
Politecnico di Torino

Mathematical Data Science Engineering
A.Y. 2023/2024

OD to detect transitions between
time series segments

Master’s Degree Thesis

Supervisors:
Luca CAGLIERO

Author:
Ilaria ZERBINI

November 13, 2023

Summary

Time series data, prevalent across scientific studies, captures the temporal evolution
of phenomena such as sports activities, weather patterns, and health conditions. The
fundamental task of classifying these data hinges on identifying statistical properties
that can be used to predict labels. This becomes particularly challenging with
long, multi-dimensional time series, leading to the necessity of a previous step, in
which the segmentation into sub-series is done. This research focuses on recognizing
transitions between segments characterized by homogeneous trends, a critical
aspect of segmentation. Transition points are often ambiguous, situated at the
juncture of two states, and identifying them poses unique segmentation challenges.
In this thesis work, we will address this task by exploring supervised and semi-
supervised outlier techniques, exploring the new task at hand. Our investigation
will begin by establishing the performance of supervised methods, introducing a
new tree ensemble method, coupled with a novel sampling strategy. Then, for the
transition recognition, we will leverage Time2State, an unsupervised state-of-the-art
contrastive learning architecture for time series segmentation. This will be expanded
by integrating an unsupervised outlier detection and a separation score-based
sorting criterion, addressing real-world semi-supervised scenarios. Additionally,
we will explore data transformation using Shapelets to represent time series data.
Thorough testing on real and synthetic datasets demonstrates that Time2State
alone struggles with precise transition recognition. However, the supervised pipeline
performs solidly, and the semi-supervised pipelines outperform the sole Time2State,
providing valuable domain insights.

ii

Acknowledgements

Questo elaborato segna l’epilogo di un percorso lungo cinque anni, un percorso che
ha portato con sè tante emozioni di ogni tipo.
Non è stato un viaggio semplice. Ho intrapreso questa sfida quasi a voler dimostrare
a me stessa che forse, con impegno e accanimento, posso arrivare dove vorrei.
Probabilmente è proprio questa testardaggine che mi ha portato dove sono ora.
Non è iniziato per una passione particolare, ma seguendo passo passo l’esempio di
mio zio Mario sin dalla scelta del liceo classico e dopo del Politecnico. Il suo ricordo
mi ha sempre accompagnato, ricordandomi che tutto il sudore versato, presto o
tardi, avrebbe dato i suoi frutti; e come sempre, aveva ragione lui.
Sarebbe difficile trovare un qualsiasi membro della mia famiglia da non ringraziare.
I miei genitori che hanno sempre avuto come priorità il mio benessere, che hanno
sempre creduto ciecamente in me e mai, mai hanno dubitato che potessi riuscire.
Mio fratello, forse il più orgoglioso di tutti, che mi ha sempre portato su un
piedistallo davanti a chiunque tranne che a me, per essere sicuro di infastidirmi,
come piace fare a lui. Il mio ragazzo Sato, che mi ha accompagnato per tutto
questo viaggio, sostenendomi nei momenti più difficili, quando lui era il solo a poter
comprendere la frustrazione e le gioie che provavo. Non per ultimi i miei zii e le
nonne che, ognuno a modo suo, mi hanno sempre ricordato quanto valessi, di essere
fiera e camminare a testa alta.
Non so se a posteriori farei le stesse scelte, non concludo questa avventura senza
rimpianti, ma sicuramente sono felice di poter dire a tutti coloro che in me ci hanno
creduto dall’inizio: "Ce l’ho fatta".
Quasi dimenticavo, i ringraziamenti più sentiti vanno a Melo, il mio cagnone, che
è sempre stato lì, vicino a me, nelle notti di studio, nei pianti e nelle gioie più
grandi.

iii

Table of Contents

List of Figures vii

1 Introduction 1

2 Background Knowledge 4
2.1 What is a Time series . 4
2.2 Machine Learning . 5

2.2.1 Supervised Learning . 6
2.2.2 Unsupervised Learning . 6
2.2.3 Semi-supervised Learning 8

2.3 Performance Measures for Binary Classification tasks 9
2.3.1 Confusion Matrix . 9
2.3.2 Precision and Recall . 10
2.3.3 The Precision-Recall Trade off 13

3 State of the Art methods for Outlier detection and Time Series
Segmentation 14
3.1 Outlier Detection . 14

3.1.1 Local Outlier Factor . 15
3.1.2 Isolation Forest . 17
3.1.3 One class SVM . 17
3.1.4 Matrix Profile based method: DAMP 18

3.2 Time Series Segmentation and Transition recognition 20
3.2.1 Time2State . 21

4 Presented approaches 28
4.1 General outline . 28
4.2 Fully unsupervised approach . 29
4.3 The proposed semi-supervised approach 30

4.3.1 Feature engineering trough Shapelets Transform 31
4.4 The supervised approach . 34

v

5 Experiments’ design 37
5.1 The Design . 37

5.1.1 Datasets . 37
5.1.2 Ground Truth . 38
5.1.3 Features and Hyperparameters 41

5.2 Explaining Experiments . 44
5.2.1 Supervised . 44
5.2.2 Unsupervised . 45
5.2.3 Semi-supervised . 48

6 Experiments 50
6.1 Unsupervised . 50
6.2 Supervised . 55
6.3 Semi-supervised approach . 59

6.3.1 Point-wise granularity . 59
6.3.2 Segment-wise granularity . 62

7 Conclusions and Future’s works 65
7.1 Conclusions . 65
7.2 Future’s work . 66

Bibliography 67

vi

List of Figures

1.1 The image shows an ECG recording a case of Tonic-clonic Seizure
[45], during which it is possible to identify three sub series linked to
three more specific activities. 2

1.2 High level summary of the new pipelines proposed in this work . . . 3

2.1 Example of time longer multivariate time series, split into its sub-
sequences. The various class clearly show different characteristics
[3]. 5

2.2 Summary scheme which shows the differences between unsupervised
and supervised learning[4] . 7

2.3 Example of semi-supervised scenario, in which we have a few labelled
samples, while the majority is unlabelled [41] 8

2.4 Example of confusion matrix [12] 10
2.5 Visual example of how recall and precision are computed [22] 12
2.6 A classic precision-recall plot [1] 13

3.1 Graphical example of the outlier score of each point [18] 16
3.2 Graphical example of the early split done in the trees which separates

the outliers [16] . 17
3.3 In the figure is shown an explanatory picture about the definition of

margin for algorithms in svm’s family. The support vector are used
to slit the different classes [34] . 18

3.4 Comparison between the class bounds for five datasets, found by the
different algorithms . 19

3.5 Example of the application of the matrix profile onto a time series
recording an ECG. It can be seen that to the real discord sub-
sequence is associated the maximum value in the matrix profile
[44] . 20

3.6 Simple graphical review of what change points are for the basic
analysis [48] . 21

vii

3.7 The training process of Time2State involves several rounds. In each
training round, Time2State randomly selects N consecutive windows
M times. It then improves the encoder by simultaneously reducing
the overall distance between samples within the same state and
increasing the overall distance between samples from different states
[3] . 23

3.8 Explanatory figure of the detection phase of Time2State [3] 23
3.9 In the figure is shown the structure of the encoder. In (a) are shown

three consecutively arranged dilated causal convolutions. The lines
connecting each sequence represent their computational relationships.
The solid red lines emphasize the dependency graph for calculating
the final value of the output sequence, demonstrating that no infor-
mation from future time points in the input time series is utilized in
this computation. Meanwhile in (b) there’s the composition of the
i-th layer of the chosen architecture [42] 26

3.10 Embedding space learned by LSE-Loss. Points of the same color
represents windows from the same state. Instead, the gray points
stands for windows that span two states. Hence, the trajectories of
gray points imply the transition between states [3] 27

4.1 Example of the extraction process of the new transitional class . . . 29
4.2 Summary of the first semi-supervised pipeline proposed 31
4.3 Summary of the second pipeline proposed, which employes shapelets

transform . 34
4.4 First part of the pipeline regarding the new sampling strategy tested 35
4.5 Second and final part of the sampling pipeline 36

5.1 Table containing the specifics of the dataset used for the analysis . . 38
5.2 The two plots show a segment of ActRecTut data from its first

channel. In the one below, we have colored each point depending
on its state, meanwhile, in the other one we have added the new
transitional points, extracted from the GT, and highlighted them in
red. 40

5.3 Graphical example of the criteria for the new ground truth 40
5.4 Example of ideal-case scenario. Here the three classes are well

separated, except for a few samples which stands in between the
sets. These ones represents the ideal-transitional points. 41

5.5 Follow up scenario with respect to the previous figure. In here the
transitional points are set as the forth class. 42

viii

5.6 Plot of the first channel in ActRecTut. The blue points are the
"normal" ones, while in red are highlighted the transitional points
following the ground truth . 46

5.7 Plot of the first channel in ActRecTut. The blue points are the
"normal" ones, while in red are highlighted the transitional points
predicted by Time2State. Comparing the result with the previous
figure, the difference catches the eye. 47

5.8 Plot of a section of the first channel in ActRecTut. With this figure
it is possible to notice not only the difference in the position of the
outliers predicted by Time2State, but also in the quantity. 47

6.1 Resulting recall obtained by applying Time2State to ActRecTut and
Synthetic datasets. For the latter the mean is shown, while the
segment in black signals the standard deviation associated. 51

6.2 Resulting precision obtained by applying Time2State to ActRecTut
and Synthetic datasets. For the latter the mean is shown, while the
segment in black signals the standard deviation associated. 51

6.3 Resulting recall obtained by applying Local Outlier Factor to Ac-
tRecTut and Synthetic datasets, fixing contamination = 0.14. For
the latter the mean is shown, while the segment in black signals the
standard deviation associated. 52

6.4 Resulting precision obtained by applying Local Outlier Factor to
ActRecTut and Synthetic datasets, fixing contamination = 0.14. For
the latter the mean is shown, while the segment in black signals the
standard deviation associated. 53

6.5 Resulting recall obtained by applying Isolation Forest to ActRecTut
and Synthetic datasets, fixing contamination = 0.14. For the latter
the result was a blank mean of 0 with only a minimum standard
deviation associated. 53

6.6 Resulting precision obtained by applying Isolation Forest to ActRec-
Tut and Synthetic datasets, fixing contamination = 0.14. For the
latter the result was a blank mean and standard deviation of 0. . . 54

6.7 Resulting recall obtained by applying One-Class SVM to ActRecTut
and Synthetic datasets, fixing contamination = 0.14. For the latter
the result was a blank mean and standard deviation of 0. 54

6.8 Resulting precision obtained by applying One-Class SVM to ActRec-
Tut and Synthetic datasets, fixing contamination = 0.14. For the
latter the result was a blank mean and standard deviation of 0. . . 55

6.9 Different values of recall obtained by applying Random Forest, Gra-
dient Boosting and our new approach onto ActRecTut. For all the
methods we have fixed Max_depth = 7. 56

ix

6.10 Different values of precision obtained by applying Random Forest,
Gradient Boosting and our new approach onto ActRecTut. For all
the methods we have fixed Max_depth = 7. 56

6.11 Different values of recall obtained by applying Random Forest, Gra-
dient Boosting and our new approach onto the synthetic datasets.
For all the methods we have fixed Max_depth = 7. The results
shown are the mean ones. The segment present at the top of the
bins is the standard deviation associated. 57

6.12 Different values of precision obtained by applying Random Forest,
Gradient Boosting and our new approach onto the synthetic datasets.
For all the methods we have fixed Max_depth = 7. The results
shown are the mean ones. The segment present at the top of the
bins is the standard deviation associated. 58

6.13 The resulting recall obtained by implementing the semi-supervised
pipeline on the synthetic datasets is depicted. For this plot we
have fixed contamination = 0.19. The presented values represent the
mean across all the datasets for each experiment and their associated
standard deviation. As the required number of neighbors to classify
a point as "normal" increases, we observe a decreasing trend in
the corresponding recall. Furthermore, the inclusion of additional
samples in the top K appears to enhance the overall results. 59

6.14 The resulting precision obtained by implementing the semi-supervised
pipeline on the synthetic datasets is illustrated. For this plot we
have fixed contamination = 0.19. The values presented represent the
mean across all the datasets for each experiment and their associated
standard deviation. Interestingly, the trade-off between the number
of K samples considered and performance does not seem to apply
to precision, as a lower number of neighbors (K=150) yields better
results. 60

6.15 New values for the recall of the semi-supervised pipeline on the
synthetic datasets. We are still fixing contamination = 0.19 and
showing only the case of #neighbours = 19. The measure is com-
puted after incorporating the new information into the predicted
labels for the test set. "Recall_total_test" represents the recall
obtained by considering the entire test set, whereas "Recall_topK"
includes only the top K samples. The results represent the mean
of all the experiments conducted on the synthetic datasets and are
provided with their corresponding standard deviation. 61

x

6.16 New values for the recall of the semi-supervised pipeline on the syn-
thetic datasets. We are still fixing contamination = 0.19 and showing
only the case of #neighbours = 19. The measure is computed after
incorporating the new information into the predicted labels for the
test set. "Precision_total_test" represents the recall obtained by
considering the entire test set, whereas "Precision_topK" includes
only the top K samples. The results represent the mean of all the
experiments conducted on the synthetic datasets and are provided
with their corresponding standard deviation. 61

6.17 Comparison between the recall achieved by the our method before
(old_recall_topK) and after the usage of the information gained
(recall_total_test and recall_topK). In the plot we have fixed con-
tamination=0.19, #neighbours=19 and shown both K=[150 , 280]. . 62

6.18 Tabular results for precision obtained with the shapelets unsuper-
vised pipeline on ActRecTut. 63

6.19 Tabular results for recall obtained with the shapelets unsupervised
pipeline on ActRecTut . 63

6.20 Tabular results for recall obtained with the shapelets unsupervised
pipeline on the synthetic datasets. 64

6.21 Tabular results for precision obtained with the shapelets unsuper-
vised pipeline on the synthetic datasets. 64

xi

Chapter 1

Introduction

In all types of science-based studies, data is a common element. Everyone has
used a histogram or a scatter plot at least once. With the ever-increasing trend of
accumulating large amounts of data, time series are more present than ever in our
daily lives.
Most things, such as sports, weather, and even health conditions, present a strong
link with the flowing of time, permitting us to record the change in their status
in the form of time series [27]. This data mode is the most widely used, since it
permits to describe in a clear and comprehensible way, how a certain observed
phenomenon is evolving during the passage of time. Therefore, finding new ways to
approach and work with this kind of data representation, has become a necessity.
The most common task in time series analysis is classification [9], usually done by
identifying statistical and behavioral properties in the data. This allows to predict
the label of the specific series under study.
There are numerous tools [6] available for time series analysis, as this problem
has been extensively explored in recent years. Particularly, it is usual to end up
working with long multi-dimensional series, making this task even harder. This
comes from the necessity to first preprocess them, segmenting the series into shorter
sub-sequences, and then solving the classification task on those in an easier and
more significant way (Figure 1.1 shows an exemplary situation of the sort).

1

Introduction

Figure 1.1: The image shows an ECG recording a case of Tonic-clonic Seizure
[45], during which it is possible to identify three sub series linked to three more
specific activities.

Let’s consider a long time series that records the movements, such as the 3D
acceleration, of a person training in the gym. His activity can be divided into
sub-series, each labeled differently, such as "jumping," "doing plank," "running,"
and so on. In this scenario, we are placed before a choice in order to accomplish
the classification task: it is possible to either try to segment the series, aiming to
distinguish between these macro-activities, or the focus can be on recognizing the
moments in which the subject changes his state, without being concerned about
the specific activity he was performing.
The most delicate part in this analysis is surely the identification of the transitions
between states. These instants are cloudy, since they are on the verge of abandoning
the previous condition and on the edge of entering another one. Therefore, their
behavior and statistical properties have similarities to both classes.
No matter which we choose to address, we find ourselves before a complex task,
which becomes even harder when the data at our disposition isn’t periodic but
random or without a recognizable logic behind its change of states.
However, between the two, the segmentation task is surely more known, and some
literature and studies regarding it are already available [5]. Mainly, the methods
used in this field can be categorized as traditional or neural based ones.
The focus of this work is the recognition of transition between segments charac-
terized by homogeneous trends, aiming to employ supervised and semi-supervised
outliers techniques in order to recognize such transitions and, as a possible future
work, improving the results of the segmentation task.
The first step of our work consisted in exploring supervised techniques, which led
us to implement a new method based on trees ensemble, combined with a novel
sampling strategy.
Then, our analysis continues with a deep dive into the potential of Time2State
[3], an unsupervised state-of-the-art method used in the context of time series
segmentation. Thanks to the logical link between the two tasks, the algorithm can
be easily adjusted to solve both; after this first study, we aimed to find ways to

2

Introduction

enhance its performances, creating a more complex pipeline.
Hence, we tried to augment the Time2State workflow with unsupervised Outlier
Detection [47] algorithms and a sorting criterion based on separation score between
different state clusters.
The background for the latter is conceived as a semi-supervised scenario, in which
we find the predicted labels using Time2State on the series up to a certain point in
time, after which we are completely blind, losing the possibility to train our model.
We have also explored the possibility to transform the data using the Shapelets
[43], rewriting a series as the distance between its most characteristic shapes.
We have tested our pipelines on ActRecTut [30], a dataset about human activities,
and one hundred synthetic datasets.
The analysis conducted demonstrates that Time2State does not perform well when
it comes to recognizing transitions with a certain level of precision, proving the
necessity of finding new ways to tackle the problem at hand.
Moreover, the supervised pipeline obtained good and solid results, despite its
intrinsic simple architecture.
Finally, for the semi-supervised pipelines, the obtained results easily outclass those
of Time2State in the case of ActRecTut, and are better or equal to the synthetic
datasets, while also providing important domain information.

Figure 1.2: High level summary of the new pipelines proposed in this work

3

Chapter 2

Background Knowledge

2.1 What is a Time series
When dealing with a measurable phenomenon, in order to be able to capture
its behaviour, we usually register, choosing the desired temporal granularity, its
changes it time. We could be interested not only in how one of its characteristics
develops (univariate time series), but also how multiples ones do (multivariate time
series). In both cases chosen t=t0 as the starting time for our recordings, we define
the time series (TS) S as the sequence of observed changes in the phenomenon we
are studying. Each of these observations are indicated as xij, where i is the index
linked of the feature of the phenomenon we are measuring, and j is its temporal
index.
Therefore we will have also t=T as the last time index of the recordings, from
which we compute as T-t0 the length of the series.
As said earlier in the Introduction [1], the regular task linked to this data format is
classification; however, in our case we will consider TS longer than usual, such that
they can be further divided into shorter sub-series (for reference see Figure (2.1)).
To these sub-sequences, also called states, we associate a simple event, occurrence
or activity which will represent our new aim in the intra-series classification.
Hence, given a TS S = {xi}T

i=0, with xi ∈ Rd≥1, the sub-sequence xi:j, t0 ≤ i <
j ≤ T , spans a certain state A ∈ C, where C is the set of all possible states for S,
if:

• the class A is recognized by distinguishable and repetitive patterns;

• all the samples xi:j contains belong to the same class A;

Therefore, to each sample xi of S, we associate a class si, calling s = {si|i ∈ N+, i ≤
T, si ∈ C} the list of the states spanned by the series.

4

Background Knowledge

Figure 2.1: Example of time longer multivariate time series, split into its sub-
sequences. The various class clearly show different characteristics [3].

2.2 Machine Learning
In recent years, we have witnessed the exponential growth of machine learning [39],
and its ever-increasing integration into our daily lives. The potential applications
of this technology in the field of engineering are virtually limitless, underscoring its
undeniable utility.
To be more precise, machine learning is a sub-field of Artificial Intelligence, another
prominent player in the modern era, which equips computers with the remarkable
capability to learn and adapt. The learning process, in particular, consists of two
distinct phases:

• We input data into the computer, enabling it to "learn" from it;

• With the knowledge acquired, and without the need for further specific pro-
gramming, the computer autonomously makes decisions, such as classifying or
predicting new unknown data;

This operation is fundamentally rooted in how humans themselves approach the
learning process: by identifying patterns, statistical properties, and adapting our
perspectives to new information.
Therefore, machine learning algorithms function as "data-driven" learners, specifi-
cally designed to process extensive datasets, uncover underlying structures, and
employ this knowledge to make decisions when confronted with new, unseen data.
Machine learning has given rise to various specialized branches, each tailored for

5

Background Knowledge

specific tasks. To gain a deeper understanding of the subjects covered in this work,
we will now briefly introduce three different forms of the learning background:
Supervised Learning, Unsupervised Learning, and Semi-supervised Learning.

2.2.1 Supervised Learning
Supervised Learning [40] is the first and most common approach used in machine
learning.
In this context, we give to the algorithm a training dataset X of length N, which
contains various samples xi, with 0 ≤ i ≤ N , and the label or groundtruth yi

associated to every observation. The "supervised" adjective comes from this last
specific, as the supervisor to the algorithm gives it the "solution" for a part for the
data, so that the model can tune itself during the learning process.
With the provided input, the algorithm starts its training phase, which consists in
finding a function f(X) that maps the training data X to its predicted labels Y,
trying to grasp their underlying connection, committing the least amount of errors
based on the known information.
This is an iterative process, such that the mapping function is adjusted during
each following run, led by the indications of a chosen loss function [20]. As the
name would suggest, the scope of this function is "punish" the algorithm whenever
it wrongly labels a sample, encouraging it to go towards the right solution.
An interesting feature of this approach, is that it can be adapted to both classifica-
tion and regression tasks; moreover there is a limitless list for loss functions, which
can also be made ad-hoc for the type and distribution of the data or the task at
hand.
Some notable representatives of this class are: Artificial Neural Network [10],
Logistic Regression [19], Decision Trees [14] and Support Vector Machines [26].

2.2.2 Unsupervised Learning
Unsupervised learning [28] can be viewed as the polar opposite of the aforemen-
tioned case, as its fundamental premise revolves around being "unsupervised".
Specifically, in this context, we provide the algorithm solely with the data X, omit-
ting the associated ground truth. Consequently, it does not depend on knowledge
derived from prior analysis conducted on labeled data.
Given this background, in the best-case scenario, for the same data X and task,
these algorithms are expected to perform less effectively or equally as compared
to supervised learning methods. On the flip side, while unsupervised learning
might not match the performance of supervised methods in terms of predictive
accuracy, it offers the advantage of requiring minimal expert intervention, making
it an essential tool in various real-world applications.

6

Background Knowledge

Usually we apply this algorithms when doing:

• ASSOCIATION RULES [11]: We explore the dependencies between data items
and map their results in a way that suggests increased profitability when these
items are considered together. An example of this is the Apriori Algorithm
[37];

• CLUSTERING [38]: This approach attempts to organize given data points
into sets where the elements within each set share specific statistical properties.
Notable algorithms for clustering include DBSCAN [13], K-means [17], and
Spectral Clustering [25];

• ANOMALY DETECTION: The goal here is to identify data points that deviate
from the norm, meaning they are outliers in our data distribution. Algorithms
like Local Outlier Factor [18] and Isolation Forest [16] are commonly employed
for this purpose

Hence, unsupervised learning, in stark contrast to supervised learning, operates
without the luxury of ground truth data.
It is a domain of machine learning where algorithms are designed to uncover hidden
patterns and relationships within datasets, making it particularly useful in scenarios
where labeled data is scarce or non-existent.

Figure 2.2: Summary scheme which shows the differences between unsupervised
and supervised learning[4]

7

Background Knowledge

2.2.3 Semi-supervised Learning

Semi-supervised learning [29], also called weak supervision, occupies the middle
ground between the two previously discussed approaches.
During the training phase, we supply the algorithm with a dataset X that is not
fully labeled, aiming to extract the latent properties of the observations. By doing
so, we address the challenge of obtaining or creating a sufficiently large labeled
dataset, while simultaneously enhancing the performance of simpler unsupervised
algorithms.
This approach is particularly valuable when we have access to only a limited
number of labeled samples but have abundance of unlabeled data. One common
scenario where semi-supervised learning shines is in the realm of Natural Language
Processing [21].
In NLP, it is often impractical or too costly to manually label vast amounts of text
data. Semi-supervised learning allows us to make the most of the labeled data
we do have, along with the abundance of unlabeled text, to build effective models
for various language-related tasks. This approach strikes a balance between the
supervised and unsupervised methods, making it a valuable tool in scenarios where
labeled data is scarce, but leveraging unlabeled data can significantly improve
model performance.

Figure 2.3: Example of semi-supervised scenario, in which we have a few labelled
samples, while the majority is unlabelled [41]

8

Background Knowledge

2.3 Performance Measures for Binary Classifica-
tion tasks

In binary classification tasks, evaluating the performance of a machine learning
model is paramount for gauging its effectiveness in making predictions. In particular,
the confusion matrix[12], often referred to as Error matrix, is a vital tool in this
process. It provides a structured framework to systematically analyze the model’s
predictions and compare them to the ground truth labels.
The confusion matrix is also the starting point used to compute and create numerous
measures used in machine learning. Those measures permit us to better understand
how our approach is performing, focusing on specific tasks and aspects, and
permitting us to get the full picture of its flaws and strengths.
For the purpose of this work, we relied on two specific indexes: Precision and Recall.
These metrics provide a nuanced perspective on a model’s ability to make accurate
positive predictions and capture all positive instances.
Therefore, thanks to them, data scientists can make informed decisions regarding
the model’s suitability for a given task and the trade-offs between minimizing false
alarms and capturing all relevant positive cases.

2.3.1 Confusion Matrix
The confusion matrix [12] plays a pivotal role in evaluating binary classification
models. It is composed of four primary elements: true positives, true negatives,
false positives, and false negatives. Each of these elements holds specific meaning
in the context of assessing model performance.
For binary classification, it consists in a 2x2 matrix that summarizes the classifica-
tion results, composed as follows:

• True Positives (TP): These are the cases where the model correctly predicted
a positive class when the actual class was positive.

• True Negatives (TN): These are the cases where the model correctly predicted
a negative class when the actual class was negative.

• False Positives (FP): These are the cases where the model incorrectly predicted
a positive class when the actual class was negative. Also known as Type I
errors.

• False Negatives (FN): These are the cases where the model incorrectly predicted
a negative class when the actual class was positive. Also known as Type II
errors.

9

Background Knowledge

Figure 2.4: Example of confusion matrix [12]

2.3.2 Precision and Recall
Precision is a metric that focuses on the accuracy of positive predictions made by
a model. It quantifies the proportion of true positive predictions in comparison to
all positive predictions generated by the model. Achieving a high precision score is
crucial for tasks where false positives can have substantial consequences, such as
medical diagnoses and fraud detection.
It is calculated as the ratio of true positives to the total number of positive
predictions made by the model:

Precision = TP

(TP + FP)

A high precision score indicates that when the model predicts the positive class, it
is likely to be correct, minimizing false alarms. However, precision does not account
for missed positive cases, making it crucial to consider it in conjunction with recall.
Meanwhile the recall, often referred to as sensitivity or true positive rate, is a metric
that emphasizes a model’s ability to capture all positive instances. It measures the
proportion of true positive predictions in relation to all actual positive cases.
High recall is desirable in scenarios where missing positive cases can have critical
implications, such as search and rescue operations, but it may also lead to higher
false alarms if precision is low.

Recall = TP

(TP + FN)
10

Background Knowledge

For the purpose of this work, we’ve selected these measures as indicators of
performance for our algorithms for two main reasons:

• We aim to identify the greatest number of positive samples, which, in our task,
constitute the minority class. Therefore recall suits the task at hand;

• Additionally, we aim to avoid mislabeling negative samples as positives, as
this could provide crucial information about other positive samples. Hence,
we seek certainty in labeling samples as positives, which can be monitored by
precision;

11

Background Knowledge

Figure 2.5: Visual example of how recall and precision are computed [22]

12

Background Knowledge

2.3.3 The Precision-Recall Trade off
Precision and recall are often in tension with each other, meaning that improving
one can adversely affect the other.
Understanding this trade off is crucial when tuning models and making decisions
in real-world applications. Achieving an optimal balance between precision and
recall is context-dependent and requires a thorough understanding of the problem
at hand.

Figure 2.6: A classic precision-recall plot [1]

13

Chapter 3

State of the Art methods for
Outlier detection and Time
Series Segmentation

3.1 Outlier Detection
Outlier Detection, is a key machine learning task with numerous applications
in modern days, such as rare disease detection [49], social media analysis [50]
and fraud detection. Its objective is to identify samples in the data that deviate
significantly from the majority of the distribution [8, 46]. A clear overview of the
current state of the most promising approaches used in the field is provided in
"ADBench: Anomaly Detection Benchmark", by Songqiao Han et all. [51], where
the majority of the benchmarks are listed and compared in various background
conditions, from supervised to unsupervised.
Depending on the level of supervision used we have the following categories of
methods:

• UNSUPERVISED: These methods rely on assumptions about the distribution
of anomalies, such as supposing they are located in low-density regions. The
main distinction between the various approaches consists of differences in
these assumptions, decisions that can lead to varying performance depending
on how well these choices align with the real data. There are mainly two
subcategories:

1. Shallow methods: These methods provide better interpretability of the
results requiring no particular prior information on the data. In this work,
we will use three algorithms from this group: LOF, IForest, and OCSVM
[31];

14

State of the Art methods for Outlier detection and Time Series Segmentation

2. Deep Neural Network methods: These methods exploit complex archi-
tectures to autonomously discern anomalies based on inherent patterns
and irregularities within the data. Their strength lies in handling vast,
high-dimensional datasets efficiently, enabling the detection of anomalies
that might evade traditional methods. Moreover thanks to deep learning
techniques, these methods can adapt to various data structures, providing
a versatile solution. However, due to the intricate structure and substan-
tial parameter fine-tuning required, we’ve opted not to utilize them for
our current purpose;

3. Matrix Profile Based methods: These methods represent a stand as
a powerful tool in time series analysis, primarily employed for outlier
detection. They are based on the concepts of motifs and discords discovery
in a series. Their best feature is the swift computation of nearest neighbor
distances, which permits the precise identification of anomalies nestled
within time series data. In this work we have analyzed one algorithm
from this category, called DAMP [44];

• SEMI-SUPERVISED: Semi-supervised methods tries to efficiently use the
partially available labels, in order to also keep the ability to detect unseen
types of anomalies. For example some semi-supervised models are trained
only on normal samples, while are tested on anomalies that deviate from the
normal representations learned in the training process;

• SUPERVISED: These methods see the problem in a binary fashion, meaning
that we have something similar to a binary classification task. Thanks to
the accessibility of ground truth labels, supervised classifiers may identify
known anomalies at the risk of missing unknown ones. In this case, standard
classification approaches are used, as Random Forest or Neural network.

3.1.1 Local Outlier Factor
The main scope of the approach, called in short LOF, is finding anomalous data
points by measuring the local deviation of a given data point with respect to its
neighbours. It results to be effective in identifying anomalies in high-dimensional
datasets.
LOF operates on the principle of measuring the local density of data points within
a given dataset. In essence, it assesses how similar a data point is to its neighbours
by assigning an anomaly score to it, called Local Outlier Factor. It is local since
the anomaly score depends on how isolated the sample is with respect to the
surrounding neighborhood. More precisely, locality is given by k-nearest neighbors,
whose distance is used to estimate the local density. By comparing it to the local

15

State of the Art methods for Outlier detection and Time Series Segmentation

densities of its neighbors, one can identify samples that have a substantially lower
density, and label those as outliers.

Figure 3.1: Graphical example of the outlier score of each point [18]

16

State of the Art methods for Outlier detection and Time Series Segmentation

3.1.2 Isolation Forest
The Isolation Forest algorithm leverages the concept of binary trees and random
partitioning to separate anomalies from the majority of data points effectively. It
operates on the fundamental idea that anomalies are more "isolated" and require
fewer splits in the data to be separated from the rest. In contrast, normal data
points require more partitions to be isolated.
Therefore, the number of splittings required to isolate a sample is equivalent to
the path length from the root node to the terminating node. This path length,
averaged over a forest of such random trees, is the anomaly score given to each
point by the algorithm.

Figure 3.2: Graphical example of the early split done in the trees which separates
the outliers [16]

3.1.3 One class SVM
One-Class SVM is based on the principles of support vector machines, a class of
supervised learning algorithms used for classification and regression tasks. However,
the One-Class SVM focuses on the unsupervised task of anomaly detection, specifi-
cally designed for situations where labeled anomalous data is scarce or non-existent.
OCSVM attempts to find a hyperplane that maximizes the margin while containing
as many normal data points as possible. With "margin" (see Fig.(3.3)), we mean the
minimum distance between the samples of the classes, in our case two, separated.
Data points that fall outside this margin are considered anomalies.

17

State of the Art methods for Outlier detection and Time Series Segmentation

Figure 3.3: In the figure is shown an explanatory picture about the definition
of margin for algorithms in svm’s family. The support vector are used to slit the
different classes [34]

3.1.4 Matrix Profile based method: DAMP
As mentioned in previous sections, time series analysis is a broad field that encom-
passes various sub-study paths, thanks to the versatility of this data modality.
This work began by delving into existing techniques and subsequently exploring
new potential approaches for outlier analysis in time series data. One of the initial
challenges encountered was the precise definition of "outlier" because, depending
on the specific case, it can have different interpretations.
For starters, we have focused on one of Keogh et all. last work [44], in which the
definition of "Discord" is given; to fully introduce this new object, we first need to
define the concept of "Non-Self Match" in the TS context:

Definition 1 Given a time series X, and one of its sub-sequences xi:j of length M
starting at position i and a matching sub-sequence xk:j starting at k, then xi:j is a
NON-self match to xk:j if the distance between i and k is such that:

dik = |i − k| ≥ M

Meanwhile with Discord, we intuitively associate a sub-sequence of the series which
is inconsistent, or discordant, with the rest of it. To be more precise:

Definition 2 Given a time series X and one of its sub-sequences xi:j of length M,
is said to be a Discord for X, if the distance between xi:j and its nearest NON-SELF
MATCH is maximum.

18

State of the Art methods for Outlier detection and Time Series Segmentation

Figure 3.4: Comparison between the class bounds for five datasets, found by the
different algorithms

In [44] the authors introduce DAMP, an algorithm which computes for each
candidate query xi:j the distance between itself and every other non-self matching
sub-sequence of the TS, and puts the minimum distance found in a vector called
Matrix Profile. Therefore, finding the maximum value in the Matrix Profile leads
to the predicted Discord for the TS X.

19

State of the Art methods for Outlier detection and Time Series Segmentation

Figure 3.5: Example of the application of the matrix profile onto a time series
recording an ECG. It can be seen that to the real discord sub-sequence is associated
the maximum value in the matrix profile [44]

This kind of definition finds its applications mostly when dealing with TS in
which unusual behaviours are recorded (e.g. an ECG that records the moments
before and after an heart attack).
After a first focus on the possible applications of DAMP, we decided to move
forward, shifting substantially the background of our work by associating outliers
with the transitions between different states in TS. Because of this choice, the
discord’s case couldn’t be applied in an efficient way, being that the kind of outliers
we were searching for were intrinsically different: DAMP needs strong and sudden
changes, ones which don’t occur often, instead of gradual and recurring ones.
Therefore, in order to follow our new aim, it was necessary to find a new tool.

3.2 Time Series Segmentation and Transition
recognition

Let us consider a multivariate a time series X ∈ RN×M, where M ≥ 1 stand for
its number of channels while N for the number of samples. Moreover we suppose
that X is such that some of its characteristics change abruptly at some unknown
time indexes 1 < t1 < t2... < tL < N . This family of time indexes {ti}L

i=1, is called
"change points" [48], "transitional points" or even "cut points". The need to identify
these points has given rise to time series segmentation and transition recognition
tasks. For the latter, it constitutes the primary objective of the problem, and for
the former, it is a crucial step required to proceed with the analysis. Hence, there
exists a strong connection between the two.
Depending on the context, the number L of changes may or may not be known.
In cases where it is not known, it must also be estimated. In real-world scenarios,
this information is often missing, particularly when domain-specific knowledge is
lacking.
However, change point detection consists in choosing the best possible segmentation
T according to a chosen loss function L(T,X) which must be minimized.

20

State of the Art methods for Outlier detection and Time Series Segmentation

The task of cut point detection can be considered the cornerstone upon which
transition recognition and time series segmentation are built.
Despite potential confusion, transition recognition, as we intend it in this work, goes
a step beyond the sole change point detection task. It broadens the definition of
cut points to include not only the indices at which the changes occur but also those
immediately surrounding them. More on this will be explained in the following
chapters.
Meanwhile, the segmentation task incorporates a classification step for the newly
identified subsequences, with the aim of grouping them into sets with distinct
characteristics.

Figure 3.6: Simple graphical review of what change points are for the basic
analysis [48]

3.2.1 Time2State
In June 2023, Chengyu Wang et al. released a paper titled "Time2State: An
Unsupervised Framework for Inferring the Latent States in Time Series Data" [3].
In this paper, they introduced Time2State, a novel unsupervised algorithm capable
of finding a satisfactory segmentation for time series data with minimal domain
knowledge. In the field of time series segmentation, the objective is to identify

21

State of the Art methods for Outlier detection and Time Series Segmentation

hidden patterns in the data that recur in certain segments of the series. We refer to
these subsequences with similar features as ’states.’ Thus, without any instructions
regarding the number of possible states, their statistical characteristics, or any
other information, Time2State can achieve such segmentation with a high level of
accuracy for an unsupervised method.
Another feature that has elevated T2S to a state-of-the-art position in its field is
its versatility, allowing it to be applied in various domains.

General outline of Time2State

The main challenges which the authors had to surmount in order to achieve their
results were:

• Create and UNSUPERVISED and DOMAIN-FREE method: Clearly, the
challenge of finding a solution that doesn’t require prior knowledge about the
data’s characteristics, shape, and statistics is extremely demanding. Further-
more, the necessity of developing a solution applicable in any domain makes
it even more formidable;

• No information about the number of classes: Since there is no specific bound
on the number of states present, or at least possible, in the time series, the
algorithm must adapt during its learning process and self-learn the parameters;

• Scalability: Given the large size of the data we work with nowadays, ensuring
that the method is scalable is crucial;

The resulting algorithm itself contains two main phases: the training phase and
detection phase.
During the first one, which we can see summarized in Fig.(3.7), an encoder is trained
to learn the representation of the raw time series in an unsupervised and general
manner. The main observations and assumptions used for this implementation are
as follows:

• If we randomly select a sub-sequence from our time series, it is highly likely
that other sequences nearby, particularly those obtained by sliding the initial
window forward or backward with a step s, belong to the same class or state
as the first one;

• If we randomly select multiple sub-sequences from our time series, it is highly
probable that they belong to different states;

From these two observation, the authors introduced the Latent State Encoding
Loss (LSE), which we will cover in the next paragraph.
As for the detection phase, which is summarized in Fig.(3.8), once the encoder

22

State of the Art methods for Outlier detection and Time Series Segmentation

Figure 3.7: The training process of Time2State involves several rounds. In each
training round, Time2State randomly selects N consecutive windows M times. It
then improves the encoder by simultaneously reducing the overall distance between
samples within the same state and increasing the overall distance between samples
from different states [3]

is trained, a sliding window with a step size ’s’ traverses the entire time series.
During this process, the embeddings for each window are computed, allowing
the condensation of long series, often comprising multiple channels, into lower-
dimensional representations.
Finally, the cluster structure of the transformed data in the embedded domain is
identified, assigning each raw data point from the initial time series a label.

Figure 3.8: Explanatory figure of the detection phase of Time2State [3]

The LSE loss function

The Latent State Encoding relies on the assumption of data homogeneity, as we
expect that points or windows that are temporally close to each other are likely to
belong to the same state, while randomly selected ones are more likely to belong

23

State of the Art methods for Outlier detection and Time Series Segmentation

to different states.
Thanks to this characteristic, it becomes possible to construct an encoder that maps
our initial time series into a lower-dimensional embedded sequence using a sliding
window approach. Therefore, the encoder itself is represented as fenc : Rw∗d → Rz,
where w, d and z correspond to the window size, channel number, and dimension
of the embedding space, respectively.
With the newly transformed time series, we aim to identify a cluster structure in
the data.
During the encoding process a two-stage sampling process unfolds:

• INTER-STATE SAMPLING: the algorithm chooses randomly M non
consecutive windows of length w on the given TS. Their position is drawn
from a uniform distribution U(0,T-w-N), where T is the length of the TS. The
distribution is chosen such that the encoder can learn evenly the features of
the entire series. To each of these windows a different state is assigned;

• INTRA-STATE SAMPLING: this second step takes on from the last one,
since the algorithm extracts N samples for each of the previous states, sliding
M windows chosen in the last step, forward for N-1 times with in a step size 1.
For the assumptions introduced above, we will assign to these ones the same
class as the window from which they were "originated";

After showing the two sampling stages, it is now possible to analyze the true
LSE-Loss as:

LLSE = Lintra + Linter.

Where, in particular:

Lintra = α1

MØ
k=1

NØ
i=1

NØ
j=1,j<i

− log
3

σ(fenc(ok
i)T fenc(ok

j))
4

Linter = α2

MØ
k=1

MØ
l=1,l<k

− log
3

σ(−ct
kcl)

4
.

Regarding the various parameters in the two formulation we have:

• α1 = 2
M∗N∗(N−1) , which is used to average the similarity;

• α2 = 2
M∗(M−1) , which is used to averaged the similarity;

24

State of the Art methods for Outlier detection and Time Series Segmentation

• σ is the classic sigmoid function;

• ok
i is the sample found by sliding the k-th window obtained in the intra

sampling stage (so k<M) by i steps forward;

• The dot product fenc(xp)T fenc(q) corresponds to the computation of the simi-
larity [7]

• ck = 1
N

qN
i=1 fenc(ok

i) is the embedding center. It is used to ease the computa-
tional cost of the similarity;

Both components of the LSE-Loss serve distinct purposes. The "intra" component
aims to maximize the similarity between the representations of intra-state samples,
assuming that they belong to the same state. This encourages their representations
to be close in the embedding space.
Conversely, the "inter" component works to minimize the similarity between inter-
state samples, assuming that they belong to different states. This pushes their
representations apart in the embedding space.
It’s evident that this procedure can lead to three possible outcomes: true intra-state
samples, true inter-state samples, and false inter-state samples. This variability
arises because randomly selected windows may or may not belong to different classes,
and a sliding window might span different states. However, the true strength of
this loss function lies in the interplay between Lintra and Linter. The latter aims
to distance true inter-state samples, and in doing so, it won’t increase the intra
component. On the other hand, if it separates false inter-state samples Lintra will
increase.
Hence Lintra is, in a way, a counter-force which permits the algorithm to focus on
the true inter-state samples.

The Encoder

The selected encoder architecture is derived from the work "Unsupervised Scalable
Representation Learning for Multivariate Time Series" by Jean-Yves Franceschi et
all [42]. It consists of deep neural networks employing exponentially dilated causal
convolutions.
In contrast to conventional recurrent neural networks, which have been tailored
for sequential tasks, these networks are designed for scalability, enabling efficient
parallelization on GPUs.
Exponentially dilated convolutions, in comparison to full convolutions, excel at
capturing long-range dependencies at a constant depth. This is achieved by
exponentially expanding the network’s receptive field.
The model’s structure is founded on stacks of dilated causal convolutions, which

25

State of the Art methods for Outlier detection and Time Series Segmentation

map sequences to other sequences of the same length. Each output element i is
computed using only the values up to the i-th index of the input. The "causal"
aspect is evident in that, to compute the output for a given time t, only the
information up to time t is utilized, without depending on future knowledge.
In-depth, the architecture comprises layers constructed as a combination of causal
convolutions, weight normalizations, leaky ReLUs, and residual connections. Each
of these layers is associated with an exponentially increasing dilation parameter,
equal to 2i for the i-th layer. Ultimately, the resulting output is passed through
a global max-pooling layer that aggregates all temporal information into a fixed-
size vector. The encoder’s final output is a linear transformation of this vector,
culminating in a user-defined fixed size that is independent of the initial size.
For a clearer understanding of the structure, refer to Fig.(3.9) which summarizes
its different components.

Figure 3.9: In the figure is shown the structure of the encoder. In (a) are shown
three consecutively arranged dilated causal convolutions. The lines connecting
each sequence represent their computational relationships. The solid red lines
emphasize the dependency graph for calculating the final value of the output
sequence, demonstrating that no information from future time points in the input
time series is utilized in this computation. Meanwhile in (b) there’s the composition
of the i-th layer of the chosen architecture [42]

Embeddings visualization

In order to check if the whole process performed as foreseen, it is possible to
visualize, setting an appropriate number of resulting channels for the embeddings,
the outcome of the transformation of the TS.

26

State of the Art methods for Outlier detection and Time Series Segmentation

Figure 3.10: Embedding space learned by LSE-Loss. Points of the same color
represents windows from the same state. Instead, the gray points stands for
windows that span two states. Hence, the trajectories of gray points imply the
transition between states [3]

From this plot, the main idea of this work was conceived: rather than concen-
trating solely on segmentation tasks, we shifted our attention towards the clustering
or binary classification of individual data points within the series. The objective
of this classification is to address the challenging task of identifying transitions
between different states. Therefore, we define transition points as those samples
situated between two distinct classes:

Definition 3 Given a time series X and its set of possible states S, being "a" the
class associated to the observation xi, if xi−1 belongs to the class "b", such that a is
different from b, then xi is a central transition point.

For our purposes, in addition to identifying these "core" transition points, we also
assign the same label to the t points preceding it and the t-1 points following it,
where t is a specific parameter of our algorithm.
This choice is based on empirical knowledge that changes in state typically don’t
occur abruptly. To illustrate with an example, in the context of physical activities, if
a subject is transitioning from walking to running, the change can be either gradual
or more sudden, depending on the specific situation. Assigning the transitional
class label solely to the central point would not only contradict common sense but
would also make the task more challenging, as the central point and its closest
neighbors are indeed quite similar.

27

Chapter 4

Presented approaches

4.1 General outline

The starting point of this work was to study and testing the capabilities of
Time2State in tasks different from the segmentation, in order to test its per-
formances. In particular, the segmentation task is strongly linked to the recognition
of transition points, as defined in the previous chapter, since when a solution is
found for the first task, we have an answer to the other one.
Technically speaking, if our segmentation were perfect, or of really great quality,
we would have also have a good solution for the transition recognition. The true
hurdle when facing not ideal solutions, is that for the segmentation task, our focus
is on "big" portion of the series, hence since TS data in this context are usually
long ones, at least 103 samples, getting a few entries wrong or delaying a bit the
start of a new state, doesn’t really hurt the general performance of the algorithm.
Instead, when facing the binary classification of transitional/not transitional points,
these kind of imprecision really weights both on the resulting recall, which is our
most important performance measure, and precision of the algorithm. For tasks of
this kind, with highly non-balanced classes, the focus is on recognizing the highest
possible number of positive cases.
Therefore, we aim to have a high certainty about the validity on the points clas-
sified as positives (for us the transitional ones). In our case, being that we are
dealing with sequential data, having the right information about even just one
point, can give good clues about the other transition points, since, as we defined
above, not only the "central" point between the change of two states is considered
as transitional, but also t points before and t-1 after it.

28

Presented approaches

4.2 Fully unsupervised approach
To find a meaningful competitor for our approach, we initially explored fully
unsupervised methods. We briefly presented DAMP in the Introduction section of
this work in [1]. However, after conducting experiments on transition recognition,
we realized that the framework and the scope of its implementation were too
different from ours, making it unsuitable for our purposes.
As a result, we narrowed down our direct competitor to Time2State.
Since it is designed to solve segmentation tasks, we tried to see how well it would
perform in a linked area.
To adapt the algorithm to the transition recognition task, we followed the steps
outlined in Fig.(4.1):

• Apply T2S to the full time series;

• Recognize and save the cut points between state changes;

• Label as "transitional", hence positives, t points before and t-1 points after
such cut points;

• Label as "not transitional", hence negatives, all the other samples;

• Compute precision and recall considering this labelling as the predicted one;

Figure 4.1: Example of the extraction process of the new transitional class

We have chosen to compare our approach to this one mainly because if latter per-
formed significantly well, adding restrictions relying to a semi-supervised method,

29

Presented approaches

wouldn’t have had any sense.
Therefore we have considered it a lower bound, or at least the minimum perfor-
mances to achieve in order to find a meaningful algorithm.

4.3 The proposed semi-supervised approach
The input that inspired our approach is the visualization of the embeddings created
by T2S during its data labeling procedure. Specifically, we hypothesized that if
it were possible to create a cluster for each state detected by T2S, the transition
points would ideally fall outside or somewhere in between these clusters. This is
because those points share similarities with both the "departing" cluster and the
"arriving" one, indicating that they are characterized by statistics and features that
are close to, yet different from, both of the states between which the change is
occurring.
Based on this supposition, we set out to find a measure that could emphasize or
represent this condition. We primarily explored indices related to cohesion and the
quality of clusters, such as the silhouette index [24] and separation, a submeasure
used in silhouette.
In particular, we opted to work with the point-wise separation since it theoretically
aligned perfectly with our problem. This measure yields a low value when the
points we are considering have a minimal distance from a cluster to which they
do not belong, indicating poor separation from the other set. Conversely, if the
point in question is far from all other clusters to which it does not belong to, its
separation value will be high. Therefore, if a point is a transitional one, as per
our hypothesis, it should be located in the middle of two states, resulting in a
lower-than-usual separation value.
With that explanation, the approach we have taken does not strictly adhere to the
classical semi-supervised methodology because we never utilized ground-truth data
during our process.
However, we have chosen to classify it as semi-supervised because it relies on the
labels predicted by Time2States as "training data".
Hence, the pipeline followed, and summarized in Fig.(4.2) was:

• Taken a TS X, we split it into two, extracting a "train" and a "test" segment
(it would be recommended that in the train part, the majority, or better, all
the states which we could find in the TS are seen at least once);

• Apply Time2State to the training dataset extracting its labels. We will consider
them as "semi-ground truth" for the next steps;

• Using as a basis the clustering on the training set, we assign the labels to the
test set;

30

Presented approaches

• Given the temporary labels, we compute the point-wise separation of the test
samples;

• In order to recognize the transitional points, we sort the test in ascendant
order with respect to the separation scores;

• Recognize and save the cut points between state changes with respect to the
temporary label assigned before;

• Label as "transitional", hence positives, t points before and t-1 points after
such cut points;

• Label as "not transitional", hence negatives, all the other samples;

At this point, the pipeline splits in different branches with respect to the experiment
we have conducted.
Leaving out the ablation studies, the proposed approach continues as:

• Take the first k points in the new-sorted dataset;

• Apply unsupervised outliers detection algorithm, considering as outliers the
transitions, and obtain the predicted labels

• Compute precision and recall using such labels

Figure 4.2: Summary of the first semi-supervised pipeline proposed

4.3.1 Feature engineering trough Shapelets Transform
In recent years, the field of time series analysis has witnessed significant advance-
ments in techniques aimed at extracting meaningful patterns and features from
time-ordered data. One such innovation that has gained considerable attention is
the concept of "shapelets". Shapelets are defined in [43] as “subsequences that are
in some sense maximally representative of a class”.
Intuitively, in the context of a binary classification setting, a shapelet is considered

31

Presented approaches

discriminant if it is predominantly present in most samples of one class and consis-
tently absent from sequences of the other class. To assess the degree of presence,
when given a time series X, one employs shapelet matches:

d(x, s) = mint||xt:t+L − s||2

where :

• s is the shapelet considered;

• L is the length of the shapelet s;

• xt:t+L is the subsequence of X, which goes from temporal index t to t+L;

If the distance, denoted as d(x, s) [43], is sufficiently small, we can infer the presence
of the shapelet s in the time series or a closely related subsequence.
Therefore, shapelets can be defined as discriminative subseries or subsequences
within a time series that capture essential characteristics and patterns, serving as
representatives of the entire time series.
In a classification context, the objective is to identify the most significant shapelets
based on labeled time series data. These shapelets can be either extracted from
the training dataset or learned through gradient descent [43].
Moreover, shapelets have several useful characteristics:

• Variable Length: Unlike fixed-length subsequences, shapelets can have
varying lengths to capture different patterns within the data. This adaptability
is crucial for handling diverse and complex time series;

• Position Invariance: Shapelets are position-invariant, meaning that they
can occur at different positions within a time series while still carrying the
same discriminatory information.

• Interpretability: Shapelets provide a degree of interpretability to the mod-
eling process. Researchers and data scientists can gain insights into which
specific features or patterns are influential in the classification or clustering
task.

• Reduced Dimensionality: Shapelets can reduce the dimensionality of time
series data, making it computationally more efficient while preserving the
most relevant information.

32

Presented approaches

The concept of shapelets finds applications in a wide range of fields, including
Medical Diagnostics, Environmental Monitoring, and even Financial Time Series
Analysis [43].
In this study, we utilized this tool to restructure subsequences within the time series,
achieving both dimensionality reduction and the extraction of a representation
containing more information than the raw series data.
Specifically, after partitioning our data into training and test sets, we conducted a
search for the top four shapelets of length G. The choice of G was made to be long
enough to capture potential sequence behaviors while remaining shorter than the
average duration of a state.
Subsequently, we adjusted the data granularity used for analysis. Instead of working
with each individual time unit sample, we aggregated M of them into a subsequence.
Following this transformation, we restructured each of these subsequences based
on their distance from the four previously identified shapelets.
After this, the procedure is similar to the one followed by the previous section:

• Apply Time2State to the training dataset extracting its labels. We will consider
them as "semi-ground truth" for the next steps;

• Using as a basis the clustering on the training set, we assign the labels to the
test set;

• Given the temporary labels, we compute the point-wise separation of the test
samples;

• In order to recognize the transitional points, we sort the test in ascendant
order with respect to the separation scores;

• Recognize and save the cut points between state changes with respect to the
temporary label assigned before;

• Label as "transitional", hence positives, t points before and t-1 points after
such cut points;

• Label as "not transitional", hence negatives, all the other samples;

• Take the first k points in the new-sorted dataset;

• Apply unsupervised outliers detection algorithm (from the PYOD library),
considering as outliers the transitions, and obtain the predicted labels;

• Compute precision and recall using such labels;

In Fig.(4.3) there whole pipeline is summarized.

33

Presented approaches

Figure 4.3: Summary of the second pipeline proposed, which employes shapelets
transform

4.4 The supervised approach
As one might expect, we initially implemented a supervised approach to see how
this more advanced techniques would perform. However, we soon discovered that
simply applying algorithms such as Gradient Boosting [15] and Random Forest [23]
was insufficient due to the complexity of the task at hand. Since our primary focus
wasn’t finding the best-suited supervised solution and we aimed for a method that
required minimal fine-tuning and had a shorter computational time, we decided to
explore alternative approaches.
The methods mentioned earlier faced time constraints, especially when applied to
time series data with at least 10,000 entries. Consequently, we shifted our focus
from the method itself to the "sampling strategy" employed. As discussed in the
earlier sections, supervised methods excel in their ability to learn from the provided
training data. In a scenario with highly imbalanced classes, randomly selecting a
subset of the data for training could result in having no samples from the minority
class.
In an attempt to address these issues, we opted for a simple Decision Tree [14] as
the architectural choice and enhanced its performance with a customized train-test
splitting technique.
Our approach consisted of the following steps:

• We started with the time series data, denoted as X, and split it based on its
binary classes;

• Our objective was to create N sub-datasets from the original one, akin to the
principles of a Bootstrap method;

34

Presented approaches

• To maintain class imbalance, we applied extraction without replacement to
both classes, generating N subgroups comprised of randomly selected samples
from each class;

• We hence generate N subgroups putting together the samples extracted from
both classes;

• Subsequently, we employed N-1 of these datasets as training sets for separate
decision trees, effectively training N-1 trees at this stage;

• Afterward, we used the trained trees to predict the class of our test set, which
corresponds to the Nth dataset generated;

• To make the final prediction, we conducted a majority vote across the N-1
trees for each sample;

It’s essential to note that we did not perform any grid search on the trees but solely
applied this bootstrap-like procedure, resulting in a significant improvement in our
results compared to the previous two methods.
The graph below summarizes our pipeline:

Figure 4.4: First part of the pipeline regarding the new sampling strategy tested

35

Presented approaches

Figure 4.5: Second and final part of the sampling pipeline

36

Chapter 5

Experiments’ design

Our experiments were organized with the primary goal of demonstrating the
necessity of an upgrade concerning Time2State. To achieve this, we initially
focused on identifying a well-performing and time-efficient supervised pipeline.
Subsequently, we collected the performance results obtained with Time2State.
Finally, we tested new approaches and conducted ablation studies.
In the following section, we will introduce the experimental design we have chosen
for this work in greater detail

5.1 The Design

5.1.1 Datasets
One of the most challenging obstacles that we had to overcome during our work
was, and still is, finding good and suitable datasets for testing our algorithms. Since
the "normal" or usual tasks in the field of time series analysis are classification and
regression, most datasets are generated or collected to satisfy their requirements
When dealing with segmentation tasks, we need longer time series that also exhibit
different and recognizable patterns. However, this requirement can be easily satisfied
by combining different shorter time series from the same collection. For example,
the UCR Time Series Classification Archive [35] has a rich collection of short time
series recording various phenomena (e.g., yoga, sports activities, etc.), which can
be concatenated creating a "longer" time series.
In particular, this solution also addresses another crucial problem: having the "right"
ground truth. Without careful consideration, it may not seem like a significant
issue, but finding datasets with a clear and certified indication of what state we
are in point-wise can’t be taken for granted. For example, when linking different
time series, we can simply use the class of the whole series as the one we are in

37

Experiments’ design

during its duration.
However, in our case, we are not merely interested in the succession of the states,
but we are focusing on HOW the transition is happening.
For this reason, we had to discard many good and rich datasets that are typically
used.
Unfortunately, we could only rely on two datasets, which were taken from the ones
used for Time2State:

• ActRectut [30]: This dataset contains acceleration data collected from sports
activities. For our purposes, the only suitable dataset of the collection was
the one regarding the subject’s walking. As said before, this dataset wasn’t
made for this purpose, but for mining frequent patterns, and hence there isn’t
enough labelled data regarding other activities;

• Synthetic [2]: In order to create this collection of 100 datasets, the authors
used TSAGen [2] to generate synthetic time series, each containing 5 states.
Moreover, the TS’ states have random duration and succession pattern;

Figure 5.1: Table containing the specifics of the dataset used for the analysis

5.1.2 Ground Truth
As mentioned above, we ultimately decided on using for the testing procedure a
combination of synthetic datasets and a real world one, called, ActRecTut [30].
Specifically, concerning the synthetic datasets, we conducted our tests on the entire
set of 100 datasets. The results for our procedure were determined by calculating
the mean and the standard deviation of the outputs to assess their variability.
We invested considerable effort into exploring different stylistic choices to determine
the most appropriate temporal granularity for our data and, consequently, how to
best assign its ground truth values. This step was crucial in our workflow since
we were adapting datasets originally designed for a specific task to a different one,
which inherently presents differences.
We explored two approaches, one involving data aggregation in a sliding window
fashion and the other retaining the data in its original form. Depending on the
case, we followed two different methods for labeling the data, always taking the

38

Experiments’ design

Ground Truth provided by the original authors as our starting point for these
transformations:

• POINT-WISE DATA: In this scenario, we made minimal alterations to the
original labels. However, we introduced the concept of "transitional points." As
a result, we established an additional state to represent those points located
in the midst of a label change. Consequently, we assigned this new label to
the t points before and after a state change:

Definition 4 Given a time series X, indexed by time instant t, if xi−1 belongs
to the class A and xi to the class B, with A=!B, i is the time index of a “cut
point”. To all the points xi−t:i+t will be assigned the class “transitional”.

In Figure(5.2) we show a graphic example of this procedure by plotting a piece
of ActRecTut dataset, first channel.

• WINDOWED DATA: In this approach, we opted to restructure the data
into sliding windows, leveraging the Shapelets transform technique as pre-
viously introduced. By doing so, we accomplished both dimensionality and
feature reduction. This is achieved through data aggregation (dimensionality
reduction) and expressing the new samples based on their distance from the
K most significant shapelets in the training set (feature reduction).
To elaborate, we initially divided our dataset into windows, each of a fixed
length M, with a stride of T. Subsequently, we split the dataset into training
and testing subsets. Then, we extracted the top K shapelets of length G from
the training data (where G must be shorter than M to effectively capture
recurring shapes in the subsequences). Finally, we have transformed the
samples using as new features the distance between the sample itself and each
of the shapelets found.
This transformation was applied to both the training and testing datasets,
following the guidelines outlined in the tslearn documentation [33].
We generated the new ground truth (New_GT) by adjusting the original
ground truth (GT). In this arrangement, when the last P points of a window
belong to class X, the entire window is assigned to class X:

Definition 5 Given a time series X, indexed by time instant t, and one of its
windows q = xi:i+M , the class which will be assigned to q, will only depend on
the label associated to its final P points. Hence the new ground truth assigned
to the data will follow the rule:

New_GT = GTM−P :M−P +#W indows

39

Experiments’ design

Figure 5.2: The two plots show a segment of ActRecTut data from its first channel.
In the one below, we have colored each point depending on its state, meanwhile, in
the other one we have added the new transitional points, extracted from the GT,
and highlighted them in red.

Figure(5.3) shows graphically the last procedure, considering M = 5 , P = 2
and len(Dataset) = 20 (we can find the number of windows as #Windows =
len(Dataset) - M +1).

Figure 5.3: Graphical example of the criteria for the new ground truth

40

Experiments’ design

5.1.3 Features and Hyperparameters

In addition to the Ground Truth discussion mentioned earlier, the features con-
sidered in the experiments also varied depending on whether we employed the
windowed data or point-wise data approach.
When using the original data granularity, we retained the features or channels
present in the data. To these, we introduced a unique element of our approach:
the "b_score"[36].
The "b_score" for a particular data point is computed as the minimum distance
between that point and a cluster different from the one it belongs to. The goal was
to demonstrate that this metric provides valuable information for our task. When
a sample point belongs to the transitional class, it implies significant similarities
with both the "leaving" and "arriving" sets. Ideally, we aim to have distinct and
separate label sets with transition points in between, as illustrated in Fig.(5.5).
In an ideal dataset scenario, where labels are well separated, as in Fig.(5.4), the
"b_score" (also known as separation) of these samples would be significantly lower
than that of regular samples. Thus, it would serve as an optimal, cost-effective
distinctive feature.
In the case of the windowed approach, as previously mentioned in the introduction
of the Shapelets transform method, we chose to restructure all samples based on
the top K shapelets identified in the training set. In addition to these three new
column features, we also included the "b_score," which was calculated after the
transformation, as it led to a slight improvement in the results.

Figure 5.4: Example of ideal-case scenario. Here the three classes are well
separated, except for a few samples which stands in between the sets. These ones
represents the ideal-transitional points.

41

Experiments’ design

Figure 5.5: Follow up scenario with respect to the previous figure. In here the
transitional points are set as the forth class.

Regarding the hyperparameters used in our various experiments, we made choices
to fix some while fine-tuning others. Specifically:

• Length of the subsequences (M): We set this parameter to 100, achieving
a balance between the average length of states and the obtained results;

• Duration of transition: The choice of this parameter depends on the selected
modality, whether windowed or not. For the former, we fixed it at 15, resulting
in a window of 30 entries, after also considering 10 and 20 as options. For the
latter, we set it to 20, while also testing 15. These selections strike a balance
between the logical definition of transition, which needs to be a fraction or
significantly smaller than the average state duration, and the results obtained;

• Length of the shapelets: This parameter’s value is based on the length of
the transition. We aim to recognize shapes that are more significant in terms
of duration compared to rapid state changes but shorter than the subsequences
we are considering. Therefore, we set this parameter to 40 (equivalent to
Duration of Transition × 2);

• Number of top shapelets to consider: We decided to fix this parameter
at 4 to achieve feature reduction while retaining a substantial amount of
information;

• Shifting parameter for GT (P): We chose to fix this parameter at 3, after
considering other options. This parameter represents the "delay" permitted for
the algorithm before recognizing the transition of a window to the new class;

42

Experiments’ design

• Algorithms hyperparameters: Details of the hyperparameters for each
algorithm will be discussed in the following chapter, where we introduce the
individual algorithms used;

• Top K samples, with respect to b_score: We will present the best results
obtained after fine-tuning this parameter, which was adjusted within the range
of 80 to 300;

43

Experiments’ design

5.2 Explaining Experiments
In order to better understand the experiments’ results which will be shown in the
next chapter, we dedicate this section to deeper introduce our methods.

5.2.1 Supervised
For the supervised case, we compared three different approaches, without digging
deeper into the fine tuning of the models, since this background wasn’t our focus.
Initially we tried out two plain techniques: Random Forest and Gradient Boosting.
We have decided to directly applying them doing a rapid grid search on the
parameters:

• Max_Features: The number of features to consider when looking for the
best split. This parameter changed with respect to the size of the dataset,
since we had a large disparity between ActRecTut and the Synthetic ones. We
tried out [1,2,3,4] for the latter, and [1,3,5,7] for the former;

• Max_Depth : Indicates the maximum number of nodes in the tree. We
tried out [4,5,6,7];

• N_estimators: The number of boosting stages to perform or the number of
trees in the forest. We fixed this parameter to 500;

In addition to these two methods, we also explored an ad-hoc ensemble method
that incorporates a specific sampling strategy.
The sampling strategy aims to address the challenge posed by working with an
exceptionally unbalanced dataset. While the datasets themselves are considerably
longer than usual, the occurrences of state changes are relatively infrequent. As a
result, the number of transitional points is notably lower compared to the "normal"
points. Consequently, there’s a risk of not having a sufficient number of transitional
points in the training set for our algorithm to effectively "learn" to recognize and
distinguish them.
Inspired by bootstrapping methods, we chose to implement an alternative sampling
technique, which we describe below:

• Given the whole dataset X, already made binary in its labels, find and store
in out_idx all the indexes of the outlier samples;

• Drawing without replacement we split into two equal parts out_idx, generating
out_train indices and out_test indices;

44

Experiments’ design

• We compute the number of training set that we will generate as Num_sets =
#normal_samples
#outlier_samples

;

• Then we repeat the following FOR Num_sets − 1 times:

– Draw without replacement N normal points, where N = # outlier data
samples;

– Add to these points the outliers in the training set;
– Add the new dataset into a the list Train_Datasets;

• After this loop, we create the test set stacking the remaining normal points
and the test outliers;

Having obtained the new train and test set, we proceeded to the learning step of
the our method. In particular we employed a simple classification tree as pivot for
the architecture.
As for the previous two methods, we tried out the same parameters, except for
N_estimators, since we didn’t require it.
The pipeline continues as:

• We repeat the following for Num_sets − 1 times:

– Train a classification tree using as training set the i-th dataset of Train_Dataset;
– Test the tree on the test set extracted during the sampling stage;
– Store the predicted classes in the matrix Vote;

• At the end of the loop, apply a majority voting on the matrix Vote, in order
to obtain the final predictions;

5.2.2 Unsupervised
Under the unsupervised case, we put put what could also be called the ablation
studies we conducted, since we tested out various methods applied on their own.
Among those methods we have:

• Time2state

• Local Outlier Factor

• Isolation Forest

• One-Class SVM

45

Experiments’ design

All of them had been directly applied on the dataset, without any previous inter-
vention.
For the last three, we have done a two parameter grid-search since we didn’t
have any domain knowledge and wanted to actually get the best result possible,
considering also the computational time required:

• Contamination: This parameter is common to all the three methods. It
represents the proportion of outliers in the data set. We have tried setting it
to [0.01 : 0.15] with a step of 0.01;

• n_neighbors (LOF) : Number of neighbors to use t for k neighbors queries.
We have tried setting it to [20 : 70] with a step of 5;

• n_estimators (IOF) : The number of base estimators in the ensemble. We
have tried setting it to [100, 200, 500, 1000];

• nu (OCSVM) : An upper bound on the fraction of training errors and a lower
bound of the fraction of support vectors. Should be in the interval (0, 1]. We
have tried setting it to [0.1 : 0.5] with a step of 0.07;

Regarding Time2State, we adhered to the standard choices made by the authors.
Unlike the previous three methods, in this case, we do not receive only a binary
classification as output but a state segmentation. Therefore, to obtain the prediction,
we had to convert it into a binary format, using the same procedure employed to
derive the new ground truth.
In Figure (5.6) it is shown an example of the ground truth plotting the first channel
of ActRecTut, while in Figure (5.7) the results obtained applying Time2State.
Meanwhile in the following two plots in Fig.(5.8, we show the same situation but
with a zoom in;

Figure 5.6: Plot of the first channel in ActRecTut. The blue points are the
"normal" ones, while in red are highlighted the transitional points following the
ground truth

46

Experiments’ design

Figure 5.7: Plot of the first channel in ActRecTut. The blue points are the
"normal" ones, while in red are highlighted the transitional points predicted by
Time2State. Comparing the result with the previous figure, the difference catches
the eye.

Figure 5.8: Plot of a section of the first channel in ActRecTut. With this figure it
is possible to notice not only the difference in the position of the outliers predicted
by Time2State, but also in the quantity.

47

Experiments’ design

5.2.3 Semi-supervised
Within the semi-supervised section, we have introduced the "new" methodologies
we explored with the aim of enhancing the unsupervised approaches.
A common element across all implemented pipelines is the application of unsuper-
vised outlier recognition methods, all of which are sourced from the PYOD library
[32]. This choice is driven by the fact that transitional points can be considered
outliers due to their deviation from the distribution of "normal" data, and the
limited number of samples available to form a distinct set.
The initial set of experiments is centered around point-wise data.
In this context, we propose a semi-supervised approach that relies not on the ground
truth but on the labels predicted by Time2State. Consequently, this method is
more unsupervised than semi-supervised, although it underscores the necessity of
utilizing a classification for a portion of the series.
The steps we took are the following:

• Given the original dataset X, we applied Time2State;

• Then we split the dataset into train and test, following an 80 to 20 fashion;

• For the purpose of computing the b_score later in the pipeline, we assign
temporary labels to the test points by doing a majority voting between their
top 10 neighbours from the training set. We stress that this process can’t give
us information about the transition, since we have lost the temporal order of
the test samples;

• We compute the point-wise b_score with respect to the labels assigned before,
and without considering the training data;

• Then we sort the samples with respect to the b_score in ascending order, so
that the first points are the ones that are nearest to a cluster different of their
own (hence, hopefully the transitional points);

• We select the top K samples and apply on them LOF or IOF, in order to get
the result;

For what concerns the hyperaramter in this scenario we have:

• K: is the number of samples we select after the sorting, we tried setting it to
[80 : 300] with a step of 10;

• Contamination: introduced in the unsupervised section. We tried setting it
to [0.01 : 0.2] with a step of 0.01;

48

Experiments’ design

• n_neighbors (LOF): introduced in the unsupervised section. We have tried
setting it to [15 : 50] with a step of 1;

• n_estimators (IOF): introduced in the unsupervised section. We have tried
setting it to [100, 200, 500, 1000];

Meanwhile in the case of windowed data the pipeline in slightly different, due to
the introduction of the shapelets.
We decided to take on also these set of experiments since we didn’t have any domain
knowledge about the transition classification background, and hence it wasn’t clear
which choice would fit better our model.
The step taken are the following:

• Given the original dataset X, similarly to what we have done in the previous
case, we applied Time2State in order to get the class labels;

• We split the dataset in a half, extracting train and test. The proportion is
different from the previous one since aggregating the data would decrease the
test population;

• We have aggregated both the test and the train into window form, of length
M, and sliding step 1;

• Then we have computed the four most significant shapelets in the training set,
and rewritten it with respect to the distance between each of this shapelets
found, using as metric the one introduced in 4.3.1;

• As in the previous experiment, we assigned temporary classes to our sample,
using a majority vote between the first ten nearest neighbours of each window;

• Then we computed the window-wise b_score and sorted the data with respect
to it;

• Finally we took the first 300 samples, and applied LOF onto them, in order
to get the result;

Once more, for what concerns the hyperparameter in this scenario we only have the
one linked to LOF, since the other have been already shared in the introduction of
this chapter:

• Contamination: We tried setting it to [0.001 : 0.2] with a step of 0.005;

• n_neighbors: We have tried setting it to [30 : 70] with a step of 5;

49

Chapter 6

Experiments

In this section, we will report the results obtained during the testing of the pipeline
previously introduced.
For some of the experiments, since the grid search on the parameters would lead to
a prohibitive number of plots, only the best-case scenario is shown, with some of
the hyperparameters fixed. The parameter chosen will be stated in the title of the
plot.

6.1 Unsupervised
In the first part of the testing session, we aimed to determine the performance of the
Time2State and Outlier Detection algorithms from the PYOD library when used
to recognize transitions between segments characterized by homogeneous trends.
Particularly, the Time2State case was the most important, as this entire work is
based on the assumption that the algorithm cannot fully adapt to this task as it
currently stands.
As mentioned in previous sections, one of the primary reasons this task is considered
challenging is the nature of the transition points. These points reside between
changes of state and cannot be regarded as simple outliers. They stand out due
to their dual-state characteristics, making their categorization difficult. However,
this is primarily valid for the core points where the true transitions occur. On the
other hand, the points at the edges of the transitional interval (at the start and
end) are likely more similar to the departing/arriving state than the other one.
In Figures (6.1) and (6.2), both the recall and precision obtained using Time2State
on ActRecTut and the synthetic datasets are plotted. The results clearly illustrate
the task’s difficulty. Another important observation is the high standard deviation
associated with the synthetic dataset results.
In conclusion, these figures are sufficient to justify the need to explore alternative

50

Experiments

approaches to address this task, as we can confirm that Time2State is not suitable
for solving it.

Figure 6.1: Resulting recall obtained by applying Time2State to ActRecTut and
Synthetic datasets. For the latter the mean is shown, while the segment in black
signals the standard deviation associated.

Figure 6.2: Resulting precision obtained by applying Time2State to ActRecTut
and Synthetic datasets. For the latter the mean is shown, while the segment in
black signals the standard deviation associated.

Meanwhile, for PYOD algorithms, the situation is slightly more favorable for

51

Experiments

ActRecTut but deteriorates dramatically for the synthetic datasets.
The best performer between the PYOD algorithms tried is undoubtedly the Local
Outlier Factor (Fig.(6.3) and Fig.(6.4)), even though there remains a significant
performance gap between the two datasets. Furthermore, the computational time
required to process the entire series using LOF was less than half an hour, making
it the fastest among the outlier detection methods.
However, in general, it appears that all the approaches have difficulty identifying
transitional points in the synthetic datasets. We suspect that this substantial
difference in performance is due to the significant gap in the number of state
transitions occurring in the two cases, with an average of 14 for the synthetic
dataset compared to 44 for ActRecTut.

Figure 6.3: Resulting recall obtained by applying Local Outlier Factor to ActRec-
Tut and Synthetic datasets, fixing contamination = 0.14. For the latter the mean
is shown, while the segment in black signals the standard deviation associated.

52

Experiments

Figure 6.4: Resulting precision obtained by applying Local Outlier Factor to
ActRecTut and Synthetic datasets, fixing contamination = 0.14. For the latter
the mean is shown, while the segment in black signals the standard deviation
associated.

Figure 6.5: Resulting recall obtained by applying Isolation Forest to ActRecTut
and Synthetic datasets, fixing contamination = 0.14. For the latter the result was
a blank mean of 0 with only a minimum standard deviation associated.

As for Isolation Forest (see Fig.(6.6) and Fig.(6.5)) and One-class SVM (see
Fig.(6.8) and Fig.(6.7), with a particular emphasis on the latter, not only are the
results significantly worse than those of LOF, but the computational time increases
to over one hour for OCSVM. Consequently, we excluded the latter from the other

53

Experiments

pipelines, both due to time constraints and the poor results we obtained.

Figure 6.6: Resulting precision obtained by applying Isolation Forest to ActRecTut
and Synthetic datasets, fixing contamination = 0.14. For the latter the result was
a blank mean and standard deviation of 0.

Figure 6.7: Resulting recall obtained by applying One-Class SVM to ActRecTut
and Synthetic datasets, fixing contamination = 0.14. For the latter the result was
a blank mean and standard deviation of 0.

54

Experiments

Figure 6.8: Resulting precision obtained by applying One-Class SVM to ActRec-
Tut and Synthetic datasets, fixing contamination = 0.14. For the latter the result
was a blank mean and standard deviation of 0.

Therefore, we can conclude that even if our best performer, the LOF algorithm,
seems to achieve a seemingly satisfying recall, which is our most important metric,
it doesn’t provide consistent results, with a low precision performance.
So, like Time2State, these algorithms also don’t appear to be the solution for the
task at hand.

6.2 Supervised
The supervised analysis is very interesting as it begins to demonstrate some of the
improvements we were able to achieve in this work.
Since the hyperparameters used for the three algorithms are the same, but the
choices for the number of Max_Features change depending on the dataset (this is
because ActRecTut has many more channels than the synthetic datasets), we have
grouped the plots according to the datasets.
In Fig.(6.9) and Fig.(6.10), the three algorithms applied to ActRecTut are compared.
In particular, the Random Forest does not seem to perform consistently, achieving
perfect precision for Max_Features equal to [5,7], but having a poor recall.
On the other hand, our new approach performs consistently well, considering that
it consists of simple trees, and moreover its computational time is the lowest among
the three.
Even Gradient Boosting achieves reasonably good precision performance but still
lacks consistency in recall.

55

Experiments

Figure 6.9: Different values of recall obtained by applying Random Forest,
Gradient Boosting and our new approach onto ActRecTut. For all the methods we
have fixed Max_depth = 7.

Figure 6.10: Different values of precision obtained by applying Random Forest,
Gradient Boosting and our new approach onto ActRecTut. For all the methods we
have fixed Max_depth = 7.

The situation changes drastically when we switch to the synthetic datasets. In
this case, our new approach is the best one both in terms of recall (see Fig.(6.11)),
where it achieves nearly perfect results, and precision (see Fig.(6.12)), where it
still obtains a solid score. Another positive aspect is that the associated standard
deviation is consistently small, indicating that we obtain consistent results across

56

Experiments

all the individual datasets.
The other two methods, particularly Random Forest, perform significantly worse,
especially in terms of recall. Moreover, both of them have a consistent standard
deviation associated, indicating that they are somewhat sensitive to the data and
lack stability.

Figure 6.11: Different values of recall obtained by applying Random Forest,
Gradient Boosting and our new approach onto the synthetic datasets. For all the
methods we have fixed Max_depth = 7. The results shown are the mean ones.
The segment present at the top of the bins is the standard deviation associated.

57

Experiments

Figure 6.12: Different values of precision obtained by applying Random Forest,
Gradient Boosting and our new approach onto the synthetic datasets. For all the
methods we have fixed Max_depth = 7. The results shown are the mean ones.
The segment present at the top of the bins is the standard deviation associated.

Therefore, even if our testing set isn’t complete or wide enough to be certain of
it, we can say that from this experiment our approach seems to achieve extremely
good results, and moreover, it doesn’t suffer from the choice of the dataset, meaning
the number of state transitions happening.

58

Experiments

6.3 Semi-supervised approach

In this section, we will not only present the raw results obtained with our new
pipeline but also the valuable information it provides.
In the previous sections, we didn’t delve deeply into this aspect, but it’s one of the
strengths of our approach. Since we do not train LOF on all the test points but
only on the top K points with respect to the b_score, we have access to real-time
results.
While we didn’t expect to identify all the transitional points among these top K
samples, finding the core points or their neighbors would still provide valuable
information. After predicting a point in the top K as transitional, we can extend
this labeling to the entire test set, marking not only the single point found but also
its neighbors as transitional.
For instance, we chose to apply this transformation only to the five points before
and after the one found, but with deeper domain knowledge, this parameter could
be better defined and selected.
We decided not to apply the same approach to the shapelets case, as its compu-
tational time is higher due to the computation of the shapelets themselves, and
hence it would result as prohibitive.

6.3.1 Point-wise granularity

For what regards the point-wise case, in Figure (6.13) and Figure (6.14) are shown
the basic results obtained on the top K samples of the Synthetic datasets.

Figure 6.13: The resulting recall obtained by implementing the semi-supervised
pipeline on the synthetic datasets is depicted. For this plot we have fixed contami-
nation = 0.19. The presented values represent the mean across all the datasets for
each experiment and their associated standard deviation. As the required number
of neighbors to classify a point as "normal" increases, we observe a decreasing trend
in the corresponding recall. Furthermore, the inclusion of additional samples in
the top K appears to enhance the overall results.

59

Experiments

Figure 6.14: The resulting precision obtained by implementing the semi-supervised
pipeline on the synthetic datasets is illustrated. For this plot we have fixed
contamination = 0.19. The values presented represent the mean across all the
datasets for each experiment and their associated standard deviation. Interestingly,
the trade-off between the number of K samples considered and performance does
not seem to apply to precision, as a lower number of neighbors (K=150) yields
better results.

These do not seem to show significant improvements compared to those obtained
by the mere application of LOF on the entire series, except for the computational
time, which is nearly real-time.
However, as we anticipated in the introduction, the most useful characteristic of
this pipeline is the ability to gain insights and information not only about the few
transitional points found in the top K samples but also about all the points in
the test set. In fact, Figure (6.15) and Figure (6.16) illustrate this feature of the
pipeline.

60

Experiments

Figure 6.15: New values for the recall of the semi-supervised pipeline on the
synthetic datasets. We are still fixing contamination = 0.19 and showing only the
case of #neighbours = 19. The measure is computed after incorporating the new
information into the predicted labels for the test set. "Recall_total_test" represents
the recall obtained by considering the entire test set, whereas "Recall_topK" includes
only the top K samples. The results represent the mean of all the experiments
conducted on the synthetic datasets and are provided with their corresponding
standard deviation.

Figure 6.16: New values for the recall of the semi-supervised pipeline on the
synthetic datasets. We are still fixing contamination = 0.19 and showing only
the case of #neighbours = 19. The measure is computed after incorporating the
new information into the predicted labels for the test set. "Precision_total_test"
represents the recall obtained by considering the entire test set, whereas "Preci-
sion_topK" includes only the top K samples. The results represent the mean of all
the experiments conducted on the synthetic datasets and are provided with their
corresponding standard deviation.

61

Experiments

We selected the two best configurations from Figure (6.13) and, in the applying
LOF, leveraged the information about the transitional points we identified. This
allowed us to label not only those points but also their previous and subsequent
five points in the test set.
Finally, we want to stress that these results should be considered in the context of
the challenging nature of the task and the fact that this approach has not been
finely tuned yet, leaving room for further improvement.

Figure 6.17: Comparison between the recall achieved by the our method before (
old_recall_topK) and after the usage of the information gained (recall_total_test
and recall_topK). In the plot we have fixed contamination=0.19, #neighbours=19
and shown both K=[150 , 280].

6.3.2 Segment-wise granularity
Regarding the experiments on shapelets, we wish to present the results, emphasizing
that in this case, we did not conduct as extensive testing as we did for the other
methods. To truly assess the most suitable and consistent parameters, a thorough
examination of the domain of study, including transitions and their dynamics,
should be conducted.
In this work, our primary focus was on assessing how well this pipeline would
perform without extensive fine-tuning.
Once again, the results for ActRecTut (Figure (6.18), Figure (6.19)) and the
synthetic datasets (Figure (6.20), Figure (6.21)) are significantly different. For
the latter, we obtain more consistent results, while for ActRecTut, we observe an
optimal recall but near-zero precision.
Drawing definitive conclusions about this pipeline is challenging, and it is clear that
more experiments and datasets are needed. In general, both due to the substantial

62

Experiments

computational time required and the results obtained, we can conclude that this
option does not represent a viable alternative to the currently used methods.

Figure 6.18: Tabular results for precision obtained with the shapelets unsupervised
pipeline on ActRecTut.

Figure 6.19: Tabular results for recall obtained with the shapelets unsupervised
pipeline on ActRecTut

63

Experiments

Figure 6.20: Tabular results for recall obtained with the shapelets unsupervised
pipeline on the synthetic datasets.

Figure 6.21: Tabular results for precision obtained with the shapelets unsupervised
pipeline on the synthetic datasets.

64

Chapter 7

Conclusions and Future’s
works

7.1 Conclusions

In this work, we present a novel perspective on the problem of time series segmenta-
tion. Instead of focusing on the states themselves, we have chosen the transitional
points as the target of our analysis. These transitional points represent the samples
that stand between a change of state. This task is considerably more challenging,
as the new class introduced cannot be considered solely composed of outliers; it
actually encompasses those points with features from two different states.
We have tested all of our approaches on ActRecTut, a real-world dataset, as well
as on one hundred synthetic datasets.
To address the task at hand, we first implemented a new supervised pipeline based
on tree ensembles and a novel sampling technique. This approach has yielded
significantly more promising and consistent results than the traditional random
forest and gradient boosting methods, with the added benefit of a reduced runtime.
Furthermore, to assess the necessity of a new approach for this task, we tested
Time2State, a state-of-the-art unsupervised algorithm commonly used in the con-
text of time series segmentation, which can be readily adapted for transitional
points recognition.
However, our analysis indicates that this method performs poorly. Therefore, we
attempted to enhance its results by creating a more complex pipeline, incorporating
the b_score as a performance measure, and using PYOD’s outlier detection algo-
rithms as classifiers. This method allowed us to gather valuable information that,
when integrated into our pipeline, led to more consistent and generally superior
results compared to Time2States, while also reducing the runtime.

65

Conclusions and Future’s works

7.2 Future’s work
Throughout the development of this work, we encountered several challenges in
relation to the testing datasets. To enhance our result assessment, it would be
advantageous to create a more diverse collection of datasets tailored specifically for
this task.
Furthermore, incorporating this approach into a segmentation-focused pipeline
could aid in more accurately identifying the state boundaries, resulting in higher
overall precision.
Lastly, a deeper understanding of the domain, including insights into transitions,
their duration, and behaviors, would undoubtedly improve the grid search for the
hyperparameters utilized in our algorithms.

66

Bibliography

[1] Ardi Tampuu Zurab Bzhalava. «ViraMiner: Deep learning on raw DNA
sequences for identifying viral genomes in human samples». In: (2019).

[2] Chengyu Wang Kui Wu Tongqing Zhou Guang Yu Zhiping Cai. «TSAGen:
Synthetic Time Series Generation for KPI Anomaly Detection». In: (2022).

[3] Chengyu Wang Kui Wu Tongqing Zhou Zhiping Cai. «Time2State: An Unsu-
pervised Framework for Inferring the Latent States in Time Series Data». In:
(2023).

[4] Patricia Garcia-Canadilla Sergio Sánchez Martínez Fatima Crispi. «Machine
Learning in Fetal Cardiology: What to Expect». In: (2020).

[5] Aminikhanghahi S Cook DJ. «A survey of methods for time series change
point detection». In: (2017).

[6] Johann Faouzi. «Time Series Classification: A review of Algorithms and
Implementations». In: (2022).

[7] Yifan Sun Yaqi Duan Hao Gong and Mengdi Wang. «Learning low dimensional
state embeddings and metastable clusters from time series». In: (2019).

[8] C. Grunau and V. Rozhon. «Adapting k-means algorithms for outliers». In:
(2020).

[9] https://developer.ibm.com/learningpaths/get-started-time-series-classification-
api/what-is-time-series-classification.

[10] https://en.wikipedia.org/wiki/Artificialneuralnetwork.
[11] https://en.wikipedia.org/wiki/Associationrulelearning.
[12] https://en.wikipedia.org/wiki/Confusionmatrix.
[13] https://en.wikipedia.org/wiki/DBSCAN.
[14] https://en.wikipedia.org/wiki/Decisiontree.
[15] https://en.wikipedia.org/wiki/Gradientboosting.
[16] https://en.wikipedia.org/wiki/Isolationforest.

67

BIBLIOGRAPHY

[17] https://en.wikipedia.org/wiki/K-meansclustering.
[18] https://en.wikipedia.org/wiki/Localoutlierfactor.
[19] https://en.wikipedia.org/wiki/Logisticregression.
[20] https://en.wikipedia.org/wiki/Lossfunction.
[21] https://en.wikipedia.org/wiki/Naturallanguageprocessing.
[22] https://en.wikipedia.org/wiki/Precisionandrecall.
[23] https://en.wikipedia.org/wiki/Randomfores.
[24] https://en.wikipedia.org/wiki/Silhouette(clustering).
[25] https://en.wikipedia.org/wiki/Spectralclustering.
[26] https://en.wikipedia.org/wiki/Supportvectormachine.
[27] https://en.wikipedia.org/wiki/Timeseries.
[28] https://en.wikipedia.org/wiki/Unsupervisedlearning.
[29] https://en.wikipedia.org/wiki/Weaksupervision.
[30] https://github.com/andreas-bulling/ActRecTut.
[31] https://medium.com/@mail.garima7/one-class-svm-oc-svm-9ade87da6b10.
[32] https://pyod.readthedocs.io/en/latest/index.html.
[33] https://tslearn.readthedocs.io/en/stable/userguide/shapelets.html.
[34] https://www.analyticsvidhya.com/blog/2021/10/support-vector-machinessvm-

a-complete-guide-for-beginners/.
[35] https://www.cs.ucr.edu/ eamonn/timeseriesdata/.
[36] https://www.datanovia.com/en/lessons/cluster-validation-statistics-must-know-

methods/.
[37] https://www.geeksforgeeks.org/apriori-algorithm/.
[38] https://www.geeksforgeeks.org/clustering-in-machine-learning/.
[39] https://www.ibm.com/topics/machine-learning.
[40] https://www.ibm.com/topics/supervised-learning.
[41] https://www.v7labs.com/blog/semi-supervised-learning-guide.
[42] Jean-Yves Franceschi Aymeric Dieuleveut Martin Jaggi. «Unsupervised Scal-

able Representation Learning for Multivariate Time Series». In: (2020).
[43] L. Ye E. Keogh. «Time series shapelets: a new primitive for data mining». In:

(2009).

68

BIBLIOGRAPHY

[44] Yue Lu Renjie Wu Abdullah Mueen Maria A. Zuluaga Eamonn Keogh.
«Matrix Profile XXIV: Scaling Time Series Anomaly Detection to Trillions of
Datapoints and Ultra-fast Arriving Data Streams». In: (2022).

[45] Arik Ermshaus Patrick Schafer Ulf Leser. «ClaSP - Parameter-free Time
Series Segmentation». In: (2022).

[46] L. Shen Z. Li and J. Kwok. «Timeseries anomaly detection using temporal
hierarchical one-class network». In: (2020).

[47] Srikanth Thudumu Philip Branch Jiong Jin Jugdutt (Jack) Singh. «A com-
prehensive survey of anomaly detection techniques for high dimensional big
data». In: (2020).

[48] Charles Truonga Laurent Oudreb Nicolas Vayatisa. «Selective review of offline
change point detection methods». In: (2020).

[49] Y. Zhao X. Hu C. Cheng C. Wang C. Wan W. Wang J. Yang H. Bai Z. Li C.
Xiao. «Accelerating large-scale unsupervised heterogeneous outlier detection».
In: (2021).

[50] W. Yu J. Li M. Z. A. Bhuiyan R. Zhang and J. Huai. «Ring: Real-time
emerging anomaly monitoring system over text streams». In: (2017).

[51] S. Han X. Hu H.Huang M. Jiang Y. Zhao. «Anomaly Detection Benchmark».
In: (2022).

69

	List of Figures
	Introduction
	Background Knowledge
	What is a Time series
	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Semi-supervised Learning

	Performance Measures for Binary Classification tasks
	Confusion Matrix
	Precision and Recall
	The Precision-Recall Trade off

	State of the Art methods for Outlier detection and Time Series Segmentation
	Outlier Detection
	Local Outlier Factor
	Isolation Forest
	One class SVM
	Matrix Profile based method: DAMP

	Time Series Segmentation and Transition recognition
	Time2State

	Presented approaches
	General outline
	Fully unsupervised approach
	The proposed semi-supervised approach
	Feature engineering trough Shapelets Transform

	The supervised approach

	Experiments' design
	The Design
	Datasets
	Ground Truth
	Features and Hyperparameters

	Explaining Experiments
	Supervised
	Unsupervised
	Semi-supervised

	Experiments
	Unsupervised
	Supervised
	Semi-supervised approach
	Point-wise granularity
	Segment-wise granularity

	Conclusions and Future's works
	Conclusions
	Future's work

	Bibliography

