewhat Homomorphic Encryption

The Somewhat Homomorphic Encryption (SWHE) schemes allow some
types of operation but with a limited number of times.

BGN as SWHE In 2005 Boneh-Goh-Nissim introduced BGN scheme [4], that
supports a limitless number of additions and one multiplication.

• KeyGen: Choose two prime numbers p1 and p2 and output (n, G, G1, e, g, h)
where: n = p1p2, G, G1 cyclic groups of order n, g generator of G, e : G×G →
G1 a bilinear map such that e(g, g) is a generator of G1 and h = up2 with
u /= g is another generator of G. Consider

sK = p1

pK = (n, G, G1, e, g, h)

• Enc: Given a message 0 ≤ m < p2 and with r ∈ {0, ..., n − 1} random,
compute the ciphertext C as

C = Enc(m) = gmhr ∈ G

• Dec: Given a ciphertext C recover m by computing

c′ = Cp1 and g′ = gp1

and solving
m = logg′(c′)

• Eval:

1. Homomorphic property over addition: take r ∈ Zn random

E(m1)E(m2)hr = (gm1hr1)(gm2hr2)hr = gm1+m2hr′ = E(m1 + m2) ∈ G

where r′ = r + r1 + r2.
2. Homomorphic property over multiplication: compute g1 = e(g, g) and

h1 = e(g, h), take r ∈ Zn random

e(E(m1)E(m2))hr
1 = e(gm1hr1 , gm2hr2)hr

1 = gm1m2hr′

1 = E(m1 · m2) ∈ G1

where r′ = m1r2 + m2r1 + r + αp2r1r2 with α ∈ Z such that gαp2 = h.

Note that after the multiplication the resulting ciphertext C is in G1 instead of
G, it still allows an unlimited number of homomorphic additions but it does not
allow another homomorphic multiplication in G1 because there is no pairing from
the set G1.
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Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) is a form of encryption that allows
computation (with no bound on the type of operations and number of times that
is possible to use) to be performed on encrypted data without the need to decrypt
it first.

In 2009 Craig Gentry proposed a scheme [18] that includes both an FHE method
and a broad framework for obtaining one. As a result, several researcher have tried
to build a safe and useful FHE scheme on top of Gentry’s work. Even though
Gentry’s FHE scheme was very promising, it also had a number of disadvantages,
including its computational cost and some sophisticated mathematical principles
that make it complex and difficult to implement, therefore new schemes and opti-
mizations have emerged in response to his work [14].

In the next section (2.3) a formal definition of FHE will be given and the fun-
damental high-level concepts will be explained in details to then focus on the
development and programming part.
Before all this, we will provide a brief historical overview of how the concept of HE
evolved over time until Gentry’s solution, citing some of the best-known schemes
proposed during those years.

2.2.3 History

In the late 1970s, precisely in the 1978, the journey of HE began with Ron Rivest,
Len Adleman (the "R" and the "A" of RSA cryptosystem) and Micheal Dertouzos
when the term homomorphism was used for the first time in the article "On data
banks and privacy homomorphisms" [18]. This gave rise to the idea of FHE, which
they initially called "privacy homomorphism". They state in their paper: "although
there are some truly inherent limitations on what can be accomplished, we shall see
that it appears likely that there exist encryption functions which permit encrypted
data to be operated on without preliminary decryption of the operands, for many
sets of interesting operations. These special encryption functions we call "privacy
homomorphisms"; they form an interesting subset of arbitrary encryption schemes"
[45].

Several attempts were made in the years that followed where only a single kind of
operation or small number of operations have been made possible on the encrypted
data and additionally, some of the approches were particularly restricted to a
certain kind of set. We can for example mention Goldwasser and Micali in 1982
[20], El-Gamal in 1985 [16] and Pailler in 1999 [38].
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This various attempts led to a categorization of the HE schemes into the three
families that we discussed earlier in section 2.2.2, where we analyzed the RSA
(1978) [44] and BGN (2005) [4] schemes more in detail. Later, 2009 saw a turning
point for FHE thanks to Gentry [18].
In figure 2.3 is shown the timeline of the best-known HE schemes up to Gentry’s
proposal.

Figure 2.3. Timeline HE [14]

Craig Gentry in his PhD thesis [18] solved the problem of how to do FHE
[18], proposing a method that could (inefficiently) do any amount of additions and
multiplications. This was made possibile by the introduction of a new fundamental
concept (that we will discuss in detail in section 2.3.2) called Bootstrapping,
which is the intermediate refreshing method of a processed ciphertext. Gentry’s
proposal is the first practicable FHE scheme: it is based on mathematical objects
called ideal-lattices and served as both a description of the scheme and a foundation
for the development of subsequent FHE schemes.

However, it is a scheme with obvious limitations because it is particularly ex-
pensive in terms of computing in the bootstrapping step. As a result, numerous
improvements were put forth and new schemes were proposed in the years that
followed.

To conclude this section, we present a famous metaphor in order to better un-
derstand the concept of HE.
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Gentry’s Example: Alice’s Jewelry Store

In the article "Computing Arbitrary Functions of Encrypted Data" [18] Craig
Gentry traces the various stages of the study of homomorphic encryption until
he arrives at the innovative concept of Bootstrapping he proposed. To provide
a greater understanding of the subject he places alongside the purely technical
concepts a metaphor that has been referred to as "Alice’s Jewelry Store". In the
following we present the Gentry’s metaphor and we highlight how it is linked to
the concept first introduced by American mathematician.

Story Alice is the owner of a jewelry store. She has unrefined expensive materials
like gold, diamonds, and silver that she wants her employees to make into intricate
rings or necklace. She, on the other hand, is suspicious of her employees and be-
lieves that if given the opportunity, they will steal her valuable gems. In essence,
she wants her staff to be able to transform the resources into finished products
without having direct access to the original materials. Alice adopts a impenetra-
ble glovebox strengthened with a lock that she controls entirely. She places the
unprocessed valuable resources inside the secure glovebox, shuts it, and entrusts
it to a worker. The worker only assembles the ring or necklace inside the glovebox
while wearing protective gloves. The worker recognizes that it is preferable to
return the glovebox to Alice with the finished item contained within because it is
impenetrable and he cannot access the valuable materials inside. After using her
key to open the confinement unit, Alice removes the finished ring or necklace. In
conclusion, the worker successfully creates a finished product without having true
access to raw materials.

Observation In this first part is explained the general concept of Homomorphic
Enchryption where the locked box with the precious materials represent an encryp-
tion of initial data m, the homomorphism of encryption scheme is represented by
the gloves that workers use and the final products (rings and neckclace) correspond
to the function f(m) to apply to encrypted data.

Story Alice, after discovering how to utilize locked gloveboxes to have her em-
ployees process her valuable materials into elegant rings and necklaces, makes a
purchase from the Acme Glovebox Company. Regrettably, the gloveboxes she re-
ceives are faulty. Following just one minute of use, the gloves stiffen and become
inoperable. However, some of the most extravagant pieces require up to an hour
to assemble. Is there a way I can employ these defective boxes to ensure that
the workers securely assemble even the most intricate pieces? She observes that,
despite their defects, the boxes possess a characteristic that could prove useful.
As anticipated, they possess a unidirectional insertion slot, akin to mail bins in
post offices. Moreover, they exhibit flexibility allowing one box to be placed inside
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another through the slot. Alice contemplates whether this attribute could play a
role in resolving her predicament. . .

Observation In the analogy, the defective gloveboxes represent a somewhat ho-
momorphic encryption scheme (SWHE), that can perform additions and multipli-
cations operations on ciphertexts for a little while (it can handle the evaluation of
functions only for a limited numbers of times).

Story A revelation dawns upon her, she possesses the knowledge to utilize her
faulty containers in a manner that guarantees the secure delegation of intricate
assemblies.
Following her previous method, she presents a worker with a glovebox labeled #1,
containing the raw materials. However, she bestows upon him multiple supplemen-
tary gloveboxes. Glovebox #2 safeguards the key to unlock Glovebox #1, while
Glovebox #3 conceals the key to unlock Glovebox #2, and so forth. In order to
construct the detailed design, the laborer manipulates the materials within Glove-
box #1 until the gloves stiffen. Subsequently, he situates Glovebox #1 within
Glovebox #2, the latter already containing the necessary key. Utilizing the gloves
associated with Glovebox #2, he unlocks Glovebox #1, carefully extracting the
partially assembled jewel. The assembly process continues within Glovebox #2
until its gloves stiffen as well. Then, he proceeds to place Glovebox #2 inside
Glovebox #3, and the cycle persists. This pattern continues until the worker
finally completes the assembly within Glovebox #n, which he then graciously
presents to Alice.
Naturally, Alice comes to the realization that this ingenious technique can only
succeed if the worker manages to unlock Glovebox #i within Glovebox #(i + 1)
and still has ample time to advance the assembly slightly, all before the gloves of
Glovebox #(i + 1) become stiff. As long as the unlocking process (along with
a modest amount of assembly work) consumes less than a minute and an ample
supply of defective gloveboxes is available, the possibility to construct any intricate
piece, regardless of complexity, becomes feasible.

Observation This final part of the analogy represent Gentry’s innovative solution.
It turns out that the decryption function (which is like opening the "encryption
box") is the only function that a scheme actually needs to be able to handle, with
a tiny amount of room remaining to execute one more operation. If a scheme
possesses the self-referential quality of being able to manage its own decryption
function (added by a single operation) we refer to it as being bootstrappable.
This last property is the fundament of Gentry’s solution to construct a Fully
Homomorphic Encryption scheme.
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2.3 Fully Homomorphic Encryption

2.3.1 Definition of FHE

FHE could be formalized in the following way [47]:

Enc(x) → f ′(Enc(x)) = Enc(f(x))

1. x is the plaintext, the sensitive data

2. Enc(x) is the operation of Encryption applied to the data x to obtain the
ciphertext

3. f ′(Enc(x)) is the function/operation applied over the encrypted data in the
ciphertext space that corresponds to f(x) function in clear, where f() can be
any type of function.

4. f ′(Enc(x)) = Enc(f(x)) is the condition needed by the scheme to be homo-
morphic

2.3.2 Bootstrapping

The concept of bootstrapping was introduced by Gentry in 2009 as mentioned
above, but before giving a definition of it, there is a property of homomorphic
ciphertext to introduce: each ciphertext is associated to a noise.
Since the majority of FHE schemes are based on hard lattice problems, to ensure
the encryption’s security, the generated ciphertexts will cointain a certain quantity
of noise (depending on the scheme and on the operations performed). Every op-
eration computed homomorphically on the ciphertext increases the value of such
noise. To decrypt the ciphertext the level of noise must be below a specific thresh-
old, otherwise the noise can overflow the data making the decryption impossible
[25].
In figure 2.4 we show an example of a valid ciphertext and another one where the
noise exceeds the threshold, giving as result an incorrect decryption.

The Bootstrapping is a special procedure first described by Gentry that can
be applied to the ciphertext with the aim of noise reduction, in order to be able
to compute more homomorphic operations on the encrypted data. From the the-
oretical perspective a HE scheme is bootstrappable if it can evaluate its own
decryption function homomorphically, using an encryption of the secret key, in
addition to at least one extra operation [18].

The homomorphic evaluation of the decryption function (bootstrapping) uses
an encrypted secret key on a exhausted ciphertext to convert it into an "equiva-
lent" refreshed ciphertext by reducing the associated noise level. In an exhausted
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Figure 2.4. Noise in FHE [8]

ciphertext no futher operations can be performed because of the high noise level,
whereas the refreshed one can support further homomorphic operations. The en-
crypted secret key is provided by the secret key holder as part of the public key
material and it is called bootstrapping, evaluating or refreshing key [39].

Example

1. We start with a ciphertext which is an encryption of plaintext x represented
by the blue box with a lock and the associated noise level that has reached
the maximum limit after previous operations. This means that at this point
we are not able to perform other homomorphic operations, to continue we
must reduce the noise. The noise level of the ciphertext is represented in the
figure by a thermometer, next to the box, with a red line as threshold.

2. The general idea is to decrypt the ciphertext because it corresponds to opening
the blue box and take out the plaintext x totally deleting the noise, but to
decrypt it we need the secret key that we cannot disclose publicly. So we put
the ciphertext in a green box that represents the FHE scheme with a little
value of noise, this step has no cost in terms of increasing the noise of the
blue box.

3. We can perform the decryption of the ciphertext opening the blue box inside
the green one using the encrypted secret key called bootstrapping key (blue
key in a green box), which is public.

4. The result will be the original plaintext x inside the green box with the level
of noise slightly increased by the bootstrapping operation but lower than
the starting error, so as to leave some space to perform more homomorphic
computation [9].

In figure 2.5 we represent the four steps described above.
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Figure 2.5. Bootstrapping procedure [8]

2.3.3 General Distinctions between Schemes

In practice we can perform homomorphic computations and then bootstrapping
as soon as the noise grows: this allows us to evaluate potentially any possible
circuit without having any limits on the number of operations to perform. Un-
fortunately bootstrapping is the most costly tecnique in homomorphic encryption
and the advantages of applying it depend on the type of circuit being evaluated.
For this reason, the generations of FHE schemes after Gentry’s proposal have
focused on the control of noise growth and the optimization of bootstrapping.
There are two particular approches that have emerged called Leveled and Boot-
strapped.

• The Leveled approach (Less noisy operations) consists in FHE schemes
parameterized to represent a given function with a circuit that will be eval-
uate homomorphically without resorting to bootstrapping operation. With
this approach there is a try to avoid bootstrapping as much as possible and
it can be used when the circuit is "small" and especially known, so that the
appropriate parameters can be set.
A leveled FHE scheme provisions a noise budget to support N level of op-
erations, generally the multiplication is chosen because homomorphically in-
troduces the most noise, where N is the multiplicative depth of the circuit
(the largest sequence of consecutive multiplications). Knowing the operations
performed inside a small circuit it can be possibile to fix the parameters in
order to fit the number of operations inside the amount of noise given.
The computation’s cost and speed depend on the size and depth of the cir-
cuit: if the circuit becomes larger the number of parameters also increases
and the evaluation becomes slower, just as the depth of the circuit increases
the complexity of computation.
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• The Bootstrapped approach (Fast Bootstrapping) consists in a more
flexible solution where there is no limitation to the number of operations to
perform and the bootstrapping operation is computed every time it is needed.
This approach is used when the circuit is unknown or "deep".
The schemes that follow a bootstrapped approach focus on improving the
performance of the bootstrapping operation. The new generations of FHE
schemes guarantee a significant speedup in the bootstrapping step compared
to what was possible in Gentry’s 2009 scheme.

The use case determines whether to apply an FHE strategy from the first or
second approach. Less complex use-cases can be tackled by using Leveled FHE
schemes, while Bootstrapped FHE schemes are useful in more complex scenarios,
but there is also the possibility to combine both approaches.

Another important distinction involving FHE schemes is how they implement
circuits and what type of data they operate on. There are two main classes of
circuits called Boolean and Arithmetics.

• Boolean Circuits
This type of circuit works on bits. Any function can be represented by a
boolean circuit, which is made of a series of binary gates that are connected
together, where the addition operation of bits corresponds to a XOR gate and
the AND gate is the parallel of a multiplication of bits; it is even possible
use only the universal NAND gate to express all operations.
In general this type of circuits are used following the bootstrapped approach.

• Arithmetics Circuits
This type of circuit represents inputs with larger integers composing a series
of additions and multiplications. The integers are modulo p for some p > 2
(boolean arithmetic corresponds to p = 2).
These circuits are considered mainly in leveled approach and in some cases for
schemes operating with real numbers by having approximate computations
[25].

2.3.4 FHE Schemes

Since the solution proposed by Gentry in 2009, various schemes and related
variants of them based on the idea of bootstrapping have been devised, making
significant improvements to the original idea. In this section the most well-known
FHE schemes on which nowadays there is more development will be discussed,
along with their main features and most significant characteristics.
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DM/CGGI

In the Ducas-Micciancio (DM) cryptosystem [29] (proposed in 2015), also
known as FHEW and based on the GSW scheme [19], the primary goal was
to perform a evaluation with the smallest latency of an elementary bootstrapped
computation, in this case a boolean NAND gate. Let us recall that the NAND
gate can be used to implement any function expressed as a boolean circuit because
it is a complete boolean gate, this property permits to a single gate to implement
any logical operation. Compared to the original scheme of Gentry that took up to a
maximum of 30 minutes for a single bootstrapping operation, the DM cryptosystem
is much faster, being the first FHE scheme to perform a bootstrapping operation
in less than a second.

A variant of DM cryptosystem that is more efficient in terms of memory is the
Chillotti-Gama-Georgieva-Izabachene (CGGI) cryptosystem [12] proposed
in 2016, it has a similar design to DM, but it has stronger security assumptions
and it makes use of some additional optimizations that improve bootstrapping
efficiency allowing it to achieve a latency of less than 0.1 seconds.

These two cryptosystems, DM and CGGI, have a unique property that differ-
entiates them among all other FHE schemes: they permit to evaluate arbitrary
functions during the bootstrapping process. The evaluation can be done by re-
placing the bits of plaintext with a function of them thanks to a lookup table
during the bootstrapping procedure. This operation is called Functional or Pro-
grammable Bootstrapping.

CKKS

To have a scheme that provides nowadays the best efficiency in Machine Learn-
ing applications, being optimized for floating point computations, we can refer to
the Cheon-Kim-Kim-Song scheme (CKKS) [7] proposed in 2016. This scheme
makes extensive use of polynomial approximations to implement non linear func-
tions, consequently the bootstrapping operation is also approximated, i.e., in the
refreshed ciphertext the encrypted message is not equal but "close" to the encrypted
message in the exhausted ciphertext [39].

BGV/BFV

The Brakerski/Fan-Vercauteren (BFV) scheme [17] and the Brakerski-
Gentry-Vaikuntanathan (BGV) scheme [54], proposed respectively in 2012
and 2014, have a very similar structure and use the same bootstrapping strategy
of CKKS, but unlike the latter which is optimized for floating point computations,
these two schemes are suitable for working on encrypted exact computations with
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integer data types. For this reason they can be useful into the category of appli-
cations whose main focus is string manipulation and database management.
In the BGV/BFV scheme the bootstrapping procedure is very computational ex-
pensive because it requires homomorphic evaluation of high-degree polynomials.

Each scheme has advantages and disadvantages depending on how it is im-
plemented and what strategy it uses to carry out the homomorphic decryption
evaluation operation. To be more specific, BGV/BFV and CKKS schemes fall
into the category of the leveled approach while DM/CGGI fall into that of the
bootstrapped approach. Each of them can be used in the area that is most rel-
evant to it by exploiting its leading features. In addition to the above mentioned
FHE schemes there are others developed after the discovery of Gentry that we will
not focus on in this thesis; in figure 2.6 is depicted a timeline where the major
FHE schemes in the post-Gentry era are specified.

Figure 2.6. FHE schemes timeline after Gentry’s solution [8]

2.4 Fully Homomorphic Encryption over the Torus

The Fully Homomorphic Encryption over the Torus (TFHE) [13] is a Fully Ho-
momorphic Encryption scheme, also known as CGGI [12], and it was proposed in
2016 as improvement of FHEW. The security of the scheme, as the majority of the
FHE scheme nowadays, is based on a hard lattice problem called Learning With
Errors (LWE) and its variants such as Ring-LWE (RLWE). The main feature of

29



Homomorphic Encryption

this scheme is the special bootstrapping operation (Programmable Bootstrap-
ping) that is able to reduce the noise of ciphertext and to evaluate an arbitrary
function at the same time in an extremely fast way.

2.4.1 TFHE ciphertexts

In the TFHE scheme are used three different types of ciphertexts (LWE, RLWE,
RGSW) because all of them have different properties useful in the homomorphic
operations [10].

1. LWE ciphertext

Given a message m, an integer n and a secret key s⃗ a LWE ciphertext is defined
as a vector of n + 1 elements

c⃗ = Enc⃗s(m) = (a⃗, b)

Figure 2.7. LWE Ciphertext visualization [8]

where

• m can be a bit, a modular integer or a real in a interval and s⃗ is a vector of
random n bits (s0, ..., sn−1) ∈ {0,1}n

• a⃗ is a vector of n random integers (a0, ..., an−1) ∈ Zq where q is an integer.

• the (n + 1)-th element is b = qn−1
i=0 ai · si + e + ∆m

• e is a small error chosen according to a Gaussian Distribution and ∆ is a
scaling factor

It is possible to decrypt the ciphertext as follows

b − a⃗ · s⃗ = ∆m + e

At this point it is possibile obtain the message m performing a rounding opera-
tion.
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It is possibile to perform linear combinations with LWE ciphertexts:
• Addition: Given two LWE ciphertexts c⃗ e c⃗′ the addition is defined as

c⃗ + c⃗′ = (a⃗, b) + (a⃗′, b′) = (a⃗ + a⃗′, b + b′).

• Costant multiplication: Given a LWE ciphertxet c⃗ and an integer γ the
costant multiplication is defined as γ · (a⃗, b) = (γ · a⃗, γ · b).

2. RLWE ciphertext

Given a polynomial M(X) and a secret key S(X) a RLWE ciphertext is defined
as

C(X) = EncS(X)(M(X)) = (A(X), B(X))

Figure 2.8. RLWE Ciphertext visualization [8]

where
• M(X) is a polynomial modulo (XN + 1) with N coefficients (where each one

of them can represent bit, integer or real) and S(X) is a polynomial with N
coefficients that are random bits ( S0 +S1X + ...+SN−1X

N−1 with Si ∈ {0,1}
).

• A(X) is a polynomial of N coefficients that are random integers ( A0 +A1X +
... + AN−1X

N−1 with Ai ∈ Zq ).

• B(X) = A(X) · S(X) + E(X) + ∆M(X).

• E(X) is a polynomial with N coefficients that represents the errors ( E0 +
E1X + ... + EN−1X

N−1 with Ei taken from a Gaussian distribution) and ∆
is a scaling factor.

It is possible to decrypt the ciphertext as follows

B(X) − A(X) · S(X) = ∆M(X) + E(X) → M(X)

. In order to recover the plaintext we once again resort to a rounding operation.
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It is possibile perform linear combinations with RLWE ciphertexts:
• Addition: Given two LWE ciphertexts C(X) e C ′(X) the addition is defined

as C(X)+C ′(X) = (A(X), B(X))+(A′(X), B′(X)) = (A(X)+A′(X), B(X)+
B′(X)).

• Costant polynomial multiplication: Given a RLWE ciphertxet C(X)
and an integer polynomian Γ(X) ∈ Z[X]/(XN + 1) the costant polynomial
multiplication is defined as Γ(X)·(A(X), B(X)) = (Γ(X)·A(X), Γ(X)·B(X)).

2. RGSW ciphertext

Given a polynomial µ(X) and a secret key S(X), defined in the same way as in
RLWE, a RGSW ciphertext is defined as 3-dimensional matrix 2 × 2 × l. The
matrix can be seen as a list of l elements, each of which is a 2×2 matrix composed
of 4 polynomials where each line is a RLWE ciphertext.

Figure 2.9. RGSW Ciphertext visualization [8]

The important difference of RGSW ciphertext is that, in addition to performing
the linear combinations (addition and constant polynomial multiplication) as seen
for the other ciphertexts types, it can perform the multiplication:

EncS(X)(µ(X)) ⊗ EncS(X)(µ′(X)) = EncS(X)(µ(X) · µ′(X))

.

2.4.2 Operations on TFHE ciphertexts

The three different ciphertext types can interact through appropriate blocks
and operations by exploiting their properties that will be useful in performing
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homomorphic operations and bootstrapping. This section will briefly present these
operations, considering the notation expressed above.

1. External Product

The External Product consists in performing a multiplication between a RLWE
and a RGSW ciphertext:

EncS(X)(M(X)) ⊙ EncS(X)(µ(X)) = EncS(X)(µ(X) · M(X))

Figure 2.10. External Product [8]

2. CMux Gate

The Controlled Mux is a gate that takes in input the elements d0, d1, b and,
depending the value of b ∈ {0,1}, selects as output d0 or d1.

Figure 2.11. CMux Gate

CMux corresponds to a if condition on b value and it can be performed in
cleartext by evaluating this expression (d1 − d0) · b + d0 = db. To homomorphically
evaluate CMux we encrypt d0 and d1 with RLWE and b with RGSW, and then we
use the external product and addition operation:

(EncS(d1) − EncS(d1)) ⊙ EncS(b) + EncS(d0) = EncS(db).
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Figure 2.12. Homomorphic CMux [8]

3. Blind Rotation

The Rotation in clear consists in rotating a polynomial M(X) of p positions
(known) and it can be done by performing the multiplication M(X) ·X−p to bring
the Mp element in the first position where M(X) = M0 + M1X + ... + MpXp +
... + MN−1X

N−1.

The Blind rotation consists in rotate an encrypted RLWE polynomial M(X)
of p RGSW encrypted positions, with p = p0 · 20 + ... + pk · 2k where pj is secret
and 2j is known ∀j = 0, ..., k.
M(X) · X−p can be developed as

M · X−p020−...−pk2k = M · X−p020 · ... · X−pk2k

.

At this point to obtain M(X) · X−p it can be built a chain of CMux one concate-
nated to the other where each one of them correspond to

M · Xpj2j =


M if pj = 0

M · X−2j if pj = 1.

Figure 2.13. Chain of CMux to perform Blind Rotation [8]
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4. Sample Extraction

The sample extraction takes in input a RLWE ciphertext encrypting a polyno-
mial M(X) and extracts homomorphically one coefficient Mi, putting the result
in a LWE ciphertext. This operation can be done easily by reassigning the co-
efficients of the input in a specific order to the coefficient of the output without
increasing the noise.
For example, starting to EncS(X)(M(X)) = A(X)B(X), to extract M0 and thus
obtain Enc⃗s(M0) = (a⃗, b) we can do as follows:

• s⃗ = (s0 = S0, ..., sn−1 = SN−1) with n = N .

• (a⃗, b) = (a0 = A0, a1 = −An−1, ..., an−1 = −A1, b = B0).

5. Key switching

The key switching is an operation that allows, for a certain type of cipher-
text, to switch from one secret key to another. For example, between two LWE
ciphertexts:

Enc⃗s(m) = (a⃗, b) → Enc⃗s′(m) = (a⃗′, b′)
To perform this operation there is need of a key-switching key (public key similar

to a bootstrapping key) that is used to switch the key and also to change the
parameters. The key switching operation increases the noise associated to the
ciphertext.
The possible combinations of ciphertext types among which the key switching can
be performed are: LWE to LWE, RLWE to RLWE, LWE to RLWE and many-LWE
to RLWE.

2.4.3 Programmable Bootstrapping

The aim of bootstrapping is to reduce the noise when it grows too much.
In the TFHE scheme it is possible to perform the bootstrapping operation on
LWE ciphertext Enc⃗s(m) = (a⃗, b) that consists in evaluating homomorphically
the decryption following two steps:

1. Computation of the linear combination b − qn−1
i=0 ai · si = ∆m + e

2. Rescale and rounding: ⌈∆m + e⌋ = m

in order to obtain the same encrypted m with less noise.

Initially we consider the message m ∈ {0,1, ..., p − 1}, ∆m + e ∈ {0,1, ..., q − 1}
and s⃗ of n elements. Taking in input a LWE ciphertext Enc⃗s(m) = (a⃗, b), the
procedure consists in computing a blind rotation on a vector V . The vector V
is obtained by repeating ∆ times each value between 0 and p − 1 as follows:
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Figure 2.14. Values (∆m + e) sent to the value m [8]

We call mega-case the block containing multiple repetitions of the same value,
while the single repetition of a value is called case.
In this way, when we rotate V by ∆m + e positions, if |e| < ∆/2 we end up having
in the leftmost position of V the value m. We hence have a way to associate a
value ∆m + e ∈ Zq to a value m ∈ Zp (p < q). In the following figure we give a
representation of the values associations:

Figure 2.15. Values (∆m + e) sent to the value m [8]

At this point we perform a multiplication with the monomial X−(∆m+e) where

Vn = V · X−b+
qn−1

i=0 ai·si=∆m+e = V · X−(∆m+e).

This operation rotates the input vector V of ∆m + e positions in order to bring
the case corresponding to the plaintext m in first position.
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Figure 2.16. Rotation of V [8]

Then it is used the sample extraction over the result (RLWE) to obtain the
LWE encryption as output in which there will be m encrypted with secret key s⃗′

with less noise. In the end the key switching is performed to go back to secret
key s⃗.
The following figure represents the Bootstrapping procedure with the flow of op-
erations performed:

Figure 2.17. Bootstrapping Procedure of TFHE Scheme [8]

In the procedure just described, if the vector V is not built directly with the
elements of the inital vector {0,1, ...p − 1} but with elements on which is applied
a f function {f(0), f(1), ..., f(p − 1)}, after the step of introducing redundancy it
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is possible to use V as Homomorphic Look-Up Table.
In this way it is possibile to evaluate a function f and reducing the noise at the
same time, this is called Programmable Bootstrapping.

Considering the two steps for evaluating homomorphically the decryption men-
tioned at the beginning of this section (2.4.3), according to the work done by
ZAMA [11] the procedure of programmable bootstrapping is summarized by the
following statement:
"To perform programmable bootstrapping the TFHE approach is to put the
computation of (the negation of) b − qn−1

i=0 ai · si = ∆m + e in the exponent of a
monomial X, and then to use this new monomial to rotate a Look-Up Table (LUT)
that evaluates the second step of the decryption (rescale and rounding)".

In order to end up, this is a summary of all the operations showed that, combined
in appropriate way between the ciphertext types, can be used to build a large
amount of homomorphic operations.

Figure 2.18. Operations in TFHE [8]
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Chapter 3

FHE Libraries and tools:
Concrete Compiler

In this chapter we will focus on Concrete Compiler and we will describe how to
use it to develop programs that use FHE to compute on encrypted data.
We will give a general overview of the product developed by ZAMA. In section 3.1
we will focus on the inner workings of Concrete Compiler, while in section 3.2 we
will show how to use Concrete through its Python API by directly analyzing some
examples.

3.1 Concrete Overview

ZAMA is a French cryptography company that focuses on building open source
homomorphic encryption solutions [52]. ZAMA focuses on the development of
applications in the field of Artificial Intelligence and Blockchain and produces
open source cryptographic tools with the aim of simplifying data protection.
The core product of ZAMA is a compiler called Concrete, designed especially for
developers, helping them about the complexity of operating with FHE, managing
noise, choosing appropriate crypto parameters and finding the best set and order
of operations for a specific computation.

In April 2023 ZAMA released the version of the compiler for TFHE that converts
Python programs into FHE equivalents, Concrete v1.0.0 (before known as concrete-
numpy). In that release ZAMA states: "Concrete is useful for developers who
want to build a high level application that takes encrypted inputs and produces
encrypted outputs" [49]. Concrete is written in C++ and it is developed with
Multi-Level Intermediate Representation (MLIR) that is a open source project
used for building reusable and extensible compiler infrastructure [28].
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3.1.1 From Python Program to TFHE Circuits

One of the biggest problems is to translate all the operations of a program into
their equivalent homomorphic form. It is simple to obtain the homomorphic equiv-
alent of simple operations like addition or multiplication but not for any other type
of function.
In TFHE homomorphic Look Up Tables (LUTs) can be evaluated for free during
the operation of bootstrapping, which reduce the noise. This is a great advantage
of TFHE because any univariate function can be represented by a LUT and so
TFHE can evaluate any function without approximation (Programmable Boot-
strapping 2.4.3).
The translation of a function to LUTs is performed automatically by the Com-
piler, turning regular functions into univariate ones and then generating the corre-
sponding LUT. On the contrary, the direct use of LUTs within Python API result
extremely inefficient.

Figure 3.1. Typical Client-Server interaction in Concrete [49]
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Each function is represented internally to the compiler by a circuit. A circuit
is defined as a direct acyclic graph of operations on variables, where each variable
can be encrypted or in clear. This circuit is compiled with all the parameters and
the result is:

• a dynamic library with FHE operations.

• a JSON file with the cryptographic configuration called Client Specs.

At this point the circuit can perform the homomorphic evaluation of the desired
function. These operations can be used in the context of a Client-Server interac-
tion, for which we will see a detailed example in the implementation of the project
of this thesis in the section 4.3. We show a general example of communication in
Figure 3.1.

3.1.2 Parameters Optimization and Supported Data

In the Concrete Compiler there is a TFHE Optimizer that automatically com-
putes the best possible parameters to use in the homomorphic scheme for the
program being compiled. In a FHE library the cryptographic parameters de-
fine data size, generated noise, maximum number of operations to perform before
the programmable bootstrapping execution. These parameters influence perfor-
mances, exacteness and security of an application. The fact that the choice of
these parameters is automatically performed is hence a great advantage for the
developer.

Currently Concrete has a strong limitation, given that it supports input variables
of maximum size up to 16 bits. It supports simple operations (e.g. addition) on
32 bits but they are extremely inefficient.
Concrete, with its Python API, is compatible with a limited number of Numpy
library functions that can be used directly and can make use of the data structures
such as Array, Lists, ndArray and Tensor. For such data types Concrete can be
used only on Integers and there is no support for Floating Point. There is also
an additional limitation regarding the fact that no flow control constructs (e.g.
if,for,while) can be used in the homomorphically evaluated function.
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3.2 Using Concrete

Now we present and analyze a simple circuit written in Python that performs an
homomorphic evaluation of the addition of two encrypted variables.

1 from concrete import fhe
2

3 # Function to evaluate
4 def add(x, y):
5 return x + y
6

7 # Definitions parameters
8 compiler = fhe. Compiler (add , {"x": " encrypted ", "y": " encrypted "})
9 inputset = [(2, 3), (0, 0), (1, 6), (7, 7), (7, 1)]

10

11 # Compile Circuit
12 circuit = compiler . compile ( inputset )
13 #Input (x,y)
14 input = (3, 4)
15 # Execution
16 homomorphic_evaluation = circuit . encrypt_run_decrypt ( input)

Listing 3.1. Circuit Example

• from concrete import fhe imports the library module that allows to per-
form homomorphic evaluation

• def add(x,y) is the definition of the function to evaluate in the circuit

• fhe.Compiler creates a compiler by specifying the function to compile (add)
and the encryption status of its inputs ("encrypted").

• inputset is a data collection that represents the inputs to the function and it
is used to determine the size in bit of the variables within the function. The
inputset must be an iterable set where each element is of the same length
as the number of input arguments of the function.

• compiler.compile performs the compilation and get resulting the circuit.

• encrypt_run_decrypt performs the homomorphic evaluation at once, but
the three method (encrypt, run, decrypt) can be performed separately and
by different parties (e.g. the client encrypts and decrypts data and the server
runs the homomorphic circuit).
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Chapter 4

Homomorphic SHA256

In this chapter we will discuss the main project developed during this thesis,
an implementation of homomorphic evaluation of SHA256 using Concrete Com-
piler [53]. We will first examine the technical aspect and the internal structure of
SHA256 algorithm [35] in section 4.1 (following the Secure Hash Standard (SHS)
published by NIST [35]), analyzing the inner blocks of the algorithm and the
operations needed for the computation. Then we will explain the homomorphic
evaluation of SHA256 in section (4.2) by going through the details of the inter-
nal data representation and operations, justifying the implementation and design
choices taken during the development phase. Finally, in section 4.3 we will present
a general Client-Server model in which we will be able to show how the developed
implementation is used in real-world communication.

4.1 SHA256 Algorithm

SHA256 is a cryptographic hash function and it part of SHA-2 family of SHS
[35] as mentioned in section 1.4.
This algorithm garantees the property of message’s integrity: it can process a mes-
sage in an iterative way to produce a representation of fixed length called digest,
and any change to original message produce a different digest. The integrity prop-
erty of the message is very useful in the context of message authentication code
and digital signatures.

To understand how data is organized in the algorithm we define the following
elements:

• word: data unit on which the various operations will be executed. It is a
w-bit string where the size is w = 32 bits and it is represented in hexadecimal
format.
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• block: structure corresponding to an array of words. The block size is 512
bits and a block is composed by 16 words.

• digest: Hash function’s final result which is a group of 256 bits, generally
represented by a hexadecimal string.

Figure 4.1. Word and Block representation in SHA256 Algorithm

SHA256 algorithm can be described in two phases called Preprocessing (4.1.1)
and Hash Computation (4.1.2).
The preprocessing phase is divided in three steps which consist in padding a mes-
sage, parsing the padded message and setting initial values for the hash computa-
tion phase. In the hash computation phase are used functions and word operations
in iterative way on the results from preprocessing phase to generate a series of hash
values. In the end the message digest is taken from the final hash value of the com-
putation phase.

4.1.1 Preprocessing

The preprocessing phase prepares the input message by formatting it appropri-
ately and setting constant values for the hash computation phase where the main
processing loop takes place.

1. Padding

Given in input a message of length ℓ bits, the padding step ensures that the padded
message has a length equal to a multiple of the block size (512 bits). The procedure
is as follows:
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• Append a single bit with value ”1” to the end of message.

• Append k bits with value ”0” until the length is 64 bits less than a multiple
of 512. k is the smallest non-negative solution to the equation

ℓ + 1 + k = 448 mod 512

• Append 64 bits with the value equal to the number ℓ expressed in binary
representation.

Example: We suppose that the input message is "abc" which has length ℓ =
8 × 3 = 24bits (8-bit ASCII). To perform padding we append a single bit with
value ”1” and then 448 − 24 − 1 = 423 bits with value ”0”. At the end we append
64 bits with the value of ℓ = 24 that is ”011000” in binary representation. This is
an example with one block, in fact we obtain as result a padded message of 512
bits.

Figure 4.2. Example of padding step in SHA256 [35]

2. Parsing

In the Parsing step, the padded message obtained from the previous step must
be divided into N blocks, each one of 512 bits. We call M (i) a block, where in a
message i indicates the i-th block, and since a block contains sixteen words we call
M

(i)
t the t-th word in the i-th block.
Example: Suppose that we have an input message of 980 bits, after the prepro-

cessing step we obtain a message of 1024 bits. The padded message will be parsed
in two 512-bits blocks called M (0) and M (1) and for denoting the single words in
the i-th block we use the notation M

(i)
0 , M

(i)
1 , M

(i)
2 . . . M

(i)
15 .
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3. Setting

The Setting step consists in setting the initial hash value H(0) with eight 32-bit
words H

(0)
0 , H

(0)
1 , . . . , H

(0)
7 .

The values of these words are known and specified in the SHS [35] as we will see
in the next part of this description of algorithm.

4.1.2 Computation

Operations, Functions and Costants

Before continuing with the description of the algorithm, we define the operations
and functions necessary for the execution of the second phase called hash compu-
tation. All of the following operations are reported in the SHS [35].

Operations Among the various operations the following are the basic ones that
operate on words:

• ∧ Bitwise AND operation.

• ∨ Bitwise OR operation.

• ⊕ Bitwsie XOR operation.

• ¬ Bitwsie complement operation (NOT).

• << Left shift operation.
x << n is obtained by discarding the left-most n bits of the word x and
padding the result with n zeroes on the right.

• >> Right shift operation.
x >> n is obtained by discarding the right-most n bits of the word x and
padding the result with n zeroes on the left.

• + Addition modulo 2w, where w = 32.

We also define the following two operations as follows:

• ROTRn(x) Rotate right operation.
It is defined by ROTRn(x) = (x >> n) ∨ (x << w − n), where x is a w-bit
word and n is an integer with 0 ≤ n < w.

• SHRn(x) Right shift operation.
It is defined by SHRn(x) = (x >> n)
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Functions In the hash computation phase of SHA256 algorithm we use six logical
functions that operates on words. The result of each function is a new word.
These functions are composed by operations just described and they are defined
as follows:

• Ch(x, y, z) = (x ∧ y) ⊕ (¬x ∧ z)

• Maj(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z)

• Σ0(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x)

• Σ1(x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x)

• σ0(x) = ROTR7(x) ⊕ ROTR18(x) ⊕ ROTR3(x)

• σ1(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ ROTR10(x)

Costants There are two types of constants with known values given in the SHS
to be used in the SHA256 algorithm.
The first constants are those used in the setting step from the preprocessing phase,
they are eight words denoted by H

(
00), H

(
10), ..., H

(
70).

The second type of constants are a sequence of sixty-four words denoted by
K0, K1, ..., K63; they represent the first thirty-two bits of the fractional parts of
the cube roots of the first sixty-four prime numbers.

Hash Computation

The hash computation is the main process loop of SHA256 algorithm that operates
on padded message parsed in N blocks obtained from preprocessing phase.
Each message block is processed in order (for i = 1 to N) using the following four
steps:

1. Prepare the message schedule {Wt}:

Wt =

M
(i)
t 0 ≤ t ≤ 15

σ1(Wt−2) + Wt−7 + σ0(Wt−15) + Wt−16 16 ≤ t ≤ 63
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2. Initialize eights variables called a, b, c, d, e, f, g, h with the (i − 1)th hash value:
a = H

(i−1)
0

b = H
(i−1)
1

c = H
(i−1)
2

d = H
(i−1)
3

e = H
(i−1)
4

f = H
(i−1)
5

g = H
(i−1)
6

h = H
(i−1)
7

3. Compute the main loop:
For t = 0 to 63:
{
T1 = h + Σ1(e) + Ch(e, f, g) + Kt + Wt

T2 = Σ0(a) + Maj(a, b, c)
h = g
g = f
f = e
e = d + T1
d = c
c = b
b = a
a = T1 + T2
}

4. Compute the ith intermediate hash value H(i):
H

(i)
0 = a + H

(i−1)
0

H
(i)
1 = b + H

(i−1)
1

H
(i)
2 = c + H

(i−1)
2

H
(i)
3 = d + H

(i−1)
3

H
(i)
4 = e + H

(i−1)
4

H
(i)
5 = f + H

(i−1)
5

H
(i)
6 = g + H

(i−1)
6

H
(i)
7 = h + H

(i−1)
7

After repeating steps 1 through 4 a total of N times, the resulting 256-bit digest
of the message is computed as:

H
(N)
0 ||H(N)

1 ||H(N)
2 ||H(N)

3 ||H(N)
4 ||H(N)

5 ||H(N)
6 ||H(N)

7
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4.2 Homomorphic evaluation of SHA256

In this section we present the study and analysis that led to our implementation of
a homomorphic evaluation of SHA256. For the realization of this implementation,
the main tool was the ZAMA’s core product, an open-source FHE Compiler called
Concrete, which simplifies the use of Fully Homomorphic Encryption through a
Python API.
We sould point out that the development of this project and all related data refer
to two specific versions of compiler that we used: Concrete v1.0 and v2.0 [51].

The analysis performed in the implementation design phase of the project played
a key role. Initially, numerous tests were performed to identify the best choice in
terms of efficiency, execution speed and occupied memory size, especially with
regard to data representation and the interaction with the main internal functions
of the algorithm.
All statistics and data reported in the next sections refer to testing and evaluation
performed on a personal computer with the following characteristics:

• CPU: AMD Ryzen 5 5500U (4,0 GHz boost frequency, 8MB cache L3, 6 core)

• RAM: 8GB DDR4-3200 MHz (2 × 4 GB)

4.2.1 Design Choices and Analysis
Data Representation

All the operations and functions of the algorithm operate on a specific unit of data,
which we have called word, of dimension w = 32 bits. There is therefore a main
problem that needs to be solved: homomorphic version of SHA256 needs a change
of data representation given that Concrete does not support 32 bits Integer types
and related functions that can operate on them, but is only possible to operate
with Integer variables of length at most 16 bits.
As a solution to this problem, we decided to decrease the unit of data on which to
perform operations by dividing a single word into smaller pieces called chunks.
In the implementation we define this variables as follows:

• CHUNK_SIZE: The size of a chunk that can be 2, 4, 8 or 16 bits.

• CHUNK_NUM: The number of chunks in a word, computed as CHUNK_NUM=
w/CHUNK_SIZE.
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Figure 4.3. Chunks representation

Analysis and Comparisons

The choice of the chunk size is very important because it affects the final param-
eters of the circuit that we saw in Chapter 3. We can observe how the circuit
parameters change as the CHUNK_SIZE value changes by performing the opera-
tions used inside SHA256. The operations chosen for the analysis are ROTRn(x),
SHRn(x) and + (Addition modulo 232).
The circuit parameters considered are the following:

• Nodes: Number of nodes of the circuit’s graph.

• GenKey Time: Generation key time.

• Circuit Time: It is composed by Compile Circuit Time and Execution Circuit
Time.

In the following three tables we present the results of this analysis for the previously
chosen operations:

ROTRn(x)
CHUNK_SIZE Nodes GenKey Time Circuit Time
16 bit 43 2,7 s 80,21 s
8 bit 83 2,8 s 106,13 s
4 bit 163 2,3 s 1,6 s
2 bit 323 1,61 s 2,05 s

Table 4.1. Table test on ROT Rn(x)
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SHRn(x)
CHUNK_SIZE Nodes GenKey Time Circuit Time
16 bit 45 2,6 s 88,33 s
8 bit 87 2,4 s 107,56 s
4 bit 169 2,5 s 1,7 s
2 bit 326 1,8 s 2,1 s

Table 4.2. Table test on SHRn(x)

+ (Addition modulo 232)
CHUNK_SIZE Nodes GenKey Time Circuit Time
16 bit 42 3,1 s 12,2 s
8 bit 85 2,8 s 17,7 s
4 bit 168 3,1 s 0,7 s
2 bit 324 2,2 s 0,8 s

Table 4.3. Table test on Modular Addition

In order to have a simpler implementation, the best choice would be to use the
maximum possible value of CHUNK_SIZE, but in this case we would have a very
high total execution time, so the options of 16 bit and 8 bit are not considered.
We initially decided to work with CHUNK_SIZE= 4 bit, considering the good ratio
observed between number of nodes and circuit time.
We present, in the following table, the resulting circuit parameters for the functions
of the algorithm (see 4.1.2) performed with 4-bit chunks:

CHUNK SIZE = 4 bit
Function Nodes GenKey Time Circuit Time
Σ0 558 3,3 s 7,6 s
Σ1 558 3,9 s 33,5 s
σ0 563 3,5 s 16,9 s
σ1 571 3,6 s 30,7 s
Maj 165 3,4 s 5,5 s
Ch 132 3,3 s 3,4 s

Table 4.4. Table test on Functions

At this point we can observe that the time to generate the keys is independent
from the functions considered, while the circuit time is directly proportional to the
complexity of the implementation of the function it refers to.
With complexity of the implementation we mean the number and type of code
operations that were required to write a given function into the Python language
code. All the details and final versions of the implementations will be discussed in
section 4.2.2.
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The total complexity is also due to the fact that almost all operations in the
Python code must make use of LUTs, as we saw in Chapter 3, to ensure proper
execution of the homomorphic circuit. The level of complexity can be considerably
lowered by providing an implementation in which native operations (e.g., sum) can
be used directly instead of operations that make use of LUTs (e.g., AND or XOR).
Following the previous observations, we made changes to the first versions of the
function implementations, obtaining an improvement on number of nodes and
circuit time. In the following table we show the differences and advantages obtained
from the changes made on the three operations analyzed earlier based on 4-bit
chunks implementation.

CHUNK SIZE = 4 bit
Function Nodes Circuit Time
ROTRn(x) 163 1,6 s
ROTRn(x) (modified) 17 0,45 s
SHRn(x) 169 1,7 s
SHRn(x) (modified) 24 0,47 s
+ 168 0,7 s
+ (modified) 67 0,5 s

Table 4.5. Table test on modified operations

During the development phase of this project there was a major update to the
compiler Concrete (ZAMA released version 2.0) making internal improvements to
the structure of the compiler. This upgrade to a new version allowed us to make
new comparisons on the implementation aspects, and we came to the conclusion
that it is now better to use 2-bit chunks since it provides better performances
than what was possible in the previous version. We will present the performance
comparisons of the project completed between the different compiler versions in
the final section of this chapter.

Implementing Preprocessing

Since the internal structure is based on 2-bit chunks we represent a word with
an array of 16 elements, each one of 2 bit. In this case the parameters for data
representation have value CHUNK_SIZE=2 and CHUNK_NUM=16.
The code that we show below and in the next examples is based on an implemen-
tation of the SHA256 algorithm that can take in input up to 959 bits (we refer to
the max number of bits that a message can have to be processed in two blocks).
The resulting padded message M after preprocessing phase will be two blocks large
and will have size 512×2 = 1024 bits, where M is represented by a matrix 32×16
of 2-bit elements.
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The preprocessing function encapsulates three other functions as we can see
from the code:

1 import numpy as np
2 # ################## PREPROCESSING ####################
3 def preprocessing (text):
4 input = input_list (text)
5 input_padded = padding (input)
6 input_parsed = parsing ( input_padded )
7 arr = np.array( input_parsed )
8 return arr

Listing 4.1. Preprocessing Function

The input_list function takes the initial input message and converts it to a
list formatting elements to facilitate the following operations. The padding and
parsing functions implement the steps required by the algorithm (4.1.1) by padding
the input message and dividing it into blocks with 2-bit elements.

1 # ################## INPUT LIST ####################
2 def input_list (data):
3 inp = list(data)
4 out = []
5 for item in inp:
6 out. append (item >> 6)
7 out. append (item >> 4 & 0 b_0000_0011 )
8 out. append (item >> 2 & 0 b_0000_0011 )
9 out. append (item & 0 b_0000_0011 )

10 return out
11 # ################## PADDING ####################
12 def padding (msg):
13 len_msg = len(msg)
14 len_bits_64 = len_msg * 2
15 num_blocks = 2
16 last_64 = []
17 for i in range (0, 32):
18 last_64 . append ( len_bits_64 >> (62 - i*2) & 0 b_0011 )
19 len_last_64 = len( last_64 )
20 # 1. Append the bit ’1’ to the message
21 msg. append (0 b_10)
22 # 2. Append k ’0’ bits , where k is the minimum number >= 0
23 # such that the resulting message length (in bits) is

congruent to 448 (mod 512)
24 for _ in range (256* num_blocks - len_msg - len_last_64 -1):
25 msg. append (0 b_00)
26 # 3. Append length of message ( before pre - processing ), in bits

, as 64- bit big - endian integer
27 for i in range( len_last_64 ):
28 msg. append ( last_64 [i])
29 return msg
30 # ################## PARSING ####################
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31 def parsing_2bit (block):
32 M = []
33 for i in range (0, len(block), 16):
34 M. append (block[i:i+16])
35 return M

Listing 4.2. InputList Padding and Parsing Function

In this implementation, the preprocessing phase is performed in clear mode, the
data is not encrypted since Concrete does not currently support sending multiple
encrypted parameters, which would have been needed in the Client-Server archi-
tecture that we will see in section 4.3.
The matrix M, representing the padded message after the preprocessing phase, will
be the initial input to the circuit for homomorphic evaluation. In the next sec-
tion we see in detail the implementations of the operations and functions of the
algorithm.

4.2.2 Operations and Functions

The operations and functions of the algorithm must be implemented by adapting
them according to the internal structure chosen with 2-bit chunks and also using
already implemented that should be compatible with Concrete, since the Python
API that is used in Concrete supports some of the functions that we can found in
the famous python library called Numpy [21].

We can divide the operations to be implemented in three groups that we will call
in the following way: bitwise operations, manipulation operations, and functions.
The bitwise operations are AND, OR, XOR, NOT and we can use them directly
because they were introduced in Concrete v1.0. Only the NOT operation is not
supported, but the problem is easily solved by implementing it using the XOR
operation as we can see:

1 import numpy as np
2 from concrete import fhe
3 # ############## NOT OPERATION ###############
4 def not_bitwise (word):
5 word_result = fhe.zeros( CHUNK_NUM )
6 word_result = np. bitwise_xor (word , 0b_11)
7 return word_result

Listing 4.3. NOT Operation
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The manipulation operations includes ROTRn(x), SHRn(x) and + (Addition
modulo 232) which must be specially adapted for the implementation. The func-
tions are the Sigmas functions, Maj and Ch which are composed of all the oper-
ations just described.

Rotate Right Operation (ROTRn(x))

The ROTRn(x) consists in shifting all the bits of the word x to the right by n
positions, with the n rightmost bits becoming the leftmost bits after the operation.
Each bit of the word moves one step to the right and the bit that was initially at
the end of the word is moved to the first position.
For easy representation in the following figure we show the ROTRn(x) operation
on a 4-bit string x with the rotation of n = 1 bit:

Figure 4.4. ROT R1(x) on 4-bit string

We cannot directly implement the definition ROTRn(x) = (x >> n) ∨ (x <<
w − n) given in section 4.1.2 because we cannot directly operates on 32-bit words.
Considering that a word x is represented by an array of 16 2-bit chunks, we can
implement the ROTRn(x) operation by distinguishing two cases, when n is even
there will be only a chunk rotation, while when n is odd there will be a chunk
rotation and a bit rotation.

1. In a rotation ROTRn(x) if n is multiple of CHUNK_NUM=2 will result in rotating
the array of chunks.

2. In a rotation ROTRn(x) if n is not multiple of CHUNK_NUM=2, after the step
1 there will be a rotation of CHUNK_NUM−n( mod 2) bits.
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In the function rotr the word x and the number of positions n are respectively
represented by the variables word and N. In the following code segment we can see
the chunk rotation implemented by a reassignment of positions of the elements of
an array and the bits rotation by a sequence of changes on the array using masks
and bitwise operations.

1 from concrete import fhe
2 # ############## ROTR OPERATION ###############
3 def rotr(word , N):
4 bits_rot = N % CHUNK_SIZE
5 blocks_rot = (N // CHUNK_SIZE )
6 v = fhe.zeros( CHUNK_NUM )
7 v2 = fhe.zeros( CHUNK_NUM )
8 mask = fhe.zeros( CHUNK_NUM )
9 mask2 = fhe.zeros( CHUNK_NUM )

10 # Chunks Rotation
11 if( blocks_rot > 0):
12 v[0: blocks_rot ] = word [( CHUNK_NUM - blocks_rot ): CHUNK_NUM ]
13 v[ blocks_rot : CHUNK_NUM ] = word [0:( CHUNK_NUM - blocks_rot )]
14 #Bits Rotation
15 if( bits_rot != 0):
16 mask2 = (v & 0b_01) * 0b_10
17 mask [1:] = mask2 [: -1]
18 mask [0] = mask2[CHUNK_NUM -1]
19 v2 = v // 2
20 result = (v2 + mask)
21 return result

Listing 4.4. ROTR Operation

To give an idea of the steps that this function performs we present this exam-
ple: the 2-bit chunks representation of a given word x = "abcd" (8-bit ASCII)
extracted from the message resulting from preprocessing would be an array word
= [1,2,0,1,1,2,0,2,1,2,0,3,1,2,1,0]. We want perform on word x a rotate right oper-
ation of 7 positions (ROTR7(x)).
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In the next image we present the intermediate values of function rotr(word,7)
following the previously code implementation:

Figure 4.5. Example of Rotate Right Operation

Shift Right Operation (SHRn(x))

Once the implementation of the rotr operation is defined, the Shift Right Oper-
ation is simple.
The SHRn(x) implementation (shr(word,N)) consists of setting all the last n po-
sitions to value "0" of a word x and then performing a rotate right operation as
shown in the following code:

1 import numpy as np
2 from concrete import fhe
3 # ############## SHR OPERATION ###############
4 def shr(word , N):
5 blocks_rot = (N // CHUNK_SIZE )
6 bits_rot = N % CHUNK_SIZE
7 v = fhe.zeros( CHUNK_NUM )
8 # Chunks initialization
9 v[: CHUNK_NUM - blocks_rot ] = word [: CHUNK_NUM - blocks_rot ]

10 #Last bits to zero
11 if( bits_rot == 1):
12 v[CHUNK_NUM -blocks_rot -1] = np. bitwise_and (word[CHUNK_NUM

-blocks_rot -1] ,0 b_10)
13 # Rotation of zeros -> Shift to right
14 result = rotr(v, N)
15 return result

Listing 4.5. SHR Operation
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Modular Addition (+)

In SHA256 algorithm the modular 32-bit addition is frequently used in functions
and intermediate steps. Concrete supports directly addition of 32-bit numbers, but
the management of parameters of this size is totally inefficient. For this reason,
we implemented a modular addition that operates directly on 2-bit chunks of the
words so as to greatly decrease the execution time.

Considering that we must perform the modular addition (addition_mod) of
word1 and word2. Starting with the chunks in the last position (CHUNK_NUM-1) of
word1 and word2, we sum them directly, obtaining a result that could be a 3-bit
chunk.
At this point we copy the bit in the first position of the resulting chunk and add it,
as if it were a carry, to the next chunks sum, and so on until we arrive at position
CHUNK_NUM=0 of the array.
At the end the resulting array, that might contains 3-bit chunks, is put in AND
operation with a mask (where each chunk has value "11" in binary representation)
to get the final result.
With the following segment code we show the implementation:

1 import numpy as np
2 from concrete import fhe
3 # ############## MODULAR ADDITION ###############
4 def addition_mod (word1 , word2):
5 word_result = fhe.zeros( CHUNK_NUM )
6 carry = 0b_00
7 for i in range(CHUNK_NUM -1, -1, -1):
8 word_result [i] = (( word1[i] + word2[i])+carry)
9 carry = word_result [i]

10 carry = carry // 4
11 word_result = np. bitwise_and ( word_result , 0b_11)
12 return word_result

Listing 4.6. Modular Addition
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The following figure illustrates the process of Modular Addition on 2-bit chunks:

Figure 4.6. Modular Addition on 2-bit chunks
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Functions

We defined the functions used in SHA256 algorithm in section 4.1.2 which are
the four functions Σ0(x), Σ1(x), σ0(x), σ1(x) that mainly use ROTRn(x) and
SHRn(x) operations and the two functions Ch(x), Maj(x) that are composed by
bitwise operations.
At this point we can implement all these functions using the implemented opera-
tions previously described.

1 import numpy as np
2

3 # ############## FUNCTIONS SHA256 ###############
4 def SIGMA_0 (x):
5 res = np. bitwise_xor ((np. bitwise_xor (rotr(x, 2), rotr(x, 13)))

, (rotr(x, 22)))
6 return res
7

8 def SIGMA_1 (x):
9 res = np. bitwise_xor ((np. bitwise_xor (rotr(x, 6), rotr(x, 11)))

, (rotr(x, 25)))
10 return res
11

12 def sigma_0 (x):
13 res = np. bitwise_xor ((np. bitwise_xor (rotr(x, 7), rotr(x, 18)))

, (shr(x, 3)))
14 return res
15

16 def sigma_1 (x):
17 res = np. bitwise_xor ((np. bitwise_xor (rotr(x, 17) , rotr(x, 19))

), (rotr(x, 10)))
18 return res
19

20 def ch(x, y, z):
21 res = np. bitwise_xor ((np. bitwise_and (x, y)), (np. bitwise_and (

not_bitwise (x), z)))
22 return res
23

24 def maj(x, y, z):
25 res = np. bitwise_xor (np. bitwise_xor ((np. bitwise_and (x, y)), (

np. bitwise_and (x, z))), (np. bitwise_and (y, z)))
26 return res

Listing 4.7. Functions of SHA256 Algorithm
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4.2.3 SHA256 on Encrypted Input
Implementing Hash Computation

The last phase of SHA256 algorithm is the main loop where the blocks are
processed, called Hash Computation. As we see in section 4.1.2, the Hash Compu-
tation phase is divided in 4 steps whose implementation is shown in the following
segment code:

1 from functions import *
2 from costants import *
3 from concrete import fhe
4

5 def function_sha256 ( M_list ):
6

7 # 1. Prepare the message schedule {W[t]}
8 W_list = fhe.zeros ((64 , CHUNK_NUM ))
9 H_list = fhe.zeros ((8, CHUNK_NUM ))

10 K_list = fhe.zeros ((64 , CHUNK_NUM ))
11 H_list [:] = H_2bit [:]
12 K_list [:] = K_2bit [:]
13

14 for i in range (0 ,2): #2 Blocks
15 # 2. Initialize the eight working variables a, b, c, d, e, f, g, h

with the (i -1) -st hash value
16 a = H_list [0]
17 b = H_list [1]
18 c = H_list [2]
19 d = H_list [3]
20 e = H_list [4]
21 f = H_list [5]
22 g = H_list [6]
23 h = H_list [7]
24

25 W_list [0:16] = M_list [(0+16* i) :(16+16* i)]
26

27 # 3. Computation for the 64 rounds
28 for t in range (0 ,64):
29 if (t >=16):
30 W_list [t] = W_comp (W_list , t)
31

32 t_1 = addition_mod ( addition_mod ( addition_mod (
addition_mod (h, SIGMA_1 (e)), ch(e, f, g)), K_list [t]),W_list [t
])

33 t_2 = addition_mod ( SIGMA_0 (a), maj(a, b, c))
34 h = g
35 g = f
36 f = e
37 e = addition_mod (d, t_1)
38 d = c
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39 c = b
40 b = a
41 a = addition_mod (t_1 , t_2)
42

43 # 4. Compute the final step of a 512- bits block of N blocks (in
this case N=2)

44 H_list [0] = addition_mod (a, H_list [0])
45 H_list [1] = addition_mod (b, H_list [1])
46 H_list [2] = addition_mod (c, H_list [2])
47 H_list [3] = addition_mod (d, H_list [3])
48 H_list [4] = addition_mod (e, H_list [4])
49 H_list [5] = addition_mod (f, H_list [5])
50 H_list [6] = addition_mod (g, H_list [6])
51 H_list [7] = addition_mod (h, H_list [7])
52

53 return H_list
Listing 4.8. Hash Computation

In our implementation the function function_sha256 represent the Hash Com-
putation phase and take in input the padded message M_list divided in blocks to
execute the 4 steps:

1. Initialization of the main variables where H_2bit and K_2bit are the costants
used in the algorithm already in 2-bit chunks format.

2. Initialization of the eight working variables and assignment of values to the
first 16 elements of message schedule W_list. From this step begins the cycle
for N blocks to be processed.

3. Computation of main loop where we have implemented the function W_comp
in the following way:

1 ###### FUNCTION TO CREATE THE t-th ELEMENT OF W ######
2

3 def W_comp (w, t):
4 Wt = addition_mod ( addition_mod ( addition_mod ( sigma_1 (w[

t -2]) , w[t -7]) , sigma_0 (w[t -15])), w[t -16])
5 return Wt

Listing 4.9. Schedule Message W Computation

4. Final step where at the N -th computation it will results the final hash value.

4.2.4 Final Results

At this point we are able, through the Python API of Concrete, to perform an
homomorphic evaluation of SHA256 with the implemented functions that we have
described.
The main code where the circuit is created and executed is the following:
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1 from concrete import fhe
2 import numpy as np
3 from utils import preprocessing , hex_convert
4 from sha256 import function_sha256
5

6 # ########## Input ###########
7 M_list = preprocessing (text)
8

9 # ########## Circuit Configuration ###########
10 configuration = fhe. Configuration (
11 enable_unsafe_features =True ,
12 use_insecure_key_cache =True ,
13 insecure_key_cache_location =".keys",
14 )
15 inputset = [(np. random . randint (0, 2 ** 2, size =(32 ,16))) for _ in

range (100)]
16

17 # ########## Circuit Execution ###########
18 def main_function (data):
19 res = function_sha256 (data)
20 return res
21 compiler = fhe. Compiler ( main_function , {"data": " encrypted "})
22 # Compile
23 circuit = compiler . compile (inputset , configuration )
24 # Generation Keys
25 circuit . keygen ()
26 #Run Circuit
27 result = circuit . encrypt_run_decrypt ( M_list )
28 #Final Result
29 hash_result = hex_convert ( result )

Listing 4.10. Main in Python API Concrete

In this case the variable text is the input which has been preprocessed in clear
mode at the beginning, the resulting variable M_list is the input for the execution
circuit step.
First of all we configure the standard parameters of the circuit in configuration
variable and we define the necessary inputset to represent the encrypted input.
We declare with the fhe.Compiler command the main_function that we use in
the circuit and the number and type of input data ({ "data":"encrypted"}).
The compiler.compile command performs the compile step of the circuit, that
is the largest in terms of execution time and memory space usage.
Once the circuit has been compiled we generate the keys with the circuit.keygen()
command and we perform the circuit execution on encrypted input with
encrypt_run_decrypt(M_list). At the end we convert the resulting string with
hex_convert in hexadecimal representation.
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We analyzed the performance of steps in the circuit and found that the two
most interesting parameters are compile time and execution time. During the
development of the project, we performed comparison tests on three different im-
plementations that differ in internal structure and compiler version used. These
analyses are based on a one block execution of sha256 and the three versions are
4-bit chunks Concrete v.1, 2-bit chunks Concrete v.1 and 2-bit chunks Concrete
v.2. The choice of changing the internal structure from 4-bit to 2-bit chunks is
due to the fact that the parameter of greatest interest is execution time. Compile
time is resulting to be the parameter with the largest value, but as we will see in
Section 4.3.1, it can be completely separated from circuit execution. We decided
to decrease the number of bits in the chunks because even though the compile time
has a growth, it results in significantly better times for the execution time.
Finally the upgrade from Concrete v.1 to Concrete v.2 resulted in a general im-
provement in performance due to internal changes of the compiler.
We show the comparison between these three implementations in the following
table:

Comparison implementations 1-block SHA256
Performance 4-bit v.1 2-bit v.1 2-bit v.2
Compile Time 19085 s 27692 s 13282 s
GenKey Time 12,4 s 2,03 s 1,7 s
Execution Time 1701 s 806 s 593 s
Total Time 20799 s 28500 s 13877 s

Table 4.6. Comparison implementations 1-block SHA256

Another parameter to consider is the memory space used during the compilation
step. In Concrete compiler a circuit with such an amount of operations, performed
via Python API, is extremely heavy, coming to limit the possibility to compiling on
personal computers. We show you the results obtained and all the performances of
major interest from the two our final implementations of homomorphic evaluation
of SHA256 (based on 2-bit chuncks Concrete v.2) operating on 1 block and 2 blocks
in the following table.

Homomorphic Evaluation of SHA256 Performance
Performance 1 block 2 blocks
Plaintext Input < 448 bit < 960 bit
Compile Time 3,7 hours 12,2 hours
GenKey Time 1,7 seconds 3 s
Execution Time 10 minutes 27 minutes
Memory Usage 4 GB 12 GB

Table 4.7. Homomorphic Evaluation of SHA256 Performance
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4.3 Client-Server Architecture

4.3.1 SHA256 precompiled implementation

In our implementation we saw that the compilation step takes up to 96% of the
total amount of time required to execute the program.
One possible solution to alleviate this problem is the separation of the compilation
and execution steps, in fact in Concrete it is possible to save a precompiled file of
the entire circuit. It is possible to execute the circuit directly just by calling the
precompiled file and providing the necessary inputs. In this way, once the function
is defined, we can directly execute it homomorphically.

This solution is extremely useful a client-server communication: in this case,
the server can save the precompiled file and execute the circuit every time a client
sends a request.
The structure of the code that allows to compile and save a precompiled file is
the same as seen above; the only difference is that after compiling the file we
do not proceed with the execution commands but we save the file through the
circuit.save("sha256.zip") command, where "sha256.zip" will be the name of
the file.

1 from concrete import fhe
2 import numpy as np
3 from utils import preprocessing
4 from sha256 import function_sha256
5 # ########## Input ###########
6 M_list = preprocessing (text)
7 # ########## Circuit Configuration ###########
8 configuration = fhe. Configuration (
9 enable_unsafe_features =True ,

10 use_insecure_key_cache =True ,
11 insecure_key_cache_location =".keys",
12 )
13 inputset = [(np. random . randint (0, 2 ** 2, size =(32 ,16))) for _ in

range (100)]
14 # ########## Circuit Execution ###########
15 def main_function (data):
16 res = function_sha256 (data)
17 return res
18 compiler = fhe. Compiler ( main_function , {"data": " encrypted "})
19 # Compile
20 circuit = compiler . compile (inputset , configuration )
21 #Save precompiled file
22 circuit . server .save(" sha256 .zip")

Listing 4.11. Precompilation step
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4.3.2 Client-Server Communication

We want homomorphically evaluate our implementation of SHA256 in a client-
server communication. The client will send an encrypted input to the server, which
will have to perform SHA256 without any knowledge of the input, and return to
the client a ciphertext that, when decrypted, will result in the final hash value.
We implemented a client-server communication in Python via sockets over TCP
protocol where we can perform homomorphically SHA256 using Concrete features
designed specifically for this [50].

We now present the main steps of communication by going through the actions
performed by the Client and Server in order. The following examples are code
extracts from our implementation.

1. Server
1 # Initialization
2 server_fhe = fhe. Server .load(" sha256 .zip")
3 # Specific Client
4 serialized_client_specs : str = server_fhe . client_specs .

serialize ()
5 #Send SERVER -> CLIENT
6 server . sendall ( serialized_client_specs )

Listing 4.12. Server Step 1

The server_fhe is initialized by loading the precompiled file and it serializes
and sends the specifications that are needed for the initialization of the client.

2. Client
1 # Initialization
2 client_specs = fhe. ClientSpecs . deserialize (

serialized_client_specs )
3 client_fhe = fhe. Client ( client_specs )
4 #Keys Generation
5 client_fhe .keys. generate ()
6 # Serialization Keys and Input
7 serialized_evaluation_keys : bytes = client_fhe . evaluation_keys

. serialize ()
8 serialized_args : bytes = client_fhe . encrypt ( M_2bits ). serialize

()
9 #Send CLIENT -> SERVER

10 client . sendall ( serialized_evaluation_keys )
11 client . sendall ( serialized_args )

Listing 4.13. Client Step 1

The client_fhe is initialized using the specifications client_specs sended
by the server.
The client_fhe.keys.generate() command generates two types of key:
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• A Master Key known only by client necessary for initial encryption of the
input and final decryption of the result.

• Evaluation Keys (evaluation_keys) necessary to the server to perform
homomorphically the function.

The client_fhe encrypts the input M_list and serializes evaluation_keys
and the encrypted input sending them to the server.

3. Server
1 # Deserialization
2 deserialized_evaluation_keys = fhe. EvaluationKeys . deserialize (

serialized_evaluation_keys )
3 deserialized_args = server_fhe . client_specs .

deserialize_public_args ( serialized_args )
4 # Running Circuit
5 public_result = server_fhe .run( deserialized_args ,

deserialized_evaluation_keys )
6 # Serialize
7 serialized_public_result : bytes = public_result . serialize ()
8 #Send SERVER -> CLIENT
9 server . sendall ( serialized_public_result )

Listing 4.14. Server Step 2

After deserializing the data sent by the client, the server executes the circuit
with the command server_fhe.run and sends the encrypted result to the
client.

4. Client
1 # Deserialization
2 deserialized_public_result = client_fhe .specs.

deserialize_public_result ( serialized_public_result )
3 # Decrypt Result
4 result = client_fhe . decrypt ( deserialized_public_result )
5 #Hash value
6 hash_result = hex_convert ( result )

Listing 4.15. Client Step 2

The client decrypts deserialized_public_result and converts it in hex-
adecimal format with hex_convert obtaining the final hash value.
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We show the complete Client-Server communication procedure with the follow-
ing figure:

Figure 4.7. Homomorphic SHA256 through Client-Server Communication

With the implementation performance seen in the previous section this example
of communication is not yet suitable for the real world. Nevertheless, thanks to
the continuous improvements and feature updates of ZAMA on Concrete compiler
it is possible to think about exploiting this implementation as a basis to more
complex cryptographic algorithms such as Message Authentication Codes or to be
used in Digital Signatures.
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Conclusions

In this thesis we designed and developed a homomorphic evaluation of the hash
function SHA256, using the ZAMA Concrete Compiler.
Firstly, we presented a general overview of the cryptographic protocol called Fully
Homomorphic Encryption (FHE). We started with the general concepts of cryp-
tography and then we delved into the concept of Homomorphic Encryption (HE)
showing how it has evolved over time by providing a general description of its main
features and referring to schemes proposed in the past years.

Secondly, we described the implementation choices that characterized the devel-
opment work. We focused on TFHE scheme of ZAMA and we used the Concrete
compiler to develop the final project of this thesis. By developing a homomorphic
evaluation of the hash function SHA256, we observed and analyzed the potential
that Concrete offers to developers and the limitations to which it is still subjected.
Research on FHE and the development of products such as Concrete that offer the
ability to use this protocol in complex applications is continuosly increasing.

We agree that FHE is an extremely powerful tool for ensuring data security and
privacy for users in a society that nowadays makes data a huge source of power.
At the time of the development of this thesis there are technical limitations and
this technology is not mature enough to be able to be applied to very complex
applications with a high degree of efficiency.
However, in the last few years FHE had significant improvements and demon-
strated great promise.
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