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Summary

Recent attention in sailing has shifted towards foiling boats, which can rise above
the free surface of the water in order to reduce the drag force. This is achieved by
placing small wings under the boat, which provide a supporting force that allows
the boat to rise. These wings consist of two main surfaces: a vertical surface, which
is used to counteract the lateral forces of the sail, and a horizontal surface, which
is the source of lift. At the junction of vertical and horizontal surfaces, is made
a structural connection. This joint, named Bulb, has a tapered shape in order to
reduce its disturbance to the flow.

The purpose of this master’s thesis is to establish a process for fluid dynamic
optimization of the bulb, to improve the efficiency of the whole wing. To accomplish
this, an optimization tool employing genetic algorithms has been developed in
MATLAB. The tool explores the design space by evaluating a single objective
function through fluid dynamic simulations in STAR-CCM+. To complete the
work was explored the possibility of performing a second detailed optimization, only
for the best geometries screened by the tool, through adjoint shape optimization,
embedded in STAR-CCM+. The thesis was carried out in collaboration with the
MOREnergy lab from Politecnico di Torino.
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Chapter 1

Introduction

The idea behind this thesis work arises due to the lack of publications or guidelines
from hydrofoil manufacturers on the design, from a fluid dynamic point of view, of
the junctions between lifting surfaces and drifting surfaces. In my years at PoliTo
Sailing Team, a student team from Politecnico di Torino that designs and builds
sailboats to compete in university regattas, I have been involved in the design
and fluid dynamic analysis of different appendages, encountering several times the
necessity to understand and realize joint structures between parts with different
functions. Since no specific guidelines existed and studies could not be carried out
in a very short time due to tight schedules, common sense required that existing
geometries should be analyzed and then copied. For this reason, it was thought to
use this thesis space to analyze a topic of my interest and that could be useful in
future developments for the team.

1.1 Hydrofoil Boats
The concept of foil boats was born at around the same time as the invention of
the first airplane. The first hints of it can already be seen in 1869 in England, and
in 1898 Italian engineer Enrico Forlanini started developing a series of models of
motor boats equipped with small wings. Forlanini obtained several patents for his
inventions, which were tested already in 1906 over Lake Maggiore in northern Italy
[1].

The development of this technology has been going on for years, expanding
even into the passenger transport and military sectors, but its resonance has grown
greatly in the sports field through sailing [2]. The integration of hydrofoils into
sailing vessels represents a paradigm shift in maritime technology, fostering a novel
era characterized by elevated performance and efficiency. Hydrofoils, essentially
submerged lifting surfaces, serve as pivotal components in this evolution, facilitating
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Introduction

Figure 1.1: Forlanini testing his models over Lake Maggiore, around 1906.

the elevation of sailboats above the water surface to mitigate hydrodynamic drag
and enhance overall navigational dynamics. Hydrofoils derive their functionality
from the principles of lift and drag mitigation achieved through the manipulation
of fluid dynamics. As a sailboat gains velocity, hydrofoils generate lift, causing the
hull to rise and essentially "fly" above the waterline. This phenomenon significantly
reduces the wetted surface area, minimizing drag and allowing for an augmented
ratio of lift to drag, culminating in unprecedented speeds and maneuverability.
These hydrofoil-equipped vessels have redefined competitive sailing, particularly
evidenced in prestigious events such as the America’s Cup, where cutting-edge
engineering converges with navigational prowess in a quest for maritime supremacy.

1.1.1 Hydrofoil Configurations

The first distinguishing feature that can be made among the various types of foils
is the position of the lifting surface relative to the water level: totally submerged
or partially submerged. This positioning affects the use, stability, and possible lift
control systems.

Another way of classifying hydrofoils comes from their shape, and they are
named after the letters of the alphabet that their front view resembles. The most
widely employed configurations are J-shaped and T-shaped foils.

J-shaped hydrofoils adopt a streamlined, single-foil approach that emphasizes
lift efficiency and reduced drag. The curvature of the foil, resembling the letter "J,"
allows for concentrated lift, facilitating higher speeds with minimized hydrodynamic
resistance. This configuration is a favorite in the realm of high-performance racing,
where every ounce of speed matters. J-foil is a partially submerged configuration.

2
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Figure 1.2: Glaros rising above the water surface.

T-shaped hydrofoils represent a versatile synthesis of stability and lift, incorpo-
rating a central foil perpendicular to the hull, accompanied by lateral foils on either
side. This design strikes a harmonious balance, providing both longitudinal and
lateral stability while maintaining lift efficiency. The T-shaped configuration has
gained prominence across a spectrum of sailing applications, from cruising to elite
racing. Its adaptability makes it an intriguing choice for sailors seeking a middle
ground that accommodates various performance demands. Usually, T-shaped foils
are a fully submerged configuration. T-shaped foils are used as rudders in most
foiling sailboats and also as the main surface in the Moth and Wasp classes.

The majority of hydrofoils require a lift control system. This type of control
is necessary to enable navigation in different conditions and to perform specific
maneuvers in water or just to rise above the water level. How lift is controlled
depends closely on the type of hydrofoil. Generally, partially submerged foils have
an active angle of attack control (usually a mechanical system) but also a passive
control caused by the surface of the appendage rising out of the free surface of
the water. When the lift increases excessively, the foil starts to come out of the

3
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Figure 1.3: A T-shape main foil of a moth and its control system [3].

water. Because of the decrease in density of the fluid in which the structure is
submerged, the lift is forced to decrease causing the foil to sink and submerge
back into the water. If accurately designed, this procedure allows the lift of the
foil to be managed almost autonomously as the boat’s speed of travel changes. In
contrast, for totally submerged foils, only active controls can be realized. Generally,
the method of making the control depends on the position and operation of the
foil. Main foils in the moth, wasp or similar categories being positioned in the
center of the hull are inaccessible to the sailor. For this reason, a mechanized flap
is utilized. The wand, i.e., a rod placed in the bow, is in charge of passing flight
height information to a control system that manages the movement of the flap
(fig 1.3). In contrast, if a T-foil performs the function of a rudder, its control is
managed only by changing its angle of attack, either automatically or handled by
the sailor.

This thesis is concerned to study a T-shaped configuration, common to several
types of boats, used for the rudder of the PST’s skiff Glaros (figure 1.2). Glaros is
the team’s first foiling skiff, equipped with two J-foils and a T-rudder (figure1.4).

1.1.2 Hydrofoil Junction
Hydrodynamic lifting surfaces must be attached to other components. In T-shaped
foils, the lifting surface is attached to the vertical surface which has the functions of
a classic drift or rudder. To keep these two surfaces joined, a mechanical interlocking
is made, causing one to plug into the other and making a lock through a screw.

4
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Figure 1.4: Glaros T-shape Rudder and J-foil.

The tightness of this interlock depends on the contact surface between the two
foils, so the more lift the horizontal foil generates, the more it will be necessary
to increase the surface area of the interlock, leading to an inevitable thickening
of the aerodynamic profile of the horizontal foil in that area. This requirement
leads to junctions between the lifting surface and another component, adding to
the challenge of hydrodynamic lifting surface design.

The shape of the junction affects the pressure distribution and thus cavitation
inception and flow separation [4]. If the two coupled surfaces were isolated, two quite
different fields of motion would be generated in the area of the coupling. Joining
these two areas that are so different from each other imposes strong disturbances
to the fluid current around the junction, typically creating recirculation bubbles,
strong separations, and possible ventilations (the entrainment of non-condensable
gas into the region surrounding the structures) that reduce the efficiency of the
surfaces. For these reasons, it is necessary to model the outer shape of the junction
in such a way that it is fluid-dynamically the least impacting as possible while
serving the identified structural functions. The bulbous shape, often resembling an
inverted teardrop, minimizes drag and turbulence by smoothly guiding water flow
around the foils.

5
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1.1.3 Bulb existing configurations

There are many geometries in use, as the field is now developing overwhelmingly.
Generally, the geometry around the interlocking results in an elongated shape,
with a prominent direction toward the direction of motion. These geometries are
more elongated for surfaces with tight chords, while they are slightly more blunt in
surfaces with bigger chords that consequently generate higher loads.

Usually, the engagement between the two surfaces occurs at the middle of the
bulb chord to the trailing edge, but there are also several variations on the topic.

Figure 1.5: Two different joint configurations: a moth main foil (on left) and an
Ineos T6’s foil (on right).

In figure 1.5 is possible to visualize two different joint configurations: on the
left, the graft is made to the back of the bulb; on the right, the vertical surface is
embedded outside the lifting surface. Moving the engagement position of the vertical
surface back and forward is a classic example of variation in bulb configuration;
there are also cases where the horizontal surface is behind the vertical surface.
Other possible configurations depend on the thickness and airfoil of the bulb, but
these are more difficult to notice with the naked eye and it would be necessary
to have sketches to appreciate the variations. Consequently, as all the above
configurations change, the geometry in the plan of the leading and trailing edge
also varies. These different variants can produce an infinity of possible geometries.
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Figure 1.6: Detail of Luna Rossa LEQ12’s right foil (2023).

1.2 State of the art of optimization
Optimization in engineering refers to the process of improving a system, process,
or project to maximize or minimize certain objectives. In general, the goal of opti-
mization is to find the best possible solution based on specific criteria, considering
limitations and constraints. The optimization process typically involves clearly
defining objectives, identifying constraints, and finding the optimal combination of
variables or parameters. Optimization is a fundamental part of engineering because
it enables efficient and cost-effective solutions to a wide range of challenges and
problems.

The development of technologies in computing from the viewpoint of algorithms,
driven by the development of hardware, has made it possible to handle complex
optimization problems that were previously unimaginable. To evaluate certain
problems, it is necessary to analyze complex and enormous design spaces, described
by a lot of variables. Without an algorithm designed and engineered specifically to
perform these tasks, it would be impossible to evaluate every single point in the
design space because it would require an excessive amount of processing memory
and an extremely long time. The rise of so-called evolutionary algorithms and
machine learning has been a driving force for the field of optimization to find
powerful, fast, and practical tools for problem-solving.

Fluid dynamic optimization of wings, or generic lifting surfaces, seeks an optimal
geometric configuration that improves efficiency, decreases consumption, or improves
a wing’s performance. As a consequence of the high nonlinearity and complexity
of the problems, combined with the absence of an analytical formulation, it is
necessary to use optimization algorithms that reduce the number of evaluations to
be performed to reach a global minimum or maximum point. Several approaches
can be followed to optimize a wing’s shape:
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• Parametric Design and Iterative CFD Simulations. The optimization can
systematically vary parameters defining the wing geometry (sweep angle, span,
airfoil, etc) to find the optimal configuration through iterative numerical
simulations to evaluate performances and then adjust the geometry for further
optimization.

• Numerical Optimization Methods. Numerical optimization algorithms such
as evolutionary algorithms or gradient-based algorithms can be used to ex-
plore the design space. These methods involve defining an objective function
and searching for the wing’s geometric configuration that maximizes or mini-
mizes this function but only computing the function for a limited number of
configurations.

• Machine Learning-Based Optimization. Machine learning algorithms can learn
from CFD simulation results to suggest geometric modifications that enhance
aerodynamic performance.

• Wind Tunnel or Tank Experiments: integrating numerical optimization with
direct experiments to validate and improve obtained results.

It is common to combine several of these approaches to achieve a comprehensive
optimal solution. Developing new high-performing algorithms keeps the field active
by expanding the possibility of applying optimization to different objectives or
more complex problems.

1.2.1 Optimization of Wings
There are many studies of optimization for airfoils, wings, or tapered geometries
(like keel bulbs made for stability reasons). Most of these studies are carried out
using numerical simulations coupled with heuristic algorithms or machine learning,
which provide for greater freedom of operation and reduced analysis time that
would be prohibitive with other techniques. However, the high nonlinearity of the
equations that govern the world of fluid dynamics, and consequently fluid dynamics
optimization, creates disadvantages in terms of analysis time and computational
power: the need to obtain valid (and subsequently validatable) results requires a
discretization of the problem with reasonably detailed computational grids, which
therefore requires high computational power.

These optimization methods have been tested and used in studies that in some
features may approach what is intended in this thesis. In Design and optimization
of rudder bulb based on CFD and genetic algorithm a genetic algorithm coupled
with a CFD solver is used to optimize the propeller of a powerboat bulb, to reduce
the energy required to move the boat, resulting in fuel gain. This approach is quite
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satisfactory to the authors, who achieve a 3.66% increase in the efficiency of the
configuration [5]. Genetic algorithms are chosen for their adaptability to complex
problems, their ability to handle large search spaces, and their flexible and parallel
nature. They are particularly useful when other optimization methods may be
limited or inefficient.

Design Space Parameterization

A key aspect to consider when conducting an optimization study is the definition
of the design space through a parameterization. Parameterization is a fundamental
step of systematically defining geometric and design parameters that can be varied
during optimization. These parameters allow a wide range of configurations to be
explored to identify the optimal solution that meets certain performance criteria
and constraints. Parameterization allows the optimization process to efficiently
explore the design space, reducing the complexity of the problem. The use of
parameters allows the shape and characteristics of the wing to be adjusted in a
controlled manner, providing numerical optimization algorithms or computer-aided
design tools the flexibility to explore multiple configurations and find optimal
or near-optimal solutions. This approach is particularly useful in aerodynamic
design, where complex interactions between geometric shapes and fluid-dynamic
flows require careful consideration of parametric variations to achieve optimal
performance.

There are several parameterization techniques by which a design space can be
represented, and there is no one better than the others in absolute terms; it depends
on the type of geometry to be optimized. Some geometries can be represented
efficiently by some techniques but not by others. One technique that stands out
in the aviation field is CST, which was specially developed by Boeing to easily
represent airfoils and wings. An example from which methodological insights can
be learned is Three-Dimensional CST Parameterization Method Applied in Aircraft
Aeroelastic Analysis in which an aeroelastic analysis of a complete reusable reentry
aircraft is performed. To model the geometry of the aircraft, the authors chose a
simple parameterization that was capable of describing both the wings and the
fuselage with a rounded nose [6]. The technique used is the already mentioned CST,
which was created specifically to represent complex geometries useful in aviation.
The potential of CST is the ability to reduce the number of parameters describing
a wing or fuselage compared to classical drawing methods. This potential can be
exploited in an optimization to reduce the number of free parameters and decrease
the dimension of the design space.
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Geometry Parameterization

The initial stage in generalizing multiple definitions of bulbs involves parameterizing
all shared geometric features to represent, with a limited number of parameters, a
versatile design space to optimize the desired geometry. To achieve this goal, the
choice of CST parameterization was considered the best, as it has been developed
specifically for aircraft geometries and has been widely used and tested for various
optimization purposes.

2.1 CST Parameterization
The CST parameterization technique is a technique developed in the 2000s by
B. Kulfan for Boeing Commercial Airplane Group, to break free from previous
mathematical definitions of aircraft surfaces (in the first instance airfoils) since the
use of discrete variables as design coordinates can create rather convoluted and
angular geometries. Aware of the fact that the type of parameterization can affect
the optimum point in the design space, the CST technique has been developed to:

• produce smooth geometries and realistic shapes; is mathematically efficient
and numerically stable;

• be mathematically efficient and numerically stable;

• requires relatively few variables to represent a large enough design space to
contain optimum aerodynamic shapes for a variety of design conditions and
constraints;

• allows specification of design parameters such as leading-edge radius, boat-tail
angle, and airfoil closure;

• provides easy control for designing and editing the shape of a curve;
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• includes an intuitive geometry algorithm that has an intuitive and geometric
interpretation [7].

The CST deals with two main class of shapes: the first includes wings and airfoils
while the second includes cross-section-type shapes (aircraft fuselage, channels,
and ducts). The mathematical description of class 1 geometries, having a round
nose and pointed aft-end, is a continuous but non-analytic function because of
the infinite slope at the nose and the corresponding large variations of curvature
over the surface. Similarly, in the conventional Cartesian coordinate system, the
mathematical definitions of the cross sections of class 2 type of geometries are
generally also a continuous but non-analytic function. Consequently, a large number
of coordinates are typically required to describe either class 1 or class 2 types of
geometries.

2.1.1 Bi-Dimensional CST
For a typical rounded-nose airfoil, in a fixed Cartesian coordinate system, the
first and second derivatives are infinite at the nose and large changes in curvature
occur all over the airfoil, leading to a non-analytic function with singularities in all
derivatives at the nose when mathematically represented. To avoid this problem,
CST defines a Shape Function transformation by which the definition of airfoil
becomes a well-behaved analytic function with efficient design features. Later
the Class Function is introduced to generalize the method and apply it to many
two-dimensional geometries and as a section of axisymmetric bodies, like nacelles.

The general form of the mathematical expression for the typical airfoil [8] is

ζ(ψ) =
ñ
ψ(1 − ψ)

NØ
i=0

Aiψ
i + ψζT (2.1)

where ψ and ζ are the non-dimensional x and z coordinates ψ = x/c, ζ = z/c
meanwhile ψT = ∆ZT E/c provides the control of the trailing-edge thickness and
the term

NØ
i=0

Aiψ
i

represent a function that describes the geometry between the nose and the end. This
function can be represented by any appropriate analytic, well-behaved mathematical
function. The term

√
ψ is the only term that provides a round trailing edge, but

it’s also the source of non-analytical features.
At this point, the CST define the Shape Function reshaping the equation 2.1, to
obtain

S(ψ) = ζ(ψ) − ψζT√
ψ(1 − ψ) (2.2)
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The S function can also be viewed as

S(ψ) =
NØ

i=0
Aiψ

i (2.3)

The shape function is a well-behaved equation that can be adapted to represent the
trend of the geometry between the nose and the end and can be chosen as simply
as possible, respecting the constraints imposed by the leading and trailing edges.
In fact, the value of S is related to the design parameters in the following ways:

S(0) =
ñ

2RLE/c S(1) = tan β + ∆ZT E/c (2.4)

The value of S in x/c = 0, is dependent on the nose radius, and in x/c = 1 the
function follows the airfoil tail angle, β and the trailing edge thickness. Figure 2.1

Figure 2.1: Example of an Airfoil Transformation using the shape function [8] .

shows an example of an airfoil transformation. As can be seen, in transformed
coordinates, the function turns out to be a rather straight line with a value at
zero and at the end equal to what was mentioned earlier. Also shown, in blue, the
constant thickness curve equal to the maximum thickness of the example’s airfoil,
and in green the constant boat-tail angle line.

12



Geometry Parameterization

The term
√
ψ(1 − ψ) can be generalised introducing the Class Function C as

CN1
N2 = ψN1(1 − ψ)N2 (2.5)

By varying the N1 and N2 coefficients, completely different geometric shapes can
be obtained, from a classic shape such as a rectangle or circle to a biconvex airfoil
or a typical commercial NACA airfoil. For a round nose airfoil N1 = 0.5 and
N2 = 1.0 [8].

Due to the definition of the class and shape functions, it is now possible to
describe an airfoil by them, without resorting to the point coordinates of its points

ζ(ψ) = CN1
N2(ψ)S(ψ) + ψζT (2.6)

The Bernstein Polynomials

The Shape Function in equation 2.3 has not yet been described. It should be a
relatively simple function that defines the airfoil between the nose and tail.
The unit shape function S(ψ) = 1 can also be decomposed into two different
functions, S1(ψ) = 1 − ψ and S2 = ψ. The first one defines a geometry with
a round nose and a zero boat-tail angle, meanwhile the last describes an airfoil
without nose but with a finite boat-tail angle. Introducing a coefficient KR in the
definitions of S1 and S2 allows the amplitude of the terms defining the leading and
trailing edges to vary. This makes possible to generate families of airfoils with
different leading edge radii, trailing edge angle and point of maximum thickness.
All these parameters can be controlled by the only coefficient KR. The unit shape
function and its decomposition into two different components can be interpreted
as the zero-order and first-order Bernstein Polynomials. The general definition of
n-th grade’s Bernstein Polynomial BPn is

BPn =
nØ

i=0
Ki,nt

i(1 − t)n−i t ∈ [0,1] (2.7)

in which the factors Ki,n are binomial coefficients defined as

Ki,n = n!
i!(n− r)! (2.8)

Bernstein Polynomials have the property of partition of unity, so for every order
n, the equation 2.7 is equal to 1.

BPn =
nØ

i=0
Ki,nt

i(1 − t)n−i = 1

Due also to this property, growing the degree n of Bernstein polynomials,
which correspond to the sum of n+ 1 terms, means systematically increasing the
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Figure 2.2: The growth of the n-th order of Bernstein Polynomials and their
analytical definition.

decomposition of the shape function into various components. Since only the first
component of the polynomials affects the L.E. and only the last component affects
the T.E., this procedure improves the development of only the central part of the
airfoil, leaving the nose and trailing edge unaffected.

Figure 2.3: Bernstein Polynomials, n = 3
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2.1.2 Airfoil Definition
The knowledge of the powerful decomposition in shape and class functions makes
it possible to represent any airfoil’s upper or lower surface using the Bernstein
polynomials of selected order n, by describing a group of component shape functions
that can be scaled by some factors A. The global shape function of the upper
surface is

Su(ψ) =
nØ

i=1
AuiSi(ψ) (2.9)

that can lead to the definition of the equation of the upper surface

ζu(ψ) = CN1
N2Su(ψ) + ψ∆ζu (2.10)

Similarly, the lower surface shape function is

Sl(ψ) =
nØ

i=1
AliSi(ψ) (2.11)

and the equation of the lower surface becomes

ζl(ψ) = CN1
N2Sl(ψ) + ψ∆ζl (2.12)

where ∆ζ is the non-dimensional trailing edge thickness ratio, distinctly between
upper surface and lower surface ( ∆ζu = zuT E/c).

The multiplicative factors A involved in defining the equations 2.9 and 2.11,
which change the behavior of the various components of the shape function, are
two arrays of n+ 1 values each that properly define the two surfaces of the airfoil.
These coefficients Aui and Ali can be determined in a variety of ways, such as
by interpolating the contour curves using a least-squares method, and their value
depends on the degree of the Bernstein polynomials that are used to define the
airfoil. Thus proceeding, to define an airfoil with Bernstein polynomials of the
n degree will require only 2n + 2 multiplicative coefficients, n + 1 for the upper
surface and n+ 1 for the lower surface, versus the many pairs of points needed to
describe the airfoil with classical representations.

Studies conducted by Kulfan and Bussoletti [8] show how shape functions
computed with third-order polynomials interpolate airfoil such as RAE2822 with
absolute residuals below 3 × 10−3, and how the error decreases as the order of the
polynomial increases. As for the computation of pressure distributions around
the airfoil with CFD methods, satisfactory levels of accuracy can already be
achieved with second-order polynomials, and with sixth-order polynomials an almost
complete match is achieved. Thus, these results demonstrate how the technique
is very convenient in the design phase, minimizing the number of parameters for
curves description but retaining the ability to describe almost all existing airfoils
and being able to describe new ones that are not commercially available.
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2.2 Three-Dimensional CST
Three-dimensional bodies generally can also be represented as distributions of
their cross-section along the orthogonal axis. Taking advantage of this property,
3D geometries can be defined by modifying the CST technique to describe the
two perpendicular sections and studying the distribution of one along the path
described by the other. For a three-dimensional wing, it is possible to define the
wing’s airfoil using the CST technique shown above and then extrude it along a
third dimension by following a curve that describes its wingspan, also defined using
the CST technique.

Similar to the shape function of an airfoil, the shape function of a wing is an
analytic continuous surface that can thus be described as a double Taylor series
in x and y. It can be demonstrated how this Taylor series is equivalent to a first
expansion in x whose coefficients are in turn described as an expansion in y [9]. This
means that the wing is defined through interpolation of a set of airfoils described
by Bernstein polynomials of degree Nx, in accordance with equation 2.10 and 2.12.
This interpolation is done through Bernstein polynomials of order Ny that also
control the magnitude of each airfoil along the spanwise direction. It can also be
seen as placing Nx+ 1 airfoils, previously chosen, in selected sections of the wing
and defining the behavior of the intermediate sections by interpolating the points
of neighboring airfoils with a polynomial in y.

The mathematical formulation of what has been explained in the previous lines
can be broken down as follows.
The unit shape function in stream-wise direction for Bernstein polynomial of Nx-th
grade can be defined as

Sxi(ψ) = Kxiψ
i(1 − ψ)Nx−i i = 0 : Nx (2.13)

where ψ is the fraction of the local chord

ψ = x− xLE(η)
c(η) (2.14)

and Kxi are the stream-wise binomial coefficients

Kxi = Nx!
i!(Nx− i)! (2.15)

At this point is possible to represent the stream-wise upper (similarly, lower)
surface shape function at the reference span-wise section ηref , in which η is the
non-dimensional y coordinate η = 2y/b (b is the span),

Su(ψ, ηref ) =
NxØ
i=1

Aui(ηref )Sxi(ψ) (2.16)
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Figure 2.4: Representation, in design space, of a wing designed with CST technique
and random Bi,j coefficients.

It’s now necessary to represent the span-wise variation of each Aui(η) coefficient
by Bernstein polynomials of Ny order

Aui(η) =
NyØ
j=1

Bui,jSyj(η) (2.17)

where, similar to Sxi, Syj are the span-wise upper (lower) shape functions
Syj(η) = Kyjη

j(1 − η)Ny−j j = 0 : Ny (2.18)
and, as before

Kyj = Ny!
j!(Ny − j)! (2.19)

All these equations lead to the final definition of the wing’s upper surface, in
non-dimensional coordinates

ζu(ψ, η) = CN1
N2(ψ)

NxØ
i

NyØ
j

è
Bui,jSyj(η)Sxi(ψ)

é
+ ψ

è
ζt(η) − tan

1
αt(η)

2é
(2.20)
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in which αt is the local twist angle.
The equation is similar for the lower surface

ζu(ψ, η) = CN1
N2(ψ)

NxØ
i

NyØ
j

è
Bui,jSyj(η)Sxi(ψ)

é
+ ψ

è
ζt(η) − tan

1
αt(η)

2é
(2.21)

The actual complete wing can now be identified by four equations

x = ψcloc(η) + xLE(η)
y = b

2η

zu = ζu(ψ, η)cloc(η)
zl = ζl(ψ, η)cloc(η)

(2.22)

Figure 2.5: Representation, in real space, of a wing designed with CST technique
and random Bi,j coefficients.
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2.2.1 The matrix of Bernstein coefficients
Similar to the two-dimensional case for the Bui and Bli coefficients, the Aui and
Ali coefficients, which intervene in equation 2.16, represent the Nx+ 1 Bernstein
coefficients that multiply the shape function components describing the profile
behavior of the airfoil at the ηref section. Since it is necessary to serially expand, in
the direction orthogonal to the profile, the shape functions, Au and Al coefficients
are described as in equation 2.17, shown below for convenience, via the shape
functions Sy.

Aui(η) =
NyØ
j=1

Bui,jSyj(η)

In the definition of Au, and also Al, are included the coefficients Bui,j, which are
those that can actually be controlled by optimization. These coefficients can be
most easily visualized as the elements of a matrix of size (Nx + 1) × (Ny + 1),
where the elements in the column represent the Bernstein coefficients of the airfoil
at the i-th section and the elements in the row the coefficients describing the j-th
span-wise section. In this way, it is easy to see how the CST technique greatly
reduces the parameters describing the three-dimensional wing by reducing the
control of the profile in the design space to the matrix entries only.

2.2.2 Wing CST’s parameters
It was shown that the CST technique is very convenient and powerful in the design
phase as it is capable of representing a wing through the use of simple analytical
functions controlled by a small number of control parameters. Unlike classical
methods of representing aerodynamic surfaces, which represent wings as a set
of three-coordinate points with rules describing how to connect them, the CST
technique can be thought of as a "scalar loft" [9] where all the points are connected
accurately by analytical equations.

To summarize, a single-profile tapered wing can be represented via CST by the
following parameters:

• Nx+ 1 coefficients of Bernstein polynomials for each upper and lower surface;

• wing span b;

• root chord cr;

• taper ratio TR;

• leading edge sweep.
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2.3 Bulb Design Parameters
The goal of this parameterization is to describe the main geometric characteristics
of a typical tapered bulb of a racing boat rudder by describing it in as much
detail as possible but minimizing the free parameters, i.e., the terms of the actual
optimization. A design space large enough to contain the optimization optimum
must be created, but described by parameters that are easily conceptualized and
realizable from a manufacturing point of view. Before exploring the possible
dimensions of this space, it is necessary to go on to define the constraints that
limit it, to understand the possible maneuvering space and the best tactics for
parametric surface definition.

Since the rudder’s overall geometry is symmetrical to a plane that passes through
the daggerboard chord, the bulb is divided into perfectly mirrored halves. In line
with this property, the definition of the bulb and its parameterization is carried out
only for the right side of the surfaces, the remaining part is mirrored through the
plane of symmetry (x,z). By reducing the surface to be generated, it is possible to
use larger orders of the Bernstein polynomials than would be required to generate
the entire surface, while maintaining fewer design parameters.

2.3.1 Constrained Parameters
Each bulb, developed in MATLAB, consists of two surfaces: an upper and a lower
one. Each of the two surfaces is described through ptsx · ptsy points.

Parameter Value
ptsx 50
ptsy 60

Orders of Bernstein Polynomials

The first parameter to be fixed to use the CST technique, for this purpose, is the
orders of the Bernstein polynomials used to describe the bulb surfaces. The idea
driving the choice of these two parameters is always the same: to represent the
geometry as detailed as possible (considering that it is still an optimization) but
using as few parameters as possible. It should be remembered how the choice of two
orders Nx and Ny carries the need to have 2× (Nx+1)× (Ny+1) free parameters,
in the form of coefficients Bi,j, to be chosen to define both surfaces. As described
in the subsection 2.1.1, it is possible to represent an airfoil, in considerable detail,
with a BPO3. Using a BPO3 for the stream-wise direction and a BPO2 for the
span-wise direction requires 2 × (3 + 1) × (2 + 1) = 24 free parameters. However,
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in the next subsection, some of these will be imposed by setting some constraints
on the final sections.

Parameter Value
Nx 3
Ny 2

External Geometry

Since the goal of this thesis is to create an optimization tool for the bulb alone
and not for the entire boat’s rudder, the most important constrain is enforced by
the geometry "outside" the bulb, i.e., the rudder itself. Taking advantage of the
CST technique, the bulb has been defined as an independent geometry, exploiting
the structural concept of the bulb as the coupling zone of the appendage’s lifting
components. The lateral interfaces, to the left and right of the bulb, must exactly
match the lifting half-wing, while vertical insertion is achieved by interpenetration
of the surfaces.
This constraint can be expressed by imposing the ultimate section of the bulb
equal to that of the final geometry. Imposing the same section means imposing
the tip chord of the bulb equal to the chord of the first section of the wing and
the same airfoil. To obtain this goal, the CAD of the rudder of the boat "Glaros"
was divided into four parts: the vertical foil, two horizontal half-wings and the
bulb. The two half-wings have the same airfoil along their entire wingspan and
it is the RAF38-il airfoil, with a chord at the beginning equal to c = 0.19m. As
mentioned, the chord is easily translated into a physical constraint: the chord at
the tip ct of the bulb must be equal to the half-wing first chord. To obtain the same
airfoil of the half-wing it is necessary to impose a constant column of the matrix
of Bernstein polynomials instead, in this case, the last one that is responsible for
the airfoil at the bulb tip. Thus proceeding, as mentioned earlier, we consolidate
2 · (Nx+ 1) parameters of the Bu and Bl matrices by reducing the free parameters
responsible for controlling the surfaces from 24 to 16.
By a simple interpolation between the RAF38-data-by-point profile and the unit
shape functions (BPO3), the Bui and Bli coefficients can be found, which are used
to determine it by the CST technique with the equations 2.10, 2.12. These eight
parameters are shown, with all the other constrained parameters in table 2.1.

2.3.2 Free Parameters
Fixed the main constraints on the design space, it is necessary to establish the
parameters that describe the geometry of the bulb. These parameters will be the

21



Geometry Parameterization

Figure 2.6: RAF38-il Airfoil, used for the Glaros rudder foil.

Parameter Value
Bu1 0.180
Bu2 0.278
Bu3 0.205
Bu4 0.188
Bl1 -0.130
Bl2 -0.085
Bl3 -0.085
Bl4 -0.090
ct 0.19m
Nx 3
Ny 2
ptsx 50
ptsy 60

Table 2.1: Constrained parameters in bulb’s definition.
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subject of the optimization and therefore should be carefully chosen so as not to
overwhelm the calculation, but to be able to describe the geometry as completely
as possible.
The free parameters defining the bulbs described by the following parameterization
can be divided into three categories:

• the coefficients of the matrix of Bernstein polynomials;

• the parameters defining the projected surface;

• the control over the position of the vertical surface of the rudder.

Each of these categories will be analyzed separately below.

Matrix of Bernstein Polynomials

As we have seen, using the degrees of the Bernstein polynomials Nx = 3 and
Ny = 2 to define two surfaces requires the use of two matrices Bu and Bl, both of
size (Nx+ 1) × (Ny + 1). In this case, 24 free parameters are generated. However,
as 8 of these parameters, two pairs of 4, are required to force the airfoil on the bulb
tip, the number is reduced to 16 Bernstein coefficients. Consequently, the Bu and
Bl matrices for each bulb will all present the same structure, explained in table 2.2
and table 2.3.

Bu
Bu1,1 Bu1,2 0.180
Bu2,1 Bu2,2 0.278
Bu3,1 Bu3,2 0.205
Bu4,1 Bu4,2 0.188

Table 2.2: Bu matrix structure. It represents the coefficients of the Bernstein
polynomials for the upper surface of the bulb.

Projected Surface

The geometric parameters that define the projected area (figure 2.7) are designed
so that they describe the projection completely but in its essential features. The
first are lengths that define the surface area of the bulb projection, while others
are more elaborate. Starting with the basic ones, the area is definitely described
by a span (half-span since only half a bulb is defined) b and by a chord at the root
cr representing the maximum chord of the bulb, at the plane of symmetry.
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Bl
Bl1,1 Bl1,2 −0.130
Bl2,1 Bl2,2 −0.085
Bl3,1 Bl3,2 −0.085
Bl4,1 Bl4,2 −0.090

Table 2.3: Bl matrix structure. It represents the coefficients of the Bernstein
polynomials for the lower surface of the bulb.

Figure 2.7: Projected Surface of a typical bulb.

Some parameters describing the behavior of local chords in the span direction
remain to be defined. To better understand the choices made, it is useful to recall
the equation 2.22 that describes the behavior of the variable x.

x = ψcloc(η) + xLE(η)
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The x-position of the points describing the bulb surface depends, in addition to
the dimensionless variable ψ, on two variables: the local chord cloc and the xLE

distance between the trailing edge of the reference chord and the y-axis (passing
through the nose of the bulb and orthogonal to the root chord). Both in turn are
functions of the dimensionless coordinate η.
One of the possible choices would be to create a variable-parameter function that
defines the behavior of the line defining the trailing edge, so as to define both
the intermediate chords and the distance xLE. A good result could be obtained
by drawing the TE line using the CST technique. However, this would require a
minimum of four free parameters (representing the curve at most as a cubic). To
allow variability to the line describing the LE, two different parameters were then
devised: an xLE(tip) parameter, the distance between the y-axis and the leading
edge at the bulb tip, and a flag variable called LEflag that assigns via a discrete
value an already written function describing the trailing edge curve.
Acting in this way defines the position of each point on the leading edge by an
analytic function selected from a list of possible functions. The trailing edge TE is
always computed by spline. This spline requires no additional parameters since it
interpolates the trailing edge curve by imposing that the point on the symmetry
plane (TE of the chord at the root) is at the point (Cr; 0) and the TE at the tip is
at the point (xLE(tip) + ct; b/2). The slope at the outer points of the spline are
imposed equal to zero, forcing continuity of the derivative at the junction with the
outer half-wing.

Figure 2.8: Projected surface with reference points.

Having a control over the x-position of the leading edge at the bulb tip gives

25



Geometry Parameterization

a control over the coupling point of the half-wing and allows much variability in
design. This was felt to be important since there are many rudders on the market
for which the wing is shifted backward or forward from the dagger-board insertion
position, so by acting this way is also possible to screen this possibility.

Leading Edge Functions

A decision was made to represent the leading edge line using several functions
to allow for a variety of curves while using as few variables as possible. The
integer optimization variable LEflag is directly linked to a function. The library of
functions includes seven options, but can be easily extended in the future. The
functions are listed in Appendix A.
Defined the LE and TE trends along the y direction, the local chords of equation
2.22 are simply calculated as

cloc(y) = xT E(y) − xLE(y) (2.23)

Figure 2.9: Functions describing LE and TE for random parameters: Cr = 0.5m,
b = 0.2m and xLE(tip) = 0.3
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Vertical Surface Position

The last parameter necessary for the complete definition of the bulb is the coupling
position of the drift surface. This parameter was considered important to include
in the optimization because it is able to totally shift the pressure and velocity
distribution around the bulb. In addition, what was explained in Chapter 1 about
the hydrodynamic function of the bulb places it as an essential variable in view of
first optimization. Thus, the parameter that controls the x-position of the vertical
surface, xvert, is the distance between the nose of the bulb (point (0,0)) and the
first x-point of the daggerboard. Obviously, to maintain symmetry this surface is
not moved sideways.
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To summarize, the parameterization of the case study is carried out with twenty-
one free parameters: twenty describing the bulb and one defining the position of
the vertical surface. They are shown in table 2.4.

Name Number of variables
Bu 8
Bl 8
b 1
cr 1
xLE(tip) 1
LEflag 1
xvert 1
Total 21

Table 2.4: Free geometry Parameters.
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Hydrodinamic Modeling

To define a CFD simulation, it is necessary to introduce the concepts behind
a numerical simulation by describing the numerical models that allow solving a
fluid dynamic problem using computational code. Computational fluid dynamics
represents a type of computational science that has its roots in the application of
numerical methods to problems of fluid mechanics. Nowadays, CFD is widely used
in the fields of aerospace and marine engineering as it is characterized by a high
versatility. All Fluid dynamics softwares are organized into three sections by which
the simulation flow is defined. The first section is the Pre-processing where the
geometric parameters, boundary conditions, and discretization of the problem are
managed. The second section is the Solver which handles the numerical models for
solving the governing equations of the fluid dynamics. Last is the Post-processing
stage, which consists of processing the results obtained.

3.1 Navier-Stokes Equations
The laws that govern the behavior of a generic fluid are the Navier-Stokes
equations: a system of partial derivative differential equations joined by appropriate
initial and boundary conditions. There are three equations: the mass conservation
law, the momentum equations (three in total, one for each space direction), and
the energy equation. For a Newtonian fluid, neglecting the contribution of volume
viscosity (Stokes assumption) and considering Fourier’s law for heat flows, the
equations are:

∂ρ

∂t
+ ∇ · (ρV ) = 0 (3.1)

ρ

A
∂V

∂t
+ V · ∇V

B
= −∇p+ ∇ ·

C
µ(∇V + ∇V T ) − 2

3µ(∇ · V )I
D

+ ρf (3.2)
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ρ

A
∂E

∂t
+ V · ∇E

B
= −∇ · (pV ) + ∇ ·

IC
µ(∇V + ∇V T ) − 2

3µ(∇V )I
D

· V
J

+ρf · V + ∇ · (k∇T ) +Qv

(3.3)

In which ρ is density, V the velocity vector field, p pressure, E total energy, T
temperature, k thermal conductivity, ρf the surface forces and Qv the volume
sources. For the derivation of these equations, reference is made to [10].

These equations constitute a strongly nonlinear system of partial derivative
differential equations for which there is no solution since it consists of 5 equations
in 7 unknowns, resulting in an ill-posed problem. It should be noted that these
equations are evolutionary in form and cannot be solved in closed form except in
some simplified cases. So, the Navier-Stokes equations must be solved iteratively
by discretizing the control volume into a finite number of elements.

3.2 Turbulent Flows Modeling
The study of this thesis has as its objective the optimization of a complex geometry
through an algorithm. Therefore, it is important to control the computational
cost of the simulations performed, which are the most time-consuming and costly
procedure in the optimization flow. However, the pursuit of fast simulation should
not excessively impact the quality of the simulation. A compromise between
accuracy and computational cost specific to this type of optimization must therefore
be sought. Following this philosophy, methods were chosen to model the fluid
dynamics of the problem that favored speed of convergence over high quality.

3.2.1 Type of simulations
Turbulent flows are almost all of the flows that can be encountered in engineering
and are all characterized by high instability and three-dimensional nature, which
make these types of flows very difficult to analyze. In the past, the primary approach
to studying turbulent flows was experimental. Overall parameters such as the
time-averaged drag or heat transfer are easy to measure but as the sophistication
of engineering devices increases, the levels of detail and accuracy required also
increase, as does cost and the expense and difficulty of making measurements. To
optimize a design, it is usually necessary to understand the source of the undesired
effects; this requires detailed measurements that are costly and time-consuming.
Some types of measurements, are almost impossible to make at present. Others
cannot be made with the required precision. As a result, numerical methods have
an important role [11]. There are several ways to analyze and study turbulent flows
numerically, the three main ways being:
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• through equations obtained by averaging the equations of motion over time
(if the flow is statistically steady), over a coordinate in which the mean flow
does not vary. This approach is called one-point closure and leads to a set
of partial differential equations called the Reynolds-averaged Navier-Stokes
(RANS) equations. These equations do not form a closed set so this method
requires the introduction of other approximations;

• through Large Eddy Simulations (LES), that solves for the largest scale
motions of the flow, modeling only the small scale motions;

• through Direct Numerical Simulation, where the Navier-Stokes equations are
solved for all of the motions of the turbulent flows. This method is the most
accurate approach, but impossible to be used for an engineering study due to
its very high computational cost (growing with Re3

L).

From the point of view of accuracy, obviously, DNS are the best simulations since
they solve every scale of motion, however, as mentioned above, nowadays they can
be used to study small problems at low Reynolds numbers. LES, on the other
hand, solves only a part of the eddies: the larger ones. Smaller eddies, which are
those that dissipate fluctuations and are not responsible for the transport of mass,
momentum, or energy, are modeled and approximated. Taking advantage of this
division, LES maintains very good accuracy while reducing the computational cost
compared to DNS, which is still high for this study.

Figure 3.1: Comparison between RANS, LES, and DNS for a jet [12].

RANS remains the best option when the cost cannot be high and a stationary
solution is sought. Additionally, by maintaining good computational grid quality,
accuracy can also be high.
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3.2.2 Reynolds-Averaged Navier-Stokes Equations
To solve the governing equations to represent a fluid statistically, the traditional
approach in CFD is to use the simplified Reynolds Avereged-Navier-Stokes (RANS)
equations. The RANS equations represent the averaged form of the standard Navier
Stokes equations, where the quantities are no longer instantaneous but averaged
over a certain period, sufficiently small concerning the phenomena to be followed
and sufficiently large concerning turbulence disturbances.

In a statistically steady flow, every variable can be written as the sum of a
time-averaged value and a fluctuation about that value:

ϕ(xi, t) = ϕ̄(xi) + ϕ′(xi, t) (3.4)
where the averaged term is

ϕ̄(xi, t) = lim
T →∞

1
T

Ú T

0
ϕ(xi, t)dt (3.5)

and the term ϕ′(xi, t) is usually orders of magnitude smaller than the average.
From equation 3.5 it follows that ϕ̄′ = 0, so averaging all the linear terms in

the equations simply gives the identical term for the averaged quantity. From a
quadratic nonlinear term, we get two terms, the product of the average and a
covariance:

uiϕ = (ūi + u′
i)(ϕ̄+ ϕ′) = ūiϕ̄+ u′

iϕ
′ (3.6)

The last term is zero only if the two quantities are uncorrelated, a rare case in
turbulent flows. This term leads, in the averaged conservation equations, to the
Reynolds stress tensor which is composed of terms like ρu′

iu
′
j, that cannot be

represented uniquely in terms of the mean quantities.
Replacing in the N-S equation each variable with its definition as the sum of

mean and fluctuating parts, such as:
ρ(xi, t) = ρ̄(xi) + ρ′(xi, t)
p(xi, t) = p̄(xi) + p′(xi, t)

it’s possible to obtain the averaged continuity and momentum equation. For
incompressible flows, without body force

∂(ρūi)
∂xi

= 0 (3.7)

∂(ρūi)
∂t

+ ∂

∂xj

(ρūiūj + ρuiuj) = − ∂p̄

∂xi

+ ∂ ¯τi,j

∂xj

. (3.8)

The presence of the Reynolds stresses in the conservation equations means
that the problem is not closed, that is, it contains more variables than equations.
Closure requires the use of some approximations, which usually take the form of
prescribing the Reynolds stress tensor in terms of the mean quantities [11].
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3.2.3 RANS-based Turbulence Models
There are several models for obtaining closure of the RANS equations that vary
according to the needs of investigation and available computing power. These
models do not provide detailed information on flow structures but only an estimate
of the average values of the variables of interest, which can be used for design
and optimization purposes. The ability of these equations to produce accurate
information about average parameters depends directly on the quality of the models
used to approximate the unknown terms. Generally, the preferred approach in
modeling the Reynolds tensor consists of introducing the Boussinesq approximation.
The basic assumption of Boussinesq is that it is possible to express the Reynolds
stresses as a function of the average strain rate tensor through a parameter called
turbulent viscosity µT

−ρu′
iu

′
j = µt

A
∂ui

∂xj

+ ∂uj

∂xi

B
− 2

3ρδi,jk (3.9)

in which δi,j is the Kronecker delta [11] . The term k is the kinetic energy and can
be defined as

k = 1
2u

′
iu

′
j (3.10)

To solve the RANS equations, it is necessary to define a precise numerical model
that expresses the link between the fluid and its turbulent viscosity. Multiple
turbulence models express this bond, such as one-equation or two-equation models.
The two most employed models in numerical analyses are the two-equation models
named k − ϵ and k − ω.

k − ϵ model

The k − ϵ model is a two-equation model that is particularly valid when the flow
is totally characterized by a turbulent regime. However, in the case where the
chosen computational domain is characterized by the presence of both regimes
of motion, this model requires accurate modifications in the mesh size to ensure
the same accuracy of results near the wall as away from it. This model is known
for its strength and relatively low computational cost and has been shown to be
reasonably accurate for a wide range of turbulent flows. The model is composed
of the turbulent kinetic energy transport equations k and the turbulent energy
dissipation rate ϵ transport equation. Solving the two equations allows us to
calculate the turbulent viscosity and close the problem.

The two transport equations are:

∂(ρk)
∂t

+ ∂(ρuik)
∂xi

= ∂

∂xj

C3
µ+ µt

σk

4
∂k

∂xj

D
+ Pk − ρε (3.11)
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∂(ρε)
∂t

+ ∂(ρuiε)
∂xi

= ∂

∂xj

C3
µ+ µt

σε

4
∂ε

∂xj

D
+ Cε1

ε

k
Pk − Cε2ρ

ε2

k
(3.12)

where Pk is the production of turbulent kinetic energy, σk and σϵ the turbulent
Prandtl number for k and ϵ and Cϵ are two model constants [13].

k − ω model

The k − ω model is also a two-equation model; similarly to the previous one, it
is characterized by the turbulent kinetic energy k transport equation, while the
second equation is the specific rate of turbulence dissipation ω transport equation.
Specific dissipation ω is related to dissipation ϵ by

ω ∝ ϵ

k
(3.13)

Unlike the previous model, this is suitable for analyzing near-wall flows at y+ values
below the logarithmic region of the boundary layer. This characteristic makes it
unsuitable for analysis of an entire computational domain. The two equations that
allow the closure of the problem are the k transport equation and the ω transport
equation, respectively:

∂(ρk)
∂t

+ ∂(ρuik)
∂xi

= ∂

∂xj

C3
µ+ µt

σk

4
∂k

∂xj

D
+ Pk − β∗ρkω (3.14)

∂(ρω)
∂t

+ ∂(ρuiω)
∂xi

= ∂

∂xj

C3
µ+ µt

σω

4
∂ω

∂xj

D
+ βρ

ω2

k
− β∗ρα

ωk

D
(3.15)

in which β and β∗ are two model’s constant and D the wall distance.
One reported advantage of the k−ω model over the k− ϵ model is its improved

performance for boundary layers under adverse pressure gradients. Perhaps the most
significant advantage, however, is that it may be applied throughout the boundary
layer, including the viscous-dominated region, without further modification [13].

Analyzing the characteristics of the various turbulence models, it was preferred
to use the k − ω model since it is suitable for investigating transition phenomena
such as those occurring alongside the chord of a hydrofoil. Using the k − ϵ model
would have neglected the transition effects, assuming a totally turbulent regimen
and consequently overestimating the drag.

3.3 Simulation Template
To evaluate each bulb as part of the optimization tool, a fluid dynamic simulation
is required. Through the STAR-CMM+ software, a model was set up to serve as a
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template for simulations of all the bulbs that are to be analyzed. Since this model
is to be used for different bulbs but equal wings, it is necessary that each simulation
variable is parameterized and each action can be performed by an automatically
generated command line input. For reasons of computational cost, it was chosen
to perform the simulations in symmetry, without considering possible hydrofoil
drift angles, halving the computational domain and speeding up the simulations.
The only variable part of the geometry is the bulb, which is the reason why it was
chosen to set up a basic simulation without this part of the geometry, leaving in
the initial domain only a half-wing and half surface of the vertical drift. Thus, once
the bulb has been generated via parameterization, a specially written Java code
will select the bulb to be simulated, import it into the ready-made template, and
need only to translate the parts already in the domain (joining them with each
other at the positions specified by the parameterization), perform the mesh, and
start the simulation. The computational domain was parameterized as a function
of the chord of the half-wing and the size target of the mesh so that all cells are
complete and not truncated at the extremes of the domain. Thus, the domain is a
parallelepiped of size (6x5x4)m approximately (some variation around these values
depends on the mesh size, to avoid cell trimming), whose side lying on the xz plane
is the symmetry plane of the simulation.

Figure 3.2: View of the fluid domain

3.3.1 Mesh Size
To obtain valuable results it is necessary to have a very good quality and very
dense computational grid, but to reduce the simulation time it is necessary not
to excessively increase the number of cells. Since it is not possible to establish a
correct mesh size at first glance, the computational grid was generated as a function
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of a parameter base size that will be made to vary in the convergence study of the
solution.

A trimmed mesh was chosen, with prism layers around the surfaces to be studied.
The default characteristics are shown in table 3.1.

Parameter Value Unit
Target size 20.48 % of base size

Minimum size 0.08 % of base size
Prism layer total thickness 0.002 m

Prism layer near wall thickness 3.3 × 10−5 m
Maximum cell size 20.48 % of base size

Table 3.1: Default Mesh Controls

It is important, to properly use the k − ω turbulence model, to set the prism
layer size to have a dimensionless wall distance y+ < 1, in order to keep this region
inside the inner layer of the boundary layer.

To allow better mesh discretization around the hydrofoil, a 2cm offset was
generated around it with cells of dimension 0.64% of base size.

3.3.2 Physics Models and Boundary Conditions

Constant Density
k − ω Turbulence
All y+ Treatment

Reynolds-Averaged Navier-Stokes
Segregated Flow

Steady
3D

Liquid: Water

Table 3.2: Physic Models.

The physical models to represent the domain in question, as mentioned earlier,
are based on the solution of RANS with k − ω turbulence model. The solution
researched is a steady-state solution involving water as fluid, with constant density.
The equations are solved in a decoupled method (on the software it is possible
to choose between a segregated model, the one used, and a coupled where the
equations are solved simultaneously). The flow velocity is 3m/s and the appendage
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each time is rotated at an angle of attack of 3deg with respect to the chord of the
half-wing.

Flow Velocity 3m/s
Angle of Attack 3deg

Table 3.3: Initial Condition.

Boundary conditions are imposed on the domain boundaries. The flow inlet, on
one face of the domain block, is a boundary of type velocity inlet, the side on the
xz plane is a symmetry plane while the others are pressure outlet. The surfaces of
the hydrofoil are boundaries of type wall.

3.3.3 Mesh Convergence Study
The need for fast simulations that integrate smoothly into the optimization tool
is a feature that is opposed to the accuracy of the results obtained. However, it
is necessary for the simulations to be accurate with a relatively low margin of
error. Since an optimal computational mesh size could not be determined at first,
it was decided to perform a convergence study for the solution as the mesh size
changes. As described in table 3.1, the main cell sizing parameters are given as
percentages of the base size, all of which are interrelated except the prism layer,
which must meet the conditions imposed by the chosen turbulence model. In the
convergence study, several grids were evaluated by varying the value of the base
size and analyzing the results obtained. Table 3.4 shows all base size values and
results obtained (lift and drag) from the solutions obtained with the different grids.
The study was conducted using a bulb generated by CST parameterization.

Base Size ϕD [N] ϕL [N]
0.25 31.9150 441.5289
0.5 32.1566 441.5828√
2/2 32.7324 442.4340
1 33.1927 442.4340√
2 34.1098 444.5484

Table 3.4: Results of Mesh Convergence Study

The results obtained were analyzed with methods for estimating numerical error
in fluid dynamic calculations proposed in A procedure for the estimation of the
numerical uncertainty of CFD calculations based on grid refinement studies by Eça
and Hoekstra [14].
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Figure 3.3: ΦD and ΦL as a function of base size for the Methods proposed by
Eça and Hoekstra[14].

Figure 3.4: ΦD and ΦL grid convergence and uncertainty for the Methods proposed
by Eça and Hoekstra[14].

Figure 3.3 shows the error estimation values and estimated uncertainties for the
proposed methods. In consideration of these data, a value of the base size bs = 0.8
is chosen, which allows for small errors and, on the calculator that will be used,
allows simulation with computation times less than 120s to reach convergence.
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Figure 3.5: Mesh with bs = 0.8 on the hydrofoil surfaces.

Figure 3.6: Mesh with bs = 0.8 on the hydrofoil surfaces.

Figure 3.7: Mesh with bs = 0.8 section on plane xz: detail of bulb’s airfoil.
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Figure 3.8: Mesh with bs = 0.8 section on plane zx.
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Chapter 4

Optimization Framework

The choice of the type of algorithm to be used is a key step in the work. Many
factors can influence the choice of one family of algorithms over any other. The first
fundamental aspect is the objective function: its mathematical description and its
behavior (the presence of local minima and maxima, continuity, etc...) are aspects
to be taken into account because they influence the reach of the optimum point and
the speed of convergence. Another fundamental aspect of this choice is definitely
the variables that define the design space: it is important to define how many the
variables are and their type, since as the size of the space increases, the possible
combinations of parameters among them increase, extending the exploration of
possible configurations and their evaluation.

An optimization problem can be presented in the following mathematical form:
for a function f(x), defined and continuous in A ∈ RN , and a set Ω ∈ A, Ω /= 0,
identify x ∈ Ω:

f(x) = min
x∈Ω

f(x). (4.1)

In which f is the Objective Function, Ω is the constraints set [15]. An optimiza-
tion problem can be either minimum or maximum since a maximum can always be
traced back to the form

max
x∈Ω

f = − min
x∈Ω

(−f).

like shown in figure 4.1.

4.1 Objective Function
In mathematical optimization, an Objective Function is a function that maps a
configuration of one or more variables into a real number that represents a possible
objective of the optimization. The purpose of optimization can be summarized
as finding the maximum or minimum of an objective function, so it must be a
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Figure 4.1: Transformation of a maximum problem into a minimum one.

scalar that is computable for a given design variable vector x. Since the objective
function is only dependent on the parameters of the optimization and representative
of one or more distinctive features of the study, it can be used as a method of
evaluating the goodness-of-fit of an individual’s parameter configuration. Thus
proceeding, it is possible to analyze the design space by assigning an evaluation to
each parameter configuration, it determines if one design is better than another
[16]. Typical examples of objective functions are cost functions. Cost functions
are a subcategory of objective functions of which the minimum is always looked
for. A typical problem that requires the use of a cost function may be that of the
production of an object as certain parameters change its cost of production. The
objective function associates with each parameter (which may be, for example, a
size or the use of a certain material) the cost that the final configuration will have.
Since the objective of such optimization is to seek the minimum cost, the result of
the optimization will be the parameter configuration that is associated with the
minimum of the cost function.

In current optimization, there would be many aspects that should be taken into
account during optimization: the bulb of an appendage should minimize appendage
drag while not affecting lift distribution. Similarly, one of the purposes of the
tapered bulb is to delay the stall of the appendage as much as possible, but finding
the stall point of each configuration would require an increase in the minimum
simulations to evaluate one individual, causing the computational cost to explode.
Therefore, because the aim is to go out and investigate both the impact the bulb has
on appendage drag and lift, hydrodynamic efficiency is identified as the preferred
objective function.
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E = L

D
= CL

CD

(4.2)

Efficiency E is the ratio of lift to drag of the entire appendage (not just the bulb),
and is an important evaluation parameter in the field of fluid dynamics because it
shows how much the useful force produced by the body prevails over the resistance
created. It is the ratio of two forces (so it is dimensionless), or two force coefficients,
generated by the interaction between the fluid and the immersed body. By choosing
this objective function, increases in lift, decreases in drag and their interaction can
be investigated simultaneously while remaining in a single-objective optimization.

Among the approximate formulas of flight mechanics, which can be extended
to the field of interest, it is possible to derive a maximum efficiency value for a
fixed-wing aircraft. This formula, with appropriate approximations, depends on
the aspect ratio of the wing, the zero-lift drag coefficient, and the Oswald factor.

Emax = 1
2

ó
πeAR

CD,0
(4.3)

However, this formula cannot be useful for the case under study because the
geometry studied is much more complex and is described by many more parameters
than those involved in the equation 4.3, so this optimization cannot be approximated
by a simple equation. Thus, the objective function will turn out to be a function
that cannot be described analytically, but calculated by solving Navier-Stokes
equations in approximate form using the CFD model previously mentioned. Using
efficiency E as the objective function, the optimization problem would result in the
search for a maximum of the function. As mentioned earlier and reported in [15], a
maximum problem can always be traced back to a minimum one; working with
algorithms already implemented in MATLAB it turns out how they were developed
for finding the minimum of the objective function. Under these assumptions, it is
necessary to modify the objective function in question to relate back to a case in
which it is minimized. The choice was made to use as the objective function:

f = 1
E

= D

L
= CD

CL

. (4.4)

4.2 Optimization Algorithms
In the more general approach, an optimization problem consists of maximizing or
minimizing a real function by systematically choosing input values from within
an allowed set and computing the value of the function. The design optimization
process requires translating the intent of the optimization into a mathematical
statement that can then be solved by an optimization algorithm. Developing this
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statement has the added benefit that it helps the designer better understand the
problem. Being methodical in the formulation of the optimization problem is vital
because the optimizer tends to exploit any weaknesses in the formulation or model.
An inadequate problem formulation can either cause the optimization to fail or
cause it to converge to a mathematical optimum that is undesirable or unrealistic
from an engineering point of view [16]. To choose the most appropriate optimization
algorithm for solving a given optimization problem, it’s necessary to classify the
optimization problem and know how its attributes affect the efficacy and suitability
of the available optimization algorithms. This is important because no optimization
algorithm is efficient or even appropriate for all types of problems. It’s possible to
classify optimization problems based on two main aspects: the problem formulation
and the characteristics of the objective and constraint functions.

Figure 4.2: Classification of Optimization Algorithm [16].
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4.2.1 Algorithm choice
Algorithms for searching for the optimal solution can generally be divided into
three macro-categories: Enumerative Techniques, Numerical Techniques, and,
Probabilistic Techniques. Enumerative techniques search for the optimal solution
at all points in the domain, possibly discretized, of the function. Numerical
techniques use a set of necessary and sufficient conditions that must be satisfied
by the solution of the optimization problem. These can be classified into direct
and indirect. Indirect methods seek the minimum of a function by solving a set of
nonlinear functions and iteratively searching for the solution until the gradient of
the cost function is zero. Direct methods make sure that it is the gradient that
guides the search for the solution. Probabilistic techniques are based on enumerative
techniques, but they use information additional information to perform the search
and can be viewed as evolutionary processes [17].

For the study of problems of this complexity, with objective functions whose
general trend is unknown, it is effective to use probabilistic algorithms, since a
more traditional approach would be time prohibitive. By analyzing studies similar
to the one proposed in this thesis work, such as "Design and optimization of rudder
bulb based on CFD and genetic algorithm" by Xialong W. et al [18], it can be
seen that the most widely used algorithms are genetic algorithms, a sub-branch
of metaheuristic algorithms. In general, the objective of a heuristic is to produce
a solution in a reasonable time frame. This solution may not be the best of all
the solutions to this problem, or it may simply approximate the exact solution.
But it is still valuable because finding it does not require a prohibitively long time.
Examples of metaheuristic algorithms, which are usually inspired by nature, are:

• Simulated Annealing. This algorithm is inspired by the annealing process
of metals. The atoms in a metal form a crystal lattice structure. If the
metal is heated, the atoms move around freely. As the metal cools down, the
atoms slow down, and if the cooling is slow enough, they reconfigure into a
minimum-energy state [16].

• Neural Network. Artificial neural networks are a branch of machine model
algorithms, inspired by the mechanism of the human brain.

• Evolutionary Algorithms. They are based on the principle of biological evolu-
tion, which consists of modifying a population of candidate solutions through
mechanisms such as reproduction, mutation, recombination, and selection.

4.3 Genetic Algorithm
In recent years, metaheuristic algorithms have been used to solve real-life complex
problems arising from different fields such as economics, engineering, management,
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Figure 4.3: A classification of metaheuristic Algorithms.

and engineering. Population-based metaheuristics utilize multiple candidate solu-
tions during the search process. These metaheuristics maintain the diversity in
population and avoid the solutions being stuck in local optima. Some of well-known
population-based metaheuristic algorithms are genetic algorithm (GA) [19]. A
Genetic Algorithm mimics the evolution theory of survival of the strongest in
nature. Following this statement, basic elements of GA are chromosome repre-
sentation, fitness selection, and other biological-inspired operators. Chromosomes
are considered as points in the design space. These are processed using genetic
operators by iteratively replacing its population. The fitness function is used to
assign a value for all the chromosomes in the population. The biological-inspired
operators actively intervene in the algorithm, allowing it to effectively analyze the
design space. The three most important are:

Figure 4.4: Operators used in GA.

• Selection: an important step in genetic algorithms that determines whether
the particular chromosome value will participate in the reproduction process or
not. The selection step is sometimes also known as the reproduction operator
because if a gene is positively marked, it will be present in the future generation.
The selection techniques are probabilistic operators such as roulette wheel,
Boltzmann tournament, or rank.

• Crossover : Crossover operators are used to generate offspring by combining
the genetic information of two or more parents.
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• Mutation: Mutation is an operator that maintains the genetic diversity from
one population to the next population [20].

As shown in figure 4.5, the rough functioning of a GA is very intuitive. First, the
zero generation is created, i.e., a first set of individuals to which a value of the design
parameters is assigned. Each individual in this first set is evaluated by the fitness
function: the best elements, called "elites," are stored aside since they are the ones
that come closest, for this iteration, to the optimal solution. Next, the selection
operator chooses which genes will be transferred from the current generation to the
next. At this point the crossover and mutation operators intervene, assigning free
parameter values to the offspring by overlapping the parent values and randomly
introducing a mutation to maintain a value of randomness in the reproduction of
the generations. The new generation is thus generated, which in turn is fed back
into the cycle to reevaluate its performance and generate the next generation until
a generic stop condition is reached. The stop can be the asymptotic attainment of
the optimum, a maximum number of generations, or an interval of generations for
which the best fitness remains unchanged.

Figure 4.5: Ga Flow Chart: main algorithm steps [21].

4.4 Optimization Flow and Algorithm Structure
Once the algorithm to be used and the fitness function has been chosen, a structured
and robust code must be built to evaluate each individual and reach the solution
as quickly as possible. The tool should be constructed in such a way as to lighten
the procedure as much as possible: the fluid dynamic simulation step is the most
computationally and time-consuming one, so simulation should be avoided for all
those individuals for which inadequate fitness can be predicted without simulation.
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It is also necessary for the algorithm to foresee exceptions for possible errors during
the various steps and to know how to handle these appropriately without getting
stuck and without discarding possible performing individuals.

Figure 4.6: Algorithm’s workflow
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4.4.1 Optimization constraints and options
The first step of the algorithm (in figure 4.6) is the tool launcher in which initially the
fixed parameters of the geometry are declared, those shown in table 2.1. In addition,
the launcher takes as input the constrain of the problem and the optimization
options of MATLAB’s ga function. The constraints of this optimization are
given through ranges of allowable values for each free parameter. Thus, it was
stated, through preliminary optimizations and literature studies, the maximum
and minimum values assignable to each parameter by the selection, mutation, and
crossover operators at assignment. These constraints are given in table 4.1.

Parameter Min Max Unit
b 0.08 0.4 m
cr ct 0.6 m
xLEt 0 0.5 m
xvert 0 0.31 m

leflag 1 7 −
Bu1,1 0 0.6 −
Bu2,1 0 0.8 −
Bu3,1 −0.3 0.5 −
Bu4,1 −0.1 0.8 −
Bu1,2 0 0.4 −
Bu2,2 0 0.8 −
Bu3,3 −0.3 0.5 −
Bu4,2 −0.1 0.8 −
Bl1,1 −0.5 0 −
Bl2,1 −0.6 0.1 −
Bl3,1 −0.6 0.1 −
Bl4,1 −0.5 0.1 −
Bl1,2 −0.5 0 −
Bl2,2 −0.6 0.1 −
Bl3,3 −0.6 0.1 −
Bl4,2 −0.5 0.1 −

Table 4.1: Free parameters constraints.

The ga function is very powerful and allows several options to make the opti-
mization customizable. The options are among the most varied, those used for the
study are shown in table 4.2. It is important to note an option that intervenes
in parameter n.5, LEflag, which is a discrete value that allows the choice of the
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leading edge, it should be set as an integer parameter for MATLAB’s ga function,
via option par.inticon.

Option Value
Pop. Size 200

Max Stall Gen. 30
UseParallel True

inticon 5
Max Gen 100

Table 4.2: Ga function options.

The options shown in the table are those that were modified for this study. The
Pop Size indicates the population size of each generation and was chosen to be
200 elements in each generation, the Max Stall Gen is the maximum number of
generations for which optimization goes on without minimum fitness improvement.
Using parallel set to "True" allows the calculation to be executed in parallel in
multiple processes, so that the computational cost is divided over several processors,
reducing the time of optimization. Other options, such as the choice of crossover,
selection, and mutation methods of the genetic algorithm were not specified, so the
basic ones of the MATLAB function were kept unchanged [22].

Immediately after the launcher, the genetic algorithm intervenes, which, as
explained earlier, by selection assigns values to the 21 free parameters, taking into
account the constraints specified in 4.1, for each individual and for each generation,
cyclically individual by individual. These parameters will be used to construct the
geometry.

4.4.2 Design and Feasibility Check
Having chosen the values by selection-crossover-mutation, the surfaces that con-
stitute the bulb can be generated. The geometry is created as specified in the
chapter 2, via CST parameterization. To begin the process, the first two columns
of free parameters are assigned to the Bu and Bl matrices, while the last column
is fixed. Out of the remaining free parameters, four are lengths that identify the
dimensions of the bulb or vertical position, while the LEflag parameter is the
one that specifies the function that interpolates the points of the Leading and
Trailing edges. Through a specially structured function, the parameters ct, xlet,
cr, b and LEflag construct the leading and trailing edges of the bulb. At this
point, the geometry simply needs to be composed via a script crea bulbo with the
CST parameterization. The bulb has been created and is still stored only as point
matrices of the top and bottom two surfaces. Before creating the STL file of it, it
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is useful to check the feasibility of the geometry. There are some configurations
for which it is possible to determine in advance that the geometry is not valid,
reason why it is useful to discard them before the simulation and save precious
computing time for individuals who might perform well. In a separate function,
check feasibility, four geometric checks are made for the validity of the configuration
and the calculation of the z-height at which the vertical surface is plugged into the
bulb so that the engagement is completely inside the bulb and does not come out.
The four controls are :

1. Interpenetration. The two surfaces, upper and lower, should not interpenetrate
each other.

2. Bulb thickness. The maximum thickness of the bulb should generally be
decreasing along y. For appropriate sections along y, it is checked that the
maximum thickness does not increase.

3. Chord at the root. The trailing edge at the root cannot be forward the tip’s
trailing edge, due to constructional issues. This control affects the chord at
the root; it cannot be smaller than xlet + ct (fixed parameter).

4. Graft of the centerboard. The point of coupling of the vertical surface in x
(parameter xvert) cannot be at a point such that it causes the trailing edge of
the vertical drift to leave the bulb.

If an individual does not pass at least one of these checks it will be automatically
discarded by the algorithm by assigning it a very high fitness value that identifies
a code for that error, it will be reported in the results file that shows all its
characteristics, and the genetic algorithm will produce a new individual to be
tested.
An individual that passes these checks is suitable for simulation, the reason why a
geometric mesh of it will be created in STL file, to be exported to the star CCM+
simulation software.

Type of check Condition checked
Interpenetration zu(x, y) ≥ zl(x, y)

Growing Thickness δmax(yi+1) ≤ δmax(yi)
Root Chord cr ≥ xlet + ct

Centerboard Graft xvert + cvert ≤ cr

Table 4.3: Feasibility checks.
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4.4.3 CFD Simulation
Once the STL file of the bulb geometry is created, the next step is fluid-dynamic
simulation. Once the STL file of the bulb geometry has been created, the next
step is fluid dynamic simulation. Before starting the simulation software, it is
necessary to write the macro file with the operations to be performed by STAR
CCM+. Through the function write macro a Java code file is written to have the
following actions performed in order:

1. Import the STL file of the current geometry taking care to place the bulb nose
in the origin of the three axes;

2. Translate the horizontal wing of the template (chapter 3) so that it grafts to
the bulb tip, via the parameters xlet and b/2 ;

3. Translate the vertical surface, the drift, to the position identified by parameter
xvert;

4. Unite the surfaces of the bulb, horizontal wing, and vertical drift together and
rotate them at the specific angle of attack for this optimization (3deg);

5. Compute the mesh of the geometry with the parameters already set previously;

6. Initialize the solution and run the calculation;

7. Save a file containing the results of the simulation.

Each bulb, and consequently each result file obtained on that geometry, are identi-
fiable by their name, which corresponds to the time the geometry was generated,
with the format hh:mm:ss, to avoid possible misunderstanding. Having generated
the macro file for the simulation, the tool starts STARCCM+ via command line
and executes the macro file corresponding to the current bulb. When the simulation
starts, a counter is also set to delete a simulation that does not reach convergence
in the set time (150 s). Once the results file is successfully produced the timer
stops and the tool tries to read the file. If it is possible to do so, CL and CD are
detected from the results file, and the fitness, which is the value of the objective
function associated with the individual in question, is calculated. Each parameter
of the subject, including generation time and calculated fitness are reported in
an optimization report file as a text line. The simulation process is finished, the
genetic algorithm receives as input the fitness of the bulb and proceeds by selection
to generate a new bulb of the current generation. This process continues until the
genetic algorithm meets a stopping condition, which could be a maximum number
of generations, a maximum computation time, or the attainment of the objective
function’s minimum.
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4.4.4 Error and non-feasibility Management
The tool must work stably without crashing if an error occurs and be able to
handle any possible stumbling situation in an optimal way. It is also necessary
for the tool to let the genetic algorithm know when geometry is invalid and the
shades between the various feasibility checks. For example, a non-feasible subject
due to a failed check on the position of the vertical (because it comes out of the
bulb) is a less important error than a bulb that has a maximum thickness at the
root smaller than the thickness at the tip. It is possible to combine the handling
of errors and invalidities through a penalty method. For each possible error or
feasibility check, it is necessary to identify an order of relevance that ranks them in
ascending order and assign a high fitness value to each of them. This method has
several advantages: depending on the assigned fitness it is possible to identify the
type of error detected, it saves time by avoiding simulating invalid individuals, and
it communicates to the algorithm the degree of error and invalidity that individual
has. Table 4.4 lists the possible errors or invalidities of the geometry and their
assigned fitness, which also acts as an exit flag from the generation and simulation
functions.

Type of unfeasibility Assigned Fitness
Centerboard Graft 30

Root Chord 50
Growing Thikness 100
Interpenetration 200
Type of error Assigned Fitness

Unreadable results 3
Negative results 5
No results file 6

Exceeding time limit 10

Table 4.4: Type of possible errors or unfeasibility and their assigned fitness.

4.4.5 Results Collection
The operation of the optimization tool made for this study has been described. To
summarize, the tool uses a genetic algorithm in Matlab to search for the optimal
configuration of the bulb. The tool first assigns values to the design variables
following the rules of the genetic algorithm, defines the geometry characterized by
the chosen parameters, and evaluates its feasibility: if the individual is not feasible
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it will be discarded by assigning a bad value to the objective function, if it is valid
it will be simulated through STAR CCM+ and its results will be read from the
software report and passed to the genetic algorithm that will take it into account
to generate the next individuals and subsequent generations. For each individual
generated, the parameter values and their fitness are saved in a text file that will
be used to evaluate the actual performance and operation of the tool. For each
individual generated, the parameter values and their fitness are saved in a text file
that will be used to evaluate the actual performance and operation of the tool.

4.5 Algorithm Results
The tool was run on the Legion cluster of the Politecnico di Torino and was stopped
at the 100th generation. Below are the results obtained and the outputs generated
by the tool.

4.5.1 Death Rate
Death Rate, or Mortality, is defined as the percentage of individuals that were
found to be unfeasible compared to the total number of individuals generated.
The death rate is extremely high in the first generations and falls in the first

Figure 4.7: Death rate across generations.

10 generations. It can be seen that there is a slight increase toward the latter
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generations, a symptom that the algorithm was still exploring areas of the design
space that were not optimal 4.7.

4.5.2 Fitness

Below are shown the minimum, which are the best, and average fitness across
generation 4.8. In figure 4.9 are shown fitness of all simulated elements is shown,
compared with the best ones in each generation.

Figure 4.8: Minimum and mean fitness across generation.

4.5.3 Parameters of best-performing individuals across gen-
erations

Below are the trends of the design parameters of the best-performing individuals
in each generation.
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Figure 4.9: Fitness of each simulated bulb compared to best fitness of each
generation.

4.5.4 Best Individual
The optimization found as best individual the bulb shown in Figure 4.17, charac-
terized by the parameters in table 4.5.
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Figure 4.10: Length design parameters of a best scoring individual across genera-
tions.

Figure 4.11: Coefficients of Bu matrix of a best scoring individual across genera-
tions.
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Figure 4.12: Coefficients of Bl matrix of best scoring individual across generations.

Figure 4.13: b of each simulated bulb compared to b of best individual of each
generation.
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Figure 4.14: Root Chord of each simulated bulb compared to root chord of best
individual of each generation.

Figure 4.15: xT E of each simulated bulb compared to xT E of best individual of
each generation.
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Figure 4.16: xvert of each simulated bulb compared to xvert of best individual of
each generation.

Figure 4.17: Best Individual.
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Figure 4.18: Best Individual: half surfaces generated with CST.

Figure 4.19: Sections of the Optimized Bulb at different spans.
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Parameter Value
b 0.3971
cr 0.4382
xLEt 0.2284
xvert 0.0197
leflag 4
Bu1,1 0.056954
Bu2,1 0.372630
Bu3,1 -0.026904
Bu4,1 0.223240
Bu1,2 0.1146500
Bu2,2 0.3525400
Bu3,3 0.1933200
Bu4,2 0.02685500
Bl1,1 -0.049439
Bl2,1 0.019649
Bl3,1 0.0070783
Bl4,1 0.053188
Bl1,2 -0.049327
Bl2,2 0.057067
Bl3,3 0.075935
Bl4,2 0.079870

Fitness 0.05947

Table 4.5: Parameters of the best scoring bulb.
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Adjoint Optimization

Optimization through the genetic algorithm was carried out with low-fidelity
CFD simulations, which means that they would guarantee results affected by not
too high error but would reach convergence in the shortest possible time. The
errors were evaluated through the mesh convergence study. The created model
was parameterized through interpolations of functions, describing span-wise and
chord-wise sections of limited degree, to keep the number of free parameters of
the optimization limited, allowing the geometry a restricted number of possible
configurations. The union of all these possible sources of displacement relative to a
hypothetical optimal solution opens the space for the integration, after obtaining
results from the optimization tool, of a second detailed optimization. The second
optimization, with a model affected by minor errors, can be applied only to the
result of the tool with a genetic algorithm, so that high-fidelity simulations can be
performed and the geometry of the bulb can be modified in all its facets, not only
through a limited number of design parameters.

The use of a second optimization method, one that is already developed and
tested, may allow to highlighting critical aspects of the design that were not appro-
priately evaluated in the tool or that were discarded when choosing parameters.
Given these assumptions and considerations, the Adjoint Solver already imple-
mented in the commercial software STAR CCM+ was chosen as the optimizer.
This solver has been developed and tested for years and is an efficient means to
predict the influence of many input parameters on some engineering quantities of
interest in a simulation. In other words, it provides the sensitivity of objectives
(cost functions) with respect to input parameters such as design variables or values
of boundary conditions.
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5.1 Discrete Adjoint Approach
The goal of aerodynamic design optimization is the minimization of an objective
function that is a nonlinear function of a set of discrete flow variables. For example,
efficiency E may be expressed as E(U) where U is the set of all flow variables at
discrete grid points arising from an approximate solution of the Euler equations,
and E is a scalar function that approximates the appropriate weighted integral
of pressure over the surface of a wing [23]. In design optimization, the question
of interest shifts to what perturbations of the objective function are due to the
perturbation of the geometry, and thus how the flow field is changed. If u is the
perturbation in the flow field, the linearized perturbation in Efficiency is

gTu = ∂L

∂U
u (5.1)

and the goal is to evaluate gTu, where u satisfies the appropriate linearized flow
equations.

Given a set of design variables, α, which control the geometry and a set of
flow variables at discrete grid points, U , the aim is to minimize a scalar objective
function J(U, α). This minimization is subject to the constraint that the discrete
flow equations and boundary conditions need to be all satisfied. These statements
can be expressed as

N(U, α) = N(U,X(α)) = 0 (5.2)

where X is the vector of grid point coordinates which depends on α. Using an
appropriate technique, the grid can be deformed, as smoothly as possible, following
the surface sensitivity to the field function. For a single design variable, the solution
can be linearized about a primal solution U0, to get

dJ

dα
= ∂J

∂U

dU

dα
+ ∂J

∂α
(5.3)

which need to be subject to the constraint that the flow sensitivity dU/dα satisfies
the linearized flow equation

∂N

∂U

dU

dα
+ ∂N

∂α
= 0 (5.4)

Defining
u = dU

dα
, A = ∂N

∂U
, gT = ∂J

∂U
, f = −∂N

∂α
, (5.5)

the equation 5.3 can be rewritten in its standard form

dJ

dα
= gTu+ ∂J

∂α
(5.6)
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The direct sensitivity of the objective function to perturbation in the design variables
can be evaluated by direct approach, solving Au = f [23].

An alternative description can be obtained using Lagrangian multipliers as-
sociated. The adjoint variables are Lagrangian multipliers, called λ, which are
introduced in an augmented objective function

I(u, α) = J(U, α) − λTN(U, α) (5.7)

Considering the perturbation dU and dα gives

dI =
3
∂J

∂U
− λT ∂N

∂U

4
+
3
∂J

∂α
− λT ∂N

∂α

4
dα (5.8)

If λT satisfies the adjoint equation

∂J

∂U
− λT ∂N

∂U
= 0 (5.9)

that can lead to
dI =

3
∂J

∂α
− λT ∂N

∂α

4
dα (5.10)

which can be used to compute the sensitivity dI/dα [23].

5.2 Model Setup
The Adjoint method is useful to predict the influence of parameters or different
boundary conditions on an objective function. The adjoint simulation needs the
computation of the field solution, named Primal Solution, and after that is possible
to study the sensitivity of the cost function. Once the sensitivity is obtained, the
deformation of the mesh is carried out, leading to a change in geometries. At this
point, it is necessary to reevaluate the flow solution around the new shapes and
evaluate the effects of this change. This process can go on, following a loop, until a
goal is reached.

To perform this optimization flow, it is necessary to create a new model on
STAR-CCM+. The model is generally similar to the one previously used for the
simulation phase of the tool but differs in some crucial points.

5.2.1 Mesh
The mesh needs to be slightly more detailed than the tool’s template, especially in
the area of interest, so a rectangular volumetric control is inserted to encompass
the bulb, part of the wing at the graft, and the immediate surroundings (fig. 5.1).
The offset around the surface remains unchanged.
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Figure 5.1: Mesh section: yz plane.

5.2.2 Physics Models and Boundaries Conditions

To use the Adjoint solver in the software, some physical models must be changed:
equations can no longer be segregated but the Coupled Flow model must be selected.
Models that activate the Adjoint solvers must also be added.

Physics Models
Adjoint

Adjoint Mesh Deformation
Constant Density

Coupled Flow
Mesh Deformation

Steady
Surface Sensitivity

Reynolds-Averaged Navier-Stokes
Three Dimensional
k − ω Turbulence

Table 5.1: Main Physics Models.

As a natural extension of the tool optimization, no initial conditions are changed
from previous simulations: the rudder has an angle of attack of 3deg and the flow
velocity is 3m/s.

The boundary conditions of the domain remain unchanged to keep the same
conditions as in previous simulations as much as possible: all sides of the fluid
domain are velocity inlets, except for the outlet, which is a pressure outlet.
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Flow Velocity 3m/s
Angle of Attack 3deg

Table 5.2: Initial Condition.

5.2.3 Adjoint Solver
The Adjoint equations are solved with an iterative defect-correction algorithm. As
reported in the official Simcenter STAR-CCM+ Guide [24], usually no changes
to the default settings are required if the convergence is satisfied, they have been
selected as best practice.

Adjoint Solution Algorithm GMRES-DR
Krylov Space dimension 50

Courant Number 500

Table 5.3: Adjoint Solver Setup.

Adjoint Cost Function

Parameter sensitivity should be calculated concerning a cost function that cor-
responds to the engineering objective that is examined during the adjoint flow
analysis. Cost functions are differentiated to form the right-hand side of the adjoint
flow equations. The adjoint solver solves the system of differential equations with
regard to the cost function specified [24]. Using this second optimization as a nor-
mal continuation of the study with the genetic algorithm tool, again the efficiency
of the entire carrier wing is chosen as the objective function. This efficiency is
calculated by report as the ratio of the lift CL and drag CD coefficients of the
hydrofoil. In this case, it was decided to maximize the efficiency E, since there
is no limitation on the type of optimization (maximum or minimum) unlike the
previous case where the reciprocal of E was minimized.

5.2.4 Analysis Workflow
To perform a simulation with adjoint optimization, a precise iterative scheme must
be followed, as shown in figure 5.2. The physical model, initial, and boundary
conditions are chosen. The mesh must be defined and the primal solution calculated.
Once convergence is reached in the primal solution, a loop must be built in which
the adjoint and stationary solution are solved iteratively: in the software used,
it is possible to do this using the Simulation Operations node 5.3. For this
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Figure 5.2: Simulation workflow.

optimization, it was chosen to perform 10 cycles of geometry optimization: to
perform this, a counter was created. If the counter is lower than 10 the optimization
shall continue. As long as this criterion is not fulfilled the analysis is carried out in
this way:

1. updating the counter;

2. solving the adjoint equations and computing sensitivity;

3. mesh and geometry deformation;

4. solving the flow equations.

When the counter has reached value 10 the simulation ends.
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Figure 5.3: Simulation Operation node created to perform the optimization.

5.2.5 Mesh Deformation
To deform the mesh and modify the geometry directly within the software, control
points must be inserted near the surfaces that need to be optimized. The software
uses these points to deform the mesh by following field gradients. The function
chosen to change the position of the control points is a simple first-order function:

x = x0 + α
dE

dX
(5.11)

where x0 is the position of the point at the previous simulation step, α is a
multiplicative coefficient that defines the displacement rate by chasing the gradient
of the cost function. STAR-CCM+ stores all this parameters in a function named
CumulativeMorpherDisplacement. The function directly changes the volume of cells,
inevitably causing a drastic drop in mesh qualities, even in some cases leading to a
simulation crash due to the presence of negative volumes or self-intersecting cells.

5.3 Sensitivity Study to Displacement Variables
As previously mentioned, the morphing of the mesh is achieved by moving some
control points. These control points displace following the gradient of the objective
function and impact the volume of the computational cells based on the distance
between the volume and control point. The location and number of points to be
used to achieve the absolute optimum are not known, and neither is the α step to be
used in the equation 5.11. For this reason, it was decided to do a quick sensitivity
study of the optimization of these parameters. Using a random bulb generated
by the optimization tool, preliminary optimization simulations were performed to
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evaluate the impact of optimization parameters on the attainable optimum point.
Variable parameters are:

• the number of control points;

• the location of the control points;

• the α coefficient.

5.3.1 Number and Location of Control Points
In this software it is possible to arrange the control points individually, aligned,
inside a box, or directly on the surface of the geometry to be analyzed. For the
case at hand, it was considered not useful to arrange the points in line to control
the displacement of the mesh. The possible arrangements of points chosen were:

• arranged around the bulb inside a parallelepiped of sides equal to the opening,
chord at the root and maximum thickness of the bulb;

• directly on the surface of the bulb.

The number of points and their location are two variables that cannot be considered
alone but are closely interrelated. Therefore, the two geometric configurations
chosen but with varying numbers of points were evaluated for both geometries.

Simulations were run and the results were processed to seek which configuration
is the best.

Figure 5.4: Two different control point configurations: box shape and directly on
the bulb surface.

From the results of this first part of the study, shown in table 5.4, it can be seen
that the optimization does not lead to impressive results: the best configuration
leads to an increase in efficiency of less than 1 percent. Some simulations, those
with a higher number of points, are not successful because, due to excessive mesh
deformation, some interpenetration problems occur between cells. Results are also
represented in figure 5.6 and figure 5.5

The best configuration turns out to be the one with 200 points arranged directly
on the surface of the bulb.

70



Adjoint Optimization

Shape n. points Initial E Final E % change
Box 8 15,1227 15,2019 0,5237
Box 20 15,1227 15,2050 0,5442
Box 60 15,1227 15,2018 0,5231
Box 100 15,1227 15,1963 0,4688
Box 200 15,1227 - -
Part 8 15,1227 15,1630 0,2665
Part 20 15,1227 15,2004 0,5138
Part 60 15,1227 15,2314 0,7188
Part 100 15,1227 15,2318 0,7214
Part 200 15,1227 15,2621 0,9218
Part 1000 15,1227 - -
Part 2000 15,1227 - -

Table 5.4: Result for different shapes and number of points.

Figure 5.5: Efficiency increasing in various optimization cycles: Box configuration.
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Figure 5.6: Efficiency increasing in various optimization cycles: Part configuration.

5.3.2 Displacement rate
The impact of the α multiplicative coefficient intervening in the REF equation
was also evaluated. This coefficient can be viewed as the fraction of the gradient
by which a control point must be moved in the identified direction to increase
the objective function. The value recommended by the guide is α = 1 × 10−4 [24].
Different values of α were evaluated for the 20-point Box configuration. Results
are shown in table 5.5 and in figure 5.7

α Initial E Final E % change
5 × 10−4 15,1227 15.2218 0,6553
1 × 10−4 15,1227 15,2050 0,5442
1 × 10−3 15,1227 15,2406 0,7796
5 × 10−3 15,1227 - -

Table 5.5: Results for different α value.

The final efficiency increases as the displacement rate increases, however, if too
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Figure 5.7: Efficiency increasing in various optimization cycles for different α
values.

high, problems of excessive mesh deformation arise.

5.3.3 Additional Assessments

There are many variables to take into account, and it is not possible in this study
to analyze all of them. Some other simulations were carried out to assess their
possible impact on the optimization.

Increasing Cycles of optimization

The two best configurations of the number of points for the two different spatial
arrangements box and part were also evaluated with a longer optimization, for 50
deformation cycles.
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Shape n. points n. cycles Initial E Final E % change
Box 20 50 15,1227 15,2231 0,6308
Part 200 50 15,1227 15,3360 1,3774
Box 20 10 15,1227 15,2050 0,5442
Part 200 10 15,1227 15,2621 0,9218

Table 5.6: Comparison between 20 and 50 cycles optimization for two different
configurations.

By increasing the number of cycles, under certain conditions of position and
number of points, the final efficiency increases. However, the simulation time
becomes much longer, making this test rather slow by requiring a large number of
computational iterations.

Figure 5.8: Efficiency increasing for different shape configurations and different
number of cycles.

Minimize drag coefficient

To conclude, two additional simulations were also performed. In the second to last
simulation, the objective function was changed to test if changing it would result
in greater optimizations. The optimization objective was switched by trying to
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minimize the drag coefficient CD. This simulation also did not yield high results,
leading to a decrease in efficiency E.

Shape n. points Goal Initial CD Final CD % change
Part 60 Minimize CD 0.0284 0.0283 <0.14

Table 5.7: Results of optimization with the goal of minimizing drag coefficient.

Optimization of the entire wing

The second optimization, to maximize efficiency, was performed by distributing the
points over the entire horizontal wing but with the possibility of deforming (thus
optimizing) the entire hydrofoil. As could be expected this simulation brought
greater improvements in final efficiency since the modified surface area is much
larger than the bulb alone.

Shape n. points Goal Initial E Final E % change
All Wing 2000 Maximize E 15.1227 16.2493 7.4497

Table 5.8: Results of optimization with the goal of minimizing drag coefficient.

Figure 5.9: Drag coefficient and Efficiency in an optimization to decrease the
drag coefficient.
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Figure 5.10: Efficiency trend in the simulation with the whole deformable wing.

Figure 5.11: Top view of the deformed and original shapes of an all-optimized
wing. In red is the optimized configuration.

5.4 Results
The simulations performed provide some insight into the adjoint optimization
approach. This technique is not optimal for the case at hand. The final efficiency
values turn out to be less than 1% better than the initial value. Certainly, the
explanation for this behavior can be justified by the fact that the goal is to optimize
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the impact of a portion of the surface, the bulb, with much less area than the whole
wing. The geometry of such a limited surface area has little impact on the total
efficiency; actually from the optimization of the full horizontal wing (table 5.8) the
efficiency improves greatly.

Figure 5.12: Top view of the deformed and original shapes of the bulb. In red is
the optimized configuration.

Figures 5.13 and 5.12 show the final configurations of the bulb obtained from
the tool in the previous chapter: the original surface (in green) and the optimized
surface (in red) are compared. The optimization led, in general, to a change in
the airfoil of the bulb in the tail area and by thickening the lower surface at the
trailing edge. The final and initial efficiency values are shown in table 5.9.
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Figure 5.13: Bottom view of the deformed and original shapes of the bulb. In
red is the optimized configuration.

Shape n. points Initial E Final E % change
Part 200 16.6403 16.7165 0.4581

Table 5.9: Adjoint optimization of the best scoring bulb 4.5.
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Chapter 6

Conclusions

The objective of this thesis was to realize an optimization process to be integrated
into the design and construction of the outer surface of the junction between the
two surfaces of a T-shaped hydrofoil in small racing boats such as skiffs or moths.
To achieve this goal, a tool was built in MATLAB that, through a genetic algorithm,
explored a parameterized design space through the Class-Shape-Transformation
technique. Using this parameterization technique, 21 parameters, deemed essential
to the search for an optimum point, were selected to generate possible configurations
of the bulb to be studied. The tool was implemented by seeking a compromise
between simulation time (and thus its cost in terms of software license) and accuracy
since they are in strong opposition. The algorithm, once defined, is capable of
cyclically assigning a value to each free parameter within a range of possible values
for that parameter and designing the corresponding bulb. Once the feasibility and
validity of the bulb surfaces have been assessed, it is plugged into the reference
wing of the hydrofoil to be optimized and its total efficiency will be evaluated
through CFD analysis in STAR-CCM+. Through the mechanism of the genetic
algorithm and the logic behind it, a winning geometry was selected, that is, the one
characterized by the highest efficiency E. Once this optimization was completed,
the possibility of performing another optimization through the native Adjoint solver
of the CFD software used was evaluated: several optimization configurations were
evaluated, and once the optimal one was chosen, the best bulb obtained with the
tool was attempted to be optimized.

6.1 Summary of Results
The results obtained should not be interpreted in terms of the value achieved but
by observing their trends across the various generations in the algorithm. In fact,
the value history and its trend allow us to derive some information that could
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be generalized in the design of different bulbs, at the interlocking of wings with
geometries different from the one used as a reference in this study. The most
significant parameters in the design context are those in figure 4.10, which are
the actual dimensions of the bulb plant. From the trend of these parameters over
the generations (only the best individual for that generation is highlighted in the
graph), some useful information can be deduced.

The graft position of the vertical surface along the bulb chord tends to be located
the closest to the leading edge, thus being offset from the horizontal wing. This
type of configuration with unaligned lifting surface and drift is quite common; an
example is shown in figure 1.5.

The root chord moves toward a value about twice the size of the parameter
xLEtip, which would be the x position of the leading edge at the tip. This again
may be related to the stagging of the perpendicular surfaces, which reduces the
interaction zone and limits the fluid re-circulation zones.

The span of the bulb, as early as in the first generations, tends to move toward a
maximum value, almost to the limit of the constraint given in the range definition,
increasing wetted surface area.

Concerning the optimization study through adjoint, despite finding a suitable
configuration for the case study, and spreading the points most suitably, the results
do not lead to significant improvements. This type of approach may prove more
useful in optimizing a larger surface area, as obtained for the entire horizontal wing
in table 5.8.

6.2 Critical issues and possible Improvement
Some aspects show possible critical issues or some details that could be improved
in the future to achieve better results. To allow a fair rate of exploration of the
design space by the genetic algorithm, the parameters describing the bulb were
restricted, especially regarding the degree of the Bernstein polynomials describing
the airfoils and span-wise sections. By choosing degree Nx = 3 and Ny = 2 an
attempt was made to avoid disproportionate growth in the numbers of parameters
describing the surfaces, which turn out to be 2 · (Nx+ 1) · (Ny + 1) for an integer
bulb. However, a limitation on possible geometries is imposed, limiting the variety
of airfoils and especially span-wise curves.

Another parameter that could be improved is the one describing the shape of the
leading edge. In this study, the leading edge is described through the fundamental
points of the bulb plan, and these two are joined through one of the seven functions
reported in the appendix. If there were a chance to expand the design space, it
might be useful to release this parameter from the analytic functions reported and
instead parameterize the curve of the leading edge in a different way: one possible
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idea might be to describe it through a third-grade line using a CST technique,
which as seen is convenient for this type of problem.

One correction that is considered can be made concerns the b span of the bulb.
It is evident from the results how the best-performing individuals have as large a
span as possible, at the limits of the imposed constraint of 0.4m, as well as how
the best element presents b = 0.3971m. This behavior may result from the effect
that increasing the span of the bulb increases the aspect ratio of the whole wing
and consequently a benefit in efficiency is derived. To investigate whether this is
indeed the cause of the span behavior, an artifice for fixing the aspect ratio of the
wing could be introduced into the tool. For each individual produced with b less
than the expected value from the design aspect ratio, a wing log long (AR ·Ct − b)
could be added to have the desired aspect ratio but with a reduced bulb’s size.
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Appendix A

Leading Edge Functions

This appendix shows the functions that were chosen to represent the curves describ-
ing the leading edge of the bulbs. These functions were derived analytically and
depend on the free parameters b bulb span, and xLEtip, distance x of the leading
edge at the tip. For some functions, the k value of the slope at the tip of the bulb
is given, while where not specified k = 0 is meant.
All curves, except for the linear function(equation A2), exhibit a null slope at x = 0,
on the axis of symmetry of the bulb, coincident with the root chord.

All functions are evaluated in the interval [0; b/2] by the tool to calculate local
bulb chords, defined as the distance between the trailing edge and the leading edge.

1.
f1(x) = spline(yy, [0;xx; 0]) (A.1)

2.
f2(x) = xLE(tip)

b/2 · x (A.2)

3.
f3(x) =

3
xLE(tip)
(b/2)2

4
· x2 (A.3)

4.

f4(x) =
1
100k−2000xLE(tip)

2
·x3 +

1
300xLE(tip)−10k

2
·x2 k = 1 (A.4)

5.
f5(x) = 3xLE(tip)

(b/2)4 · x4 − 8xLE(tip)
(b/2)3 · x3 + 6xLE(tip)

(b/2)2 · x2 (A.5)

6.
f6(x) = 6xLE(tip)

(b/2)5 · x5 − 15xLE(tip)
(b/2)4 · x4 + 10xLE(tip)

(b/2)3 · x3 (A.6)
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7.

f7(x) = k − 2xLE(tip)
(b/2)3 · x3 + 1

b/2

33xLE(tip)
b/2 − k

4
· x2 k = 0.5 (A.7)
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