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Abstract
Hot-dip galvanization is a ubiquitous process involved in steel production, which consists
in covering the alloy with a layer of molten zinc. Gas jets impinge on the surface in order
to control the thickness in a procedure called jet wiping. However, this causes instabilities
that manifest as undulations on the final product. Being able to accurately simulate how a
jet perturbs the liquid zinc layer on an upward-moving substrate is thus essential to obtain a
thin and smooth final coating. A 3D spectral solver has been improved and tested; it takes
into account the surface tension terms and it features a perfectly matched layer. Some efforts
have been made to make the solver faster while being able to simulate a larger number of jets.
Jet wiping is not the only control method that has been investigated: since the liquid zinc is
paramagnetic at those temperatures the flow could also be controlled by electromagnets. These
simulations are at the basis of the final aim of this work, which is to optimize the controllers
characteristics and behavior in order to obtain the desired final coating. A fast solver is an
essential aspect when trying to run machine learning simulations of such systems, on this note
another idea that could speed up the time integration involves computing the Jacobian of the
system. Some steps have been taken into this direction but dealing with simplified equations.
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Introduction

Corrosion has always been a critical problem since the dawn of the metal ages. Affecting the
mechanical properties of steel and iron, corrosion degrades a wide range of components, lead-
ing to profound economic consequences. To give some figures, the degradation of metal due
to rust in the United States alone cost 300 billion dollars in 1995 or 3% of the nation’s Gross
Domestic Product (GDP) [6, 14]. This degradation not only necessitates high maintenance
costs, but may also prompt the complete replacement of parts, resulting in additional expenses
associated with material production and transportation. The impact corrosion is not merely
economical as it can also lead to the waste of natural resources, hazardous failures, and many
other indirect costs. To exacerbate matters, global steel production is anticipated to rise in
the coming decades, primarily fuelled by emerging economies [10]. Given the imperative to
reduce sector carbon emissions, coupled with the escalating demand, there is an increasing em-
phasis on enhancing the durability of new steel. Thus, protecting steel from corrosion becomes
paramount in ensuring its longevity.

FIGURE 1: Scheme of the hot-dip galvanization process with the metal strip dip
into a bath of molten zinc and then withdrawn vertically with the wiping jet (gold
circle) removing the liquid excess and the wavy pattern in the final coating caused

by the undulation instability (red circle).

One of the common methods to protect steel from corrosion consists in coating it with a thin
layer of protective material. Fig.1 shows the hot-dip galvanizing process where a metal strip is
immersed in a bath of molten zinc and then withdrawn vertically, creating a thin layer of zinc
on the metal surface. This process is inherently simple and provides three layers of defence to
the coated steel. Firstly, on a mechanical level, an adherent barrier is created, isolating the steel
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from the electrolytes in the environment. This barrier, in particular, can boast good resistance
in harsh environments while also being resistant to abrasion. Once the first protection level
is breached, the cathodic protection comes into play. Zinc protects steel by being consumed
before the steel. Finally, when zinc begins to corrode, as a consequence of being exposed to the
atmosphere, corrosion by-products will naturally form on the coating surface. The formation
of these by-products creates a patina, which, once fully developed, slows the corrosion rate,
acting as an additional passive barrier for coating.

The smoothness of the final coating is a major industrial stake. In this respect, the use
of control jets or magnets becomes crucial. However, the resultant film often falls short in
thinness and homogeneity, as highlighted in [9], leading to wastage of materials or inadequate
finishes. To address this issue, gas jets impinge upon the film, generating a runback flow, as
illustrated in Figure 1.1. This process is not exclusive to steel strips; its applicability extends to
various coating processes, including those involved in paper and film manufacturing, where
the deposition of a thin layer is fundamental. Being able to apply a thin and homogeneous
film results in less material being used and a more effective and durable finish. Jet wiping is a
coating process using gas jets to control the coating thickness coming out of the bath of molten
zinc. Despite bing simple and cost-effective, this technique suffers from a drawback, limiting
the production rate and the coating smoothness. At high strip velocities, the gas jet starts to
oscillate, leading to the formation of wavy patterns in the final coating surface. The final goal
of this work is to numerically simulate the zinc film on a moving substrate and to introduce
Reinforcement Learning in order to find a control law for the jets or magnets that guarantees
an adequate final coating.
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Chapter 1

Mathematical modelling

This chapter presents the reduced order model used to simulate the liquid film undulation
(Section 1.2) and the modelling of the control actuators (Section 1.4). Starting from the Navier-
Stokes equations for the 2D problem will be described with the corresponding boundary con-
ditions (BC). Then, the steady state solution will be presented; it will be assumed that the flow
has peculiar characteristics so that the derivatives along certain directions can be neglected.

After that, the focus will be shifted to the area that the jets impinge upon, so the gas pressure
and shear stress are imposed by the external airflow.

Before introducing the integral model, the equations are scaled with reference quantities;
this allows us to understand which terms are the dominant ones, considering the physics and
geometry at play.

The model investigated exploits BC in the ‘long-wave’ form, derived by scaling the cross
streamwise direction with a reference length [h], which is much smaller than the streamwise
reference length [x]. This is because, in reality, the liquid film layer, corresponding to the zinc
in the galvanizing process, is extremely thin compared to the dimensions of the strip it is on.
From that, some assumptions will be made in order to arrive at the integral boundary layer
model (IBL). The first part of the chapter follows the work done in Mendez, Gosset, and Buch-
lin [15]. These models of lower dimensionality proved to be useful in simulating such indus-
trial processes, which are not yet accessible by direct high-fidelity simulations because of the
prohibitive computational cost. With this approach, the dynamics of the liquid film flow are
described in terms of film thickness streamwise and spanwise flow rates, as opposed to the
Navier-Stokes equations where the film thickness, pressure and velocity fields must be com-
puted (Mendez et al. [16]). So far, for matters of simplicity, only two directions have been
considered, but it has also been extended to the 3D case in the paper byIvanova et al. [12], and
its validity has been assessed by Barreiro-Villaverde et al. [1]. Until now, the control has been
carried out by gas jets; however, magnets can also exert a force on the molten zinc. This intro-
duces new terms, but the modus operandi for modelling the equations remains analogous to
the jets’ case. Finally, in the last section of the chapter, the actuators, jets and magnets are taken
into consideration, showing how the pressure, shear stress and magnetic field are represented.

1.1 Scaling quantities

The liquid film thickness is much smaller than the film extension. This leads to the assumption
that the streamwise [x] (along x) and spanwise [z] (along z) scales are much bigger than the
film thickness scale [h]:

ϵ = [h]/[x] ≪ 1, ϵ = [h]/[z] ≪ 1, (1.1)
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where ϵ is the film parameter. This implies that the terms with a higher power of ϵ will be
negligible with respect to O(1) or O(ϵ1). The stramwise velocity scale [u] and the film thickness
scales are defined as:

[u] = Up [h] =

√
Upν

g
. (1.2)

Based on these quantities, we can calculate the remaining scaling quantities which are re-
ported in table 1.1.

Reference Quantity Definition Expression
[h] (νl[u]/g)1/2 (

νlUp/g
)1/2

[x] [h]/ε
(
νlUp/g

)1/2 Ca−1/3

[u] Up Up
[v] εUp UpCa1/3

[p] ρlg[x]
(
µlρlgUp

)1/2 Ca−1/3

[τ] µl[u]/[h]
(
µlρlgUp

)1/2

[t] [x]/[u]
(
νl/Upg

)1/2 Ca−1/3

TABLE 1.1: Scaling reference quantities

Performing the scaling operation the set of equations becomes

∂x̂û + ∂v̂ŷ = 0 (1.3)

ϵRe
(
∂t̂û + û∂x̂û + v̂∂ŷû

)
= −∂x̂ p̂l + ∂ŷŷû + 1 (1.4)

0 = ∂ŷ p̂l (1.5)

1.2 Liquid Film Model Overview

The first case to be considered is the one where jets impinge of the liquid surface. The effect of
such jets are a pressure pg(x, t) and a shear stress distribution τg(x, t) that varies along the x
axis of the plate, see figure 1.1

ϵ =
[h]
[x]

≪ 1

In the adopted notation, the values in square brackets are the reference quantities and the ones
with the hat are the dimensionless variables (e.g. h/[h] = ĥ). The liquid film flow in isothermal
conditions is governed by the Navier-Stokes equations. For a 2D incompressible flow with
constant properties (density ρl, dynamic viscosity µl and surface tension σ), the continuity and
the momentum equations along x and y read:

∂xu + ∂yv = 0 (1.6)

ρl
(
∂tu + u∂xu + v∂yu

)
= −∂x pl + µl

(
∂xxu + ∂yyu

)
+ ρlg (1.7)

ρl
(
∂tv + u∂xv + v∂yv

)
= −∂y pl + µl

(
∂xxv + ∂yyv

)
(1.8)

The subscript "l" refers to the liquid, while "g" to the gas.
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FIGURE 1.1: A schematic of the jet wiping process where the nozzle and the sub-
strate moving with speed Up are shown

The kinematic boundary conditions at the wall and at the gas-liquid interface set are:{
(u, v) = (−1, 0) in y = 0
v = ∂th + u∂xh in y = h

(1.9)

The film flow is bounded by the wall at y = 0 and by a moving interface at y = h(x, t). The
boundary conditions at the wall are kinematic and ensure that the flow does not slip or perme-
ate the moving substrate. The second equation of the set ensures that the interface between the
two fluids remains continuous as seen by a Eulerian observer. The interface shape is ultimately
determined by this latter expression.

This set of equations governs the 2D problem, no assumptions have been introduced a part
from considering constant material proprieties.

1.2.1 Steady State solutions

Far Field

The domain can be considered as made up by two different areas: one close to the impinging
point and one far from it. Where the influences of the jets can be neglected it is possible to
approximate the solution as with the steady state. There the height of the film is not changing
and so ∂t ≈ 0 and it is also flat, ∂x ≈ 0. It also follows that the velocity has only one component
along x, so v = 0. The equation 1.6 becomes

0 = νl∂yyu + g (1.10)

Now integrating twice along y and using the BCs allows to obtain the velocity profile

u(y) =
∫ (∫ g

vl
dy
)

dy = −1
2

g
v

y2 +
g
νl

hy − Up (1.11)
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The velocity profile far from the impinging jets, or in a steady state, is parabolic. The flow rate
is obtained by integrating this relation

q =
∫ h

0
u(y) =

1
3

g
vl

h3 − hUp (1.12)

This last equation set some boundaries on the values of h since if it exceeds the critical value
then the q < 0, but this is not physical since it would mean that more liquid would be falling
than being pulled by the substrate.

Impinging Area

Let us now consider what happens in the other region, the one close to the impinging jets.
Since the jet is now acting on the fluid it is not anymore possible to assume that the ∂x ≈ 0.
This leads to the 1D set of equations

∂xu = 0 (1.13)

0 = −1
ρ

∂x pl + vl
(
∂yyu

)
+ g (1.14)

0 = −∂y pl (1.15)

Moreover the kinematic condition, under the assumption of a gently changing profile (∂xh ≈
0), can be expressed as

pl − pg(x) + σ∂xxh = 0; and ∂yu =
1
µ

τg(x) (1.16)

Finally combining 1.16 and 1.15 the velocity along y and the corresponding flow rate are deter-
mined as in Mendez, Gosset, and Buchlin [15]. This makes it possible to compute them with
a solver. This simplified case shares the same process with the higher order models shown in
the upcoming sections.

1.2.2 The Integral Formulation of the Unsteady Problem

Once the set of dimensionless equations is provided it is necessary to integrate the equations,
however this requires some assumptions on the shape of the velocity profile. The purpose of
an integral model is to write these two contributions as function of the flow rate q̂ and film
thickness ĥ.

it is possible to obtain the following integral form of the continuity equation

∫ ĥ(x̂,t̂)

0

(
∂x̂û + ∂vŷ

)
dŷ = ∂x̂ q̂ + ∂t̂ĥ = 0 (1.17)

The integration for 1.4 with the pressure written as

p̂l|ĥ = p̂g −
ϵ3

Ca
∂x̂x̂ ĥ (1.18)
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yields [15]

ϵRe (∂t̂q̂ + ∂x̂F ) = ĥ
(

1 − ∂x̂ p̂g + ∂x̂x̂x̂ ĥ
)
+ τ̂g + τ̂w (1.19)

Where F = ∂x̂
∫ ĥ(x̂,t̂)

0 û2dŷ is the integral advection term. This is the last missing term, but
to integrate the û it is necessary to make an assumption regarding its distribution. As seen
in equation 1.11 the velocity profile in the steady state case has a parabolic shape. If it can be
assumed that the newly introduced terms, inertia and surface tension, do not affect this balance
in a significant way, then the profile for the unsteady case has the same quadratic trend. The
constants depend on ĥ and q̂, and therefore change in space and time. By exploiting the BC
two of the three constants can be determined, leading to

q̂ =
∫ ĥ

0

(
1
2

C1ŷ2 + (τ̂g − C1ĥ)ŷ − 1)dy
)

(1.20)

From this equation C1 is obtained and with that the final velocity profile and integrating it
results in the following advection term

F (ĥ, q̂) =
∫ ĥ

0
û2dŷ =

24ĥ2 + 48ĥq̂ + 144q̂2 +
(

6ĥ2q̂ + 6ĥ3
)

τ̂g + ĥ4τ̂2
g

120ĥ
. (1.21)

the shear stress on the other hand has the expression:

τw = −∂ŷû =
ĥ2τ̂g − 6q̂ − 6ĥ

2ĥ2
(1.22)

By substituting this last couple of relations in 1.19 the 2D model for the jet wiping case
is complete. To summarize, the final equations set governs the 2D isothermal jet case with
constant properties and one-way coupling between the gas flow and the liquid flow. In this
approach, the impinging gas jet enters into the modeling solely in terms of distributed (and
possibly time dependent) sources of pressure gradient and shear stress.

1.2.3 Vectorial Representation

The set of equations 1.17 and 1.19 can be written in the following manner

∂tV(x, t) +∇ · F(x, V) = S(x, t, V) (1.23)

The state vector is represented by:

V =

[
ĥ
q̂

]
(1.24)

The flux term is

F =

[ −q̂
−F̂ (ĥ, q̂)

]
(1.25)
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FIGURE 1.2: Sketch of the flow domain for a liquid film on a vertically moving
substrate

Finally the source term is

S =

[
0

ĥ
(

1 − ∂x̂ p̂g + ∂x̂x̂x̂ ĥ
)
+ τ̂g + τ̂w

]
(1.26)

This allows for the numerical solving of the set of PDEs through finite volumes or spectral
methods.

1.2.4 The 3D Integral Formulation and Validation

It is possible to further extend the model to the 3D case, refer to Ivanova et al. [12] for further
details. In this case the set of equations would become

∂x̂û + ∂v̂ŷ + ∂ẑŵ = 0 (1.27)

ϵRe
(
∂t̂û + û∂x̂û + v̂∂ŷû + ŵ∂ẑû

)
= −∂x̂ p̂l + ∂ŷŷû + 1 (1.28)

0 = ∂ŷ p̂l (1.29)

ϵRe
(
∂t̂ŵ + û∂x̂ŵ + v̂∂ŷŵ + ŵ∂ẑŵ

)
= −∂ẑ p̂l + ∂ŷŷŵ (1.30)

The kinematic BCs become {
(û, v̂, ŵ) = (−1, 0, 0) in ŷ = 0
v̂ = ∂t̂ĥ + û∂x̂ ĥ + ŵ∂ẑĥ in ŷ = ĥ

(1.31)
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while the dynamic BC, in ŷ = ĥ , considering only the terms O(ϵ1) is

p̂ = p̂g −
(

∂x̂x̂ ĥ + ∂ẑẑĥ
)

(1.32)

∂ŷû = τ̂g,x (1.33)

∂ŷŵ = τ̂g,z (1.34)

A process similar to the 2D case is followed for the integration, where a self-similar parabolic
velocity profile for both the streamwise û and the spanwise ŵ velocity components is assumed.

û
(

ĥ, q̂x, q̂z

)
=

3
4ĥ3

(
τ̂g,x ĥ2 − 2ĥ−2q̂x

)
ŷ2 (1.35)

+
6ĥ + 6q̂x − τ̂g,x ĥ2

2ĥ2
ŷ − 1, (1.36)

ŵ
(

ĥ, q̂x, q̂z

)
=

3
4ĥ3

(
τ̂g,zĥ2 − 2q̂z

)
ŷ2 (1.37)

+
6q̂z − τ̂g,zĥ2

2ĥ2
ŷ. (1.38)

The source terms are

S⃗ =


0

1
δ

[
ĥ
(
−∂x̂ p̂x + ∂x̂x̂x̂ ĥ + ∂x̂ẑẑĥ + 1

)
+ ∆τ̂x

]
1
δ

[
ĥ
(
−∂ẑ p̂z + ∂ẑẑẑĥ + ∂ẑx̂x̂ ĥ

)
+ ∆τ̂z

]
 (1.39)

The shear stress at the wall

τ̂w,x =
1
2

τ̂g,x −
3q̂x

ĥ2
+ α

3
ĥ

(1.40)

τ̂w,z =
1
2

τ̂g,z −
3q̂z

ĥ2
(1.41)

Finally the flux matrix contains has components

F =

(
F11 F12 F13
F21 F22 F23

)
=

(
q̂x

∫ ĥ
0 û2dŷ

∫ ĥ
0 ûŵdŷ

q̂z
∫ ĥ

0 ûŵdŷ
∫ ĥ

0 ŵ2dŷ

)
(1.42)
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The different terms are determined as

F11 =
∫ ĥ

0
ûdŷ (1.43)

F21 =
∫ ĥ

0
ŵdŷ (1.44)

F12 =
1

120ĥ

(
144q̂2

x + 6τ̂g,x ĥ2q̂x + τ̂g,x ĥ4 (1.45)

−α
(

48ĥq̂x + 6τ̂g,x ĥ3 + 24ĥ2
))

(1.46)

F22 =
1

120ĥ

(
144q̂x q̂z + 3τ̂g,x ĥ2q̂z + 3τ̂g,zĥ2q̂x (1.47)

+τ̂g,xτ̂g,zĥ4 − α
(

24ĥq̂z + 3τ̂g,zĥ3
))

(1.48)

F13 =F22 (1.49)

F23 =
144q̂2

z + 6τ̂g,zĥ2q̂z + τ̂2
g,zĥ4

120ĥ
(1.50)

This is the model implemented in the spectral 3D BLEW solver. The model robustness has
been studied in Barreiro-Villaverde et al. [1], where the IBL model was integrated using the
Finite Volume BLEW. The latter combines the two-step second-order Lax-Wendroff and the
two-step first-order Lax- Friedrich schemes. The model was validated with and without the
surface tension term. An interesting observation, made by the author, is that technically the
term ϵRe exceeds ϵRe ∼ O(1), this means that the asymptotic expansion is not guaranteed to
hold, however the results between IBL and DNS still seem to agree. The paper concludes that
using the DNS the mesh had to fulfill stricter restrictions, in terms of cell size. Despite minor
differences in the profiles, the consistency was deemed acceptable as the shape, amplitude,
and speed of the waves remained largely unchanged in both scenarios. Additionally, both
solvers successfully depicted the initial wave growth, followed by capillary damping. Finally
it is important to highlight that the computational expense of DNS is significantly higher than
that of IBL simulations, owing to mesh demands and the intricate nature of the governing
equations.

1.3 Magnetic Model

Impinging on the liquid film through gas jets it is not the only way to exert a force on the flow.
When molten zinc is exposed to a magnetic field, it begins to conduct a small amount of elec-
tricity, which creates an oppositely charged magnetic field. Since the two fields are oppositely
charged, they repel each others, causing the liquid zinc to move away from the magnet. So a
new term has to be considered in the steady state equation 1.6, thus becoming

0 = − 1
ρl

∂x pl + νl(∂yyu) + g − σM

ρl
B2u (1.51)

(1.52)

The magnetic terms is caused by the Lorentz force, since the film is in relative motion with
respect to the magnetic field, B. Generally the Lorentz force, in absence of an electric field, is



1.3. Magnetic Model 11

written as

FL = q(ẋ × B) (1.53)

where ẋ is the velocity vector of a charged particle. Considering only a infinitesimal volume
and writing it in terms of current density j = ρẋ, where ρ is the charge density.

j = σm(ẋ × B) (1.54)

By also neglecting the electric potential difference the equation of the Lorentz force for the unit
volume becomes

fL = j × B = ( fL,x, 0, fL,z)
T = (−σMB2u, 0,−σMB2w)T (1.55)

The boundary and dynamic conditions remain unaltered and once again the non-dimensional
quantities are introduced in the expression

0 = − [p]
[x]

∂x̂ p̂g +
σ[h]
[x]3

∂x̂x̂x̂ ĥ + µl
Up

[h]2
∂ŷŷû + ρlg − σM[B]2UpB̂2û. (1.56)

[B] is assumed as the maximum value of the magnetic field ([B] = sup(B(x, t)). All terms are
then divided by the gravitational term ρlg and ϵ is introduced. Finally taking [p] = ρlg[x],
[τg] = µlUp/[h] and the definition of h according to 1.1, as in the jet formulation, the following
dimensionless version of equation 1.52 is given:

0 = −∂x̂ p̂g +
ϵ3

Ca
∂x̂x̂x̂ ĥ + ∂ŷŷû + 1 − Ha2

0B̂2û, (1.57)

Ha is the Hartmann number, weighting the importance of the electromagnetic to the gravita-
tional force. This steady state equation can be seen as a wave equation with a constant term
A1

A1 = −∂x̂ p̂g +
ϵ3

Ca
∂x̂x̂x̂ ĥ (1.58)

Meaning that the equation can be written as

0 = A1 + ∂ŷŷû + 1 − Ha2
0B̂2û (1.59)

which has an homogeneous solution in the form

û(ŷ) = k1e(Ha0B̂ŷ) + k2e(−Ha0B̂ŷ) +
A1 + 1
Ha2

0B̂2
, (1.60)

The k1 and k2 terms can be computed starting from the boundary conditions. It is now
possible to write an expression for the velocity distribution û(ŷ), from which also the flow rate

per unit width is obtained (q̂ =
∫ ĥ

0 û(ŷ′) dŷ′). This eventually leads to an expression for û(ŷ)
for the steady state. Moving on to the unsteady case the equation to be solved is

∂t̂û + û∂x̂û + v̂∂ŷû = −∂x̂ p̂l + ∂ŷŷû + 1 − Ha2
0B̂2û (1.61)
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However an assumption has to be made and, as for the jet wiping model, it is assumed that the
velocity profile has the same shape as in the steady case

û(ŷ) = k1,ueHa0 B̂ŷ + k2,ue−Ha0 B̂ŷ + k3,u
A1 + 1
H2

a0
Ĥ2

with A1 = −∂x̂ p̂g +
ϵ3

Ca
∂x̂x̂x̂ ĥ (1.62)

This means that the inertial forces have a small influence over said velocity distribution. The
final set of equations that have been coded into the 3D spectral solver is shown in appendix A.
In the code implementation it was noticed that a fully magnetic model, that is one that solves
the equations introduced in this section, would not be stable. This is probably due to the fact
that the magnetic field far from the magnets takes on values close to zero, causing numerical
issues. To solve this problem different approaches have been tested. The one that seemed
to strike the best balance between stability and adherence to the mathematical model is the
one chosen for the simulations. The flux terms of 1.23 have been computed assuming that the
magnetic field has a marginal influence, thus neglecting it. This means that the magnetic field
only appears in the source term. In these terms the square of the magnetic field is added to the
gas pressure gradient, to the surface tension, to gravitational and to the wall shear stress terms.
As shown in the appendix A the wall shear stresses are also functions of the magnetic field.

1.4 Actuators Characterization

As mentioned before, it is being assumed that the jets impinge on the liquid film without being
influenced by the flow itself. This is a consequence of the fact that the distance between the
plate and jet nozzle H is much bigger than the liquid film thickness h. These actuators deter-
mine a pressure and shear distribution on the flow, following empirical relations that will be
illustrated in the upcoming sections.

1.4.1 Jet Characterization

Impinging circular jets are a special type of jets that is commonly used in jet wiping and char-
acterized by their circular shape and perpendicular impact on the surface to be wiped. As it
will be seen later those distribution can be computed through empirical models for which it is
necessary to know the gas velocity.

The process for obtaining the gas velocity value starts by assuming that both, the maximum
pressure and the shear stress, depend exclusively on the nozzle gauge stagnation pressure, ∆PN
, the nozzle opening, d, its discharge coefficient, Cd, and the standoff distance, H. The losses
are expressed as

C2
D =

1
2

ρU2
j

∆PN
=

U2
j

U2
id

(1.63)

Generally, for wiping jets, CD as a value of 0.8, it has to be less than one.

Pressure and shear stress distribution

To model the height of the liquid film, firstly one must evaluate how the jet wiping interacts
with the liquid coating. With an experimental facility one can to compute the relationship of
shear stress and pressure distribution for circular jets impinging in a strip. They both depend



1.4. Actuators Characterization 13

on the value of stand-off distance and the diameter of the nozzle. For this kind of application
it is H/d ≥ 6, which is a compromise between wiping performance and the nozzle gas flow
rate. Another crucial parameter that must be set up is the gauge of pressure in the nozzle, so
the project variables are ∆P and H/D. The pressure and shear stress distribution laws at the
wall interface are modeled according to the semi-empirical relations proposed in the paper by
Beltaos and Rajaratnam [2], according to which

pw = pmaxe−144λ2
(1.64)
(1.65)

while the shear stress distribution is given by

τw = τmax

[
0.18

1 − e−144λ2

λ
− 9.43λe−144λ2

]
(1.66)

The parameter λ = r/H is defined as the ratio between the distance from the impinging point
r and H. The pressure has a maximum value directly beneath the impinging jet and then it
decreases. On the other hand the maximum shear stress is located at some distance from the
impinging point. It is possible to notice that the maximum pressure and shear stress are only
functions of three parameters, that is

pmax = pmax(Uj, H, d) = 50
ρgU2

j

2

(H
d

)−2
(1.67)

τmax = τmax(Uj, H, d) = 0.16ρgU2
j

(H
d

)−2
(1.68)

These empirical equations approximate the quantities in the impingement region of the jet
(λ < 0.22), where the wall shear and the pressure gradients are most significant. In the actual
code implementation an additional artificial term has been introduced in the shear distribution.
The term is the square of λ, this allows for a distribution closer to the experimental one and
since the values under a certain range are set to zero, this also assures that the jets do not
influence themselves too much, as the shear stress goes to zero more rapidly.

τg,mod = max
(

0, τmax

(
0.18

(1 − e−114λ2

λ

)
− 9.43λe−114λ2 − λ2

))
(1.69)

Equations 1.65 and 1.69 are the expression on which the actuators were implemented in
the final solver. However the waves that have to be controlled are only quasi 3D, this lead
to the idea that a 2D jet might also have chances of flattening it. Since the changes along the
streamwise direction, x̂, are much more pronounced than the ones in the spanwise one, ẑ is
is reasonable to assume that a 2D jet will also perform well. For this reason the equations of
the three-dimensional pressure and shear stress distribution were modified by neglecting the
terms along ẑ. The results are distributions that vary only along x̂. Alternatively this could have
been achieved by putting multiple jets close to one another, however this would unnecessarily
increase the computational cost.
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FIGURE 1.3: Pressure (blue continuous line with circles) and shear stress (green
dash-dotted line with triangles) distributions at the strip level in the radial direc-
tion λ = r/H for a planar 2D jet (a) and for a circular 3D jet with the modified
shear stress distribution (orange dashed line with squares) and a highlight of the

impingement and the wall jet regions (b)

1.5 Magnets Characterization

Just like the jets, the magnets have the effect of causing a force distribution over the domain,
the value of which changes in space. The modeling of the magnets is based on the hypothesis
that the radial component, the induced field and the hysteresis effects are negligible

B = Bext + Bind (1.70)

The absence of induction can also be seen in terms of magnetic Reynolds defined as

Rem = µσM[u][L] ≪ 1 (1.71)

The final and most relevant approximation is the fact that the filed has the shape of a Gaussian

B(x̂, ẑ, t̂) = Bt(t̂)e
−(x̂−x̂0)

2

2γ2
x

+
−(ẑ−ẑ0)

2

2γ2
z (1.72)

(x0, z0) is the center of the Gaussian and (γx, γz) are the standard deviations along x and z
respectively and Bt(t) is bounded between 0 and the maximum prescribed value for the in-
duction field sup(B). So the shape does not change over time but it is scaled with a factor
that is time dependent. A critical point of this modelling is the lack of a hysteresis term in
the magnetic field. In reality, the magnetic field does not change instantaneously when we
change Bt from one instant to the other; it has a response time linked to the magnetic proper-
ties of the solenoid’s core material. Although enough for the level of accuracy of this research,
a more advanced model should also consider the hysteresis effect Bertotti and Mayergoyz [3]
and Przybyłowicz and Szmidt [20].
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FIGURE 1.4: Scheme of the solenoid of length Ls, radius rs with a current I with
the cylindrical reference frame centred in the middle (a) and the relative magnetic
induction field in terms of relative magnetic intensity |B|/B0 and magnetic lines (b)
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Chapter 2

Simplified Model Implementation

This chapter focuses on the numerical implementation of the reduced order model presented
in Chapter 1 via the Fourier pseudo-spectral method. A previous version of BLEW used finite
volume schemes and suffered the computation of the third-order derivatives that appear in the
surface tension terms. Moreover, those finite volume schemes had a high numerical diffusion,
which negatively affected the liquid film development.

It was, therefore, necessary to find an alternative. As seen in the upcoming sections, spectral
methods are really promising options as they can allow for faster and more accurate solutions.
This chapter begins with a brief introduction to the Fourier transform, the main mathematical
tool behind spectral methods, highlighting its strengths and weaknesses. This approach will
be put to the test by showing how the spatial derivatives are computed and how this compares
to other conventional methods.

A fast solver is essential when many simulations have to be carried out, as in the case of
reinforcement learning. Therefore, in the second part of this chapter it has been investigated
how it is possible to use the Fourier transform with the goal of obtaining the Jacobian matrix
of a function. This matrix will then be given to a time integrator to speed up the process. The
equations in question are not the ones solved in BLEW, but it was decided to test the idea on less
complex functions that would still present similar terms. Finally, the integrating factor method
was applied to the viscous Burgers’ equation in order to provide an additional alternative.

2.1 Fourier Transform

The Fourier Transform converts a function f (x) from its original domain to the frequency do-
main. This is given by the integral transformation:

f̂ (ξ) =
∫ ∞

−∞
f (x)e−i2πξx dx, (2.1)

where f̂ is the transformed function and ξ are the frequencies. For each frequency, the magni-
tude of the complex value, f̂ (ξ), represents the amplitude of a constituent complex sinusoid
with that frequency integrated over the domain. The inverse transformation is given by:

f (x) =
1

2π

∫ ∞

−∞
f̂ (ξ)ei2πξxdξ, (2.2)

In short, the Fourier Transform "dissects" the original function into its underlying frequen-
cies, revealing the contribution of each frequency component. If a particular frequency is not
present in the original function, the corresponding value in the transform is zero.
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Real signals are measured at discrete points in time or space. The Discrete Fourier Trans-
form (DFT) is an adaptation of the Fourier Transform for such discrete signals. Let us now
consider a discrete signal x with N samples. The DFT takes this discrete signal and maps the
function values to the frequency domain, similar to the continuous Fourier Transform. How-
ever, instead of using an integral, the DFT employs a sum. The DFT of a discrete signal x at
frequency k/N is computed using the formula:

Xk =
N−1

∑
n=0

xne−i2π kn
N , (2.3)

In the adopted formulation the sum starts with n = 0, this will make it easier to write the DFT
as a matrix in section 2.4 and it is also the way that python indexes variables. The correspond-
ing inverse function is expressed as

xn =
1
N

N−1

∑
n=0

Xkei2π kn
N . (2.4)

Here, k ranges from 0 to N − 1, representing frequency intervals. Each f̂k is a complex
number that reveals the contribution of the sinusoidal component of frequency k/N in the
signal.

The DFT proves to be valuable for numerical estimation and calculation. However, its ef-
ficiency diminishes significantly for very large values of N, due to the basic formulation in-
volving multiplication by a non-sparse N × N matrix, necessitating O(N2) operations. The
computational cost can be reduced by employing the Fast Fourier Transform (FFT) algorithm,
which scales at O(Nlog(N)), meaning that as N grows, the algorithm approaches linear scal-
ing.

Not every wave number can be considered; as a matter of fact, the maximum is determined
by the Nyquist-Shannon sampling theorem, which states that to capture frequencies in a signal
accurately, the sampling rate must be at least twice the frequency of the highest frequency
component. From another perspective, the highest considerable frequency is half the sample
frequency. The frequency corresponds to the wave number when the discretization is in space.

FIGURE 2.1: Aliasing might lead to an incorrectly reconstructed signal if the sam-
pling ratio is not appropriate

So far, the function considered was one-dimensional. However, it is possible to extend it
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to multiple dimensions; this will be the case with the BLEW solver. More focus is on the two-
dimensional case in section 2.5. An important phenomenon that has to be considered is called
aliasing, which causes a distortion of the frequency content of a signal, as shown in figure 2.1.
Aliasing primarily occurs when the signal contains high-frequency components that exceed
the Nyquist frequency. To clarify, consider the following example. Imagine dealing with a con-
tinuous signal that carries a pure tone at a frequency of 1000Hz. If this signal is sampled at
a rate only slightly above 2000Hz (just above the Nyquist rate for 1000Hz), the Nyquist crite-
rion is fulfilled. However, if there are any higher-frequency components present in the signal
beyond 1000Hz, they will "fold back" due to aliasing. These higher-frequency components
might manifest as seemingly lower-frequency components in the sampled signal. Imagine a
small, additional signal component at 1500Hz in the original continuous signal (which was
not initially noticeable), which exceeds the Nyquist frequency. Due to aliasing, this 1500Hz
component will fold back and appear as a lower frequency. In the sampled signal, one might
detect a component at 500Hz (2000v − 1500Hz), which looks like a genuine part of the original
signal. This is how the spurious lower-frequency components emerge. They are the result of
aliasing, where higher-frequency information is folded back into the lower-frequency range.
Employing strategies like low-pass filtering can mitigate this issue. Low-pass filters remove
high-frequency components that could lead to aliasing, ensuring that the sampled signal accu-
rately reflects the true composition of the original continuous signal.

2.2 Spectral Methods

Spectral methods are the best numerical methods to solve partial differential equations (PDEs)
with high accuracy on a relatively simple domain if the data defining the problem is smooth.
They can achieve higher accuracy with respect to the other methods, with the same number
of grid points (Dutykh [7]). This ultimately results in less complexity as well as a reduced
computational cost. The main idea behind spectral techniques is to write the solution of the
differential equation as a sum of certain basis functions and then to choose the coefficients in the
sum in order to satisfy the differential equation (Canuto et al. [5]).

u(x, t) ≈ un(x, t) =
N

∑
k=0

vk(t)ϕk(x) (2.5)

where ϕk(x)∞
k=0 are the basis functions. This set of functions should guarantee three general

properties:

• The approximation should converge to the solution as the number of grid points increases

• It should be relatively straight forward to determine the sum coefficients

• It should not be computationally expensive to reconstruct the solution starting from the
sum weights

In spite of all those advantages, spectral methods assume the periodicity as a BC. This require-
ment is not explicitly stated, but it is implicit which means that the function that represents the
initial condition should be periodic in the physical domain. If this condition is not respected
then huge oscillations in the solution are introduced at the boundary of the domain. Having a
periodic domain means that the flow that exits on the left enters, at the same time, the domain
from the right. To make up for this restrictive hypothesis it is possible to apply a particular
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layer to the domain. It is a zone where a strong damping is numerically implemented, such
that in these areas waves are flattened. In this way the flow that exits, and then reenters, the
domain is therefore free of any kind of perturbations.

2.2.1 Equation discretization

In practice the liquid film height ĥ, the streamwise q̂x̂ and the spanwise q̂ẑ flow rates are ap-
proximated with N × M plane waves in two dimensions:

ĥ ≈ ĥN(x̂, ẑ, t̂) =
N/2−1

∑
kx̂=−N/2

M/2−1

∑
kẑ=−M/2

h̃[kx̂,kẑ]ei(kx̂ x̂+kẑ ẑ) (2.6)

q̂x̂ ≈ q̂N
x̂ (x̂, ẑ, t̂) =

N/2−1

∑
kx̂=−N/2

M/2−1

∑
kẑ=−M/2

q̃[kx̂,kẑ]
x̂ ei(kx̂ x̂+kẑ ẑ) (2.7)

q̂ẑ ≈ q̂N
ẑ (x̂, ẑ, t̂) =

N/2−1

∑
kx̂=−N/2

M/2−1

∑
kẑ=−M/2

q̃[kx̂,kẑ]
ẑ ei(kx̂ x̂+kẑ ẑ) (2.8)

where kx̂ and kx̂ are the streamwise and the spanwise wave numbers and H̃, Q̃x̂ and Q̃ẑ are
the matrices containing the Fourier coefficients h̃[kx̂,kẑ], q̃[kx̂,kẑ]

x̂ and q̃[kx̂,kẑ]
ẑ respectively. The next

step consists in computing the derivatives, using the property show in expression 1.23 for the
1D case:

∂nĥN

∂x̂n =
N/2−1

∑
kx̂=−N/2

M/2−1

∑
kẑ=−M/2

(ikx̂)
nh̃[kx̂,kẑ]ei(kx̂ x̂+kẑ ẑ) (2.9)

∂nĥN

∂ẑn =
N/2−1

∑
kx̂=−N/2

M/2−1

∑
kẑ=−M/2

(ikẑ)
nh̃[kx̂,kẑ]ei(kx̂ x̂+kẑ ẑ) (2.10)

Then the residual is projected onto a base of Dirac delta functions, δx̂i,ẑj , and set to zero.
Those Dirac functions are defined over an equispaced grid x̂i =

2π
N i and ẑj =

2π
M j with i ∈ N :

i ≤ N and j ∈ N : j ≤ M. Exploiting the Dirac function properties, the inner product with
respect to the residual results into a discrete inverse Fourier transform giving the value of the
state quantities at the grid point, also known as collocation points:

⟨
N/2−1

∑
kx̂=−N/2

M/2−1

∑
kẑ=−M/2

h̃[kx̂,kẑ]ei(kx̂ x̂+kẑ ẑ), δx̂i,ẑj⟩ = (2.11)

=
∫

Ω

N/2−1

∑
kx̂=−N/2

M/2−1

∑
kẑ=−M/2

h̃[kx̂,kẑ]ei(kx̂ x̂+kẑ ẑ)δx̂i,ẑj dx̂dẑ = (2.12)

=
N/2−1

∑
kx̂=−N/2

M/2−1

∑
kẑ−M/2

h̃[kx̂,kẑ]ei(kx̂ x̂i+kẑ ẑi)

︸ ︷︷ ︸
IDFT

= ĥ(x̂i, ẑi). (2.13)

Hence, a linear system of equations of dimension N × M is obtained in terms of the state
quantities values at the collocation points.
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At each time step, the nonlinear terms in the physical space are computed to find the val-
ues of the associated Fourier coefficients to then compute the spatial derivative in the wave
numbers space. This section summarizes the main mathematical idea behind spectral meth-
ods. To further familiarize with these concepts some study cases are provided in the upcoming
sections.

2.3 Practical implementation of the spectral methods

Let us now consider the advection equation to see how the Fourier transform can practically
be employed in order to discretise in space a differential equation, such as the advection one:

∂tu + a∂xu = 0 (2.14)

Just like the finite differences, spectral methods provide a way to evaluate the spatial deriva-
tives. So that the initial equation will be rewritten as

∂tu(x) = f (u(x)) (2.15)

Such an ODE can then be solved in different ways, the simplest of which is an explicit Euler
scheme. Other alternatives are the Runge-Kutta schemes or also using the odeint function in
python is a viable option. First, let’s go back to the spatial discretization. Considering the
convection term it is possible to rewrite it as

∂xu(x) = F−1F (∂xu(x)) (2.16)

However it is possible to see that

F (∂xu) = ikxF (u) (2.17)

Where i is the imaginary unit. This is because

F ( f (x)) =
∫ ∞

−∞
f (x)e−ikxdx (2.18)

F (∂x f (x)) =
∫ ∞

−∞
∂x f (x)e−ikxdx (2.19)

Using integration by parts, the above integral can be expressed as:

F (∂x f (x)) =
[

f (x)e−ikx
]∞

−∞
−
∫ ∞

−∞
f (x)(−ik)e−ikxdx (2.20)

Assuming that f (x) approaches zero as |x| → ±∞, the boundary terms vanish:

F{∂x f (x)} =
∫ ∞

−∞
f (x)(ik)e−ikxdx = ikF ( f (x)) (2.21)
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So the original equation 2.14 can be written as

∂tu = aF−1 [ikF (u)] (2.22)

Which is in the form of equation 2.16. On a practical level the right hand side can be computed
using built in functions of numpy for calculating the direct and inverse Fourier transform and
by multiplying the result with the wave number vector.

2.3.1 Derivative computation

As seen in the previous section, Fourier transforms can be employed to compute the spatial
derivatives of a function. Other methods, such as the finite differences, might require a higher
number of points to reach the same accuracy, although they might be best suited if the solution
presents sharps changes. In this example a Gaussian function in the middle of the domain is
derived first analytically, than with the finite differences and finally with the Fourier transform.
It is important to notice that the equation is periodic on the considered domain and that the
domain itself is x ∈ [0, 2π]. The spectral derivative is computed by using equation 2.17 and
then taking the inverse transform to go back to the original domain. The code 2.2 also shows
how to perform the transform by multiplying a vector by the DFT matrix, more on that in
section 2.4. The Fourier derivative is more accurate than the finite difference one, this is because
it is taking information from the whole domain to compute the basis function coefficients. It
is worth noting that with the same number of points the FD method would be faster than the
spectral one. One final remark is that the spectral scheme does not provide the solution only
in the collocation points but in the whole domain, because the test sinusoidal functions are
defined everywhere in the domain.

LISTING 2.1: Python code for computing the derivative of a periodic function

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # Define domain parameters
5 L = 2 * np.pi
6 n_x = 10
7 dx = L / n_x
8 x = np.linspace(0, L, n_x , endpoint=False)
9

10 # Initial Condition: Cosine function , which is periodic on the
domain [0, L]

11 u0 = np.exp(-(x-np.pi) ** 2 / 0.5)
12

13 # Calculate Analytical Derivative
14 finite_dif = np.gradient(u0, dx)
15

16

17 # Calculate Spectral Derivatives using different methods
18

19 # Method 1: Using Fourier Transform matrices
20 N = len(x)
21 k = np.fft.fftfreq(N, dx)
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22 W = np.fft.fft(np.eye(n_x))
23 W_bar = np.fft.ifft(np.eye(n_x))
24 spectral_derivative1 = (W_bar @ ((1j * k) * (W @ u0))) * L
25

26 # Method 2: Using FFT directly
27 spectral_derivative2 = np.fft.ifft(1j * k * np.fft.fft(u0)) * L
28

29 # Analythical solution
30 x_an = np.linspace(0, L, 10*n_x , endpoint=False)
31 u0_an = np.exp(-(x_an -np.pi) ** 2 / 0.5)
32 analytical_derivative = -4*(x_an -np.pi)*u0_an
33 # Plotting ...

FIGURE 2.2: Comparison between analytical and numerical approximations of the
derivative of a Gaussian. The numerical derivative is first computed with the finite
differences method and then with the Fourier transform, using two analogous for-

mulations

2.4 Fourier Transform Matrix Formulation

The Fourier transform can be seen as an orthogonal function space spanned by sines and
cosines [4] and it is also a linear operator, meaning that

F (α f (x) + βg(x)) = αF ( f ) + βF (g) (2.23)

As a consequence of that it is possible to compute the discrete Fourier transform as a matrix
multiplication. So if x is the vector of the sampled data, X the DFT of the signal and W the DFT
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matrix.

X = Wx (2.24)

This is because of the fact that the DFT of a function, at a certain wave number k, has the form

Xk =
N−1

∑
n=0

xne−i2πnk/N (2.25)

where N is the length of the sample column vector xn. For the kth wave number the expression
can be written in matrix form as

Xk1 =
[
e−i2π0k1/N, e−i2π1k1/N, ..., e−i2π(N−1)k1/N

]
[x0, x2, ..., xN−1]

T (2.26)

So the complete expression, considering all the wave numbers, becomes

X =


e−2πi(0)(0)/N e−2πi(0)(1)/N · · · e−2πi(0)(N−1)/N

e−2πi(1)(0)/N e−2πi(1)(1)/N · · · e−2πi(1)(N−1)/N

...
... . . . ...

e−2πi(N−1)(0)/N e−2πi(N−1)(1)/N · · · e−2πi(N−1)(N−1)/N




x0
x2
...

xN−1


It is worth noting that the matrix is symmetrical. From now on this operation will be written
as in equation 2.24. The inverse transformation on the other hand can be expressed as

xn =
1
N

N−1

∑
k=0

Xkei2πnk/N (2.27)

The notation with the term 1/N in the inverse transform term is chosen because it is compliant
with the SciPy module scipy.fft of Python. The matrix associated with the inverse transform will
be addressed as W. This is due to the fact that, not considering the 1/N factor, the matrices W
and W are one the complex conjugate of the other, moreover since they are both symmetrical
the complex conjugate and the hermitian operators coincide.

W = WT (2.28)

W = WT
= WH (2.29)

It follows that multiplying each term of 2.24 on the left by the hermitian WH

WHX = WHWx −→ WHX = x (2.30)

Since WW = I , this is in accordance with the statement

F−1 [F (x)] = x (2.31)

WWx = Ix = x (2.32)
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In the previous section it was mentioned that F (∂xu) = ikxF (u). This useful property can also
be expressed in matrix form as

W∂xu = ikxWu (2.33)

In this case k is a vector that contains the frequency bin centers in cycles per unit of the sample
spacing (with zero at the start). The multiplication between kx and W is not a vector-matrix
product but rather an element-wise product.

2.5 2D Fourier Transform Matrix Formulation

When working on a 2D domain the setup changes slightly. Provided that the domain has the
same number of equally spaced points in the two directions, the Fourier transform is now

F2(x) = WxWT = X (2.34)

Where x is now a matrix. The DFT matrix is the same as the one of the 1D case and so it still
benefits from its properties. Analogously the inverse function is expressed as

F−1
2 (X) = WXWT

= x (2.35)

The subscript ”2” is to stress out that the FT is now bi-dimensional, but it will be dropped in
the following sections. It is interesting to notice to the derivatives in a 2D domain, the element-
wise product between kx and ky are multiplied to the right and to the left of x respectively

∂xu = WWx(ikxWT)WT
= x(ikxWT)WT

(2.36)

∂yu = W(ikyW)xWTWT
= W(ikyW)x (2.37)

Intuitively this is due to the fact that performing a 2D FT corresponds to separately perform a
FT along the rows and then along the columns.

2.6 1D Jacobian for the viscous Burgers equation

It has been said that using spectral methods can lead to the solution of equations such as 2.14 or
Burgers’. A question that might arise is whether it is possible to somehow obtain the Jacobian of
such system in order to then feed it to the time integrator to speed it up. This strategy will first
be applied to the 1D Burgers equation and then to a scalar version of the 2D Burgers equation,
more on that in a following section. First of all let’s see how the equation can be rewritten and
split into the diffusive and convective terms. Then the Jacobian will be introduced and it will
be shown how it is possible to compute it starting from the matrix formulation of the problem
at hand. The initial equation reads

∂tu + u∂xu = ν∂xxu (2.38)

∂tu = ν∂xxu − 1
2

∂x(u2) (2.39)
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Applying the Fourier transform to both sides and using the derivative property it becomes

F (∂tu) = −νk2F (u)− 1
2

ikF (u2) (2.40)

Now the inverse transform is applied and it yields

F−1 [F (∂tu)] = −νF−1
[
k2F (u)

]
− 1

2
F−1

[
ikF (u2)

]
(2.41)

The first term on the RHS is the diffusive term, it is linear with respect to the solution u. The
second one is the convective term, it is non-linear. The equation can therefore be split in the
sum of two terms

∂tu = f (u) = fc(u) + fd(u) (2.42)

2.6.1 Introduction to the Jacobian

The Jacobian can in some way be thought of as the extension of the derivative for the one
dimensional case. When f : R → R

f (x + ∆x) ≈ f (x) + f ′(x)∆x (2.43)

This still holds when dealing with multivariate functions g : Rn → Rm

g(x + ∆x) ≈ g(x) + g′(x)∆x (2.44)

Now x and ∆x are vectors of dimension n by 1, whereas on the right hand side g(x) is m by 1
, this means that in order to have matching dimensions g′(x) must be ∈ Rm×n. The Jacobian
has, according to the adopted notation, the following structure

J =


∂ f1

∂x1
· · · ∂ f1

∂xn
... . . . ...

∂ fm

∂x1
· · · ∂ fm

∂xn

 (2.45)

2.6.2 Jacobian of a matrix-vector product

Now let’s consider a matrix-vector multiplication X = Wx, where W does not depend on x. X
has dimensions m × 1, x has dimensions n × 1 and W m × n . It can be seen that

∂X
∂x

≡ JX =
∂(Wx)

∂x
= W (2.46)

this is because the ith element of X is given by

Xi =
n

∑
k=1

wikxk , i = 1, . . . , n (2.47)
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where wij is an element of matrix W and n is the number of elements of x. It follows that

∂Xi

∂xj
= wij , i = 1, . . . , n j = 1, . . . , m (2.48)

So the Jacobian of a matrix-vector multiplication is the matrix itself. This extends also in
the case of higher powers of x, so for instance in the case of Y = Wx2 the Jacobian becomes
JY = 2Wx .

2.6.3 Burgers equation written with matrices

A question that might arise is whether those matrix properties can be useful in finding the
Jacobian equations such as 2.41. Following what was done in section 2.4, this expression can
be written in matrix form as follows

∂tu = −νWik2Wu − 1
2

WikWu2 (2.49)

Both terms Wik2W and WikW are matrices, that do not depend on u so it is indeed possible to
compute the Jacobian in this case. This expression can once again be split in the convective and
in the diffusive term as in 2.42 and since derivation is a linear operator

J f =
∂ f (u)

∂u
=

∂ fc(u)
∂u

+
∂ fd(u)

∂u
(2.50)

So the Jacobian of the whole expression is the sum of the Jacobians of the convective and diffu-
sive terms. Analogously to 2.46, the Jacobian of the diffusive term is −νWik2W, whereas for the
convective, non-linear term it is −WikWu . It is worth noting that the Jacobian of the diffusive
term is constant, since it does not depend on the solution. This means that it can be computed
only once at the start of the integration process. Therefore by applying the direct and inverse
Fourier transform to a PDE and then writing the expression in terms of matrices, the Jacobian
of the 1D viscous Burgers equation was obtained. As mentioned before, this Jacobian can be
used in the time integration process to speed it up. In the following section this aspect will
further be looked into.

2.6.4 Jacobian computing time

When the Jacobian is not provided, it is approximated by python functions, such as odeint,
by means of finite differences. In order to obtain the approximate Jacobian the function is
perturbed in each direction. The Jacobian can be approximated with forward difference as

Jij =
fi(xj + ∆xj)− fi(xj)

∆xj
(2.51)

The computational cost does not scale well with large domains [21], especially when the func-
tion at hand is hard to evaluate. On the flip side the analytical Jacobian does not need to
evaluate the function but rather it consists of a matrix-vector multiplication for each time step
as the Jacobian of the diffusive term is constant. In figure 2.3 it is possible to see that as the grid
becomes finer the time saved grows, while the norm 2 of the difference between the Jacobian
computed with finite differences and the analytical one has acceptable values.
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FIGURE 2.3: Finite differences and analytical Jacobian computation time compari-
son for the 1D Burgers equation. The norm is computed on the difference between

the FD and analytical Jacobian

At this point one may wonder how the time saved in the Jacobian calculation translates to a
faster time integration. Figure 2.4 shows how the Jacobian did indeed speed up the integrating
factor, but by a smaller margin compared to the Jacobian calculation time alone.
By observing the Jacobian matrix it was noticed that the predominant term was the one re-
lated to diffusion. This remark led to the idea of approximating the whole Jacobian with it,
J f ≈ ∂ fd(u)/∂u. Since this term only had to be computed once the Jacobian would remain
constant. However time spared in this way will be lost during the process of solving the linear
system since the odeint function is now being fed an approximated function. In the end it was
found that for this specific case the integration process was indeed sped up. Nonetheless this
approach is very much empirical and not so easy to generalize. One other idea in this direction
could be to update the Jacobian with the convective term every n steps, in the end this was not
further investigated due to its low generalizability.

2.7 2D Jacobian for the viscous Burgers equation

Since calculating the Jacobian had a beneficial effect on the 1D Burgers equation it is natural to
ask what happens when dealing with a 2D domain. After all the long term goal would be to
find the Jacobian of the BLEW equations. The main difference compared to the 1D case is that
now u is a matrix and not a vector anymore, since the solution is computed at each grid point.
This means that the derivative property of the matrix-vector product in 2.46 no longer applies.
Moreover, depending on the axis with respect to which the equations are being derived, the
order of the terms changes. Equations 2.36 and 2.37 can respectively be seen as BxA and AxB,
with B being the identity matrix. To investigate this idea a simplified version of the Burgers
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FIGURE 2.4: Integration time with and without analytical Jacobian for the 1D Burg-
ers equation

equation was chosen

∂tu = −u∂xu − a∂yu + ν(∂xxu + ∂yyu) (2.52)

Nonetheless the equation contains both diffusive and convective terms and derivatives of them
in both directions so extending the Jacobian calculation to the full 2D Burger equation should
not be too tedious.

2.7.1 Linear Terms

As in the 1D case the diffusive terms are linear with respect to the solution u. The term ∂yyu can
be written as −W(k2

yW)u which corresponds to AuB, where B is the identity matrix. Knowing
that the derivative of a constant matrix dC = 0 and that the chain rules applies

dXY = (dX)Y + XdY (2.53)

it follows that

d(AuB) = A(du)B (2.54)

As a matter of fact A and B are constant matrices. One other ingredient is the vectorization
operation for which holds [18]

vec(AuB) = (BT ⊗ A)vec(u) (2.55)
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Therefore

vec(AduB) = (BT ⊗ A)vec(du) (2.56)

So that

d(AuB)
du

= BT ⊗ A (2.57)

Using relation 2.57 the Jacobian for the diffusive term can be expressed as

J fd,y
= I ⊗−W(k2

yW) (2.58)

For the term ∂xxu the process is completely analogous and it can be written as fd,x = −u(WTk2
x)W

T
=

AuB, where now A is the identity. The Jacobian is thus J fd,x
=
(
(WTk2

x)W
T
)T

⊗ I. The last lin-
ear term remaining is a∂yu which has a Jacobian analogous to expression 2.58 but with the first
power of ky and positive sign.

2.7.2 Non-linear Terms

This term is written in matrix form as u2(WTikx)W
T

. If it could be rewritten as in 2.57, the
Jacobian could be computed . However now the elements of u are squared and so

d(Au2B)
du

̸= d(AXB)
dX

(2.59)

The problem is that the derivative is still with respect to the solution and not to the squares of
its values. That is where the chain rule comes in handy once again since

d(Au2B)
du

=
d(Au2B)

du2
du2

du
(2.60)

Which is really convenient as the first term can now be expressed as BT ⊗ A , while the second
one is the derivative of a matrix with element-wise squared elements with respect to the non
squared element matrix. Therefore

du2

du
=



∂ f1

∂x1
· · · ∂ f1

∂xn
· · · ∂ f1

∂xnm
... . . . ...

...
∂ fn

∂x1
· · · ∂ fn

∂xn
· · · ∂ fn

∂xnm
...

... . . . ...
∂ fnm

∂x1
· · · ∂ fnm

∂xn
· · · ∂ fnm

∂xnm


=



∂u2
1

∂u1
· · · ∂u2

1
∂un

· · · ∂u2
1

∂unm
... . . . ...

...
∂u2

n
∂u1

· · · ∂u2
n

∂un
· · · ∂u2

n
∂unm

...
... . . . ...

∂u2
nm

∂u1
· · · ∂u2

nm
∂un

· · · ∂u2
nm

∂unm


(2.61)
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Which simplifies to a diagonal matrix with elements

du2

du
=

2u1 0
. . .

0 2unm

 (2.62)

The Jacobian of the convective term is computed by multiplying these two terms. In the
final code some adjustments had to be made, the signs of the matrix had to be inverted apart
from the diagonal terms in order to get the same matrix as the one found with finite differences.
Since two sparse matrices have to be multiplied together it is important to treat them as such.
This made the difference between taking much more time than odeint without Jacobian, to
being faster. Once this iterative process is finished the final Jacobian of equation 2.52 can be
assembled by summing all the three linear terms and this last non-linear one. The final result
was compared to the finite differences one, the norm of the difference of the two final Jacobians
was computed and deemed acceptable.

2.7.3 2D Jacobian run times

Before analyzing the results it is important to have a feeling for the dimension of the matrices
that are under consideration. When dealing with a numerical 2D domain of 120 by 120, for
instance, the Jacobian has dimensions 1202 by 1202, which means dealing with 1204 elements,
that is, more than 200 millions elements. The Euclidean norm between the two Jacobians in this
case is around 10−2, as shown in figure 2.5. It is therefore necessary to used sparse matrices
whenever possible and to try and make every step free from unnecessary operation, while also
categorically avoiding for loops. In the end, the results compare the matrix computed with the
finite differences with the analytical one. As happened for the 1D study case the diffusive term
has a constant derivative with respect to the solution and so the corresponding Jacobian can be
computed only once.

As for the monodimensional case this faster computed Jacobian does in fact translate to a
time saving during the integration process. Once again the time saved shrinks compared to the
time required to compute exclusively the Jacobian. Nonetheless the improvement is noticeable.

The integration took place calling the following commands

LISTING 2.2: Python code for computing the derivative of a periodic function

1 t_span = (t_i , t_f)
2 t2 = time.time()
3 solution2 = solve_ivp(burger_ivp , t_span , u0.ravel (), method=’LSODA

’, jac=jaco_ivp)
4 t2_end = time.time()
5 elapsed2 = t2_end - t2
6 list_run_times_nuove.append(elapsed2)

During the coding of the script some arrangements have been made. For example the odeint
function only takes one dimensional initial conditions, but since the u scalar field is 2D it was
necessary to flatten it at each time step, with the command ravel(). Whenever odeint is used it is
necessary to provide a function that evaluates the RHS of the function, in this case it was called
burger_ivp. For the reason given before the function took a flattened vector input that has to be
reshaped into the original matrix form. All in all it would be interesting to further work on the
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FIGURE 2.5: Finite differences and analytical Jacobian computation time compari-
son for the 2D Burgers equation. The norm is computed on the difference between

the FD and analytical Jacobian

FIGURE 2.6: Integration time with and without analytical Jacobian for the 1D Burg-
ers equation. The green line represents the case where only the convective term is

computed at each time step
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subject to further generalize the method and to run some more test cases to see whether it is
possible to make it more general. One problem that might arise when trying this approach on
BLEW is related to the perfectly matched layer. As a matter of fact this layer that takes care of
damping the perturbations introduces new equations that have to be solved. This means that
it would be also necessary to calculate the Jacobian for those equations.

2.8 Integrating Factor

In this section it will be shown how it is possible to leverage spectral methods to build a fast
integrator that in a way does not solve the linear terms. The process follows the "Program 27"
in [25]. The process starts by considering 1D Burgers equation in form 2.39, defined in a generic
domain, x̃, centered with respect to the origin. The domain is then re-scaled between [0, 2π] ,
with x = 2π

L x̃. It follows that

∂x
∂x̃

=
2π

L
(2.63)

So

∂x̃u =
∂u
∂x̃

=
∂u
∂x

∂x
∂x̃

=
2π

L
∂u
∂x

(2.64)

The process is analogous for the second order derivative

∂2u
∂x̃2 =

∂

∂x̃

(
∂u
∂x̃

)
= (2.65)

∂

∂x̃

(
2π

L
∂u
∂x

)
=

2π

L
∂

∂x̃

(
∂u
∂x

)
(2.66)

Now inverting the order of the derivatives

∂2u
∂x̃2 =

2π

L
∂

∂x

(
∂u
∂x̃

)
=

4π2

L2
∂2u
∂x2 (2.67)

The scaled Burgers equation then becomes

∂tu +
2π

2L
∂xu2 − 4π2

L2 ν∂xxu = 0 (2.68)

Taking the Fourier transform of both sides yields

d
dt
(û) +

πik
L

û2 +
4π2k2ν

L2 û = 0 (2.69)

Where the sign of the diffusive term has changed as a consequence of taking the square of the
imaginary unit. Now the goal is finding a factor, K, that multiplied to the equation leads to a
form

d
dt

[û(t)K] = K
d
dt
(û) + K

4π2k2ν

L2 û (2.70)
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So that the whole expression could be written as

d
dt

[û(t)K] +
πik
L

Kû2 = 0 (2.71)

It tuns out that said integrating factor, K, is e
4π2k2ν

L2 t. Thus it is possible to rewrite 2.69 as

d
dt

[
û(t)e

4π2k2ν
L2 t

]
+

πik
L

e
4π2k2ν

L2 tû2 = 0 (2.72)

To verify one can take the derivative of the function product and divide by the factor. At this
point it is convenient to change variables

w = û(t)e
4π2k2ν

L2 t (2.73)

and so

û = we−
4π2k2ν

L2 t (2.74)

û2 = F
([

F−1
(

we−
4π2k2ν

L2 t
)]2

)
≡ f ∗

(
we−

4π2k2ν
L2 t

)
(2.75)

Calling A = 4π2k2ν
L2 yields

dw
dt

=
−πik

L
eAt f ∗

(
we−At

)
(2.76)

This is now an ODE that could be solved with the Euler explicit method for instance

wn+1
k = wn

k + ∆t
πik
L

eAtn
f ∗
(

wke−Atn
)

(2.77)

However the solution of interest is û and not w and so using the relation 2.74 it becomes

ûn+1
k eAtn+1

= ûn
k eAtn

+ ∆t
πik
L

eAtn
f ∗
(

ûke−Atn
eAtn

)
(2.78)

So in the end

ûn+1
k = ûn

k eA∆t + ∆t
πik
L

eA∆t f ∗ (ûk) (2.79)

The effectiveness of this approach resides in the fact that in order to evaluate ∂tu it is necessary
to only compute f ∗(u). This equates to an inverse FT, squaring the result and then performing
a direct FT. Usually this had to be done for both the convective and diffusive term. In this case
the diffusive term is somehow embedded in the time derivative term. This approach appears
to be hard to extend to more complex functions. This is because the core idea is to multiply
each term with a factor that will then allow to write the time derivative as a product between
two functions. However when the number of terms increases it becomes difficult to group
them together.
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FIGURE 2.7: Time integration comparison with the same number of steps between
odeint and the integrating factor method
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Chapter 3

BLEW Implementation

As seen in chapter 2 spectral methods are powerful tools, however it is necessary to take some
precautions before implementing it to the integral model introduced in chapter 1. The main is-
sue is related to the periodicity requirements, that will be dealt with using a Perfectly Matched
Layer (PML). After this is done, everything will be ready to be coded up. Nonetheless it will
still be necessary to file some corners in order to make the code faster. In the second half of the
chapter it will be discussed how this was achieved by optimizing how the distributions caused
by jets and magnets are computed.

3.1 Perfectly Matched Layer

Many physical phenomena involve waves propagating over an indefinitely extended domain.
This poses an important problem to numerical simulations. Once the discretization method
has been addressed, it is a matter of defining the boundary conditions. Neumann and Dirich-
let conditions are usually the first options considered. These come at the cost of spurious
phenomena, though. The outgoing waves impinging on the boundary are reflected into the
domain, lowering the quality of the numerical solution. A simple workaround would be peri-
odic boundary conditions. However, this assumes period actuators over the coating line, which
will not be the case in industrial applications, where the actuators will act in a small portion
of the domain near the wiping jets. So the question is how to simulate the liquid film on an
open domain without reflections. A method, previously applied to the 3D BLEW with finite
volumes, is an absorbing layer at the boundary. This way, the system is fooled into thinking
it extends indefinitely over the boundary. Although very efficient, this method does not suit
the spectral BLEW 3D environment with periodic boundary conditions. Instead of an absorb-
ing boundary, we can think of an absorbing layer, damping the waves before these attain the
periodic boundary. This is the concept of the perfectly matched layer (Johnson [13]).

With this approach boundary conditions do not influence the layer, which, in a way, is an
extension of the domain where the waves are damped. However a new problem arises, that is
when the wave crosses from one material to another, it reflects.
On a broad level the process of creating the PML can be broken down in two steps: first the do-
main is analytically continued in complex coordinates, then it is brought back to conventional
real coordinates.

3.1.1 Complex coordinate stretching

To begin with the domain is extended in the complex plane. For example let us consider a wave
in the form w(x) = Weikz−ωt. It can be shown that, if the following couple of assumptions are
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FIGURE 3.1: Without changing the wave function, but just the contour z, the solu-
tion in the right hand side is damped and goes to zero

met, then a generic wave can be decomposed in a sum of waves that have that expression, that
is, they are plane ([13]). The mentioned prerequisites are

• The region of the PML is homogeneous

• The region of the PML is does not depend on time and is linear

To see how such a wave can be damped by analytically extending the domain the wave eikz

is considered. If the contour, z, has real values then the wave assumes the shape of a periodic
oscillating function, according to the Euler formulation for complex numbers. However if
z = x + iy, then eikz = eikxe−ky and this is the product of the original wave times a damped
wave. It is important to notice that if z it real and only after a certain value becomes complex,
like in figure 3.1, then in the real section the solution will not change.

3.1.2 Bringing the axis back to real

So the new contour was introduced, z = x + i f (x), it follows that ∂z =
(

1 + i d f
dx

)
∂x. For a

matter of convenience, that allows to have a decay rate that is not influenced by the frequency,
the latter term is generally written as

d f
dx

=
σx(x)

ω
(3.1)

In practice the substitution to be made is

∂

∂x
→ 1

1 + i σx(x)
ω

∂

∂x
(3.2)

Once the oscillations are damped, it is possible to set conventional boundary conditions on the
domain. For instance in the BLEW case the condition will be that there the height of the liquid
film will be that of the unperturbed flow. So far the PML has been shown to be a general and
flexible strategy to deal with oscillations, however it does come with a couple of problems. The
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first of which is the fact that when a solution is not solved analytically but on a discrete domain
it is no longer true that there are no reflections at all. However the magnitude of the disturbs
can be reduced in two main ways: either by making the domain larger or by having a finer
grid. Moreover it is important not to have an extremely steep function σ, usually a quadratic
or cubic form is chosen.

3.1.3 1D Burgers equation with PML

The example of figure 3.1 shows how a linear wave is damped by a certain domain that is
continued in the analytical plane. However one of the most common issues of the PML is
dealing with non linear equations, and as chance has it the system of equations shown in the
first chapter does not fall in that category. In this section the PML for the non linear 1D Burgers
equation will be put to a test. The final implementation on the BLEW solver will follow the
same method. The equation 2.38 can be rewritten by introducing the substitution 3.2, yielding

∂tu = −u
(

1 − iσ
ω

)−1

∂xu + ν

(
1 − iσ

ω

)−1

∂x

[(
1 − iσ

ω

)−1

∂xu

]
(3.3)

Auxiliary variables are now introduced

α1 =

(
1 − iσ

ω

)−1

∂xu α2 =

(
1 − iσ

ω

)−1

∂xα1 (3.4)

Which allows to rewrite the Burgers’ equation as

∂tu = −uα1 + να2 (3.5)

Moreover the two equations 3.4 imply that

∂t (α1 − ∂xu) = −σxα1 ∂t (α2 − ∂xα1) = −σxα2 (3.6)

This equation can be verified considering that equation 3.4 can be rewritten as

α1 − ∂xu = − iσx

ω
α1 (3.7)

Now both sides are derived with respect to time

∂

∂t
(α1 − ∂xu) = − ∂

∂t

(
iσx

ω
α1

)
= −FF−1

[
∂

∂t

(
iσx

ω
α1

)]
(3.8)

At this point the following property can be used

F−1
[

∂

∂t

(
i
ω

f (t)
)]

= F−1( f (t)) (3.9)

This stems from the definition of the FT

F−1
[

∂

∂t

(
i
ω

f (t)
)]

=
∫ +∞

−∞

∂

∂t
i
ω

f (t)eiωtdt (3.10)
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which can be further be integrated by parts

i
ω

f (t)eiωt
∣∣∣+∞

−∞
−
∫ +∞

−∞

i
ω

f (t)iωeiωtdt =
∫ +∞

−∞
f (t)eiωt = F−1( f (t)) (3.11)

Now relations 3.6 have been justified. So taking a step back, there is a system with equations
3.5 and the two 3.6. A new set of auxiliary variables is introduced

A1 = α1 − ∂xu A2 = α2 − ∂xα1 (3.12)

So now the two equations 3.6 can be written as

∂t A1 = −σxα1 ∂t A2 = −σxα2 (3.13)

Hence the final system reads 
∂tu = −uα1 + να2

∂t A1 = −σxα1

∂t A2 = −σxα2

(3.14)

A python function was written to return the RHS of the system at each time step. As inputs it
took the three variables and time. Moreover at each time step also α1 and α2 have to be updated
and it is done according to equation 3.12. The necessary derivatives are computed using the
Fourier transform. It was chosen to have a σx that has a value of zero in the physical domain
and then it grows quadratically in the PML region.

Figure 3.2 compares the results with and without layer. The layer successfully damps the
waves while maintaining the solution unaltered where it is not present.

3.1.4 BLEW solver implementation

The process of the previous example is illustrative also of what happens in BLEW, where the
final set of equations for the 3D jet wiping case can be written as

∂t̂ĥ + ∂x̂ q̂x̂ + ∂ẑq̂ẑ = 0 (3.15)

∂t̂q̂x̂ + ∂x̂F12 + ∂ẑF22 = δ−1
[

ĥ
(
−∂x̂ p̂g + ∂x̂x̂x̂ ĥ + ∂x̂ẑẑĥ + 1

)
+ ∆τx̂

]
(3.16)

∂t̂q̂ẑ + ∂x̂F13 + ∂ẑF23 = δ−1
[

ĥ
(
−∂ẑ p̂g + ∂ẑx̂x̂ ĥ + ∂ẑẑẑĥ

)
+ ∆τẑ

]
(3.17)

The change of variables introduced in equation 3.2 is carried out

∂x̂ →
(

1 +
iσx

ω

)−1

∂x̂ ∂ẑ →
(

1 +
iσz

ω

)−1

∂ẑ (3.18)

For simplicity it will be shown the complete process for the first equation only, but it is
analogous for the other two. Performing the substitution

∂t̂ĥ +

(
1 +

iσx

ω

)−1

∂x̂ q̂x̂ +

(
1 +

iσz

ω

)−1

∂ẑq̂ẑ = 0 (3.19)
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FIGURE 3.2: The figures show how the solution evolves with time. At the
beginning there is no difference, but when the wave reaches the PML area the
wave that interacts with the PML is flattened. It is worth noting how the solution
remains unchanged in the physical domain

Now introducing another set of variables

ζ1 =

(
1 +

iσx

ω

)−1

∂x̂ q̂x̂ (3.20)

ζ2 =

(
1 +

iσz

ω

)−1

∂ẑq̂ẑ (3.21)

The final result for the continuity equation then becomes

∂t̂ĥ + ζ1 + ζ2 = 0 (3.22)

Finally the different ζ are related to the other variables like

∂t̂(ζ1 − ∂x̂ q̂x̂) = −σx̂ζ1 (3.23)

The process is repeated for all the additional variables and so the perfectly matched layer is
added to the BLEW solver.
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3.2 Jets pressure and shear stress distribution

In section 1.4 the pressure and shear stress expressions have been introduced. Considering
equation 1.66 it is possible to see how the term can be decomposed in a geometric term, that
does not change unless the jets are moved, and a term that depends on the jets "throttle", τmax.
This equation is not scalar, unlike the pressure one, meaning that the wall shear stress has a
component along x and one along z. To compute them is therefore necessary to take the sine
and cosine, increasing the computational cost.

For clarity sake let us go over the process of computing the stress field in the case of a single
jet:

• The jet position is chosen

• The distance of each grid point from the jet is computed. Since λ = r/k, where k repre-
sents a constant and r the distance, this univocally determines the geometrical term

gτ = 0.18
1 − e−144λ2

λ
− 9.43λe−144λ2

(3.24)

• τmax is computed, depending on how strongly the jet operates

• The two terms are multiplied

τ = τmaxgτ (3.25)

• The components along x and z are obtained

τx = τmaxgτcos(θ) τz = τmaxgτsin(θ) (3.26)

When dealing with matrices those multiplications are element-wise operations

If more jets were to be added these steps would have to be repeated for each of them. The
distribution for each jet would be computed separately and then they would all be summed
together. To speed up the process the following measures are taken

• For each jet the distance and angle matrices are saved in a class object. So now, if nj is the
jet number, we will have nj distance and nj angle matrices

• With the angle matrix the cosine and sine matrices are computed, once in for all

• With the distance matrix the geometrical term is computed, which is again constant as
long as the position of the jet does not change. We will have such a matrix for each jet.

• The geometrical term is multiplied element by element with the sine and cosine matrix

fτ,x = gτcos(θ) fτ,z = gτsin(θ) (3.27)

This value is saved for each jet as an object of the class

• τmax for each jet is computed and saved in a vector
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FIGURE 3.3: Final tensor-vector operation to compute the shear stress distribution
along x

With this set up the only operation to be carried out at each time step is

τxi = (τmax)i fτ,xi with i = 1, · · · , nj (3.28)

Considering all jets at the same time Fτ,x is a tensor of dimension nj × n × m where n and m
are the number of elements along x and z respectively, while Tmax is nj × 1. The capital letters
indicate variables considering all the jets together. Instead of performing a for loop as before a
tensor-vector multiplication is computed

Tx = TmaxFτ,x Tz = TmaxFτ,z (3.29)

So the shear stress distributions Tx and Tz for the whole domain are computed in two op-
erations: computing Tmax and then multiplying it with the constant tensor,Fτ. The time saved,
with respect to the previous implementation is shown in figure 3.4. For the shear stress the
difference is more pronounced because in this case it was also avoided projecting the shear in
the two directions.

Magnetic field distribution

An analogous approach was taken also for the magnets, in that the spatial distribution was
computed for each magnet and then stored in a tensor. Each magnet can have a different
maximum value and so vector-tensor multiplication was carried out avoiding the for loop. In
this case the spatial distribution is a Gaussian as discussed in section 1.4.
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FIGURE 3.4: Time comparison between the tensor multiplication implementation
(new) with respect with the old one with the for loop
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Chapter 4

Machine Learning Control

At this point the theoretical model can be efficiently be solved by the numerical methods, which
were touched upon in 2, exploiting the measures of 3. The jet impinging over the liquid film
simulation can take place, it is now the focus of the work to investigate which is the best way to
operate such jets in order to obtain the desired final coating. To do so Machine Learning (ML)
techniques will be exploited. It is a vast and ever growing topic and therefore the goal of this
chapter is to provide an overview of the main models that have been employed.

The techniques introduced are the same ones that have been compared in the work by Pino
et al. [19], which is recommended for more insight and quantitative comparisons between the
different approaches.

4.1 Reinforcement Learning Closed-Loop Control

The problem at stake is closed-loop. It involves a system whose behavior is influenced by
the outcomes of previous actions, guided by feedback from the environment. In this scenario,
an agent makes decisions to achieve a desired goal or maintain a specific state, adapting its
actions based on the received feedback. The liquid film with its constitutive relations is the
environment. The jets are the agent since they take actions on the environment. Their aim
is to obtain an homogeneous film, this information (reward), together with the incoming film
height (observations) will be given as a feedback.

In Figure 4.1, the closed-loop system is illustrated, depicting the agent’s progression through
states, actions, and rewards over time. At each time step t, the agent is in a certain state st, takes
an action at, transitions to the next state st+1, and receives a reward r(st+1) from the environ-
ment.

4.2 Reinforcement Learning Framework

Objective of the Agent

The primary objective of the agent is to maximize a reward function r(st+1) by selecting ap-
propriate actions. However, the challenge lies in determining how the agent should choose its
actions. This leads to the goal of the agent: learning an optimal policy, represented as π(st, t),
which maps states to actions.

Value Function

In reinforcement learning (RL), the value function (vπ(s)) plays a crucial role in the decision-
making process of an agent. This function is fundamental for assessing the long-term rewards
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FIGURE 4.1: The agent operates within a loop with the environment

associated with a particular state under a given policy. In simpler terms, it helps the agent
understand how beneficial a state is in the context of achieving its goals.

Definition of the Value Function

The value function is formally defined by the expected return (Gt), denoted as vπ(s):

vπ(s) = Eπ [Gt | St = s]

This expectation represents the average sum of rewards the agent anticipates when starting
from state s and following policy π. However, expressing this expectation directly as a sum
over an infinite horizon is often impractical. To address this, the expectation can be expressed
as the sum of discounted rewards:

vπ(s) = Eπ

[
∞

∑
t=0

γtRt+1 | St = s

]
Here,

• γ is the discount factor, representing the agent’s preference for immediate rewards over
delayed ones.

• Rt+1 is the reward obtained at time t + 1.

This formulation encapsulates the idea that the agent values immediate rewards more than
future rewards, and the discount factor ensures that future rewards are appropriately weighed.
The summation extends over an infinite time horizon, capturing the agent’s consideration of
long-term consequences.

Role of the Value Function

The value function serves as a critical guide for the agent. By estimating the value of different
states, the agent can make informed decisions about which actions to take. The objective is
to navigate towards states with higher values, indicating greater potential for accumulating
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rewards. In essence, the value function influences the selection of actions by helping the agent
prioritize states that contribute more to its long-term success.

The agent in reinforcement learning (RL) has the flexibility to learn either a policy directly
or, alternatively, learn a value function. This choice profoundly influences the agent’s decision-
making strategy.

Learning a Policy

Learning a policy (π(st, t)) involves the agent directly mapping states to actions. In this ap-
proach, the agent aims to understand the optimal sequence of actions for each state, without
explicitly estimating the value of each state. While direct policy learning is intuitive, it may
require extensive exploration to discover effective strategies, especially in complex environ-
ments.

Learning a Value Function

Alternatively, the agent can choose to learn a value function (vπ(s)). The value function pro-
vides estimates of the expected long-term rewards associated with being in a specific state
under a given policy. This allows the agent to assess the potential benefits of different states,
guiding its decision-making process.

Role of the Value Function in Policy Adoption

The value function becomes particularly powerful when the agent adopts a greedy policy. A
greedy policy involves selecting actions that lead to states with higher values. In other words,
the agent prioritizes actions that are expected to maximize cumulative rewards over time.

Q-Function in Reinforcement Learning

Another crucial concept in reinforcement learning is the Q-function (Qπ(s, a)), representing the
expected cumulative rewards of taking action a in state s under a policy π. The Q-function is
instrumental in evaluating the desirability of different actions, providing valuable insights into
the optimal decision-making process.

Qπ(s, a) = Eπ [Gt | St = s, At = a]

Understanding the Q-function is integral to the exploration of action spaces and the refine-
ment of policies for achieving better long-term rewards.

Unsupervised Nature of Reinforcement Learning

Reinforcement learning is inherently an unsupervised learning technique. Unlike conven-
tional supervised learning scenarios, RL operates autonomously, with data not provided by
a database or an expert but rather generated by the algorithm itself during its interactions with
the underlying system[24]. Traditional methods of formulating effective control strategies of-
ten involve delving deeply into the underlying system dynamics and constructing formal mod-
els. These approaches can be resource-intensive and time-consuming. Moreover a control law
explicitly based on a mathematical or physical model might lead to relying too much on pre-
existing assumptions, resulting in less flexible strategies.
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Exploration-Exploitation Trade-off

A critical challenge in RL is the exploration-exploitation trade-off. Exploration involves trying
new actions to understand the environment, while exploitation focuses on selecting known
optimal actions. Striking the right balance is essential for effective learning. Stochastic policies,
incorporating randomness, naturally support exploration, whereas deterministic policies may
struggle in uncertain environments.

4.3 Policy Optimization

In the realm of reinforcement learning, policy optimization stands as a pivotal approach to
enhancing an agent’s decision-making capabilities. At its core, policy optimization revolves
around refining the agent’s strategy, or policy, to maximize cumulative rewards in a given
environment. The objective function serves as the compass for the agent, providing a quan-
titative measure of its performance and guiding the adjustments to its policy. In the context
of reinforcement learning, the objective function encapsulates the final goal of the agent: to
maximize cumulative rewards over time. The reward function assigns a numerical value to
each state-action pair, quantifying the immediate desirability of a particular transition. The
objective function aggregates these rewards over time, encapsulating the agent’s aspiration to
achieve the highest possible cumulative reward.

J(θ) = E[r] (4.1)

So if the objective function is high then the model is getting a lot of reward during an episode.
The process of policy optimization often involves the meticulous search for the optimal pol-
icy parameters. This search is driven by the gradient of the objective function, a vector that
points in the direction of the steepest increase in the objective function. Effectively, the gradi-
ent guides the agent in adjusting its policy to traverse the landscape of possible actions and
states, aiming for regions associated with higher cumulative rewards. This process of search-
ing for the gradient reflects the iterative nature of policy optimization. As the agent explores
and interacts with the environment, it continually refines its policy parameters to align with
the direction that promises enhanced performance.

How can this gradient be computed in practice? Considering the policy parameters, θ, of
the objective function, J(θ), its gradient can be expressed as:

∇θ J(θ) =
(

∂J(θ)
∂θ1

, ...,
∂J(θ)
∂θn

)
(4.2)

However if the gradient is not known we can think of perturbing the parameters in every
directions and see how this changes the objective function. This gives a numerical estimation
of the gradient. This is not particularly efficient because for each component of the gradient a
perturbation and a function evaluation are needed.

∂J(θ)
∂θj

=
J(θj + ϵ)− J(θj)

ϵ
(4.3)

To overcome this problem it is possible to analytically reformulate the gradient of the ob-
jective function. If the case where only one action is taken and then the episode terminates, the
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objective function can be rewritten as:

J(θ) = ∑
s∈S

d(s) ∑
a∈A

πθ(s, a)Rs,a (4.4)

J is the sum of the probabilities of being in each state (d(s)), multiplied by the sum of the
probabilities of taking each action in that state (πθ(s, a)), multiplied by the immediate rewards
obtained (Rs,a). In simple terms, it’s a way for the agent to calculate the expected cumulative
rewards over all possible states and actions, considering the probabilities of encountering each
state and taking each action. The agent’s goal is to adjust its policy parameters θ to maximize
this expected sum of rewards.

But the gradient of this function is what is needed in order to update the parameters θ

∆θ = α∇θ J(θ) (4.5)

To get to it, the gradient of 4.4 is taken

∇θ J(θ) = ∑
s∈S

d(s) ∑
a∈A

πθ(s, a)∇θ log(πθ(s, a))Rs,a (4.6)

Where, for convenience, the gradient of the policy is expressed as

∇π = π∇log(π) (4.7)

This is useful because it allows to rewrite the equation 4.6 as an expectation

∇θ J(θ) = E[∇θ log(πθ(s, a))Rs,a] (4.8)

This means that it can be estimated with a sample mean. If a set of trajectories is collected

D = {τi}i=1,...,D (4.9)

Where each trajectory is obtained by letting the agent act in the environment using the policy
πθ, the policy gradient can be estimated with

∇θ J(θ) =
1
|D| ∑

τ∈D

T

∑
t=0

∇θ log πθ(s, a)Rs,a (4.10)

where |D| is the number of trajectories in D. The equation 4.10 is fundamental, to recap once
more it allows to compute the gradient just by knowing the expression of the policy and by
running some trajectories, by doing so all the components of the gradient will be updated.
Knowing the policy expression is not so uncommon as it might seem. Once the gradient is
known it is possible to update each of the parameters θ according to it in order to ascend the
objective function. For a better understanding of the topic the reader is redirected to the work
[11].

4.4 PPO Algorithm

Proximal Policy Optimization (PPO) is a family of model-free reinforcement learning algo-
rithms. PPO algorithms are policy gradient methods, which means that they search the space
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of policies rather than assigning values to state-action pairs. So rather than selecting the actions
that maximize the action value function, this algorithm will directly try to learn the q-function.
This is done in order to allow the model to scale, that is to be able to solve problems with more
states and with higher complexity. Moreover policy methods have generally better conver-
gence properties and are able to learn stochastic (as opposed to deterministic) policies.

PPO builds on policy gradient ideas but it replaces the two main terms in equation 4.8 in
order to take the biggest possible improvement step on a policy. The step should not be too
large, otherwise it might cause performance to collapse. The algorithm was first introduced in
the paper by Schulman et al. [23]. The way the policy parameters are updated in time from
time step m to the following m + 1 is

θm+1 = arg max
θ

E
s,a∼πθm

[L(s, a, θm, θ)] , (4.11)

Or to be more adherent to the code

θk+1 = arg max
θ

1
|Dk|T ∑

τ∈Dk

T

∑
t=0

min
(

πθ(at|st)

πθk(at|st)
Aπθk (st, at), g(ϵ, Aπθk (st, at))

)
(4.12)

The term summed at each time step is L, is the surrogate advantage, a measure of how policy
performs relative to the old policy:

L(s, a, θm, θ) = min
(

πθ(a|s)
πθm(a|s)Aπθm (s, a), g(ϵ, Aπθm (s, a))

)
(4.13)

where

g(ϵ, A) =

{
(1 + ϵ)A A ≥ 0
(1 − ϵ)A A < 0. (4.14)

Just considering the first term of 4.13 it is possible to see a resemblance with 4.10, the policy
gradient term ∇θ log(πθ(s, a)) has been replaced with a ratio that is greater than one if an action
is more probable under the new policy and smaller otherwise. The reward term is written in
terms of the so called advantage function

Aπ(s, a) = Qπ(s, a)− Vπ(s). (4.15)

The advantage function Aπ(s, a), of a policy π, describes how much better it is to take a specific
action a in state s, over randomly selecting an action according to π(·|s). Supposing that the
advantage for that state-action pair is positive, in which case its contribution to the objective
reduces to

L(s, a, θm, θ) = min
(

πθ(a|s)
πθm(a|s) , (1 + ϵ)

)
Aπθm (s, a). (4.16)

Because the advantage is positive, the objective will increase if the action becomes more likely,
that is, if πθ(a|s) increases. But the min in this term puts a limit to how much the objective
can increase. Once πθ(a|s) > (1 + ϵ)πθm(a|s), the min kicks in and this term hits a ceiling of
(1 + ϵ)Aπθm (s, a). PPO is a powerful tool and the detail of its implementation are beyond the
scope of this work. The takeaway of this section is that the state of the art algorithms in RL are
capable of striking a balance between effectiveness and ease of use. Such an algorithm was not
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coded from scratch but a library was exploited, that required the BLEW environment to be set
up in a specific manner. In section 4.6 an example of its effectiveness will be provided, while
also illustrating how to set up an appropriate environment. Before that some of the parameters
used during the training phase are introduced.

4.5 Machine Learning Parameters

When running reinforcement learning simulation it is important to monitor how the training
process is evolving. However it is not always possible to directly visualize the episodes as
they progress, therefore it is important to introduce some metrics that are provided by the
library used, in this case stable baselines. The most intuitive way to measure how the agent
is behaving is by observing the episode mean reward. It is a sum of all the rewards collected
by the agent during one episode. In BLEW the reward function implemented reflects the non-
smoothness of the liquid film. Therefore having a less negative episode mean reward means
that the agent is obtaining a final flow with fewer ripples. It is important to always compare
this parameter to the value it has in the non controlled case, that is when the control jets are
not taking actions. An agent that behaves well will therefore achieve a lower episode mean
reward compared to the non-controlled case. Although the episode mean reward is by far the
most indicative metrics, there are more technical parameters that also show how the algorithm
is performing during the training process. In the case of PPO, an on-policy actor-critic method,
the main parameters are the following, as found in Raffin et al. [22]

• Approx kl: Approximate mean KL divergence between old and new policy, it is an esti-
mation of how much changes happened in the update. So the KL divergence is a measure
of how one probability distribution diverges from a second expected probability distri-
bution. It measures the difference between the old policy and the new policy in terms of
the actions they select.

• Entropy loss: Mean value of the entropy loss. During the training process, the entropy
loss should decrease over time. This is because, as the agent learns and the training
progresses, the policy becomes more deterministic and converges towards near-optimal
strategy. As a result, the entropy loss decreases, indicating that the policy becomes more
certain about its actions and that there is less and less need for exploring.

• Std: Current standard deviation of the noise. This value indicates how much variability
or randomness is introduced into the agent’s actions at a particular point in the train-
ing process. A higher standard deviation leads to more exploratory and random actions,
which can be useful in the early stages of training when the agent needs to explore the
environment thoroughly. As training progresses and the agent becomes more knowl-
edgeable about the environment, the standard deviation might be reduced to focus more
on exploitation.

• Value loss: Current value for the value function loss for on-policy algorithms, usually
error between value function output and Monte-Carlo estimate. During training, the
agent uses this value function to assess the quality of its actions and states. The value loss
measures the discrepancy between the predicted values from the current value function
and the values obtained from actual interactions with the environment.
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• Explained variance: Fraction of the return variance explained by the value function. It
measures the proportion of the variance in the returns that can be explained by the pre-
dictions made by the value function. In other words, it assesses how accurately the value
function approximates the true expected returns. A higher explained variance indicates
that the value function is doing a good job at predicting the returns and capturing the un-
derlying patterns in the environment. Conversely, a lower explained variance suggests
that the value function is not accurately capturing the variance in the observed returns,
indicating a need for improvement in the value function’s predictions.

4.6 Application of reinforcement learning

In the upcoming pages examples on how to leverage these RL ideas will be shown. What
stood out the most is the fact that such algorithms are well documented and ready to use with
minimal adjustments from the user. This has been made possible thanks to packages such as
Stable Baselines [22], which provide open source implementations of Reinforcement Learning
algorithms based on OpenAI Baselines. To get familiar with the topic some examples from the
Gym environment were considered. The strength of this tool resides in the common structure
of said environments. These environments range from short games, to arcades. Each one of
them is defined by an action and state space. The Mountain Car environment, for instance,
presents itself as follows: a car is placed at the bottom of an hill and has to reach the top,
situated on the right of the vehicle. The agent, or driver, can only decide when to accelerate,
this is the action. For the sake of simplicity let us assume that the action space is discrete (non
continuous) and therefore our driver will only be able to choose between three different actions
at each time step. It will either accelerate to the right, to the left or just do nothing. However
here is the twist, the agent will never reach the top if it just keeps on accelerating to the right.
In order to succeed it has to somehow learn how to swing in order to progressively increase its
speed. The agent which has to learn how and when to accelerate has access to the environment
thanks to the observation that it receives. In this specific case the observation space is a two
dimensional array, the first value is the position of the car along the x-axis and the second one
is the velocity of the car. The last fundamental information that the environment provides to
the agent is the reward, in this example since the goal is to reach the flag placed on top of the
right hill as quickly as possible, the agent is penalized with a reward of −1 for each time step.
Meaning that an agent that reaches the top after 300 steps will end the episode with a score
of −300 and therefore will have a better performance than an agent that finished with a score
of −500. There is also a limit on the episode length, so that an agent that is not able to reach
the top will still be terminated after a set number of time steps. This also means that all the
agents that are not able to climb the hill will end up with the same final score, regardless of
how close they got to it. To summarize, a gym environment is characterized by the possible
actions the agent can take, which according to the internal dynamics lead to the next state. The
agent will be informed on the state reached, by the observation vector, and will also receive a
score, the reward. The hidden obstacle of this example is that if the car never reaches the top it
will never learn anything since it only gets a reward (in this case the reward is the absence of
negative rewards) when it completes the climb. Moreover at the start of the episode it does not
know anything and by acting randomly it will take a long time to reach the top, if it manages
at all. There are two ways solve this problem: either to change how the reward process works
or letting the episode go on for a long time, making it more likely that even a bad agent will
get to the top after a while. To give a feel for how the different concepts introduced in section
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4.2 might be interpreted, let us first consider the value function. In this example a well trained
value functions would probably associate a greater value to a state with the car in a high point
and speed, since if this is the state the agent is more likely to reach the hill top. The q-function
of such a state-action pair should be greater if the action is not opposed to the motion, since to
create the swinging the acceleration should always be concordant with the velocity vector.

4.6.1 Mass-Spring-Damper System

In order to familiarize with a control loop on a simple system, the problem consisting of a
mass with a spring and a damper was tackled. The goal is to train an agent able to bring
the system to rest, given initial speed and displacement. To make things more interesting the
mass is forced by a term with the resonance frequency. Therefore if the agent doesn’t take any
actions the oscillations would initially keep on growing. There are some similarities with the
BLEW environment, since the waves that perturb the liquid film are comparable to the forcing
term and the agent, though the jets has to bring the system to a stop, just like in this case. The
system, represented in figure 4.2, is governed by the equation

mẍ + cẋ + kx = F(t) + U(t) (4.17)

F(t) is the forcing term and U(t) is the force applied by the agent. Notably the forcing term is
F(t) = Asin( f t), where the frequency is f =

√
k/m, where k and c are respectively the spring

and the damping constants and m is the mass. Alongside the dynamics of the system also the
action and state spaces are specified. In this particular case the actions allowed are continuous
and ranging between −1 and 1. On the other hand the observation state goes from minus
infinity to plus infinity, meaning that the all values of x, the displacement, and the speed, ẋ are
allowed as long as they agree with equation 4.17. The last characteristic to be defined is the
loss function, which is a function that maps a certain state to a scalar, the goal of the agent is to
minimize its value, it has the same role as the reward. The chosen relation is

loss =
∫ T

0
100x2 + 100ẋ2dt (4.18)

As long as the model is concerned the agent will have few losses when it obtains low values of
displacementand speed ẋ.

The code is structured as follows: first a new class is defined, it inherits from the gym.Env
class, making it compatible with the OpenAI Gym interface for reinforcement learning envi-
ronments. Then the constructor initializes the environment. It sets up the action and observa-
tion spaces, as well as the parameters for the mass-spring-damper system. Next up is the step
method, which defines how the environment evolves when a step is taken. It calculates the
next state, reward, and whether the episode is done based on the current state and the action
taken. From equation 4.17 the acceleration a is calculated (using the speed at the previous step,
ẋn) and then the following assumptions are made

ẋn+1 = ẋn + ∆ta (4.19)

xn+1 = xn + ∆tẋn+1 (4.20)

The last method to be defined is the reset, as the name suggests, it resets the environment to
its initial state. It resets the state variables and returns the initial state. It is now time to train
the agent, doing so does not require much coding at all, as long as the environment is properly
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FIGURE 4.2: Dynamical system with a forcing term that pulses at the resonance
frequency

set. However choosing the algorithm and its parameters is not so trivial. For this example
the PPO algorithm was chosen and it proved itself to be a fast and adaptable option. Some
of the parameters that it is possible to change are the batch size, the activation function, the
size of the two neural networks (actor and value function) and the number of steps to run for
each environment per update. During the code testing some general trends have emerged, for
instance having a policy network with fewer layers compared to the value function networks
seemed to speed up the learning process without loosing performance. The batch size also
influences the learning curve: having a smaller batch size resulted in more policy updates and
therefore in a usually slower training. The model was trained for a total of half a million time
steps. The results are shown in figure 4.3. It is possible to see that the model long term strategy
is to apply a force that is out of phase with respect to the forcing term. Whereas at the start
of the episode it applies the maximum force it is allowed to, that is −1. It is worth noting
that the displacement never goes below zero, meaning that the spring is first extended with
respect to the rest position, then the displacement reaches a maximum and then the mass starts
going back and it is stopped when it reaches the starting position without ever compressing
the spring. A question that arose it was whether this control was a closed or open loop and
whether the model which was trained only with one set of parameters would be able to also
control systems with other mass, or spring constant values. In order to verify it the agent
was trained with the same parameters as before but an episode was run with different values.
For instance changing the spring constant or having a lighter mass, which resulted in faster
oscillations (as it also changed the forcing natural frequency). The agent behaved quite well
and was able to bring the system to a rest in all instances. It struggled only when the amplitude
of the forcing term was particularly high, probably because the agent would have wanted to
take stronger actions, but the maximum value allowed was still ±1. One other question was
whether the model would be able to adapt in the middle of an episode. So one episode was
run with a frequency that would gradually change, becoming faster with time. Once again the
agent managed to control the mass and was able to apply an opposed and out of phase force
adapting in the middle of the episode as shown in figure 4.3.
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FIGURE 4.3: At the start of the episode the mass is in the resting position but the
velocity is not zero so it starts moving (blue). The forcing term (green) and the force

applied by the agent (yellow) are out of phase

FIGURE 4.4: Unlike the other episode the mass is forced with a varying frequency.
Nonetheless the agent is still able to bring the system to a stop

The last aspect that was briefly analyzed is whether having an open loop control law would
manage to bring the system to rest. For this purpose an episode was run with an action that was
no longer chosen by the trained agent but it was something hard coded in a way that would
resemble the yellow control action of figure 4.3. The advantage of an open loop control is the
fact that the controller action is independent from the "process output" and therefore there are
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no sensors involved. For this reason when writing down an action strategy that resembled the
one of the trained controller we did not want the relation to be too complex. The first of the
two strategies that were tried out is a completely out of phase action,with respect to the forcing
term. The other action was first trying to brake the system with a constant action like in graph
4.3 and then opposing the forcing term. Both methods performed significantly worse than the
closed-loop control case but they both managed to at least damp the oscillations. This is due
to the fact that there is a damper that acts on the mass and since the control action cancels out
with the forcing term the damper will eventually bring the system to a rest. In figure 4.5 two
phase plots are shown, that is the velocity as a function of the displacement for two episodes.
One is controlled by the agent and the other one with the completely out of phase action.

FIGURE 4.5: A darker color indicates the episode start, with the following steps it
fades into a lighter color. It can be seen that on the openly controlled system the
damping will eventually lead the spiral towards the point (0, 0). On the right the

controller brings the mass to rest quicker

4.7 BLEW Environment

So far the mathematical model has been discussed in chapter 1. The numerical methods em-
ployed in order to solve such equations and some other necessary tools have been shown in
the chapters 2 and 3 respectively. In chapter 4 the ML models that are going to be used have
been introduced. At this point is thus necessary to explain how these different aspects come
together in order to supply the required results.

In order to optimize the agent with stable baselines it is necessary to set up the code in a way
that is compatible with gymnasium. As briefly discussed in chapter 4.6 a gym environment has
three fundamental functions within it. It has to contain a function where all the variables are
initialized, for instance the domain, the perfectly matched layer and the jet positions. The step
function is where the time integration takes place and where the action of the jet is defined.
The action will be defined by the agent trying to maximise the reward function. Finally a reset
function takes care of bringing the system to its initial state. The machine learning algorithm
will receive observations in terms of ĥ, the adimensional height of the liquid film, in a certain
number of points. Depending on the number of observation points the observation space of
the environment will be defined. The action space is also continuous but its limits are set in
order to reflect the technical specifications of the actual jets. The dimension of the action vector
depends on the number of control jets, this tells the model how many output values it has to
return.
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FIGURE 4.6: 3D plot of the non-dimensional (a) and dimensional (b) liquid film
with the undulation instability generated by the unsteady Dirichlet boundary con-

ditions at x̂ = 30.

Some additional measures have been taken in order to create an environment that has some
levels of randomness to it, otherwise the agent might learn how to behave just in that one in-
stance, this problem is generally referred to as overfitting. Meaning that the agents achieves
the goal for a specific data set but if faced with different initial conditions it will perform sig-
nificantly worse. For this reason the actuation law of the forcing jets, determined by 4.25, had
some randomness to it. An interval of amplitudes, frequencies and phases were chosen in such
a was that would still make the perturbation of the undulation kind (see subsection 4.7), but
without repeating itself. Moreover when dealing with multiple jets a phase shift was added
from one to the other in order to achieve a more random 3D wave. The forcing jets have the task
of creating the perturbation wave that cannot be introduced as a boundary condition because
of the periodicity requirements of the spectral methods. Finally since having faster simulation
is a crucial aspect, the domain was set up with jets positioned quite close to the PML in order to
exploit the space as well as possible. Moreover the number of points in the spanwise direction
was reduced since the direction in which the substrate is moving is more relevant.

Spectral environment with zinc

This environment simulates the undulation instability in galvanizing line conditions using the
3D Integral boundary layer model with magnetic and blowing gas jet actuators. We use the
physical properties of the liquid zinc (reported in Table 4.1) with a strip velocity Up = 2.5[m/s]
and a magnetic field [b] = 0.23[T], which results in a reduced Reynolds number δ = 395.2 and
a Hartmann number of Ha = 6. The liquid is assumed flat with an initial thickness of ĥ0 = 0.1
(34[µm]).

Figure 4.7 shows the computational domain, Ω, which is composed of a physical domain
Ω1 of dimensions Lx = 30 and Lz = 15, surrounded by a perfectly matched layer (ΩPRL) of
dimension Lx̂,PML = Lx/6 and Lẑ,PML = Lz/6 equal on all directions with periodic boundary
conditions on the boundaries ∂Ω. The physical domain comprises a set of control actuators
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FIGURE 4.7: Scheme of the spectral environment with the physical domain Ω1 con-
taining the actuators (black crosses), the observations (red dots), the forcing jets
(blue circles) and the reward area (light orange region), surrounded by an absorb-
ing perfectly matched layer (green region) with periodic boundary conditions on

the found boundaries (∂Ω). The figure is not to scale
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ρ µ · 10−3 σ · 10−3 Ka Re
(kg/m3) (Pa s) (N/m)

Liquid Zinc 6570 3.5 700 11525 14 − 43 · 10−3

TABLE 4.1: Liquid properties (density, dynamic viscosity, and surface tension from
left to right), Kapitza number (Ka) and range of Reynolds numbers (Re) for sub-

strate velocity Up ∈ [0.1, 100] for liquid zinc

(black crosses), some observation of the liquid film height (red dots) and a set of artificial forc-
ing jets aligned along the ẑ direction (blue circles).

These synthetic jets serve as a means to reproduce the undulation instability, appearing on
the right-hand side of the source term, as additional pressure and shear stress distributions:

s =

s1
s2
s3

 =


0

δ−1
[

ĥ
(
− ∂x̂ p̂g − ∂x̂ p̂ f + ∂x̂x̂x̂ ĥ + ∂x̂ẑẑĥ + 1

)
+ τ̂g,x + τ̂f ,x + τ̂w,x − HaB̂2q̂x

]
δ−1
[

ĥ
(
− ∂ẑ p̂g − ∂ẑ p̂ f + ∂ẑẑẑĥ + ∂ẑx̂x̂ ĥ

)
+ τ̂g,z + τ̂f ,z + τ̂w,z − HaB̂2q̂z

]


(4.21)

where B̂ = ∑ B̂i is the total nondimensional magnetic field, and the subscripts g and f refer
to the total nondimensional pressure and shear stress given by the contribution of the control
and forcing actuators, respectively.

As described in section 1.4, the magnetic field of the single actuators B̂i is modelled as a
Gaussian centred at (x̂0,i, ẑ0,i):

B̂i(x̂, ẑ, t̂) = Bt,i(t)e
−(x̂−x̂0,i)

2

2γ2
x

+
−(ẑ−ẑ0,i)

2

2γ2
z (4.22)

where γx̂ = 1 and γẑ = 1 are the standard deviations and Bt,k ∈ [0, 1] is the control action
at k − th time step. The pressure and shear distribution of the control and forcing jets are
modelled using the experimental correlations for impinging circular jets (see section 1.4) with
the velocity at the jet nozzle exit Uj ∈ [0, 50][m/s] used as the control parameter.

The undulation instability appears in the liquid film as 2D waves in the streamwise direc-
tion with slight variations along ẑ. Numerical evidence from LES[1] and 2D IBL[16] simula-
tions suggest that these waves have a nondimensional frequency f̂ ∈ [0.05, 0.2], an amplitude
peak-to-peak A between 5 and 10 per cent of the unperturbed film thickness and wavelengths
in the range λ ∈ [0.25, 0.35][mm]. The undulation instability obtained with a LES is shown in
pictures 4.6.

These waves are reproduced, setting the nozzle exit velocities Ui
j, f of the forcing jets as a

harmonic function of time with a phase shift ϕ ∈ [0.2π, 0.5π] to create a small variation in the
spanwise direction:

Ui
j, f = A cos (2π f̂ t̂ + ϕi) (4.23)

To give more variability in the simulation and to foster the learning of robust control func-
tions, the amplitude A and the frequency f̂ are modelled as finite Fourier series with randomly
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FIGURE 4.8: Evolution of the forcing jets’ frequency using 4 (a) and 50 (b) harmon-
ics bounded by in the rage of admissible undulation frequency (red dashed lines)

chosen coefficients [8]:

A(t̂) =
√

2
m

∑
j=1

[
aj cos

(
2π jt̂

)
+ bj sin (2π jt̂)

]
(4.24)

f̂ (t̂) =
√

2
m

∑
j=1

[
aj cos (2π jt̂) + bj sin (2π jt̂)

]
(4.25)

where m = 4 is the number of harmonics and the coefficient aj and bj are sampled from the
normal distribution N (0, 1/(2m + 1). Before being passed to the forcing jets, these functions
are rescaled in the range described above. The number of harmonics m defines the variability
of the randomness of the final function. Figure 4.9 shows f̂ for m = 4(a) and m = 50(b). As the
number of harmonics increases the function is capable of more sudden variations.

To reproduce open-flow conditions, avoiding the waves re-entering the domain from the
boundaries, a linear perfectly matched layer, described in 3.1, was included.

σx(x̂, ẑ) and σz(x̂, ẑ) are positive functions which determine the strength of the absorbing
layer, defined as:

σx(x̂, ẑ) =

{
0, if (x̂, ẑ) ∈ Ω1

x̂3, if (x̂, ẑ) ∈ ΩPRL
σz(x̂, ẑ) =

{
0, if (x̂, ẑ) ∈ Ω1

ẑ3, if (x̂, ẑ) ∈ ΩPRL
(4.26)

The complete set of the equations was discretized in space using the Fourier spectral method
over a uniform grid of 180 points along x̂ and 88 along ẑ. The explicit Euler formula was used
for the time integration with a time step ∆t̂ = ∆x̂/80.

16 forcing jets placed at x̂ = 3 along the all length of the physical domain Lz. Figure 4.9
shows the evolution of the undulation waves produced by these jets in dimensional (a) and
nondimensional form (b). The wavelength is between 25 and 27[µm].

In the only magnetic case, we used the flux matrix F and the wall shear stress vector τ̂ M
w .

For the jets and the hybrid simulations F and τ̂w. The observations and jests positions are
discussed in more detail. The objective of the control problem is to bring to rest the undulation
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FIGURE 4.9: 3D plot of the non-dimensional (a) and dimensional (b) liquid film
with the undulation instability generated by the forcing gas jets

perturbation with a reward function defined as:

rk = estd((ĥ)Ωr−ĥ0)·50 − 1, (4.27)

where std((ĥ)Ωr − ĥ0) is the standard deviation of the liquid film at time step k in the reward
area Ωr = {x̂, ẑ| 9 < x̂ < 22 & 1 < ẑ < 14}.

The optimal control law was found using the reinforcement learning algorithm PPO. The
training is run in parallel on 20 ÷ 30 cpus for thousands of episodes. Different sizes of neural
network for the PPO have been tried, generally having two hidden layers and with a number
of neurons ranging in 128 ÷ 512.

4.8 Observations Location

The information about the environment that the agent disposes of is represented by the ob-
servation points and the reward area. Feeding the algorithm with data that is representative
of the problem, while not supplying an excessive amount of hard to decode numbers is really
important. Not to mention the fact that in the actual production line those observation points
would be expensive sensors. Measuring the thickness of a moving molten liquid film undula-
tions that measure only tens of microns is not an easy task. The use of laser sensors is further
complicated by the scattering effect of liquid metal, and their placement must be strategic, con-
sidering factors such as the proximity to impinging jets or magnets. Moreover they have a
volume that has to be taken into consideration. Therefore finding the number and location of
the observation points is not only a trade-off between cost and information fed to the agent,
but several other aspects are to be taken into account. In previous versions of the code, it was
tried to look for the points that were the least correlated to each others. The process started by
sampling points according to the Latin hypercube method, a pattern that resembles rooks on a
chess board that do not threaten each others. Once the observation points are chosen it is possi-
ble to estimate how much the information seen from a point is related to another one. So it was
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FIGURE 4.10: The correlation matrix shows with warmer colors a strong correla-
tion, the points along the diagonal are more related to each others because those

are the neighboring points

seen which points were the most related and one of the two was discarded. This was done in
order to choose the minimum number of points, while retaining as much state representation
as possible.

Something similar was carried out in this work, but instead of considering only certain
points the full area in front of the control jets was sampled, this area had dimensions (m, n).
For convenience the matrix was flattened into a column vector of size (mn, 1). Then for each
point of the area the observations at each time step of an episode were stored, for a total of nt
observations for each point. In the end the data matrix had dimensions (mn, nt). Each columns
represents all the observations for the whole domain at a certain time step. In order to see how
much the observations of a point were correlated to all other points the following expression
has been used

Cij =
Oi · Oj

∥Oi∥∥Oj∥
(4.28)

If the correlation coefficient, Cij, is 0, it means that the two signals are not correlated, otherwise
if it is 1 they are fully correlated. The resulting matrix, C, is show in figure 4.10. The values of
the matrix were computed only for the upper triangular part since it is symmetric (the correla-
tion of point i to j is the same as j to i) and the values have been normalized, since, in general,
the values were all quite close to each others. The matrix does not provide too much useful
information as it is basically saying that points that are the most apart from each others also
carry unrelated observations, as one would expect. Vertical and horizontal lines appear in the
matrix mainly because in the transformation from a matrix to a vector some points that were
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nearby in the 2D area are now far apart and vice versa.
However, considering the strong 2D character of the undulation it was decided to place the

observation points along an horizontal line. This approach does, in a way, convey additional
information to the agent. What is implicitly being expressed to the agent is the fact that it only
needs to know how the height is distributed along a straight line given that this aligns with
the direction of the wave peaks or valleys. Moreover having aligned observations makes it so
that all the observed points will arrive underneath the line of jets (which are also horizontally
aligned as in figure 4.7) at the same time. This is likely to make the observations easier to inter-
pret. In the end it was decided to also place the control jets horizontally, this is mainly a matter
of making the learning process easier. Moreover this arrangement is also more convenient if
all the jets are actuated harmonically, and it also respects the physical constraints of the real
sensors.
So far the observations have been taken as single points, that is the height value of a single cell.
However another alternative would be to take a mean observation spanning multiple cells. It
could happen that the value extracted from a single point does not reflect what is going on in
its neighboring cells. Though a new issue would arise, that is the determination of the best
radius for this purpose. One could think to consider a radius that is the one of the actual sen-
sor employed on the production line, but since this information is not available and given the
strong 2D character of the waves this path was not further explored.

4.9 Time step in the environment

The choice of the time step in the solver is primarily driven by the need for stability in simula-
tions, this is were the choice of ∆t̂ = ∆x̂/80 comes from. While a larger integration time step
would lead to faster simulations, it could also compromise stability. However, it is essential to
distinguish between the solver’s time step and the time step in the environment, representing
the time passed between consecutive actions. Allowing the agent to make frequent decisions
within a short time span might not be conducive to effective learning. Due to the system’s
inherent reaction time, the agent might not observe the actual consequences of its actions, hin-
dering the learning process. To have a feeling for the reason let us consider a Newton disc
which has segments in different colors. Selecting too many actions is comparable to spinning
the disc too fast. In this case it will be impossible for the naked eye to tell all the different colors
apart and it will just be perceived as white. This is somewhat similar to what happens to the
agent that is not able to trace a correlation between a certain action and reward. To address this
issue, the decision was made to diminish the number of action selections, so that it would in-
teract with the environment less often. This deliberate delay ensures that the agent can witness
the outcomes of its actions, fostering a meaningful connection between its behavior and the
rewards received. For example, suppose the agent decides to exert significant force on a liquid.
By introducing a delay before the agent can choose its next action, sufficient time is given to
the liquid to respond, approximately 20 numeric time steps. In summary, maintaining a clear
distinction between the numerical time step for the solver and the perceived time step for the
agent, as shown in figure 4.11, is crucial. By allowing the agent to interact less frequently with
the environment simulations can be expedited without compromising the learning process or
the integration stability. In practice this made quite a big difference, after this was tried the
results showed a much improved learning curve.
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FIGURE 4.11: The green dt is set according to stability reasons. The red line indi-
cates the time step seen by the agent, while the blue one is the length of a episode.

The picture is not to scale

4.10 Reward

The reward expresses how well the agent is behaving and together with the observations it
is how the agent acquires information from the environment. The reward has to convey the
fact that the goal of the agent is to flatten the liquid film by bringing the flow close to the
unperturbed initial height. Therefore it has to consider the liquid surface after the control
jets and estimate the roughness. The reward expression can be broken down into two major
aspects: the area considered and the law used to evaluate the performance. A reward function
should be:

• Aligned with objectives: it should align with the ultimate goal of the task

• Sparse but Informative: it should provide enough information for the agent to learn the
optimal policy without overwhelming it with constant feedback

• Smooth and Continuous: sudden jumps or discontinuities in the reward landscape can
lead to difficulties in convergence.

• Avoiding Reward Hacking: exploiting loopholes in the reward function to achieve high
rewards without actually fulfilling the task’s goal.

4.10.1 Reward function

Since the final goal is to have a flat and homogeneous film, the reward function has to some-
how evaluate the deviation of the film with respect to the undisturbed case. This was done
considering the standard deviation between the ideal (completely flat, h = h0) and the actual
height distribution

σ(hrew) =

√
1

hrew
∑

Ωrew

(hrew − h0)2 (4.29)

However it would not be practical to just give this parameter as reward, one issue with it is
that it is not bounded. Different approaches have been investigated in the work carried out
by a previous student on similar control problems [17]. In that report different functions of
the standard deviation had been tried, for instance linear negative with r(st) = −σ(hrew) ,
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FIGURE 4.12: The reward function is approximately linear when σ has a value close
to zero. Then it becomes increasingly more flat. This means that when σ is close to

zero a change in σ will result in a bigger change in the reward

hyperbolic and Gaussian. The one that obtained the best results is the negative exponential:

r(st) = e−kσ(hrew) − 1 (4.30)

Therefore it was decided to adopt it as a reward function with k = 50.
If the surface becomes more wavy then the standard deviation grows and the reward tends

towards negative one, if, on the other hand, the standard deviation is close to zero the controller
will receive a higher score with a maximum of zero. A problem of this equation can be noticed
by considering figure 4.12. When the standard deviation takes on bigger value the agent will
barely notice a difference, this means that the reward is not particularly good at telling a bad
action from a disastrous one. In practice the standard deviation at the exponent was multiplied
with a constant, this might increase the problem just discussed but it results in bigger rewards.
Having small rewards might be an issue, since for neural networks small gradients can lead
to numerical instability during training. When the gradients become too small, the updates to
the model parameters may not be effective, and the learning process can slow down.
Another idea to increase the reward would be to normalize it with reference values so that it
remains bounded between 0 and 1. However for this to work it would be necessary to have the
values of the extremes of the reward, for the best and worst case. The best case is know, since
it would be a flat film, however the worst case is not so easily obtained.
Simply put, the reward function has to make the agent understand that it has to push on the
peaks and take no action on the valleys, since it can in no way bring them up. The reward
function proposed so far does not give many hints in this direction, so it was thought to work
around it. Let us, for example, consider a term in the form

r(st) = (h − h0)action (4.31)

This is telling to the agent that if there is a peak in the film (∆h = h − h0 > 1) then a bigger
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FIGURE 4.13: With a reward function that is linear with respect to the two variables
strong actions are rewarded when not needed

action is desirable in order to maximize the reward. On the other hand, if a valley is considered,
the term h− h0 is negative and so to maximize the reward the action should be zero. So a simple
idea would be to sum this term to the original value function 4.30. However there are still
some issues with this function, as the agent is driven to always take actions with the maximum
value, as long as the height difference term is positive. Plotting the reward as a function of the
action and of the height difference, as in figure 4.13, it is clear that even with a not so tall peak,
(h − h0) ≈ 0+, the action that would yield the best reward would be a really strong pushing. A
better solution would involve a function that, for minor peaks, promotes only a gentle push.

One function that satisfies this requirement could be something along the lines of

r(st) = log
(
[(h − h0)− action]2 + 1

)
(4.32)

As shown in figure 4.14 for small values of ∆h it is best, in terms of reward, to select a moderate
action. However also this reward function has its problems. Even though it is more informative
as it is hinting to the agent which actions to take based on the physics of the problem, its
objective it is no longer to strictly reduce the waviness of the film. In other words it is less
aligned with the objective. Moreover, by summing this two terms, 4.30 and 4.31, part of the
reward is based on the action that the agent is taking at a certain instant, while the other term
is considering the waviness of the fluid caused by actions taken earlier. This could lead to
sub-optimal learning.

4.10.2 Reward Area

Another important aspect of the reward is which area of the fluid to consider, that is defining
the hrew of equation 4.30. In the finite volumes this zone ended earlier, because the numerical
dispersion was more pronounced and therefore it run into the risk of believing the actions
were better than in reality because of the numerical smoothing. What happened was that the
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FIGURE 4.14: The best reward is not always given to the strongest actions

agent would take random actions and those would make the film more uneven, leading to
higher numerical dissipation. With a spectral solver this does not occur, but having a smaller
reward area also allows for quicker feedback. If it were really extended than the new incoming
perturbation would only slightly alter the overall value. For this reason it was decided to place
it close to the jets and sizing it in a way that would let the area encompass a single peak or
valley. This does come at the cost of neglecting some long term effects, such as the one of
surface tension which generally has a higher characteristic time. One final caveat is to place
the area a bit downstream of the jets, otherwise they would affect the reward even before they
have time to properly act on the perturbations.

4.11 Further considerations

One other idea that was considered for implementation was to clip the observation in a way
that would make the agent only see the peaks but not the valleys. Since the jets can only blow
and not suck there is little they can do to flatten a valley in the film. So if the agent considers
all depression in the same way as it does with a flat surface it is possible that it will best learn
how to act exclusively on the peaks. This is because it has a simplified view of the problem,
however in the carried out tests this approach has not proven successful.
One other approach that was tested was the introduction of an observation log. Ideally the
observations would be taken where the jets or magnets are, so that they can see the fluid that is
directly beneath them. To work around this problem it is possible to collect the observation and
store them in a log. Then the observations will be given to the agent in the time that the waves
are estimated to travel the distance from the observation point to the jets position. For example,
if from the last observation point to the jets the waves take two adimensional seconds, then
two seconds worth of observation will be stored in a variable. Then at the following step an
observation will be added to the storing variable and the first observation to be added will be
given to the agent. One thing that has to be checked before running the simulations concerns
the action that the control jets are allowed to take. Since the goal is to flatten the peaks it is
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important to test that the most intense actions that the agent is allowed to take are actually
strong enough to flatten the most pronounced peaks. Everything is ready, but before finally
moving to the results, there is one last remark to be made. All the different aspects of the set up
have non trivial interplay one with the other. Since simulations are a time consuming process
it was sometimes the case that more than one adjustment were made from one iteration to the
other. Following this approach might have led to results that were not properly interpreted,
since not only one parameter was being isolated. However the complexity of the problem
makes it so that it would have been really hard to actually understand the true influence of a
single parameter, even as simple as the extent of the reward area. To properly do it would have
called for an extensive parameter study, considering a multitude of set ups, requiring time and
resources. In the end most of the paths followed were sustained by intuitive reasoning more
than purely empirical data.
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Chapter 5

BLEW Control Results

In this section, the results obtained by the reinforcement learning algorithms are presented. To
begin with, a 2D jet will be considered, followed by the evaluation of a configuration involving
four magnets. All the results of this section are compared to the no control case. Since the final
goal is to have a film that is flatter than that in the absence of jets, it is necessary to estimate this
value. Due to the randomness of the perturbation waves, introduced for robustness reasons as
mentioned in section 4.7, it is not possible only to run a couple of episodes without jets to have
no control value. For this reason, a larger number of simulations with only perturbation jets
were carried out. In each instance, the mean reward per episode was computed, along with
the corresponding standard deviation.

The learning is generally considered successful if it manages to reach at least the no-control
value. Otherwise, it would be preferable to operate without control jets altogether. Before
achieving successful simulations, numerous attempts failed. Some encountered errors, while
others had configurations incompatible with effective learning. Even when signs of progress
were evident, a few persistent issues arose. The first notable one was the emergence of a pas-
sive controller, wherein the agent learned that the optimal action was to take no action. This
typically manifested as a learning curve plateauing at the no-control value. Another recurrent
suboptimal solution was extra wiping. Essentially, the agent recognized that acting on the peaks
was beneficial, but also did so in the valleys. This resulted in a uniform film that was thinner
than the desired outcome.

5.1 2D Jets control

This case has been investigated by letting the agent choose its actions in two different ways.
Initially, the agent was permitted to select the single jet action, represented by a value between
−1 and 1, which was subsequently appropriately rescaled. For the second case, it was decided
to restrain the action selection by imposing a harmonic control law. This could be done by
asking the agent to return three values, the first of which would become the amplitude, A, the
second the frequency, f , and the third phase, ϕ. These values were assembled into a periodic
function, g = Asin(2π f t + ϕ). Each of these values had specific intervals from which they
could be sampled, providing the agent with hints about the ideal control law. Just like in the
example with the forced mass attached to a spring and a damper of subsection 4.6.1, it is likely
that the long-term optimal control would be an action opposed to the forcing term. In this case,
the forcing term is the one creating the perturbation, and so it was decided to let the agent
select values of A, f and ϕ that are similar to the forcing jets. This second approach proved to
be successful since it managed to give additional meaningful data to the agent, which resulted
in a more stable and faster learning process. In figure 5.1, the harmonic and non-harmonic
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FIGURE 5.1: Learning curve comparison for the harmonic and non-harmonic con-
trol actions

training are compared. The two setups were identical as part of the action implementation,
and so also, the no control value for the two is the same.

In the end, both simulations were successful, and the not-harmonic one managed to surpass
the no-control value. This is because after the learning has finished, ten evaluation episodes
with the best control law were carried out. Both managed to flatten the peaks, as shown in
figure 5.2. Moreover, the learning process was probably not completely done since usually, the
learning curve reaches a horizontal asymptote as the agent does not explore anymore but just
takes the best actions,

FIGURE 5.2: 3D plot of the non-dimensional liquid film. The 2D jet with harmonic
actions manages to flat the wave crest located at x̂ ≈ 2.5 in the left figure
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An additional aspect to consider is the relationship between observations and subsequent
actions. Figure 5.3 illustrates that when the observation has a peak, the amplitude exhibits a
corresponding peak, aligning with expectations. This behaviour indicates a strategy of exerting
more force on the peaks and less on the valleys. Notably, when a peak is observed, there is a
time delay before the agent reacts. This delay most likely stems from the relative position of
the jets and observations, where the height is measured before the jet line, making it crucial for
the agent to wait before initiating a reaction.

FIGURE 5.3: The normalized amplitudes (which determine the action) have a
strong correlation with the observation for the whole length of the episode, as the

x axis represents time step index

5.2 3D Magnets control

For this second study case, it was decided to use actuators that would only act on specific
points and not all along the ẑ axis. Even though 2D jets and magnets are technically feasible, it
is also interesting to see how a 3D agent would behave. For instance, breaking the wave into
multiple horizontal segments causes the rate of change to increase along ẑ and that, in turn,
might lead to surface tension or even viscosity to have a stronger flattening effect.
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FIGURE 5.4: Learning curve plateaus close to the no control value, in a way similar
to the passive agents

Working with the magnets also involves a different interaction between the liquid and the
controllers. For starters, the force applies to the bulk of the fluid and not only its surface.
Moreover, the force does not only push the fluid down like the gas jets. The good news is
that once the differences are accounted for in the solver, the machine learning set-up does not
change much, and the observations, actions and rewards can remain the same. Figure 5.4
shows the final learning curve, whose final agent managed to reach an episode mean reward
of −41.5, improving more than 25% the no control value.

Figure 5.5 illustrates the different effects the magnets can exert by pulling up the valleys.
Also for this reason, it would be interesting to combine magnets and jets, since they might have
a complementary effect.

Finally the strategy found by the agent is no longer in phase with the observations as in the
2D jet with harmonic actions. As a matter of fact the agent actions shown in figure 5.6 seems to
have a different strategy, that is acting mainly on the valleys, while turning down as the peaks
approach.
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FIGURE 5.5: 3D plot of the non-dimensional liquid film. The four magnets manage
to pull up the wave valley located at x̂ ≈ 2.5 in the left figure, which is then found

in x̂ ≈ 2 in the right one

FIGURE 5.6: In this case, the approach seems to strongly differ, with normalized
actions that are maximum in correspondence to the valley and turned down for

the peaks
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Chapter 6

Conclusion and Prospects

All things considered the control laws developed in this work proved to be successful and in
line with the main objective. The control law makes the film significantly more homogeneous
and does it by acting differently on the valley and on the peaks, in a way that depends on
the chosen actuator. The final simulations have been run on less than a couple of days and
still have room for improvement. Nonetheless if the control were to be implemented in the
the actual factory lines with similar results they would reduce the used material while also
guaranteeing a better superficial finishing at the expense of powering the jets or magnets. Now
that a benchmark has been found that shows to which extent it is indeed possible to flatten the
perturbations with the current spectral solver, it would be interesting to explore more in depth
how different configurations of jets or magnets of observations would perform. For instance
by finding the minimum number of observation points in order to reduce the sensors cost or by
trying to minimize the actuators strength with the idea of saving resources and power. Another
idea would be to place multiple lines of jets so that if the first one fails, it is still possible for
the second one to properly flatten the film. It would also be interesting to combine the jets
and the magnets together, since it has been shown that they have intrinsically different effects
on the flow, the most evident of which is the ability of the magnets of pulling up valleys.
Therefore, placing a series of jets followed by a line of magnets could potentially yield results
not reachable by jets or magnets alone.
The possible developments are not limited to the reinforcement learning, efforts could be made
also in the direction of expanding the model, by dropping some of the assumptions taken in
chapter 1. For instance one direction would be not to consider the surface tension of the liquid
zinc constant, as it has been shown to vary significantly close to the plate borders. Further
investigations could also be made with the aim of making the time integration process faster
and more stable by improving on the explicit Euler scheme. Additionally, in the present work
only the PPO algorithm has been evaluated, however a vast number of RL methods exists and
to investigate them only minimal adjustments would be required. Last but not least it would
be worthwhile validating the solver with experimental data.
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Appendix A

Unsteady electromagnetic model 3D

The full set of equations solved by the complete magnetic model are presented here

∂t̂ĥ + ∂x̂ q̂x̂ + ∂ẑq̂ẑ = 0 (A.1)

∂t̂q̂x̂ + ∂x̂

∫ ĥ

0
û2 dŷ

+ ∂ẑ

∫ ĥ

0
ûŵ dŷ = δ−1

(
− ĥ∂x̂ p̂g + ĥ(∂x̂x̂x̂ ĥ + ∂x̂ẑẑĥ)

+ τ̂g,x + τ̂w,x + ĥ − H2
a B̂2(x̂, ẑ)q̂x̂

) (A.2)

∂t̂q̂ẑ + ∂x̂

∫ ĥ

0
ûŵ dŷ

+ ∂ẑ

∫ ĥ

0
ŵ2 dŷ = δ−1

(
− ĥ∂ẑ p̂g + ĥ(∂ẑẑẑĥ + ∂ẑx̂x̂ ĥ)

+ τ̂g,z + τ̂w,z − H2
a B̂2(x̂, ẑ)q̂ẑ

) (A.3)

The velocity profiles can be expressed as

û(ŷ) = k1,ueHa0 B̂ŷ + k2,ue−Ha0 B̂ŷ + k3,u
A1 + 1
H2

a0
Ĥ2

withA1 = −∂x̂ p̂g +
ϵ3

Ca
∂x̂x̂x̂ ĥ, (A.4)

ŵ(ŷ) = k1,zeHa0 B̂ŷ + k2,ze−Ha0 B̂ŷ + k3,z
A1 + 1
H2

a0
Ĥ2

withA1 = −∂x̂ p̂g +
ϵ3

Ca
∂x̂x̂x̂ ĥ, (A.5)

While the three conditions for the streamwise velocity profile along x̂ are:

û(0) = −1 ∂ŷû(ĥ) = τ̂g,x q̂x̂ =
∫ ĥ

0
û(ŷ) dŷ. (A.6)

and similarly for the spanwise velocity they can be written as:

û(0) = 0 ∂ŷû(ĥ) = τ̂g,z q̂ẑ =
∫ ĥ

0
ŵ(ŷ) dŷ. (A.7)
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Now some auxiliary variables are introduced

α1 =
1

Ha2B̂2
α2 = HaB̂ α3 = eHaB̂ĥ α4 = e−HaB̂ĥ (A.8)

α5 = τ̂x̂ α6 = ĥ α7 = q̂x̂ α8 = q̂ẑ α9 = τ̂ẑ (A.9)

Additional variables for the streamwise direction are

k1,u =
α2

2α4(−α7 − α6) + α5(α2α6 + α4 − 1)
α4(α

2
2α6 + α2) + α3(α2

2α6 − α2)
, (A.10a)

k2,u =
α2

2α3(−α7 − α6) + α5(−(α2α6) + α3 − 1)
α4(α

2
2α6 + α2) + α3(α2

2α6 − α2)
, (A.10b)

k3,u = −α4(α2 − α2
2α7) + α3(−(α2

2α7)− α2) + (α4 + α3 − 2)α5

α1(α4(α
2
2α6 + α2) + α3(α2

2α6 − α2))
, (A.10c)

Whereas for the spanwise direction:

k1,w =
(α2

2α6 + α4 − 1)α9 − α2
2α4α8

α4(α
2
2α6 + α2) + α3(α2

2α6 − α2)
, (A.11a)

k2,w =
(−(α2α6) + α3 − 1)α9 − α2

2α3α8

α4(α
2
2α6 + α2) + α3(α2

2α6 − α2)
, (A.11b)

k3,w = − (α4 + α3 − 2)α9 − α2
2α4α8 − α2

2α3α8

α1(α4(α
2
2α6 + α2) + α3(α2

2α6 − α2))
, (A.11c)

The closure terms are given by:

τ̂w,x = −∂ŷû|ŷ=0 = −k1,uHaB̂ + k2,uHaB̂ (A.12a)

τ̂w,z = −∂ŷŵ|ŷ=0 = −k1,wHaB̂ + k2,wHaB̂ (A.12b)

Combining everything it is possible to write the flux terms as:

∫ ĥ

0
û2 dŷ =

(
e−2α2α6(2α2

1α2α6e2α2α6k2
3,u + ((4α1e2α2α6 − 4α1eα2α6)k2,u+

+ (4α1e3α2α6 − 4α1e2α2α6)k1,u)k3,u + (e2α2α6 − 1)k2
2,u+

+ 4α2α6e2α2α6k1,uk2,u + (e4α2α6 − e2α2α6)k2
1,u)
)

/(2α2)

(A.13a)

∫ ĥ

0
ûŵ dŷ =

(
e−2α2α6((2α2

1α2α6e2α2α6k3,u + (2α1e2α2α6 − 2α1eα2α6)k2,u+

+ (2α1e3α2α6 − 2α1e2α2α6)k1,u)k3,w + ((2α1e2α2α6 − 2α1eα2α6)k2,w+

+ (2α1e3α2α6 − 2α1e2α2α6)k1,w)k3,u + ((e2α2α6 − 1)k2,u+

+ 2α2α6e2α2α6k1,u)k2,w + 2α2α6e2α2α6k1,wk2,u+

+ (e4α2α6 − e2α2α6)k1,uk1,w)
)

/(2α2)

(A.13b)
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∫ ĥ

0
ŵ2 dŷ =

(
e−2α2α6(2α2

1α2α6e2α2α6k2
3,w + ((4α1e2α2α6 − 4α1eα2α6)k2,w+

+ (4α1e3α2α6 − 4α1e2α2α6)k1,w)k3,w + (e2α2α6 − 1)k2
2,w+

+ 4α2α6e2α2α6k1,wk2,w + (e4α2α6 − e2α2α6)k2
1,w)

)
/(2α2)

(A.13c)
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