POLITECNICO DI TORINO

Master’s Degree in Data Science and Engineering

Polltecmco
, di Torino

Master’s Degree Thesis

Court Judgment Prediction and
Explanation based on Transformers

Supervisors Candidate
Prof. Luca CAGLIERO Salvatore Junior CURELLO

Dr. Irene BENEDETTO

December 2023






Summary

Over the last few years, Artificial Intelligence (Al) has attracted much attention as
it is becoming increasingly common in our lives. Al involves the development of
automated systems capable of performing tasks that typically require humans. It
can be applied in a wide range of applications such as healthcare, finance, education,
social media, agriculture, etc.

Machine Learning (ML) plays a pivotal role in this context. ML algorithms
have the main advantage that they can adapt and evolve based on the information
that they analyze.

This thesis is dedicated to exploring the legal domain, focusing on using Machine
Learning techniques, particularly those based on Natural Language Processing
(NLP) methods. NLP is a sub-field of Al that tries to make an interaction between
computers and human language in order to enable machines to understand, interpret,
and generate human language.

However, it is important to consider some intrinsic characteristics of this field.
The legal domain is complex, and rich in peculiar terms that are very technical
and unique to this area. Then, a certain knowledge is required to understand
them properly. Unfortunately, common Language Models (LM) face limitations in
this context, since they are trained on general language patterns and do not have
specific knowledge which is essential to understand and interpret legal concepts.
Furthermore, legal documents are typically quite long, verbose, and noisy. The
limitations of LM in terms of the amount of data they can process, is another
significant challenge in this field.

Thesis Objectives

This thesis focuses on two different but closely related tasks. The first one is the
Court Judgment Prediction task. It consists of predicting the outcomes of legal
cases by analyzing patterns in past cases and identifying relevant factors that may
impact the outcome of a court decision. This can be beneficial in many highly
populated countries characterized by a vast number of pending legal cases that
impede the judicial process due to multiple factors, including the unavailability of
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competent judges.

The second part of this thesis, instead, focuses on the Court Judgment Prediction
and Fxplanation task. In the legal domain, the mere prediction of a legal case is
not sufficient if not accompanied by the corresponding explanation. Then, the goal
is to provide a model that not only gives as outcome the final decision of a legal
case but also indicates the reasoning behind the predicted decision.

Contributions

The main contribution of this work is the implementation of an automated system
that performs:

e A Court Judgment Prediction task in which the primary contribution is
an extensive experimentation with various Transformers Models, making a
comparison between Generic models and Domain-specific Transformers.

o A Court Judgment Prediction and Explanation task in which the application
of the occlusions method and attention mechanisms can help to mitigate
the disparity between the explanations generated by the machine and those
manually annotated by legal experts.

Methods

All the experiments have been conducted using the ILDC (Indian Legal Documents
Corpus) which is composed of a large set of Indian Supreme Court cases, expressed
in the English language and annotated with original court decisions (“accepted”
v/s “rejected”).

Concerning the Court Judgment Prediction task, all the Transformers are trained
on the last N tokens of the documents where N is equal to the maximum amount
of tokens supported by each model.

In the Court Judgment Prediction and Explanation task, instead, the /LD Clypert
corpus is used. It consists of 56 documents that are extracted from the Test Set
and given to five legal experts who were requested to predict the judgment and
mark the sentences that they considered explanatory for their decisions. For the
explanation generation, the occlusion method and attention mechanism have been
exploited to extract the most relevant sentences from the case description that best
justify the final decision. Performance evaluation used a battery of metrics that
measure the overlap between the expert annotators’ gold explanations and those
generated by the machine. These metrics essentially quantify how well a system
generates text compared to human standards.
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Results

Regarding the Court Judgment Prediction task, domain-specific Transformer mod-
els such as Legal LSGBERT, CaseLawBERT, and Legal BERT achieved the best
performance in terms of F1-score, outperforming generic models. This demonstrated
their effectiveness, even though they were pre-trained on US/EU legal documents
with legal systems differing significantly from the Indian context. Furthermore,
the application of Hierarchical Transformer models led to improved performances.
In particular, the results were slightly higher when using the [CLS] token instead
of Mean and Max pooling, proving to be the most effective strategy in almost all
models.

In the Court Judgment Prediction and Explanation task, the results obtained
using the occlusions method show that, by considering the top 40% of sentences, the
baseline is outperformed. Using the attention mechanism, instead, achieved similar
performances to the baseline, but the explanations were shorter than the golden
annotations of the legal experts. In some cases, this brevity can be considered an
advantage, facilitating quick insights to expedite the decision-making process.

Conclusion and future works

Domain-specific Transformer models in Court Judgment Prediction task show
effectiveness in different legal systems. Occlusions method and attention mecha-
nisms are crucial for extracting relevant sentences and generate the explanations.
Improvements could involve applying Transformer models pretrained on Indian
legal documents to capture cultural nuances. Extending hierarchical attention
models for datasets with multi-modal information is a potential enhancement for
the explanation generation.
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Chapter 1

Introduction

In recent years, Al (Artificial Intelligence) has suddenly reshaped the way we live
and interact with the world around us. Al involves the development of automated
systems capable of performing tasks that typically require humans. These tasks
include a wide range of activities such as recognizing patterns, decision-making, and
visual perception. The main advantage is that these new methods can be applied
to various domains like healthcare, finance, education, social media, agriculture,
and beyond.

This thesis specifically directs its focus on the legal domain, in which the vast
majority of data in this field are represented in text forms, such as judgment
documents, contracts, and legal opinions. The ability of Al to analyze vast amounts
of textual information can be a big advantage for legal professionals who invest
substantial time in tasks such as legal research, contract analysis, reviewing legal
documents, etc.

Machine Learning (ML) plays a pivotal role in many AI applications. ML
algorithms have the main advantage that they can adapt and evolve based on the
information that they analyze. Most of the ML techniques applied in the legal
context are based on Natural Language Processing (NLP) methodologies. NLP is a
sub-field of ML that tries to make an interaction between computers and humans
in order to enable machines to understand, interpret, and generate human language.
Concerning the legal domain, NLP techniques can be utilized for various tasks
such as Document analysis [1], Legal Chatbots (2], Contract Management [3], etc.
In Case Summarization, for instance, NLP techniques are exploited to generate
concise summaries of legal cases in order to capture the most essential details and
allow even those who are not experts to understand legal concepts [4].

Another promising application is Predictive Analysis. It consists of predicting the
outcomes of legal cases by analyzing patterns (in past cases) and identifying relevant
factors that may impact the final decision. An automated system capable of assisting
a judge by giving an accurate prediction of the outcome of a legal case can speed
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Introduction

up the entire judicial process. Many highly populated countries, characterized by a
huge amount of pending backlog of court cases and the unavailability of competent
judges can benefit from this [5]. However, the mere prediction of a legal case is not
sufficient if not accompanied by the corresponding explanation.

In this context, this thesis endeavors to tackle the task of Court Judgment
Prediction and Ezxplanation (CJPE), aiming to predict the outcome of a legal case
and provide the corresponding explanation given the case description.

This undertaking is far more challenging than standard text-classification tasks
since there are some intrinsic factors of the legal domain to consider:

1. Complexity: the legal domain is complex, with lots of peculiar terms that
require specific skills to be navigated. These terms are often very technical and
it is required a certain knowledge to understand them properly. Unfortunately,
common Language Models (LM) face limitations in this context. These models
are not familiar with these technical terms since they are typically trained
on general language patterns and do not have the specific knowledge that is
essential to understand and interpret legal concepts. Consequently, it becomes
evident that the constraints of existing language models impede the effective
processing of legal language [5] [6].

2. Document length: Legal documents, such as judgments and court decisions,
are typically quite long, verbose, and noisy, since they may include a wide
range of potential scenarios and contingencies. It is really challenging to
find a simple method to extract and directly access the facts and arguments.
Therefore, it is important to consider also the limitations of LM, in terms of
the amount of data they can process when working with legal documents.

3. "Understanding” and "applying”: giving a proper explanation for a prediction
requires understanding the facts, following the arguments, and applying legal
rules, and principles to arrive at the final decision [5]. This can be a problem,
especially in those cases in which a model is trained on legal documents char-
acterized by different subjective interpretations of the law by their respective
authors [7].

4. Metrics of measure: unlike traditional metrics (accuracy, precision, recall,
etc.) that indicate how well a ML model performs when making predictions,
assessing the quality of generated explanations is very challenging [8]. Legal
cases often involve intricate details, and subjective interpretations of the law
that make difficult the selection of suitable metrics to evaluate the performance
of an explanability model [9].

For these reasons, the goal of this thesis is to provide a system capable of giving
not only an accurate prediction of the outcome of a court case but also how it
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Introduction

arrives at that decision. It contributes to implementing an automated system that
addresses the following tasks:

o Court Judgment Prediction: it consists of predicting the final decision of the
court through the use of Transformer models. The analysis demonstrated that
a legal pre-training enables achieving higher performance.

o Court Judgment Prediction and Explanation: it consists of providing the
corresponding explanation of the prediction exploiting the attention mechanism
and occlusions method. These approaches have contributed to reducing
the disparity between the explanations generated by the machine and those
produced by humans.

The chapters are structured as follows:

o The first chapter introduces the main objective of this work, giving an intro-
duction to the problem, describing the legal context, and highlighting the
limitations of NLP techniques in this domain.

o The second chapter revises some basic concepts of Natural Language Processing
methods.

o The third chapter introduces the task descriptions.

o The fourth chapter gives an overview of the dataset used during the experi-
mental activity.

o The fifth chapter includes a description of the existing works that are more
related to this thesis. Some of the methods illustrated in this chapter will be
further investigated in the experiments.

e The sixth chapter is dedicated to describing the methods proposed.
o The seventh chapter is dedicated to detailing the experiments conducted.

o The concluding chapter offers a summary of the study and some future
directions.



Chapter 2

Natural Language
Processing

This chapter introduces some basic concepts of Natural Language Processing to
provide fundamental knowledge needed for comprehending the underlying principles
behind the methods used in this thesis.

2.1 Fundamentals

Natural language processing (NLP) investigates the use of computational methods
to process or to understand human (i.e., natural) languages to perform useful tasks.
It combines computational linguistics, computing science, cognitive science, and
artificial intelligence in an interdisciplinary field [10].

Due to the explosive growth of textual data available NLP has become important
in recent years, especially with the help of machine learning and deep learning
techniques it is now possible to solve a wide range of problems, such as sentiment
analysis, machine translation, text summarization, etc.

In this sense, it is crucial to understand the context in which the language is used.
But this step involves multiple challenges. Firstly, in many languages a word can
be used in multiple senses, so it is important to eliminate the ambiguity of all such
words. For this reason, Word-sense disambiguation is an ongoing research area in
NLP whose goal is to eliminate the ambiguity of all such words so that their usage
in a particular document can be detected [10]. Second, the understanding task
involves documents from different domains because each domain carries a certain
property that natural language understanding models should learn to capture.
Third, many words could be used as proxies for other concepts. For instance, a
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common legal metaphor used in court cases is "The smoking gun". This metaphor
is commonly used in criminal cases to refer to evidence that is conclusive and
irrefutable so its meaning must be captured by terms that are not "lexically" related
to the lexical items in the metaphor [11].

Nevertheless, a NLP algorithm can be considered successful if it accurately
achieves its task, regardless of whether it has any explicit knowledge of the under-
lying linguistic structure or concepts involved.

2.1.1 Terminology

In this section, are listed some key definitions that can be found throughout the
entire work.

o Character: is the smallest text unit. It comprises letter, digit, space, and
special character.

e N-gram: is a contiguous sequence of N textual units, where units can be words,
letters, and phonemes.

o Token: is the fundamental unit of NLP, it is composed of a sequence of
characters used as input. Tokens can be words, symbols, or numbers.

e Lemma: is the canonical form of a word, chosen from a set of candidate forms
in a dictionary.

o Sentence: is a text snippet separated by punctuation (e.g., full stop, question
mark, exclamation mark).

e Paragraph: is a unit of text that is composed of multiple sentences.
o Section: is a unit of text that is composed of multiple paragraphs.

o Corpus: can be considered as the dataset for analysis in NLP. It consists of
large and structured text that represents the input.

2.1.2 Text Representation

In the field of NLP, the representation of the data is crucial. With the recent
growth of the availability of text in a digital form, to be capable of transforming
human language into a representation that a machine can understand is essential.
The text representation in NLP consists of the conversion of words, sentences, or
documents into numbers or vectors so that they can be analyzed and processed by
Machine Learning (ML) algorithms.
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Bag-of-Words

Bag-of-Words (BOW) is a text representation approach widely used in NLP. The
concept is quite simple but useful. BOW is a model that represents the text as
a set (or "bag") of words, ignoring the order. It counts how many times a word
appears in the document, or collection of documents, without taking into account
the sequence of the words and their positions in the text. The entire process is
divided into the following steps:

1. Tokenization: it involves dividing the text into words or "tokens".

2. Vocabulary creation: a vocabulary is created containing all the distinct
words that appear in the documents.

3. BOW vector: for each document (or sentence), a numeric vector is created
with size equal to the number of words in the vocabulary. Each position of
the vector represents a word in the vocabulary, and the value in each position
indicates the number of occurrences of the word in the document.

The BOW model has some limitations:

o The order of the words is ignored, but it takes into account only their frequen-
cies. Then, the information of the context is lost, and sentences with different
meanings but with the same words have the same BOW representation.

o BOW vectors can be high dimensional and can bring sparse representations in
which the majority of the values that compose the vectors are equal to zero,
causing an increase in term of computational cost.

Term Frequency-Inverse Document Frequency

TF-IDF (Term Frequency-Inverse Document Frequency) representation is a tech-
nique used to evaluate the importance of the words in a document or collection of
documents. This approach can be divided into two parts:

o« TF (Term-Frequency): the first component is the frequency of the words,
which measures how many times a word appears in the document. This value
is computed by dividing the number of times that a specific word appears
in the document by the total number of words in the document. It can be
computed using the following formula:

Nij

d;

where n; ; is the number of occurrences of the word ¢ in the document j, and
d; is the total number of words in the document j.
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« IDF (Inverse Document Frequency): the second component measures the
importance of the word in whole document corpus. It can be expressed as the
logarithm of the ratio between the total number of documents in the corpus
and the number of documents that contain the word 7. Its role is to value rare
words that appear in a few documents and, at the same, penalize common
words that appear in many documents of the corpus [12]. Mathematically, it
can be expressed as:

: D]
df; = logio—————+ 2.2
Ml =logo g e ay (22)
where |D| is the number of documents in the corpus.
Then, TF-IDF is calculated as:
tfig * idf, (2.3)

2.1.3 Word Embedding

Different than traditional text representation, Word embedding tries to capture
semantic relationships and contextual information. In essence, Word embedding
consists of representing a word by a vector in a continuous vector space where
words with similar meanings are closer.

Word2Vec

Word2Vec is a pioneering approach, proposed by Mikolov et al.[13] in 2013, to learn
word embedding. The idea is to train a neural network in which given a word
(denoted as target word) in a dictionary, a sliding window is built in order to slide
over the text, collect samples for training, and make predictions. The goal is to
predict the surrounding words of the target word. The sliding window is used
to define contextual positive examples (self-supervision). Its size determines how
many words before and after a given word are included as context words. The
authors have also addressed the complementary task which consists on training
a neural network to predict the target word given the context words. For this
reason, they proposed two architectures: the Continuous Skip-Gram model and
the Continuous Bag-of-Word (CBOW) model. The structure of these models is
shown in Figure 2.1.

The Continuous Skip-Gram architecture consists of predicting the surrounding
words given the target word. The target word is given as input to a log-linear
classifier with a continuous projection layer [13], and the goal is to predict the
surrounding words within a certain range of the input word.

7
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Figure 2.1: A framework for learning paragraph vector [14].

Given wy, wo, ..., wr the sequence of training words of cardinality 7', the objective
function of the Continuous Skip-Gram model is to maximize the average log
probability:

E Y ogplwehw) (24)

t=1 —c<j<c,j#0

where c is the size of the training context.

In the Continuous Bag-of-Word model, instead, the goal is to predict the target
word given the surrounding words. In this case, the input layer is constituted by
N words which are encoded to be passed to the projection layer that is applied
to all the words. Here, a hidden vector is created, element-wise averaged, and
passed to the output layer. Finally, the output layer is responsible for generating
the probability distribution across the vocabulary.

Given wy, ws, ..., wr the sequence of training words of cardinality 7', the objective
function of the CBOW is to maximize the average log probability:

[0gP(We|We—rmy ooy We 1y Wet 1y +eey Wegm) (2.5)

where m is the size of the training context.

These architectures have some drawbacks. Firstly, during training, only the
weights corresponding to the target word might get a significant update while the
weights related to the non-target words might receive only a small change or no
change at all. Secondly, the calculation of the final probabilities using the softmax
function is highly inefficient because the computational cost is proportional to the
dictionary size.
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Two further Word2Vec optimizations have been proposed to mitigate these
problems:

o Negative Sampling: rather than attempting to estimate the probability of
being a context word for every word in the vocabulary, the model tries to
predict whether certain words from the training samples are included in the
context or not. While Skip-Gram requires updating a large number of weights,
in Negative Sampling the positive words are still updated but only a randomly
selected small number of negative words will be updated [15].

o Frequent Word Subsampling: with this technique, the number of training
instances involving highly frequent words is reduced. In this way, the overhead
of updating for each occurrence of a highly common word is avoided and
applied only in a subset of instances [15].

2.1.4 Sentence Embedding

For some NLP application is necessary the comprehension of entire sentences.
Sentence embedders have the capability of providing contextualized embedding
for words taking into account that the meaning of a word can change according
the broader context of the entire sentence. Basically, these methods use all the
words in a sentence to capture the context and then then embedding of each word
is performed. Then, by the combination of all the word embeddings into a singe
vector, the sentence embedding is obtained.

Doc2Vec

Doc2Vec, also called Paragraph Vector is an unsupervised algorithm designed to
extract fixed-length feature representations from texts of varying lengths, such
as sentences, paragraphs, and entire documents. Introduced by Mikolov and Le
in 2014 [16], this algorithm creates a dense vector to represent each document,
and this vector is trained to predict words in the document. Its main goal is to
overcome the weaknesses of bag-of-words models.

Doc2Vec has several configurations, but the most used are Distributed Memory
Model of Paragraph Vectors (PV-DM) and Distributed Bag of Words of Paragraph
Vector (PV-DBOW).

In PV-DM the paragraph token can be considered as an additional word,
functioning as a memory that remembers information not present in the current
context or related to the paragraph’s topic. Figure 2.2 shows a PV-DM framework
in which the extra paragraph token is transformed into a vector using a matrix D.
This resulting vector, when combined with a three-word context is used to predict
the fourth word[14]. Furthermore, it is clearly visible in the figure 2.2 that in the
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PV-DM that the context window includes only the preceding words since the target
word is the next word. In contrast, in the Word2Vec architecture, the context
window is composed of both preceding and subsequent words, with the target word

positioned in the middle [13].

Classifier m

Average/Concatenate 1111

s e

m
1

) 1
Paragraph Matrix----- > * W W W
1 | 1

Paragraph +the cat sat
id

Figure 2.2: A framework for learning paragraph vector [14].

In PV-DBOW, instead, the context words in the input are ignored but this
requires the model to predict words selected randomly from the paragraph in the
generated output. As shown in Figure 2.3, the paragraph vector is trained to
predict the words in a small window.

Classifier I thel | cat| [sat| |[on |

S/

Paragraph Matrix ---------= >

Paragraph
id

Figure 2.3: PV-DBOW version of paragraph vectors [14].
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Sent2Vec

Sent2Vec is an unsupervised model, introduced by Pagliardini et al. in 2018 [17],
designed to generate sentence embeddings by combining word vectors and n-gram
embeddings. This method allows training both the composition and embedding
vectors simultaneously. It offers efficiency and scalability since the computational
complexity of the embeddings is equal to O(1) vector operations per word, whether
during training or inference of the sentence embeddings [17].

The architecture of Sent2Vec consists of two main components: the encoder
and the pooling layer. Typically, the encoder is implemented as a neural network,
and it takes a sentence as input, producing a sequence of hidden states. Then, the
role of the pooling layer is to aggregate these hidden states into a single vector
representation.

The encoder in Sent2Vec is based on the Long Short-Term Memory (LSTM)
architecture, which is a type of recurrent neural network (RNN). The LSTM has
the ability to capture long-term dependencies in sequences, which is important for
generating accurate sentence embeddings. Basically, it takes a sequence of word
embeddings as input and produces a sequence of hidden states, that represent the
contextual meaning of the sentence.

The pooling layer in Sent2Vec is based on a hierarchical approach that involves
two levels of pooling; word-level pooling and sentence-levels pooling. At the word
level, the hidden states generated by the encoder are combined using a max-pooling
operation, which extracts the most significant features from each hidden state.
At the sentence level, the pooled word embeddings from the word-level pooling
stage, are combined using another max-pooling operation. This process generates
a fixed-length vector representation that includes the contextual meaning of the
sentence.

Finally, the resulting sentence embeddings can be used as input to various
natural language processing tasks, such as sentiment analysis, text classification,
and machine translation. The primary advantage of Sent2Vec w.r.t. other sentence
embedding models is the capability of capturing the meaning of a sentence even
when it contains out-of-vocabulary (OOV) words. The reason for this is that the
model is trained on an extensive text corpus and can learn how to generalize new
words based on their context.

2.2 Transformer Models

2.2.1 Attention Mechanism

The attention mechanism was proposed by Bahdanau et al. [18] in 2014. It has been
introduced to mitigate one potential limitation of the Encoder-Decoder method
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where it is required for a neural network to compress all essential information from
a source sentence into a vector with a fixed length.
The attention mechanism can be divided into three steps:

1. Alignment: The alignment model is represented by a function f, typically
implemented using a feedforward neural network:

€t = f(st—h hi) (2-6)

where h; are the encoded hidden states, s;_; the previous output, and e;;
represents the score indicating the degree of alignment between elements of
the input sequence and the current output position ¢.

2. Weights: The weights, denoted as «;;, are derived by applying a Softmax
operation to the alignment scores calculated previously:

a; = softmax(ey ;) (2.7)

3. Context Vector: A unique context vector, denoted as ¢, is given to the decoder
at each time step. This context vector is computed as a weighted sum of all
encoded hidden states:

C = Z Ozmhi (28)
t

Initially, this method was introduced for "sequence-to-sequence" tasks where
there is a sequence of input (words in a sentence), and the model needs to focus on
specific parts of that input during the generation of an output.

This concept can be reformulated in cases where the input may be organized
differently from a simple linear sequence. This adaptation makes use of three
elements, defined as queries @), keys K, and values V. The entire procedure is
similar to the previous one and can be explained into the following steps:

1. We can think of the vector s;_; as a query ¢ that is executed against a database
of keys to compute a value, where the keys are vectors and h; are the values.
This comparison is achieved through the dot product operation between the
specific query ¢ and each key vector:

Cqr = q* K (2.9)

2. The resulting scores are given to a softmax operation to obtain the weights:

Qg k;, = Softmax(egy,) (2.10)

i

3. The generalized attention is subsequently calculated by performing a weighted
sum of the value vectors, denoted as vy, with each value vector paired with
its respective key:

attention(q, K, V) =Y g, vx, (2.11)
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2.2.2 Transformers Architecture

Transformers, introduced in 2017 by Vaswani et al. [19], has revolutionized the field
of NLP and Computer Vision. Before Transformers, the state-of-the-art solutions
in NLP relied heavily on RNNs such as LSTM and Gated Recurrent Units (GRUs).
However, RNNs have a sequential nature, which makes it difficult to parallelize
during training.

The Transformers architecture uses an encoder-decoder architecture based on
self-attention. This allows non-sequential processing and parallelization, which
significantly speeds up the training process.

The input sequence is first transformed into three matrices representing keys
K, values V, and queries (). To compute the matrix of the output, the authors
proposed a modified Dot-Product Attention, called "Scaled Dot-Product Attention":

attention(Q, K, V') = softmax <C?/_[§:> Vv (2.12)

where dj represents the dimension of the queries and keys.

The Transformer architecture is composed of an encoder and a decoder, each
of which contains multiple layers of self-attention mechanisms. A schema of the
typical structure of the transformer model is shown in Figure 2.4.

The encoder processes the input sequence iteratively, with each layer generating
encodings that contain information about which parts of the inputs are relevant to
each other. The output of the encoder is given as input to the decoder. The role
of the decoder is to use the context information received and generates an output
sequence.

Both the encoder and decoder layers have a feed-forward neural network for
additional processing of the outputs and contain residual connections and layer
normalization steps. The residual connections offers the advantage of avoiding
layers when they do not provide any significant information. Layer normalization
normalizes the output of each layer, which speeds up the training process and
reduces the risk of a poor generalization of the model, the so-called "overfitting".

Depending on the task, it is possible to use only one side of the encoder-decoder
architecture. For example, GPT-3 [20], a state-of-the-art language model for
human-like text generation, only uses the decoder side. In contrast, BERT [21], a
state-of-the-art model for sentence encoding, and its variants use only the encoder
side.

BERT

BERT, which stands for Bidirectional Encoder Representations from Transformers,
Bert is designed to pretrain deep bidirectional representations from unlabelled
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Figure 2.4: The Transformer model architecture [19].

text by taking into account both left and right context in all layers [21]. Its
implementation is based on two steps: pre-training and fine-tuning.

During the pre-training phase, the BERT model is trained on two unsupervised
tasks. The first task is called the Masked Language Model (MLM), where a
percentage of input tokens are randomly masked, and the model is trained to learn
these masked tokens. In particular, the training data generator chooses 15% of
the input tokens at random for possible replacement. Then, 80% of these selected
tokens are replaced with the [MASK] token while 10% are left unchanged and 10%
are replaced by a randomly selected token in the vocabulary.

The second task called Next Sentence Prediction (NSP) is based on a binary
classification problem. Specifically, when choosing the sentences A and B for each
pretraining example, 50% of the time B is the actual next sentence that follows A,
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and 50% of the time it is a random sentence from the corpus. For this reason, this
task is particularly used when capturing dependencies among sentences is required.

After pre-training, the model can be fine-tuned on specific tasks such as text
classification, named entity recognition and question answering. The starting point
is to use the pre-trained weights of BERT, and then the model is fine-tuned on the
downstream task by adjusting the weights to optimize the task-specific objective
function.

It’s worth noting that BERT has a token limit of 512 tokens. This limitation
introduce complexity when dealing with longer documents or sentences, requiring
strategies such as truncation or segmentation of the text.

Figure 2.5 shows the pre-training and fine-tuning procedures for BERT. The
same architectures are used in both pre-training and fine-tuning and the same
pre-trained model parameters are used to initialize models for different downstream
tasks [21].

NLI/@@AD Start/End spam

] Gl

Masked Sentence A Masked Sentence B Question Paragraph
* *
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

Figure 2.5: Pre-training and fine-tuning procedures for BERT [21].

RoBERTa

RoBERTa (Robustly Optimized BERT approach) is a variant of BERT introduced
in 2019 by Facebook Al Research [22]. RoBERTa is based on the same transformer
architecture as BERT, but it incorporates several improvements that aim to optimize
its pre-training and performance on downstream tasks.

The differences with respect to BERT are many. RoBERTa was trained on
a larger corpus of text data and for longer periods. Specifically, RoBERTa was
trained on a combination of BookCorpus and English Wikipedia, totaling over
160GB of text data, with longer sequences and larger batches compared to BERT.

RoBERTa also uses dynamic masking, where each training example is randomly
sampled and token spans are masked at random during pre-training, instead of
the fixed masking scheme used in BERT. This allows RoBERTa to learn more
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effectively from the vast amounts of data it is trained on, as it is forced to predict
masked tokens in a more diverse range of contexts.

Another improvement in RoBERTa is the removal of the next sentence prediction
objective, which was present in BERT. This objective required the model to predict
whether two sentences in a given input sequence were consecutive or not. However,
recent research has shown that this objective does not provide significant benefits
for downstream tasks and can even harm performance in some cases. By removing
this objective, RoOBERTa can focus more on learning the language model itself,
which can lead to better performance on downstream tasks.

RoBERTa also incorporates other optimizations, such as training the model
with a larger batch size, which has been shown to improve convergence and training
efficiency [22].

XLNet

XLNet was introduced in 2019 by researchers at Carnegie Mellon University and
Google Al Brrain Team [23]. Same as BERT, XLNet is pre-trained on large amounts
of data to learn representations of natural language, which can be fine-tuned for
many different tasks. However, there are some differences with respect to BERT
which are important to point out.

BERT is trained on a MLM task where a percentage of the input tokens are
masked, and the model has to predict the masked tokens based on the context. The
fact that BERT capture the bidirectional relationships between the input tokens
has a drawback. In particular, the model can see the whole input sequence when
predicting the masked tokens. Therefore, it can’t learn the relationships between
the tokens that are farther apart in the sequence.

In contrast, XLNet introduces a Permutation language modeling approach, in
which the model is trained to predict the next token in a sequence given all the
tokens that came before it, but in a random order. This approach allows the model
to capture the dependencies between all the tokens in the sequence, not just the
ones that are close to each other.

XLNet also introduces a technique called relative positional encoding, which
allows the model to better understand the relationships between words based on
their relative positions in the sentence. This can be particularly useful in tasks like
natural language inference, where the model needs to understand the relationships
between different parts of a sentence.

LED

One limitation of traditional transformer models, such as BERT [21], refers to the
use of full attention mechanism, where each token in the input sequence attends
to all other tokens. Basically, during the computation of the attention for a
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specific token, this mechanism considers and assigns weights to all other tokens
in the sequence. In this way, the model includes in the representation of a token,
additional information given by the other tokens in the sequence. The main issue
with this approach is the quadratic growth in the number of attention weights to
be computed as the sequence length increases. This "quadratic dependency"' leads
to higher computational and memory requirements, especially when dealing with
long sequences. The full attention mechanism relies on a matrix to capture the
relationships between each token in a sequence. Each entry in this matrix represents
the attention weight assigned to the relationship between two tokens in the sequence.
Given an input sequence of length N, the Self-Attention operation would need to
work on a matrix of dimensions Nx N, leading to a memory dependence of O(N?)
(Figure 2.7a). To address this limitation, many approaches have been proposed
over the years.

The Longformer-Encoder-Decoder (LED), is one of them. It is proposed in
[24] as a modified Transformer architecture that incorporates a self-attention
operation that scales linearly with the sequence length, providing versatility when
processing long documents. The authors tried to address the quadratic growth
in memory dependence of the traditional Transformers model. As shown in their
example illustrated in Figure 2.6, the Longformer’s memory consumption increases
proportionally with the sequence length. This stands in contrast to the self-attention
mechanism, which faces memory constraints when dealing with lengthy sequences
(as indicated by the blue line in the graph).

Time Memory
2500 15000
== Full self-attention
2000 - Longformer-loop 12500 -
== |ongformer-chunks
£ 1500 == Longformer-cuda 10000 A
3 S 7500
» 1000
E 5000 +
500 A
2500 1
0 -
0

5000 10000 15000 5000 10000 15000
seq len seq len

Figure 2.6: Time and Memory required for different implementations of Long-
former’s self-attention [24].

The self-attention mechanism in Longformer employs a fixed-size window atten-
tion that captures context over a stack of layers. If the size of the window is equal
to w, each token attends to %w tokens on each side (as shown in Figure 2.7b). The
computational complexity for this operation is O(n x w), scaling linearly with the
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sequence length (n). If the number of layers is [ the overall receptive field will be
w X .

|
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L

(a) Full n? attention (b) Sliding window attention

Figure 2.7: Comparison of the full self-attention pattern and sliding window
attention [24].

Similarly, the sliding window can be “dilated” with a dilation value equal to d
(as shown in Figure 2.8a). This dilation allows consecutive tokens to be skipped,
making the attention matrix even sparser, and increases the receptive field to
(I x d x w) without a corresponding increase in computational cost.

1
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1| 1=
I I

(a) Dilated sliding window (b) Global+sliding window

Figure 2.8: "Dilated" sliding window attention and Global + sliding window
attention. [24].

The complete attention pattern proposed by the authors is illustrated in Figure
2.8b. Every token attends to other tokens within the sliding window, while
additional "global" tokens have the capacity to attend to every other token, akin to
the full Self-Attention mechanism.

Concerning the encoder-decoder architecture, LED uses a combination of local
and global attention. In particular, the encoder reads the input document using
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local attention with a window size of 1024 tokens and global attention on the first
‘<s>‘ token'. Here, local attention allows to build contextual representations, while
global attention is used to build full sequence representations for the prediction.
The decoder, instead, uses full attention to the entire encoder and previously
decoded locations. By exploiting both local and global attention, the model can
capture short and long-term dependencies in the input, making it easier to process
long sequences.

Despite its structure is very similar to BigBird [25], the authors affirm that in
cases where a pre-training process or task-specific initialization is avoided, LED
can slightly outperform BigBird.

BigBird

Authors in [25] introduced BigBird as a sparse-attention-based transformer model.
This mechanism consists of three parts:

o Global tokens: they are designed to capture the most important information
about the entire sequence without taking into account the position of the
tokens.

o Local Neighboring tokens: they are designed to capture information about a
specific token from its neighboring tokens within a fixed window size.

e Random tokens: a set of randomly selected tokens within the sequence.

By combining these three sets of tokens (Figure 2.9), BigBird can handle up to a
length of 4096 tokens at a much lower computational cost than models with full
attention mechanisms like BERT.
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(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD

Figure 2.9: Attention mechanism used in BigBird [25].

lis a token typically added in Seq2Seq models at the beginning of the target sequence to
indicate the start of decoding.
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2.2.3 LSG attention

LSG stands for Local Sparse Global attention. It is an architecture introduced in
[26] to reduce the high computational cost caused by the full attention mechanism
in the traditional transformer models. The LSG attention is based on three
components:

e Local Attention: to improve the efficiency in terms of the computational
cost of the local attention in Longformers [24], the authors were inspired
by BigBird [25]. Basically, they apply a block-based process in which the
sequence is split into blocks of size b; without overlapping. Each token in each
block "pays attention' to the other tokens within the same block but, at the
same time, it also considers the tokens in the preceding and succeeding blocks.
While Longformers are characterized by a fixed-length sliding window, in this
configuration the local attention window is asymmetrical. In particular, a
token connects to a maximum of 2 x b; — 1 tokens to the left or right.

e Sparse Attention: sparse connections serve to broaden the local context
by picking further tokens according to a set of rules. These tokens can be
chosen either directly based on a particular metric or through a pooling
strategy. Each attention head has the capability to process distinct sparse
tokens autonomously. Additionally, sparse attention is dependent on a block
structure, where the selection of sparse tokens occurs within each block. The
authors proposed five criteria that can be used: Head-wise strided [27], Head-
wise block strided, Average pooling, Max norm (default method), and LSH
Clustering [28].

« Global attention: global tokens are used to improve the information flow
within the model. Unlike the conventional method of selecting a subset of
tokens and labeling them as global, this approach involves prepending global
tokens to the sequence. These global tokens possess their own embedding
matrix, representing an additional hyperparameter in the model. During the
conversion to the LSG version, the initialization of the initial global token
involves summing the [CLS] (or <s>) token with the first position from the
positional embedding. The initialization of subsequent global tokens, instead,
is performed by summing the [MASK] (or <mask>) token and other positions
from the positional embedding.

Using this approach, the authors shown that LSG attention is fast and efficient.
Furthermore, they also proved that various existing pretrained models can be
converted to their corresponding LSG variant to handle long sequences. An open
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source library? who is in charge of doing that is provided by the authors.

Figure 2.10 show a comparison of LSG, BigBird, and Longformer. The intuition
behind these methods is to have a sliding window attention that reduce the memory
complexity from O(N?) to O(N), and global tokens that improve the flow of
information among the tokens.
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Figure 2.10: A comparison of LSG, BigBird, and Longformer attention patterns
[26].

Zhttps://github.com/ccdv-ai/convert_checkpoint_to_ lsg
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Chapter 3

Problem Formulation

3.1 Task Descriptions

Given a court case of the Supreme Court of India, the goal of this thesis is to build
a model that provides an automatic prediction of the case outcome together with
an explanation for the decision. This procedure can be divided into two sub-tasks:
Court Judgment Prediction and Court Judgment Prediction and Explanation.

Court Judgment Prediction

The Court Judgment Prediction (CJP) task is a binary classification problem in
which the objective is to predict the final decision of a court case. Formally, given
a document d representing the case description, the task consists of predicting the
decision y € {0,1} where class 0 represents the rejection of the appeal while class 1
represents acceptance.

Court Judgment Prediction and Explanation

The Court Judgment Prediction and Explanation (CJPE) task, instead, has the
objective of extracting the key sentences from the case description that better
justify the final decision given by the previous CJP task. Since human explanations
are very difficult to obtain, manually annotated documents are not provided during
training, in order to obtain a model learned to make predictions that is capable of
generating explanations without being explicitly trained on them. Formally, given
the predicted decision y, and the set of all the sentences E = {s, s, ..., $,,} of the
document d, the task can be expressed as:

E* = argmazpF(E,y) (3.1)
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where F' is the objective function that measures the quality of the explanations,
and E* € E is the set of important sentences that maximizes this objective. The
cardinality of E* is equal to m with m < n.
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Chapter 4
Dataset Overview

This chapter is dedicated to providing an overview of the dataset used during the
experiments.

4.1 Dataset

All the experiments have been conducted using the ILDC (Indian Legal Documents
Corpus) introduced in [5]. It is composed of a large set of Indian Supreme Court
cases, expressed in the English language and annotated with original court decisions.
As stated in [5], in a Supreme Court of India (SCI) case, the judge decides whether
to accept or reject the appeal or petition by weighing the arguments, relevant
statutes, precedents, and the facts of the case.

The documents in ILDC are cleaned by removing metadata information such
as case numbers, names of judges, dates, etc. In addition, the final section of
each document that contained the final decision was removed so that it could be
predicted. The labels are binary, where ’0’ represents rejection and "1’ represents
acceptance.

The ILDC corpus includes:

1. ILDCjpgie: contains documents with a single petition (and therefore a single
decision) or multiple petitions with identical decisions for all those petitions.
Its training set is composed of 5082 documents. Figure 4.1 shows the class
distribution of ILDCy;,g. in which the percentage of accepted cases (class 1)
is 38.08%.

2. ILDCi: is a superset of 1LDCy;p g and includes multiple appeals resulting
in different decisions. Its training set is composed of 32305 documents. Figure
4.2 shows the class distribution of ILDC,,,;;; in which the percentage of
accepted cases (class 1) is 41.43%.
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Figure 4.1: Class Distribution in the Training Set of I LDCl;yge.
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Figure 4.2: Class Distribution in the Training Set of ILDC, 1.

The Validation and Test sets are shared by both ILDCj;,ge. and ILDC,,uu;.
The class distribution is almost perfectly balanced with the percentage of the
accepted class of 50% in the Validation set and 50.23% in the Test set.

In addition, for a collection of 56 documents in the test set, annotations of
decision explanations are obtained from 5 legal experts. This subset constitutes
the ILDC¢yper. The role of the legal experts is to predict the judgment and mark
the sentences that they think could explain their final decision. In particular,
the sentence marking is based on a ranking in which sentences that immediately
contribute to the decision are assigned to higher ranks (Rankl is the highest). The
total number of ranks is 10 and, naturally, only a small portion of the sentences
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have been ranked.

The level of accuracy reached by the experts in predicting the outcomes of the
legal cases is 94%.

Table 4.1 shows in detail the statistics of the ILDC corpus. Notably, the "Average
Tokens" column indicates a relatively lengthy mean for the number of tokens,
especially considering that these tokens represent the input data. Additionally,
the ILDCgapert stands out for its smaller size, indicating how obtaining human-
annotated explanations is a time-consuming task that requires considerable manual
effort.

An example of document contained in I LDC,,,;; is reported below:

‘M. JOSEPH, J. The appeal is directed against the Order of the High Court
setting aside the Order passed by the Magistrate allowing the application filed by
the appellant to discharge him. The charge-sheet came to be filed on the basis of
a FIR dated 01.10.2011. The appellant was Director of Mines and Geology in
the State of Karnataka at the relevant time. Signature Not Verified There was a
partnership firm by the name M s Associated Digitally signed by ANITA MAL-
HOTRA Date 2020.01.07 175329 IST Reason Mineral Company AMC, for short

The offences are alleged to revolve around the affairs of the said firm. First
accused is the husband of the second accused. They became partners of the firm
AMC in 2009. Appellant was arrayed as the third accused. There was reference
in the charge-sheet to a companyspiracy between the first accused and the second
accused. It is alleged, inter alia, that they obtained an undated letter from one Shri
K. M. Vishwanath, the Ex-Partner, which is after his retirement with effect from
01.08.2009 from the firm, which was addressed to the appellant, seeking directions
to the Deputy Director of Mines and Geology, Hospet in Karnataka to issue the
Mineral Dispatch Permit MDP for short to the new partners, viz., the first accused
and the second accused. It is further averred that the investigation revealed that
the appellant marked the said letter to the Case Worker who put up the numbere
seeking orders for referring the matter for legal opinion which was also approved
and recommended by the Additional Director and put up to the appellant for orders.
Appellant is alleged to have acted in pursuance to the criminal companyspiracy
and abused his official position with a dishonest and fraudulent intention to cheat
the Government of Karnataka and knowingly made a false numbere in the file that
he had discussed this matter with the Deputy Director Legal and directed Deputy
Director, Mines and Geology, Hospet for issue of MDPs to the new partners, viz.,
the first accused and the second accused by violating Mines and Minerals Devel-
opment and Regulation Act, 1957 hereinafter referred to as the Act, for short and
Mineral Concession Rules, 1960 hereinafter referred to as the Rules, for short

There are various allegations regarding other accused. As far as appellant is
companycerned, it is alleged further in the charge-sheet that the acts of the accused,
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seven in number, including the third accused appellant , companystitutes criminal
offences punishable under Sections 120B, 420, 379, 409, 447, 468, 471, 477A
of the Indian Penal Code, 1860 hereinafter referred to as the IPC, for short and
Sections 13 2 and 13 1 ¢ and 13 1 d of the Prevention of Corruption Act, 1988 [...]’

Corpus ’II;IZirrrllbe\r/’a(;f d]ztoi(c:)lrllm?;‘gsst Average Tokens | % Accepted Class (1) | % Rejected Class (0)
Single 5082 994 1517 3884 38.08% 61.92%
Multi 32305 3231 41.43% 58.57%
Expert 56 2894 51.78% 48.22%

Table 4.1: Statistics of ILDC corpus. The

length of input sequence.
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Chapter 5

Related Works

This chapter describes some of the existing works that are more closely related
to this thesis, initially focusing on a broader research area before delving into the
Court Judgment Prediction and Explanation task. The goal is to understand the
basis of the methods used, highlight the evolution in this research area, identify
limitations or possible solutions.

5.1 Legal Document Understanding

In the field of Natural Language Processing (NLP) for legal applications, it’s crucial
to understand and classify legal documents effectively. This section acts as a
guide, highlighting recent research aimed at tackling the complexities found in
legal texts. This wider exploration includes models that are not directly focused on
prediction and explanation tasks, but play a crucial role in the broader objective
of comprehending and categorizing legal documents.

Legal BERT is one of them. It has been proposed in [29] to investigate the use of
BERT models in the legal domain. The authors released a family of BERT models
for the legal domain based on two strategies:

e Legal BERT-FP: where "FP" stands for "further pre-training'. It consists
of taking a pre-trained BERT model and further pre-training it on a domain-
specific corpora.

e LegalBERT-SC: where "SC" indicates "pre-train from scratch". It consists
of training a BERT model from scratch on domain-specific corpus with a new
vocabulary of sub-word units. Naturally, this approach is more time-consuming
with respect to the previous one but it could lead to better performance.

As expected both models outperformed the generic BERT-BASE model on multiple
legal NLP tasks. For the pre-train process, the authors collected 12 gigabytes of
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English legal documents including legislation, contracts, and court cases scraped
from public resources. This thesis explored the usage of the largest pre-training
configuration of Legal BERT-SC. The corresponding training corpus is shown in
Table 5.1 and comprises 354,624 US/EU legal documents.

Corpus Number of documents
EU legislation 61,826
UK legislation 19,867
European Court of Justice cases 19,867
European Court of Human Rights cases 12,554
US court cases 164,141
US contracts 76,366

Table 5.1: Training corpus of LegalBERT [29]

Authors in [30], instead, proposed CaseLawBERT, another variant of the BERT
model. To develop CaseLawBERT, they conducted pre-training from scratch for 2
million steps, utilizing the Harvard Law case corpus' from 1965 to 2021. Addition-
ally, it features a domain-specific legal vocabulary created using SentencePiece? on
a subset of, approximately, 13 million sentences from the pretraining corpus, with
a fixed number of tokens of 32,000. This means that the model can only recognize
and generate words that are present in this vocabulary.

Legal LSGBERT, instead, is an adaptation of LegalBERT [29] that exploits
the Local Sparse Global attention introduced in Section 2.2.3. It uses the same
pretraining corpus (Table 5.1), the same number of parameters, and the same
tokenizer.

Similarly, LegalLED is a variation of LED designed for legal document sum-
marization. The only difference is that this model is trained on the sec-litigation-
releases® dataset. This dataset consists of 2700 litigation releases concerning civil
actions brought by the US Commission in federal court.

5.2 Court Judgment Prediction

The evolution of CJP research can be split through three distinct phases: early
statistical models, machine learning-based approaches, and more recently, the
introduction of neural models.

Thttps://case.law/
2A popular open-source tool for sub-word text segmentation [31]

3https://www.sec.gov/litigation/litreleases
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Related Works

Early Statistical Models Some of the earliest research in this field explored
mathematical models and statistical correlations. The author in [32] introduced
one of the first statistical models to predict decisions of the Supreme Court of
the US, already in 1957. In his work, he identified factual elements that could
influence the Court’s decisions. A similar work was presented in [33] in which the
author explored three methods (correlation, regression, and discriminant analysis)
to measure the statistical relationships between some pre-determined case factors
(evidence) and the actual Supreme Court decisions. In [34], instead, the authors
used historical voting records to explore how the ideologies of “median justices”
can influence US Supreme Court decisions, finding out that the median justice
could significantly guide the predictions.

However, while being excellent research for those years, their application in the
real world is practically impossible considering the extensive hand-engineering that
was required and the reduced size of the datasets used (100 documents in [35] and
only 20 in [33]). In relation to this, an extensive feature engineering was required.

Machine learning-based approaches With the advances in ML, subsequent
research has focused on obtaining a more efficient feature representation of legal
text. Authors in [36] tried to select surface-level features (keywords and bi-grams)
from legal documents in Chinese language. Then, they combined them with latent
semantic features obtained through PCA and LDA to predict the accusations. In
[37] and [38], the authors used Support Vector Machines (SVM) in combination with
BOW features to predict European Court of Human Rights’ decisions. However,
even these methods require an extensive hand-engineering of the features including
the composition of the BOW vocabulary. Furthermore, the BOW representation
of the words, as already discussed in Section 2.1.2, has the main limitation of
not taking into account the order of the words and the general semantics of the
document. For these reasons, the neural models have overcome these approaches.

Neural Models Recently, neural network models have brought significant im-
provements in the Legal Judgment Prediction Task. Instead of leveraging manual
feature engineering, these models are capable of extracting predictive features
directly from the case descriptions.

Authors in [39] proposed an attention-based neural network method that jointly
models the charge prediction and relevant article extraction in a unified framework.
Despite they asserted that their model is capable of generalizing well since it
obtained good performance with news articles not related to the legal domain, they
notice that the model cannot explicitly handle multi-defendant cases and there is
still a wide gap between their proposed model and the upper bound improvement
that relevant articles can achieve.

30



Related Works

In [40], instead, the authors proposed a topological multi-task learning framework,
called "TopJudge". Their framework incorporates structural dependencies in the
form of a Directed Acyclic Graph (DAG). However, their method under-perform
in cases of imbalance of the category labels since the model fails to distinguish
between cases with no penalty and those with a short term of imprisonment.

The works in [41] and [42] focused on the common challenge of the "confusing
charge pairs". The main limitation in this context is the lack of training data.
Authors in [41] to overcomes this by utilizing attribute-based representation learning,
while in [42] the authors implemented a graph neural network with an attention
mechanism that learns differences between confusing law articles and extracts
significant discriminative features from fact descriptions.

Authors in [43], tried to overcome the length limitation of BERT [21]. They
proposed a hierarchical version of BERT in which BERT-BASE generates fact
embeddings by reading the words within each fact of a case. However, their method
tends to under-perform in cases of "few-shots labels".

Finally, the author in [5], introduced the CJPE (Court Judgment Prediction and
Explanation) task. Their work is close to this thesis since they tried to construct an
automated system that provides predictions of legal cases in ILDC, as well as the
corresponding explanations. They experimented with a set of Transformers together
with their corresponding Hierarchical version (Figure 5.1). Due to the limitation in
terms of the amount of tokens that these Transformers can process (512 tokens),
they experimented with different sections of the documents. Their results show
that the Transformers models outperformed Classical models when the training
was done by using the last 512 tokens of the documents in I LDC,,,,;;;. However,
the main limitation of their approach is having used only generic transformers
models. Authors in [44] and [45] have demonstrated that models like BERT tend
to under-perform in specialized domains such as biomedical or specialized text. For
this reason, domain-specific transformers pre-trained on the legal domain could
improve the performance. Furthermore, the battery of transformers exploited were
capable to handle only 512 tokens.

5.3 Explainable Artificial Intelligence

Explainable Artificial Intelligence (XAI) refers to the capability of a system to
explain the decisions taken in a way that is understandable for humans. Many
ML models are considered "black boxes" during the prediction process since it
can be difficult to understand how they arrived at their predictions. This lack of
transparency can be an issue in various domains where it is essential to understand
the reasoning behind a decision. This section introduces some existing techniques
proposed to address this issue that are not closely related to the legal domain.
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Figure 5.1: Hierarchical architecture of XLNet used in [5].

The work proposed in [8] introduces LIME which stands for Local Interpretable
Model-agnostic Explanations. It consists of creating local and interpretable explana-
tions for the prediction generated by a model. The explanation creation it is based
on the generation of perturbed instances around a particular data point. LIME
is model-agnostic, meaning that it can be applied to any machine learning model
without knowledge of its internal structure. Despite being a powerful technique it
suffers from some limitations. The number of perturbed instances to be generated
and evaluated could make the task infeasible in the case of large datasets. It
does not work well with those models that rely on temporal or sequential data.
Furthermore, it may not be able to capture context information in case of noisy or
incomplete data.

Authors in [46], instead, introduced SHAP (SHapley Additive exPlanations), a
unified framework that assigns a contribution score to each feature in a prediction,
indicating its impact on the output of a model. In essence, it provides a global
understanding of feature importance across the entire dataset. Similar to LIME,
SHAP is model-agnostic, and computing its values can be computationally expensive
for large datasets or complex models. Furthermore, it assumes independence among
the features, which might not hold in some cases.

5.4 Court Judgment Prediction and Explanation

In the legal domain, ensuring transparency, interpretability, and user trust is
crucial. Obtaining explanations that best justify the reasons behind the legal
decision-making process of an automated system is an ongoing challenge. Various
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approaches have been explored to provide textual explanations, some of them are
mentioned in this section.

Authors in [47] introduced a method that produces textual explanations from
fact descriptions of a criminal case. The primary drawback of their approach is
that the explanations are incorporated into the training data, in contrast to what
is done in this thesis, where the human-annotated explanations are not included
during training in order to obtain a model learned to make predictions that is
capable of generating explanations without being explicitly trained on them.

The work presented in [48], introduces a two-step approach to provide explana-
tions of charge predictions based on three components: FExtractor, Rewarder, and
Classifier. The authors affirm that their method cannot handle potential bias in
the training data, resulting in a drastic drop in performance and generalization
ability.

Authors in [49] proposed "QAjudge" a model for LJP that tries to provide inter-
pretable judgment using reinforcement learning. This method suffers significantly
when parts of the case description have been omitted.

As already mentioned in the previous section (5.2), in the CJPE task introduced
in [5], the authors aim to produce explanations for the generated predictions. They
explored three classes of explainability models: attention-based, model-agnostic,
and attribution-based. Some of these methods were not applicable due to the
extensive length of the ILDC documents, others provided explanations composed
of short sentences or even just a few tokens. Taking inspiration from the works
presented in [50] and [51], the authors proposed a method based on the use
of the occlusions method at both levels of the hierarchy. Their results show a
wide gap between the machine-made explanation and the way a legal professional
would manually generate it. Furthermore, differently from what was done by the
annotators, their proposed explainability models are not capable of providing a
rank of the sentences extracted to compose the explanation.
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Chapter 6

Methodologies

This chapter is dedicated to presenting the proposed methods for the Court Judg-
ment Prediction and Explanation task. In particular, the first section refers to
some existing approaches applied to generate the predictions, while the second
section illustrates some possible solutions concerning the explanation generation
task.

6.1 Court Judgment Prediction

This section makes a comparison between the transformers model applied and their
corresponding hierarchical version.

Non-Hierarchical Transformer models A battery of Transformers, including
both Generic models (RoBERTa, BigBird, LED) and Domain-specific models
(LegalBERT, CaseLawBERT, Legal LSGBERT, LegalLED) are employed during
the experiments. The initial step involves experimentation on different sections of
the ILDC documents. Following the methodology outlined in [5], all the experiments
focus on the last N tokens of the documents where N is equal to the maximum
amount of tokens supported by each Transformer model. In this phase, both
ILDCingie and ILDC, i are used.

Hierarchical Transformer Models Taking inspiration from [43] and [5], Hierar-
chical Transformer Models are employed to further increase the performance. In this
phase, all the documents contained in the ILDC),;;; are split into chunks of 512
tokens with an overlapping of 100 tokens. Using Transformer models hierarchically
requires fine-tuning these models on the downstream task of classification.

Two different strategies are used:
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o Considering the ILDC,, 11, the last N tokens of each documents are ex-
ploited, where N is equal to the token limit of each base model (e.g., 512 for
LegalBERT).

» Concerning the I LDCy;p g, since it is smaller with respect to the ILDCy,y,
a data augmentation technique is applied. In particular, to fine-tune the
transformer, each document in I LDCg;p g is divided into chunks of 512 tokens
with 100 tokens of overlap. Then, to each chunk is assigned the same label of
the whole document.

Then, three methods are used to extract the embeddings in a 768-dimensional
space [52]:

» [CLS] token: it stands for "classification" and can be considered as a special
token used to represent the entire sequence because it contains information
about the entire input.

o« Mean pooling: it consists of taking the average of all the vectors in the
sequence. Basically, given a sequence of vectors [vy, vg, ..., v,] the mean pooling
representation is computed as:

1 n
—> v (6.1)
na4

This method is often used to captures the overall information in the sequence.

o« Max pooling: it consists of taking the element-wise maximum of all the
vectors in the sequence. Given a sequence of vectors [vy, vg, ..., v,] the max
pooling representation is computed as:

maz(vy, Vg, ..., Up) (6.2)
This method is useful to focus on the most important features in the sequence.

Finally, the extracted representations of the chunks are used as input for a sequential
model that includes two layers of standard BiGRU. Figure 6.1 shows the architecture
just described, while Figure 6.2 illustrates the three pooling strategies applied after
the fine-tuning process of the base model.

6.2 Court Judgment Prediction and Explanation

This section is devoted to the most challenging part of this thesis: the explanation
generation task. Given the case description of an ILDC¢ype,+ case and the corre-
sponding predicted decision obtained with the CJP task, the goal is to predict the
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most important sentences that better explain the decision. To accomplish this, the
occlusions method and the attention mechanism are exploited to determine which
segments of text better explain the predictions.

The following methods are applied using the two most performing models
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obtained by the CJP task: Legal LSGBERT+BiGRU and CaseLawBERT+BiGRU
(both using the [CLS] token). Also in this case, the chunks are obtained by splitting
each document of the I LDC,per into 512 tokens with an overlap of 100.

Occlusions Method The occlusions method is implemented following the same
procedure applied by the authors in [5]. Their approach can be summarized into
the following steps:

1. For each document in the /LDC¢yper a chunk embedding is masked one at a
time.

2. The trained BiGRU receives the masked input and using the original unmasked
model it computes the "masked" probability of the input.

3. To obtain the occlusion score, this probability is compared with the original
unmasked probability.

4. The occlusion scores obtained are used to filter chunks with negative scores.

5. The remaining chunks are segmented into sentences, each sentence is masked
using a list of [PAD] tokens with dimension equal to the number of tokens in
the sentence.

6. Similar to step 2, the logits of the chunk with the masked sentence are
compared with the logits of the label corresponding to the original hierarchical
model.

7. To obtain the explanation score of each sentence, the difference between these
logits normalized by the sentence’s length is computed.

8. The explanations are constructed by extracting the top-k sentences in each
chunk.

Hierarchical Attention Mechanism To assign the attention weights a Hierar-
chical attention Layer on top of the BiGRU is used. The value of these weights
depends on the importance of the chunk in label prediction. The attention layer
is implemented taking inspiration from the work in [53]. The authors proposed
a Hierarchical Attention Network (HAN) composed of two layers of attention:
word-level and sentence-level. At the word-level, the model attends to different
words in a sentence to construct a sentence vector. This is done using a GRU-based
sequence encoder that generates a hidden state for each word in the sentence. Then,
the attention layer at word-level computes a weight for each word based on its
importance in the sentence representation. The sentence vector is constructed by
by computing a weighted sum of the word vectors. At the sentence-level, instead,
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the model attends to different sentences in a document to construct a document
vector. The process is similar since this attention layer computes a weight for each
sentence based on its relevance to the document representation. These weights are
used to compute a weighted sum of the sentence vectors, which is the document
vector. The only difference is the set of parameters used, since they operate at
different levels of granularity the optimization changes to capture the most relevant
features at their respective levels. To compose the explanation, the chunk with the
highest attention score is selected. Then, through a detokenization function, the
tokens of the chunk are joined together. The output represents the explanation of
the legal case.

Revised chunk division As stated in [5], the most relevant section that influence
the prediction is the end of the document. But, it is important to consider that
when the chunk division of the documents starts from the beginning, the final
chunk in each document typically has significantly fewer tokens than the preceding
one. This can cause a potential risk of fragmenting the most relevant information
into multiple chunks, potentially leading to a decline in performance.

An example of this scenario is seen in the document "1967 359.txt" of the
ILDC zpert, as shown below:

“the petitioner herein is a displaced person from west pakistan. after companying
to india he occupied as tenant the entire first floor of the property number zvi/1588
old 1674 new situate in 35 naiwala karol bagh new delhi. the ground floor of
that building was originally occupied by anumberher tenant by name hari singh.
according to the petitioner hari singh vacated the portion of the building which
he was occupying some time in 1956. thereafter some unauthorised persons were
occupying the same. 2 28th december 1956 the petitioner applied for transfer of
the building in question in his favour. the established facts are- he is a displaced
person he has numberverified claim he is the lawful occupant of a portion of the
premises mentioned earlier the other portions of the building are in possession of
unlawful occupants and the premises in question is an acquired evacuee property
which is an allottable property. all the authorities below have rejected the petitioners
claim. hence he has companye up with this petition under article 226 and 227 of the
companystitution. in this petition he has prayed for two reliefs namely i to quash
the orders passed by the respondents by issuing a writ of certiorari and ii to issue a
writ of mandamus to them requiring them to allot the premises in question to him.
on the date the petitioner made his application for transfer of the property in his
favour namely 28th december 1956 the two relevant rules in force were rules 26 and
31 of the displaced persons companypensation and rehabilitation rules 1955. rule
26 to the extent it is necessary for our present purpose reads as follows- where an
acquired evacuee property which is an allottable property is in the sole occupation
of displaced persons who does number hold a verified claim the property may be
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transferred to him - the remaining portion of the rule is number relevant for our
present purpose . 31. 1 where an acquired evacuee property which is an allottable
property is in occupation of more than one displaced person numbere of whom
holds a verified claim the property may be transferred to the displaced person who
occupies the largest portion of the property or where two or more such displaced
persons occupy a portion of the property which is equal in area the property may
be transferred to the displaced person who has been in occupation of such portion
for a longer period. the provisions of rule 26 shall apply to the transfer of acquired
evacuee property under this rule in the same manner as they apply to the transfer
of such property under that rule. rule 31 was abrogated on 3rd august 1968. the
authorities below have rejected the claim of the petitioner on the ground that the
premises in question having been occupied by more than one occupant rule 26 is
number applicable to this case and further as rule 31 had been abrogated before this
case was decided he companyld number take the benefit of that rule. both under
rule 26 as well as under rule 31 only a discretion is given to the authorities to
allot the property to a displaced person. the displaced person has number been
companyferred with any right to have the property transferred to him. that being
so numbermandamus can be issued to the authorities to companypel them to allot
the property in favour of the petitioner. rule 26 which is still in force applies only
to cases where an acquired evacuee property which is an allottable property is in
the sole occupation of a displaced person. on his own showing the petitioner is
number in the sole occupation of the premises in question. he is in occupation of
only one floor therein. the remaining portions in the building are in occupation of
unauthorised persons. it is true the word occupation found in rule 26 refers to lawful
occupation. but then before a person can take then benefit of rule 26 he must be in
the sole occupation of the entire building. a partial occupation of a building by him
though its remaining portions are unumbercupied does number give the displaced
person the benefit of rule 26. therefore the authorities were right in holding that
the petitioner cannumber have the benefit of rule 26. number companying to rule
31 as mentioned earlier when the petitioners case came to be decided that rule had
been abrogated. as seen earlier the petitioner has numbervested right to get the
property transferred in his favour. therefore one rule 31 is abrogated the discretion
companyferred on the authorities ceased to exist. they had to decide the matter
before them in accordance with the law in force at that time.*’

This document is divided into three chunks. The first, represented by the
color red, achieved an attention score of 0.0010. The second represented by the
green color, scored 0.7842, while the last one (blue) scored 0.2147. To be noted,
the black-colored portion of the text represents the tokens shared by consecutive
chunks.

This is a case in which the most important part of the document is contained
in both the penultimate chunk and the last one. Since the penultimate chunk
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contains further tokens that might be helpful for the prediction, it achieved a higher
attention score.

In order to make maximum use of the width of the last chunk and avoid relevant
information being divided into multiple chunks, a different corpus preprocessing is
applied than the original method applied in the CJPE task [5]. In particular, the
corpus is again divided into 512 tokens with 100 tokens of overlap, but in this case,
the division has been made to start from the end so that the last chunk will always
be full and any unfilled chunk will be the first one (since it contains less relevant
information). Using this method, the totality of the documents in the test set has
the last chunk as the most representative one.
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Chapter 7
Experiments

This chapter is dedicated to discussing the results obtained with the proposed
methods described previously. In particular, the first section shows the experimental
parameter used (optimizers, learning rates, etc.), the second section describes
the metrics exploited during the evaluation of the models and the third section
illustrates the results obtained. Each section is divided into two subsections to
make a distinction between the CJP and CJPE task. Concerning the CJP task,
the experimental activity focuses on three key aspects:

1. A comparison between Generic Transformers models and Domain-specific
Transformer models. The aim is to assess whether a base model pre-trained
on a corpus that includes legal documents (even if not specifically coming
from the Indian legal system) can yield better performance.

2. A comparison between each Transformer model with the corresponding Hi-
erarchical version. The goal is to determine if the hierarchical structure of
transformers leads to an improvement in performance.

3. An analysis concerning the calibration of the predictions. The aim is to
explore whether transformers applied hierarchically can result in a more stable
calibration that is closer to the ideal one.

Then, the top two performing models will be used in the CJPE task to extract the
embeddings and construct the explanations. To establish a baseline, the results
obtained in [5] are considered and compared to the methods proposed in this thesis.
The implementation code for this work is available on the GitHub repository at:
https://github.com/salvatorecurello/Master_Thesis.git.
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7.1 Experimental parameters

This section describes the training parameters employed in the experiments, along
with the hardware utilized.

7.1.1 CJP

Non-hierarchical Transformers models

Table 7.1 shows the experimental parameters used. The value of the batch size
in BigBird is decreased to fit the memory resources available. The optimizer
used is AdamW [54] and a learning rate scheduling strategy is applied involving
a linear warm-up phase followed by a linear decay. The number of steps for the
warmup phase is equal to 1000 and the total number of training steps is given
by the product of the total number of batches and the number of epochs. In this
experimental phase, along with the embedding extraction, computational resources
are provided by hpc@polito, which is a project of Academic Computing within the
Department of Control and Computer Engineering at the Politecnico di Torino
(http://www.hpc.polito.it). In particular, it has been used 1 nVidia Tesla V100
SXM2 with 32 GB - 5120 cuda cores.

Hyperparameter Transformers models
Model Epochs | Learning Rate | Batch size
BigBird 3 2e-5 4
RoBERTa 5 2e-5 6
Legal BERT 3 2e-b 6
CaseLawBERT 3 2e-5 6
Legal LSGBERT 3 2e-b 6
LED 3 2e-5 6
Legal LED 3 2e-5 6

Table 7.1: Table of the Hyperparameter used for the Transformers models in the
CJP task.

Hierarchical Transformers models

In this case, all experiments were conducted using Adam [55] as the optimizer, with
a learning rate set to 0.001, binary cross-entropy loss, and a total of 3 epochs. The
only exceptions are in CaseLaWBERT, where the learning rate is adjusted to 0.01,
and for RoBERTa, where the number of epochs is set to 5. Unlike the previous
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phase, computational resources for this stage include the Tesla T4 GPU provided
by Google Colab!.

7.1.2 CJPE

All experiments concerning the computation of the attention weights are conducted
using Adam as optimizer, with a learning rate set to 0.001, binary cross-entropy
loss, and a total of 3 epochs. Instead, for the extraction of the explanability scores
in the occlusions method, the hierarchical model trained in the previous CJP task
is exploited. Furthermore, the computational resources for this stage include the

Tesla T4 GPU provided by Google Colab.

7.2 Metrics

The goodness of each model is evaluated through different metrics that are used to
compare the algorithms and make choices during the hyperparameter tuning phase.

7.2.1 CJP

Concerning the CJP task, the most common metrics for classification tasks are
used. They can be described as follow:

o Accuracy: represents the number of correct predictions divided by the total
number of predictions, i.e.:

TP+TN
TP+TN+ FP+ FN

(7.1)

Accuracy =

e Precision: represents the number of true predicted positives over the total
number of positives as follow:

TP

P= 2
TP+ FP (7:2)

e Recall: represents the number of true predicted positives over the sum of
true positives and false negatives, formally:

TP

R=F7p T FN (7.3)

Thttps://colab.google/
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e Fl-score: represents the harmonic mean between precision and recall and
can be expressed as follow:

PxR

F1=2
P+ R

(7.4)

Here:

o TP indicates the true positive, i.e. instances that are actually positive and are
correctly predicted as positive.

o TN indicates the true negative, i.e. instances that are actually negative and
are correctly predicted as negative.

o FP indicates the false positive, i.e. instances that are actually negative and
are incorrectly predicted as positive.

o FN indicates the false negative, i.e. instances that are actually positive and
are incorrectly predicted as negative.

While accuracy is widely used for evaluation purposes, it may not always provide
a realistic "picture" of the overall performance of a classification model, especially
in cases with imbalanced datasets. Despite the dataset used in the experiments
does not have a strong imbalance (as shown in Figure 4.2 in Section 4.1), the metric
used for the evaluation of the models is a revised version of the Fl-score, denoted
as Fl-score "macro". Essentially, the F1-score is computed for each class, and the
F1 score macro is then the unweighted mean of them. Formally:

« for the positive class:

o Ppositive * Rpositive
Flpositive - P R (75)
positive + positive
 for the negative class:
Pne ative * Rne ative
Flnegative = g K (76)

Pnegative + Rnegatwe

Then, the F1 score macro is equal to:

Flpositive + Flnegative

F 1macro =
2

(7.7)
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Reliability curve

A ML model built for a classification task provides as output estimated probabilities
of the predictions, also called confidences. These confidences indicate the level
of certainty that the model has regarding its predictions for the assigned labels.
Calibration refers to the alignment between the predicted probabilities and the
true likelihood of an event occurring. Essentially, if a model is well-calibrated not
only makes accurate predictions but also provides confidences that align with the
actual likelihood of those predictions [56]. One method to access the calibration
of a model is the reliability curve [57]. The ideal calibration is represented by the
diagonal, i.e. a 45-degree curve line from (0, 0) to (1, 1). The more the reliability
curve closely follows the diagonal the higher the alignment between the predicted
and actual probabilities. Points on the curve that are consistently below the ideal
curve suggest that the model is under-confident?. This implies that the model is
too conservative and may miss some true positives. In contrast, if the points are
consistently above the ideal curve, the model is overconfident?.

7.2.2 CJPE

This subsections presents the metrics used for the evaluation of the explanability
model. Since there are no standard metrics for evaluating generated explanations,
machine translation metrics are relied upon for evaluation. They aim to measure
the overlap between the machine-made explanations and the legal experts’ gold
explanations.

Jaccard Similarity Given A, the set of unique terms in the first document, and
B the set of unique terms in the second document, the Jaccard similarity is:

ANB

where |A N B| represents the number of terms in common and |A U B is the total
number of unique terms in both documents.

2When the model predicts a low probability of the positive class, the actual observed proportion
of positive instances is higher than predicted.

3The model predicts a high probability of the positive class, the actual observed proportion of
positive instances is lower than predicted.
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Overlap-Min and Max Given A, the set of unique terms in the first document,
and B the set of unique terms in the second document, the Overlap-Min is:

|AN B

min(|A],|Bl)
while, the Overlap-Max is:
|AN B
Omaz = ——————=~ (7.10)
mazx(|A|, |B])

ROUGE-N score It stands for Recall-Oriented Understudy for Gisting Evalua-
tion [58]. It considers the number of matching text units between the generated
text and the gold standard. It is typically used for summarization tasks and can
be formalized as follows:

ZSE{ReferenceSummaries} Zgramn es CountmatCh (g?"amn)

ROUGE — N =
ZSE{R@f@renceSummaries} Zgramnes Count(gramn)

(7.11)

where n represents the n-gram’s length, and Counnt,aen(gram,) is the number
of n-grams that appears in a candidate and a set of reference summaries. This
formula can be applied to various values of N. During the experiments unigrams
and bigrams are considered.

ROUGE-L score This metric measures the Longest Common Subsequence
(LCS) between the reference and the candidate. In essence, given a candidate A
and a reference B, the longest common sub-sequence of A and B is a common
sub-sequence with maximum length. It is based on the intuition that the longer
the match the higher the similarity among the summaries.

BLEU score It stands for Bilingual Evaluation Understudy [59] and it is typically
used in machine translation. BLEU is calculated by dividing the number of
matching words in the translated hypothesis sentence by the total word count in
that hypothesis. It is a precision oriented metric where:

. ZCGC(Lndidatas Zgram% eC Countpmatch (gramn)

ZC’GCandidates Zgram;lecl COUTLt(gTam/n)

(7.12)

Pn

Let ¢ the candidate’s length and r the length of reference corpus, a brevity penalty
is computed as follows:

1 c>r
BP = {e(l_r/c) c<r (7.13)
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Then:
N
BLEU = BP x exp (Z wylog pn> (7.14)

n=1

where w,, are the weights assigned to different n-gram precisions.

METEOR It stands for Metric for FEvaluation of Translation with Explicit
ORdering [60]. METEOR takes into account not only exact word matches but also
considers stemmed words, synonyms, and word order. It is based on the alignment
between the generated and reference text.

Considering:

e The precision P as the number of unigrams in the candidate translation also
found in reference over number of unigrams in the candidate translation.

o The recall R as the number of unigrams in the candidate translation also
found in reference over the number of unigrams in the reference translation.

The METEOR score is defined as:
M = Frean(1 —p) (7.15)

where:

Number of chunks in candidate )
Number of unigrams in candidate

 p is the chunk penalty computed as p = 0.5(

e Flean is the combination of precision and recall via a harmonic-mean computed
g 10PR
R+9P

7.3 Results

This section outlines an analysis derived from evaluating the results of the Court
Judgment Prediction and Explanation task. It illustrates the quantitative results
obtained according to the metrics described previously.

7.3.1 CJP

A parallel analysis is conducted, considering both ILDCy;pngic and ILDCy;. All
the base models are trained on the final section of the documents since it is the
most relevant part that guides the prediction, as affirmed by the authors in [5]. In
this section, are reported the top results based on Fl-score. For exhaustive results,
including all metrics and experiments, refer to Section A.1 of the Appendix.
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Non-hierarchical Transformer models

In this phase, all the models are trained on the last N tokens of each document,
where N is the maximum amount of tokens supported by the model.

In particular, in Table 7.2 are reported the results of each Transformer model
trained on I LDCj;pg.. As expected LegalLSGBERT reached the higher F1-score

Model Tokens | Precision | Recall | F1-score
Legal BERT 512 72.80 68.39 70.53*
CaseLawBERT 512 71.92 68.13 69.97*
RoBERTa 512 72.21 61.46 64.04*
LED 1024 68.12 60.73 64.21*
Legal LED 1024 68.78 59.03 63.53*
Legal LSGBERT 3072 78.33 76.91 77.61
BigBird 4096 74.65 60.16 66.63*

Table 7.2: Metric scores obtained by training Transformers models on I LDCy;gie.
The "Tokens" column refers to the number of "last" tokens of each document
exploited. Performances marked with asterisks denote statistically significant
differences indicating lower performance compared to the best-performing model in
term of Fl-score (LegalLSGBERT). This significant difference was calculated using
a t-test with level of significance equal to 0.05.

among all the models thanks to its Local-Sparse-Global attention, its capacity
to handle lengthy documents, and the information (legal terms) gained from its
pre-training corpus. Consequently, a deeper exploration is performed to determine
the optimal amount of "last" tokens. Figure 7.1 shows that the peak of performance
occurs with 3072 tokens.

In contrast to what is stated by the authors in [5], all the domain-specific models
(except LegalLED) outperform the generic ones, even though their pretraining
corpora are composed of legal documents related a legal system that is completely
different than the Indian one. This is further demonstrated by the higher perfor-
mance of Legal BERT and CaseLawBERT compared to BigBird, despite using 6x
fewer tokens.

Additonally, Legal LSGBERT outperformed the RoBERTa baseline model, which
achieved a Fl-score of 71.77%, as reported by the authors in [5]. This is noteworthy
considering that their training was conducted on I LDC,,,;;;, which comprises about
35,000 documents, compared to the 5,000 documents in I LDCl;,ge.

Similar experiments are conducted considering the I LDC,,;;;. Also in this phase
all the Transformer models are trained on the last N tokens of each document,
where N represents the maximum number of tokens supported by the base model.

As reported in Table 7.3, Legal LSGBERT remains the top-performing model
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Figure 7.1: Exploration of the optimal amount of tokens for Legal LSGBERT
trained on /LDCy;pg.. The x-axis represents the number of "last" tokens considered,
while the y-axis represents the corresponding F'1 score obtained.

with an Fl-score of 82.01%, outperforming the RoBERTa baseline model (71.77%)
referring to the Transformers models and even the best configuration of the Hierar-
chical transformer Model (XLNet + BiGRU, 77.79%) obtained by the authors in
[5]. In this case, its the optimal number of last tokens is determined to be 2560, as
shown in Figure 7.2.

Model Tokens | Precision | Recall | F1-score
CaseLawBERT 512 76.57 74.49 75.51*
Legal BERT 512 75.72 74.93 75.32*
RoBERTa 512 70.11 69.14 69.62*
Legal LED 1024 69.05 68.16 68.97*
LED 1024 68.45 67.36 67.90*
Legal LSGBERT 2560 82.07 81.95 82.01

Table 7.3: Metric scores obtained by training Transformers models on ILDC,, ;.
The "Tokens" column refers to the number of "last" tokens of each document
exploited. Performances marked with asterisks denote statistically significant
differences indicating lower performance compared to the best-performing model
in terms of Fl-score (LegalLSGBERT). This significant difference was calculated
using a t-test with an alpha equal to 0.05.

In line with the previous observation, domain-specific models outperformed the
generic ones, emphasizing what was stated in [45] and [44], i.e. generic models tend
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Figure 7.2: Exploration of the optimal amount of tokens for Legal LSGBERT
trained on I LDC,,;;;. The x-axis represents the number of last tokens considered,
while the y-axis represents the corresponding F'1 score obtained.

to under-perform in specialized domains.

Furthermore, as expected, the results achieved through training on the I LDC,,,11;
are higher compared to those obtained from training on I LDCg;pg., due to the
larger number of documents in the training set.

Hierarchical Transformer models

This subsection shows the results obtained by applying transformers hierarchically.
When utilizing I LDCgpgie, only the top 3 performing base models are employed,
except for Legal LSGBERT, which already considers a longer context.

The results reported in Table 7.4 shows that Hierarchical Transformer models
bring a slight increase in performance.

Similar to the previous results, Domain-specific transformers (Legal BERT and
CaseLawBERT) obtain higher Fl-scores than the generic ones (RoBERTa). Fur-
thermore, different Pooling strategies perform similarly, as shown in Figure 7.3.

By data augmenting the ILDCj;,g., the training set reaches ~38,000 samples,
which is close to the number of samples obtained by using the last N token of
each document in the ILDC,,; (~35,000). As demonstrated later, using the
ILDC,,1x; in Hierarchical transformers yields better performance than augmenting
the ILDC;,g41.. This gives another intuition that the end of the documents is the
part that primarily guides the predictions since, through data augmentation, the
beginning and middle parts are included in the training set.

The application of Hierarchical Transformers using the last tokens of each
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Model Pooling strategy | Precision | Recall | F1-score
Legal BERT + BiGRU [CLS] 77.51 76.21 76.86
Legal BERT + BiGRU MEAN 76.99 76.83 76.91
LegalBERT + BiGRU MAX 74.85 74.11 74.48
RoBERTa + BiGRU [CLS] 75.14 74.64 74.89
RoBERTa + BiGRU MEAN 75.22 73.89 74.56
RoBERTa + BiGRU MAX 75.39 74.91 75.15
CaseLawBERT + BiGRU [CLS] 77.61 77.29 77.45
CaseLawBERT + BiGRU MEAN 75.83 75.29 75.56
CaseLawBERT + BiGRU MAX 73.80 71.43 72.60

Table 7.4: Metric scores obtained using Hierarchical Transformer models. In this
case, the ILDC ;g is augmented by dividing each document in chunks of 512
tokens with an overlap of 100 tokens. Then, to each chunk is assigned the same
label of the entire document.

TRANSFORMER + BiGRU trained on ILDCsingle

e ......F
o ......'
RoBERTa m MAX
s MEAN
0 10 20 30 40 50 60 70 8

Models

B [CLS]

0
fl score

Figure 7.3: Hierarchical Transformer Models results obtained by data augmenting
the ILDCy;pgic.

document in ILDC,,;;; further increased the performance. This is reported in
Table 7.5, in which Legal LSGBERT emerges as top-performing model for the Court
Judgement Prediction task obtaining an Fl-score of 82.13, using the [CLS] token.
It outperforms not only the previous results on Transformers models of Section
7.3.1, highlighting the superior efficacy of Hierarchical transformers, but also the
XLNet + BiGRU baseline model which obtains a score of 77.79, according to [5].
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Furthermore, each Hierarchical Transformer model outperforms the correspond-
ing non-hierarchical version, and also in this scenario, Domain-specific transformers
obtain higher performance than the generic ones.

Finally, Figure 7.4 illustrates that, among the three pooling strategies proposed,
utilizing the [CLS] token proves to be the most effective strategy. However, the only
exception is observed for LED and LegalLED. This drop can be justified by the fact
that these models leverage a combination of global and local attention mechanisms
(as described in Section 2.2.2). The [CLS] token is used as a representation of the
entire sequence, but the intrinsic design of LED and Legal LED, emphasizing both
global and local contextual information, implies a potential mismatch in prioritizing
the importance of the [CLS] token. The global attention mechanism in LED and
Legal LED ensures that the model captures contextual dependencies across the
entire document. Meanwhile, the local attention, implemented through a sliding
window, captures local relationships within smaller segments of the text. As a
result, the [CLS] token, which is fundamentally a global representation, may not be
optimally valued and even may lose its significance when applied in these models.

To summarize, Table 7.6 shows the best results obtained using both Non-
hierarchical and Hierarchical Transformer models. The best configuration is
achieved considering the ILDC,,;;; with the hierarchical version of LegalLSG-
BERT exploiting the [CLS] token.

TRANSFORMER + BiGRU trained on ILDCmulti

|
CaseLawBERT
]
RoBERTa
B MAX
. T i
0 20 60 7

0 80

Models

30 40 50
f1l score

0 1

Figure 7.4: Hierarchical Transformer Models results obtained by using the last N
tokens of each document in ILDC,,,14-
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Model Pooling strategy | Precision | Recall | F1-score
Legal BERT [CLS] 78.92 78.88 78.90
Legal BERT MEAN 77.61 77.39 77.50
Legal BERT MAX 75.43 75.31 75.37
LegalLED [CLS] 32.34 33.33 33.25
Legal LED MEAN 66.54 66.47 66.45
LegalLED MAX 64.94 64.34 64.00
LED [CLS] 32.33 33.32 33.29
LED MEAN 61.31 67.72 69.05
LED MAX 55.01 57.02 62.74
RoBERTa [CLS] 72.78 72.33 72.55
RoBERTa MEAN 70.42 67.73 69.06
RoBERTa MAX 67.74 58.43 62.74
CaseLawBERT [CLS] 81.15 81.07 81.12
CaseLawBERT MEAN 78.01 77.97 78.00
CaseLawBERT MAX 72.66 73.65 73.68
Legal LSGBERT [CLS] 82.07 82.06 82.13
Legal LSGBERT MEAN 80.86 80.81 80.84
Legal LSGBERT MAX 77.84 77.83 77.84

Table 7.5: Metric scores obtained using Hierarchical Transformer models. In this
case, the last tokens of each document in I LDC,,,,;;; are used to fine-tune the base
model. The results of the t-tests do not provide significant evidence that the best
model is statistically better than other Hierarchical models. The configuration
tested is Legal LSGBERT using the [CLS] token (best model) against all others
hierarchical Transformers exploiting the [CLS] token, since it turned out to be the
best pooling strategy

Model Corpus | Precision | Recall | Fl-score
Legal LSGBERT single 78.33 76.91 77.61
Legal LSGBERT multi 82.07 81.95 82.01
CaseLawBERT+BiGRU single 77.61 77.29 77.45
Legal LSGBERT+BiGRU | multi 82.07 82.06 82.13

Table 7.6: Best scores obtained in both Non-hierarchical and Hierarchical Trans-
former models.

7.3.2 Statistical Analysis of Results

The goal of this analysis is to discern, through the use of statistical methods, whether
observed variations in outcomes can be attributed to genuine model differences

53



Experiments

rather than random chance.

Firstly, the analysis focus on analysing whether there are statistical differences
between Domain-specific Transformers and Generic Transformers, validating the
insights obtained during the experiments. The type of test used is a "one-sided"
Dependent t-test for paired samples that identifies if the mean of the predictions’
distribution generated by a model (expected to outperform) is significantly greater
than the mean of the predictions’ distribution produced by another model.

The results presented in Table 7.7 confirm the initial assumption. The tests
reveal statistically significant differences in the performance of the two models,
confirming that the Domain-specific ones are indeed superior.

"Domain" vs "Generic" t-Test Analysis
Generic | Domain-specific | p-value Statistical Significance
Legal LSGBERT < 0.05 There are statistically significant differences
BERT CaseLawBERT < 0.05 There are statistically significant differences
Legal BERT < 0.05 There are statistically significant differences
Legal LSGBERT < 0.05 There are statistically significant differences
RoBERTa CaseLawBERT - 0.05 There are not s.uﬂﬁjlcient e.vid.e)nce to .af.ﬁrm that
there are statistically significant differences
Legal BERT < 0.05 There are statistically significant differences

Table 7.7: Comparison of Domain-Specific Transformers and Generic Transformers
using t-Test Analysis with level of significance equal to 0.05. Notably, the predictions
of the BERT model are computed using the pretrained model provided by the
author in [5].

These tests are also conducted to determining the presence of statistical differ-
ences between Hierarchical Transformers and their corresponding non-hierarchical
versions. The goal is to assess the effectiveness of applying transformers hierarchi-
cally.

Table 7.8 shows the results obtained. Essentially, the t-test demonstrates that
all the p-values are lower than «, implying that all hierarchical models are indeed
superior to the standard transformer models.

7.3.3 Calibration study

This section describes a calibration study conducted on the top two performing
models:

o Legal LSGBERT+BiGRU which achieved an Fl-score of 82.13, using the [CLS]
token.

o CaseLawBERT-+BiGRU, instead, achieved an F1l-score of 81.12 also utilizing
using the [CLS] token.
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"Hier. Transformers" t-Test Analysis
Model p-value Statistical Significance
Legal LSGBERT | < 0.05 | There are statistically significant differences
CaseLawBERT < 0.05 | There are statistically significant differences
Legal BERT < 0.05 | There are statistically significant differences
RoBERTa < 0.05 | There are statistically significant differences

Table 7.8: Results of the t-test of each Transformer models compared to the
corresponding hierarchical version. The level of significance is set to 0.05.

Figure 7.5 shows the reliability curves of LegalLSGBERT and Legall.SG-
BERT+BiGRU. A visual analysis of the figures demonstrated that the hierarchical
transformer offers a better calibration, probably due to its internal design that
better captures dependencies at multiple levels and the information flow among the
layers that helps the model to refine its predictions at different levels of granularity.
Similar behavior is shown by CaseLawBERT, as illustrated in Figure 7.6.

To further investigate this observation the histograms of the predictions are
visualized in Figures 7.7 and 7.8. In these plots, the x-axis is divided into intervals
or bins, each corresponding to a specific range of the predicted probabilities while
the y-axis represents the frequency or count of predictions falling into each bin.
These plots can provide insights into whether the model is assigning more balanced
probabilities. In particular, in the hierarchical model (Figure 7.8b) a distinct
V-shape is evident. The model tends to assign lower probabilities when uncertain
and higher probabilities when more confident. This can be a sign of a good
calibration since the predicted probabilities align well with the actual probability
of belonging to a class. The V-shaped histogram suggests that the model is less
likely to exhibit systematic overestimation or underestimation, and probabilities
are distributed more evenly. On the other hand, in the plot associated with the
standard Transformer model, the V-shape is narrower (Figure 7.8a). This could
indicate that the model is overconfident in its predictions, potentially leading to
misleading results. However, similar behavior is obtained with Legal LSGBERT
(Figure 7.7a and Figure 7.7b). While the difference is less pronounced, it aligns
with the behavior observed in the reliability curves, where CaseLawBERT exhibits
superior calibration.

7.3.4 CJPE

This section focuses on illustrating the results achieved by measuring the overlap
between the explanation generated through the explainability model and the
manually annotated explanations contained in I LDC,per. Similar to the Court
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Figure 7.5: Reliability curves of Legal LSGBERT. Figure (a) refers to the non-hierarchical version
of LegalLSGBERT (82.01% F1-score), while Figure (b) refers to the hierarchical LegalLSGBERT

(82.13% F1-score).
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Figure 7.6: Reliability curves of CaseLawBERT. Figure (a) refers to the non-hierarchical version
of CaseLawBERT (75.51% F1l-score), while Figure (b) refers to the hierarchical CaseLawBERT

(81.12% F1-score).
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Figure 7.7: Histograms of the predictions of Legal LSGBERT. Figure (a) refers to the non-
hierarchical version of LegalLSGBERT (75.51% F1-score), while Figure (b) refers to the hierar-
chical Legal LSGBERT (82.13% F1-score).
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Figure 7.8: Histograms of the predictions of CaseLawBERT. Figure (a) refers to the non-

hierarchical version (82.01% F1-score), while Figure (b) refers to the hierarchical one (81.12%
Fl-score).
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Judgment Prediction task, the baseline considered is the results obtained by the
authors in [5]. Notably, the experiments are conducted using the top two performing
models: Legal LSGBERT+BiGRU and CaseLawBERT+BiGRU (both exploiting
the [CLS] token). The results are obtained by using both occlusions method and
attention mechanism. In particular, the attention mechanism has been examined
considering the original chunk division of the corpus (as in [5]) and a revised
division that ensures the last chunk is complete.

Occlusions method

The quantitative results using the occlusions method are computed by considering
both Legal LSGBERT and CaseLawBERT. The scores obtained are reported in Table
7.9 and Table 7.10, respectively. The explanations are generated by considering
the top k% sentences with k = {20,30,40,50}. For space constraints and a fair
comparison with the results achieved in [5], the tables report the scores considering
the top 40% most important sentences. Refers to Appendix A.2 for the quantitative
results achieved using different values of k.

Explainability Model vs Expert
Metric (40% of sentences) Expert
1 2 3 4 5 Mean
Jaccard Similarity 0.334 | 0.313 | 0.330 | 0.329 | 0.319 | 0.325
Overlap-Min 0.687 | 0.573 | 0.739 | 0.770 | 0.596 | 0.673
Overlap-Max 0.406 | 0.415 | 0.378 | 0.372 | 0.417 | 0.398
ROUGE-1 0.494 | 0.474 | 0.483 | 0.495 | 0.482 | 0.486
ROUGE-2 0.335 | 0.292 | 0.338 | 0.350 | 0.313 | 0.326
ROUGE-L 0.476 | 0.442 | 0.469 | 0.486 | 0.456 | 0.466
BLEU 0.176 | 0.282 | 0.115 | 0.111 | 0.273 | 0.192
Meteor 0.215 | 0.302 | 0.177 | 0.174 | 0.285 | 0.231

Table 7.9: Explanation generation results using the Occlusions method with
Legal LSGBERT. The "Mean" column represents the average scores computed
among the five legal experts. The percentage of the best sentences extracted is
equal to 40.

Both tables have similar results, meaning that there are not many differences
in using Legal LSGBERT or CaseLawBERT. Notably, for the embedding extrac-
tion the model related to Legal LSGBERT was trained on 2560 tokens while for
CaseLawBERT only 512 tokens were required.

As in [5], the highest overlap values is obtained with Expert4. In particular,
the Overlap-Min demonstrates high agreements between the model and the legal
experts. However, the other metrics are in the low to medium range, ROUGE-1 is
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Explainability Model vs Expert
Metric (40% of sentences) Expert
1 2 3 4 5 Mean
Jaccard Similarity 0.345 | 0.323 | 0.328 | 0.329 | 0.307 | 0.325
Overlap-Min 0.685 | 0.576 | 0.727 | 0.759 | 0.559 | 0.663
Overlap-Max 0.423 | 0.430 | 0.382 | 0.375 | 0.409 | 0.404
ROUGE-1 0.513 | 0.488 | 0.484 | 0.497 | 0.470 | 0.490
ROUGE-2 0.358 | 0.320 | 0.342 | 0.356 | 0.302 | 0.336
ROUGE-L 0.500 | 0.465 | 0.471 | 0.489 | 0.446 | 0.474
BLEU 0.200 | 0.322 | 0.136 | 0.130 | 0.284 | 0.214
Meteor 0.228 | 0.325 | 0.189 | 0.187 | 0.291 | 0.244

Table 7.10: Explanation generation results using the Occlusions method with
CaseLawBERT. The "Mean" column represents the average scores computed among
the five legal experts. The percentage of the best sentences extracted is equal to
40.

the highest achieving on average a score of 0.490. This can be justified by the fact
that metrics such as ROUGE-2, Jaccard Similarity, BLUE (only partially), and
METEOR are influenced by the order of the words. This aspect is crucial since,
as stated in [5], this method is not capable of performing a rank of the extracted
sentences. In contrast, the golden explanations of the legal experts are ranked from
1 to 10.

The majority of the metrics slightly outperform the baseline results obtained
in [5], demonstrating that the embedding extractions using Domain-specific trans-
formers lead to better performances. This can be seen in Table 7.11 highlighting
how, even when using the same methodologies, models that are more explainable
are obtained.

Finally, it is observed that reducing the value of k results in a decrease across
all metrics, except for Overlap-Min, which records higher scores as the length of
the explanation decreases. This phenomenon may be attributed to the term in the
denominator becoming smaller, leading to division by a reduced value.

Attention Mechanism

Concerning the attention mechanism, the results are reported in Table 7.12 and
Table 7.13, for Legal LSGBERT and CaseLawBERT respectively. In this scenario,
the results indicate a drop in performance, primarily caused by the relatively
smaller number of tokens in the generated explanation, averaging 185 compared to
the 730 tokens generated for the occlusions methods. The shorter length of the
explanation is attributed to the reduced size of the last chunk in each document,
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Model Jaccard | Overlap | Overlap | p) | po | py | BLUR | Meteor
Similarity Min Max

Bascline 0.324 | 0.719 | 0.383 | 0451 | 0.297 | 0.424 | 0.176 | 0.231

Legal LSGBERT | 0.325 | 0.673 | 0.398 | 0.486 | 0.326 | 0.466 | 0.192 | 0.231

CascLawBERT | 0.325 | 0.663 | 0.404 | 0.490 | 0.336 | 0.474 | 0.214 | 0.244

Table 7.11: Comparison between the baseline and the explainability models
obtained using Legal LSGBERT and CaseLawBERT. The results represent the
average scores among the five legal experts obtained using the occlusions method.
As baseline the results in [5] are considered.

as it is often not complete in most cases. In particular, by extracting the attention
weight of each chunk it is possible to understand which is the most important
chunk of the document. A visual analysis can be conducted by plotting the mean
attention chunk scores. This involves averaging the chunk scores of the documents,
contained in the test set(1517 documents), having a same number of chunks. For
space constraints, it is not possible to display all the plots, but an example is
reported in Figure 7.9. This figure shows average attention scores among the
documents of the test set that are represented by 13 chunks. It is clearly visible
that higher scores are assigned to the last chunks, confirming the intuition that
the most relevant syntactic and semantic information lies in the last section of the
document. However, this behavior is reported also in other documents represented
by a different number of chunks.

To confirm this intuition, a similar analysis is performed using the occlusion
scores. As shown in Figure 7.10, the behavior is similar to the attention mechanism.
Higher occlusion scores are assigned to the chunks representing the end of the
documents. This is a further confirmation that the end of the document is the
most relevant part of the document.

Despite all the documents of the test set being characterized by having the last
chunk as the most representative one (i.e. it has a higher attention score), some
documents do not show this behavior. A deeper analysis of the attention weights
demonstrated these specific documents have in common these characteristics:

e Their most representative chunk is the penultimate one.

o Typically, the last chunk contains many fewer tokens compared to the previous
one.

This scenario has been reported in ~3% of the documents in the test set.
To address this issue, it is recommended to consider a different chunk division
for the corpus. Initiating the splitting process from the end ensures that all the

60



Experiments

0.7
i i
! I
0.8 1 I| 0.6 i
! i
i | I
2 ; g% .'
- ] —
% 0.6 i g 0a I;
I .4 -
z 1 5 1
] =
2 I = H
T 0.4 | g 0.3 4 I
£ ' ¢ j
]
o I g 0.2 1 1
z | < !
0.2 ! !
! 0.14 1
! !
) -®
- i —— - - _ _._‘
00 e-0-00-8-9-9o-o-0-¢¥ 00| ®-0-0-9-0-9- &
\ . . . : .
2 4 6 8 10 1 2 4 5 8 10 1
Chunks size 13 (number of docs = 65) Chunks size 13 (number of docs = 70)
(b) CaseLawBERT

(a) LegalLSGBERT
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last chunks of each document are fully occupied. The results obtained by using
these methods are reported in Table 7.14 for Legal LSGBERT and Table 7.15 for
CaseLawBERT.

Explainability Model vs Expert
Metric Expert
1 2 3 4 5 Mean
Jaccard Similarity | 0.193 | 0.220 | 0.161 | 0.160 | 0.201 | 0.187
Overlap-Min 0.806 | 0.678 | 0.808 | 0.840 | 0.691 | 0.765
Overlap-Max 0.206 | 0.256 | 0.170 | 0.168 | 0.230 | 0.206
ROUGE-1 0.287 | 0.324 | 0.245 | 0.251 | 0.300 | 0.281
ROUGE-2 0.181 | 0.120 | 0.149 | 0.156 | 0.177 | 0.173
ROUGE-L 0.279 | 0.305 | 0.236 | 0.250 | 0.283 | 0.269
BLEU 0.035 | 0.100 | 0.020 | 0.018 | 0.085 | 0.052
METEOR 0.091 | 0.152 | 0.073 | 0.072 | 0.143 | 0.106

Table 7.12: Explanation generation results using the attention mechanism with
Legal LSGBERT. The "Mean" column represents the average scores computed
among the five legal experts. The chunk division of the corpus is performed starting
from the beginning.

A comparison of the results are reported in Table 7.16 in which all the metrics,
except Overlap-Min, show higher performance with respect to the original approach.

Finally, Figure 7.11 shows a comparison of all the methods used, considering
CaseLawBERT (similar behavior is achieved by Legal LSGBERT). Essentially,
ensuring that the last chunk extracted from the documents is fully complete leads
to improved performance if using the attention mechanism, as the crucial part of
the explanation is not split between the last chunk and the penultimate one.

The average number of tokens in the explanations increases compared to the
previous chunk division approach. While the performance is slightly lower than the
occlusions method, the advantage lies in shorter explanations. In some cases, this
can facilitate the rapid delivery of insights to expedite the decision-making process.

7.4 Revised ILDC,ypert

An essential aspect when evaluating explanations generated by a model and those
generated by a human is that the source document is identical for both. An in-depth
analysis of the ILDC corpus has revealed inconsistencies between the input text
received by the model and that provided to the legal expert. This analysis revealed
that during the preprocessing applied in the dataset’s data scraping process, some
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Explainability Model vs Expert

Metric Expert

1 2 3 4 5 Mean

Jaccard Similarity | 0.238 | 0.253 | 0.197 | 0.195 | 0.245 | 0.226
Overlap-Min 0.811 | 0.676 | 0.813 | 0.842 | 0.714 | 0.771
Overlap-Max 0.254 | 0.298 | 0.210 | 0.205 | 0.281 | 0.250

ROUGE-1 0.345 | 0.368 | 0.296 | 0.301 | 0.358 | 0.334
ROUGE-2 0.232 | 0.235 | 0.192 | 0.197 | 0.231 | 0.217
ROUGE-L 0.337 | 0.35 | 0.287 | 0.295 | 0.342 | 0.322

BLEU 0.055 | 0.141 | 0.036 | 0.032 | 0.124 | 0.078

METEOR 0.116 | 0.186 | 0.096 | 0.092 | 0.180 | 0.134

Table 7.13: Explanation generation results using the attention mechanism with
CaseLawBERT. The "Mean" columns represents the average scores computed among
the five legal experts. The chunk division of the corpus is performed starting from
the beginning.

Explainability Model vs Expert
Metric Expert
1 2 3 4 5 Mean
Jaccard Similarity | 0.345 | 0.330 | 0.288 | 0.292 | 0.343 | 0.320
Overlap-Min 0.792 | 0.629 | 0.788 | 0.831 | 0.695 | 0.747
Overlap-Max 0.381 | 0.415 | 0.314 | 0.312 | 0.408 | 0.366
ROUGE-1 0.474 | 0.467 | 0.411 | 0.427 | 0.478 | 0.451
ROUGE-2 0.344 | 0.315 | 0.288 | 0.306 | 0.335 | 0.318
ROUGE-L 0.463 | 0.443 | 0.398 | 0.419 | 0.459 | 0.436
BLEU 0.140 | 0.274 | 0.084 | 0.080 | 0.240 | 0.164
METEOR 0.196 | 0.288 | 0.156 | 0.154 | 0.279 | 0.215

Table 7.14: Explanation generation results using the attention mechanism with
Legal LSGBERT. The "Mean" columns represents the average scores computed
among the five legal experts. The chunk division of the corpus is performed starting
from the end.

regular expressions are applied to convert some words to their abbreviated form.
The following are some examples:

e 'no." is converted to "number"

e 'nos." is converted to "'numbers"

e "co." is converted to "company'
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Explainability Model vs Expert
Metric Expert
1 2 3 4 5 Mean
Jaccard Similarity | 0.349 | 0.33 | 0.293 | 0.297 | 0.345 | 0.323
Overlap-Min 0.787 | 0.625 | 0.784 | 0.827 | 0.693 | 0.743
Overlap-Max 0.387 | 0.416 | 0.32 | 0.318 | 0.41 | 0.370
ROUGE-1 0.482 | 0.47 | 0.419 | 0.435 | 0.483 | 0.458
ROUGE-2 0.352 | 0.317 | 0.295 | 0.314 | 0.339 | 0.323
ROUGE-L 0.471 | 0.449 | 0.406 | 0.428 | 0.464 | 0.444
BLEU 0.15 | 0.276 | 0.091 | 0.087 | 0.244 | 0.170
METEOR 0.203 | 0.292 | 0.161 | 0.159 | 0.282 | 0.219

Table 7.15: Explanation generation results using the attention mechanism with
CaseLawBERT. The "Mean" columns represents the average scores computed among
the five legal experts. The chunk division of the corpus is performed starting from
the end.

Model Jaccard | Overlap | Overlap | p) - po | py | BLUE | Meteor
Similarity Min Max

Baseline 0.324 | 0719 | 0383 | 0451 | 0.297 | 0.424 | 0.176 | 0.231

Legal LSGBERT 0.187 0.765 | 0.206 | 0.281 | 0.173 | 0.269 | 0.052 | 0.106

LegalLSGBERT (end) | 0.320 0.747 | 0.366 | 0.451 | 0.318 | 0.436 | 0.164 | 0.215

CaseLawBERT 0.226 | 0.771 | 0.250 | 0.334 | 0.217 | 0.322 | 0.078 | 0.134

CaseLawBERT (end) 0.323 0.743 | 0.370 | 0.458 | 0.323 | 0.444 | 0.170 | 0.219

Table 7.16: Comparing results achieved by implementing a chunk division starting
from both the beginning and the end. These results reflect the average scores from
the occlusions method among the five legal experts. The notation ’(end)’ indicates
that the chunk division starts from the end of the document.

e "ltd." is converted to 'limited"

The main issue is that the annotators were provided with a text without these
conversions. Considering that these are highly frequent words in the documents,
and given that metrics operate at the token level, the overlap calculated by the
metrics treats these words as distinct, even though they refer to the same entity.
More critically, the text provided to annotators contained additional sentences
compared to the input received by the model. These extra sentences, usually
positioned at the end of the document, are highly relevant to the explanation and
were almost consistently incorporated into the explanations manually annotated by
the annotators. This has resulted in an evident decline in performance. For these
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I CJPE task (730 toks)
mm Occlusion (742 toks)
I Attention (240 toks)
I Attention_last_full (457 toks)

Metrics

Figure 7.11: Barplot that illustrates the performance of the methods proposed.
The embedding extraction is performed using CaseLawBERT exploiting the [CLS]
token. The "CJPE task" refers to the results achieved in [25].

reasons, a new optimized version of the ILDC,pe is created and all the metrics
are re-computed. The results are shown in Table 7.17 for the occlusions method,
in Table 7.18 for the attention mechanism with the original chunk division, and in
Table 7.19 for the chunk division that starts from the beginning of the document.
As expected, this small preprocessing of the corpus improved the performance of
all methods, highlighting the critical importance of ensuring that the input data
provided to both the model and annotators are as congruent as possible.
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Explainability Model vs Expert
Metric (40% of the sentences) Expert

1 2 3 4 5
Jaccard Similarity 0.362 | 0.363 | 0.369 | 0.366 | 0.361
Overlap-Min 0.734 | 0.619 | 0.804 | 0.831 | 0.642
Overlap-Max 0.426 | 0.473 | 0.411 | 0.400 | 0.459
ROUGE-1 0.532 | 0.534 | 0.538 | 0.548 | 0.534
ROUGE-2 0.392 | 0.372 | 0.412 | 0.420 | 0.380
ROUGE-L 0.517 | 0.505 | 0.528 | 0.541 | 0.512
BLEU 0.212 | 0.374 | 0.148 | 0.136 | 0.327
METEOR 0.243 | 0.353 | 0.204 | 0.195 | 0.326

Table 7.17: Explanation generation results using the Occlusions method with
Legal LSGBERT and the revised version of the ILDC,gper+ corpus. The "Mean'
column represents the average scores computed among the five legal experts. The
percentage of the best sentences extracted is equal to 40.

Explainability Model vs Expert

Metric Expert

1 2 3 4 5 Mean

Jaccard Similarity | 0.220 | 0.242 | 0.174 | 0.173 | 0.238 | 0.209
Overlap-Min 0.915 | 0.763 | 0.899 | 0.948 | 0.808 | 0.867
Overlap-Max 0.227 1 0.273 | 0.178 | 0.175 | 0.262 | 0.223

ROUGE-1 0.324 | 0.352 | 0.267 | 0.274 | 0.343 | 0.312
ROUGE-2 0.228 | 0.229 | 0.177 | 0.186 | 0.232 | 0.210
ROUGE-L 0.319 | 0.336 | 0.262 | 0.272 | 0.331 | 0.304

BLEU 0.036 | 0.099 | 0.013 | 0.012 | 0.099 | 0.052

METEOR 0.099 | 0.154 | 0.069 | 0.069 | 0.153 | 0.109

Table 7.18: Explanation generation results using the attention mechanism with
Legal LSGBERT and the revised version of the ILDC,e¢ corpus. The "Mean'
column represents the average scores computed among the five legal experts. The
chunk division of the corpus is performed starting from the beginning.
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Explainability Model vs Expert
Metric Expert
1 2 3 4 5 Mean
Jaccard Similarity | 0.408 | 0.388 | 0.335 | 0.342 | 0.416 | 0.377
Overlap-Min 0.874 | 0.698 | 0.867 | 0.917 | 0.785 | 0.828
Overlap-Max 0.432 | 0.468 | 0.353 | 0.353 | 0.467 | 0.415
ROUGE-1 0.548 | 0.53 | 0.472 | 0.494 | 0.555 | 0.520
ROUGE-2 0.444 | 0.397 | 0.368 | 0.394 | 0.437 | 0.408
ROUGE-L 0.539 | 0.507 | 0.462 | 0.49 | 0.537 | 0.507
BLEU 0.186 | 0.335 | 0.112 | 0.109 | 0.307 | 0.210
METEOR 0.233 | 0.336 | 0.181 | 0.182 | 0.332 | 0.253

Table 7.19: Explanation generation results using the attention mechanism with
Legal LSGBERT and the revised version of the /LDC,zpers corpus. The "Mean"
column represents the average scores computed among the five legal experts. The
chunk division of the corpus is performed starting from the end.
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Chapter 8

Conclusions

The primary objectives of this thesis centered on two closely connected tasks: Court
Judgment Prediction and Court Judgment Prediction and Explanation. The first
involves predicting legal outcomes by capturing patterns in historical cases, while
the second aims to provide transparent and comprehensible explanations for the
predicted decisions. The main contribution of this work is the implementation of
an automated system capable of performing these sub-tasks.

The extensive experimentation of Transformer models in the Court Judgment
Prediction task has demonstrated the efficacy of Domain-specific transformers even
when applied to legal systems different from the ones on which they were originally
trained. Additionally, the experiments indicated that training the models on the
last section of the document yielded higher performances. This implies that the
end of the legal documents holds a substantial influence on the prediction outcomes.
Furthermore, this thesis highlighted that hierarchical models, particularly when
employing the [CLS] token for pooling at the document level, further improved
the performances. This improvement suggests that capturing the overall context,
through the [CLS] token, played a crucial role in the predictive process. They also
provided a better prediction calibration that further enhanced the reliability of the
model’s predictions.

Regarding the Court Judgment Prediction and Explanation task, the occlusions
method and attention mechanisms were instrumental in extracting relevant sen-
tences from case descriptions. In particular, the occlusion method provides longer
explanations, attempting to rank the most important sentences in the document.
On the other hand, the attention mechanism exhibits similar performance to the
occlusion method but delivers shorter explanations. In some cases, this brevity can
be an advantage, offering a quick access to the needed information.
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8.1 Future Directions

The results obtained provide motivation for further investigation in this field.
The best prediction model implemented in this thesis has an accuracy of 82%
versus 94% [5] for human legal experts. Potential improvements could involve
utilizing transformers pretrained specifically with an Indian legal document corpus.
While the transformer models exploited in the experiments were already pretrained
with US/EU legal documents, the use of models pretrained with Indian legal
documents may help capture patterns influenced by different cultural nuances or
biases, potentially leading to better accuracy of the model.

Furthermore, taking into account temporal dynamics can be crucial. This aspect,
denoted as "temporal concept drift" [61], can be significant in the legal domain since
legal systems often evolve, and the context of legal decisions may change over time.

When it comes to explainability models, the situation is particularly critical.
Despite the methods observed in this thesis partially improving the alignment
between machine-generated and manually annotated explanations, there is still a
wide gap to be bridged. The understanding and interpretation of the models used
to explain predictions in legal contexts are subject to a significant disparity that
requires considerable effort to overcome. A possible improvement can be to extend
the hierarchical attention model for datasets that contains multi-modal information
such as images, audio, or additional contextual information. This could be relevant
in legal cases where the case description is accompanied by additional materials
that may contribute to the explanation of the predicted decision. However, a
significant challenge in this context lies in defining metrics that accurately measure
the quality of the generated explanations.
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Appendix A
Additional Results

A.1 CJP task

This section presents the results of all the experiments regarding the CJP task.
In particular, Table A.1 refers to the application of Non-hierarchical Transformer
models trained on the last tokens of each document in ILDCy;yg.. The scores
describe how using a model pretrained on the legal domain leads to better perfor-
mance. The utilization of Transformers capable of handling long input sequences
further improves the results. This is demonstrated by Legal LSGBERT, which is
identified as the best-performing model. Similar considerations apply when training
is performed on ILDC,,;;;- As shown in Table A.2, the results are even higher,
given that the training set contains six times more documents. Table A.3, on the
other hand, pertains to the Hierarchical Transformers model. In the majority of
cases, exploiting the [CLS]| token proves to be the most effective strategy. The
optimal number of epochs for the aggregation model is 3 for all models except
CaseLawBERT, which achieves its best performance with only 2 epochs. The
highest-performing model in this task is Legal LSGBERT+BiGRU, achieving an
Fl-score of 82%, compared to the 94% accuracy achieved by legal experts.

A.2 CJPE task

This section presents the complete results obtained in all CJPE tasks. Specifically,
Tables A.4, A.5, and A.6 display the outcomes achieved using Legal LSGBERT in
combination with the occlusions method across various values of k. The scores
indicate that reducing the value of k leads to lower performance but results in
shorter explanations. The same scenario is found when using the revised version
of the ILDCyypert, as shown in Tables A.10, A.11, and . Furthermore, Tables A.7,
A.8, and A.9 refer to CaseLawBERT. Here, the performances slightly increased
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compared to Legal LSGBERT, but, similarly, the results are higher for higher values
of k. Finally, Tables A.13, A.14, and A.15 report the results concerning the revision
of ILDC¢ypert using CaseLawBERT. As expected, using this new version of the
corpus leads to higher agreement with legal experts.

Model Tokens | Batch | E | A P R F1

Legal LSGBERT 512 6 3 166.71 | 72.21 | 66.83 | 69.41
Legal LSGBERT 1024 6 3 168.02 | 73.70 | 68.14 | 70.81
Legal LSGBERT 1536 6 3| 7534 | 76.70 | 75.34 | 76.19
Legal LSGBERT 2048 6 3| 73.17 | 77.56 | 73.26 | 75.35
Legal LSGBERT 2560 4 3| 71.12 | 75.98 | 71.22 | 73.53
Legal LSGBERT 3072 2 3| 76.86 | 78.33 | 76.91 | 77.61
Legal LSGBERT 4096 2 3 | 70.00 | 76.38 | 70.11 | 73.11
Legal BERT 512 6 3 6829 | 72.80 | 68.39 | 70.53
CaseLawBERT 512 6 3 168.03 | 71.92 | 68.13 | 69.97
BigBird 4096 2 3 15999 | 74.65 | 60.16 | 66.63
LED 1024 6 3 | 60.58 | 68.12 | 60.73 | 64.21
RoBERTa 512 6 3 161.30 | 72.21 | 61.46 | 64.04
Legal LED 1024 6 3 | 5887 | 68.78 | 59.03 | 63.53

Table A.1: Complete results obtained by training Transformers models on
ILDCipngie. The "Tokens" column refers to the number of "last" tokens of each
document exploited. The "E" column refers to the number of epochs. The columns
"A", "P" and "R" refers to accuracy, precision, and recall, respectively.
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Model Tokens | Batch | E | A P R F1l-score
Legal LSGBERT 512 6 3| 73.30 | 74.40 | 73.35 73.87
Legal LSGBERT 1024 6 3 | 78.31 | 78.94 | 78.35 78.65
Legal LSGBERT 1536 6 3 | 80.22 | 80.59 | 80.24 80.42
Legal LSGBERT 2048 6 3 | 80.09 | 80.71 | 80.12 80.41
Legal LSGBERT 2560 6 3 | 81.93 | 82.07 | 81.95 82.01
Legal LSGBERT 3072 4 3 | 79.43 | 80.61 | 79.48 80.06
Legal LSGBERT 4096 2 3 | 80.61 | 81.68 | 80.66 81.17
CaseLawBERT 512 6 3 | 74.42 | 76.57 | 74.49 75.51
CaseLawBERT 512 6 5 1 73.86 | 75.64 | 73.96 74.79
Legal BERT 512 6 3 | 74.88 | 75.72 | 74.93 75.32
Legal BERT 512 6 5 175.02 | 75.67 | 75.05 75.36
RoBERTa 512 6 3 | 64.34 | 68.85 | 64.42 65.61
RoBERTa 512 6 5 169.08 | 70.11 | 69.14 69.62
Legal LED 1024 6 3 | 68.09 | 69.05 | 68.16 68.97
LED 1024 6 3 167.30 | 68.45 | 67.36 67.90

Table A.2: Complete results of obtained by training Transformers models on
I1LDC,,i- The "Tokens" column refers to the number of "last" tokens of each
document exploited. The "E" column refers to the number of epochs. The columns
"A", "P", and "R" refers to accuracy, precision, and recall, respectively.
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Additional Results

Model El1 | E2 | Pooling | A P R F1

Legal BERT 3 2 [CLS| | 77.42 | 77.44 | 77.44 | 77.43
Legal BERT 3 3 [CLS] | 78.91 | 78.92 | 78.88 | 78.90
Legal BERT 3 5 [CLS| | 76.87 | 76.88 | 76.85 | 76.87
Legal BERT 3 3 | MEAN | 77.57 | 77.61 | 77.39 | 77.50
Legal BERT 3 3 MAX | 75.61 | 75.43 | 75.31 | 75.37
Legal BERT 5 3 [CLS] | 75.47 | 75.60 | 75.55 | 75.57
Legal BERT 5 3 | MEAN | 76.41 | 76.45 | 76.33 | 76.39
Legal BERT 5 3 MAX | 74.59 | 74.58 | 74.10 | 74.34
Legal LED 3 3 [CLS] | 33.32 | 32.34 | 33.33 | 33.25
Legal LED 3 3 | MEAN | 66.41 | 66.54 | 66.47 | 66.45
Legal LED 3 3 MAX | 64.88 | 64.94 | 64.34 | 64.00
LED 3 3 [CLS] | 33.32 | 32.33 | 33.32 | 33.29
LED 3 3 | MEAN | 61.34 | 61.31 | 67.72 | 69.05
LED 3 3 MAX | 59.18 | 55.01 | 57.02 | 62.74
RoBERTa 3 3 [CLS] | 67.92 | 67.88 | 67.87 | 67.88
RoBERTa 3 3 | MEAN | 66.66 | 66.76 | 66.75 | 66.76
RoBERTa 3 3 MAX | 68.50 | 68.56 | 67.91 | 68.24
RoBERTa 5 2 [CLS] | 73.28 | 73.30 | 72.59 | 72.44
RoBERTa 5 3 [CLS| | 72.68 | 72.78 | 72.33 | 72.55
RoBERTa 5 5 [CLS] | 73.74 | 73.11 | 69.78 | 71.41
RoBERTa 5 3 | MEAN | 70.01 | 70.42 | 67.73 | 69.06
RoBERTa 5 3 MAX | 66.67 | 67.74 | 58.43 | 62.74
CaseLawBERT 3 2 [CLS] | 81.02 | 81.15 | 81.07 | 81.12
CaseLawBERT 3 2 | MEAN | 78.02 | 78.01 | 77.97 | 78.00
CaseLawBERT 3 3 MAX | 74.09 | 72.66 | 73.65 | 73.68
CaseLawBERT 5 3 [CLS| | 80.04 | 80.60 | 80.23 | 79.71
CaseLawBERT 5 3 | MEAN |69.20 | 69.12 | 69.07 | 69.10
CaseLawBERT 5 3 MAX | 77.02 | 76.61 | 75.89 | 76.25
Legal LSGBERT | 3 3 [CLS] | 82.06 | 82.07 | 82.06 | 82.13
Legal LSGBERT | 3 3 | MEAN | 80.87 | 80.86 | 80.81 | 80.84
Legal LSGBERT | 3 3 MAX | 7791 | 77.84 | 77.83 | 77.84

Table A.3: Complete results of obtained by training Hierarchical Transformers
models on ILDC,,,;;;. Note that the column "E1" refers to the number of epochs
for which the transformer was trained for embedding extraction, while the column
"E2" refers to the number of epochs for the aggregation model. The columns "A",
"P", and "R" refers to accuracy, precision, and recall, respectively.
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Additional Results

Explainability Model vs Expert
Metric (50% of sentences) Expert

1 2 3 4 5
Jaccard Similarity 0.378 | 0.343 | 0.385 | 0.386 | 0.350
Overlap-Min 0.683 | 0.620 | 0.729 | 0.756 | 0.624
Overlap-Max 0.470 | 0.439 | 0.456 | 0.450 | 0.449
ROUGE-1 0.542 | 0.509 | 0.542 | 0.557 | 0.517
ROUGE-2 0.391 | 0.341 | 0.406 | 0.419 | 0.356
ROUGE-L 0.526 | 0.481 | 0.529 | 0.548 | 0.493
BLEU 0.274 | 0.334 | 0.218 | 0.214 | 0.334
METEOR 0.273 | 0.353 | 0.234 | 0.232 | 0.342

Table A.4: Explanation generation results using the Occlusions method with
Legal LSGBERT. The "Mean" column represents the average scores computed
among the five legal experts. The percentage of the best sentences extracted is
equal to 50.

Explainability Model vs Expert
Metric (30% of sentences) Expert

1 2 3 4 5
Jaccard Similarity 0.279 | 0.274 | 0.268 | 0.268 | 0.274
Overlap-Min 0.700 | 0.554 | 0.753 | 0.786 | 0.596
Overlap-Max 0.328 | 0.363 | 0.299 | 0.294 | 0.351
ROUGE-1 0.429 | 0.426 | 0.411 | 0.422 | 0.428
ROUGE-2 0.269 | 0.241 | 0.265 | 0.276 | 0.256
ROUGE-L 0.412 | 0.395 | 0.399 | 0.414 | 0.404
BLEU 0.092 | 0.194 | 0.046 | 0.041 | 0.170
METEOR 0.157 | 0.231 | 0.126 | 0.123 | 0.216

Table A.5: Explanation generation results using the Occlusions method with
Legal LSGBERT. The "Mean" column represents the average scores computed
among the five legal experts. The percentage of the best sentences extracted is
equal to 30.
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Additional Results

Explainability Model vs Expert
Metric (20% of sentences) Expert

1 2 3 4 5
Jaccard Similarity 0.211 | 0.215 | 0.191 | 0.189 | 0.210
Overlap-Min 0.718 | 0.561 | 0.760 | 0.789 | 0.604
Overlap-Max 0.239 | 0.272 | 0.206 | 0.201 | 0.254
ROUGE-1 0.342 | 0.351 | 0.312 | 0.318 | 0.345
ROUGE-2 0.196 | 0.177 | 0.178 | 0.186 | 0.182
ROUGE-L 0.329 | 0.322 | 0.301 | 0.312 | 0.323
BLEU 0.028 | 0.087 | 0.009 | 0.006 | 0.065
METEOR 0.098 | 0.147 | 0.075 | 0.073 | 0.137

Table A.6: Explanation generation results using the Occlusions method with
Legal LSGBERT. The "Mean" column represents the average scores computed
among the five legal experts. The percentage of the best sentences extracted is
equal to 20.

Explainability Model vs Expert
Metric (50% of sentences) Expert

1 2 3 4 5
Jaccard Similarity 0.385 | 0.34 | 0.386 | 0.395 | 0.348
Overlap-Min 0.681 | 0.627 | 0.714 | 0.751 | 0.623
Overlap-Max 0.479 | 0.435 | 0.467 | 0.466 | 0.446
ROUGE-1 0.556 | 0.511 | 0.546 | 0.567 | 0.518
ROUGE-2 0.407 | 0.352 | 0.412 | 0.435 | 0.361
ROUGE-L 0.544 | 0.49 | 0.533 | 0.559 | 0.497
BLEU 0.305 | 0.34 | 0.266 | 0.263 | 0.338
METEOR 0.291 | 0.375 | 0.257 | 0.26 | 0.354

Table A.7: Explanation generation results using the Occlusions method with
CaseLawBERT. The "Mean" column represents the average scores computed among
the five legal experts. The percentage of the best sentences extracted is equal to
50.

75



Additional Results

Explainability Model vs Expert
Metric (30% of sentences) Expert

1 2 3 4 5
Jaccard Similarity 0.299 | 0.292 | 0.271 | 0.27 | 0.277
Overlap-Min 0.714 | 0.561 | 0.747 | 0.778 | 0.576
Overlap-Max 0.349 | 0.388 | 0.303 | 0.297 | 0.359
ROUGE-1 0.455 | 0.448 | 0.415 | 0.425 | 0.431
ROUGE-2 0.299 | 0.276 | 0.272 | 0.284 | 0.258
ROUGE-L 0.443 | 0.423 | 0.404 | 0.418 | 0.406
BLEU 0.099 | 0.236 | 0.05 | 0.047 | 0.19
METEOR 0.167 | 0.255 | 0.131 | 0.131 | 0.224

Table A.8: Explanation generation results using the Occlusions method with
CaseLawBERT. The "Mean" column represents the average scores computed among
the five legal experts. The percentage of the best sentences extracted is equal to
30.

Explainability Model vs Expert
Metric (20% of sentences) Expert

1 2 3 4 5
Jaccard Similarity 0.220 | 0.230 | 0.192 | 0.19 | 0.216
Overlap-Min 0.733 | 0.574 | 0.762 | 0.79 | 0.599
Overlap-Max 0.245 | 0.287 | 0.207 | 0.202 | 0.261
ROUGE-1 0.354 | 0.369 | 0.313 | 0.319 | 0.351
ROUGE-2 0.207 | 0.198 | 0.181 | 0.188 | 0.185
ROUGE-L 0.344 | 0.345 | 0.304 | 0.313 | 0.329
BLEU 0.026 | 0.103 | 0.008 | 0.007 | 0.072
METEOR 0.103 | 0.163 | 0.079 | 0.078 | 0.139

Table A.9: Explanation generation results using the Occlusions method with
CaseLawBERT. The "Mean" column represents the average scores computed among
the five legal experts. The percentage of the best sentences extracted is equal to
20.
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Additional Results

Explainability Model vs Expert
Metric (50% of the sentences) Expert

1 2 3 4 5
Jaccard Similarity 0.407 | 0.392 | 0.429 | 0.429 | 0.396
Overlap-Min 0.727 | 0.656 | 0.797 | 0.822 | 0.661
Overlap-Max 0.490 | 0.498 | 0.487 | 0.479 | 0.503
ROUGE-1 0.584 | 0.567 | 0.605 | 0.618 | 0.575
ROUGE-2 0.449 | 0.417 | 0.492 | 0.501 | 0.433
ROUGE-L 0.568 | 0.541 | 0.595 | 0.611 | 0.554
BLEU 0.313 | 0.422 | 0.258 | 0.249 | 0.417
METEOR 0.300 | 0.411 | 0.263 | 0.256 | 0.389

Table A.10: Explanation generation results using the Occlusions method with
Legal LSGBERT and the revised version of the /LDC,ypet corpus. The "Mean'
column represents the average scores computed among the five legal experts. The
percentage of the best sentences extracted is equal to 50.

Explainability Model vs Expert
Metric (30% of the sentences) Expert

1 2 3 4 5
Jaccard Similarity 0.302 | 0.311 | 0.297 | 0.293 | 0.308
Overlap-Min 0.749 | 0.598 | 0.822 | 0.848 | 0.639
Overlap-Max 0.347 | 0.401 | 0.323 | 0.312 | 0.382
ROUGE-1 0.462 | 0.468 | 0.453 | 0.460 | 0.470
ROUGE-2 0.317 | 0.293 | 0.322 | 0.329 | 0.306
ROUGE-L 0.447 | 0.436 | 0.443 | 0.453 | 0.445
BLEU 0.114 | 0.244 | 0.059 | 0.05 | 0.198
METEOR 0.179 | 0.263 | 0.142 | 0.135 | 0.241

Table A.11: Explanation generation results using the Occlusions method with
Legal LSGBERT and the revised version of the ILDC,yper+ corpus. The "Mean'
column represents the average scores computed among the five legal experts. The
percentage of the best sentences extracted is equal to 30.
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Additional Results

Explainability Model vs Expert
Metric (20% of the sentences) Expert

1 2 3 4 5
Jaccard Similarity 0.235 | 0.257 | 0.214 | 0.213 | 0.244
Overlap-Min 0.772 | 0.626 | 0.828 | 0.866 | 0.664
Overlap-Max 0.262 | 0.311 | 0.226 | 0.222 | 0.287
ROUGE-1 0.375 | 0.398 | 0.345 | 0.355 | 0.385
ROUGE-2 0.237 | 0.227 | 0.220 | 0.231 | 0.224
ROUGE-L 0.365 | 0.370 | 0.337 | 0.351 | 0.362
BLEU 0.047 | 0.111 | 0.014 | 0.008 | 0.083
METEOR 0.117 | 0.177 | 0.087 | 0.083 | 0.158

Table A.12: Explanation generation results using the Occlusions method with
Legal LSGBERT and the revised version of the /LDC,ypet corpus. The "Mean'
column represents the average scores computed among the five legal experts. The
percentage of the best sentences extracted is equal to 20.

Explainability Model vs Expert
Metric (50% of the sentences) Expert

1 2 3 4 5
Jaccard Similarity 0.422 | 0.378 | 0.434 | 0.436 | 0.382
Overlap-Min 0.712 | 0.667 | 0.768 | 0.799 | 0.658
Overlap-Max 0.517 | 0.469 | 0.505 | 0.498 | 0.480
ROUGE-1 0.595 | 0.554 | 0.596 | 0.610 | 0.560
ROUGE-2 0.464 | 0.405 | 0.479 | 0.491 | 0.415
ROUGE-L 0.585 | 0.538 | 0.587 | 0.605 | 0.542
BLEU 0.35 | 0.380 | 0.300 | 0.292 | 0.377
METEOR 0.317 | 0.397 | 0.275 | 0.275 | 0.382

Table A.13: Explanation generation results using the Occlusions method with
CaseLawBERT and the revised version of the ILDC,ypert corpus. The "Mean'
column represents the average scores computed among the five legal experts. The
percentage of the best sentences extracted is equal to 50.
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Additional Results

Explainability Model vs Expert
Metric (30% of the sentences) Expert

1 2 3 4 5
Jaccard Similarity 0.311 | 0.308 | 0.296 | 0.293 | 0.302
Overlap-Min 0.728 | 0.589 | 0.789 | 0.819 | 0.613
Overlap-Max 0.362 | 0.397 | 0.324 | 0.317 | 0.384
ROUGE-1 0.472 | 0.471 | 0.446 | 0.455 | 0.465
ROUGE-2 0.328 | 0.303 | 0.315 | 0.321 | 0.304
ROUGE-L 0.463 | 0.451 | 0.439 | 0.45 | 0.447
BLEU 0.119 | 0.247 | 0.065 | 0.063 | 0.216
METEOR 0.182 | 0.272 | 0.146 | 0.144 | 0.245

Table A.14: Explanation generation results using the Occlusions method with
CaseLawBERT and the revised version of the ILDC,yper¢ corpus. The "Mean'
column represents the average scores computed among the five legal experts. The
percentage of the best sentences extracted is equal to 30.

Explainability Model vs Expert
Metric (20% of the sentences) Expert

1 2 3 4 5
Jaccard Similarity 0.235 | 0.243 | 0.209 | 0.212 | 0.239
Overlap-Min 0.754 | 0.589 | 0.792 | 0.84 | 0.628
Overlap-Max 0.261 | 0.301 | 0.223 | 0.223 | 0.284
ROUGE-1 0.374 | 0.388 | 0.336 | 0.349 | 0.383
ROUGE-2 0.235 | 0.223 | 0.212 | 0.225 | 0.228
ROUGE-L 0.365 | 0.369 | 0.329 | 0.346 | 0.366
BLEU 0.037 | 0.115 | 0.01 | 0.011 | 0.085
METEOR 0.115 | 0.177 | 0.086 | 0.088 | 0.153

Table A.15: Explanation generation results using the Occlusions method with
CaseLawBERT and the revised version of the ILDC,yper¢ corpus. The "Mean'
column represents the average scores computed among the five legal experts. The
percentage of the best sentences extracted is equal to 20.
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