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Abstract

Two numerical methods for the computation of flow in Discrete Fracture Networks
(DFNs) are discussed, modeling the distribution of the pressure of a fluid in an imper-
meable fractured medium. The first method is based on a mesh which conforms to the
intersection between fractures (traces), using the Virtual Element Method (VEM), while
the second follows an optimization approach, with distinct meshes on each fracture, not
conforming to the traces. The behaviors of the two approaches are investigated and
compared on two numerical test cases. Finally, a joint approach is proposed with the
intent of potentially mitigating the drawbacks and exploiting the advantages of the two
methods.
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Chapter 1

Introduction

The study of fluid flow in fracture networks is relevant in many practical applications, such
as modeling of groundwater resources, dispersion of contaminants, oil and gas deposits
management. Fractures in an impermeable medium can be modeled as intersecting plane
polygons, on which the fluid flow is assumed to present a Darcian linear dependence
on the hydraulic head gradient. Additional continuity conditions are required at
intersections between fractures (traces). In this work, two ways to enforce such conditions
are considered, resulting in two different approaches. The first approach relies on a
discretization of the fractures with a mesh which conforms to the traces, using the Virtual
Element Method to handle the different polygonal shapes of the elements for which
some of the edges are part of the traces. The second method follows an optimization
approach, with distinct meshes on each fracture, not conforming to the traces, in which
an appropriate functional is minimized, constrained by the field equations on each
fracture. In this Chapter, the continuous model of fluid flow is presented. In Chapter
2, the Virtual Element Method is introduced for a generic elliptic problem and is then
applied to the discrete fracture network problem in Chapter 3. In Chapter 4, the
optimization-based approach is presented. Finally, in Chapter 5 a new joint approach
is formulated, informed by the numerical experiments performed with the first two
methods.

1.1 Notation

Throughout this work, the standard L2 scalar product over a domain D or a line Γ will
be denoted, respectively, as

(v, w)D, (v, w)Γ,

for every v, w ∈ L2(D) or v, w ∈ L2(Γ). Similarly, the notation

(∇v,∇w)D :=

∫
D
∇v · ∇w

is used for functions v, w ∈ H1(D).
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Introduction

1.2 Problem setting

Consider a network of N fractures in three-dimensional (3D) space, represented by as
many intersecting plane polygons Fi ⊂ R3, i ∈ I. The problem of subsurface fracture
flow can be stated on the whole fracture network Ω =

⋃
i∈I Fi as

∇ · (K∇H) = Q in Ω, (1.1)

H|ΓD
= HD on ΓD, (1.2)

∂H

∂νΓN

= GN on ΓN , (1.3)

where ∂Ω = ΓD ∪ ΓN and ΓD /= ∅, H is the hydraulic head, K is the transmissivity
tensor and ∂H

∂νΓN

= nT
ΓN

K∇H is the outward co-normal derivative of the hydraulic head,

with nΓN
the unit vector outward normal to the boundary ΓN . Throughout the scope

of this work, the transmissivity tensor is supposed to be isotropic, of the form K = k̂I,
such that there exist two constants k∗ > 0 and k∗ > 0 such that

k∗ ≤ k̂ ≤ k∗.

Note that the derivatives in 1.1 and 1.3 are meant along a reference system tangential
to the appropriate fracture. Furthermore, for i ∈ I, define ΓiD = ΓD ∩ ∂Fi and ΓiN =
ΓN ∩ ∂Fi. Let Hi := H|Fi

, Qi := Q|Fi
and Ki := K |Fi

denote the restrictions of the
hydraulic head, the forcing term and the trasmissivity tensor to the fracture Fi. Let
GiN = GN |ΓiN

, GiD = GD |ΓiD
. Let S be the set of all intersections, called traces,

Sm = Fi ∩ Fj between two fractures, with Sm of non vanishing measure, with index
m ∈ M. For each trace Sm, let ISm = {i, j} be the set of the indices of the two fractures
such that Sm = Fi ∩ Fj. Define also Si = {Sm ∈ S : Sm ⊂ Fi}. Define the jump across
the trace Sm of the co-normal derivative of the hydraulic head in fracture Fi as

s
∂Hi

∂νiSm

{

Sm

:=
∂Hi

∂νiSm

∣∣∣∣
F+
i

− ∂Hi

∂νiSm

∣∣∣∣
F−
i

,

with ni
Sm

being a unit vector normal to the trace Sm in the plane of Fi and the symbols
’+’ and ’−’ referring, respectively, to the side of Sm towards which ni

Sm
is pointing and

the opposite one. This quantity is independent on the choice of ni
Sm

. The continuity
of hydraulic pressure and the conservation of fluxes between intersecting fractures is
guaranteed by the conditions

Hi|Sm
= Hj|Sm

on Sm (1.4)
s
∂Hi

∂νiSm

{

Sm

+

t
∂Hj

∂νjSm

|

Sm

= 0 on Sm (1.5)

on each trace Sm.

1.3 Weak formulation

Define for each fracture the spaces

Vi = H1
0 (Fi) = {v ∈ H1(Fi) : v|ΓiD

= 0}

2



1.3 – Weak formulation

and
V D
i = H1

D(Fi) = {v ∈ H1(Fi) : v|ΓiD
= HiD},

then the restriction Hi = H|Fi
of the hydraulic head to the fracture Fi belongs to the

space V D
i , and the hydraulic head H on the whole Ω belongs to the space

V D = H1
D(Ω) =

{
v ∈

∏
i∈I

V D
i :

(
v|Fi

)
|Sm

=
(
v|Fj

)
|Sm

, i, j ∈ ISm ,∀m ∈ M

}
.

Similarly, define

V = H1
0 (Ω) =

{
v ∈

∏
i∈I

Vi :
(
v|Fi

)
|Sm

=
(
v|Fj

)
|Sm

, i, j ∈ ISm , ∀m ∈ M

}
.

For the spaces Vi and V
D
i , define the norms

∥v∥Vi
:= ∥∇v∥(L2(Fi))2

if ΓiD /= ∅,

∥v∥Vi
:=
[
∥∇v∥2(L2(Fi))2

+ ∥v∥2L2(Fi)

] 1
2

if ΓiD = ∅,

∥v∥V D
i

:=
[
∥∇v∥2(L2(Fi))2

+ ∥v∥2L2(Fi)

] 1
2
.

For the spaces V and V D, consider the norms

∥v∥V :=

[∑
i∈I

∥v∥2Vi

] 1
2

, ∥v∥V D :=

[∑
i∈I

∥v∥2V D
i

] 1
2

.

Starting from the governing equation 1.1, the problem of flow on fractures can be posed
in weak form as follows. Let v ∈ V be a test function on the domain. Multiplying
equation 1.1 by v and integrating on Ω, one has∑

i∈I

∫
Fi

∇ · (Ki∇Hi) v|Fi
dFi =

∑
i∈I

∫
Fi

Qiv|Fi
dFi.

To apply Green’s Theorem to the left hand side, introduce the set of subfractures fl,
l ∈ L consisting of the open polygons obtained by cutting each fracture Fi along the
directions of the traces S ∈ Si. One has then∑

i∈I

∫
Fi

∇ · (Ki∇Hi) v|Fi
dFi =

∑
l∈L

∫
fl

∇ ·
(
Kfl∇H|fl

)
v|fl dfl =

=
∑
i∈I

∫
Fi

Ki∇Hi · ∇v|Fi
dFi −

∑
l∈L

∫
∂fl

(
Kfl∇H|fl · n∂fl

)
v|fl dΓ. (1.6)

Each subfracture boundary can be decomposed as

∂fl =

[
∂fl ∩

( ⋃
m∈M

Sm

)]
∪

[
∂fl ∩ ∂Ω

]
∪ ∂f int

l = ∂f t
l ∪ ∂fb

l ∪ ∂f int
l , (1.7)

3



Introduction

where ’t’ and ’b’ stand respectively for ’traces’ and ’boundary’, and ∂f int
l denotes

the portion of the subfracture boundary that is neither part of traces nor of fracture
boundaries. The boundary term is then, denoting by ∂

∂ν
the directional derivative along

the appropriate outward unit vector n co-normal to the curve along which each integral
is performed,

−
∑
l∈L

∫
∂fl

(
Kfl∇H|fl · n∂fl

)
v|fl dΓ = −

∑
l∈L

∫
∂fl

∂H|fl
∂ν

v|∂fl dΓ =

= −
∑
l∈L

[∫
∂f t

l

∂H|fl
∂ν

v|
∂ft

l

dΓ +

∫
∂fb

l

∂H|fl
∂ν

v|
∂fb

l

dΓ +

∫
∂f int

l

∂H|fl
∂ν

v|
∂f int

l

dΓ

]

= −
∑
i∈I

∑
S∈Si

∫
S

s
∂Hi

∂νiS

{
(v|Fi

)|S dΓ−
∑
i∈I

∫
∂Fi

∂Hi

∂ν
v|∂Fi

dΓ, (1.8)

where the sum on subfractures has been substituted with one on fractures and ni
S is a

unique unit vector co-normal to the trace S in the plane of fracture Fi. The sum over
l ∈ L of the integrals over ∂f int

l vanishes. Indeed, calling Γint
i :=

⋃
fl⊂Fi

∂f int
l , one has

∑
l∈L

∫
∂f int

l

∂H|fl
∂ν

v|
∂f int

l

dΓ =
∑
i∈I

∫
Γint
i

t
∂Hi

∂νi
Γint
i

|

(v|Fi
)|

Γint
i

dΓ = 0.

The first term of 1.8, regarding the traces, can be rewritten as∑
i∈I

∑
S∈Si

∫
S

s
∂Hi

∂νiS

{
(v|Fi

)|S dΓ =
∑
S∈S

∫
S

{s
∂Hi

∂νiS

{
+

s
∂Hj

∂νjS

{}
v|S dΓ. (1.9)

This is only possible thanks to the choice of space V , which guarantees that for each
S ∈ S, (v|Fi

)|S = (v|Fj
)|S =: v|S , {i, j} = IS. Therefore conditions 1.5 on flux conservation

on traces are enforced in the weak form imposing that the term 1.9 be zero ∀v ∈ V .
The second boundary term of 1.8, related to the boundary conditions, gives∑

i∈I

∫
∂Fi

∂Hi

∂ν
v|∂Fi

dΓ =
∑
i∈I

∫
ΓiN

∂Hi

∂ν
v|ΓiN

dΓ +
∑
i∈I

∫
ΓiD

∂Hi

∂ν
v|ΓiD

dΓ

=
∑
i∈I

∫
ΓiN

∂Hi

∂ν
v|ΓiN

dΓ

=
∑
i∈I

∫
ΓiN

GiNv|ΓiN
dΓ. (1.10)

The resulting weak form of the problem is then

Find H ∈ V D s.t.∑
i∈I

∫
Fi

Ki∇Hi · ∇v|Fi
dΩ =

∑
i∈I

∫
Fi

Qiv|Fi
dΩ +

∑
i∈I

∫
ΓiN

GiNv|ΓiN
dΓ, ∀v ∈ V (1.11)

which resembles the one for a 2D domain. The problem in this form is well posed,
thanks to the Lax-Milgram Theorem. Indeed the bilinear form

aΩ(w, v) :=
∑
i∈I

∫
Fi

Ki∇w|Fi
· ∇v|Fi

dΩ, ∀v, w ∈ V

4



1.4 – Numerical techniques

is continuous and coercive on V and the functional

FΩ(v) :=
∑
i∈I

∫
Fi

Qiv|Fi
dΩ +

∑
i∈I

∫
ΓiN

GiNv|ΓiN
dΓ, ∀v ∈ V (1.12)

is continuous on V , requiring Qi ∈ L2(Fi) and GiN ∈ L2(ΓiN), i ∈ I.

1.4 Numerical techniques

For the discretization of problem 1.1-1.5, two different methods to impose the conditions
on the traces will be considered. The first [4] consists in conforming the meshes of
the two intersecting domains so that the degrees of freedom associated with the nodes
and the edges of the triangulation on the trace are shared between the two domains.
Even if the meshes on the domains are triangular, this results in more generic polygonal
elements where the triangles need to be cut to achieve conformity. This suggests the use
of the Virtual Element Method, which can handle such shapes. This approach results in
a discretization of the form 1.11. On the other hand, the second approach [7, 8] consists
in the construction of an appropriate functional to be minimized in order to reach an
approximate satisfaction of the conditions on the traces. The field equations on each
domain act as a constraint in the minimization. This approach does not require any
conformity of the domains’ meshes and is well suited for a parallel implementation [10].

5
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Chapter 2

Virtual Element Method

The Virtual Element Method (VEM) can be considered as an extension of the finite
element method to elements of more general polygonal and polyhedral shape. The VEM
still uses functional spaces containing polynomials of degree k to recover convergence
results, however the basis functions are not in general polynomial and never computed
explicitly, not even in an approximate way. They are used only trough the values of
their degrees of freedom. This feature is what gives the name “virtual” to the elements.
In the following, a variation [1] of the standard VEM formulation [2] is presented for
the elliptic 2D problem

−∇ · (K∇H) = Q in D ⊂ R2

with homogeneous Dirichlet boundary conditions on ∂D. In weak form this yields

Find H ∈ H1
0 (D) s.t. aD(H, v) = FD(v) ∀v ∈ H1

0 (D), (2.1)

with

aD(w, v) := (K∇w,∇v)D, FD(v) := (Q, v)D, w, v ∈ H1
0 (D). (2.2)

With assumptions similar to those given in Chapter 1, problem 2.1 is well posed.

2.1 Virtual element space

Consider a partition Tδ of the domain D ⊂ R2, D =
⋃

E∈Tδ E, where each E ∈ Tδ is a
simple, star-shaped polygon, such that the length of its edges decreases at most with
order 1 with δ [1, 2]. For each polygon E, the number of vertices is denoted by NE, while
the polygon’s area, centroid and diameter are noted respectively as |E|, xE and dE. For
each polygon E, consider the following local space, defined for values of k = 1, 2, 3, . . .

Vk(E) =
{
v ∈ H1(E) : v|ei ∈ Pk(ei), i = 1, . . . , NE, v|∂E ∈ C0(∂E), ∆v ∈ Pk(E),(

p,Π∇
k,E(v)− v

)
E
= 0 ∀p ∈ Pk(E) \ Pk−2(E)

}
,

(2.3)

7



Virtual Element Method

where Pk(E) \ Pk−2(E) is the set of polynomials exactly of order k and k − 1 and by
convention P−1(E) = {0}. The operator Π∇

k,E : H1(E) → Pk(E) is defined such that for
every v ∈ H1(E) (

∇p,∇(Π∇
k,Ev − v)

)
E
= 0 ∀p ∈ Pk(E), (2.4)(

1,Π∇
k,Ev − v

)
∂E

= 0 if k = 1, (2.5)(
1,Π∇

k,Ev − v
)
E
= 0 if k > 1. (2.6)

One has Pk(E) ⊆ Vk(E), since a polynomial of degree k on E satisfies all the conditions
in definition 2.3. In particular the last condition in 2.3 holds because

Π∇
k,E(q) = q, ∀q ∈ Pk(E).

Indeed, from 2.4, ∇(Π∇
k,E(q)− q) ∈ (Pk−1(E))

2 is zero, therefore Π∇
k,E(q)− q ∈ P0(E),

and from 2.5 or 2.6 one has Π∇
k,E(q)− q = 0.

Consider the following set of degrees of freedom (dofs) for Vk(E)

• VE,k: the values of v at the vertices of the polygon;

• EE,k: if k > 1, the values of v at the k − 1 internal nodes of the Gauss-Lobatto
quadrature rule on each edge;

• PE,k: if k > 1, the moments 1
|E|(v,mα)E of order up to k − 2 of v, where mα =(

x−xE

dE

)α
, with α = (α1, α2), |α| = α1 + α2, |α| = 1, . . . , k − 2, and for a generic

vector x, xα = xα1
1 x

α2
2 .

Let dofEi (vδ) denote the degrees of freedom of vδ ∈ Vk(E), numbered from 1 to Ndof
E and

define the functions φi ∈ Vk(E) so that

dofEi (φj) = δij, i, j = 1, . . . , Ndof
E .

Proposition. VE,k, EE,k, PE,k are a unisolvent set of dofs for Vk(E).

Proof. Assigning the dofs VE,k and EE,k uniquely determines a polynomial in Pk(e) on
each edge e of E, therefore uniquely defining a function v ∈ Vk(E) on the boundary
∂E. Moreover, if all the dofs VE,k and EE,k are zero, then v = 0 on ∂E. On the
other hand, the assignment of the dofs PE,k uniquely determines the L2-orthogonal
projection PE

k−2v ∈ Pk−2(E) of v ∈ Vk(E), and P
E
k−2v = 0 in E if all the dofs PE,k are

zero. Furthermore, also the L2-orthogonal projection PE
k v ∈ Pk(E) is zero. Indeed, [3]

shows how Π∇
k,E(v) can be computed solely through the values of the dofs of v listed

above. In particular if the dofs are all zero, then Π∇
k,E(v) = 0. Thanks to the definition

2.3, it then holds that

(p, v) = (p,Π∇
k,E(v)) = 0, ∀p ∈ Pk(E) \ Pk−2(E)

and therefore
(mα, v) = 0, k − 1 ≤ |α| ≤ k,

which, together with PE
k−2v = 0, implies PE

k v = 0.

8



2.2 – Approximated forms and discrete problem

If v ∈ Vk(E) is such that v = 0 on ∂E and PE
k v = 0 in E, then v = 0 in E. Indeed,

analogously to the proof given in [2], for every q ∈ Pk(E) solve the auxiliary Dirichlet
problem

Find w ∈ H1
0 (E) s.t. aE(w, z) = (q, z)E, ∀z ∈ H1

0 (E) (2.7)

and denote the solution as w = −∆−1
0,E(q). The map R : Pk(E) → Pk(E) defined as

Rq := PE
k (−∆−1

0,E(q)) ≡ PE
k w

is an isomorphism [2] and in particular

Rq = 0 ⇐⇒ q = 0.

Since v = 0 on ∂E,
PE
k v = PE

k (−∆−1
0,E(−∆v)) = R(−∆v).

Then PE
k v = 0 =⇒ R(−∆v) = 0 =⇒ −∆v = 0, which, together with v = 0 on ∂E,

implies v = 0 in E.

The number of dofs Ndof
E corresponds to the dimension of the space Vk(E)

dimVk(E) = Ndof
E = NE + (k − 1)NE +

k(k − 1)

2
= kNE +

k(k − 1)

2

and the functions φi ∈ Vk(E) constitute the canonical basis of Vk(E). Then each
function v ∈ Vk(E) can be expressed as

v =

Ndof
E∑

i=1

dofEi (v)φi.

If all polygons in the mesh are equipped with the virtual element space and dofs,
considering homogeneous Dirichlet boundary conditions, the resulting global space is

V D
k = {v ∈ H1

0 (D) : v|E ∈ Vk(E) ∀E ∈ Tδ}, (2.8)

equipped with the global dofs

• Vk: the values of v at the internal mesh vertices;

• Ek: if k > 1, the values of v at the k − 1 internal nodes of the Gauss-Lobatto
quadrature rule on each internal edge of the mesh;

• Pk: if k > 1, the moments 1
|E|(v,mα)E of order up to k− 2 of v on each polygon E.

2.2 Approximated forms and discrete problem

Since the expression of the basis functions of the space Vk(E) is not known, the forms
2.2 cannot be computed. The exact forms aD(·, ·) and FD(·) are substituted with the
approximated ones aDδ (·, ·) and FD

δ (·). Let aE(·, ·) and FE(·) be the restrictions of aD

and FD to an element E and aEδ (·, ·) and FE
δ (·) the restrictions of the approximated

9



Virtual Element Method

forms. In the following, assume that K = k̂I is constant on the domain D. In the
remainder of this Chapter, denote as Π∇ the local projection Π∇

k,E, for simplicity of
notation. Note that by expressing a generic function v ∈ Vk(E) as

v = Π∇v + (I− Π∇)v,

one can rewrite aE(w, v), for every w, v ∈ Vk(E), as

(K∇w,∇v)E =(K∇Π∇w,∇Π∇v)E + (K∇(I− Π∇)w,∇(I− Π∇)v)E

+ (K∇Π∇w,∇(I− Π∇)v)E + (K∇(I− Π∇)w,∇Π∇v)E,

where the last two terms are zero, thanks to condition 2.4 and K being constant, giving

aE(w, v) = (K∇Π∇w,∇Π∇v)E + (K∇(I− Π∇)w,∇(I− Π∇)v)E. (2.9)

In the current implementation, the form 2.9 is approximated as

aEδ (w, v) := k̂(PE
k−1(∇w), PE

k−1(∇v))E + k̂

Ndof
E∑

r=1

dofEr ((I− Π∇)w) dofEr ((I− Π∇)v),

(2.10)

following [1]. The functions PE
k−1(∇v) and Π∇v can be computed through the dofs of v,

for any v ∈ Vk(E) [1, 3]. The functional FE is substituted by the approximation [1]

FE
δ (v) := (Q,PE

k−1v)E. (2.11)

Define the discrete problem

Find h ∈ V D
k s.t. aDδ (h, v) = FD

δ (v) ∀v ∈ V D
k , (2.12)

with the choices 2.10 and 2.11 for the forms aδ and Fδ. It has been proved in [1] that
problem 2.12 is well posed and that the following error estimates hold, for H and Q
sufficiently regular:

∥H − h∥H1(D) ≤ Cδk
(
∥H∥Hk+1(D) + |Q|k,D

)
, (2.13)

∥H − h∥L2(D) ≤ Cδk+1
(
∥H∥Hk+1(D) + |Q|k,D

)
, (2.14)

with |Q|k,D being the k-th order Sobolev seminorm of Q on D.
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Chapter 3

Conforming VEM approach

One possibility to enforce the conditions 1.4 and 1.5 in a discrete setting is to conform
the meshes of the two intersecting fractures to each other on the traces. In this way the
global degrees of freedom (dofs) associated to the mesh nodes on the traces are shared
by the two fractures generating it. Conformity can be achieved meshing the fracture
polygons independently and then cutting the cells which intersect with a trace. Note
that this operation changes the shape of the cells touching the trace. Therefore, even if
the independent meshing process on the fractures returns a mesh with cells all of the
same shape, for instance triangular, the final mesh will contain polygons with a different
number of vertices. Furthermore, these polygons may present hanging nodes, that is
vertices between collinear edges. These properties suggest the use of virtual elements.
For the first order case, virtual and finite elements can be easily integrated to produce a
discretization with both element types, where the virtual elements are used only for the
polygons with more than three vertices, while finite elements are used for the triangles.

3.1 Conforming mesh

The mesh for the domain is constructed following the approach of [4], in which, for each
fracture, a triangular mesh is generated first, independently of the other fractures. A
local conformity is then achieved on each fracture cutting the elements that intersect
with the traces. The new edges introduced by the cuts are then enriched with the nodes
corresponding to the vertices of the polygons obtained through the cutting process on
the other fracture sharing the trace. This yields a conforming mesh Tδ on the domain Ω.

3.2 Discretization with elements of order 1

The set of polygons Tδ of the conforming mesh described above is partitioned into
T VEM
δ ∪ T FEM

δ = Tδ. A polygon is assigned to T VEM
δ if it has more than three vertices

and to T FEM
δ otherwise. Virtual element and finite element discretizations are used

on the cells in T VEM
δ and T FEM

δ , resulting in the local spaces V VEM
k (E) = Vk(E), for

E ∈ T VEM
δ , as defined in 2.3, and V FEM

k (E) = Pk(E), for E ∈ T FEM
δ . For the FEM

spaces choose the standard Lagrangian local dofs. On an internal edge e dividing a
VEM cell from a FEM cell of the same order k = 1, the dofs on e for both cells are the
same; in fact the only dofs on e are the values of the function at the extremities. In this

11



Conforming VEM approach

way, the dofs on the boundary of the elements are the same for the two kinds of spaces,
allowing for a straightforward gluing of the elements, giving the global discrete spaces

V D,1
δ =

{
v ∈ V D : v|EVEM

∈ V VEM
1 (EVEM) ∀EVEM ∈ T VEM

δ ,

v|EFEM
∈ V FEM

1 (EFEM) ∀EFEM ∈ T FEM
δ

}
,

V 1
δ =

{
v ∈ V : v|EVEM

∈ V VEM
1 (EVEM) ∀EVEM ∈ T VEM

δ ,

v|EFEM
∈ V FEM

1 (EFEM) ∀EFEM ∈ T FEM
δ

}
,

of dimensions

ND := dimV D,1
δ , N := dimV 1

δ .

Since V 1
δ ⊂ V , for any vδ ∈ V 1

δ it is still true that
(
vδ |Fi

)
|S
=
(
vδ |Fj

)
|S
, {i, j} = IS, on

each trace S ∈ S, and analogously for V D,1
δ . Note that the nodes of the mesh lying on

the traces are shared by the elements in both of the intersecting fractures, therefore the
associated dof is also shared and the corresponding basis function is non-zero on both
fractures. A unisolvent set of global dofs for vδ ∈ V D,1

δ , resulting from the matching of
the local dofs on the element boundaries, is

• V1: the values of vδ at the mesh vertices V .

The same set of functionals, but without those related to Dirichlet boundaries, gives a
set of dofs for V 1

δ . Consider a numbering of the global dofs of V D,1
δ from 1, . . . , ND such

that the first N are the dofs of V 1
δ and denote with dofi(vδ) the i-th degree of freedom of

a function vδ ∈ V D,1
δ . Define the canonical basis functions φi ∈ V D,1

δ , for i = 1, . . . , ND

such that

dofi(φj) = δij, j = 1, . . . , ND. (3.1)

Define the quantity

h =
ND∑
i=1

hiφi = h0 + hD, (3.2)

representing the discrete counterpart of the solution H, expressed through appropriate
coefficients hi in the canonical basis, where h0 ∈ V 1

δ and hD ∈ V D,1
δ is the lifting of

the Dirichlet boundary conditions imposed on ΓD. Consider the setting of the weak
form 1.11 in the subspaces V D,k

δ ⊂ V D, V k
δ ⊂ V , substituting the exact forms with the

approximated ones

aΩδ (w, v) :=
∑

E∈T VEM
δ

k̂E

{
(PE

0 (∇w), PE
0 (∇v))E+

Ndof
E∑

r=1

dofEr ((I− Π∇
1,E)w) dof

E
r ((I− Π∇

1,E)v)

}
+

∑
E∈T FEM

δ

k̂E(∇w,∇v)E,

FΩ
δ (v) :=

∑
E∈T VEM

δ

(Q,PE
0 v)E +

∑
E∈T FEM

δ

(Q, v)E,

12



3.3 – Numerical Results

defined ∀w ∈ V D,k
δ , ∀v ∈ V k

δ following the choices presented in Chapter 2 for the VEM
elements, with k = 1, where homogeneous Neumann boundary conditions on ΓN were
assumed, together with the choice Ki = k̂iI, with k̂i > 0 constant, i ∈ I. For an element
E, the notation k̂E := k̂i was used, where i is the index of the fracture containing E.
The resulting discrete problem

Find h ∈ V D,k
δ s.t. aΩδ (h, v) = FΩ

δ (v), ∀v ∈ V k
δ

is equivalent to the linear system

Ah0 = f − ADhD, (3.3)

where, with an overload of notation for h0 and hD,

A ∈ RN×N , Aij := aΩδ (φj, φi), 1 ≤ i, j ≤ N,

AD ∈ RN×ND−N , AD
ij := aΩδ (φN+j, φi), 1 ≤ i ≤ N, 1 ≤ j ≤ ND −N,

f ∈ RN , fi := FΩ
δ (φi), 1 ≤ i ≤ N,

h0 ∈ RN , h0i := hi, 1 ≤ i ≤ N,

hD ∈ RND−N , hDj := hN+j, 1 ≤ j ≤ ND −N.

3.3 Numerical Results

The approach described in this Chapter is tested on two DFN cases with 3 and 36
fractures, called Frac3 and Frac36 respectively, depicted in Figure 3.1. In Frac3, specific
non-homogeneous Dirichlet boundary conditions are set on all boundaries and a non-zero
forcing term is used, for which the exact solution is known [5]. In Frac36, 0 and 1
constant Dirichlet boundary conditions are set each on a particular edge of two distant
fractures, while homogeneous Neumann boundary conditions are set for the rest of the
boundary and no forcing term is present, mimicking a case in which a fluid flows across
a set of fractures without losses.

Convergence results are presented in Figure 4.1 for Frac3. The discretization parame-
ter δ2 controls the areas of the triangles of the fracture meshes, which are then cut to
achieve conformity. The L2 error shows an average convergence order of 1.91, while the
H1 error converges with order 0.90 with respect to the parameter δ, in agreement with
the VEM and FEM estimates.

Figure 3.3 shows the dependence of the condition number of A on δH for the test
Frac3. The condition number diverges approximately as δ−2.

It is important to note that the conforming process can lead to meshes with elements
characterized by very high aspect ratio or very small angles, which can significantly
degrade the quality of the solution, especially for higher orders of approximation [4].
This can happen for example when two traces are very close to each other or they
intersect forming a very slight angle.
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Conforming VEM approach

Figure 3.1. Frac3 (top) and Frac36 (bottom) DFNs and corresponding conforming
approach numerical solutions, in color.
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3.3 – Numerical Results

Figure 3.2. Convergence to the exact solution for Frac3 in L2 and H1 norms, for
decreasing δ, for the three fractures and average convergence orders.

Figure 3.3. Condition number of A for Frac3 (points), for varying δ, and the
corresponding trend line, with slope −2.28.
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Chapter 4

Non-conforming optimization

approach

To avoid the need for mesh conformity, a way of satisfying the conditions 1.4 and 1.5
on the traces other than the gluing of DOFs must be employed. One technique is to
minimize a functional depending on the jump of the hydraulic head and the residual
flux on the traces, constrained by the satisfaction of the flow equations on the fractures,
as proposed in [7, 8]. The solution of the resulting optimal control problem can be
carried out using gradient descent methods [7, 8] and parallel solvers can be efficiently
implemented to handle simulations of large scale fracture networks [10]. In Section 4.2,
a direct implementation is detailed instead, relying on the equivalence of the optimal
control problem with Karush-Kuhn-Tucker (KKT) conditions, following [9].

4.1 Optimal control formulation

The problem of flow on a single fracture Fi can be stated, ∀i ∈ I, in a weak form
multiplying equation 1.1 by a function v ∈ Vi and integrating over Fi, obtaining, with a
similar procedure to the one described in Section 1.3,

Find Hi ∈ V D
i s.t.

∫
Fi

Ki∇Hi∇v dΩ−
∑
S∈Si

∫
S

s
∂Hi

∂νiS

{
v|S dΓ =

=

∫
Fi

Qiv dΩ +

∫
ΓiN

GiNv|ΓiN
dΓ, ∀v ∈ Vi.

(4.1)

Following the approach of [7], let us first consider the case in which ΓDi /= ∅, for all
i ∈ I. For each trace S ∈ S, define the space US := H− 1

2 (S) and define the spaces

USi =
∏
S∈Si

US, U =
∏
i∈I

USi .

Let US
i ∈ US and US

j ∈ US be variables, defined on each trace S ∈ S, with {i, j} = IS,
respectively representing the jump of the co-normal derivatives of the hydraulic headr

∂Hi

∂νiS

z
and

r
∂Hj

∂νjS

z
, so that conditions 1.5 are equivalently stated as

USm
i + USm

j = 0 on Sm ∀m ∈ M, {i, j} = ISm ,
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Non-conforming optimization approach

Introducing the linear bounded operators Ai ∈ L(Vi, V ′
i ), A

D
i ∈ L(V D

i , V
′
i ), Bi ∈

L(USi , V ′
i ) and BiN ∈ L(H− 1

2 (ΓiN), V
′
i ) defined such that

⟨Aiw, v⟩V ′
i ,Vi

= (Ki∇w,∇v)Fi
, w, v ∈ Vi

⟨AD
i w, v⟩V ′

i ,Vi
= (Ki∇w,∇v)Fi

, w ∈ V D
i , v ∈ Vi

⟨Biw, v⟩V ′
i ,Vi

= ⟨w, v|Si
⟩USi ,USi

′ , w ∈ USi , v ∈ Vi

⟨BiNw, v⟩V ′
i ,Vi

= ⟨w, v|ΓiN
⟩
H− 1

2 (ΓiN ),H
1
2 (ΓiN )

, w ∈ H− 1
2 (ΓiN), v ∈ Vi

the form 4.1 is equivalent to

Find H0
i ∈ Vi s.t. AiH

0
i = qi +BiUi +BiNGiN − AD

i H
D
i , (4.2)

where Hi = H0
i + HD

i , with H0
i ∈ Vi and HD

i is a lifting of the Dirichlet boundary
condition on ΓiD. Problem 4.2 is well-posed, provided that ΓDi /= ∅. For every trace

S ∈ S, define the space HS := H
1
2 (S). Let

HSi =
∏
S∈Si

HS, H =
∏
i∈I

HSi .

Define the differentiable functional J : U → R

J(U) :=
1

2

∑
m∈M

(∥∥Hi(Ui)|Sm
−Hj(Uj)|Sm

∥∥2
HSm

+
∥∥USm

i + USm
j

∥∥2
USm

)
,

where {i, j} = ISm and Hi(Ui) represents the solution of problem 4.2, given a particular
choice of Ui, i ∈ I. Note that when the interface conditions 1.4 and 1.5 are satisfied,
the functional J(U) reaches its minimum J(U) = 0.

The problem 1.1-1.5 can be recast equivalently [7] as the optimal control problem

Find U ∈ U solution of min J(U) (4.3)

s.t. AiH
0
i = qi +BiUi +BiNGiN − AD

i H
D
i ∀i ∈ I.

From this point forward, a more general case will be considered, in which fractures
are allowed to have Neumann boundary conditions on the entire boundary, as long as
there is at least one fracture with Dirichlet boundary conditions on a nonempty portion
of the boundary. To this aim introduce the real parameter α > 0 [8] and redefine the
control variables

US
i :=

s
∂Hi

∂ni
S

{
+ αHi|S (4.4)

The equations 4.2 retain the same form, but redefining the operators Ai and A
D
i as

⟨Aiw, v⟩V ′
i ,Vi

= (Ki∇w,∇v)Fi
+ α(w|Si

, v|Si
)Si
, w, v ∈ Vi (4.5)

⟨AD
i w, v⟩V ′

i ,Vi
= (Ki∇w,∇v)Fi

+ α(w|Si
, v|Si

)Si
, w ∈ V D

i , v ∈ Vi (4.6)

With the new operators, problem 4.2 is well-posed even in the pure Neumann case for
non-isolated fractures [8]. The functional J(U) is redefined as

J(U) =
1

2

∑
m∈M

(∥∥Hi(Ui)|Sm
−Hj(Uj)|Sm

∥∥2
HSm

+

∥∥USm
i + USm

j − αΛHSm

(
Hi(Ui)|Sm

+Hj(Uj)|Sm

)∥∥2
USm

)
, (4.7)
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4.2 – Discrete formulation

where {i, j} = ISm and ΛHSm : HSm → HSm
′
is the Riesz isomorphism between HSm

and its dual. The minimization of the new functional 4.7 with the same constraints as
in problem 4.3, but with the new operators 4.5 and 4.6, still results in the solution of
the problem 1.1-1.5 [8].

4.2 Discrete formulation

For each fracture Fi, consider a mesh Tδ,i on Fi and a mesh T m
δ,i on each trace Sm ∈ Si.

Let V D
δ,i ⊂ V D

i be a finite-dimensional space generated by the basis functions φi,k, for

k = 1, . . . , ND
i = Ni+Ni,D, defined on fracture Fi. Define also Vh,i ⊂ V D

δ,i to be the space
generated by the first Ni basis functions φi,k. In addition, let Wm

δ,i ⊂ L2(Sm), for each
Sm ∈ Si, be a finite-dimensional space generated by the basis functions ψm

i,k ∈ L2(Sm),

for k = 1, . . . , Nm
i . Define the discrete hydraulic head hi ∈ V D

δ,i and the discrete control
variables umi ∈ Wm

δ,i, which can be represented as

hi =

ND
i∑

k=1

hi,kφi,k, umi =

Nm
i∑

k=1

umi,kψ
m
i,k.

The discrete variables are aggregated for the whole network giving

h :=
∏
i∈I

hi ∈ V D
δ :=

∏
i∈I

V D
δ,i , u :=

∏
m∈M

(umi , u
m
j ) ∈ Wδ :=

∏
m∈M

(Wm
δ,i ×Wm

δ,j),

where, in the expression of u, {i, j} = ISm , with i < j to fix an order. Substituting the
discrete variables in the expression of J(U), changing the HSm and USm norms with
ones in L2(Sm) and writing them explicitly, one obtains the discrete cost functional

J(u) =
1

2

∑
m∈M


∫
Sm

ND
i∑

k=1

hi,kφi,k |Sm
−

ND
j∑

k=1

hj,kφj,k |Sm

2

dγ +

∫
Sm

Ni,m∑
k=1

umi,kψ
m
i,k +

Nj,m∑
k=1

umj,kψ
m
j,k − α

ND
i∑

k=1

hi,kφi,k |Sm
+

ND
j∑

k=1

hj,kφj,k |Sm

2

dγ


=

1

2

∑
m∈M

∑
i∈ISm

ND
i∑

k,l=1

hi,khi,l(α
2 + 1)(φi,k |Sm

, φi,l|Sm
)Sm+

2

ND
i∑

k=1

ND
j∑

l=1

hi,khj,l(α
2 − 1)(φi,k |Sm

, φj,l|Sm
)Sm+

∑
i∈ISm

Ni,m∑
k,l=1

umi,ku
m
i,l(ψ

m
i,k, ψ

m
i,l)Sm + 2

Ni,m∑
k=1

Nj,m∑
l=1

umi,ku
m
j,l(ψ

m
i,k, ψ

m
j,l)Sm +

− 2α
∑
i∈ISm

Ni,m∑
k=1

ND
i∑

l=1

umi,khi,l(ψ
m
i,k, φi,l|Sm

)Sm − 2α
∑

i,j∈ISm
i /=j

Ni,m∑
k=1

ND
j∑

l=1

umi,khj,l(ψ
m
i,k, φj,l|Sm

)Sm

 ,
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Non-conforming optimization approach

where, in every sum in which indices i and j are not defined, it is meant {i, j} = ISm .
Introduce, with the same notation as for the discrete variables, the vectors of their
coefficients

hi = (hi,1, . . . , hi,ND
i
)T ∈ RND

i , h = (h1, . . . , h#I)
T ∈ RNF ,

with NF =
∑

i∈IN
D
i . For the control variables, on each trace Sm, with {i, j} = ISm ,

i < j, denote respectively with ’−’ and ’+’ the variables, the coefficients and the basis
functions on Sm related to fractures Fi and Fj. In this context, define also Nm

− = Nm
i

and Nm
+ = Nm

j . The resulting vectors are

um∗ = (um∗,1, . . . , u
m
∗,Nm

∗
)T ∈ RNm

∗ , for ∗ ∈ {−,+},

um = (um− , u
m
+ )

T , u = (u1, . . . , u#M) ∈ RNS
,

with NS =
∑

m∈M(Nm
− + Nm

+ ). Furthermore, define the map I : M × {−,+} → I
defined as I(m,−) = i, I(m,+) = j, with {i, j} = ISm , i < j, giving the index of
the fracture to which a trace quantity, identified by the index m ∈ M and the symbol
∗ ∈ {−,+}, is associated. Define also the set Ji ⊂ I, ∀i ∈ I, of the indices of the
fractures sharing a trace with Fi. The functional J(u) can then be expressed through
appropriate matrices as

J(u) =
1

2

{∑
i∈I

[
hTi Gh

iihi + 2
∑
j∈Ji

hTi Gh
ijhj

]
+∑

m∈M

[
(um− )

TGu
m,−u

m
− + (um+ )

TGu
m,+u

m
+ − 2(um+ )

TGu
m,±u

m
−
]
+

− 2α
∑
m∈M

[
(um− )

TBm
−hI(m,−) + (um+ )

TBm
+hI(m,+) + um−Bm

∓hI(m,+) + um+Bm
±hI(m,−)

]}

=
1

2
hTGhh+

1

2
uTGuu− αuTBh,

where Gh = (Gh
ij)i∈I,j∈Ji∪{i}, with

(Gh
ii)kl = (α2 + 1)

∑
Sm∈Si

(φi,k |Sm
, φi,l|Sm

)Sm , ∀i ∈ I

(Gh
ij)kl = (α2 − 1)(φi,k |Sm

, φj,l|Sm
)Sm , with {i, j} = ISm , ∀m ∈ M,

and Gu = diag(Gu
1 , . . . ,Gu

#M), with, ∀m ∈ M,

Gu
m =

[
Gu

m,− Gu
m,±

(Gu
m,±)

T Gu
m,+

]
,

(Gu
m,∗)kl = (ψm

∗,k, ψ
m
∗,l)Sm , ∗ ∈ {−,+}

(Gu
m,±)kl = (ψm

−,k, ψ
m
+,l)Sm .

The matrix B is constructed block-wise as

Bim =
[
Bm

− Bm
±
]
∈ RNm

− ×(Nm
− +Nm

+ ), with i = I(m,−), ∀m ∈ M,

Bim =
[
Bm

∓ Bm
+

]
∈ RNm

+ ×(Nm
− +Nm

+ ), with i = I(m,+), ∀m ∈ M,
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4.2 – Discrete formulation

where

(Bm
∗ )kl = (ψm

i,k, φi,l|Sm
)Sm , with i = I(m, ∗), ∗ ∈ {−,+},

(Bm
∓ )kl = (ψm

i,k, φj,l|Sm
)Sm , with i = I(m,−), j = I(m,+),

(Bm
± )kl = (ψm

j,k, φi,l|Sm
)Sm , with i = I(m,−), j = I(m,+).

The minimization problem can be written as

min
w

1

2
wTGw (4.8)

s.t. Cw = q̃

where

G =

[
Gh −αBT

−αB Gu

]
∈ R(NF+NS)×(NF+NS), w =

[
h
u

]
∈ RNF+NS

,

C =
[
A −B

]
∈ RNF×(NF+NS),

A = diag(A1, . . . , A#I) ∈ RNF×NF
,

(Ai)kl =


(Ki∇φi,l,∇φi,k)Fi

+ α
∑

S∈Si
(φi,l|S , φi,k |S)S if k, l ∈ Ni

1 if k = l ∈ Ni,D

0 otherwise

,

with Ni := {1, . . . , Ni}, Ni,D := {Ni + 1, . . . , ND
i }. The matrix B ∈ RNF×NS

is
constructed blockwise as

Bim =
[
Bm

− 0
]
∈ RNm

− ×(Nm
− +Nm

+ ), with i = I(m,−), ∀m ∈ M,

Bim =
[
0 Bm

+

]
∈ RNm

+ ×(Nm
− +Nm

+ ), with i = I(m,+), ∀m ∈ M.

The term q̃ = q−ADhD ∈ RNF
accounts for the forcing term and the boundary condition

terms of equation 4.2, where GiN = 0 ∀i ∈ I, corresponding to homogeneous Neumann
boundary conditions on ΓN . In particular

AD = diag(AD
1 , . . . , A

D
#I) ∈ RNF×NF

, hD =

 h
D
1
...

hD#I

 ∈ RNF×NF

(AD
i )kl =


(Ki∇φi,l,∇φi,k)Fi

+ α
∑

S∈Si
(φi,l|S , φi,k |S)S if k ∈ Ni, l ∈ Ni,D

1 if k = l ∈ Ni,D

0 otherwise

,

and (hDi )k are the coefficients of the lifting of the Dirichlet boundary conditions on
fracture Fi in the basis of V D

δ,i .
The minimization problem 4.8 is equivalent to the KKT conditions[

G CT

C 0

] [
w∗

−p∗
]
=

[
0
q̃

]
(4.9)

where we call

A =

[
G CT

C 0

]
∈ R(2NF+NS)×(2NF+NS).
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Non-conforming optimization approach

4.3 Numerical results

The approach described in this Chapter is tested on the two DFNs Frac3 and Frac36
introduced in section 3.3. All tests were conducted with the choice α = 1 and using
first order FEM approximations on fractures and traces. The mesh size parameters are
expressed as a fraction of the square root of the average fracture area of the DFN.

Convergence results are presented in Figure 4.1 for Frac3. The discretization param-
eter δ controls the length of the segments of the trace meshes, while the areas of the
triangles of the fracture meshes are smaller than δ2. The L2 error shows an average
convergence rate of 2.07, while the H1 error decreases with a rate of 0.94, in agreement
with the standard FEM estimates. The value of the errors are very similar to those
shown in Figure 3.2 obtained with the conforming approach for the same values of δ.

Figure 4.3 shows results for Frac3 and Frac36. The two tests differ in the distribution
of traces’ lengths: Frac3 presents traces of practically uniform length, while Frac36
contains traces of wide ranging lengths. Two discretization parameters are used: δH
controls the square root of the areas of the elements in the domains’ meshes, while δU
determines the lengths of the elements in the traces’ meshes. The value of δH is fixed
for each test, while δU is allowed to vary. For Frac3, the condition number of the KKT
matrix A decreases for increasing values of the ratio δU

δH
, while for Frac36 it stagnates for

values of δU
δH

grater than 2 (Figure 4.3 a-b). An interpretation of the different behaviour
between the two tests can be given observing that in the case of Frac36, a fraction of the
traces are so short that even with the smallest choice of δU , their mesh is constituted by
a single segment and cannot be made any coarser. Denote the fraction of such traces by
nC . Increasing δU , a bigger fraction of traces falls into this group (Figure 4.3 d). In the
case of Frac3, no trace reaches this condition with the range of values of δU used in the
test (Figure 4.3 c). Greater values of δU result in an increase in both the flux mismatch

H− 1
2 norms (Figure 4.3 e-f) and the hydraulic head jump L2 norms (Figure 4.3 g-h) on

the traces. The H− 1
2 norm of the flux mismatch is approximated as [6]∥∥∥umi + umj − α(hi|Sm

+ hj |Sm
)
∥∥∥
H− 1

2 (Sm)

≈

(
Nm∑
k=1

|Λm
k |
∥∥∥umi + umj − α(hi|Sm

+ hj |Sm
)
∥∥∥2
L2(Λm

k )

) 1
2

,

where Λm
k are the Nm segments resulting from the union of the nodes of the two meshes

T m
i,δU

and T m
j,δU

and |Λm
k | is the length of Λm

k . All H
−1/2 norms on the traces are re-scaled

with the sum of the lengths of all the traces in the DFN.
Figure 4.2 reports the dependence of the condition number of A on δH for the test

Frac3. The study is shown for different choices of δU
δH
. The condition number diverges

approximately as δ−2
H . The value of δU

δH
influences the value of the condition number as

illustrated in Figure 4.3, but it does not impact significantly the steepness of the slope.
The condition number of A is much higher than the one of the stiffness matrix involved
in the conforming approach (Figure 3.3) for the same values of δH , in particular for
small values of δU

δH
.

Figure 4.4 and 4.5 show the convergence of the average flux mismatch and hydraulic
head jump norms on traces for the tests Frac3 and Frac36, respectively, with different
choices of δU

δH
. The corresponding slope values are reported in Table 4.1. In the case of
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4.3 – Numerical results

Frac36, the convergence appears to be slower for higher δU
δH

, for both the flux mismatch
and the hydraulic head jump. In particular for the flux mismatch, this is possibly due
to the presence of short traces, for which the decrease in prescribed mesh size does
not result in a refinement in the explored range of δU . Indeed, the fraction of traces
which are never refined in this convergence study for Frac36, for the three choices of
δU
δH

= .5,2,4, are 0.03, 0.25, 0.49, respectively.

Figure 4.1. Convergence to the exact solution for Frac3 in L2 and H1 norms, for
decreasing δ, for the three fractures and average convergence orders.

δU
δH

.5 2 4

Frac3
flux 1.5817 1.5477 1.0868
head 1.3766 1.5952 1.3073

Frac36
flux 1.3082 1.1735 0.9151
head 0.6051 0.5495 0.3099

Table 4.1. Convergence slopes of the average flux mismatch and hydraulic head jump
norms on traces, for Frac3 and Frac36.
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Non-conforming optimization approach

Figure 4.2. Condition number of A for Frac3 (points), for varying δH , and the

corresponding slope lines. The results are shown for values of δU
δH

= .5, 1, 2, 3, 4.
The average slope is −2.15

24



4.3 – Numerical results

Figure 4.3. From the top, condition number of A, trace mesh size, hydraulic head
jump and flux mismatch norms, plotted against varying values of the ratio δU

δH
, for Frac3

with δH = 1.8 · 10−2 on the left and Frac36 with δH = 2.8 · 10−2 on the right.
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Non-conforming optimization approach

Figure 4.4. Average flux mismatch (top) and hydraulic head jump (bottom)
for Frac3, for varying δH , and the corresponding slope lines. The results are
shown for values of δU

δH
= .5, 2, 4.

Figure 4.5. Average flux mismatch (top) and hydraulic head jump (bottom)
for Frac36, for varying δH , and the corresponding slope lines. The results are
shown for values of δU

δH
= .5, 2, 4.
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Chapter 5

Joint approach

The analysis of the two approaches described in the preceding Chapters suggests that
combining them, the respective drawbacks could be ameliorated. Indeed, consider a
partition of the domain into groups of fractures. The conforming VEM approach can
be used within each group, while the optimization approach can be used to satisfy the
continuity conditions at the intersections between fractures belonging to different groups.
This joint technique could be used to exclude from the optimization short traces, which
are associated with a higher condition number of the KKT matrix A. On the other
hand it could be useful to exclude some traces from the conforming process to allow the
conforming meshes to have better properties near the traces. Furthermore, the use of
the optimization approach between fracture groups could still allow a natural parallel
implementation of the method. In the following, a possible formulation of this approach
is proposed and the core idea for a direct implementation analogous to that of Section
4.2 is given. Strategies for a useful decomposition of the domain in fracture groups are
not investigated here and are left for future discussion.

5.1 Optimal control formulation

Consider a partition of the domain Ω into groups of fractures Gi =
⋃

j∈Ji Fj, with
Ji ⊆ I the set of indices of the fractures composing the group Gi, for i ∈ G the fracture
groups’ indices, with G of cardinality #G. Let ΓGi

= ΓGiD ∪ ΓGiN be the boundary
of Gi, where ΓGiD =

⋃
j∈Ji ΓjD is the boundary with Dirichlet boundary condition and

ΓGiN =
⋃

j∈Ji ΓjN the one with Neumann boundary conditions. For each fracture group
Gi, i ∈ G, define

Sext
Gi

:= {S = (Fk ∩ Fl) : Fk ⊆ Gi, Fl /⊂ Gi}

the set of traces produced by the intersections of fractures in the group Gi with those
contained in other groups and

S int
Gi

:= {S = (Fk ∩ Fl) : Fk, Fl ⊆ Gi}

the set of intersections between fractures both in group Gi. Furthermore, let Ŝ int
Gi

⊆ S int
Gi

be a possibly empty subset of S int
Gi
, and ŜGi

:= Sext
Gi

∪ Ŝ int
Gi
. Define the sets

Sext
G :=

⋃
i∈G

Sext
Gi
, Ŝ int

G :=
⋃
i∈G

Ŝ int
Gi
, S int

G :=
⋃
i∈G

S int
Gi
, ŜG :=

⋃
i∈G

ŜGi
.
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Let also F (S,−) and F (S,+), with S ∈ S int
G , denote the two fractures, both belonging

to the same group, generating the trace S. Define the spaces

VGi
= H1

0 (Gi) =

{
v ∈

∏
j∈Ji

Vj : (v|F (S,−)
)|S = (v|F (S,+)

)|S , ∀S ∈ S int
Gi

\ Ŝ int
Gi

}

and

V D
Gi

= H1
D(Gi) =

{
v ∈

∏
j∈Ji

V D
j : (v|F (S,−)

)|S = (v|F (S,+)
)|S , ∀S ∈ S int

Gi
\ Ŝ int

Gi

}
,

so that for each group Gi, i ∈ G, the hydraulic head is

HGi
=
∏
j∈Ji

Hj ∈ V D
Gi
.

Analogously to the procedure of Section 4.1, the problem of flow on a group of fractures
Gi can be stated, ∀i ∈ G, in a weak form multiplying equation 1.1 by a function v ∈ VGi

and integrating over Gi, obtaining,

Find HGi
∈ V D

Gi
s.t.∑

Fl⊆Gi

∫
Fl

K l∇Hl∇v|Fl
dΩ−

∑
S∈Sext

Gi

∫
S

s
∂HGi

∂νGi
S

{
v|S dΓ

−
∑

S∈Ŝint
Gi

∑
∗∈{−,+}

∫
S

t
∂HF (S,∗)

∂ν
F (S,∗)
S

|

v|S dΓ =

=
∑
Fl⊆Gi

∫
Fl

Qlv|Fl
dΩ +

∑
Fl⊆Gi

∫
ΓlN

GlNv|ΓlN
dΓ, ∀v ∈ VGi

,

(5.1)

where the directional derivatives are meant along a unit vector co-normal to the given
trace S, lying in the plane of the appropriate fracture.

For each trace S ∈ Sext
Gi

, given by the intersection of two fractures, one belonging to
Gi and the other to a different group Gj, define the control variables

US
Gi

∈ US, US
Gj

∈ US,

with US := H− 1
2 (S) as in Section 4.1. For each trace S ∈ Ŝ int

G , which is given instead by
the intersection of the two fractures F (S,−) and F (S,+), both belonging to Gi, define
the control variables

US,−
Gi,int

∈ US, US,+
Gi,int

∈ US.

Define the spaces

U ŜGi =

 ∏
S∈Sext

Gi

US

×

 ∏
S∈Ŝint

Gi

(US × US)

 , Û =
∏
i∈G

U ŜGi .
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5.2 – Discrete formulation

For each fracture group define

UGi
=

 ∏
S∈Sext

Gi

US
Gi

×

 ∏
S∈Ŝint

Gi

(US,−
Gi,int

× US,+
Gi,int

)

 ∈ U ŜGi .

Define also
Û =

∏
i∈G

UGi
∈ Û .

The functional J(U) introduced in 4.7 is now redefined as

Ĵ(Û) =
1

2

∑
S∈Sext

G

(∥∥HGi
(UGi

)|S −HGj
(UGj

)|S
∥∥2
HS +

∥∥∥US
Gi
+ US

Gj
− αΛHS

(
HGi

(UGi
)|S +HGj

(UGj
)|S
)∥∥∥2

US

)
+

1

2

∑
S∈Ŝint

G

(∥∥∥∥[HGi
(UGi

)|F (S,−)

]
|S
−
[
HGi

(UGi
)|F (S,+)

]
|S

∥∥∥∥2
HS

+

∥∥∥∥US,−
Gi,int

+ US,+
Gi,int

− αΛHS

([
HGi

(UGi
)|F (S,−)

]
|S
+
[
HGi

(UGi
)|F (S,+)

]
|S

)∥∥∥∥2
US

)
,

(5.2)

where HS := H
1
2 (S) as in Section 4.1 and the indices i, j ∈ G used in the sums are

those of the appropriate fracture groups containing the given trace S.
The constraints for the optimization of Ĵ(Û) are given by the field equations on each

fracture group, expressed in 5.1, with the definitions

US
Gi

:=

s
∂HGi

∂νGi
S

{
+ αHGi |S , S ∈ Sext

G ,Gi ⊃ S,

US,∗
Gi,int

:=

t
∂HF (S,∗)

∂ν
F (S,∗)
S

|

+ α
[
HGi |F (S,∗)

]
|S
, S ∈ Ŝ int

G ,Gi ⊃ S, ∗ ∈ {−,+},

where α > 0.

5.2 Discrete formulation

Each group of fractures Gi can be discretized through a conforming mesh, constituted
by the set of polygons TGi,δ = T VEM

Gi,δ
∪ T FEM

Gi,δ
as done in Section 3.2 for the full domain.

The traces involved in the conforming process on Gi are the ones in the set S int
Gi

\ Ŝ int
Gi
.

The resulting finite dimensional spaces, with order k = 1, are

V 1
Gi,δ

=
{
v ∈ VGi

: v|EVEM
∈ V VEM

1 (EVEM) ∀EVEM ∈ T VEM
Gi,δ

,

v|EFEM
∈ V FEM

1 (EFEM) ∀EFEM ∈ T FEM
Gi,δ

}
V D,1
Gi,δ

=
{
v ∈ V D

Gi
: v|EVEM

∈ V VEM
1 (EVEM) ∀EVEM ∈ T VEM

Gi,δ
,

v|EFEM
∈ V FEM

1 (EFEM) ∀EFEM ∈ T FEM
Gi,δ

}
.
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For each trace S ∈ Sext
Gi

, a mesh T S
δ,Gi

can be considered, together with the associated

discrete space W S
δ,Gi

⊂ L2(S), while, for each trace S ∈ Ŝ int
Gi
, define the two meshes T S,−

δ,Gi

and T S,+
δ,Gi

, along with the associated discrete spaces W S,−
δ,Gi

⊂ L2(S) and W S,+
δ,Gi

⊂ L2(S).
A similar procedure to that of Section 4.2 can then be followed, where the spaces for the
fracture groups fulfill the function of the discrete spaces on single fractures, and some
modifications are needed to adapt the method to the discrete spaces for the traces.
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Chapter 6

Conclusions

In this work, the problem of the distribution of the hydraulic head of a fluid in a Discrete
Fracture Network, modeled as intersecting plane polygons, is considered. Two existing
numerical approaches to the computation of the solution are discussed. One is based on
a mesh which conforms to the traces and employs a VEM discretization, while the other
requires the minimization of a suitable functional constrained by the field equations on
fractures, discretized with meshes that do not conform to the traces. Numerical results
of first order implementations of the two methods are presented. The numerical tests of
the non-conforming optimization approach showed that the condition number of the
matrix of the resulting system depends strongly on the length of the mesh segments
on the traces, relative to the fractures’ mesh size, causing problems for networks with
very short traces. The comparison with the conforming VEM approach revealed that
the optimization approach results in a linear system with worse conditioning, while
achieving a similar level of accuracy. A joint approach is proposed, aimed at excluding
short traces from the optimization process and difficult geometries from the conforming
meshes, while retaining a structure similar to the one of the optimization approach.
Formal results about the joint formulation and numerical testing of the method are not
yet discussed.
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