
POLYTECHNIC OF TURIN
Master’s Degree in Aerospace Engineering

Master’s Degree Thesis

Design and Development of a Test Bench
for LiPo Batteries for Residual Charge

Capacity Prediction

Supervisors

Prof Giorgio GUGLIERI

Francesco MARINO

Candidate

Maradon HASANAJ

December 2023



"True knowledge comes from deep understanding and our ability to comprehend
and apply information in meaningful ways."

— [Stephen Hawking]

i



Abstract

As the use of Unmanned Aerial Vehicles (UAVs), especially quadcopters, continues
to surge, the performance of lithium-ion batteries becomes increasingly significant.
These batteries not only influence the operational autonomy of UAVs but also
determine the overall success and longevity of aerial missions. Motivated by the
pressing need to accurately evaluate and predict battery behavior over its lifecycle,
this thesis starts on the development of a test bench. This bench is specifically
designed to develop a predictive model for LiPo batteries, shining a light on their
residual charge capacity.

The study methodically outlines each step, from the initial design of the test
bench to the selection of the right components, and finally, the software implemen-
tation. The rigor applied in this phase was indispensable, establishing foundational
benchmarks for the study and ensuring that every data collection step was attuned
to precision and reliability.

Post data collection, the research focused on developing a model capable at esti-
mating the future energy capacity of these batteries. Results from this endeavor
were revealing curves derived from experimental tests signaled a decline in per-
formance as C-rate increased. Furthermore, an observed performance gap of 5 to
10% in capacity between two tested batteries, with larger discrepancies linked to
higher C-rates, underscored the behavior of these energy components. Through
the developed predictive model, the research could pinpoint the battery’s lifespan.
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Chapter 1

Introduction

1.1 Context and motivations

Lithium-ion batteries are integral to various applications, including electric vehicles,
grid storage systems, laptops, and other electronic devices. Given their widespread
use, ensuring their safety and reliability is crucial. One of the critical attributes
defining these batteries’ effectiveness is their lifespan. In recent years, there has
been a surge in research aimed at understanding the aging mechanisms of batteries.
The goal is to develop predictive models that can accurately estimate the remain-
ing useful life of battery cells, often determined by their capacity over repeated
charge/discharge cycles.
The existing literature on this topic is extensive and can be broadly categorized into
model-based and data-driven approaches. Model-based approaches often involve
mathematical and computational models to simulate and predict battery behavior
and degradation over time. These models are typically grounded in the fundamental
principles of electrochemistry and physics that govern battery operation. On the
other hand, data-driven approaches leverage the power of artificial intelligence
and machine learning. These methods focus on extracting meaningful features
from the data collected during battery operation to train models that can predict
battery life. Data-driven models are known for their ability to handle complex,
non-linear relationships. They are particularly useful when the underlying physical
processes are poorly understood or too complex to model accurately. In this thesis,
we examine two distinct lithium-ion batteries; one that is new and another that
showcases signs of degradation. One of the primary objectives is to determine
the number of charge and discharge cycles the used battery has experienced by
correlating it with its observable performance degradation.

To achieve this, a series of experimental tests were devised. The initial phase
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involved benchmarking the performance of the non-degraded battery. Critical
parameters, such as charge capacity and discharge rates were recorded. This offered
a baseline against which the degraded battery’s performance could be compare.
Building upon these insights, the latter part focused on the construction of a
predictive model. The aim is to forecast the trajectory of battery performance
degradation over its lifecycle. Such a tool is precious, especially in applications
where battery reliability and longevity are crucial.

1.2 Objective and Methodology
To achieve the objectives of the thesis, the methodology employed starts with a
comprehensive literature search focused on test benches for LiPo batteries that can
determine discharge curves. We also evaluated commercial test benches for their
capability to provide the essential components, sensors, and an integrated software
system for recording experimental data.
Once the components were selected, the test station was set up, and specific test
parameters were defined. These parameters included external temperature, voltage
values at the beginning and end of the test, the discharge current value, and the
sample rate. For the tests, we utilized a new battery, free from degradation effects,
and a used battery, which was expected to show signs of degradation. Each test
was conducted for four different discharge currents.

Using MATLAB, the experimental data were then compared and analyzed. The
next step involved creating a model that could predict the number of cycles of
the old battery. Simulink was employed to craft a battery discharge model that
would describe the new battery’s performance. Furthermore, a model of capacity
degradation based on the number of cycles was implemented. By simulating various
cycles, we aimed to determine at which cycle the new battery’s performance would
align with that of the old one. The goals of this thesis include:

• Design and development of an experimental test bench for LiPo
batteries: a crucial aspect of this study is to gather accurate and consistent
data on the battery’s performance and health across diverse operational
scenarios. For this purpose, a test bench will be conceptualized and assembled.
This bench will simulate the real-world scenarios that Unmanned Aerial Vehicle
(UAV) batteries encounter, covering aspects like charge-discharge cycles and
voltage variations. Essential metrics such as current, voltage, capacity, and
internal resistance will be monitored and recorded.
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• Formulation of a LiPo battery predictive model: using the data derived
from the testbed, a custom predictive model for LiPo batteries will be crafted.
A central element in this phase is the establishment of a capacity degradation
model.

• Applying the predictive model to define the number of cycles: using
the predictive model a estimation of the number of cycles that the battery
has gone through over 2 years will be conduct.

1.3 Current State Of The Art (SOTA)

In this chapter, we will present the scientific research on the degradation of lithium-
ion batteries’ performance. It is worth noting that there are few studies and
scientific articles available for free on LiPo batteries. However, since their oper-
ation is almost identical, it is interesting to consider the extensive literature on
lithium-ion batteries. We’ll review the main papers we relayed for the development
of the degradation model.

In the study “Characterization of the Degradation Process of Lithium ion Batteries
when Discharged at Different Current Rates”, the authors tested a Sony US18650
1.4 Ah Li-ion battery by cycling it at various discharge rates (1-C, 2-C, and 3-C)
under a controlled ambient temperature. After 300 cycles, the battery’s capaci-
ties decreased by 9.5%, 13.2%, and 16.9% at 1-C, 2-C, and 3-C discharge rates,
respectively. Figure 1.1 illustrates the capacity fade, recorded every 50 cycles, with
actual measurements connected by straight lines.

We can see that every degradation curve displayed in figure 1.1 follows an
exponential decay pattern, irrespective of the associated C-rate. Inspired by this
observation, the study employed MATLAB’s Curve Fitting Tool to align a two-term
exponential expression, f(t) = aebt + cedt with the actual degradation data. Figure
1.2 illustrates both the collected data and the curve adjusted to fit this data.
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Figure 1.1: Capacity Degradation

Figure 1.2: Degradation fitting curve
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After that, the author calculates the coefficient of the fitting curve for every
C-rate. The results are shown in figure 1.3.

Figure 1.3: Coefficients

Finally, the study derives a C-rate dependent model for the degradation of SOH
over time, where: d = aeβ(C−rate)2 is one of the coefficients of the previous relation.
The average value and the confidence intervals for α and β are detailed in Figure 1.3.
In this instance, the achieved R2 value was 0.9997, indicating an excellent fit of
the function to the data.

Figure 1.4: Parameters

In the paper “Modeling long-term capacity degradation of lithium-ion batteries”
The author experiment, detected a second bend when the capacity reached about
30% of its initial value. Consequently, the overall capacity degradation manifests
an "S"-shaped or sigmoidal curve. Figure 1.5 incorporate the comprehensive data
set gathered from the 48 cells tested in the study.
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Figure 1.5: Different aging trends from 48 cells

To elevate the precision of the analysis, the author introduces a parametric
regression model tailored to fit the specific battery data at hand. This model is not
just a tool for curve fitting but is designed to mitigate the impact of measurement
errors, enhancing the accuracy of the degradation analysis. It employs a stochastic
approach, enabling the application of statistical procedures to refine the data
interpretation further.
Each parameter within the model is not a statistical entity but is chosen with
meaning, allowing for a understanding of the underlying degradation dynamics.
In existing literature, various parametric models have been explored to estimate
the remaining capacity, like double exponential model, polynomial model, mixture
model and the author studies the differences and the best approaches.
Also, in the study is presented a lifetime prediction. For lithium-ion battery
cells’ long-term capacity degradation behavior under cyclic aging, they propose a
parametric regression model with the regression function being a linear combination
of a linear and a logistic function. They use a sigmoidal model that allows for
interpretation of all its five parameters and shows high flexibility in fitting different
kinds of capacity degradation paths.
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Figure 1.6: Long term capacity degradation

In the paper “Knees in Lithium-Ion Battery Aging Trajectories” the authors
examine how various factors influence the "knee point" in battery degradation,
classifying them into cell design, testing conditions, and sampling/testing variability.
In terms of cell design, factors like electrode design, electrolyte composition, and
formation protocols can impact the knee’s occurrence. Testing conditions, including
charging and discharging rates and voltage limits, also play a significant role. The
study reveals that higher charging rates and wider cycling voltage ranges typically
accelerate the knee’s appearance, while the impact of discharging rates can vary.
The authors emphasize the need for more research to understand these complex
interactions and their effects on battery lifespan.
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Figure 1.7: Results of various knee identification methods
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Chapter 2

Technological background

2.1 LiPo batteries

Lithium-ion polymer (LiPo) batteries are powerful energy sources known for their
high specific energy, high energy density, and slim, elongated designs. They are
a variation of the standard lithium-ion battery but utilize a polymer gel as the
electrolyte. Like their traditional counterparts, LiPos are rechargeable and deliver
numerous high-energy discharge cycles. The operation of LiPo batteries involves
the movement of lithium ions between the positive and negative electrodes, with a
polymer gel electrolyte acting as the separator. Instead of a hard exterior, LiPo
cells are usually encased in flexible pouches or wound prismatic.
This design allows for efficient packing during battery assembly and enhances heat
dissipation. High-quality LiPo cells can achieve thousands of discharge cycles,
making them suitable for space missions. The core specifications of a LiPo cell,
such as voltage, energy, and power, are influenced by the materials used for the
cathode, anode, and electrolyte. Commercially popular LiPos typically have a
LiCoO2 cathode and a graphite anode. The polymer electrolytes in these batteries
are gels infused with an ion-conductive salt like LiPF6.
Individual LiPo cells can be grouped in various arrangements. The most prevalent
designs are the planar or stacked arrays, which often connect multiple cells in series
to amplify the battery’s voltage. For instance, a configuration with four cells in
series is labeled as a 4s1p strand. When these arrays are connected in parallel,
the battery’s capacity increases, a standard planar battery setup with parallel
connections might be described as 4s2p, where "s" indicates the number of series
cells and "p" denotes the parallel strands. When battery packs are constructed using
multiple cells, cell capacity has an inherent variation. This variation heightens the
risk of cells undergoing harmful conditions like overcharging and overdischarging.
This capacity disparity becomes more pronounced as the battery undergoes more
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charge-discharge cycles, especially under extreme overcharge and overdischarge
scenarios.
Issues like faulty cell connections or problematic charging circuits can result in
overcharging, while circuitry leakage currents might cause overdischarging. Over-
charging and overdischarging are the primary challenges faced by LiPo cells. Such
mistreatment can lead to reduced performance (affecting the intended operation)
or safety concerns. Every LiPo variant has a suggested voltage range determined
by the specific chemistries of the cathode, anode, and electrolyte materials. This
range defines the maximum and minimum voltage levels for safe operation.

The components of LiPo cells are:

• Aluminized Polyester Pouch is a tri-layered laminate packaging commonly
used for LiPo cells. It consists of non-conductive polyester polymer layers on
the outside and inside, with a central layer of impermeable aluminum foil.

• Aluminum foil serves as the metallic current collector, ensuring electrical
contact from the positive electrode materials to the cell’s terminal. Within the
voltage range of the cathodic half-cell reaction, aluminum sustains a consistent
passivation layer.

• Lithium cobalt oxide (LiCoO2) is a positive electrode material for lithium-ion
and LiPo cells, especially in portable electronics. Its popularity stems from its
high energy density, voltage, and cycling capability. The LiPo cells discussed
in this report utilize the LiCoO2 positive electrode chemistry.

• The Separator is a micro-porous polymer membrane that electrically separates
the electrodes but permits ionic conduction, ensuring electrical isolation
between them.

• The Electrolyte salt, usually LiPF6, is an inorganic lithium salt that offers
ionic conductivity and blends well with the electrolyte solvents.

• Electrolyte solvents are generally aprotic organic solvents that remain electro-
chemically stable within a voltage range of 0 to 5.0 V against Li.

• Graphite carbon (C) is the standard material for the negative electrode. It
pairs well with LiCoO2 and other transition metal oxides and phosphate
positives.

• Copper foil functions as the metallic current collector, facilitating electrical
contact from the negative electrode materials to the cell terminal. Within
the voltage range of the anodic half-cell reaction, copper maintains a stable
passivation layer.
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Figure 2.1: lipo technology

2.2 Battery diagnostics

Understanding the complexities of battery degradation is vital for optimizing energy.
The longevity of LIBs is a focal point in reducing both costs and performance
impacts. Over time, LIBs face reduced capacity and increased internal resistance
due to various degradation mechanisms influenced by factors like temperature, state
of charge, and load profile. We will overview these mechanisms and the conditions
that trigger them. It highlights the role of external stress factors and secondary
elements like manufacturing defects in influencing battery degradation.
As we said before, a standard battery consists of six primary elements. These include
two current collectors in touch with the two electrodes, where redox reactions occur
to facilitate the battery’s charge and discharge processes. A porous separator
is also present to prevent the electrodes from short-circuiting while enabling the

12
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migration of charged ions. The electrolyte aids in easy charge transfer and serves
as an additional source of lithium ions (Li+). These components are depicted
schematically in Figure 2.2.

Figure 2.2: Schematic showing the basic components

The positive electrode (PE), typically made of lithium transition metal oxide,
releases Li+ ions and electrons during charging. These ions move through the
cell and separator to the negative electrode (NE), usually composed of graphite
or similar materials, where they’re accepted, maintaining charge neutrality. This
"rocking chair" motion of ions and electrons reverses during discharge. The process’s
efficiency is tied to the ease of Li+ extraction from the PE and the stability of its
crystal structure.
Battery degradation is a complex process. At the core, degradation mechanisms
detail the physical and chemical changes occurring within the cell, though they
are challenging to observe directly. These mechanisms lead to observable effects,
namely capacity fade and power fade, which are easier to measure but offer a less
detailed view of the degradation process. Bridging the gap between mechanisms
and observable effects are degradation modes. These categorize the mechanisms
based on their impact on the cell’s behavior. Four key modes are highlighted:
loss of active material (LAM), loss of lithium inventory (LLI), stoichiometric drift,
and impedance change. LAM and LLI affect the cell’s thermodynamic behavior,
while impedance change, often referred to as resistance increase or impedance rise,
impacts its kinetic behavior.

13
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SEI Solid Electrolyte Interphase is a crucial component in the degradation
of lithium-ion batteries. A passivation layer forms on the NE when the liquid
electrolyte interacts with it. This typically occurs when the NE operates at voltages
below the electrolyte’s electrochemical stability window, leading to the irreversible
breakdown of the electrolyte and its loss. SEI formation is a double-edged sword.
Initially, it causes about a 10% reduction in battery capacity but then acts as a
protective layer, preventing further electrolyte reaction with the NE. Over time,
however, the SEI layer thickens, especially on graphite NEs, due to factors like
solvent molecules diffusing through the existing SEI, exposure of new electrode
surfaces from cracking, and deposition of side reaction products. The growth of
the SEI layer is a natural process but can be accelerated by high temperatures
and currents. Elevated temperatures increase diffusion rates, while high currents
can lead to particle cracking and new SEI formation. The consequences of SEI
growth are significant, leading to capacity loss, and increasing the cell’s overall
impedance, resulting in power fade. The SEI layer’s reduced permeability to Li+
ions, pore blocking, and consumption of the electrolyte solvent exacerbate these
effects. SEI growth is also linked to other degradation mechanisms. high cycling
rates can cause particle and SEI cracking, exposing new surfaces for further SEI
formation, and compounding the degradation process.

Figure 2.3: Interaction between SEI and lithium plating
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Lithium plating occurs when metallic lithium forms on the surface of the NE
instead of being absorbed into it. This phenomenon can be attributed to the NE
surface being fully lithiated, leaving no room for additional lithium (thermodynamic
plating), or due to rapid charging that increases the rate of this side reaction (kinetic
plating). Lithium plating is particularly prevalent at low temperatures where the
main lithium absorption process is slowed down. Several factors can exacerbate
lithium plating, including low temperatures, high states of charge, rapid charging,
high cell voltage, and an insufficient mass of NE or its electrochemically active
surface area. To mitigate this issue, batteries are often designed with an extra
10-20% capacity in the NE to prevent overcharging. Additionally, an "overhang" or
extra surface area is included to minimize local overcharging at the electrode edges.
However, these measures could be more foolproof, especially during fast charging
or in sub-freezing temperatures. Local defects in the separator or NE, whether
originating from manufacturing errors or developing during use, can also lead to
lithium plating. While calendar ageing is slow at low temperatures, indicating
a reduced occurrence of lithium plating when the battery is at equilibrium, rest
periods following fast charging can promote the reaction of plated lithium with the
electrolyte over its removal by stripping.

Figure 2.4: Graphite electrode after extensive Li plating
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Particle fracture is a common issue in both electrodes of a battery, resulting
from the significant volume changes and the ensuing stress during the battery’s
operation. This phenomenon is particularly pronounced near the separator, where
higher local current densities lead to increased stress and, consequently, particle
fragmentation. Materials with high theoretical specific capacity, such as silicon,
are especially prone to particle fracture. The incorporation of silicon additives in
electrode materials can substantially enhance their specific capacity. For instance,
a pure silicon electrode can deliver a specific capacity over 11 times higher than its
graphite counterpart. However, this increased capacity comes with the challenge of
managing the pronounced volume changes and stress that silicon undergoes during
the battery’s charge and discharge cycles, leading to an increased propensity for
particle fracture. Temperature extremes exacerbate particle fracture. Elevated
temperatures increase thermal stress, while low temperatures make graphite more
brittle and prone to fracture. Batteries with high silicon content NEs, subjected to
deep discharge, high currents, or comprised of large particle sizes are particularly
vulnerable. Manufacturing processes can also introduce strain effects and pre-
existing cracks, accelerating particle fracture during battery operation. Cracks in
electrode particles expose new surfaces to the liquid electrolytes, leading to side
reactions and trapping of cyclable Li within the expanded SEI layer. The SEI
layers, with distinct mechanical properties compared to active electrode materials,
are more susceptible to cracking. NEs with high silicon content undergo significant
volume changes during cycling, making them more vulnerable to particle cracking
and associated SEI growth.

Figure 2.5: links between particle fracture and SEI growth
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Chapter 3

Test bench development

In this chapter, we describe the development of the test bench capable of recording
the battery’s voltage and current data during the charging and discharging phase.

3.1 Test bench design
We must first establish our objectives and requirements to design the test bench
accurately and functionally. The primary goals are as follows:

• The test bench should be able to measure the voltage, current, and power of a
LiPo battery during the discharge phase.

• The measurements should be accurate.

• The measurements should not be affected by external temperature.

• The bench should be able to record the measured data.

• The bench should be able to discharge the battery using an external load.

• The battery should be able to be discharged at different currents.

• The data should be analyzable.

The aim is for the experimental data obtained to be as reliable as possible and
the measurement error to be minimal. Moreover, knowing that the battery’s
performance is closely tied to the operating temperature, we must also consider
the testing environment in the design to ensure that the experimental data is not
dependent on external temperatures.
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Figure 3.1: Functional tree

In the functional tree, we can observe the core functions of the test bench
highlighted in blue, with the corresponding outputs marked in green. When
it comes to measurement, we require sensors capable of detecting both voltage
and current values. The power can then be computed by multiplying these two
parameters.
For data management, a specialized software is essential, designed to analyze and
store the data on a computer efficiently. We will employ an external resistance to
discharge the battery, specifically utilizing a brushless motor. This choice aims
to closely simulate a drone’s mission, with an Electronic Speed Controller (ESC)
to adjust the power accordingly. Lastly, the testing environment must maintain a
consistent temperature throughout all tests to ensure the reliability and consistency
of the data collected. This controlled environment ensures that the performance
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and readings are not influenced by external temperature variations, guaranteeing
the accuracy of our tests and findings.

Figure 3.2: Testbed Configuration

The final assembly of the test bench is depicted in Figure 3.2, showcasing
its three core elements: the battery, the motor, and the computer. The motor
support is fixed to a table with two screws, ensuring stability during operation, as
illustrated in figure 3.3. The entire setup is housed in a laboratory room where
the temperature is consistently maintained at 25 degrees Celsius, ensuring that all
tests are conducted under uniform thermal conditions.
We procured the essential components from TytoRobotics, a company renowned
for developing specialized test benches for evaluating drone performance and other
related applications. TytoRobotics provided a electronic board equipped with the
capability to manage various components and measure data. Accompanying this
hardware is a software suite tailored for in-depth data scrutiny, ensuring that every
piece of information is captured and analyzed.
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Figure 3.3: Motor support and table fix
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Figure 3.4: ESC link to motor and board
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3.2 Component description
We provide an overview of the various components selected and assembled to create
the test bench and the connections between them.

Figure 3.5: Lipo battery

The GENS product is equipped with a lithium battery that operates at a nominal
voltage of 14.8 volts and is configured as 4S1P. It has a capacity of 6750mAh and
uses an XT90-Plug connector. For our tests, we procured two of these batteries; one
brand new and another that has been in use, to compare and analyze the variance
in performance. The positive and negative wires of the batteries are connected
directly to the printed circuit board (PCB).
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Figure 3.6: ESC

The ESC serves as the intermediary between the battery and the electric motor,
regulating the power flow and controlling the motor’s rotational speed. It achieves
this by converting the battery’s direct current (DC) into a modulated three-phase
alternating current (AC) through a sophisticated switching mechanism. This
modulated AC, characterized by timed electric signals, dictates the speed variations
of the motor. There are various protocols for delivering these signals, including
PWM (Pulse Width Modulation), Oneshot, Multishot, and Dshot. Each has its
unique characteristics, with the primary distinction being the frequency of signal
delivery. A higher frequency results in faster signal transmission and, consequently,
quicker response times for the drone. In our specific setup, we have opted for the
PWM protocol. The ESC is connected to the PCB with two wires to secure the
link for electrical signals, and to the brushless motor with the three wires to deliver
the three-phase current.
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Figure 3.7: PCB

The PCB for the RCbenchmark Series 1585 thrust stand is equipped with an
array of features to enhance the functionality and versatility of the thrust stand.
It includes an accelerometer for measuring acceleration and vibrations, and an
ohmmeter with a range of 0.003 to 240 Ohms for resistance measurements. The
PCB is designed with three connectors for load cells, enhancing its capability to
measure forces accurately. It also features four PWM output ports for controlling
and testing various motors and servos. For easy data transfer and connectivity,
the PCB is equipped with a USB connector port. It supports power connections
ranging from 0 to 50 V and up to 55 A, ensuring compatibility with a wide range of
power sources. With a sample rate of up to 80 Hz for all sensors PCB ensures that
data is captured with high precision and detail. The PCB is connected to both the
ESC and the battery. This setup ensures that the ESC receives the power from the
battery and effectively controls the motor’s speed during the tests. Additionally,
the PCB is connected to a computer that allows real-time observation of the data
and that data is recorded.

25



Test bench development

Figure 3.8: Brushless motor

The T-Engine MN3508 380 KV is a brushless outrunner motor specifically
designed for multicopters. This motor is characterized by its KV rating of 380,
indicating the motor’s RPM (Revolutions Per Minute) per volt that is applied,
making it a suitable option for applications requiring moderate speed and torque.
The motor features a 12N14P configuration. This denotes 12 stator slots and 14
magnet poles, a configuration that contributes to the motor’s efficiency, performance,
and smooth operation. To the motor we apply a propeller in order to create the
resistance to discharge the battery.
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Figure 3.9: Motor support

The mount in figure 3.9 is designed to hold the motor securely and offers
great versatility. It allows for the easy attachment and removal of the motor,
providing flexibility during testing or maintenance. Additionally, its adaptable
design accommodates various types of motors, making it a universal solution for
different motor models and sizes.

The mounts shown in figure 3.10 are used to secure the structure to a fixed
component, which in this case is a table, and to attach the PCB and ESC firmly in
place. These supports ensure stability and safety during the operation of the test
bench, preventing any movement or vibration that could affect the accuracy of the
tests or damage the equipment. The design allows for easy access to the PCB and
ESC for monitoring, adjustments, or maintenance, ensuring that the test bench
operates efficiently and reliably. It is crucial for the accurate data reading by the
testbed to calibrate the structure. For this reason, an arm and weights are used,
as seen in figures 3.11 and 3.12, which serve to calibrate the thrust of the motor.
This process ensures that the measurements taken during the tests are precise
and reliable, accounting for any potential discrepancies or biases in the setup. By
carefully adjusting the setup with the help of the arm and weights, the testbed is
optimized for accurate and consistent data collection, ensuring the validity of the
test results.

27



Test bench development

Figure 3.10: Other supports

Figure 3.11: Arm component for calibration

Figure 3.12: Weights
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Lastly, a decision was made regarding the use of cables. This aspect is crucial
for ensuring the safety of the tests and avoiding the risk of burning the components.
For this reason, the cables were sized by evaluating the maximum currents of each
component and the operational currents. In our case, we chose an AWG 12, as
shown in figure 3.13, to connect the battery and the ESC to the PCB. This choice
ensures that the electrical connections are robust and safe, capable of handling the
currents involved without overheating or compromising the integrity of the test
setup.

Figure 3.13: Wires
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3.3 Software implementation
The software of the RCbenchmark Series 1585 provides a simple and intuitive
interface.

Figure 3.14: Tool interface

As we can observe in figure 3.14, on the left side of the screen, there is a menu
for setup and control, which we will elaborate on later. Below this menu, there is a
button for connecting the computer to the test bench via the COM5 port, and the
text below it indicates the status of the connection. Following that, we can view
the readings from various sensors on the test bench. In our case, we are particularly
interested in the values of voltage, current, and electric power. On the right side of
the screen, the display corresponds to the selected drop-down menu option.

As illustrated in figure 3.14, within the setup menu, it’s crucial to define the
PCB series for accurate data reading and set the working directory to ensure that
the experimental data is directly saved to a specific folder on the computer. Another
important parameter to set is the sample rate, which determines the frequency at
which data is collected and recorded.
The maximum sample rate is limited by the hardware and driver settings. On
most computers the tool is stable between 4 and 100Hz. the app is not capable of
communicating with the driver settings, so you will need to modify the driver by
hand. We’ll choose a low sample rate if you want to perform extended datalogging.
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For example, if you want to do an endurance test spanning multiple hours, you
may set the sample rate at 4Hz to reduce the CSV data size.

The process of modifying the sample rate involves several steps:

1. Access the Windows Device Manager.

2. Identify and select the device that corresponds to the tool. This device should
be associated with the same COM port that the app utilizes for communication
with the board, as depicted in figure 3.15.

Figure 3.15: USB serial port

3. Proceed to click on the “Advanced...” option.
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Figure 3.16: Port properties

4. The latency is expressed in milliseconds, and its conversion to Hz can be
achieved using the formula: latency = 1000/Hz. Alternatively, the table in
figure 3.18 provides a handy reference for this conversion.

Figure 3.17: Latency Time
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Figure 3.18: Latency conversion

As we said we set 4Hz.

In the utilities menu, users can configure the PWM settings to ensure effective
communication between the ESC and the PCB. This configuration is crucial for
controlling the motor’s power levels effectively. The power limits are defined within
a range, with 1000 representing the point where the motor remains stationary, and
2000 indicating the motor operating at its maximum power. These numerical values
are integral in calibrating the motor’s operational range, ensuring it functions
within the designated power limits to avoid potential damage or inefficiency.

Additionally, a safety cutoff feature is incorporated to enhance the safety and
reliability of the testing process. If the system encounters a scenario where the op-
erational parameters exceed the predefined safety thresholds, the tool automatically
triggers the safety cutoff. In such an event, the ESC is instantly adjusted to a value
of 1000. This response mechanism protects the motor and associated components
from potential damage due to excessive power or operational anomalies.
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Figure 3.19: Utilities Menu

In the safety cutoffs menu in figure 3.20, users can establish the performance
boundaries for the battery during testing, enhancing the safety protocols. This
customization allows for a more controlled and secure testing environment, ensuring
that the battery operates within the defined limits to prevent any potential hazards
or damage. For our specific case, it is crucial to set the limits for voltage, current,
power, and vibration to ensure the battery’s safe operation during the testing phase.
The voltage is configured with a maximum limit of 16.8 V and a minimum threshold
of 14.5 V. This range ensures that the battery operates within optimal voltage
levels, preventing overcharging or excessive discharge, which could potentially harm
the battery’s lifespan and performance. The current is capped at a maximum of
14.4 A, ensuring that the flow of electric charge remains within safe levels to avoid
overheating or other potential issues related to excessive current. Electrical power
is another critical parameter, and it is set to a maximum limit of 350 W. Vibration
is also monitored and controlled, with a maximum allowable limit set at 2.5 g.
This limit ensures that the battery and associated components are not subjected to
excessive vibrations, which could lead to mechanical failures or affect the integrity
of the connections and components.
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Figure 3.20: Safety Cutoffs Menu

In the manual control menu, users can directly control the motor’s power level
using the ESC slider. This feature provides a hands-on approach to adjusting the
motor’s power output, offering precise control over the discharge current level. Users
can easily slide the controller to a specific position, setting a constant discharge
current that will be maintained throughout the entire test. One of the key features
in this menu is the continuous recording button. When activated, this function
initiates the data recording process, capturing real-time data on the battery’s
performance metrics. All the collected data is saved directly to a CSV file. The file
is stored in the pre-defined working directory, streamlining the data management
process and ensuring that all test data is organized and readily accessible for review
and analysis.
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Figure 3.21: Manual Control Menu
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Chapter 4

Experimental tests

4.1 Experimental testing methodology

The methodology employed for conducting the tests involves several steps. A
fundamental prerequisite is maintaining identical experimental conditions for both
the new and old batteries. This uniformity is crucial to ensure a reliable comparison
of the performance metrics. The testing process commences with the new battery.
It will be tested at various C-rates, specifically at 0.5C, 0.7C, 1C, and 1.2C. Each
test initiates at a voltage of 16.3 and concludes when the voltage drops to 14.5.
This range ensures a comprehensive assessment of the battery’s performance under
different discharge rates, offering insights into its efficiency and endurance.
Data management is integral to the testing process. Each set of data saved in the
folder will be renamed to avoid confusion and ensure orderly storage. The naming
structure will be systematic: it will indicate whether the battery is old or new,
specify the C-rate, and number the test.
For instance, a name might read "new_0.5C_test1." This meticulous approach
to data naming ensures easy retrieval and analysis. Redundancy is built into the
testing methodology to account for any inadvertent or random errors. Two tests
will be conducted at each C-rate, ensuring that any anomalies can be identified
and accounted for, enhancing the reliability of the results.
Following the completion of tests on the new battery, the old battery will undergo
the same testing regimen. Throughout the testing process, the room temperature
will be meticulously maintained at 25 degrees Celsius. This constant temperature
ensures that external thermal factors do not influence the batteries’ performance,
ensuring that the derived data truly reflects of the batteries’ inherent capabilities
and characteristics.
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4.2 Description of performed tests

As observed in the figure 4.1, the experimental test curves exhibit a decreasing
trend of voltage over time. The dynamic behavior of the voltage varies according to
the discharge current. Specifically, the voltage decreases more rapidly with higher
discharge currents, reaching the lower limit of 14.5 V in a shorter time. One initial
observation is the distinct discharge times of the battery at different discharge
currents.

Figure 4.1: Discharge curves

A notable aspect of the conducted tests is the significant drop in voltage at the
onset of the test when the external load is applied. This drop is more pronounced
at higher C-rates. A similar behavior is observed at the end of the test when the
external load is removed, resulting in a slight increase in voltage. This phenomenon
is attributed to the internal resistance of the battery, where a voltage drop occurs,
and is more significant with higher currents. Consequently, the voltage read by the
external load is the battery’s voltage minus the voltage drop across the internal
resistance.

Given that the thesis aims to develop a predictive model of the battery capacity
based on the number of cycles, one approach could be to calculate the trend of
internal resistance and its degradation as a function of the number of cycles. How-
ever, this approach is complex, as we know that battery performance degradation
is not solely dependent on internal resistance. It is influenced by various factors,
including the degradation of internal battery components and electrochemical
processes. Therefore, a preferred approach is to consider a model where all these
factors are generally accounted for in the overall battery’s capacity degradation.
This comprehensive approach ensures a more accurate and holistic understanding
of the battery’s performance and degradation patterns over time and usage cycles.
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Figure 4.2: Initial Voltage Drop

4.3 Analysis of test results
Upon examining the discharge curves, it’s evident that higher C-rates result in
reduced battery autonomy. The curves showcase a sharp decline at the beginning
of the test, followed by a more prolonged and steady behavior between 15.7 and
14.8 V, which represents the battery’s optimal operating range. Towards the end
of the discharge, there’s a noticeable "knee" or inflection point, indicating the onset
of a rapid voltage drop. Discharging the battery beyond this point could lead to
potential damage, which is why we’ve set a safe threshold at 14.5 V.

Figures 4.3 and 4.4 depict the discharge curves for the different C-rates of both
the new and aged batteries. By comparing the discharge duration (represented in
minutes on the x-axis), it’s clear that the aged battery’s autonomy is diminished
compared to the new one, signifying degradation. This observation is crucial as
it’s not an obvious outcome and provides valuable insights for the continuation of
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our study. The next step in our research will involve a thorough analysis of the
collected data. We aim to discern patterns and establish relationships between the
observed differences in the performance of the new and aged batteries. This will
further our understanding of battery degradation and its implications on overall
performance.

Figure 4.3: New battery discharge curves

Figure 4.4: Old battery discharge curves

In figure 4.5, we can observe the capacity loss as a function of different C-rates.
As evident from the graph, the capacity loss is more pronounced at higher C-rates.

41



Experimental tests

This indicates that at elevated discharge currents, the battery experiences a more
significant impact on its degradation. The performance deterioration becomes more
pronounced as the current increases, highlighting the relationship between C-rate
and the rate of battery degradation.

Figure 4.5: Capacity loss percentage
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Chapter 5

Battery predictive model

5.1 Model description

After completing the experimental data collection campaign, the next goal is to
process this data and develop a model that simulates the data trends. We have
chosen to use MATLAB Simulink for this purpose. Simulink offers the capability
to create models using blocks and their interconnections, providing a visual and
intuitive approach to complex system modeling.
We opted not to use Simscape because this approach would have required specific
data that we do not currently possess to accurately model the battery’s discharge
process. Instead, we constructed a high-level model capable of simulating the
dynamic behavior of the voltage over time. In this model, we focus on capturing
the essential characteristics and behaviors observed in the experimental data
without delving into the intricate details that would require more extensive data
and complex modeling. This approach allows us to achieve a balance between
model accuracy and complexity, ensuring that the model is both representative
and manageable.
Through Simulink, we can iteratively refine and validate our model, comparing its
outputs with the experimental data to ensure alignment and accuracy. This iterative
process facilitates ongoing improvement and refinement, ensuring that the model
remains aligned with observed behaviors and can reliably predict the battery’s
performance under various conditions. In figure 5.1, we observe the battery discharge
model. I will proceed to explain the significance of the block diagram. Each block
and connection in the diagram represent a specific component or process involved
in the battery’s discharge, and together, they provide a comprehensive overview
of the entire discharge process. The blocks are configured and parameterized to
mirror the real-world behavior of the battery as closely as possible, based on the
collected experimental data.
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Figure 5.1: Discharge Model

Starting from the beginning, we can see a constant block. The goal here is to
simulate the passage of time, and this can be achieved using a constant block and
an integral block. In this setup, the integral block takes the constant one and
multiplies it by the chosen integration step. The selection of the integration step is
crucial. In our case, the choice was dictated by the sample rate of the experimental
data, which defined the value of time and the corresponding voltage data. By
using an inherent integration step, we have the opportunity, through a lookup table
block, to display the experimental data in a scope block.
The lookup table block is configured with the experimental data, mapping each
time step to the corresponding voltage value. As the simulation progresses, the
integral block effectively ’counts’ the time steps, and for each step, the lookup
table block outputs the voltage value that corresponds to that particular moment
in time.
This setup allows for a real-time display of the experimental data in the scope
block, providing a visual representation of the battery’s voltage over time, as per
the collected data.

Regarding the simulation parameters, we opted to use a fixed step, given that the
sample rate is constant, with the ode4 solver. The step size is set at 0.00007527.
This choice ensures that the simulation closely follows the experimental data. The
ode4 solver, also known as the Runge-Kutta method, offers a good balance between
accuracy and computational efficiency. It’s a widely used numerical method for
solving ordinary differential equations, making it a suitable choice for this simula-
tion where precision and performance are paramount. By aligning the fixed step
size with the constant sample rate of the experimental data, we ensure that each
simulation step corresponds directly to a data point from the experiment.
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Figure 5.2: Solver Parameters

In the integral block, we set an external reset of the falling type. This configu-
ration ensures that the integral resets each time a specific condition is met, which
we will explain further ahead. By doing this, we can simulate multiple discharge
cycles effectively. This approach is crucial for analyzing the battery’s performance
over successive discharge cycles. Each reset signifies the beginning of a new dis-
charge cycle. The falling type reset is triggered when the signal transitions from a
high to a low state, marking the end of one cycle and the commencement of the next.

Figure 5.3: Integral Block

46



Battery predictive model

Moving on to the simulated model, we have time as an input to a function
block where I have inserted a function that describes the discharge behavior of the
voltage. To achieve this, I utilized MATLAB’s ’diff’ command on the experimental
data file and fitted the behavior with a polynomial function.
In this context, the ’diff’ command is used to compute the difference between
successive elements of the experimental data, giving us a detailed view of the
voltage’s rate of change over time. This data is crucial for understanding the
battery’s discharge characteristics. The polynomial function is then employed to
fit this differentiated data, providing a mathematical model that encapsulates the
battery’s discharge dynamics. By integrating this polynomial function into the
function block, the simulation becomes capable of replicating the discharge patterns
observed in the experimental data.

Figure 5.4: Function Block

In figure 5.5, as illustrated, I divided the output of the function by the integration
step. This approach ensures that the integrator performs a cumulative summation.
This process of scaling and integration convert the rate of change data into a
cumulative representation of the battery’s voltage over time.

Figure 5.5: Cumulative Voltage Process

The previous output is then subtracted from a constant block set at 16.3,
which represents the initial voltage value. This operation calculates the drop in
voltage over time, providing a dynamic representation of the battery’s discharge
process. The resulting value, which signifies the real-time voltage of the battery,
is then passed through a saturation block. This block is configured to limit the
output values within the specified upper and lower bounds of 16.3 and 14.5 volts,
respectively. These bounds correspond to the initial and final voltage values
observed during the battery’s discharge cycle. The saturation block ensures that
the simulated voltage values remain within the realistic operational range of the
battery. It prevents any potential overshoot or undershoot that might occur due
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to the inherent approximations and assumptions embedded within the simulation
model.

Figure 5.6: Battery’s discharge process

So, the complete model of the simulated system appears as shown in figure 5.7.

Figure 5.7: Simulation Model

The final block of the model is represented by a subsystem, as depicted in figure
5.8. This subsystem reset the integrators within the block diagram, enabling the
simulation of multiple discharge cycles. Inside this subsystem, the output voltage
from the global model is continuously compared to a constant value of 14.5 volts.
This constant represents the end-of-discharge voltage, a critical parameter in bat-
tery performance analysis. As the simulation progresses and the battery discharges,
the moment the output voltage matches 14.5 volts signifies the completion of a
discharge cycle. At this juncture, the comparison yields a zero, indicating the
battery has reached its lower voltage limit. This transition from a positive value
to zero triggers the ’falling’ type reset of the integrators. This mechanism ensures
that the model can simulate multiple cycles seamlessly, offering insights into the
battery’s performance over repeated discharges.
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Figure 5.8: Reset Subsystem

With the Scope block, we can visualize the results of the simulation. Specifically,
it allows us to compare the simulated model’s output with the experimental data,
enabling us to verify the correspondence between the two curves. This comparative
analysis is crucial to validate the accuracy and reliability of the simulation model.
Below, we present the results for the four different C-rates adopted in the simulation.

Figure 5.9: Simulation at 0.5C
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Figure 5.10: Simulation at 0.7C

Figure 5.11: Simulation at 1C
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Figure 5.12: Simulation at 1.2C

As we can observe, the trends align quite well, which is a significant aspect of
this analysis. The similarity in discharge time between the two curves is a crucial
factor, and it’s gratifying to see that this condition is met. It confirms that the
simulation model is accurately replicating the real-world behavior of the battery,
making it a reliable tool for further analyses and predictions.

However, it’s also essential to acknowledge the slight discrepancies between the
simulated and experimental curves. These differences can be attributed to several
factors:

• Every experimental setup is subject to a degree of error.

• Instrument precision, calibration, and environmental factors can all introduce
variations in the recorded data.

• The discharge current is not perfectly constant. Variations in load, internal
resistance, and other factors can lead to fluctuations in the current, affecting
the discharge curve.

• Unpredictable and random elements, including temperature variations, cell
inconsistencies.
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5.2 Simulink model
Now, we are moving forward to enhance the discharge model to incorporate a
degradation model that accounts for the battery’s capacity reduction over numerous
cycles. A cycle is characterized by a complete charge and discharge phase of the
battery. The objective is to develop a comprehensive model that not only simulates
the charge and discharge processes but also counts the number of cycles completed.
This count of cycles will serve as a crucial input for the capacity degradation model.
The approach involves the use of a stateflow chart to seamlessly alternate between
the charging and discharging phases while keeping an accurate count of the cycles.
This integration aims to provide a holistic view of the battery’s performance, en-
durance, and the inevitable decline in capacity, essential for predictive maintenance
and operational efficiency.
In figure 5.13, we observe a model that simulates and counts the battery cycles.
It incorporates two embedded subsystems that are activated only when specific
conditions are met. This design enables the simulation of the alternating charging
and discharging phases of the battery. Additionally, there is a stateflow chart in
place that oversees the operations of the two subsystems and keeps a tally of the
number of completed cycles.
To enhance the user interface and data visualization, a switch is incorporated.
This switch ensures that the data displayed on the scope is from the appropriate
subsystem, offering clarity and real-time insights into the ongoing phase, whether
it is charging or discharging.

Figure 5.13: Cycle Simulation Model
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The charge subsystem is designed to alternate the phases with the discharging
process with certain simplifications to streamline the modeling process.
The charging current is set at a value of 5, reflecting a typical charging scenario.
However, one of the key assumptions we’ve made is regarding the internal resistance
of the battery. We’ve chosen to represent it as a constant, low-value resistance. This
resistance encapsulates various factors that influence the battery’s discharge process.
The rationale behind this simplification is to capture the dominant behavior without
getting entangled in the intricacies of minor variations.
The product of the charging current and this internal resistance gives us the voltage
drop across the internal resistance. However, since we are in the charging phase,
this voltage drop is added to the base voltage of 14.5V. This approach ensures that
the model captures the increase in voltage as the battery charges. Additionally,
there’s a feedback loop integrated into the subsystem. This loop ensures that once
the discharge phase concludes, the system resets, initiating a new charging cycle.
This cyclical behavior is crucial for simulating repetitive charge-discharge cycles.
However, it’s essential to note that the linear behavior described by this subsystem
is a simplification. Given that we’ve used a constant value for the internal resistance,
the model describes a linear charging trajectory. While this might not perfectly
mirror the real-world behavior of the charging phase, it’s a pragmatic choice.
Typically, batteries are charged at low, constant currents over time. This means
that variations in the charging behavior, especially those caused by fluctuating
currents, have a minimal impact on the overall charge-discharge cycle.

Figure 5.14: Charge subsystem
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In the discharge subsystem, we commence with a constant block and an integrator
to simulate time. This approach is crucial for defining the voltage trend over time
during the discharge phase. To achieve this, we utilize a function block where
a 4th-degree polynomial is applied. In the model depicted in Figure 51, we can
observe two additional function blocks. These blocks receive the number of cycles
and the c-rate as inputs. Through a defined relationship, they increment the voltage
value, which subsequently needs to be accumulated every step and subtracted from
the initial value of 16.3V. Additionally, another loop facilitates the resetting of the
cycle, allowing the process to commence anew.

Figure 5.15: Discharge subsystem

Within the Stateflow framework, we initiate with a variable named ’counter’,
set at its genesis to zero. This variable serves to track the number of charge and
discharge cycles the battery undergoes. Transitioning into the ’charging’ state, we
introduce an entry variable, ’modeC’, set to 1. This move ensures that the charging
subsystem is activated and remains operational until a specific condition is met:
the battery voltage reaching the threshold of 16.3V. Upon achieving this voltage, a
transition is triggered, and we exit the charging state. Concurrently, ’modeC’ is
reset to 0, effectively deactivating the charging subsystem and ensuring no further
simulation occurs within this state.
Following this, the system seamlessly transitions into the ’discharge’ state. Here,
we set the ’modeS’ variable to 1, activating the discharge subsystem. As the
battery discharges, we employ the ’tc’ variable to gauge the discharge duration.
This temporal measurement is invaluable in understanding battery behavior under
load. Furthermore, with each discharge cycle, the ’counter’ variable is incremented,
providing a cumulative tally of the cycles. Once the battery voltage dwindles to
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14.5V, the system undergoes a state transition, reverting to the charging state. This
cyclical process, oscillating between charging and discharging, continues, offering a
dynamic and comprehensive simulation of the battery’s operational lifecycle.

Figure 5.16: Stateflow Chart

As depicted in figure 5.16, the variables from the Stateflow chart, "modes" and
"modec," activate the subsystems Discharge and Charge based on the current state.
We can also observe the "counter" variable serving as an input to the "scarica"
subsystem. This variable functions as a parameter for the capacity degradation
model we have employed. Consequently, with each discharge cycle, there is a
diminished capacity. Lastly, it is worth noting the presence of delay blocks,
introduced to prevent algebraic loops.
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Figure 5.17: Connection between stateflow and subsystems

To accurately display the simulation, we utilize a switch block and the scope
tool. The switch block is essential because we aim to visualize the voltage trend of
the subsystem currently undergoing simulation. Thus, ports 0 and 1 represent the
voltage outputs from the two subsystems. The control port is determined by the
"modeC" variable. It’s important to recall that the "modeC" variable holds a value
of 1 when the "Charge" state is active and a value of 0 when the "discharge" state
is inactive.

Figure 5.18: Switch block
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5.3 Assumptions
In the current predictive model certain assumptions are indispensable. These
assumptions not only simplify the intricate dynamics but also set the boundaries
for the model’s applicability. One of the most significant considerations in our
model revolves around temperature dynamics. We chose to operate under a
temperature-neutral environment. This decision, while seemingly simplistic, was
rooted in pragmatism. Real-world battery cycles might indeed experience variable
temperatures, but introducing this dynamic would have complicated the model
especially in terms of data collection.
Voltage boundaries are another crucial aspect. Our model operates within a defined
voltage range, starting at 16.3V and concluding at 14.5V. This decision was driven
by safety considerations. LiPo batteries, can operate at voltages as low as 14.2V.
However, given the known risks associated with LiPo batteries, we prioritized safety.
This conservative approach, while ensuring safety, might introduce slight deviations
when the model is applied in real-world scenarios where batteries are often pushed
to their limits.
The model’s approach to internal resistance during the charging phase is another
point of discussion. We’ve assumed a consistent internal resistance, a decision
rooted in the observation that at low charging currents, the impact of internal
resistance on overall battery performance is minimal.
However, this might not lead to problems in the model since usually the charging
current are low and constant. Another decision was to represent discharge curves
using 4th-degree polynomial fits. Such polynomial fits offer a good accuracy. They
are particularly effective in capturing the intricate trends we observed during our
data collection phase.
Lastly, the model’s paradigm around capacity degradation is noteworthy. We’ve
leveraged a database centered on lithium-ion batteries, even when dealing with
LiPo batteries. This decision was informed by the operational similarities between
the two battery types. However, specific nuances unique to LiPo batteries might be
overlooked, hinting at the potential benefits of a dedicated LiPo battery database.

5.4 Results
Let’s dive into the findings. As mentioned earlier, one of our main goals was to
determine the number of cycles the older battery underwent. To achieve this, we
turned to a well-known capacity degradation model found in scientific literature,
characterized by an exponential decay pattern: f(t) = aebt + cedt.

This model further provides a C-rate dependent relationship for the degradation
of SOH over time, where one of its coefficients is described by: d = aeβ×(C-rate)2 .
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As we can see in figure 5.19, the plotted curves represent the percentage of
capacity loss across various C-rates, ranging from 0.5 to 1.2. The difference in
discharge current isn’t too vast, it’s notable that the curves are closely aligned with
one another indicating that, within the studied range, the battery’s degradation
behavior exhibits minimal variance with changes in C-rate.

Figure 5.19: Capacity loss

By integrating the capacity differences observed between the old and new
batteries from our experimental tests, we can pinpoint four distinct markers
corresponding to the four C-rates. A closer examination, as depicted in figure
5.20, shows where these markers intersect with the degradation curves. These
intersections help us determine the estimated number of cycles the older battery
has undergone. It’s crucial to note that we don’t arrive at a single, precise number
but rather a range of possible values.
A specific observation needs to be made concerning the 0.5C curve. This current
value doesn’t mirror the battery’s real-world use. The minimum current typically
used for these batteries aligns with the charging current, which is at 0.7C. As a
result, any findings associated with the 0.5C curve may not be trustworthy and
can be disregarded for practical purposes.
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In contrast, the curves for C-rates 1 and 1.2 are more reflective of how the battery
is typically used in real-life scenarios, making their results more credible. As we
observe, the range for the number of cycles the older battery might have undergone
falls between 115 to 155 cycles.

Figure 5.20: Range of possible cycles

By incorporating these degradation models into the functions of the Simulink
model, specifically within the "discharge" subsystem, we’re able to simulate the
battery’s charge and discharge cycles. Figure 5.21 provides a snapshot of such a
simulation, where we can distinctly identify both the charging and discharging
phases across multiple cycles.
The simulation’s primary objective is to start from the performance metrics of a
new battery. As we simulate subsequent charge and discharge cycles, the model
introduces a gradual reduction in battery capacity based on the number of cycles
completed. This continues until the simulated battery’s performance aligns with
that of the old battery.
After reaching this point, the simulation can further proceed to forecast the battery’s
degradation until it hits a performance level deemed as the threshold or limit. This
specific point on the degradation model is referred to as the "knee", a juncture where
the battery’s capacity degradation accelerates. Drawing from existing literature,
this threshold typically corresponds to an 80% capacity loss.
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Once this threshold is reached, we can extrapolate how many more life cycles the
older battery has before it’s deemed non-functional or significantly inefficient for
practical applications.

Figure 5.21: Cycles simulation

Figure 5.22: Model simulation

In figure 5.22, we get a visual representation of the simulation. The yellow line
on the graph signifies the target value, representing the capacity of the old battery.
The blue line, on the other hand, showcases the capacity of the new battery. As
the graph reveals, this capacity undergoes degradation over time. The x-axis marks
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the simulation time. From the simulation, the result shows that the new battery
requires 149 cycles at a C-rate of 1 to degrade to the performance level of the old
battery. From this, we can deduce that the "old" battery still retains a significant
amount of its original capacity and can thus be used for numerous additional cycles
before reaching the end of its functional lifespan.
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Chapter 6

Conclusions and future
developments

6.1 Conclusions
In this study, we designed a test bench specifically to record the voltage and
current data of a battery throughout its charging and discharging cycles. A
pivotal consideration was maintaining consistency in experimental conditions when
examining both new and old batteries. This especially included temperature control,
ensuring its influence was eliminated, providing a neutral testing environment. The
experimentation started with the new battery. We subjected the battery to various
C-rates: 0.5C, 0.7C, 1C, and 1.2C. The data curves revealed a pronounced decline
in voltage as time progressed. This voltage dynamic was noticeably impacted by
the discharge current. Specifically, an increase in discharge current corresponded
with a faster voltage drop, reaching a low of 14.5 V in a considerably shorter period.
From our observations, a tangible difference emerged in the discharge times when
the battery was exposed to different discharge currents. Comparing these durations
revealed a marked reduction in the autonomy of the aged battery when placed
alongside its newer counterpart, pointing towards battery degradation. This
revelation, while not immediately intuitive, is paramount as it provides deep
insights into battery behavior.
Turning to academic sources, we incorporated a capacity degradation model. This
model consistently showcased an exponential decay pattern. Additionally, we
integrated a C-rate dependent model into our framework. By synthesizing the data
from the degradation model and our experimental findings on capacity loss, we
inferred that the aged battery had experienced between 115 to 155 cycles. this
range offers a probabilistic understanding of the issue. This approach acknowledges
the inherent uncertainties and variations in real-world scenarios. The range offers

63



Conclusions and future developments

a degree of confidence about where the true value likely lies.

6.2 Potential future developments
One of the most palpable constraints faced was the reliance on experimental data
from just two batteries. Such a limited dataset can lack on reliability, or at the very
least, not capture the full spectrum of potential battery behaviors. An avenue worth
exploring would be the acquisition of a more extensive database that pools data
from a multitude of LiPo batteries. Such a repository would undoubtedly enhance
the accuracy of the study, rendering the conclusions more robust and reliable. This
broader dataset would not only help refine the results but also facilitate a more
in-depth analysis of the inherent uncertainties of the results. By delving into the
variability and scatter of the collected data, one could assess the confidence levels
of the conclusions reached and identify potential anomalies.
Another study worth doing is evaluating the impact of temperature on battery
performance. Temperature, known to exert significant influence over the internal
chemical reactions of batteries, can modulate the discharge and charge cycles
noticeably. By weaving in the temperature variable, future research iterations
can offer a model that’s more attuned to real-world scenarios. Moreover, while
the current investigation was circumscribed to specific C-rates, expanding the
horizon to include higher C-rates might reveal battery behavior nuances under
more aggressive or demanding operational conditions. Such an exploration can be
invaluable, especially for applications that require rapid discharges or are subjected
to high-power demands.
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