
POLITECNICO DI TORINO
Master degree course in Data Science and Engineering

Master Degree Thesis

Structured Pruning of Vision
Transformers at Training Time

Supervisors
Prof. Daniele Jahier Pagliari
Dr. Matteo Risso
Dr. Alessio Burello
Dr. Beatrice Alessandra Motetti

Candidate
Leonardo Tredese

Academic year 2022-2023

This work is subject to the Creative Commons Licence

Abstract

Attention-based transformers have emerged as a powerful paradigm achiev-
ing state-of-the-art results on tasks such as natural language processing and
computer vision. However, transformers typically present higher computa-
tional costs and parameter count compared to convolutional networks. This
inefficiency impedes deploying transformers to resource constrained devices
such as edge devices. Structured pruning techniques present a promising
direction to compress transformers for the edge computing scenario.

This thesis investigates pruning techniques to induce structured sparsity
in vision transformers, thereby reducing computational requirements while
minimizing accuracy degradation. The goal is developing methodologies for
efficient vision transformer inference.

Structured pruning learns importance scores for individual network com-
ponents at training time by solving an optimization problem that tries to
maximize task performance while minimizing the number of parameters in
the model. The importance scores are then transformed into binary masks
that prune unimportant structures such as specific linear layers output di-
mensions or entire attention heads.

To promote regularity in the induced sparsity patterns, various mask shar-
ing strategies are proposed that couple pruning decisions across related ar-
chitectural elements. Regularity is crucial because complete independence
precludes the removal of some masked components due to the specific con-
nectivity pattern of transformers, leading to lower compression rates when
the model is actually deployed on hardware.

Empirical results demonstrate that in image classification tasks completely
independent masking of components outperforms sharing strategies in terms
of balancing accuracy and sparsity. None the less, experiments show that
through a mix of shared and independent masks, the proposed pruning
scheme successfully compresses vision transformers as much as 90% with
an accuracy drop of just 4% or 70% compression rate with less than 1% in
accuracy drop.

3

Acknowledgments

I would like to express my sincere appreciation to Professor Daniele Jahier
Pagliari, Matteo Risso, Alessio Burello, and Beatrice Alessandra Motetti for
their invaluable guidance and support throughout this thesis project. I am
deeply grateful for their mentorship.

In particular, I want to thank them for always making themselves available
to discuss research directions and review drafts. Their diverse perspective
enabled me to overcome obstacles and refine technical aspects of the work.
Or as mr. La Rochelle would say: "thank you for being not so Italian".

4

Contents

List of Figures 7

List of Tables 9

1 Introduction 11

2 Related Work 15
2.1 Transformers . 15
2.2 Vision Transformers . 17
2.3 Neural Network Pruning . 19

3 Proposed Pruning Methodology 21
3.1 Transformer Architecture and Structured Pruning 21
3.2 Block Movement Pruning for Linear Layers 22
3.3 Block Movement Pruning for Convolutional Layers 23
3.4 Block Movement Pruning for MHSA 25
3.5 Movement Pruning for Layer Normalization 27
3.6 Transformer Architecture pruning strategies 28

3.6.1 Unshared Masking . 28
3.6.2 Shared Residual Masking 28
3.6.3 Full Sharing . 30
3.6.4 To learn or not to learn 30

4 Experimental Setup 31
4.1 Experimental Setup . 31

4.1.1 Datasets . 31
4.1.2 Model Architectures 32
4.1.3 Training Methodology 33

4.2 Ablation Study . 33
4.3 Evaluation on Tiny ImageNet 34

5

5 Results 37
5.1 Ablation Study Outcomes . 37
5.2 Results on Tiny ImageNet . 45

6 Conclusion and Future Works 51

6

List of Figures

1.1 Graph that shows the evolution of accuracy for SoTA methods
on ImageNet. Before ViT all the best results where achieved
by convolutional networks, then the best results are obtained
by transformers [2]. 12

2.1 Graphical representation of the original transformer architec-
ture. 17

2.2 Graphical representation of the ViT architecture. 18

3.1 Graphical representation of Linear layer pruning 22
3.2 Graphical representation of Convolutional layer pruning 24
3.3 Graphical representation of MHSA layer pruning 25
3.4 Graphical representation of Layer Normalization pruning . . . 27
3.5 Example of unshared pruning, boxes in red are pruned weights. 29
3.6 Example of shared residual dimension pruning, boxes in red

are pruned weights. 29
3.7 Example of full sharing pruning, boxes in red are pruned weights. 30

5.1 Seed 7 Pareto efficiency analysis of structured pruning config-
urations on CIFAR-10. The plots show the accuracy versus
number of parameters for the 40 shared masking experiments
on three different seeds. The Pareto optimal configurations
are on the black line, and they balance model complexity while
maximizing accuracy compared to other settings from the ab-
lation study . 40

5.2 Seed 13 . 41
5.3 Seed 42 . 42
5.4 Seed 7 Comparison of the pareto bound of shared pruning

experiments against unshared pruning, l1 and l2 norm pruning
on CIFAR-10. 43

7

List of Figures

5.5 Seed 13 . 44
5.6 Seed 42 . 45
5.7 Seed 7 Comparison of the pareto bound of shared pruning

experiments against unshared pruning, l1 and l2 norm pruning
on Tiny ImageNet. 46

5.8 Seed 13 . 47
5.9 Seed 42 . 48

8

List of Tables

2.1 Comparison of accuracy and size for models trained on ImageNet 18

5.1 Ablation study results on CIFAR-10. The table shows Top-1
validation accuracy (%), and number of parameters for the 40
shared masking experiments. 39

5.2 Number of times a configuration was Pareto with respect to
other experiments performed on the same seed. 49

9

10

Chapter 1

Introduction

Transformers have emerged as a disruptive architecture for sequence model-
ing tasks. First introduced for language translation in 2017, the transformer
utilizes multi-headed self-attention(MHSA) rather than recurrent or convo-
lutional layers [1]. This allows the model to learn contextual relationships
between all elements in an input sequence, leading to highly performing repre-
sentations compared to prior sequence models like LSTMs. The transformer
architecture obtained state-of-the-art results on large-scale language tasks
and became the de-facto choice for Natural Language Processing (NLP).

Given this immense success in NLP, there has been significant interest in
adapting transformers to other fields like computer vision. Convolutional
neural networks (CNNs) have been the dominant model architecture for
computer vision tasks for many years, achieving state-of-the-art results on
image classification until the end of 2020 when they have been surpassed
by transformers [2] (Figure 1.1). While CNNs capture local spatial rela-
tionships effectively in images, they lack mechanisms for modeling global
context. Transformers are capable of capturing long-range dependencies in
vision tasks with no regard to spatial proximity. Early vision transform-
ers like ViT [3] obtained state of the art results on image classification by
applying transformers to sequenced image patches. However, self-attention
computation scales quadratically with sequence length, resulting in very high
memory and computational costs for these architectures. For example, Vi-
sion Transformers like ViT have billions of floating point operations due to
their self-attention mechanism applied to high-resolution images. A number
of techniques have been proposed to reduce this complexity such as sparse
attention patterns and model distillation, though efficient transformer design
remains an active area of research [4].

11

Introduction

TO
P 1

 A
CC

UR
AC

Y

SimpleNetV1-5mSimpleNetV1-5m

Attention-92Attention-92
NASNET-A(6)NASNET-A(6)

TResNet-XLTResNet-XL

ViT-H/14ViT-H/14
ViT-G/14ViT-G/14CoCa (finetuned)CoCa (finetuned)

Other models State-of-the-art models

2017 2018 2019 2020 2021 2022 2023
65

70

75

80

85

90

95

Figure 1.1: Graph that shows the evolution of accuracy for SoTA methods on
ImageNet. Before ViT all the best results where achieved by convolutional
networks, then the best results are obtained by transformers [2].

While Vision Transformers have achieved excellent accuracy on visual
tasks, their immense computational and memory requirements make deploy-
ment challenging. For many applications, running inference solely in the
cloud is not ideal due to factors like privacy concerns, latency constraints,
and connection status. There has been growing interest in executing models
directly on edge devices like smartphones, autonomous vehicles, and smart
home assistants. Edge computing provides benefits such as data privacy, low
latency, energy efficiency, and robust operation without the need of perpet-
ual connectivity [5]. However, the memory capacity on most edge devices is
limited, ranging from the order of kilobytes to few megabytes. For example,
the GAP-8 microcontroller has around 512KB of state retentive memory[6]
while Coral Dev Board Micro reaches 128MB of flash memory[7]. In contrast,
a ViT model may have over 100 million floating point parameters requiring
over 400MB of storage. This vast gap makes it infeasible to run most trans-
former models on current edge hardware.

One approach to enable deployment on resource-constrained edge devices
is model compression techniques like pruning. Pruning techniques aim to

12

Introduction

address transformer inefficiencies by reducing model size while minimally im-
pacting performance. Structured pruning directly removes entire structures
like filters, blocks or attention heads to improve efficiency. This thesis ex-
plores structured pruning techniques applied to the transformer architecture
and vision domain.

In particular, this thesis considers structured pruning methods based on
differentiable masks that are learned by minimizing a loss function that com-
bines model error on a task and the number of parameters in it. This ap-
proach enables compressing vision transformers without sacrificing their rep-
resentational power. The main contributions of this work are the following:

• Design of a transformer specific structured pruning algorithm to remove
low-importance structures at different granularity. Namely: attention
heads, head dimension, fully connected layers and convolution layers.

• Experimental evaluation of approach on image classification benchmarks
including CIFAR-10 and Tiny ImageNet.

• Analysis of trade-offs between efficiency and accuracy for varying prun-
ing compression rates, and granularity and pruning strategies taken from
literature.

Our proposed method proved to be effective with the following results:

• 90% model compression with an accuracy drop of 4% or 70% compression
rate with less than 1% in accuracy drop on CIFAR-10.

• 90% model compression with an accuracy drop of 25% , 25% compression
rate with 7% accuracy drop or 5% model compression for a 2% accuracy
drop on Tiny ImageNet.

Analysing all the outcomes of this work will inform best practices for
compressing vision transformers in resource-constrained environments.

The remainder of this thesis is organized as follows: Chapter 2 provides
a comprehensive review of related work on transformer architectures, vision
transformers, and neural network pruning. Chapter 3 introduces the pro-
posed structured pruning algorithm. Chapter 4 describes the experimental
setup and results. Finally, Chapter 5 discusses conclusions and directions for
future work.

13

14

Chapter 2

Related Work

This chapter provides background on transformer architectures, vision trans-
formers, and neural network pruning techniques. First, we introduce the
transformer architecture and key components like MHSA. Next, we discuss
adaptations of transformers to computer vision. Finally, we review prior
work on pruning methods.

2.1 Transformers
The transformer architecture was introduced by Vaswani et al. in 2017 [1]
for neural machine translation. It pioneered a self-attention only approach
, differently from previous works based on recurrent layers [8]. Using only
self-attention allows for more parallelization and gives the ability to capture
long range dependencies in inputs. The core components include MHSA,
feed forward networks (FFN), layer normalization, and residual connections
as shown in figure 2.1.

MHSA allows relating different elements of an input sequence to compute
representations reflecting context. Scaled dot-product attention computes
compatibility scores between such sequence elements. Multiple heads learn
distinct representation subspaces focused on different contextual interactions.
Moreover computation for different heads can be parallelized to improve per-
formances.

Formally, given an input sequence X = (x0, ..., xL) ∈ RL×d of length L
and dimension d, attention is defined as:

Attention(Q, K, V) = Softmaxrow

 QK⊤ñ
dQK

 V (2.1)

15

Related Work

where Q, K, V stand for for the queries, keys, and values respectively,
and they are all computed from the input X. dQK is the dimension of the
keys K and queries Q.

The MHSA operation can be formally described by:

MHSA(X) = Concat(head0, . . . , headh)WO (2.2)

where each head h is computed as:

headh = Attention(XW h
Q, XW h

K , XW h
V) (2.3)

and W h
Q, W h

K , W h
V and WO are learnable parameters of the model.

The self-attention mechanism, utilized in the transformer architecture,
exhibits inherent permutation invariance across the input sequence. Specif-
ically, the attention scores calculated between elements do not depend on
their positional order. This invariance emerges due to the reliance on inner
products between token embeddings without regard for sequence order.

To incorporate information about element positions, the transformer ar-
chitecture incorporates dedicated positional embeddings that are summed
with the input token embeddings. These positional embeddings are vector
representations associated with each position in the input sequence. Prior
work has explored both fixed positional encodings [1] as well as learned po-
sitional embeddings tuned during training [3]. The integration of positional
information via summation enables the self-attention layers to jointly lever-
age representations of content from the token embeddings and representa-
tions of position from the positional embeddings. Overall, this provides the
transformer with a global receptive field.

The original architecture is then divided into encoder and decoder stack.
The encoder maps an input sequence to a continuous representation. The
decoder then generates an output sequence from this representation.

Specifically, the encoder stack consists of N identical modules. Each layer
has two sub-modules: a MHSA module and a FFN module. Residual connec-
tions and layer normalization are employed around each sub-module.While
the decoder modules also include an additional attention layer that attends
to the encoder outputs to focus on relevant context.

Transformers achieved state-of-the-art results on large-scale language tasks,
outperforming prior sequence models like recurrent networks [1, 8]. Follow-
up work expanded transformer applications from machine translation to lan-
guage modeling, question answering and other NLP tasks [1, 9, 10].

16

2.2 – Vision Transformers

Figure 2.1: Graphical representation of the original transformer architecture.

2.2 Vision Transformers
Given the immense success of transformers in NLP, researchers began ex-
ploring possible adaptations to computer vision tasks. The stand-alone vi-
sion transformer (ViT) directly applied transformers to sequences of image
patches [3].

As shown in figure 2.2, ViT splits an input image into fixed-size non-
overlapping patches which are treated as token sequences. Then, a standard
transformer encoder-only architecture is applied to these patch tokens. To
represent the entire image, an extra learnable classification token is added

17

Related Work

to the sequence. Learnable positional embeddings are also injected to retain
spatial information. The output corresponding to the class token is fed into
a linear head to make predictions. Without the use of convolutional layers,
ViT demonstrated the potential of pure transformer models for image tasks.

Figure 2.2: Graphical representation of the ViT architecture.

Model Top-1 ImageNet Accuracy Parameters
ViT 87.76% 300M
EfficientNet B7 87.1% 66M
DeiT 84.2% 87M

Table 2.1: Comparison of accuracy and size for models trained on ImageNet

Although ViT achieves SoTA results it is less parameter-efficient then
CNNS for image classification. As shown in table 2.1, ViT obtained an ac-
curacy of 87.76% on ImageNet compared to 87.1% for EfficientNet B7 [3,
11]. However, ViT contained over 300 million parameters, while EfficientNet
B7 contained only 66 million. This highlights the inefficiency of standard
transformers for computer vision. Moreover ViT architecture requires exten-
sive complex training protocols, hyperparameter tuning and optimization to
reach convergence.

Follow-up vision transformers like DeiT closed this gap through distillation
techniques. For instance, DeiT leveraged knowledge transfer from a teacher
CNN during pretraining. DeiT reached 84.2% accuracy on ImageNet with
just 87 million parameters, highlighting improved efficiency[12].

18

2.3 – Neural Network Pruning

2.3 Neural Network Pruning
Pruning techniques aim to reduce model size by eliminating non-critical pa-
rameters from the network architecture. A simple approach is magnitude-
based pruning, which removes weights if their absolute values are below a
defined threshold [13]. However, this produces unstructured sparsity that
cannot directly improve computational efficiency on traditional hardware. A
possible benefit is that storage of the compressed pruned model parameters
is actually reduced.

Sharper techniques prune entire structures within the network . For ex-
ample, the L1 or L2 norm of the weights within each filter, channel or head
can be calculated. Then structures with the lowest overall magnitude accord-
ing to this metric are pruned away entirely. This creates structured sparsity
aligned with efficiency gains in computation.

More advanced methods incorporate first-order information to determine
pruning importance. For example, the authors of [14] employ the gradient
magnitude of masking variables of attention heads with respect to the loss
as a saliency metric. Attention heads with minimal impact on the loss are
pruned. While pruning at the head-level provides some structure, it may not
align with computational efficiency gains. Specifically, standard attention
heads parallelization schemes may prevent exploiting this sparsity to increase
inference speed.

The previously introduced pruning techniques operate post-training, re-
moving parameters from an already optimized model. However, recent work
has explored pruning during training. Movement pruning [15] associates a
learnable score Si,j to each weight Wi,j. Such score is used to compute binary
masks Mi,j setting low scoring weights to zero. So the activation values ai in
the forward pass are calculated as:

ai =
nØ

k=1
Wi,kMi,kxk

And the scores are updated with the approximation of the gradient with
respect to the loss L:

∂L
∂Si,j

= ∂L
∂ai

∂ai

∂Si,j
= ∂L

∂ai
Wi,jxj

This is an approximation because the binary conversion from score to mask
using threshold τ is computed as Mi,j = Si,j ≥ τ , which is non-differentiable.

19

Related Work

To overcome this issue, the straight-through estimator [16] is adopted. In
the forward pass the function is computed normally, in our case the binary
conversion function. I In the backward pass it approximates the gradient
function by substituting it with the identity. This allows to prune and learn
weights during training by propagating gradients through the discrete mask-
ing operation. A final key factor of this method is that the loss function is
given by the sum of 2 components: a task loss Ltask and a regularization
R(S) component corresponds to the sum of all the scores.

Movement pruning was originally proposed as an unstructured method,
but then it was adapted to structured pruning and even to transformers
[17]. In such case a single score is associated to multiple weights. In this
way weights belonging to the same group are masked all together, therefore
providing structured pruning.

This thesis aims to advance efficient vision transformer design through
structured movement pruning. I propose techniques to prune attention heads
and other components based on importance scores optimized during training.
The next chapter details this methodology which was implemented using the
PLiNIO [18] library. This library provides ready to use high level components
for linear and convolutional layers, and also lower level components that allow
the creation of new pruning strategies for unsupported layers such as MHSA.

20

Chapter 3

Proposed Pruning
Methodology

This chapter introduces the proposed structured pruning methodology for vi-
sion transformers. First, we review the transformer architecture and discuss
structured pruning opportunities within the model. Next, we analyze pos-
sible combinations of pruning strategies to the multi-headed self-attention
layers. Then, we present techniques to prune other components like MLP
and Patch Embedding layers in a structured manner.

3.1 Transformer Architecture and Structured
Pruning

As discussed in chapter 2, the key components of a transformers are MHSA,
FFN, and layer normalization. Structured pruning aims to remove either
entire modules or substructures to improve efficiency.

For vision transformers like ViT and DeiT, the focus is on the encoder
which applies self-attention to image patches. Structured pruning can remove
entire attention heads based on importance scores. In FFN layers, whole
hidden units can be pruned. Layer normalization blocks can be pruned as
well.

Structured pruning can provide direct acceleration by reducing computa-
tions. For example, pruning attention heads reduces the dimensionality of
the key, value, and query projections. This decreases the overall scaled dot
product attention costs.

Here structured pruning is implemented through a training scheme with

21

Proposed Pruning Methodology

learnable binary masks. Specifically, in addition to the standard model
weights W, binary mask importance scores S are introduced for each prun-
able structure. The overall optimization problem becomes minimizing both
the task loss Ltask(W ; S) and a masking cost Lcost(S) over the weights W
and masks S jointly:

min
W,S

Ltask(W ; S) + λLcost(S) (3.1)

where λ controls the sparsity regularization strength. The masking cost
Lcost encourages sparsity in S, which in turn zeros out structures in W . This
prunes structures based on importance learned during training itself.

3.2 Block Movement Pruning for Linear Lay-
ers

Figure 3.1: Graphical representation of Linear layer pruning

Consider a standard linear layer parameterized by a weight matrix W ∈
Rn×m and bias vector b ∈ Rm. The layer maps an input x ∈ Rn to an output
y ∈ Rm:

y = Wx + b (3.2)

To enable structured sparsity, we partition W into its m columns W i ∈
Rn×1, and b into its components bi ∈ R. Let M i ∈ {0, 1} be a binary mask
selecting whether column W i and component bi are pruned:

M i = 1(Si≥τ) (3.3)

where Si is a learned importance score for the ith component of y and
τ ∈ [0, 1] is the masking threshold. If Si is below the threshold τ , multiplying

22

3.3 – Block Movement Pruning for Convolutional Layers

by the mask M i = 0 zeros out the entire column W i and the component
bi to induce sparsity. A regularization penalty on Si encourages masking
less important output channels. Thanks to the straight-through estimator,
gradients relative to W and b are propagated through the discrete masks.

In this setting the deletion of all channels is possible, in such case then
the layer would output only the vector 0m. If this happens than the network
graph becomes disconnected, so all the inputs would lead to the same result
and the gradients would propagate only through the part of the network
connected to the outputs. To avoid such possibility, we fix Si = 1 for an
arbitrary number of output channels, in this way we force M i = 1 therefore
impeding the layer from outputting just zeros.

All the masks M i associated to the layer can be stacked into a vector
M = [M1; ...; Mm] ∈ {0, 1}m, so the output is:

y = M ⊙ (Wx + b) (3.4)

where ⊙ represent the element-wise multiplication. This formulation en-
ables block structured pruning of linear layers by masking output channels
based on importance. Such importance is learned through a regularization
loss R(nin, S), where nin is the number of input features of a layer and
S = [S1; ...; Sm] is the vector of scores for the output of such layers. The loss
can be defined as

R(nin, S) = (nin + 1)
mØ

i=1
Si (3.5)

3.3 Block Movement Pruning for Convolu-
tional Layers

In the ViT architecture, the first operation is a patch embedding layer con-
sisting of a convolutional projection. This convolution has a kernel size of
k × k and a stride of k × k, mapping the input image into non-overlapping
patches which are then flattened into a sequence. As the patch embedding
represents the first transform in ViT, it is an important target for pruning
to induce sparsity in the model. In this section, we describe a structured
pruning approach based on block movement pruning to sparsify the patch
embedding convolution in a manner that aligns with computational efficiency.

23

Proposed Pruning Methodology

Figure 3.2: Graphical representation of Convolutional layer pruning

Consider a standard convolutional layer parameterized by a weight tensor
W ∈ Rn×m×k×k and bias vector b ∈ Rm. The layer maps an input feature
map X ∈ Rn×h×w to an output Y ∈ Rm×h′×w′ (in ViT h′ = h

k , w′ = w
k) via:

Y = W ∗ X + b (3.6)

Yi,p,q =
nØ

l=1

kØ
r=1

kØ
s=1

Wl,i,r,sXl,p+r−1,q+s−1 + bi (3.7)

where ∗ denotes the convolution operation, and the addition of the bias b
is broadcasted to h′ and w′ dimensions.

To enable structured sparsity, we can partition the m output channels of
W into blocks. Let M c ∈ {0, 1} be a binary mask selecting whether output
channel c is pruned:

M c = 1(Sc≥τ) (3.8)

where Sc is a learned channel importance score and τ ∈ [0, 1] is a threshold.
Applying M c allows to zero out output channel c in W and the c component
of b to induce sparsity. A regularization penalty on Sc encourages mask-
ing unimportant channels. Also in this case the STE, is used to propagate
gradients through the discrete masks.

To avoid masking all channels, we fix Sc = 1 for some arbitrary channels,
forcing M c = 1.

24

3.4 – Block Movement Pruning for MHSA

Stacking the masks into M = [M1; ...; Mm] ∈ {0,1}m, the is computed as:

Y = M ⊙ (W ∗ X + b) (3.9)

Yi,p,q =
nØ

l=1

kØ
r=1

kØ
s=1

M i(Wl,i,r,sXl,p+r−1,q+s−1 + bi) (3.10)

where ⊙ denotes element-wise multiplication broadcasted to dimensions h′

and w′. This formulation enables block structured sparsity for convolutional
layers. Sparsity is learned through a regularization loss R(nin, S), where nin

is the number of input features of a layer and S = [S1; ...; Sm] is the vector
of scores for the output of such layers. The loss can be defined as

R(nin, S) = (nink2 + 1)
mØ

i=1
Si (3.11)

3.4 Block Movement Pruning for MHSA

Figure 3.3: Graphical representation of MHSA layer pruning

A core component of this approach involves extending the described prun-
ing of linear layers to transformer self-attention layers. I propose assigning

25

Proposed Pruning Methodology

an importance score Si
H to each attention head i ∈ {1, ..., H}. Additionally,

importance scores Sj
QK and Sz

V are assigned to column of the query/key pro-
jections and each column z of the value projection for all heads. The heads
and columns with the lowest importance are pruned by masking out the
corresponding query, key, and value transformations. Query and key dimen-
sions must match because they are combined with a dot product to calculate
attention scores, on the other hand value dimensions are independent from
both.

Formally, consider a self-attention layer as defined in equation (2.2) with
H heads, query and key dimension m and value dimension p. Let W h

Q,
W h

K ∈ Rn×m and W h
V ∈ Rn×p represent the query, key, and value projections

for an attention head h ∈ 1, ..., H.
M i

H ∈ [0,1] is the binary pruning mask for head i. M j
QK ∈ [0,1] is the

pruning mask for the jth column of W i
Q, W i

K∀i ∈ {1, ..., H}. M z
V is the

pruning mask for the zth column of W i
V ∀i ∈ {1, ..., H}

The binary pruning masks M i
H , M j

QK , M z
V are derived from continuous

importance scores Si
H , Sj

QK , Sz
V :

M i
H = 1(Si

H≥τ) (3.12)
M j

QK = 1(Sj
QK≥τ) (3.13)

M z
V = 1(Sz

V ≥τ) (3.14)

where τ ∈ [0,1] is a threshold. Thanks to the straight-through estimator,
gradients are propagated through the discrete masks.

Formally attention head i is defined as:

Headi(X) = M i
HSoftmaxrow

(XW i
Q ⊙ MQK)(XW i

K ⊙ MQK)⊤ñqm
i=1 M i

QK

 XW i
V ⊙ MV

(3.15)

where MH = [M1
H ; ...; MH

H], MQK = [M1
QK ; ...; Mm

QK], MV = [M1
V ; ...; Mm

V] ∈
{0,1}m and ⊙ denotes element-wise multiplication.

A sparsity penalty R(nin, SH , SQK , SV) encourages pruning uninformative
dimensions. Please note that SH = [S1

H ; ...; Sm
H], SQK = [S1

QK ; ...; Sm
QK], SV =

[S1
V ; ...; Sm

V] and nin is the dimension of the input. The penalty is defined as:

26

3.5 – Movement Pruning for Layer Normalization

R(nin, SH , SQK , SV , SO) = nin

hØ
i=1

Si
H(2

mØ
i=1

Si
QK +

pØ
i=1

Si
V) + (

hØ
i=1

Si
H

pØ
i=1

Si
V + 1)

dØ
i=1

Si
O

(3.16)

where SO ∈ Rd are the scores for the output linear projection of the MHSA.

3.5 Movement Pruning for Layer Normaliza-
tion

Figure 3.4: Graphical representation of Layer Normalization pruning

Layer normalization (LN) normalizes token representations across chan-
nels independently per token. Consider input X ∈ RL×d with L tokens of
dimension d .

LN is applied token-wise:

LN(X)i = Xi − µi

σi
γ + β (3.17)

where µi and σi are the mean and standard deviation statistics calculated
per token i across its d dimensions. While γ, β ∈ Rd are learnable parameters.

To prune dimensions, each has a mask M c ∈ {0, 1} derived from a score
Sc:

M c = 1(Sc≥τ) (3.18)

where τ ∈ [0,1] is a threshold. Applying Mc zeros out dimension c in X,
and must be excluded when calculating the new LN statistics: µ̃, σ̃. Therefore
layer Normalization becomes:

27

Proposed Pruning Methodology

LN(X)i = Xi − µ̃i

σ̃i
γ ⊙ M + β ⊙ M (3.19)

Where ⊙ is the element-wise multiplication and MV = [M1; ...; Md] ∈
{0,1}d. A sparsity penalty R(S), where S = [S1; ...; Sm] encourages pruning
uninformative dimensions.

R(S) = 2
dØ

i=1
Si (3.20)

3.6 Transformer Architecture pruning strate-
gies

When applying block movement pruning to components like MHSA layers
and FFNs in transformers, several approaches can be taken regarding sharing
or independence of pruning masks across layers and blocks.

3.6.1 Unshared Masking
The first strategy, shown in figure 3.5 is to have all pruning masks inde-
pendent. Each attention head, projection row, FFN unit, etc. has its own
dedicated importance score and mask. This provides maximal flexibility to
prune any individual component’s output based on importance. However,
due to residual connections, output dimensions of attention layers, FFN lay-
ers, and patch embedding must match otherwise they cannot be reduced.
That is because channels pruned in some layers may be retained in oth-
ers, preventing removal of pruned weights from the network. Therefore this
method is used only as an upper bound for the following strategies.

3.6.2 Shared Residual Masking
To enable reduction of layers connected by residuals, their pruning can be
coupled for structural consistency (figure). The patch embedding output,
class token, positional embeddings, attention outputs, and FFN outputs
share a common mask. Residual connections then carry zeros in masked

28

3.6 – Transformer Architecture pruning strategies

Figure 3.5: Example of unshared pruning, boxes in red are pruned weights.

channels, allowing downstream layers to reduce size by removing them. In-
ternal layers of MHSA and FFNs can still be masked independently for flex-
ibility. However, in shared masking a mask affects many more parameters,
therefore masking a single channel will affect much more the cost loss. To
avoid pruning only residual-connected layers we need to rebalance the opti-
mization problem properly.

Figure 3.6: Example of shared residual dimension pruning, boxes in red are
pruned weights.

29

Proposed Pruning Methodology

3.6.3 Full Sharing
An even more constrained approach is to share all pruning masks (figure 3.7),
including those of internal transform layers in each block. This means the
same mask would be applied to the query, key, and value projections within
MHSA as well as internal FFN layers across multiple encoder blocks. While
this maximizes structural consistency, it leaves no flexibility for pruning com-
ponents independently.

Figure 3.7: Example of full sharing pruning, boxes in red are pruned weights.

3.6.4 To learn or not to learn
With each mask potentially being learnable or fixed, there is a combinatori-
ally large space of possible masking configurations to search. Trying all com-
binations was intractable. As an initial study, I fix either: heads masks, head
dimension masks, FFN masks or hidden dimension masks. This reduces the
search space to a tractable size. Further work could expand the search space
to combinations of different kinds of masking. However, exploring deeply
such space would surely require a significant amount of computational time
or resources.

30

Chapter 4

Experimental Setup

This chapter details the experimental setup used for evaluating the proposed
structured pruning techniques on vision transformer models. The experi-
ments specifically aim to characterize the accuracy-size trade-off attained
under different configurations, such as independent versus shared masking.
The metrics measured include Top-1 classification accuracy on Tiny Ima-
geNet and CIFAR-10 and number of parameters. This chapter describes the
adopted ViT models, training methodology and datasets used in the experi-
ments.

4.1 Experimental Setup

4.1.1 Datasets
Two image classification datasets are utilized to comprehensively evaluate
the proposed pruning techniques - CIFAR-10 for initial analysis and ablation
study, and Tiny ImageNet for assessing technique effectiveness on larger-scale
data.

CIFAR-10 [19] consists of 60,000 32x32 low resolution color images evenly
distributed over 10 classes, with 50,000 images for model training and 10,000
for validation and testing each. The small dataset size allows rapid it-
eration on architectural decisions . The balance across classes in train-
ing/validation/testing prevents skew in performance measurements. CIFAR-
10 is adopted to evaluate pruning techniques prior to scaling up to larger
datasets.

Tiny ImageNet [20] comprises 100,000 64x64 resolution images evenly dis-
tributed across 200 classes. The data is divided into training (80,000 images),

31

Experimental Setup

validation (10,000 images), and testing (10,000 images) sets. The higher res-
olution and increased number of classes better represents real-world visual
recognition challenges then CIFAR-10. Tiny ImageNet is a subset of the
full ImageNet database designed for this intermediate stage of testing before
tackling the full ImageNet benchmark.

ImageNet, containing over 1 million diverse high resolution images across
1000 classes, is the ultimate computer vision dataset benchmark. However,
its massive scale poses challenges due to computational resource limitations,
and therefore it was not adopted here but it will considered in future works.

4.1.2 Model Architectures

The Vision Transformer (ViT) [3] forms the core model architecture for eval-
uating the proposed pruning techniques. Specifically, the ViT-Tiny and ViT-
Small configurations are utilized, which trade-off accuracy and computational
requirements.

ViT-Tiny uses an input resolution of 384x384 pixels with 16x16 non-
overlapping image patches as input to the Transformer encoder. The encoder
comprises 12 blocks. ViT-Tiny has 3 attention heads per block and a hidden
state dimension of 192, resulting in approximately 5.8 million parameters.

ViT-Small increases capacity with 6 attention heads per block and hidden
dimension of 384, yielding approximately 22.2 million parameters. Both mod-
els contain 12 encoder blocks and 16x16 input patches. The larger ViT-Small
aims to provide higher accuracy at the cost of greater compute requirements
and so it will be trained on Tiny ImageNet, while ViT-Tiny will be trained
on CIFAR-10.

Models are implemented in Python 3.10 using PyTorch 2.0, and the PLiNIO
[18] library provides tools for implementing the proposed structured pruning
techniques, including both ready-made components for pruning CNN and lin-
ear layers along with lower-level tools to construct custom structured pruning
of components like MHSA.

As vision transformers are difficult to train from scratch, model weights
are initialized from the timm checkpoints pretrained on ImageNet and fine-
tuned during training. This transfers learned feature representations to en-
able training transformer models on limited compute resources.

32

4.2 – Ablation Study

4.1.3 Training Methodology

The training data consists of the full CIFAR-10 or Tiny ImageNet training
sets, augmented on the fly via multiple random transformations. Images are
first resized to match the transformer input dimensions using bicubic interpo-
lation. RandAugment [21] is applied with two operations and a magnitude
of 9, followed by image normalization. Additional augmentations include
MixUp [22] with αMixUp = 0.8 and CutMix [23] with αCutMix = 1 and 0.1
label smoothing. Finally, pixel-level [24] random erasing is applied with 25%
probability. This aggressive augmentation regime aims to improve model
generalization, prevent overfitting and reach SoTA results [25].

The training process involves two key phases - initial structured pruning
to learn importance scores and induce sparsity, followed by fine-tuning of the
sparse model.

For structured pruning, the AdamW optimizer is utilized with a cosine
annealing learning rate schedule employing cyclical warm restarts [26]. The
learning rate decays from an initial value of 1e-4 down to 1e-8 every 4 epochs,
with the cycle repeated throughout training. Warm restarts help unmasked
weights compensate for recently masked parameters. A batch size of 32 for
CIFAR-10 and 512 for Tiny ImageNet are used to maximize available GPU
utilization. Weight decay is set to 5e-2 for model weights and 0 for importance
scores, preventing the optimizer from masking all possible components. Fur-
thermore, the learning rate for shared masks is scaled by 1−number of times shared

total masks
to avoid over-representing shared masks. This pruning phase lasts up to 500
epochs, although training stops early if validation accuracy has degraded over
the past 20 epochs while model size did not improve for 20 epochs.

Next, the masked structures are removed and the model is fine-tuned to
recover accuracy. Learning rate and batch sizes are unvaried. The learning is
now scheduled without warm restarts. Fine-tuning is performed for at most
100 epochs, although training can stop early if the validation accuracy has
not improved in the last 10 epochs.

4.2 Ablation Study
An ablation study is performed to systematically determine optimal con-
figurations of the proposed structured pruning techniques. Isolating and
evaluating each factor provides insights into how it affects the accuracy-size
tradeoff.

33

Experimental Setup

Experiments are conducted by trying different combinations of regular-
ization λ, mask sharing schemes and mask fixing decisions. Studying these
parameters in a controlled setting informs best practices when applying the
techniques. Guidelines for optimally configuring the techniques are provided
based on the empirical results to maximize the accuracy and efficiency ben-
efits of structured pruning.

The ablation study experiments are performed on the CIFAR-10 dataset
using the ViT-Tiny architecture. The following list shows how the key pa-
rameters are chosen:

• Pruning hyperparameter λ - Tested values of 5e-7, 1e-7, 5e-8, 1e-8.

• Mask sharing methodology - Compared shared residual masking and full
sharing across all layers.

• Mask fixation schemes - Explored no fixing, whole heads, residual masks,
internal layer of FFNs, and head dimensions.

This comprises a total search space of 40 possible combinations . Each
combination is then tested on 3 random seeds, so a total of 120 individual
training experiments are conducted for thorough analysis.

In addition to the 40 configurations previously described, we conduct fur-
ther experiments using the unshared masking scheme to provide an upper
bound on performance. The unshared scheme assigns independent masks to
each component as described in Chapter 3, giving maximum flexibility but
no structural consistency.

For the unshared masking experiments, we evaluate the same 4 values of
λ {5e-7, 1e-7, 5e-8, 1e-8} with 3 random seeds for each λ. This comprises an
additional 12 training runs to complement the 120 already tested.

The motivation is that unshared masking provides an oracle upper bound
on the attainable accuracy, since it can freely prune any individual compo-
nent. Comparing shared masking techniques to this upper bound quantifies
the representational capacity sacrificed for structural consistency.

4.3 Evaluation on Tiny ImageNet
Based on the thorough ablation study, we select the optimal structured prun-
ing configuration and compare it against baselines on the larger Tiny Ima-
geNet benchmark.

34

4.3 – Evaluation on Tiny ImageNet

Specifically, we analyze the ablation study outcomes to determine which
configuration obtained the most Pareto optimal results on CIFAR-10. A
setting is Pareto optimal if no other configuration had both better accuracy
and lower complexity. We select a pruning scheme with many pareto optimal
results across the hyperparameter sweeps for each of the random seeds. This
Pareto optimal configuration used on Tiny ImageNet using the ViT-Small
architecture to evaluate how the method transfers to larger-scale data.

For comparison, we train some baseline vision transformer models:

• Unshared masking: Assign independent masks to each component

• ℓ1 regularization: Induce sparsity via LASSO penalty on weights asso-
ciated to the same channel.

• ℓ2 regularization: Limit model capacity via Ridge penalty on weights
associated to the same channel.

The unshared masking provides an upper bound on accuracy by freely
pruning any individual component. The ℓ1 and ℓ2 pruning baselines provide
a simple comparison baseline to compare against our method. ℓ1 and ℓ2
methods where implemented with the

These techniques are tuned to match the computational complexity of
our method, as measured by number of parameters, for fair comparison.
This evaluates whether structured pruning provides benefits over indepen-
dent norm pruning and magnitude pruning approaches when controlling for
efficiency.

Outcomes on Tiny ImageNet can demonstrate if our structured pruning
method transfers to larger scale vision tasks. Comparisons to the baselines
reveal whether our approach efficiently maximizes accuracy.

35

36

Chapter 5

Results

This chapter presents detailed experimental results and analysis evaluating
the proposed structured pruning techniques for efficient vision transformer
design. Outcomes of the extensive ablation study on CIFAR-10 are quan-
tified, including impacts of key factors on accuracy and efficiency tradeoffs.
The optimal configuration is selected and evaluated against baselines on Tiny
ImageNet to demonstrate technique viability on larger-scale data.

5.1 Ablation Study Outcomes
Table 5.1 presents a summary of accuracy and number of parameters for the
40 masking configurations in the ablation study on CIFAR-10 described in
Chapter 4. The table organizes results by the hyperparameter λ, sharing
scheme, and fixed components.

The ablation study results table provides insights into how the key factors
of pruning regularization strength, sharing scheme, and fixed components
affect the accuracy-efficiency tradeoff. Several notable trends emerge from
the data reported in table 5.1. For example, we notice that keeping the
hidden dimension consistently yields higher accuracy across configurations up
to 18%, though at the expense of increased model size of 389K parameters. In
contrast, making all masks learnable generally results in the smallest models,
reaching as little as 165K parameters, but with significant loss in accuracy
from the most accurate configuration of up to 21%. While table 5.1 is useful
for tracking scores across configurations, but it does not clearly highlight
optimal solutions in the accuracy against size space. For this reason we
perform a Pareto analysis. The accuracy-size Pareto frontier reveals optimal
balancing of the tradeoffs. This Pareto analysis provides clearer guidelines

37

Results

than raw scores for identifying techniques to attain high performance at
small size. This analysis is resumed in table 5.2 and is visually represented
in figures 5.1, 5.2, and 5.3. Each figure represents the results obtained using a
different random seed, this approach helps to evaluate the proposed method
performance independently of the randomness involved in training.

The ablation study results demonstrate that two pruning strategies sub-
stantially underperform across configurations: pruning all structures except
the FFN layer, and full sharing of masks. Pruning every component besides
the FFN consistently leads to zero Pareto optimal solutions with respect to
the other methods. This indicates that the FFN alone lacks representational
capacity for the task. Full sharing also exhibits significant accuracy drops for
most settings, only achieving Pareto optimal solutions below roughly 600K
parameters with an accuracy up to 86% that is excessively low given the
simplicity of CIFAR-10. Based on these clear deficiencies observed, both
non-FFN pruning and full sharing will be excluded from evaluation on the
more complex Tiny ImageNet benchmark.

The pareto frontier illustrates that some structural fixing combined with
shared residual masking prove to be superior. In particular, the sharing of
masks only between residual-connected layers while fixing heads or hidden
dimensions results in Pareto optimality in 9 and 8 out of the 12 experiments
respectively, with accuracy as high as 96% with less that 50% of the original
parameters. This indicates that these two structured pruning schemes effec-
tively balance induced sparsity and retention of representation power with
respect to the other combinations. The head and hidden dimension likely
capture the most important information. By retaining them while pruning
the remaining redundant structures, compression is achieved with minimal
accuracy loss.

Additionally, the configuration with shared residual masking and no fixed
structures exhibits Pareto optimality in half of the experiments. While less
consistent than fixing heads or dimensions, its performance remains com-
petitive with roughly 2% less accuracy and 200k less parameters than the
selected configurations. This is also visually depicted in Figures 5.1, 5.2, and
5.3. With no constraints on prunable structures, this scheme provides maxi-
mum flexibility in compressing any component. Despite the slight reduction
in Pareto efficiency, this fully flexible pruning is worth further exploration
given its strong flexibility and overall performance . The Tiny ImageNet
experiments will also evaluate this technique alongside the consistently op-
timal head and hidden dimension fixing schemes. These insights inform the
stronger-performing techniques to focus on in subsequent Tiny ImageNet

38

5.1 – Ablation Study Outcomes

λ wiring keep
heads

keep
hidden
dim.

keep
ffn

keep
head
dim.

Accuracy
Mean ± Std

Size
Mean ± Std

1E-08 full sharing False False False False 96.96% ± 0.24% 3.86M ± 288.02K
1E-08 full sharing False False False True 96.67% ± 0.25% 3.21M ± 617.42K
1E-08 full sharing False False True False 96.81% ± 0.21% 3.86M ± 337.15K
1E-08 full sharing False True False False 97.79% ± 0.12% 5.55M ± 7.07K
1E-08 full sharing True False False False 97.22% ± 0.07% 4.15M ± 150.99K
1E-08 shared residual False False False False 97.18% ± 0.68% 2.98M ± 135.29K
1E-08 shared residual False False False True 96.88% ± 0.25% 3.07M ± 70.25K
1E-08 shared residual False False True False 96.78% ± 0.32% 3.56M ± 399.23K
1E-08 shared residual False True False False 97.23% ± 0.26% 3.98M ± 26.60K
1E-08 shared residual True False False False 97.33% ± 0.07% 3.38M ± 90.26K
5E-08 full sharing False False False False 95.01% ± 0.76% 2.36M ± 240.50K
5E-08 full sharing False False False True 93.65% ± 0.38% 1.32M ± 145.31K
5E-08 full sharing False False True False 94.22% ± 0.52% 2.08M ± 112.05K
5E-08 full sharing False True False False 96.10% ± 0.10% 4.05M ± 16.67K
5E-08 full sharing True False False False 96.17% ± 0.10% 2.78M ± 108.31K
5E-08 shared residual False False False False 94.26% ± 1.86% 1.49M ± 60.28K
5E-08 shared residual False False False True 95.07% ± 0.09% 1.51M ± 243.25K
5E-08 shared residual False False True False 95.03% ± 0.31% 1.73M ± 6.85K
5E-08 shared residual False True False False 96.68% ± 0.05% 2.48M ± 33.78K
5E-08 shared residual True False False False 96.28% ± 0.21% 1.73M ± 83.71K
1E-07 full sharing False False False False 92.33% ± 0.56% 1.42M ± 340.36K
1E-07 full sharing False False False True 91.46% ± 1.85% 1.15M ± 332.41K
1E-07 full sharing False False True False 92.38% ± 0.47% 1.52M ± 168.42K
1E-07 full sharing False True False False 96.02% ± 0.26% 3.09M ± 217.98K
1E-07 full sharing True False False False 94.17% ± 0.61% 1.88M ± 282.96K
1E-07 shared residual False False False False 93.34% ± 0.53% 931.04K ± 45.65K
1E-07 shared residual False False False True 93.59% ± 0.79% 1.16M ± 249.59K
1E-07 shared residual False False True False 92.19% ± 0.09% 1.10M ± 21.46K
1E-07 shared residual False True False False 95.64% ± 0.33% 1.92M ± 30.62K
1E-07 shared residual True False False False 95.15% ± 0.33% 1.06M ± 48.18K
5E-07 full sharing False False False False 73.49% ± 1.00% 165.60K ± 2.25K
5E-07 full sharing False False False True 79.46% ± 0.42% 501.48K ± 437.32K
5E-07 full sharing False False True False 56.48% ± 1.35% 225.95K ± 9.80K
5E-07 full sharing False True False False 86.08% ± 2.54% 536.66K ± 43.92K
5E-07 full sharing True False False False 73.92% ± 2.09% 228.58K ± 26.46K
5E-07 shared residual False False False False 71.32% ± 3.35% 202.71K ± 12.87K
5E-07 shared residual False False False True 74.06% ± 1.42% 232.75K ± 8.91K
5E-07 shared residual False False True False 55.88% ± 2.03% 210.18K ± 10.77K
5E-07 shared residual False True False False 92.71% ± 0.23% 621.23K ± 4.33K
5E-07 shared residual True False False False 70.63% ± 0.83% 188.91K ± 27.63K

Table 5.1: Ablation study results on CIFAR-10. The table shows Top-1
validation accuracy (%), and number of parameters for the 40 shared masking
experiments.

39

Results

experiments.

Figure 5.1: Seed 7
Pareto efficiency analysis of structured pruning configurations on CIFAR-
10. The plots show the accuracy versus number of parameters for the 40
shared masking experiments on three different seeds. The Pareto optimal
configurations are on the black line, and they balance model complexity while
maximizing accuracy compared to other settings from the ablation study

40

5.1 – Ablation Study Outcomes

Figure 5.2: Seed 13

41

Results

Figure 5.3: Seed 42

The ablation study results are compared against two baseline strategies:
unshared pruning and regularization-based pruning. As shown in figures 5.4,
5.5 and 5.6, unshared pruning demonstrates similar accuracy (on average
2% drop) to the Pareto optimal schemes for larger model sizes, and shows
better performance for highly compressed smaller models with 86% accuracy
at just 120K parameters, compared to 75% accuracy for models with mask
sharing of similar size. This indicates being extremely flexible in pruning out
performs representational capacity of shared schemes at high sparsity levels.
Unfortunately the ability to prune structures freely comes at the cost of lim-
ited practical model compression, as the sparsity does not follow the layout
of transformer networks. In contrast, the L1 and L2 norm regularization
baselines , measured at 75%, 50% and 25% sparsity, consistently underper-
form compared to the Pareto frontier with a loss in accuracy of respectively
22%, 13% and 3% . Their naive pruning fails to match the importance-
based masking effectiveness. Overall, the structured ablation study schemes
outperform these commonly employed techniques tuned for an equivalent

42

5.1 – Ablation Study Outcomes

level of sparsity. The benefits of selective structural fixing combined with
importance-based pruning are quantitatively demonstrated.

Figure 5.4: Seed 7
Comparison of the pareto bound of shared pruning experiments against un-
shared pruning, l1 and l2 norm pruning on CIFAR-10.

43

Results

Figure 5.5: Seed 13

44

5.2 – Results on Tiny ImageNet

Figure 5.6: Seed 42

5.2 Results on Tiny ImageNet
The Tiny ImageNet dataset presents a more challenging testbed for vision
transformers, comprising 200 classes of higher resolution 64x64 images. Ex-
periments assess the top performing techniques identified on CIFAR-10, pro-
viding insights into their generalization. All shared tested residual masking
schemes lead to various Pareto optimal results.

Differently from before, here accuracy degrades more rapidly with in-
creased sparsity compared to CIFAR-10. At 70% sparsity (roughly 15M
parameters) the accuracy already lowers to 80% which represents a drop of
7%. The smallest accuracy loss we could achieve was 4% at 18M parame-
ters, 3M less than the original 21M. This highlights the greater complexity
in learning representations for Tiny ImageNet. However, the relative perfor-
mance trends between tested techniques remain consistent with CIFAR-10,
further validating the importance of structured and shared masking.

45

Results

As before, in figures 5.7,5.8 and 5.9 show that the gap between the pareto
optimal results and unshared structured pruning remains similar. Differently
than CIFAR-10, naive L1 and L2 pruning perform quite similar our method
around 75% sparsity, but despite being finetuned their accuracy degrades
way faster than the proposed method, with over 30% accuracy drop at 25%
sparsity .

Overall, the experiments confirm the efficacy of sharing residual masks
transfers from smaller to larger vision datasets, and that they still perform
better than naive methods. The structured schemes offer decent trade-offs,
though higher model capacity is needed to maintain accuracy on Tiny Im-
ageNet. This results provide an insightful direction in the field of pruning
transformers to deploy on resource-constrained platforms.

Figure 5.7: Seed 7
Comparison of the pareto bound of shared pruning experiments against un-
shared pruning, l1 and l2 norm pruning on Tiny ImageNet.

46

5.2 – Results on Tiny ImageNet

Figure 5.8: Seed 13

47

Results

Figure 5.9: Seed 42

48

5.2 – Results on Tiny ImageNet

wiring keep
heads

keep
hidden
dim.

keep
ffn

keep
head
dim.

pareto
optimal

experiments
full sharing False False False False 3 / 12
full sharing False False False True 2 / 12
full sharing False False True False 0 / 12
full sharing False True False False 5 / 12
full sharing True False False False 1 / 12

shared residual False False False False 6 / 12
shared residual False False False True 5 / 12
shared residual False False True False 0 / 12
shared residual False True False False 8 / 12
shared residual True False False False 9 / 12

Table 5.2: Number of times a configuration was Pareto with respect to other
experiments performed on the same seed.

49

50

Chapter 6

Conclusion and Future
Works

This thesis introduced structured pruning techniques tailored to compress
transformers for improved efficiency and thoroughly evaluated them on vi-
sion transformers . An extensive experimental methodology was followed to
provide insights into optimal configurations and trade-offs.

The proposed approach of learned binary masks enables directly removing
structures like heads and dimensions based on importance scores. Compre-
hensive ablation studies on CIFAR-10 determined that shared residual mask-
ing with selective fixing performs best. The benefits transferred to larger Tiny
ImageNet data as well.

These techniques make deploying computationally expensive vision trans-
formers possible on resource-constrained edge devices with only MB of mem-
ory. Structured pruning halved model size with minimal accuracy loss of
1-2% in some settings. However, inherent trade-offs exist between higher
compression rates and degraded accuracy.

While extremely promising, there remain many open questions and av-
enues for future work. The search space of masking strategies could be ex-
panded by combining different types of fixed and learned masks. Additional
tasks beyond image classification could be investigated as well, such as ob-
jection detection and segmentation. Or also new domains such as NLP could
be explored.

Finally, the ultimate assessment would be deployment on actual embedded
systems. The pruned models should be converted to formats amenable to
edge devices and executed to measure real-world throughput, latency, and
power consumption improvements compared to unoptimized transformers.

51

Conclusion and Future Works

In conclusion, this thesis introduced a methodology for structured pruning
of vision transformers guided by extensive experiments. Further research can
build upon these insights to continue advancing efficient transformer design.

52

Acronyms

CNN Convolutional Neural Network

DL Deep Learning

FFN Feed Forward Network

MHSA Multi-Headed Self-Attention

ML Machine Learning

NLP Natural Language Processing

STE Straight Through Estimator

ViT Vision Transformer

53

Bibliography

[1] Ashish Vaswani et al. “Attention Is All You Need”. In: CoRR abs/1706.03762
(2017). arXiv: 1706.03762. url: http://arxiv.org/abs/1706.03762.

[2] Meta AI. SoTA Image Classification on ImageNet. Accessed: 14 Novem-
ber 2023. 2023. url: https://paperswithcode.com/sota/image-
classification-on-imagenet?tag_filter=4%2C17.

[3] Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transform-
ers for Image Recognition at Scale”. In: CoRR abs/2010.11929 (2020).
arXiv: 2010.11929. url: https://arxiv.org/abs/2010.11929.

[4] Krishna Teja Chitty-Venkata et al. A Survey of Techniques for Opti-
mizing Transformer Inference. 2023. arXiv: 2307.07982 [cs.LG].

[5] Harmke de Groot. “IoT and the cloud: A hacked personality and an
empty battery head-ache or an intuitive environment to make our lives
easier?” In: 2015 IEEE SOI-3D-Subthreshold Microelectronics Technol-
ogy Unified Conference (S3S). 2015, pp. 1–5. doi: 10.1109/S3S.2015.
7333501.

[6] Eric Flamand et al. “GAP-8: A RISC-V SoC for AI at the Edge of
the IoT”. In: 2018 IEEE 29th International Conference on Application-
specific Systems, Architectures and Processors (ASAP). 2018, pp. 1–4.
doi: 10.1109/ASAP.2018.8445101.

[7] Google. Coral Dev Board Micro. 2023. url: https://coral.ai/prod
ucts/dev-board-micro.

[8] Sainbayar Sukhbaatar et al. “Weakly Supervised Memory Networks”.
In: CoRR abs/1503.08895 (2015). arXiv: 1503.08895. url: http://
arxiv.org/abs/1503.08895.

[9] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding”. In: CoRR abs/1810.04805 (2018).
arXiv: 1810.04805. url: http://arxiv.org/abs/1810.04805.

54

https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://paperswithcode.com/sota/image-classification-on-imagenet?tag_filter=4%2C17
https://paperswithcode.com/sota/image-classification-on-imagenet?tag_filter=4%2C17
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2307.07982
https://doi.org/10.1109/S3S.2015.7333501
https://doi.org/10.1109/S3S.2015.7333501
https://doi.org/10.1109/ASAP.2018.8445101
https://coral.ai/products/dev-board-micro
https://coral.ai/products/dev-board-micro
https://arxiv.org/abs/1503.08895
http://arxiv.org/abs/1503.08895
http://arxiv.org/abs/1503.08895
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805

BIBLIOGRAPHY

[10] Yang Liu and Mirella Lapata. “Text Summarization with Pretrained
Encoders”. In: CoRR abs/1908.08345 (2019). arXiv: 1908.08345. url:
http://arxiv.org/abs/1908.08345.

[11] Hugo Touvron et al. “Fixing the train-test resolution discrepancy: Fix-
EfficientNet”. In: CoRR abs/2003.08237 (2020). arXiv: 2003.08237.
url: https://arxiv.org/abs/2003.08237.

[12] Hugo Touvron et al. “Training data-efficient image transformers & dis-
tillation through attention”. In: CoRR abs/2012.12877 (2020). arXiv:
2012.12877. url: https://arxiv.org/abs/2012.12877.

[13] Trevor Gale, Erich Elsen, and Sara Hooker. “The State of Sparsity
in Deep Neural Networks”. In: CoRR abs/1902.09574 (2019). arXiv:
1902.09574. url: http://arxiv.org/abs/1902.09574.

[14] Paul Michel, Omer Levy, and Graham Neubig. “Are Sixteen Heads Re-
ally Better than One?” In: CoRR abs/1905.10650 (2019). arXiv: 1905.
10650. url: http://arxiv.org/abs/1905.10650.

[15] Victor Sanh, Thomas Wolf, and Alexander M. Rush. “Movement Prun-
ing: Adaptive Sparsity by Fine-Tuning”. In: CoRR abs/2005.07683 (2020).
arXiv: 2005.07683. url: https://arxiv.org/abs/2005.07683.

[16] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. “Estimating
or Propagating Gradients Through Stochastic Neurons for Conditional
Computation”. In: CoRR abs/1308.3432 (2013). arXiv: 1308 . 3432.
url: http://arxiv.org/abs/1308.3432.

[17] François Lagunas et al. “Block Pruning For Faster Transformers”. In:
CoRR abs/2109.04838 (2021). arXiv: 2109 . 04838. url: https : / /
arxiv.org/abs/2109.04838.

[18] Daniele Jahier Pagliari et al. PLiNIO: A User-Friendly Library of Gradient-
based Methods for Complexity-aware DNN Optimization. 2023. arXiv:
2307.09488 [cs.LG].

[19] Alex Krizhevsky. CIFAR-10. url: https://www.cs.toronto.edu/
~kriz/cifar.html.

[20] Stanford University. Tiny ImageNet. url: http://cs231n.stanford.
edu/tiny-imagenet-200.zip.

[21] Ekin D. Cubuk et al. “RandAugment: Practical data augmentation with
no separate search”. In: CoRR abs/1909.13719 (2019). arXiv: 1909.
13719. url: http://arxiv.org/abs/1909.13719.

55

https://arxiv.org/abs/1908.08345
http://arxiv.org/abs/1908.08345
https://arxiv.org/abs/2003.08237
https://arxiv.org/abs/2003.08237
https://arxiv.org/abs/2012.12877
https://arxiv.org/abs/2012.12877
https://arxiv.org/abs/1902.09574
http://arxiv.org/abs/1902.09574
https://arxiv.org/abs/1905.10650
https://arxiv.org/abs/1905.10650
http://arxiv.org/abs/1905.10650
https://arxiv.org/abs/2005.07683
https://arxiv.org/abs/2005.07683
https://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
https://arxiv.org/abs/2109.04838
https://arxiv.org/abs/2109.04838
https://arxiv.org/abs/2109.04838
https://arxiv.org/abs/2307.09488
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://cs231n.stanford.edu/tiny-imagenet-200.zip
http://cs231n.stanford.edu/tiny-imagenet-200.zip
https://arxiv.org/abs/1909.13719
https://arxiv.org/abs/1909.13719
http://arxiv.org/abs/1909.13719

BIBLIOGRAPHY

[22] Hongyi Zhang et al. “mixup: Beyond Empirical Risk Minimization”.
In: CoRR abs/1710.09412 (2017). arXiv: 1710.09412. url: http://
arxiv.org/abs/1710.09412.

[23] Sangdoo Yun et al. “CutMix: Regularization Strategy to Train Strong
Classifiers with Localizable Features”. In: CoRR abs/1905.04899 (2019).
arXiv: 1905.04899. url: http://arxiv.org/abs/1905.04899.

[24] Zhun Zhong et al. “Random Erasing Data Augmentation”. In: CoRR
abs/1708.04896 (2017). arXiv: 1708.04896. url: http://arxiv.org/
abs/1708.04896.

[25] Xiangning Chen et al. Symbolic Discovery of Optimization Algorithms.
2023. arXiv: 2302.06675 [cs.LG].

[26] Ilya Loshchilov and Frank Hutter. “SGDR: Stochastic Gradient Descent
with Restarts”. In: CoRR abs/1608.03983 (2016). arXiv: 1608.03983.
url: http://arxiv.org/abs/1608.03983.

56

https://arxiv.org/abs/1710.09412
http://arxiv.org/abs/1710.09412
http://arxiv.org/abs/1710.09412
https://arxiv.org/abs/1905.04899
http://arxiv.org/abs/1905.04899
https://arxiv.org/abs/1708.04896
http://arxiv.org/abs/1708.04896
http://arxiv.org/abs/1708.04896
https://arxiv.org/abs/2302.06675
https://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1608.03983

	List of Figures
	List of Tables
	Introduction
	Related Work
	Transformers
	Vision Transformers
	Neural Network Pruning

	Proposed Pruning Methodology
	Transformer Architecture and Structured Pruning
	Block Movement Pruning for Linear Layers
	Block Movement Pruning for Convolutional Layers
	Block Movement Pruning for MHSA
	Movement Pruning for Layer Normalization
	Transformer Architecture pruning strategies
	Unshared Masking
	Shared Residual Masking
	Full Sharing
	To learn or not to learn

	Experimental Setup
	Experimental Setup
	Datasets
	Model Architectures
	Training Methodology

	Ablation Study
	Evaluation on Tiny ImageNet

	Results
	Ablation Study Outcomes
	Results on Tiny ImageNet

	Conclusion and Future Works

