
POLITECNICO DI TORINO

Master Degree course in Mechatronic Engineering
A.Y. 2022/2023

Master’s Degree Thesis

COLLABORATIVE ROBOTICS: HUMAN-ROBOT

INTERACTION THROUGH GAZE TRACKING

Supervisors

Prof. Stefano MAURO

Dr. Matteo MELCHIORRE

Dr. Laura SALAMINA

Candidate

Alice GIAMBERTONE

December 2023

Table of Contents

1 Introduction 1
1.1 Collaborative robotics . 1
1.2 Robots & Cobots . 4
1.3 Characteristics of cobots and technological advancements 6
1.4 Human-Robot hand-over . 8
1.5 Cognitive human-robot interactions . 10

1.5.1 Potential of gaze tracking in hand-over 12
1.6 Aim of the work . 15

2 Gaze tracking systems 17
2.1 Evolution of eye research . 18

2.1.1 Intrusive & remote tracking methods 19
2.1.2 Feature based & appearance based methods 19
2.1.3 Hardware components of REGT system 21

2.2 Evaluation of open source and commercial eye tracking systems . . . 22
2.2.1 Eye tracking software . 22
2.2.2 Integrated eye tracking systems 23
2.2.3 Trade-off analysis of eye tracking solutions 24

2.3 OpenFace 2.0 . 24

3 Implementation of gaze tracking and sphere control in CoppeliaSim 28
3.1 Integration of OpenFace 2.0 . 28

3.1.1 Camera calibration . 29
3.2 Implementation of gaze tracking code 30
3.3 CoppeliaSim environment . 31

3.3.1 Control of the sphere . 32
3.3.2 Gaze-driven sphere control experiments 34

3.4 Why OpenFace 2.0 and CoppeliaSim integration 35

II

4 Collaborative robot UR5 36
4.1 Control unit . 37
4.2 Teach pendant . 38
4.3 Robotic arm . 40
4.4 Mathematical model and kinematics of the UR5 robot 43

4.4.1 Denavit-Hartenberg convention 43
4.4.2 Inverse kinematics . 45
4.4.3 Control law and Jacobian inverse 45

5 Gaze-based control of UR5 robot 47
5.1 Control strategy overview . 47
5.2 Simulated test . 49
5.3 Experimental validation with real UR5 robot 51

6 Conclusions and future developments 62

Bibliography 64

Abstract

Collaborative robotics is an increasingly relevant field in industrial automation, that
aims to improve close interaction between human operators and robots. The main
goal of this thesis is to explore human-robot interaction through gaze tracking, by
using a UR5 robot from Universal Robots with 6 degrees of freedom and the free
toolkit known as OpenFace 2.0. The project was inspired by the previous hand-over
work implemented by the DIMEAS group at the Polytechnic University of Turin with
the UR3 but with a different approach, focusing on visual tracking rather than physical
hand-over.
The OpenFace 2.0 toolkit played a key role in this work, due to its remarkable ability
to extract facial parameters and gaze-related data. The gaze information extracted
by OpenFace 2.0 were utilized to drive the robot end-effector towards the human’s
point of focus in real-time.
The implementation process encompasses control algorithms, system calibration,
and the integration of gaze tracking software with the UR5. In order to assess the
effectiveness of this implementation, preliminary testing phases were conducted in a
virtual environment using the CoppeliaSim software. Subsequently, physical tests
were performed in the laboratory with the UR5 robot to verify the ability of the
system to track eye movements and to respond appropriately.

V

Chapter 1

Introduction

1.1 Collaborative robotics

Collaborative robotics, a rapidly advancing field within robotics, is revolutionizing
the way humans and machines work together in shared spaces. This discipline aims
to create a new paradigm in which robots and humans collaborate harmoniously,
enhancing productivity, safety, and efficiency across various industries.
The meaning of collaborative robots, or "cobots", has developed different interpre-
tations based on the specific context of their use. Generally, they can be described
as robots specifically created to work alongside humans; additionally, a cobot can
be seen as a robot designed for physical interaction with humans within a common
workspace. Cobotics encompasses the science and methods associated with the de-
sign, creation, examination, and assessment of cobotic systems [1].
According to Vincentini [2], the core concept behind collaborative robotics is to aid
individuals in performing tasks that are not achievable through more traditional
methods. Collaborative robotics seeks to complement conventional robotics by en-
hancing human involvement in shared time and space. The convergence of safety
features, physical Human-Robot Interaction (pHRI), and human activity distinguishes
collaborative robotics from the broader concept of robotics, emphasizing the active
engagement of humans on a functional level [2].

Human-Robot Collaboration (HRC) is a central aspect of collaborative robotics,
defining the ability to perform complex tasks through direct interaction between
humans and robots in two main modalities. The first, physical collaboration, involves
deliberate contact and force exchange between humans and robots, thus enabling
the anticipation of human motion intentions and appropriate robotic reactions. The
second, contactless collaboration, operates without physical interaction, and it aims
on enhancing the robot’s environmental perception by using technologies such as

1

Introduction

learning-based vision and virtual reality. The coordination of actions occurs through
the exchange of information acquired through direct (gestures) or indirect communi-
cation methods (intentions recognition, eye gaze direction, facial expressions) [3, 1].
Furthermore, HRC systems can be distinguished in ‘workplace sharing systems’ and
‘workplace and time-sharing systems’. In the ‘workplace sharing systems’, human and
robot accomplish different tasks in the same workspace; in the ‘workplace sharing
systems’ the coordination in space and time is required [4].

Collaborative robotics is reshaping industrial processes, elevating efficiency and preci-
sion, while also extending their reach across various sectors. They’re revolutionizing
healthcare, logistics, and everyday life, transcending their initial applications.
One notable example in the medical field is ROBERT (Figure 1.1), developed by Life
Science Robotics [5], specifically engineered for lower limb rehabilitation and the
mobilization of immobilized patients. Unlike conventional therapeutic approaches,
ROBERT provides customized and specific solutions designed for each patient’s unique
needs. An additional advantage is its capacity to facilitate prolonged and repetitive
intensive therapy sessions with minimal therapist intervention [6].

Figure 1.1: ROBERT, cobot in healthcare sector. Reprinted from [5].

In manufacturing, collaborative robots have the potential to revolutionize production
processes. Indeed, these robots can perform intricate and repetitive tasks with
precision and consistency (Figure 1.2), while human workers can focus on more
complex, strategic, or decision-based responsibilities [7].

2

Introduction

Figure 1.2: Application of cobots in manufacturing. Reprinted from [8].

Another example of how cobots can revolutionize the future manufacturing field is
demonstrated by the work of Levratti et al. [9], which presented an innovative robotic
assistant for tire workshops, capable of handling heavy wheels and transporting them
to any location within the workshop. The robot proved versatile functionality by
operating in several modes: independently through user recognition, responding to
commands conveyed by gestures, and via tele-operation using a haptic interface.

Cobots stand as a foundational technology within industries, enabling businesses
to promptly meet customer demands by adapting manufacturing processes through
adaptable and nimble tools. This collaboration between humans and robots not only
increases productivity but also enhances the overall quality of work by combining
the dexterity and problem-solving skills of humans with the speed and accuracy of
robotic systems. They serve as an integral component in the advancement of Industry
4.0, driving innovation and growth in the robotics sector [7].
The evolution of collaborative robotics goes beyond the mere deployment of machines:
it signifies a transformation in our perception of the relationship between humans
and technology; it’s about creating a symbiotic partnership in which robots support
and boost human abilities. This model, focused on fostering more efficient, safer,
and highly innovative workspaces, distinctly separates collaborative robotics from
traditional robotic systems.
The collaborative aspect of cobots allows for a more flexible, intuitive, and adaptable
nature, driving the necessity for a new generation of robotics that can seamlessly
integrate into human-centered workflows.

3

Introduction

Hence, for a comprehensive grasp of collaborative robots and their significance,
it’s fundamental exploring the landscape of industrial robotics, thus providing the
principles for understanding their distinctive characteristics.

1.2 Robots & Cobots

Industrial robots and cobots share a common ground as they are both employed in
the realms of production and automation; both are integral components of modern
manufacturing, contributing to increased efficiency, precision, and automation of
repetitive tasks. Their utilization spans diverse industries, including automotive,
electronics, food production, and more [10]. However, despite their shared purpose
in enhancing industrial processes, industrial robots and cobots diverge significantly
in their design and interaction with human workers.

Figure 1.3: Cobot vs Robot.

The main distinction between cobots and traditional robots lies in their intended
function: cobots are designed to collaborate with humans rather than entirely sup-
plant them. For instance, as stated in studies [11, 10, 12], traditional industrial
robots operate autonomously, carrying out tasks that replace human intervention.
These robots often handle heavy and unwieldy equipment, such as large welding
tools, executing their functions swiftly and with exceptional precision. Conversely, a
cobot typically assists a human operator in various tasks, undertaking functions that
might be risky, physically taxing, or monotonous if performed solely by an employee.
Moreover, cobots often contribute to more intricate tasks that cannot be entirely
automated, like managing wires within an appliance.

4

Introduction

Robots are typically confined within safety enclosures in their own working space;
fencing or cages are used to prevent accidental human entanglement with the moving
parts of these robots. On the contrary, cobots are specifically designed to operate in
close proximity to humans in the same space and prioritize human safety in their
design, incorporating inherent safety measures compliant with specified safety stan-
dards for human interaction [11, 7].

Industrial robots are larger, heavier, and often fixed or anchored to the floor, intended
to remain stationary once activated. This immobility is also deemed a safety measure,
guaranteeing the robot’s stability regardless of the speed and force required for its
assigned tasks. Conversely, cobots are notably lighter, providing increased mobility
and facilitating their movement within the industries [11].

Another evident contrast between robots and cobots lies in the complexity of pro-
gramming required for their operation. For instance, cobots are easy to program,
thus providing exceptional flexibility, and enabling them to accomplish a wide array
of tasks. Their intuitive and user-friendly programming interfaces facilitate swift
and efficient reprogramming to suit various tasks or environment. Industrial robots,
instead, are comprised of intricate programming systems that demand a higher level
of technical expertise for operation [11, 10, 13].

Lastly, industrial robots are faster and have a greater reach volume, making them
preferable for high-volume processes with minimal variation. On the other hand,
cobots, due to their emphasis on safety and collaboration, operate at a slower pace,
yet excel in tasks requiring higher accuracy and precision [13].

The main features that differentiate robots and cobots are listed in the Table 1.1
below.

5

Introduction

Table 1.1: Scheme of the main characteristics of robots and cobots in comparison.

Feature Industrial Robots Cobots

Intended function -Autonomous
-Replace human tasks

-Collaborate
-Assist in human tasks

Interaction with humans -Confined
-Safety enclosures

-Close proximity
-Prioritize safety

Size and mobility -Larger
-Fixed

-Lighter
-Maneuverable

Programming complexity -Complex
-High technical expertise

-Easy
-User-friendly

-High flexibility

Speed and reach volume -Faster
-Greater reach
-High volume

-Slower
-Emphasis on safety

-Precision

Navigating through these differences, the inherent variety and complexity of industrial
robotic technologies become apparent. To round out the picture, the distinctive
features of cobots will be explored, with a focus on their ability to incorporate
advanced sensors and cutting-edge technologies based on Artificial Intelligence (AI).

1.3 Characteristics of cobots and technological ad-
vancements

The development and integration of cobotic systems continue to progress, driven by
advancements in artificial intelligence, machine learning, and sensor technologies.
This emerging technology aims to harness the strengths of both humans and robots,
fostering a cooperative environment where each complements the other’s ability.
As technological advancements propel the field of collaborative robotics forward,
cobots are evolving to become more sophisticated, adaptable, and capable of a diverse
range of tasks in various environments [10]. Notable progress in enhancing their
capabilities is observed in three key characteristics.

• Integration of artificial intelligence: cobots are increasingly incorporating AI
technologies to enhance their decision-making capabilities. As reported in this
study [10], artificial intelligence and robotics allowed the discovery of innovative
solutions for challenges faced by businesses of various sizes and across diverse
industries. AI-powered robots play a pivotal role in bridging the gap between

6

Introduction

humans and technology, addressing issues, and adjusting business strategies
to meet evolving customer expectations. The integration of machine learning,
a subfield of AI, is crucial for AI robots, allowing them to continually enhance
their performance over time. Robots utilizing machine learning can develop new
learning methods and capabilities by leveraging contextual knowledge acquired
through experience and real-time data.

• Enhanced sensory systems: the evolution of cobots is marked by the incor-
poration of sophisticated sensor technologies, including vision systems, tactile
sensors, and environmental perception capabilities [13]. These advanced sensors
play a central role in empowering the cobots interaction with their surroundings,
in a more intelligent and efficient way. This heightened awareness and respon-
siveness contribute significantly to creating a safer working environment, thus
avoiding the need for rigid physical barriers between humans and robots. This
breakthrough in safety measures expands the horizons for collaborative robots.
Hence, the integration of enhanced sensory systems not only encourages a more
secure coexistence between humans and robots but also unlocks numerous
opportunities for innovative and collaborative solutions in several sectors.

• Human-Robot Collaboration: technological advancements are fostering more
seamless collaboration between humans and cobots. Enhanced communication
interfaces and intuitive control mechanisms contribute to a harmonious interac-
tion between operators and cobots, further solidifying their role in collaborative
manufacturing environments.

After reviewing the advanced features of cobots, it is fascinating to investigate how
these features can be translated into practical applications, and a notable example
of this is represented by the hand-over. The sensors and environmental perception
capabilities that characterize cobots manifest tangibly during the hand-over.

7

Introduction

1.4 Human-Robot hand-over

In the human-robot collaboration field, the hand-over plays a fundamental role in
both industrial and domestic environments [14]. It pertains to the process of exchang-
ing objects or information between a giver and a receiver (Figure 1.4), necessitating
effective communication and mutual comprehension between the participating enti-
ties. According to Kruger et al. [4], the hand-over can be considered as a ‘workplace
and time-sharing’ task, since coordination in space and time is required, as well as
human and robot work in the same space performing common tasks.

Figure 1.4: Human-Robot object hand-over; human as giver and robot as receiver. Reprinted
from [14].

The hand-over conventionally encompasses three phases: (i) a reach phase where
both giver and receiver extend their arms toward the hand-over location, (ii) a
transfer phase during which the object moves from the giver to the receiver, and (iii)
a retreat phase as the actors conclude the interaction and the robot goes in home
position [15].
In order to understand collaborative interaction, several features of human-robot
hand-over have been examined, including aspects such as motion planning, grasping
techniques and the psychological impact on the human worker. Particularly, the focus
on the psychological impact aims to identify the characteristics that contribute to a
more fluent and natural experience for humans.

As described in Kshirsagar et al. [14], current algorithms for human-robot hand-
over can be classified into two categories: offline and online. Most of the previous
research on human-robot hand-over has developed an offline approach, where the
object position and robot movements are planned before the hand-over begins. These

8

Introduction

procedures do not consider the observed behaviour of the human during the hand-
over, thus requiring the human adaption to the robot predetermined actions [14].
Regarding the offline control strategy, Waldhart et al. [16] developed a planner
that addresses the problem of planning between humans and robots in constrained
environments. The planner efficiently calculates sequences of hand-overs in advance
of the actual execution. Moreover, it’s important to note that this approach does not
consider real-time behaviour or adaptation based on the observed behaviour of the
human during the hand-over [16].

In contrast, online control strategies enhance the dynamic robot response to real-
time data and the adaption of the human’s actions during the hand-over. The robot
can determine the object position by utilizing continuous data derived from specific
sensors, which captures the movements of the human operator [17]. Wang et al.
proposed a novel approach to control object hand-over by using a wearable sensory
system. This approach enables humans to control the hand-over process effectively
and naturally by recognizing human hand-over intentions. The wearable sensory
system captures the motion information of the human’s arm and hand, that are
subsequently processed to recognize the human’s hand-over intentions [18].

Figure 1.5: Structure of hand over task for human and robot. Reprinted from [19].

Alternative control strategies facilitate the robot in tracking a dynamic target, making
real-time adjustments to the trajectory for precise hand-over execution. In their work
[19], Scimmi et al. developed a vision-based control architecture able to direct the
robot end-effector towards the right hand of the human, thus serving as dynamic

9

Introduction

target point. The hand-over control strategy relies on two primary algorithms: the
duplex-Kinect algorithm and the hand-following algorithm (Figure 1.5). In the latter,
two crucial volumes have been defined – a stopping volume and a meeting volume
– governing robot movements and ensuring a secure and efficient hand-over. The
robot halts within the stopping volume once the Tool Center Point (TCP) reaches the
designated space surrounding the target. After that, the robot is authorized to resume
movement only when the operator withdraws their hand following the completion of
the hand-over task [19].
In their subsequent study [17], the hand-over process was expedited by incorporating
the prediction of the position of the human’s hand.

Several research, including the one conducted by Strabala et al. [20], have demon-
strated that a thorough understanding of cognitive dynamics can significantly enhance
the effectiveness of hand-over. The authors proposed a comprehensive approach
wherein a robot not only manages physical coordination, encompassing tasks like
approaching, reaching, and transferring control, but also integrates social-cognitive
coordination. Insights derived from human-human hand-overs, underscore the utiliza-
tion of both physical and social/cognitive cues for seamless coordination. Non-verbal
signals like eye gaze and body orientation act as indicators of readiness to initiate an
hand-over. The outcomes of Strabala et al.’s study provide valuable guidelines for the
Human-Robot Interaction (HRI) field [20]. Designers are encouraged to implement
human-like gestures and cues, fostering seamless hand-overs.

In the context of human-robot collaboration, hand-over has been examined as a fun-
damental skill that necessitates effective communication and mutual understanding
among the involved entities. However, beyond the physical coordination of hand-
overs, there is a growing need to delve into the cognitive dynamics involved in such
interactions.

1.5 Cognitive human-robot interactions

Nonverbal communication, which includes eye contact, gestures, and body language,
is crucial for human interactions, particularly during hand-over. These cues are
essential for coordinating actions, indicating the intent to engage in a hand-over, and
facilitating a seamless interaction process [21, 22].
To optimize Human-Robot Interaction in industrial settings, the robot must be capable
of handling a wide range of behaviours and actions, encompassing voices, gestures,
and facial expressions, thus facilitating smooth and safe collaborations [1].

10

Introduction

Figure 1.6: Map of Human Robot Collaboration as integration of interaction, cognition and
metrics. Reprinted from [23].

Moreover, various cognitive dynamics play a crucial role in shaping the interaction
between humans and robots. These cognitive aspects influence human-robot inter-
action and must be considered to ensure effective communication and congenial
collaboration [1]:

• Voice commanding: advanced speech recognition allows the robot to compre-
hend verbal instructions, thus improving communication and coordination. A
study presented in [24] explores the integration of natural language capabilities
and responsive behaviour in robots, aiming to make them more social. This
enhancement contributes to improve a natural, friendly, and efficient interaction
in the human-robot relationship.

• Face recognition: recognizing facial expressions enables the robot to adjust its
emotional response during hand-overs, enhancing user understanding and trust.

• Action recognition: refers to the process of identifying and understanding
human actions by artificial intelligence or image processing systems. It is often
associated with computer vision and human behaviour analysis.

11

Introduction

• Gesture recognition: involves the identification and interpretation of human
gestures by computer systems. These gestures can include movements of the
hands, arms, face, or other body parts. The study in [25] concentrates on defining
a set of gestures for communication between humans and robots, specifically
in the context of automotive manufacturing. The results highlight a preference
for gesture communication in industrial settings. These gestures are carefully
defined, taking into consideration the needs of both the worker and the robot.

• Social gaze: refers to the use of gaze as a communicative signal within social
interactions, including human-robot interaction. In this context, social gaze
indicates how a robot’s gaze can influence and enhance communication and
understanding during interactions with human users. Fischer et al investigated
the effects of gaze towards the human tutor in a human-robot assembly sce-
nario. The results showed that social gaze serves as an indicator of the robot’s
affordance. Moreover, individuals in the social gaze condition engaged with the
robot more quickly and felt a greater sense of responsibility for task performance
[26].

Lastly, the authors in [1] noted that humans naturally interact with the world using
multiple resources simultaneously. Consequently, to facilitate Human-Robot Inter-
action in such systems, it is essential to integrate various modalities with high-level
interfaces.

Among all cognitive interactions, social gaze stands out as a pivotal element, espe-
cially in the context of hand-overs. In particular, the use of gaze information during
hand-overs can be useful to indicate the destination or the object to be transferred,
thereby facilitating a clear understanding of intentions, and thus simplifying the
interaction between the robot and the human agent.

1.5.1 Potential of gaze tracking in hand-over

Several studies [27, 21, 28, 29, 22] have highlighted the effectiveness of integrating
the gaze tracking into the hand-over process, showcasing its ability to signal inten-
tions even before the actual transfer event.

Kshirsagar et al. in [27] focused on the gaze behaviours of the robot when it is
receiving an object from a human. The primary objective was to scrutinize how these
varying gaze behaviours influenced the human’s perception, specifically in terms
of liking, anthropomorphism, and the temporal aspects of the hand-over process.
Notably, the study revealed that a "transition gaze", characterized by the robot ini-
tially directing its gaze at the giver’s face and subsequently at the giver’s hand, was

12

Introduction

consistently perceived as more anthropomorphic and likable by human participants.
Interestingly, despite these perceptual effects on likability and anthropomorphism, the
study found no conclusive evidence suggesting that the robot’s gaze had a significant
impact on the initiation time of the human’s hand-over [27].

Another research [28] explores how safety in the process of passing an object from a
robot to a human can be improved by considering non-verbal cues from the human.
It focuses on making this exchange more natural and safer by using cues like human
gaze and attention. They developed a two-layer system: the first layer is focused on
the physical aspects of the hand-over, while the other observing the human’s attention.
By integrating cues such as gaze into the robot’s decision-making process, the success
rate of these hand-overs significantly increased, making the system safer compared
to a basic version. Hence, this study highlights the importance of understanding
human behaviour and intentions during object hand-overs; by incorporating these
human-like elements into a robot’s decision-making, it improves safety and trust in
interactions between humans and robots [28].

The study [29] delves into the dynamics that make the hand-over from a robot to a
human as natural as possible, with a particular emphasis on the robot’s gaze direction
during the action. The configuration in which the giver looks at the object initially,
then, as their arm moves, begins to look at the receiver and maintains this position
until the end (referred to as "OR"), has been identified as the most natural and effec-
tive. The key findings emphasize that when the robot focuses its gaze on the object
during delivery, it appears more attentive and engaged. Additionally, establishing
eye contact during the hand-over makes the robot more sociable and communicative.
Interestingly, no significant differences were observed based on whether the giver
was human or robotic [29].

The study conducted by Moon et al. [22] revealed also positive implications of
integrating gaze tracking, specifically through shared attention, during the hand-over
process from a robot to a human. First of all, participants demonstrated quicker
reach for the object when the robot directed its gaze towards the intended hand-over
location, compared to scenarios with no gaze cues. Furthermore, subjects perceived
the hand-over as more natural, indicative of timing, and preferable when the robot
provided visual cues of shared attention [22].

The reported studies consistently demonstrate that integrating gaze tracking into
the hand-over scenario positively influences various aspects, including anthropo-
morphism, likability, safety, the perceived naturalness and efficiency. The findings
collectively underscore the significant role of gaze tracking in signalling intentions,

13

Introduction

improving safety through non-verbal cues, and making the hand-over more natural
and effective. Therefore, it can be confidently asserted that gaze tracking has the
potential to be a valuable tool for optimizing the hand-over process between robots
and humans.

14

Introduction

1.6 Aim of the work

This work thesis is inspired by the prior project, ’Experimental Real-Time Setup for
Vision Driven Hand-Over with a Collaborative Robot’ [19], conducted by the DIMEAS
department at the Polytechnic University of Turin. However, compared to the previous
mentioned project, it adopts a distinct approach, placing a heightened emphasis on
gaze tracking in contrast to traditional physical hand-over.
Building upon earlier research that established a positive correlation between gaze
tracking and successful hand-overs, this thesis delves into a detailed analysis of gaze
tracking dynamics. For instance, the integration of gaze tracking into hand-over
process can effectively improve the understanding of visual inputs and human gaze
directions, aspects that could further enhance human-robot collaboration and the
smoothness of the hand-over.

While the primary focus remains on gaze tracking, the study is motivated by the
interesting outcomes of previous investigations, highlighting the crucial role of gaze
tracking in optimizing hand-over interactions. In doing so, this work not only con-
tributes to the current understanding of gaze-assisted hand-overs, but also lays the
foundation for potential advancements and future developments in this evolving field.

The research methodology encompasses a systematic exploration of gaze tracking
systems, with a particular emphasis on Remote Eye Gaze Trackers (REGT). This com-
prehensive analysis will delve into the software and hardware components associated
with REGTs.
In this context, several software and integrated systems will be evaluated, ultimately
leading to the choice of OpenFace 2.0, a facial behavior analysis toolkit designed
for computer vision and machine learning researchers. OpenFace 2.0, renowned for
its accuracy in facial landmark detection, head pose estimation, facial action unit
recognition, and eye-gaze estimation, will serve as the foundation for subsequent
implementation of the gaze tracking code.

The MATLAB gaze tracking code will function as a bridge between user require-
ments and OpenFace 2.0 functionalities. The architecture will prioritize real-time
accessibility to gaze tracking data by executing OpenFace 2.0 in the background.
Simultaneously, a separate module will dynamically retrieve and process data, em-
ploying a dual-loop mechanism for accuracy verification.
The gaze tracking code will be constituted by two main loops: the first loop will verify
the creation of the OpenFace 2.0 output file, while the second one will be dedicated to
dynamically retrieving and processing data. This will involve ensuring data integrity
and extracting only essential information for subsequent analyses. In fact, it will
handle the data obtained from OpenFace 2.0, manipulating and managing only the

15

Introduction

necessary information, as the OpenFace-generated file contains numerous data points
that are irrelevant to the analysis. Hence, the two-loop design will optimize efficiency
by minimizing unnecessary verification checks after the file detection.

To assess the feasibility and effectiveness of the implemented gaze control, preliminary
tests will be conducted in a simplified environment using CoppeliaSim, a simulation
platform. During this initial phase, a basic scene with a sphere and a plane will be
simulated. In particular, tests will include first unidirectional gaze control along x axis,
fixing y and z coordinates of the sphere, then the unidirectional control along y-axis,
fixing x and z coordinates and the last test will involve the bidirectional control in xy
plane. Gaze data, particularly gaze angles provided by OpenFace 2.0 (gaze_angle_x
and gaze_angle_y), that represent the left-right and up-down gaze directions in
radians in camera coordinates, will be used to map and control the movement of the
sphere accurately. This mapping ensures that changes in the user’s gaze direction
will be translate into corresponding movements of the simulated sphere.

The preliminary tests performed with the sphere in simulated environment will set
the stage for the next phase of this research leveraging gaze-driven control for the
subsequent interaction with the UR5 robot. Indeed, the attention will turn towards
the main features of UR5 robot and of its components, leading to a complete overview
of the robot functionalities that will be then controlled by the developed eye gaze
tracking algorithm. Before the transition to the physical robot, the same preliminary
tests performed on the sphere will be conducted on the simulated UR5 using the
CoppeliaSim simulation environment.
For the control of UR5 robot, both in simulation and in real-world scenarios, the
previously implemented gaze tracking code (control only along the x and y axes with
z fixed) will be integrated along with a path planning algorithm, that will consider the
gaze position as a dynamic target. Together, they can be referred as a gaze-following
algorithm. The gaze-following algorithm, managing feedback data received from the
UR5 controller and gaze data, will then send the set of joint velocities to the UR5
controller, considering the inverse Jacobian and the linear velocity of the TCP. The
linear velocity will be computed by considering the distance between the TCP and the
target, with a smooth profile, that is faster when far from the target and decreasing
as it approaches the target.

The behavior of the UR5 robot controlled with the gaze path algorithm will be tested,
first considering the original gaze signal, and then by applying two types of filters to
the gaze signal: a moving mean filter with window sizes of 5 and 10.
The execution of these tests will lead to an in-depth examination of the robot’s ability
to follow the user’s gaze.

16

Chapter 2

Gaze tracking systems

In the human-computer interaction and visual analysis, gaze tracking refers to the
technology and techniques employed to monitor and interpret the direction of a
person’s eye gaze. It plays a crucial role in predicting real-time human visual focus by
capturing visual information from the user’s face and eyes. The direction of eye gaze
serves as a reflection of human attention and interest in the surrounding environment.

This technology not only measures the user’s attention on any object but also aims
to understand the user’s desires and needs [30]. Techniques for gaze tracking and
estimation have been extensively researched across diverse fields, including usability
research, marketing, psychology, entertainment, and gaming.
For instance, in the field of advertising, the utilization of eye gaze allowed for an
in-depth exploration of customer interest, facilitating the development of more cap-
tivating advertisements. In Human-Computer Interaction, eye gaze emerged as a
potential alternative or supplementary input method, surpassing traditional tools like
mouse and keyboard [31, 32].

The fundamental principle of eye tracking involves the detection of users’ eye move-
ments during interaction, achievable through different tools such as webcams, in-
frared cameras, and head-mounted displays. The acquired data unveils valuable
insights into user behaviour, such as attention focus on specific screen elements [31].

Eye gaze tracking applications can be classified into diagnostic and interactive. In
diagnostic applications, eye gaze data are employed as quantitative proof of the user’s
visual and attentional processes. On the other hand, interactive applications utilize
eye gaze data to engage with or respond to the user based on the analysis of observed
eye movements [33].

17

Gaze tracking systems

2.1 Evolution of eye research

As reported in [34], advancements in eye research and systems have progressed
through four distinct periods (Figure 2.1), each discernible by the type of data and
their characteristics:

• First period (1879-1920): was distinguished by the fundamental examination
of the eye structure and movement.

• Second period (1930-1950): witnessed the advent of eye oculography, which
entailed measuring and recording the eye position and movement. This process
involved the use of invasive instruments that required physical contact with the
user, such as contact lenses, electrodes, or head-mounted devices.

• Third period (1970-1998): represented a significant advancement in hard-
ware processors and image processing techniques. This progress facilitated the
evolution of non-intrusive gaze tracking applications, relying on vision-based
approaches that utilize cameras to capture eye images. These applications aimed
to estimate the drop point of visual attention, commonly referred to as the point
of gaze.

• Fourth period (2000-): witnessed an exploration of REGT (remote eye gaze
tracking) system capabilities, delving further into innovative applications.

Figure 2.1: The evolution of eye research from 1879 until today. Reprinted from [34].

18

Gaze tracking systems

2.1.1 Intrusive & remote tracking methods

Traditionally, methods for eye gaze tracking have leaned towards intrusive techniques,
necessitating physical contact through tools like contact lenses, electrodes, or head-
mounted devices. In contrast, non-intrusive or remote approaches primarily rely on
vision-based methods, utilizing cameras to capture eye images [33].

Intrusive eye gaze tracking methods, renowned for their heightened accuracy, encom-
pass techniques such as electro-oculography, involving sensors around the eyes to
measure the electric field generated during eye movement. However, these intrusive
approaches demand direct contact, leading to interference. As technology advances
toward intelligent systems, the focus expands beyond accuracy to include user expe-
rience. Consequently, non-intrusive gaze tracking systems, referred to as remote eye
gaze trackers , emerge as the preferred choice [34].

The adoption of REGTs prioritizes user comfort and facilitates quicker setup, enabling
extended system usage compared to intrusive methods. While REGTs are less precise,
they provide unobtrusive alternatives, particularly suitable in scenarios where wear-
ing devices proves inconvenient or impractical [33, 30].

The distinction between intrusive and remote systems underlines the inherent trade-
offs between precision and user convenience. Although intrusive methods excel in
precision, they may inconvenience users in specific contexts. On the other hand,
remote eye trackers, while less precise, offer unobtrusive solutions, proving advanta-
geous in scenarios prioritizing user comfort and mobility, such as in mobile robots
or automotive applications. Integrating a remote eye tracker into a mobile robot’s
visual system has the potential to expand its working area, overcoming limitations in
device mobility [33].

2.1.2 Feature based & appearance based methods

In REGT systems, the software component includes two main approaches: features-
based method and appearance-based method (Figure 2.2).

Gaze estimation methods utilizing extracted local features such as contours, eye
corners, and reflections from the eye image are classified as feature-based methods.
These approaches focus on the identification of specific features within the eye region,
making use of machine vision techniques. The detection of elements like pupil and
glints, particularly under active light models, is relatively straightforward in these
methods.

19

Gaze tracking systems

Figure 2.2: Gaze estimation methods . Reprinted from [30].

Moreover, these features can be formally linked to gaze, considering factors related
to the geometry of the system and eye physiology. For these reasons, feature-based
methods have gained popularity and become the predominant approach for gaze
estimation [34].

Within the category of feature-based methodologies, two distinct paradigms emerge:
the interpolation-based (regression-based) and the model-based (geometric) ap-
proaches.

• Interpolation-based techniques presuppose a parametric or nonparametric
correlation from image attributes to gaze coordinates. These methodologies,
steering clear of the direct computation of the point where gaze direction inter-
sects with the observed object, leverage specific parametric structures such as
polynomials or nonparametric configurations like neural networks [32].

• Model-based methodologies directly ascertain gaze direction from eye features
through a geometric model of the eye. The point of gaze is approximated by the
intersection of the gaze direction with the object in focus [32].

Appearance-based methods shift the focus from specific features to the overall
appearance of the eye region. Utilizing machine learning or deep learning algorithms,
these methods analyze factors such as eye color, texture, and pixel intensity patterns.
During the training phase, subjects gaze at known locations on the screen, generating
data for training the model to associate specific eye appearances with corresponding
gaze directions. This learned information enable the model to predict a person’s gaze
based on the overall appearance patterns of their eyes. Various algorithms, including

20

Gaze tracking systems

genetic algorithms, Bayesian classifiers, support vector machines, and artificial neural
networks, can be employed for feature extraction and mapping gaze points [34, 32].

2.1.3 Hardware components of REGT system

Gaze tracking technology relies on a sophisticated hardware setup designed to capture,
process, and interpret visual information from users’ faces and eyes. The key hardware
components of a Remote Eye Gaze Tracking system include [34]:

• High-resolution cameras:
High-resolution cameras are integral to the hardware configuration, enabling
the capture of detailed facial and eye images. The quality of these cameras
directly influences the precision of gaze tracking, as they play a crucial role in
recording subtle eye movements and expressions.

• Infrared illuminators:
Infrared illuminators enhance the eyes visibility, especially in varying lighting
conditions. This component is essential for ensuring accurate tracking, as it
provides illumination that is imperceptible to the human eye but enhances the
contrast of eye features for the cameras.

• Device interface:
The device interface serves as the interaction point between the subject and
the tracking software. It facilitates seamless communication, allowing users to
engage with the system effortlessly. This component is crucial for a user-friendly
experience during data collection and analysis.

• Illumination variability:
REGT systems can be categorized as either active or passive based on their
illumination strategy. Active systems incorporate their light sources, such as
infrared illuminators, while passive systems rely on ambient lighting. The choice
between these approaches depends on factors like environmental conditions
and specific use cases.

The precision and effectiveness of a REGT system hinge on the seamless integration
and optimal functioning of these hardware components. High-quality cameras, in-
frared illuminators and a user-friendly interface collectively contribute to the system’s
ability to accurately detect and interpret users’ eye movements [34].

Despite active research endeavours, eye detection and tracking persist as challenging
tasks due to unique issues such as eyelid occlusion, variations in eye size, reflectivity,

21

Gaze tracking systems

head pose, and other factors contributing to the complexity of the task [32]. There-
fore, there isn’t a single affordable solution that is able to meet all the characteristics,
but there are several devices and software for gaze tracking.

2.2 Evaluation of open source and commercial eye
tracking systems

After examining the features of eye tracking systems in general, it is crucial to explore
open source solutions available and through paid packages. This evaluation focuses
on software and eye tracking systems accessible via the internet or through specific
purchase plans. In this context, numerous software solutions, both free and paid,
have been scrutinized to identify the optimal solution for the project.

2.2.1 Eye tracking software

During the research, various open source eye tracking software options were explored.
The evaluation of these open source tools was based on criteria such as accuracy,
accessibility, user-friendliness, and compatibility with the project’s requirements.

• GazeParser [35]: is an open source library for low-cost gaze tracking and data
analysis. Despite its good accuracy in determining gaze direction, GazeParser
was not chosen due to its requirement for a head and chin rest to function
optimally. In my work, a non-intrusive approach allowing head movement was
preferred.

• EyeTab [36]: is tailored for portable devices like tablets, eliminating the need
for external and costly hardware, such as cameras or infrared illuminators, thus
ensuring a non-intrusive user experience. However, it’s important to note that
the tests were conducted at a fixed distance of 20 cm. In scenarios involving
hand-overs, EyeTab’s effectiveness might be limited.

• OpenGazer [37]: has some interesting specifications but might not be ideal
for a hand-over system as it requires a webcam and only operates on Linux.
Additionally, accuracy might be limited due to its exclusive support for web-
cam. Moreover, the need for specific programming and Linux skills could limit
accessibility to non-expert users.

• OpenEyes [38]: it’s a software that allows eye tracking with both webcams
and infrared camera. It requires MATLAB but it doesn’t provide a data analysis
option.

22

Gaze tracking systems

• ITU gaze tracker [39]: is tailored to work with webcams with infrared lighting.
Written in C#, it necessitates some technical proficiency for configuration. Its
primary function involves eye-controlled cursor navigation, often in conjunction
with a typing application for visual typing.

• GazeTracking [40]: is a Python library that provides a webcam-based eye
tracking system. It gives in real time the exact position of the pupils and the
gaze direction.

• OpenFace 2.0 [41, 42]: is an open-source tool capable of facial landmark
detection, head pose estimation, facial action unit recognition, and eye-gaze
estimation with available source code for both running and training the models.
The output includes these detections and estimations, which can be saved to
disk or sent via network in real-time, making it efficient for various applications.
In addiction, it can run also with a simple webcam.

• GazeSense [43]: is an eye tracking software implemented by Eyeware that
tracks eye movements and gaze direction in real time without the need of an
expensive hardware. In fact, it can work with 3D cameras or webcams.

2.2.2 Integrated eye tracking systems

Alongside open source softwares, commercial eye tracking systems were considered.
These integrated systems combine both hardware and software components to offer
a cohesive and efficient eye tracking experience. The assessment included considera-
tions of features, functionality, and overall suitability for the project’s objectives.

Tobii [44] is a global leader in eye tracking and a pioneer of attention computing.
Two Tobii’s integrated systems were evaluated.

• Tobii Pro Glasses 3 [45]: wearable eye tracker designed to capture what the
wearer is viewing while providing robust and accurate eye tracking data. Tobii
Pro Glasses 3 supports live view of the scene camera video; an additional data
channels provide complete eye tracking information (2D gaze, 3D gaze, gaze
origin, gaze direction and pupil diameter.

• Tobii Pro Spark [46]: is a compact, high-performance screen-based camera.
Sophisticated image processing algorithms identify relevant features, including
the eyes and the corneal reflection patterns. Combined with its dedicated
software Tobii Pro Lab and Tobii Pro SDK, it’s possible to record data, analyze
and visualize eye tracking data, such as 3D eye coordinates, raw data, pupil
data.

23

Gaze tracking systems

2.2.3 Trade-off analysis of eye tracking solutions

After evaluating numerous eye-tracking software and integrated systems, the focus
centered on comparing the final software solutions GazeTracking, OpenFace 2.0,
GazeSense and the integrated systems Tobii Pro Glasses 3 and Tobii Pro Spark. The
distinctive features considered for each of these solutions are tabulated in Table 2.1.

Table 2.1: Comparison between several eye tracking systems, considering different features.

Gaze tracking Sampling rate Accuracy Operating Output Language Price
system [Hz] distance [cm]

Gaze Tracking
Variable Undisclosed 30-60 Gaze direction Python Free

Pupil position

OpenFace 2.0
Variable Mean error 9° 30-100 Gaze direction MATLAB Free

Eye landmarks C++
Python

GazeSense
10-90 1.5° 30-80 Gaze direction Python 2000 =C

Pupil origin C++

Tobii Pro Glasses 3
50 or 100 0.6° 2D,3D gaze Python 20000 =C

Gaze origin Javascript
Gaze direction HTML

Tobii Pro Spark
33 or 60 0.45° 45-90 Gaze origin Python 10000 =C

Gaze direction MATLAB
C

Following the evaluation of various eye tracking solutions, a crucial trade-off was
necessary to reach a final decision.

Despite both Tobii products demonstrated an exceptionally high level of accuracy,
their cost remains considerably high. Conversely, OpenFace 2.0, although exhibiting
a higher error rate, provides an open-source platform primarily in MATLAB. This
resonates with my chosen programming language and ensures the extraction of all
essential information, thereby influencing the decision in its favor.

2.3 OpenFace 2.0

OpenFace 2.0 is a facial behaviour analysis toolkit for computer vision and machine
learning researchers. It offers accurate facial landmark detection, head pose estima-
tion, facial action unit recognition, and eye-gaze estimation. It is designed to address
the challenges in facial behaviour analysis, such as real-time performance, robustness
to variations in lighting and pose, and accuracy in detecting subtle facial expressions.
OpenFace 2.0 is an open-source project that is freely available for research purposes.

24

Gaze tracking systems

• OpenFace 2.0 pipeline

OpenFace 2.0 uses a pipeline (Figure 2.3) of core technologies for facial behaviour
analysis, including facial landmark detection and tracking, head pose estimation,
eye-gaze tracking, and facial action unit recognition. The system is designed to work
in real-time, with all of the modules working together to provide accurate and reliable
results [41].

Figure 2.3: OpenFace 2.0 pipeline, including: landmark detection, head pose and eye gaze
estimation, facial action unit recognition. The outputs in green can be saved to disk or sent
via network in real-time. Reprinted from [41].

Facial landmarks are extracted in OpenFace 2.0 through an advanced methodology
known as the Convolutional Experts Constrained Local Model (CE-CLM), to precisely
identify key points such as eyes, nose, and mouth. The extraction process involves two
main components: the Constrained Local Model (CLM), utilizing a statistical model,
comprehends general variations in facial landmark shapes; the Convolutional experts
(CE), convolutional neural networks, enhance the recognition of localized variations
in facial appearance, focus on specific regions of the face to improve accuracy.
Head pose estimation is achieved by combining the facial landmarks with a 3D face
model.
To estimate the eye gaze, a Constrained Local Neural Field (CLNF) landmark detector
is employed. This detector identifies key landmarks such as eyelids, iris, and the
pupil. The detected pupil and eye location are used to compute the eye gaze vector
for each eye. The computation involves firing a ray from the camera origin through
the center of the pupil in the image plane. The point of intersection of this ray with
the eyeball sphere is then calculated. This intersection provides the pupil’s location
in 3D camera coordinates. The gaze vector is subsequently estimated as the vector
from the 3D eyeball center to the pupil location [41].

• Interface

OpenFace 2.0 offers a user-friendly interface that makes it easy to use for both novice
and expert users. There are two main ways of using OpenFace 2.0: Graphical User
Interface (for Windows), and command line (for Windows, Ubuntu, and Mac OS

25

Gaze tracking systems

X). The system can operate on real-time data video feeds from a webcam, recorded
video files, image sequences, and individual images. It is also possible to integrate
OpenFace 2.0 in any C++, C, or MATLAB based project, thanks to the availability
of the source code. Another huge advantage about OpenFace 2.0 is that it does not
require specialized hardware and can run from a simple webcam [41].

• Output file

The output file generated by OpenFace 2.0 is a structured .CSV file capturing a range
of facial behaviour analysis metrics. Each row in the file corresponds to a specific
frame in the analyzed video, and the columns provide detailed information about
various facial features and actions. Here’s an overview of the key components [42]:

• interface: the frame number in the video sequence.

• face_id : indicates whether the face tracker detected a single face (0) or multiple
faces (1) in the frame.

• timestamp: the time in seconds from the start of the video to the moment the
frame was processed.

• confidence: the confidence level of the face tracker, typically around 0.98.

• success: binary indicator (1 or 0) signaling whether the face tracker successfully
detected a face in the frame.

• gaze_0_x, gaze_0_y, gaze_0_z: eye gaze direction vector in camera coordinates
for eye 0 (leftmost eye in the image), normalized.

• gaze_1_x, gaze_1_y, gaze_1_z: eye gaze direction vector in camera coordinates
for eye 1 (rightmost eye in the image), normalized.

• gaze_angle_x, gaze_angle_y: eye gaze direction in radians in camera coordi-
nates, averaged for both eyes. Provides a more convenient format than gaze
vectors. gaze_angle_x indicates left-right gaze, and gaze_angle_y indicates
up-down gaze.

• eye landmarks: multiple columns capturing the x, y, and z coordinates of 55
individual eye landmarks for each eye.

26

Gaze tracking systems

Additional available data, not used in this work, are the following:

• Head pose: position and rotation of the head relative to the camera are available
in the output file. These parameters provide information about the orientation
of the head in the 3D space.

• Facial landmarks: landmarks of the entire face are included in the output
file. These landmarks represent key points on the face, aiding in detailed facial
analysis.

• Facial action units (AUs): information related to Facial Action Units, which
represent facial muscle movements associated with different expressions, is
present in the output file.

While the .CSV output file contains additional valuable data points such as head pose,
facial landmarks encompassing the entire face, and information about Facial Action
Units (AUs), it’s essential to clarify that these specific parameters have not been
actively utilized. The primary focus has centered around gaze-related parameters,
specifically eye gaze vectors and angles.

27

Chapter 3

Implementation of gaze
tracking and sphere control in
CoppeliaSim

The goal was to assess the feasibility and effectiveness of gaze-driven interactions
within a controlled environment, exploring the practical implementation of gaze
tracking through OpenFace 2.0 and its integration with CoppeliaSim, a simulation
environment for real-time control of a simulated sphere. Motivated by the diverse
applications of gaze tracking, particularly in human-computer interaction and assistive
technologies, this investigation aimed to evaluate the accuracy and responsiveness of
gaze tracking in controlling simulated objects. The choice of a simulated sphere as
the testing ground provides a fundamental application to gauge the capabilities of
gaze tracking and validate the viability of the concept.

3.1 Integration of OpenFace 2.0

OpenFace 2.0 incorporates gaze tracking functionality as part of its comprehensive
facial behaviour analysis pipeline. This feature enabled tracking of eye movements,
thus providing valuable data for understanding visual behaviour patterns.
The initial step involved the download and the installation of OpenFace 2.0 from its
GitHub repository. This process grants access to a versatile toolkit that features a
user-friendly graphical user interface (GUI) and extends functionality through MAT-
LAB scripting. Moreover, the inclusivity of a graphical interface and the possibility
to run code in MATLAB empowers users to tailor their interaction level to specific
needs. The GUI of OpenFace 2.0 served as a central hub for initiating and managing
gaze tracking tasks, thus providing an intuitive platform for users to interact with the

28

Implementation of gaze tracking and sphere control in CoppeliaSim

software, and offering real-time visualization of facial landmarks, gaze vectors, and
other relevant metrics. Understanding the graphical interface is vital for both novice
users exploring basic functionalities and advanced users customizing gaze tracking
for specific research goals.

Moreover, OpenFace 2.0 supports MATLAB scripting, offering flexibility to manipu-
late and analyze gaze tracking data programmatically. MATLAB scripts can extract,
process, and visualize data generated by OpenFace 2.0, creating a seamless bridge
between OpenFace 2.0 functionalities and the specific analytical needs of users. By
leveraging MATLAB, researchers and developers can tailor the gaze tracking process
to project requirements and conduct in-depth analyses of obtained data.

Beyond its fundamental capabilities, OpenFace 2.0 package includes supplementary
tools extending beyond mere experimentation. This comprehensive offering encom-
passes not only core functionalities, but also provides codes essential for training,
enhancing its utility for broader and more specialized research projects. These codes
serve as a foundation, ready for customization and modification to meet the unique
demands of diverse research endeavours.
This integration approach positions OpenFace 2.0 not just as a tool for gaze tracking
but as a comprehensive resource for facial behaviour analysis, catering to a spectrum
of research requirements, from real-time applications to advanced experimental
setups.

3.1.1 Camera calibration

In the pursuit of precision in gaze tracking, a pivotal stage was the calibration of
the tracking camera, specifically the Orbbec Astra Pro. This calibration process
went beyond the simple setup, as it involved a fine-tuning of the camera’s intrinsic
parameters to optimize it for the best accurate gaze estimation.

The calibration process unfolded through a sequence of image captures where known
patterns are presented to the camera. These patterns served as reference points,
allowing the calibration algorithm to precisely adjust the camera’s settings. The
correction for lens distortions is a critical aspect, as it ensures that the captured
images align with the ideal optical model, thus enhancing the overall accuracy of gaze
estimation. During calibration, the algorithm worked to refine intrinsic parameters
such as focal length, fx and fy, and principal point coordinates, cx and cy. These
parameters (Table 3.1), collectively defined the internal geometry of the camera
and played a crucial role in accurately translating pixel coordinates to real-world
coordinates. The iterative refinement of these parameters contributed to the creation
of a more precise and reliable mapping between the visual input and gaze estimations.

29

Implementation of gaze tracking and sphere control in CoppeliaSim

Table 3.1: Intrinsic parameters of Astra Orbbec.

Intrinsic parameters Values

fx 602.4
fy 601.2
cx 349.8
cy 252.5

3.2 Implementation of gaze tracking code

The gaze tracking code written in MATLAB was the bridge between user requirements
and OpenFace 2.0 functionalities. Its architecture was designed to seamlessly inte-
grate essential parameters for effective gaze tracking.

Background execution for immediate data capture
In the pursuit of real-time accessibility to crucial gaze tracking data, a strategic ap-
proach was employed. Recognizing the necessity for immediate access to data rather
than awaiting post-execution file retrieval, the solution involved the execution of
OpenFace 2.0, specifically the FeatureExtraction.exe executable, in background. The
executable FeatureExtraction.exe operates seamlessly in background, leveraging a
system command enriched with essential parameters. These parameters included
the unique camera device number, finely calibrated intrinsic camera parameters, and
specifications for file paths related to background execution and output directories.

Simultaneous data processing
Concurrently, in a separate section of the code, another module is dedicated to the
retrieval and processing of the data generated by OpenFace 2.0. This approach en-
abled the system to function dynamically, with real-time data acquisition and parallel
data processing for immediate accessibility.

The real-time data processing module worked through a dual-loop mechanism, de-
signed for dynamic functionality, immediate data accessibility, and accuracy verifi-
cation. This module is pivotal in ensuring that the system seamlessly captures and
processes gaze tracking data generated by OpenFace 2.0.

First loop - file creation verification
The initial loop was intended to verify the creation of the OpenFace 2.0 output file, a
.CSV file. Since the execution of the FeatureExtraction.exe executable required few
seconds to initialize the camera window and generate the file, this loop monitored
the file path to confirm its existence. The system patiently waited until the file was

30

Implementation of gaze tracking and sphere control in CoppeliaSim

created in the predefined output directory.

Second loop - dynamic data retrieval and processing
Upon confirmation of file creation, the system went on to the second loop, where the
focus shifted to the dynamic retrieval and to the processing of real-time data. This
loop ensured against potential timing discrepancies between MATLAB’s execution
speed and the writing speed of the .CSV file.
Within the second loop, careful attention was paid to ensuredata integrity. The system
validated the reading of the last processed line of the .CSV file, verifying its unique-
ness and preventing the inadvertent provision of duplicate data. This verification
step added an extra layer of accuracy to the process.

During this loop, the system extracted and stored the relevant gaze tracking infor-
mation: specific columns containing pertinent data were identified and processed,
whereas extraneous information present in the .CSV file were discarded. This metic-
ulous extraction ensured the use of only essential captured data by the system, for
subsequent analyses.

The decision to implement two distinct loops was a deliberate optimization strategy
that provided the advantage to prevent unnecessary continuous verification checks
once the file was detected, streamlining the real-time data processing, and maximiz-
ing overall system efficiency.

Additional data handling: while the primary focus was on gaze-related metrics, the
script initially included data manipulation for eye contours to obtain the pupil’s origin
in camera coordinates. However, this part was eventually excluded from the final
implementation.

This MATLAB script, tailored to the specific requirements of the study, played a crucial
role in translating the capabilities of OpenFace 2.0 into a real-time gaze tracking
application. Its meticulous structure vouched efficient data handling and processing,
contributing to the study’s overall success in utilizing gaze tracking for interactive
applications.

3.3 CoppeliaSim environment

CoppeliaSim, previously known as V-REP (Virtual Robot Experimentation Platform),
stands out as a versatile and scalable robot simulation framework [47, 48]. It facili-
tates the rapid and precise simulation of complex physical scenarios using a robust
physical engine. Within a simulation scene, various objects such as shapes and vision
sensors are hierarchically arranged in a tree structure.

31

Implementation of gaze tracking and sphere control in CoppeliaSim

CoppeliaSim is designed with a versatile architecture, it supports multiple program-
ming techniques, offering flexibility in executing control code. The particularly
relevant paradigms for this integration are:

• Embedded scripts: these scripts, written in Lua, are attached to scene objects
as child scripts. The main simulation loop, a Lua script, handles general func-
tionality and calls child scripts according to the scene hierarchy. Child scripts,
attached to specific objects, manage particular aspects of the simulation. This
modular and distributed nature makes embedded scripts a powerful tool.

• Remote application programming interface (API) clients: the remote API
interface allows external entities to interact with CoppeliaSim via socket commu-
nication. It includes server services and clients written in languages like C/C++,
Python, Java, MATLAB, and Urbi. This interface facilitates remote function
calling and fast data streaming.

• Add-ons: similar to embedded scripts, add-ons are supported via Lua scripts
and can function as standalone utilities or regularly executed code.

• Plug-ins: these serve as a simulator customization tool, registering custom Lua
commands and extending the functionality of simulation models or objects.

To facilitate a seamless integration between OpenFace 2.0 gaze tracking and Cop-
peliaSim, a MATLAB script acted as the intermediary connecting the two environments.
This integration enabled the real-time control of a simulated sphere, driven by gaze
input.
The integration progress started with the establishment of a connection between
MATLAB and CoppeliaSim through the Remote API, ‘remApi(’remoteApi’)’. This bidi-
rectional communication enabled the exchange of commands and data between the
two platforms. MATLAB employs specific API functions provided by CoppeliaSim to
facilitate this interaction, thus ensuring a smooth and synchronized workflow.

An essential step in the interaction was obtaining the object handle for the simulated
sphere in CoppeliaSim. This handle was crucial for MATLAB to exert control over the
sphere’s movements within the simulation.
This function, called, ‘simxGetObjectHandle’, granted to MATLAB the necessary access
and control over the specified object, in this case, the simulated sphere.

3.3.1 Control of the sphere

Once the connection was established, a simulation scene (Figure 3.1) was set up
within CoppeliaSim to create a controlled environment. The depicted scene was
intentionally kept minimal, featuring only the simulated sphere and a floor for spatial

32

Implementation of gaze tracking and sphere control in CoppeliaSim

reference. This simplistic setup was useful as an initial step to assess the viability
of gaze-based control without introducing unnecessary elements that might distract
from the primary objective.

Figure 3.1: CoppeliaSim scene of the sphere.

Gaze-driven sphere control
The MATLAB script, empowered with OpenFace 2.0 gaze tracking functionalities, took
the decisive role in directing the simulated sphere based on gaze input. Through real-
time processing of gaze data, the script was effectively able to translat the acquired
information into meaningful actions within the simulation environment.
Gaze data, particularly the gaze angles, were mapped to control the movement of
the sphere. This mapping ensured the accurate translation of the changes in the
user’s gaze direction into corresponding movements of the simulated sphere. The
precision of this mapping was important for simulating the user’s visual interactions
faithfully. The integration established a dynamic feedback loop where the user’s gaze
influenced the position of the sphere in real-time. This real-time interaction created
a responsive experience within the simulated environment.
To implement the mapping between gaze angles and sphere movement, the script
utilizes API functions provided by CoppeliaSim. The function ‘simxSetObjectPosition’
sends position information to CoppeliaSim, adjusting the sphere’s position based on
the mapped gaze angle. The adaptability of the MATLAB script, coupled with the
versatility of CoppeliaSim, allowed the exploration of different scenarios, parameters,
and experimental setups. This adaptability was important for tailoring the integration

33

Implementation of gaze tracking and sphere control in CoppeliaSim

to specific research objectives and user interactions.

In summary, the integration between OpenFace 2.0 gaze tracking and CoppeliaSim,
facilitated by specific API functions, provided a platform for evaluating the feasibility
and effectiveness of gaze-driven interactions in a controlled virtual environment. The
robust features of both OpenFace 2.0 and CoppeliaSim, combined with API functions
for precise control, contributed to create a dynamic and versatile experimental setup
for gaze tracking applications.

3.3.2 Gaze-driven sphere control experiments

A series of experiments were conducted to further explore the versatility and fea-
sibility of the integration between OpenFace 2.0 gaze tracking and CoppeliaSim.
These experiments aimed to assess the capability of the system in controlling the
simulated sphere’s movement along specific axes, providing insights into the potential
applications of gaze-driven interactions.

Unidirectional gaze control of x-axis
The initial experiment involved exclusively varying the x-coordinate of the simulated
sphere based on the user’s gaze. The unidirectional control experiment specifically
focused on manipulating the sphere’s position along the x-axis while maintaining
the y and z coordinates fixed at zero. This approach provided valuable insights into
the system’s performance in gaze-driven planar movements, offering a controlled
scenario for evaluating the precision and effectiveness of the gaze tracking system.
By focusing solely on the horizontal movement along the x-axis, the goal was to
evaluate the accuracy and responsiveness of the gaze tracking system in a simplified
scenario. The mapping between the x-axis of CoppeliaSim and the gaze x-axis involves
establishing a relationship between the horizontal gaze direction (gaze_angle_x) and
the movement of the sphere along the x-axis in the CoppeliaSim simulation.
It was configured to match changes in gaze direction from right to left (positive for
gaze_angle_x) to the same movements of the sphere in CoppeliaSim from right to left
along the x-axis. In other words, when the user shifted his gaze to the left, the sphere
was expected to move to the left in the simulation, and vice versa. The mapping
between gaze angles, specifically gaze_angle_x, and the x-coordinate of the sphere
demonstrated promising results, showcasing the system’s ability to translate gaze
data into precise control.

Unidirectional gaze control of y-axis
Extending the experimentation from the success of the x-axis scenario, the subsequent
phase focused on isolating the vertical movement along the y-axis. The y-coordinate
of the simulated sphere was manipulated based on the user’s gaze, with the y and

34

Implementation of gaze tracking and sphere control in CoppeliaSim

z coordinates held constant. This experiment aimed to validate the system’s per-
formance in a unidirectional vertical movement scenario, assessing its capability to
precisely control the sphere’s position along the y-axis. The mapping for the y-axis in-
volved establishing a relationship between the vertical gaze direction (gaze_angle_y)
and the corresponding movement of the sphere along the Y-axis in the CoppeliaSim
simulation. In this configuration, a positive change in gaze direction (gaze_angle_y)
indicated a downward movement of the sphere, while a negative change represented
an upward movement.

Bidirectional gaze control, x and y-axes
Expanding the range of the experiments, the gaze-driven control was extended to both
the x and y axes simultaneously. This configuration allowed the simulated sphere
to move freely within the xy plane, responding to changes in both gaze_angle_x
and gaze_angle_y. The successful execution of bidirectional control emphasized the
integration’s capability to manage multiple parameters concurrently.

3.4 Why OpenFace 2.0 and CoppeliaSim integration

To sum up, the integration of OpenFace 2.0 and CoppeliaSim provided a platform for
real-time control of a simulated sphere based on gaze input. Motivated by the broader
applications of gaze tracking, particularly in human-computer interaction and assistive
technologies, the experiments aimed to assess the accuracy and responsiveness of
gaze tracking in controlling simulated objects. The choice of a simulated sphere as
the testing ground allowed to gauge the capabilities of gaze tracking and validate
the viability of the concept before transitioning to more complex scenarios.

The iterative process involved the integration of OpenFace 2.0, camera calibration,
and the development of a MATLAB script for real-time gaze tracking. This script,
optimized for immediate data capture and processing, ensured efficient utilization of
OpenFace 2.0’s capabilities. The subsequent integration with CoppeliaSim enabled the
translation of gaze data into meaningful actions within a simulated environment. The
unidirectional and bidirectional gaze control experiments provided valuable insights
into the system’s performance, demonstrating its ability to precisely manipulate the
simulated sphere along specified axes.

Looking ahead, this groundwork sets the stage for the next phase of this research
leveraging gaze-driven control for interaction with a UR5 robot. The success of these
initial experiments underlined the potential of gaze tracking as a reliable and intuitive
input method for human-robot interaction scenarios.

35

Chapter 4

Collaborative robot UR5

The UR5 robotic arm was utilized for this research, therefore it can be very useful to
provide an overview of its characteristics and its mathematical model.
The UR5 collaborative robot (Figure 4.1) from the Danish company Universal Robots
is a part of the CB series, which also includes the UR3 and UR10 robots, respectively
smaller and bigger. The nomenclature of the robots corresponds to their payload
capacity in kilograms, specifically 3 kg, 5 kg, and 10 kg for UR3, UR5 and UR10,
respectively.

Figure 4.1: UR5 robot from Universal Robot. Reprinted from [49]

Collaborative robots of Universal Robots offer numerous advantages, including:

• Ease of programming: programming becomes more accessible and intuitive
thanks to the simplicity and effectiveness of the human-robot interface, com-
prised of a touch screen known as the teach pendant.

36

Collaborative robot UR5

• Flexibility: collaborative robots are recognized for their straightforward pro-
gramming and quick transition between different tasks. They are small and
lightweight, and can be mounted on tabletops, desks, or carts for easy mobility.

• Collaboration capability: cobots are designed to share a workspace with
humans, making automation easier.

• Compatibility with various peripheral devices: can integrate a diverse range
of peripherals, including force sensors, cameras, and other customized tools.
This allows for increased adaptability and versatility in industrial applications.

• Quality: performing repetitive tasks can be monotonous and lead to a decline
in focus for technicians and students over extended periods of the same process.
Cobots, boasting high repeatability, excel in executing intricate assembly tasks
with precision and handling material loading and unloading consistently.

This combination of features makes Universal Robots robots an appealing choice in
various contexts, offering user-friendly operation, operational flexibility, the ability to
collaborate directly with human operators, and the option for customization through
the addition of specialized peripherals.

The main components of the Universal Robots UR5 are the following:

• Control unit: contains the ESD board and all ports for cable connections.

• Teach pendant: used for programming the robot’s movements, it is the interface
between the robot and the operator.

• UR5: the robotic arm.

4.1 Control unit

The control unit (Figure 4.2) plays a crucial role in defining the robot’s path and
overseeing its movements. It consists of the following elements:

• Central Processing Unit (CPU): functions as the core intelligence of the robot,
boasting Ethernet and USB connectivity.

• Safety Management Module: handles all incoming and outgoing signals within
the control unit and facilitates connections to peripheral devices.

• USB Hub: encompasses the entire software, housing the Linux operating system,
the Polyscope programming interface, and user-generated programs.

37

Collaborative robot UR5

Figure 4.2: The control unit components of the UR5.

The control unit of the robot is responsible for managing connections and facilitating
communication via TCP/IP (Transmission Control Protocol/Internet Protocol). The
utilization of TCP enables reliable communication between the robot and other de-
vices, supports remote control operations and allows the transmission of critical data.
The connection between the two components is established through communication
sockets, software abstractions designed to leverage standard and shared APIs for
transmitting and receiving data over a network.
In this process, the application code of a given program accesses the communication
channel through a designated port, executed at 125 Hz, facilitating the communica-
tion between processes operating on two physically separate machines. Furthermore,
to ensure effective communication, it is necessary to specify a static IP address for
the robot, which can be obtained in its settings section.

4.2 Teach pendant

The teach pendant, as illustrated in Figure 4.3, primarily consists of a 12” touchscreen
hosting the programming user interface, PolyScope. It facilitates programming and
commanding the robot through code input, as well as verifying the correct execution
of programs, indeed if an error occurs, it is visually presented on the screen and
categorized based on its nature.

Additionally, the teach pendant incorporates three physical buttons. The On/Off
button is responsible for system power management, encompassing the functions of

38

Collaborative robot UR5

turning the system on, off, and restarting it. In case of emergencies, the emergency
button can be activated, triggering the robot brakes, and disconnecting the power
supply for safety measures. At the rear of the teach pendant, the freedrive button
allows the operator to manually move the robot to desired positions. It requires
continuous pressure for its activation and proves particularly beneficial during the
definition of waypoints.

Figure 4.3: The teach pendant of the UR5 robot. Reprinted from [50]

PolyScope serves as the graphical programming interface accessible through the teach
pendant. This Linux-based platform streamlines the programming process by provid-
ing an intuitive interface for users to input code, command the robot, and ensure
the accurate execution of programs. The visual nature of PolyScope, characterized
by icons and graphical representations, enhances the user experience, making it
user-friendly even for those without extensive coding expertise.

PolyScope also supports a code-free programming approach, allowing users to pro-
gram the collaborative robot using both basic and advanced commands simplifying
the overall programming workflow. Among the basic commands "Move" introduces
joint configuration movements. It can take the form of ’MoveJ’, where the path is
not crucial, and the joints reach the position simultaneously, representing the fastest
movement. On the other hand, ’MoveL’ is employed for linear movements in the
operational space. In ’MoveP’, a linear movement with constant TCP speed can be
achieved, and an option to incorporate circular trajectory mode is available.
Among the advanced commands are logical blocks, including ’if...else’,’loop’ or ’switch’
providing a more sophisticated level of control and automation in the programming
process.

39

Collaborative robot UR5

4.3 Robotic arm

The UR5 robot’s mechanical structure consists of links and joints that form an open
kinematic chain with six rotational joints connecting one link to another. The geo-
metric configuration differs for each link, and their combination defines the positions
and orientations achievable by the Tool Center Point (TCP). An End Effector (EE),
such as a gripper or tool, can be attached to the Tool Center Point to carry out specific
tasks or operations at the extremity of the robotic arm.

The UR5 is an anthropomorphic robot with a non-spherical wrist configuration, fea-
turing six revolute joints that emulate the structure of the human arm. As illustrated
in Figure 4.4, the first three joints are named base, shoulder and elbow; the base
serves as the mounting point for the robot, while the shoulder and elbow joints rotate
relative to the base. The subsequent three joints represent the wrist and are labelled
wrist 1, wrist 2 and wrist 3.

Figure 4.4: Graphical representation of the 6 joints of the collaborative robot UR5. Reprinted
from [51]

Unlike many manipulators, the UR5 does not present a spherical wrist, thus all six
joints play an active role to both the translational and rotational movements of its
end effector [52].
A spherical wrist typically refers to a configuration where the three wrist joints axis
intersect at a single point, allowing for a high degree of freedom and flexibility in
orientation.

40

Collaborative robot UR5

The technical specifications of the UR5 provided by Universal Robots in the user
manual [49] are detailed in Table 4.1.

Table 4.1: Technicaal specification of UR5 robot.

Weight 18.4 kg

Maximum payload 5 kg

Reach 850 mm

Joint ranges ±360°

Joint max speed 180 °/s

TCP max speed 1 m/s

Repeatability ±0.1 mm

Degree of freedom 6 rotating joints

Communication TCP/IP, Ethernet socket & Modbus TCP

Programming Polyscope graphical user interface

IP classification IP54

Power consumption 200 W

Temperature 0-50°C

Power supply 10-240 VAC, 0-50 Hz

Operating life 35.000 hours

Among the notable features, the repeatability of 0.1 mm stands out. Repeatability, in
this context, refers to the robot’s ability to consistently return to a specific position
with a high degree of precision. Specifically, the robot can reliably reproduce the
same movement or reach the same point in space with a maximum deviation of 0.1
mm from the intended position.

Another significant characteristic, typical of cobots, is its lightweight design of only
18.4 kg. This feature distinguishes the robot for its flexibility and ease to be mounted
on both horizontal and vertical surfaces.

The workspace of a robot denotes the physical and geometric region where a robotic
system can carry out tasks. It is defined by the allowable positions and orientations
that the robot’s end-effector can achieve, providing insights into the robot’s capabilities
and limitations.

41

Collaborative robot UR5

The UR5’s workspace is spherical, extending up to 850 mm from the robot’s base.
However, as specified in the UR5 manual [49], the optimal workspace is recommended
to be limited to 750 mm.

Universal Robots, therefore, describes three distinct scenarios in which the robot may
encounter challenges reaching a particular position, either because it is physically
impossible for the robot to attain the required position or because it is not feasible to
transition to that position from the robot’s current joint configuration, the so-called
singularities.
Singularities in the context of robotics refer to configurations where the mobility
of the robot structure is reduced. They represent particular points within a robot’s
workspace where the robot loses one or more degrees of freedom, in fact, when the
TCP of a robot moves into or near a singularity, it can result in the robot moving
in an unexpected manner [53]. Singularities pose challenges to the smooth and
predictable movement of the robot, requiring careful consideration and planning in
robotic system design and operation.

The first scenario in which a singularity can be found, indicated by Universal Robots,
occurs when the robot operates in the area beyond the recommended reach but still
within the maximum working area (depicted in grey in Figure 4.5 a). While most
positions can be reached, constraints on the tool orientation exist because the robot
may physically be unable to reach far enough in certain situations.

Figure 4.5: (a) Maximum, 850 mm, and recommended workspace, 750 mm, of UR5. (b)
Cylindrical volume of 200 mm above and below the robot base. Moving the tool close to the
cylindrical volume should be avoided. Reprinted from [49]

The second scenario advises against executing robot movements in the column
directly above and below the robot base (Figure 4.5 b). This precaution is crucial
because the arrangement of joints on the robot arm may render many positions
and orientations physically unreachable. The proximity to this region can induce

42

Collaborative robot UR5

rapid joint movements, even when the tool is moving slowly, leading to operational
inefficiencies and complicating risk assessments.

The third configuration occurs when the shoulder, elbow, and wrist 1 joints rotate in
the same plane. Aligning wrist joint 2 with this plane at 0° or 180° constrains the
robot’s range of movements.

4.4 Mathematical model and kinematics of the UR5
robot

Having explored the physical characteristics and capabilities of the UR5, it becomes
crucial to delve into its mathematical model to fully understand how the robot moves
in space. Direct kinematics plays a pivotal role in this analysis, as it allows the
translation of joint angles into precise positions and orientations of the end effector.

As mentioned before, a robotic manipulator can be conceptualized as a kinematic
chain, consisting of interconnected rigid bodies (links) linked by revolute or prismatic
joints. The kinematic chain starts with one end constrained to a base, and the other
end is equipped with an end-effector. The overall movement of the structure is
achieved by combining the elementary motions of each link in relation to the previous
one. To manipulate an object effectively in space, it is necessary to define the position
and orientation of the end-effector. The primary objective of direct kinematics is to
calculate the end-effector’s pose based on the joint variables [53].

4.4.1 Denavit-Hartenberg convention

The Denavit-Hartenberg (D-H) convention provides a standardized approach to
characterize the geometric configuration of robotic arms. This convention simplifies
the mathematical representation of direct kinematics by assigning specific values to
parameters such as link lengths, joint angles, and link offsets in a systematic manner.

In the D-H standard convention (Figure 4.6), the n joints are numbered from 1 to n,
and links are numbered from 0 to n, starting from the base. The link n+1 represents
the Tool Center Point at the end of the robot.
Each joint is associated with a joint variable denoted as qi, where i is the index of the
joint connecting the i-th link to the next one. The rotation axis zi is aligned with the
axis of joint i+1.
For each link i, four parameters are defined: ai, αi, di and θ i. These parameters are
associated with the i-th link and joint and are commonly referred to as D-H parameters.
They represent the kinematic characteristics of the i-th link in the manipulator:

43

Collaborative robot UR5

Figure 4.6: Standard Denavit Hartenberg convention representation. Reprinted from [53]

• Translation distance di: distance between axes xi and xi-1 measured along the
positive direction of zi-1.

• Offset distance ai: distance between axes zi and zi-1 measured along the positive
direction of xi.

• Twist angle αi: angle between axes zi-1 and zi. It is the counterclockwise angle
about the xi, around which the zi-1 axis must rotate to align with the zi.

• Joint angle θ i: angle between axes xi-1 and xi. It is the counterclockwise angle
about the zi, around which the xi-1 axis must rotate to align with the xi.

Starting from the four D-H parameters, it is possible to construct the 4x4 rototransla-
tion homogeneous matrix between the reference system i-1 and i:

Ai
i−1 =

cos (θi) − sin (θi) · cos (αi) sin (θi) · sin (αi) ai · cos (θi)
sin (θi) cos (θi) · cos (αi) − cos (θi) · sin (αi) ai · sin (θi)

0 sin (αi) cos (αi) di

0 0 0 1

(4.1)

The Denavit-Hartenberg parameters provided by Universal Robots for the UR5 are
presented in Table 4.2.

44

Collaborative robot UR5

Table 4.2: D-H standard parameters of UR5 robot.

Joint di [m] ai [m] αi [rad] θ i [rad]

Base 0.089159 0 π/2 q1

Shoulder 0 -0.425 0 q2

Elbow 0 -0.39225 0 q3

Wrist 1 0.10915 0 π/2 q4

Wrist 2 0.09465 0 -π/2 q5

Wrist 3 0.0823 0 0 q6

The variable q denotes the degrees of freedom of the robot arm, which vary based on
the configuration of the robot arm at a specific moment in the trajectory.
With these parameters, the robot can be studied in any configuration, as they are
solely dependent on the geometry and thus remain constant, except for the different
θ values representing the individual degrees of freedom of the robot.

4.4.2 Inverse kinematics

While direct kinematics deals with determining the end-effector’s pose from joint
angles, inverse kinematics addresses the reverse problem, calculating the joint con-
figuration required to achieve a specific end-effector pose. In the context of the
UR5, this is essential for tasks where precise positioning of the robot’s end effector is
crucial.

4.4.3 Control law and Jacobian inverse

To execute complex tasks with the UR5, a control law based on the inverse kinematics
algorithm was employed. This algorithm utilizes the Jacobian matrix and its inverse
to find the joint velocities corresponding to desired end-effector velocities.
The Jacobian matrix J is a fundamental component in relating joint velocities q̇ to
end-effector velocities ẋ. For a robot with six revolute joints as the UR5, the Jacobian
matrix J is constructed by concatenating the individual geometric Jacobians of each
joint:

J =
�

J1, J2, J3, J4, J5, J6

�

(4.2)

45

Collaborative robot UR5

Each Ji is computed using the Equation 4.3:

Ji =
�

zi−1 × (pe − pi−1)
zi−1

�

(4.3)

where [53]:

• zi-1 is given by the third column of the rotation matrix R0
i-1

• pe is given by the first three elements of the fourth column of the transformation
matrix A0

e

• pi-1 is given by the first three elements of the fourth column of the transformation
matrix A0

i-1

The control law leverages the inverse of the Jacobian matrix J-1 to calculate joint
velocities q̇ corresponding to desired end-effector velocities ẋ. The relationship is
expressed as:

q̇1

q̇2
...

q̇n

= J−1

ẋ
ẏ
ż
α̇

β̇
γ̇

(4.4)

This allowed the robot to dynamically adjust its joint velocities in real-time, facilitating
precise control of end-effector motion. The Jacobian inverse played a crucial role in
achieving adaptability and responsiveness to varying operational requirements.

46

Chapter 5

Gaze-based control of UR5
robot

As outlined in Chapter 3, preliminary experiments were conducted in a controlled
environment to assess the viability of gaze tracking using OpenFace 2.0 and its
integration with CoppeliaSim. In the controlled setting, a simulated scenario was
build up where a sphere within CoppeliaSim responded to gaze inputs, thus offering
a simplified yet effective environment to evaluate the capabilities of the gaze tracking
system.
The results obtained from the executed experiments were promising, demonstrating
the successful translation of gaze data into precise control of the simulated sphere.
Hence, the positive outcomes laid the groundwork for progressing from simulated
objects to more intricate interactions with the UR5 robotic arm.

5.1 Control strategy overview

The gaze-based control algorithm described in Section 3.2 is seamlessly integrated
into the external controller, implemented in MATLAB, which runs on a dedicated PC.
This controller acted as the core processor for handling gaze data from the vision
system and feedback from the UR5 controller.

The path planning algorithm employed adopts a methodology similar to that presented
in previous cited articles [19] and [17]. While [19] and [17] consider as dynamic
target the virtual hand, so an extension of the operator’s hand in the xy-plane, in this
approach the operator’s point of focus was exploited as the dynamic target, indicating
their gaze direction.

47

Gaze-based control of UR5 robot

The UR5’s workspace is defined as 1 m, corresponding to the maximum workspace
of the UR5, 850 mm, plus the presence of the tool.
The control approach involved three spheres: the workspace sphere Vw with radius
equal to 1m, the stopping volume Vs with radius rif_stop and the meeting sphere Vm
with radius rip_stop_rip.
The Vw sphere, centered on the shoulder joint, triggered the robot’s movement
towards the target, initiating when the gaze point enters this 1m sphere. Specifically,
this happen when the norm of the distance between the point of gaze and the position
of the shoulder joint was less than 1 m.
The Vs sphere ensured that the robot stops when the TCP enters this volume around
the target. This occurs precisely when the norm of the distance between the target
and the TCP point is less than or equal to the radius rif_stop.
The Vm sphere enabled the robot to move again only when the TCP is in the stopping
volume, and the target is outside this sphere.

The control loop represented in Figure 5.1, operated as follows: the gaze-following
algorithm received as input the gaze information from the camera and feedback data
from the UR5 controller. The whole code runs in 20 ms and the feedback data are sent
from the robot with a frequency of 125 Hz through a TCP/IP network communication.

Figure 5.1: Scheme of the control loop adopted to manage the UR5 robot movements.

Utilizing the feedback data sent by the UR5, which includes the current joint positions,
direct kinematics was applied to calculate the TCP position and orientation of the
robot.
The TCP position and gaze point together served as inputs to the gaze-following
algorithm for further processing. In fact, the position of the gaze target determined

48

Gaze-based control of UR5 robot

the linear velocity of the TCP, calculated by considering the distance between the TCP
and the target.
Moreover, as depicted in Figure 5.2, a smooth profile for the TCP linear velocity was
adopted, allowing for a gradual and faster TCP velocity when the target was farther
away, reaching a maximum velocity set to 0.35 m/s. The velocity then decelerated as
the target approached, thus creating a smooth and responsive movement.

Figure 5.2: TCP linear velocity with respect to the distance between the gaze point and the
TCP. The maximum TCP velocity was set to 0.35 m/s.

Additionally, the Jacobian matrix was computed using the positions information from
the feedback data. Then, the joint velocities q̇ were obtained by multiplying the
inverse Jacobian with the operative space velocity vector, as expressed in Equation
5.1.

q̇ = J−1 · [vT C P;ωT C P] (5.1)

The set of joint velocities q̇ were then transmitted to the UR5 controller for movement
execution.

5.2 Simulated test

The simulated test aimed to validate the effectiveness of the gaze-based control
algorithm in a controlled environment before its application to the physical UR5

49

Gaze-based control of UR5 robot

robot. The simulation setup integrates CoppeliaSim for visualization and interaction,
in conjunction with URSim, a software tool that emulates Polyscope, the native
software of the UR5 robot.

Within the simulated environment, the gaze-based control algorithm was tested. The
scenario, represented in Figure 5.3, involved the UR5 robotic arm positioned on
a virtual workbench, thus mirroring a real-world setting. The workspace, defined
as a sphere with a radius of 1 meter, was centered on the shoulder joint, ensuring
a confined testing area. In this outline, the virtual sphere represented the gaze
point, and the main goal of the UR5 was to accurately follow it within the defined
workspace.

Figure 5.3: CoppeliaSim scene of robot UR5 positioned in the workbench in home configu-
ration and its workspace area.

The Robotics Toolbox 10, developed by Peter Corke, was employed to model the
UR5 robot and provided essential functions for creating a UR5 model, simulating its
movements, and conducting several kinematic analyses.
Subsequently, the controller established a dual connection with both the UR5 sim-
ulator, URSim, through the IP address, and with CoppeliaSim through Remote API
functions. To gain control over the simulated UR5 robot and the virtual sphere
representing the gaze point, specific API functions provided by CoppeliaSim were
used. The function ‘simxGetObjectHandle’ was utilized to manage both the UR5 joints
and the gaze point sphere.
Feedback data received from URSim, including joint positions of the simulated
UR5, were transmitted to the simulated UR5 robot in CoppeliaSim by using the
‘simxSetJointPosition’ function. Then the TCP position was calculated through direct
kinematics with the Robotics Toolbox function ’ur5.fkine’, that was used to assess the
distance between the TCP and the gaze point sphere, considering predefined spheres
as explained before in paragraph 5.1.

50

Gaze-based control of UR5 robot

To simulate the movement of the gaze point in the virtual environment, the function
‘simxSetObjectPosition’ was employed to set the position of the gaze point sphere in
CoppeliaSim.

Building on the successful simulation experiments described in Section 3.3.3, the
same tests were performed to validate the gaze-based control algorithm with the
UR5 robotic arm. The objective was to manipulate the UR5 by moving a simulated
sphere through the gaze, initially controlled only along the x-axis, then the y-axis, and
subsequently in the xy-plane. These tests aimed to assess the system’s performance
before the transition to physical trials with the actual UR5 robotic arm.

Control along x-axis:
In this test, the UR5 was observed to accurately reach the specified point indicated
by the user’s horizontal gaze direction (gaze_angle_x). The simulation results show-
cased the precise translation of gaze data into controlled motion along the x-axis in
CoppeliaSim. The UR5 exhibited responsiveness in following a unidirectional path,
reflecting the effectiveness of the gaze-based control system.
Control along y-axis:
Building upon the success of the x-axis scenario, the focus was shifted to vertical
movement along the y-axis. The UR5 successfully translated changes in vertical
gaze direction (gaze_angle_y) into movements along the y-axis of the sphere in Cop-
peliaSim. This test aimed to validate the system’s performance in scenarios involving
unidirectional vertical movements.
Control along xy plane:
In this test, the UR5 presented its ability to reach the gaze-directed target point within
the xy plane. By setting a predefined value for the z-coordinate, the UR5 translated
gaze data into motion, allowing it to span the entire xy plane. This test represented
a comprehensive scenario where the UR5 responded dynamically to gaze input in a
two-dimensional space.

With the successful demonstration of gaze-based control in simulated environments,
the next phase will involve the transition to physical trials with the actual UR5 robotic
arm.
Indeed, the subsequent physical trials will aim to validate and refine the system’s
performance in diverse real-world settings, in order to better confirm its robustness
and precision in guiding the UR5.

5.3 Experimental validation with real UR5 robot

To validate the effectiveness of the gaze-based control strategy, experimental tests
have been carried out.

51

Gaze-based control of UR5 robot

Experimental setup
The experimental setup included a PC, the UR5 robot, the Astra Orbbec camera and
a router. The PC served as the external robot controller, managing both the data
acquired from the camera and the feedback received from the UR5 controller, as well
as sending commands to the UR5.
The base of the UR5 robot was fixed on a workbench, the camera was placed in front
of the manipulator at a distance of 1.3 m from the robot’s base. The tests were carried
out considering the operator sitting at a distance of 0.8 m from the camera.

Figure 5.4: Experimental setup: UR5 manipulator fixed in the workbench and the Astra
Orbbec camera in front of it

Through the camera, the scene was captured, and facial features of the operator,
including gaze direction, were tracked though the gaze tracking software OpenFace
2.0. These information were processed on the PC using an algorithm running in the
MATLAB environment. It’s worth noting that was made the decision to control the
robot’s motion exclusively in the xy plane. Therefore, the gaze point was calculated
by considering its projection into the xy plane, representing both horizontal and
vertical displacements; as part of this decision, the gaze point on the z-axis was fixed
at a constant value.

52

Gaze-based control of UR5 robot

The external controller also received feedback data from the UR5 controller. Con-
sequently, this feedback data, along with the gaze position, served as input for the
gaze-based control, generating a set of joint velocities for the UR5, which were then
sent to the UR5 controller.

The UR5 was initially in the predefined home configuration, with joint angles set
equal to [-180°, -70°, -100°, -90°, 90°, 0°] (Figure 5.5).

(a) (b)

Figure 5.5: Home position configuration set for the UR5 robot. (a) Frontal view (b) Lateral
view

When the gaze point approches the UR5’s workspace, the manipulator begin to move
and to track the target by shifting the TCP to the indicated point. The robot stops
when the distance between the TCP and the gaze point reaches 40 mm. If the gaze
point moves outside the UR5’s workspace sphere, the UR5 returns to the home con-
figuration.

Three types of tests were conducted in the experiment. In the first test, the original
gaze signal was considered. In the second and third tests, the signal was filtered
by using the ’moving mean filter’, that is a type of filter used to reduce noise or
random variations in time-series data. It calculates the mean of a certain number of
consecutive data points in a moving window and uses this mean as the filtered value.

53

Gaze-based control of UR5 robot

The moving window shifts along the time series, and the mean is constantly updated.
In the tests, the gaze trajectory involved tracing a rectangle.

• Test a): original gaze signal
The first test focused on the original gaze signal. Considering the trajectory
traced by the gaze and that of the robot (Figure 5.6), it was observed that the
gaze point was tracked by the robot until it became stationary. At that point, the
point of gaze was progressively approached by the robot, up to the pre-defined
stop distance. Additionally, from the trajectory, the presence of noise in the gaze
signal was observed.

Figure 5.6: Original gaze signal case. Trajectories of gaze (in red) and of TCP (in blue) in
xy plane.

Further analisys involved a detailed examination of two separate time-based
graphs for x and y, (Figure 5.7), revealing pronounced noise, particularly along
the y-axis. Additionally, an average delay of approximately 1 second was ob-
served.

54

Gaze-based control of UR5 robot

Upon closer examination of the x and y graphs, it was possible to observe
the trajectory of the traced rectangle. Specifically, constant segments of x
corresponded to varying segments of y, and vice versa, where constant segments
of y matched varying segments of x. For instance, from 95.7 s to 116.7 s, x has
remained approximately constant while y exhibited variation.

Figure 5.7: Original gaze signal case. x and y trajectories over time. In red the gaze
trajectory and in blue the TCP trajectory.

55

Gaze-based control of UR5 robot

From the linear velocity profile of the TCP represented in Figure 5.8, it was
observed, as expected, that the velocity is higher when a greater distance between
the gaze and the TCP is recorded. It decreases as it approaches the target,
reaching zero velocity at the stop distance.

Figure 5.8: Original gaze signal case. Norm of the TCP linear velocity over time and related
distance gaze point-TCP.

56

Gaze-based control of UR5 robot

• Test b): filtered gaze signal (filter size 5)
In the second test the gaze signal was filtered by using the moving mean filter
with a window of size 5. Examining the trajectory depicted in Figure 5.9, it
is evident that the robot effectively tracked the gaze point until it came to a
stop. Subsequently, the robot gradually approached the gaze point, reaching
the predefined stop distance. It is noteworthy that, in contrast to the original
gaze test, a less noisy gaze signal was observed in this test.

Figure 5.9: Filtered gaze signal case (filter size 5). Trajectories of gaze (in red) and of TCP
(in blue) in xy plane.

In-depth analysis was extended to a meticulous examination of separate time-
based trajectories for x and y, illustrated in Figure 5.10. The findings revealed a
notably less noisy signal, with x showing greater improvement. Delving into the
rectangle’s trajectory, a distinctive symmetry emerged between x and y. Specif-
ically, when x held constant, y exhibited variation, and vice versa. Moreover,
attributable to the filtering process, a computed time delay of approximately 3
seconds was observed between the gaze and the TCP.

57

Gaze-based control of UR5 robot

Figure 5.10: Filtered gaze signal case (filter size 5) of x and y trajectories over time. In red
the gaze trajectory and in blue the TCP trajectory.

Examining the linear velocity profile of the TCP illustrated in Figure 5.11, as
expected, it was observed that the velocity is higher when a larger distance
between the gaze and the TCP is registered. It progressively diminishes as it
approaches the target, culminating in zero velocity at the predetermined stop
distance.

58

Gaze-based control of UR5 robot

Figure 5.11: Filtered gaze signal case (filter size 5).Norm of the TCP linear velocity over
time and related distance gaze point-TCP.

• Test c): filtered gaze signal (filter size 10)
Afterward, the gaze signal was further examined using a moving mean filter
with a larger window size, specifically equal to 10. Analyzing the trajectories on
the xy plane (Figure 5.12), it was observed that the robot faithfully tracks the
gaze path. Moreover, the xy trajectory graph revealed a less noisy gaze signal.

59

Gaze-based control of UR5 robot

Figure 5.12: Filtered gaze signal case (filter size 10).Trajectories of gaze (in red), and of
TCP (in blue) in xy plane.

Upon closer inspection, temporal graphs for x and y were assessed individu-
ally, as depicted in Figure 5.13. Due to the use of the wider filter, a delay of
approximately 4 seconds was recorded. Moreover, due to the filter, it was also
observed that some points, especially on the y-axis, (for instance at 29 s), were
not consistently followed by the robot, transitioning to the subsequent ones.

60

Gaze-based control of UR5 robot

Figure 5.13: Filtered gaze signal case (filter size 10) of x and y trajectories over time. In
red the gaze trajectory and in blue the TCP trajectory.

Among the three conducted tests, the filter with a window size of 10 emerged as the
least favorable option. If it rendered the gaze signal noise-free, providing a smooth
signal, it also introduced a significant delay, thus, causing the robot to deviate from
perfect gaze tracking.
Actually, considering the requirement for real-time application, the use of the original
gaze appeared to be the optimal choice, surpassing the option with a filter size of
5. In fact, from an accurate analysis of the obtained graphs, it seems that the TCP
followed the gaze more accurately compared to the other two scenarios.
From a collaborative standpoint as well, the approach with the original gaze signal
was preferred because of its heightened responsiveness to gaze movements.

61

Chapter 6

Conclusions and future
developments

In this work, the control of the UR5 robot through gaze tracking was successfully
implemented.
To reach this aim, Openface 2.0, a freely available software on Github useful for
tracking facial features,was chosen for gaze tracking. The gaze tracking code was
developed in the MATLAB environment, utilizing the Openface 2.0 software to track
gaze and extract necessary information.
The feasibility of the gaze tracking code was initially assessed for a simple applica-
tion, by using the CoppeliaSim simulation platform. For instance, the implemented
algorithm was exploited to control the movement of a sphere on a plane.
To guarantee the robustness of the code, several tests were conducted: firstly the
sphere’s movement was controlled only along the horizontal axis or along the vertical
one; then a comprehensive test was carried out, by involving the control of the
sphere’s movement across the entire xy plane, in order to map the sphere’s motion to
the user’s gaze direction.

This systematic testing approach in the simulated environment aimed to validate the
effectiveness of the gaze tracking code. By assessing the sphere’s response to different
gaze directions and movements, the study ensured the reliability of the gaze tracking
algorithm before its application to more complex tasks, such as the control of the UR5
robot. Therefore, these tests effectively demonstrated the algorithm’s effectiveness
and reliability, providing a solid foundation for the subsequent transition to the core
goal of the study: controlling the UR5 robot through user’s gaze.

The experimental setup for the control of the UR5 robot included a PC as an external
controller, the UR5 robot, a router, and the Astra Orbbec camera for data acquisition.
Within the external controller, the gaze following algorithm code ran in 20 ms in

62

Conclusions and future developments

MATLAB environment; the algorithm used is a combination of the gaze tracking code,
responsible for the acquisition and manipulation of gaze data, and the path-following
algorithm. The latter shares a logic similar to that implemented in [19], but with
the innovation of using gaze as the dynamic target for controlling the UR5 robot’s
movements along the xy plane.
Three tests were conducted to validate the efficacy of the gaze tracking following-
algorithm applied to the UR5 robot. The first test considered the unfiltered gaze
signal, while the other two tests employed a moving average filter with window sizes
of 5 and 10, respectively. The results showed that the robot successfully followed the
user’s gaze, with a delay of 1 s in the first case, 3 s in the second, and 4 s in the third.

Among the three tests conducted, the filter with a window size of 10 was found to be
the least favourable option. Despite effectively eliminating gaze signal noise and pro-
ducing a smooth signal, it introduced a significant delay, leading to deviations from
accurate gaze tracking. Considering real-time application as the key discriminating
factor, the unfiltered gaze signal emerged as the optimal choice, also surpassing the
performance of the filter with a size of 5.

Although encouraging results have been achieved in this thesis work, several solutions
could be implemented in the future, in order to make gaze tracking as a cutting-edge
method for robot control, useful in different sectors of the industry.
Hence, in terms of future developments, there is undoubtedly the need to allow the
control of the UR5 along the depth of the defined workspace.
Additionally, another key point should be the enhancement of the gaze tracking algo-
rithm in order to reduce the latency and to improve the robot’s accuracy in executing
more precise movements.
Finally, given the numerous studies that confirm the improvements in gaze tracking
for hand-over tasks, a potential development could involve the integration of the
gaze tracking code to enhance performance in other tasks, such as hand-overs, thus
aiming for faster and more natural human-robot interaction.

63

Bibliography

[1] Maoudj Hentout Mustapha. «Human–robot interaction in industrial collabo-
rative robotics: a literature review of the decade 2008–2017». In: Advanced
Robotics 33(15-16) (2019), pp. 764–799 (cit. on pp. 1, 2, 10–12).

[2] Vicentini. «Collaborative robotics: a survey». In: Journal of Mechanical Design
143 (2021) (cit. on p. 1).

[3] Li Yang Zhou. «Collaborative robot dynamics with physical human–robot inter-
action and parameter identification with PINN». In: Mechanism and Machine
Theory 189 (2023) (cit. on p. 2).

[4] A. Verl J. Krüger T.K. Lien. «Cooperation of human and machines in assembly
lines». In: CIRP Annals 58(2) (2009), pp. 628–646 (cit. on pp. 2, 8).

[5] Robot-assisted rehabilitation – ROBERT® and KUKA facilitate mobilization. URL:
https://www.kuka.com/en-us/industries/solutions-database/2
019/08/robert-from-life-science-robotics. (accessed: 13.11.2023)
(cit. on p. 2).

[6] Palmieri Chiriatti Bottiglione. «Manipulability optimization of a rehabilitative
collaborative robotic system». In: Machines 10(6) (2022), p. 452 (cit. on p. 2).

[7] Singh Rab Javaid Haleem. «Significant applications of Cobots in the field of
manufacturing». In: Cognitive Robotics 2 (2022), pp. 222–233 (cit. on pp. 2, 3,
5).

[8] Mobile Cobots - Dimalog. URL: https://www.dimalog.com/mobile-cobo
ts/. (accessed: 13.11.2023) (cit. on p. 3).

[9] Fantuzzi Secchi Levratti De Vuono. «TIREBOT: A novel tire workshop assis-
tant robot». In: 2016 IEEE International Conference on Advanced Intelligent
Mechatronics (AIM) (2016), pp. 733–738 (cit. on p. 3).

[10] Karna Vishnu Vardhana Elamvazuthi Borboni Alberto Reddy. «The Expanding
Role of Artificial Intelligence in Collaborative Robots for Industrial Applications:
A Systematic Review of Recent Works». In: Machines 11(1) (2023), pp. 2075–
1702 (cit. on pp. 4–6).

64

https://www.kuka.com/en-us/industries/solutions-database/2019/08/robert-from-life-science-robotics
https://www.kuka.com/en-us/industries/solutions-database/2019/08/robert-from-life-science-robotics
https://www.dimalog.com/mobile-cobots/
https://www.dimalog.com/mobile-cobots/

BIBLIOGRAPHY

[11] Fahad Sherwani and B.S.K.K. Ibrahim Muhammad Mujtaba Asad. «Collabo-
rative Robots and Industrial Revolution 4.0 (IR 4.0)». In: 2020 International
Conference on Emerging Trends in Smart Technologies (ICETST) (2020), pp. 1–5
(cit. on pp. 4, 5).

[12] Vasu Srinadh Patil Swapnil. «Advances and perspectives in collaborative robotics:
a review of key technologies and emerging trends». In: Discover Mechanical
Engineering 2(1) (2023), p. 13 (cit. on p. 4).

[13] Pellegrini Taesi Aggogeri. «COBOT Applications—Recent Advances and Chal-
lenges». In: Robotics 12 (2023), p. 79 (cit. on pp. 5, 7).

[14] H. Kress-Gazit A. Kshirsagar and G. Hoffman. «Specifying and Synthesizing
Human-Robot Handovers». In: 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (2019), pp. 5930–5936 (cit. on pp. 8, 9).

[15] Hoffman Edan Faibish Kshirsagar. «Human preferences for robot eye gaze in
human-to-robot handovers». In: International Journal of Social Robotics 14
(2022), pp. 995–1012 (cit. on p. 8).

[16] R. Alami J. Waldhart M. Gharbi. «Planning handovers involving humans and
robots in constrained environment». In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (2015), pp. 6473–6478 (cit. on p. 9).

[17] Mauro Melchiorre Scimmi. «Vision-based control architecture for human–robot
hand-over applications». In: Asian Journal of Control (2020) (cit. on pp. 9, 10,
47).

[18] Chen Zhang Wang Li Diekel. «Controlling object hand-over in human–robot
collaboration via natural wearable sensing». In: IEEE Transactions on Human-
Machine Systems 49 (2018), pp. 59–71 (cit. on p. 9).

[19] Mauro Scimmi Melchiorre. «Experimental Real-Time Setup for Vision Driven
Hand-Over with a Collaborative Robot». In: 2019 International Conference on
Control, Automation and Diagnosis (ICCAD) (2019), pp. 1–5 (cit. on pp. 9, 10,
15, 47, 63).

[20] Forlizzi Strabala Lee Dragan. «Toward seamless human-robot handovers». In:
Journal of Human-Robot Interaction 2 (2013), pp. 112–132 (cit. on p. 10).

[21] Pardi Ortenzi Cosgun. «Object Handovers: A Review for Robotics». In: IEEE
Transactions on Robotics 37(6) (2021), pp. 1855–1873 (cit. on pp. 10, 12).

[22] Gleeson Moon Troniak. «Meet me where i’m gazing: how shared attention gaze
affects human-robot handover timing». In: Proceedings of the 2014 ACM/IEEE
international conference on Human-robot interaction (2014), pp. 334–341 (cit.
on pp. 10, 12, 13).

65

BIBLIOGRAPHY

[23] Santos Castro Silva. «Trends of Human-Robot Collaboration in Industry Con-
texts: Handover, Learning, and Metrics». In: Sensors 21 (2021), p. 4113 (cit. on
p. 11).

[24] Li Niculescu Banchs. «Why Industrial Robots Should Become More Social: On
the Design of a Natural Language Interface for an Interactive Robot Welder».
In: International Conference on Social Robotics (2014), pp. 276–278 (cit. on
p. 11).

[25] Robertson Barattini Morand. «A proposed gesture set for the control of indus-
trial collaborative robots». In: 012 IEEE RO-MAN: The 21st IEEE International
Symposium on Robot and Human Interactive Communication (2012), pp. 132–
137 (cit. on p. 12).

[26] Kirstein Fischer Jensen. «The effects of social gaze in human-robot collabora-
tive assembly». In: Social Robotics: 7th International Conference, ICSR (2015),
pp. 204–213 (cit. on p. 12).

[27] Christian Kshirsagar Lim. «Robot gaze behaviors in human-to-robot handovers».
In: IEEE Robotics and Automation Letters 5 (202), pp. 6552–6558 (cit. on pp. 12,
13).

[28] Pipe Grigore Eder. «Joint action understanding improves robot-to-human object
handover». In: 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems (2013), pp. 4622–4629 (cit. on pp. 12, 13).

[29] Clodic Gharbi Paubel. «Toward a better understanding of the communication
cues involved in a human-robot object transfer». In: 24th IEEE international
symposium on robot and human interactive communication (RO-MAN) (2015),
pp. 319–324 (cit. on pp. 12, 13).

[30] Yang Liu Chi. «In the eye of the beholder: A survey of gaze tracking techniques».
In: Pattern Recognition (2022) (cit. on pp. 17, 19, 20).

[31] Qiang Ji Kang Wang. «Real time eye gaze tracking with kinect». In: 2016 23rd
International Conference on Pattern Recognition (ICPR) (2016), pp. 2752–2757
(cit. on p. 17).

[32] Ji Qiang Hansen Dan Witzner. «In the eye of the beholder: A survey of models
for eyes and gaze». In: IEEE transactions on pattern analysis and machine
intelligence 32 (2009), pp. 478–500 (cit. on pp. 17, 20–22).

[33] Marcio R.M. Mimica Carlos H. Morimoto. «Eye gaze tracking techniques for
interactive applications». In: Computer Vision and Image Understanding 98(1)
(2005), pp. 4–24 (cit. on pp. 17, 19).

[34] Wang Shehu Shehi. «Remote Eye Gaze Tracking Research: A Comparative
Evaluation on Past and Recent Progress». In: Electronics 10 (2021), pp. 2079–
9292 (cit. on pp. 18–21).

66

BIBLIOGRAPHY

[35] Hiroyuki Sogo. «GazeParser: an open-source and multiplatform library for low-
cost eye tracking and analysis». In: Behavior Research Methods 45(3) (2013),
pp. 684–695 (cit. on p. 22).

[36] Bulling Wood Erroll. «Eyetab: Model-based gaze estimation on unmodified
tablet computers». In: proceedings of the symposium on eye tracking research
and applications (2014), pp. 207–210 (cit. on p. 22).

[37] Emil-Mari Nel. Opengazer: open-source gaze tracker for ordinary webcams. URL:
https://www.inference.org.uk/opengazer/. (accessed: 13.11.2023)
(cit. on p. 22).

[38] openEyes – Eye tracking systems used for casino gaming, paysafecard payments
and more. URL: https://thirtysixthspan.com/openEyes/. (accessed:
13.11.2023) (cit. on p. 22).

[39] Gaze Tracker - Gaze Tracking Library. URL: https://github.com/devinba
rry/GazeTracker. (accessed: 13.11.2023) (cit. on p. 23).

[40] Antoine Lamé. Gaze Tracker - webcam-based eye tracking system. URL: https:
//github.com/antoinelame/GazeTracking. (accessed: 13.11.2023) (cit.
on p. 23).

[41] Yao Chong Lim Tadas Baltrušaitis Amir Zadeh. «OpenFace 2.0: Facial Behavior
Analysis Toolkit». In: IEEE International Conference on Automatic Face and
Gesture Recognition (2018) (cit. on pp. 23, 25, 26).

[42] Tadas Baltrušaitis. OpenFace 2.2.0: a facial behavior analysis toolkit. URL: https:
//github.com/TadasBaltrusaitis/OpenFace. (accessed: 13.11.2023)
(cit. on pp. 23, 26).

[43] GazeSense - Eye Tracking Software for Webcams & 3D Sensor. URL: https://
eyeware.tech/gazesense-eye-tracking-software-for-webcams-
3d-sensor/. (accessed: 13.11.2023) (cit. on p. 23).

[44] Tobii. URL: https://www.tobii.com/. (accessed: 13.11.2023) (cit. on
p. 23).

[45] Tobii Pro Glasses 3. URL: https://www.tobii.com/products/eye-track
ers/wearables/tobii-pro-glasses-3. (accessed: 13.11.2023) (cit. on
p. 23).

[46] Tobii Pro Spark. URL: https://www.tobii.com/products/eye-tracker
s/screen-based/tobii-pro-spark#overview. (accessed: 13.11.2023)
(cit. on p. 23).

[47] Freese Rohmer Singh. «V-REP: A versatile and scalable robot simulation frame-
work». In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(2013), pp. 1321–1326 (cit. on p. 31).

67

https://www.inference.org.uk/opengazer/
https://thirtysixthspan.com/openEyes/
https://github.com/devinbarry/GazeTracker
https://github.com/devinbarry/GazeTracker
https://github.com/antoinelame/GazeTracking
https://github.com/antoinelame/GazeTracking
https://github.com/TadasBaltrusaitis/OpenFace
https://github.com/TadasBaltrusaitis/OpenFace
https://eyeware.tech/gazesense-eye-tracking-software-for-webcams-3d-sensor/
https://eyeware.tech/gazesense-eye-tracking-software-for-webcams-3d-sensor/
https://eyeware.tech/gazesense-eye-tracking-software-for-webcams-3d-sensor/
https://www.tobii.com/
https://www.tobii.com/products/eye-trackers/wearables/tobii-pro-glasses-3
https://www.tobii.com/products/eye-trackers/wearables/tobii-pro-glasses-3
https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-spark#overview
https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-spark#overview

BIBLIOGRAPHY

[48] Coppelia Robotics. URL: https://www.coppeliarobotics.com/. (accessed:
17.11.2023) (cit. on p. 31).

[49] Universal Robots. UR5 user manual (cit. on pp. 36, 41, 42).

[50] Webb Watanabe Tang. «The Design and Evaluation of an Ergonomic Contactless
Gesture Control System for Industrial Robots». In: Journal of Robotics 2018
(2018) (cit. on p. 39).

[51] Bertolino Raviola Guida. «A Comprehensive Multibody Model of a Collaborative
Robot to Support Model-Based Health Management». In: Robotics 12(3) (2023)
(cit. on p. 40).

[52] Saba Kebria Parham. «Kinematic and dynamic modelling of UR5 manipulator».
In: 2016 IEEE international conference on systems, man, and cybernetics (2016),
pp. 4229–4234 (cit. on p. 40).

[53] Villani Siciliano Sciavicco. «Robotics.Modelling, Planning and Control». In:
Springer London 1 (2008), pp. XXIV, 632 (cit. on pp. 42–44, 46).

68

https://www.coppeliarobotics.com/

	Introduction
	Collaborative robotics
	Robots & Cobots
	Characteristics of cobots and technological advancements
	Human-Robot hand-over
	Cognitive human-robot interactions
	Potential of gaze tracking in hand-over

	Aim of the work

	Gaze tracking systems
	Evolution of eye research
	Intrusive & remote tracking methods
	Feature based & appearance based methods
	Hardware components of REGT system

	Evaluation of open source and commercial eye tracking systems
	Eye tracking software
	Integrated eye tracking systems
	Trade-off analysis of eye tracking solutions

	OpenFace 2.0

	Implementation of gaze tracking and sphere control in CoppeliaSim
	Integration of OpenFace 2.0
	Camera calibration

	Implementation of gaze tracking code
	CoppeliaSim environment
	Control of the sphere
	Gaze-driven sphere control experiments

	Why OpenFace 2.0 and CoppeliaSim integration

	Collaborative robot UR5
	Control unit
	Teach pendant
	Robotic arm
	Mathematical model and kinematics of the UR5 robot
	Denavit-Hartenberg convention
	Inverse kinematics
	Control law and Jacobian inverse

	Gaze-based control of UR5 robot
	Control strategy overview
	Simulated test
	Experimental validation with real UR5 robot

	Conclusions and future developments
	Bibliography

