
POLYTECHNIC OF TURIN
Master’s Degree in Mathematical engineering

Master’s Degree Thesis

Review and application of Offline
Reinforcement Learning methods for

mobile robots.

Supervisors

Prof. Marcello CHIABERGE

PhD. Mauro MARTINI

PhD. Andrea EIRALE

Candidate

Filippo BUFFA

November 2023

Summary

In the age of advanced technology, the deployment of mobile robots has emerged
as a vital solution, transforming various industries by automating tasks, improv-
ing efficiency, and shaping the future of autonomous systems. One significant
advancement in the past decade is Reinforcement Learning, made possible by the
evolution of deep learning, allowing for task generalization and impressive results.
However, modern Reinforcement Learning algorithms still rely on a trial-and-error
approach, leading to high costs in terms of time and money. This thesis explores
an alternative strategy by employing Offline Reinforcement Learning algorithms
in these tasks. It demonstrates instances where this new approach yields positive
outcomes and enables purely offline training, saving both time and costs. On
the other hand, this thesis will explore the challenges that this approach present,
particularly in the areas of generalizing tasks and handling diverse ones. To validate
these methods, simulation experiments were conducted, highlighting their pros and
cons. Indeed, while some tasks were successfully solved by all algorithms tested,
others proved to be unsolvable for each of them. Looking ahead, as new algorithms
and tools continue to be invented and discovered, this approach has the potential
to revolutionize how we address the mobile robot problem. It offers a more viable
solution for companies entering this realm, be it as users or producers.

ii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms x

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 1
1.3 Thesis outline . 2

2 State-of-the-Art 3
2.1 Mobile robot algorithm . 3
2.2 Reinforcement Learning for mobile robots 4
2.3 Offline Reinforcement Learning for mobile robots 5

3 Reinforcement Learning 6
3.1 Elements of RL . 6
3.2 Markov decision process . 8
3.3 Bellman equation . 9
3.4 Problems and approaches to RL . 11

3.4.1 Differences from other type of learning 11
3.4.2 Exploration vs Exploitation tradeoff 11

3.5 Dynamic programming . 12
3.5.1 Policy evaluation . 12
3.5.2 Policy improvement . 13
3.5.3 Policy iteration . 14
3.5.4 Value iteration . 14

3.6 Monte Carlo methods . 14
3.6.1 Monte Carlo prediction and evaluation 16
3.6.2 Monte Carlo control . 16

iv

3.7 Temporal Difference Learning . 16
3.7.1 SARSA . 16
3.7.2 Q-learning . 17

3.8 Policy gradient . 18
3.8.1 The log-derivative trick . 19
3.8.2 Policy gradient theorem . 20
3.8.3 Use of policy gradient . 21

3.9 Actor-critic methods . 22
3.10 Model-based approach . 23
3.11 Deep-RL . 24

3.11.1 Deep learning . 25
3.11.2 Value-based methods . 30
3.11.3 DQN . 30

3.12 Reinforcement Learning algorithms 32
3.12.1 TD3 . 32
3.12.2 Soft Actor Critic . 34

4 Offline Reinforcement Learning 37
4.1 Setting of Offline Reinforcement Learning 38
4.2 Difficulties of Offline Reinforcement Learning 38

4.2.1 Distributional shift . 38
4.2.2 Exploration . 39

4.3 Importance sampling methods . 39
4.3.1 Basic theory . 39
4.3.2 Self-Normalized importance sampling 41
4.3.3 Off-policy evaluation via importance sampling 42
4.3.4 Doubly Robust Estimator 43
4.3.5 The off-policy gradient . 44

4.4 Dynamic programming for Offline Reinforcement Learning 45
4.4.1 Impact of distributional shift on dynamic programming methods 45
4.4.2 Policy constraints methods 46

4.5 Offline model-based Reinforcement Learning 48

5 Offline Reinforcement Learning algorithms 50
5.1 BCQ . 50

5.1.1 Algorithm overview . 50
5.2 IQL . 53

5.2.1 Mathematical preliminaries 53
5.3 CQL . 55

5.3.1 Mathematical preliminaries 55
5.3.2 Conservative off-policy evaluation 55

v

5.3.3 Conservative Q-learning for ORL 56
5.3.4 CQL conclusion . 57

5.4 SAC-N . 57
5.4.1 N-clipping Q-learning . 57
5.4.2 Mathematical justification 58

5.5 Ensamble Diversified Actor-Critic 58
5.5.1 The gradient alignment problem 59

6 Experiment setup 63
6.1 The software . 63

6.1.1 Gazebo environment . 63
6.1.2 Robot Operating System . 64
6.1.3 TensorFlow . 64

6.2 Reinforcement learning elements . 65
6.2.1 The environment . 65
6.2.2 The agent . 65
6.2.3 The goal . 65
6.2.4 The states . 66
6.2.5 The reward . 68

7 Experiments and results 69
7.1 Dataset . 69

7.1.1 Dataset from online reinforcement learning 69
7.2 Experiment setup . 71

7.2.1 Parameters . 71
7.3 Results . 73

7.3.1 BCQ . 73
7.3.2 IQL . 73
7.3.3 CQL . 74
7.3.4 EDAC . 74
7.3.5 Examples of cases . 75

7.4 Comparison between online and offline approach 77
7.4.1 Results . 77
7.4.2 Time consuming . 78
7.4.3 Difficulties . 79

8 Conclusions 80

A 83
A.1 . 83

A.1.1 Motion equations . 83
A.1.2 Overview of the algorithm 84

vi

List of Tables

7.1 Description of different configurations. 71

vii

List of Figures

3.1 Representation of a fully connected hidden layer 26

7.1 Reward during the training of BCQ algorithm 73
7.2 Reward during the training of IQL algorithm 74
7.3 Reward during the training of CQL algorithm 75
7.4 Reward during the training of IQL algorithm 75
7.5 Trajectories from:[1.5 ,7.5, -1.57] to [-4,4]. Yellow: IQL, red: EDAC,

light blue: BCQ, green: CQL . 76
7.6 Trajectories from:[8 ,-9, 3.14] to [3.5,-3.5]. Yellow: IQL, red: EDAC,

light blue: BCQ, green: CQL . 77
7.7 Trajectories from:[7 ,9, 3.14] to [-7,7]. Yellow: IQL, red: EDAC,

light blue: BCQ, green: CQL . 78

viii

Acronyms

AI
Artificial Intelligence

RL
Reinforcement Learning

ORL
Offline Reinforcement Learning

MDP
Markov Decision Process

TD
Temporal Difference

SAC
Soft Actor Critic

IQL
Implicit Q-Learning

BCQ
Batch-Constrained Q-learning

CQL
Conservatice Q-Learning

EDAC
Ensamble-Diversified Actor-Critic

x

Chapter 1

Introduction

1.1 Motivation
Imagine having to play card a game without knowing the rules and without have
ever seen a match. How many times would it take to you to understand the
underlying structure of the game when only the only feedback from the game are if
you have made a good choice in the short term (without taking into account the
whole duration of the game) and if an action is possible or not? How many times
would you loose? And what if you have to pay to play each game, how much would
you spend before getting good at it?
Reinforcement learning algorithms have shown remarkable achievements across
diverse domains, including robotics and game-solving. However such an approach
would be very similar to the one described.
Would not you prefer having some information before start playing?
Offline reinforcement learning address this problem in the simplest way possible,
by excluding every interaction with the system (you can not lose money in this
way). The aim of this approach is to learn everything a priori. Having recorded
data of the setting from the past this kind of algorithms try to understand the best
way to deal with each problem or task. In the other hand as will be shown in this
thesis such approach introduces new challenges which, in some cases, can lead to
sub-optimal solutions or even or even not being able to solve the task at all.

1.2 Problem statement
The focus of this thesis will be the application of Offline Reinforcement Learning
on a specific task, the mobile robot task. In this setting the goal of the learning is
to understand which action have to be taken in order to make the robot able to
reach a specific position. Such task have already been widely study in engineering

1

Introduction

and state-of-the-art algorithms show very good result, however this approach relies
on engineered algorithms which in general are less able to deal with different
environment compare to machine learning methods. In the other hand, even if
machine learning algorithms have shown a reliable alternative in some cases, most
of the best algorithms are still based on old methods. The aim of this thesis is to
state the actual state Reinforcement Learning methods and Offline Reinforcement
Learning methods, with more focus on the latter.
The mobile robots show a wide variety of problems, the one address here will be the
one about the motion, without entering in other fields such as energy consumption
or human robots interaction. Here are some of the main problems this thesis will
try to face

• Navigation and Path Planning: designing algorithms that enable robots
to navigate through complex, dynamic environments, avoiding obstacles and
finding optimal paths to their destinations.

• Obstacle Avoidance: developing algorithms that allow robots to detect and
avoid obstacles in real-time, ensuring safe navigation, especially in crowded or
dynamic spaces.

• Adaptability and Learning: creating robots that can adapt to changing
environments and learn from their experiences.

• Safety: ensuring that mobile robots operate safely, especially in environments
shared with humans.

• Cost: designing learning methods that reduce the overall cost of the learning,
in terms of money and time consumption.

1.3 Thesis outline
Chapter 2 provides brief introduction to the state-of-the-art, however more in depth
details of the algorithms will be shown in Chapter 5. In Chapter 3 a theoretical
background of Reinforcement Learning is stated and in Chapter 4 the same is
done for Offline Reinforcement Learning. Chapter 5 explains in details all the
Offline Reinforcement Learning used in this study, meanwhile in Chapter 6 one can
find all the information about the environment where such algorithms have been
applied. In conclusion in Chapter 7 the results of all the experiments are given and
discussed.

2

Chapter 2

State-of-the-Art

In this chapter there will be an introduction to the state-of-the-art of three com-
ponents: robots mobile problem, Reinforcement Learning for mobile robots and
Offline Reinforcement learning applied to mobile robots.

2.1 Mobile robot algorithm
The mobile robot problem is as old as first robots were invented, being able to make
it self driving over tasks has been one of the main goal in robot research. Indeed
such problem has been highly engineered ì in the past decades, however thanks
to the development of neural networks and more complex artificial intelligences
methods that both take into account old methods and new tools have taken places.
In the other hand it is very important to understand and know such types of
algorithms which untill now have shown the best results over tasks that are not
possible to handle in other ways. Here there is a list of the best approach to mobile
robots.

• DWA: Fox et al. 1997 has introduced this new approach which is still one of
the best today. It is primarily employed for real-time obstacle avoidance and
path planning for mobile robots operating in dynamic environments. DWA
focuses on generating safe and feasible robot trajectories by considering the
robot’s dynamics and the surrounding environment.

• SLAM: this family of algorithms enable a mobile robot to create a map
of its environment while simultaneously localizing itself within that map.
Popular SLAM algorithms include FastSLAM, Graph SLAM, and visual
SLAM methods like ORB-SLAM.

• MPC: is a control strategy that predicts the system’s behavior over a short
time horizon and optimizes control inputs to achieve specific objectives. MPC

3

State-of-the-Art

can be used for trajectory tracking, obstacle avoidance, and other tasks
requiring predictive control.

• Path Planning Algorithms: help robots find the optimal path from their
current location to a target location while avoiding obstacles. Common path
planning algorithms include A* (A star), Dijkstra’s algorithm, and Rapidly-
exploring Random Trees (RRT).

2.2 Reinforcement Learning for mobile robots

Reinforcement learning algorithms are rapidly evolving over the past years, due
to the increasing interest in this field. It is of high interest noting how such an
approach does not depends on the field of application thanks to its generality.
Indeed, unless one take the specific problem into account, the best RL algorithms
for mobile robots application are the same as the one for the general one. It is
also worth pointing out how the performance of such approaches depends on the
application, which make it very difficult to decide which is the best algorithm
overall. Some of them shine for their simplicity and great performance. Here a list
of the bests is given, some of them will be further discus in chapter 3.

• SAC: one the most used algorithm due to its high applicability over various
field. It is designed to handle continuous action spaces. It incorporates entropy
regularization, which encourages exploration in the learning process. It was
first introduced by Haarnoja et al. 2018.

• TD3: it is an improvement over the original DDPG introduced by Fujimoto,
Hoof, et al. 2018. It is an actor-critic algorithm that is well-suited for contin-
uous action spaces. It has been applied to various robotic tasks, including
mobile robot control.

• A3C It is an asynchronous variant of the actor-critic algorithm proposed by
Mnih, Badia, et al. 2016, designed to handle parallelization more efficiently.
It has been used in various robotic applications, including mobile robot
navigation.

• MPC: it is a control strategy that predicts the system’s behavior over a
finite time horizon and optimizes the control inputs. In the past few years
researchers have tried to combined it with reinforcement learning, it have been
shown that it can lead to effective control policies for mobile robots.

4

State-of-the-Art

2.3 Offline Reinforcement Learning for mobile
robots

Being it difficult for RL algorithms to address the mobile robots problem in an
online setting, as will be shown in this thesis, it is very hard to draw up a list of
the best offline methods due to the lack of literature. Indeed such standings is
one of the aim of this thesis, here a list of the best Offline algorithms based on
benchmarks such as D4RL introduced in Fu et al. 2021 which has been widely used
to test ORL algorithms. In this work the focus will be on model-free algorithms
due to their higher applicability and generality. Here there is a list of the best
algorithms, most of them will be discussed in further details in chapter 5.

• BCQ: introduced in Fujimoto, Meger, et al. 2019, it was one of the first
attempt to deal with Offline reinforcement learning with a specific algorithm.
However how due to its complexity and low capability to handle complex and
various environment it fails to deal with robots mobile applications.

• CQL: based on the idea of penalize the Q-values over their "distance" from
the dataset distribution it has shown good results over the past years handling
different problems, it was first proposed in Kumar et al. 2020.

• IQL:maybe the simplest yet powerful ORL algorithm, the idea of deal with
the overestimation of the Q-values as a "risk" problem using the expectile
regression has shown great results in various fields. Since it introduction in
Kostrikov et al. 2021 it is the state of the art for ORL in general.

• EDAC: based on SAC it has shown how ORL problems can be seen as RL
problems with some adjustments. Proposed by An et al. 2021 has shown how
handle the request for a very high number of neural network.

• MOPO: the only model-based method of the one enlisted here, introduced in
Yu et al. 2020 is the most used and famous model-based Offline Reinforcement
learning algorithm.

5

Chapter 3

Reinforcement Learning

Reinforcement Learning (RL) is a subfield of Machine Learning, where the main
goal is to find a policy to follow for sequential decision-making problem. In this
chapter an introduction to this field will be made based on the book Sutton and
Barto 2018 which has been the baseline for such problem in the past decades.

3.1 Elements of RL
The main components for an RL problem are the agent, the environment and the
reward.

Agent The agent is a learning actor which interacts with the environment to
reach a specified goal. The interaction is given by an action chosen by the agent
based on the information from the environment called states. The codomain of the
policy is called the action-space and can be either continous or discrete depending
on the problem. The actions are the only way the agent can interact with the
environment.

Environment The environment is where the agent can act. The way the agent
knows about the environment is through to the observations. Those together with
the rewards are given to the agent every time it takes an action. The observations
can be seen as an encoding of the environment or part of it into a space called
state-space.

Reward The reward is a scalar value passed to the agent every time it takes an
action. It is worth nothing that this value is a function of the action taken and the
specific state in which it is taken. It can be either stochastic or deterministic, but
in this study it will be mostly be treated as a deterministic value.

6

Reinforcement Learning

Other important concepts have to be introduced to help better understand the
following work.

States In the literature often the concept of state and observation are mixed. As
we will see in the next section the mathematical tool used to describe RL problems
is the MDP, which needs that every state has the Markovian property:

P[st+1|s1, s2, ..., st] = P[st+1|st].

In most of the real settings the observation given by the environment does not
have this property. Thus to be able to use this mathematical tool it is necessary to
distinguish the concept of observation and state. Indeed, we define the state as
a function of the history of the episode, (i.e. function of all observations, actions
and rewards) which have all the necessary information to makes the Markovian
property true.

Trajectories The set of temporal sequences of state and actions pairs of a single
episode it is called trajectory. As an example an episode where n different actions
have been taken can be seen as follows

{(s1, a1) , (s2, a2) , ..., (sn, an)} .

An episode can finish for various reasons, for examples: the task is completed, the
number of action taken is over a certain chosen limit.

Return The aim of RL is to maximise the sum of the rewards over a trajectory,
this value is called return,

Gt =
KØ
i=0

rt+i+1,

where K can be either finite or infinite depending on the system settings. In most
cases it is useful to refer to the discounted return, instead. This new value is:

Gt =
KØ
i=0

γirt+i+1 γ ∈ [0,1).

where γ is the discount factor.

Policy The policy is a map from states to actions. It can be either stochastic or
deterministic. In the former case it gives a probability distribution over the actions
given the state. From a policy point of view, the aim of RL is to get the optimal
policy (i.e. , the one that gives the highest return or cumulative reward). It is true
that such a policy does not always exist or is findable.

7

Reinforcement Learning

Value function This function is based on a policy and gives the expected return
of trajectory from a state s following the policy π,

V π(s) = Ea∼π [Gt|st = s, at = a] .

It is worth noting that the expected value is not only on the policy, but over all
the stochastic components (i.e. policy, reward, evolution of the states). Being able
to compute such function or at least approximate them is very important for a lot
of RL algorithms, since it gives an idea of which policy is better.

Q-value Most of the algorithms nowadays are not based on value functions, but
rather on the Q-value. This function is again based on a policy, but it maps both
state and actions into the future expected return following the policy.

Qπ(s, a) = rt(s, a) + Ea∼π [Gt+1|st+1 = s′]

where s′ is the new observation after the agent took the action a in the state s.

3.2 Markov decision process
It has been seen how Markov decision processes (MDP) are the natural mathematical
tool to describe RL problems. A MDP is a discrete time decision control process
that gives the possibility to model discrete decision making where the reward is
partially random and partially subject to the decision taken in every state by the
decision-maker. They are define by the tuple (S,A,P, d0, R):

• S is the set of possible states (i.e. the state-space).

• A is the set of possible actions (i.e. the action-space)

• P[st+1 = s′|st = s, at = a] which is the probability to be in the new state s′ at
time t+ 1 being in the state s at time t and taking the action a.

• d0 is the initial distribution over the states

• R(s, s′, a) is the immediate reward or the expected value of the immediate
reward given by passing from state s to state s′ taking the action a.

It is worth noting how, in this type of description, in the states embed all the
information about the environment and the history of the process. Indeed, the
assumption is that the probability of a specific next state depends only on the
current state and the action taken. It is also important to stress that not all the
actions can be taken in every state (i.e. A(s) ⊆ A where A(s) is the set of possible

8

Reinforcement Learning

actions in the state s). To be more coherent with the notation used before we can
also add to this description the discount factor γ ∈ [0,1). In most of this work
the MDP formalism will be used, but to be complete an extension have to be
introduced.

Partially observable MDP The partially observable Markov decision process
is defined as a tuple (S,A,O,P, d0, R,E) , where S, A, P , d0, R are defined as
before. O is a set of observations, where each observation is given by o ∈ O, and E
is an emission function, which defines the distribution E(ot|st). This kind of MDP
are used to describe partially observable environments.

3.3 Bellman equation
As discussed in 3.1 and 3.1 value functions and q-values are very important to
exploit a optimal policy. In this section those two will be studied to reach a more
explicit and useful formulation for the RL problem. Rewriting the value function
we can exploit a recurrence into it.

V π(s) =Eai∼π, si∼P, ri∼R[Gt|st = s]
=Eai∼π, si∼P, ri∼R[rt(st, at) + γrt+1(st+1, at+1) + ...+ γKrt+K(st+K , at+K)]

It is to see that collecting γ where possible and rewriting the expected value as a
sum, the following is obtainedØ

a∈A
π(a|s)

Ø
s′∈S

P (s′|s, a)(R(s, s′, a) + γEri∼R(rt+1(st+1, at+1)

+ ...+ γK−1rt+K(st+K , at+K))
=
Ø

π(a|s)
Ø

P (s′|s, a) (R(s, s′, a) + γ(V π(s′))
=Eai∼π, si∼P, ri∼R [R(s, s′, a) + γ(V π(s′)]

Using the same argument, it is to obtain the similar result for the Q-values.

Qπ(s, a) =Es′∼P[R(s, s′, a)] + Eai∼π, si∼P, ri∼R[Gt+1|st+1 = s′]
=Es′∼P[R(s, s′, a)] +

Ø
a∈A

π(a′|s′)
Ø
s′∈S

P (s′′|s′, a′)(R(s′, s′′, a′)+

γEri∼R(rt+1(st+1, at+1) + ...+ γK−1rt+K(st+K , at+K))
=Es′∼P[R(s, s′, a)] + Eai∼π, si∼P, ri∼R[γQπ(s′, a′)]

Having this new formulations it is possible to apply the principle of optimality: "An
optimal policy has the property that whatever the initial state and initial decision

9

Reinforcement Learning

are, the remaining decisions must constitute an optimal policy with regard to the
state resulting from the first decision" Bellman, 1957, Chap. III.3. Following this
principle it is possible to break the problem of finding the optimal policy into
smaller sub-problems, where only one step is consider. Indeed, at each step a
maximization problem has to be solved. The formulations of this steps become

V π∗(s) = max
a∈A

Esi∼P
è
R(s, s′, a) + γV π∗(s′)

é
Qπ∗(s, a) = Es′∼P[R(s, s′, a)] + γmax

a′∈A
Esi∼P ,Ri∼R[Qπ∗(s′, a′)].

Many methods have been found to solve this kind of problem, in the next sections
some of them will be discussed. As it has been discussed finding the optimal policy
for an MDP is equivalent to finding the optimal policy for an RL setting on the
same MDP, thus since the Bellman equation are a formulation for the solution of
the MDP problem those are also solutions for the RL one. More complex algorithm
of RL and Offline RL are based on solution to the Bellman equation. It is possible
to rewrite the value function in matrix form obtaining the following equation

V π = R + γPV π, (3.1)

where P is the transition probability matrix. It is trivial to find a solution for such
system

V π = R + γPV π

(I− γP)V π = R

V π = (I− γP)−1R.

Such solution it is also the solution of the Bellman equation. Now the Bellman
expectation backup operator will be introduced. This will be used to better
understand theorem in the following section.

Definition 1. The Bellman expectation backup operator is define as follow

F (V) = Rπ + γPπV. (3.2)

Definition 2. A contraction in a metric-space (M,d) is a function f : M → M
and ∃ γ ∈ [0,1) such that

d(f(x), f(y)) ≤ γd(x, y). (3.3)

Theorem 1. The Bellman expectation backup operator is a contraction with the
distance induced by the ℓ∞ norm.

10

Reinforcement Learning

Proof. By its definition the Bellman expectation backup operator is a function
from the matrix space of the V dimension to itself.

||F (V)− F (U)||∞ =||Rπ + γPπV −Rπ − γPπU ||∞ (3.4)
=||γPπ(V − U)||∞ (3.5)
≤γ||Pπ

✶||∞||(V − U)||∞ (3.6)
=γ||V − U ||∞. (3.7)

3.4 Problems and approaches to RL

3.4.1 Differences from other type of learning
Reinforcement learning The key differences between reinforcement learning and
other kind of learning such as supervised or unsupervised are easy to understand.
First of all in RL, the feedback is in the form of rewards or penalties, which are
often delayed and sparse. In contrast in other settings such as supervised learning,
the feedback is direct and immediate, in the form of labeled data. Due to its setting
it is important to incorporate a trade-off between exploring new actions to discover
their rewards and exploiting known actions to maximize immediate rewards. This
exploration-exploitation dilemma is unique to RL. RL deals with sequential decision-
making problems where the agent’s actions affect future states and subsequent
rewards. Supervised learning and most unsupervised learning tasks do not involve
sequential decision making. RL agents interact with an environment, which might
be real (like a robot) or simulated. This interaction is a fundamental aspect of RL
and is not present in most supervised or unsupervised learning scenarios.

3.4.2 Exploration vs Exploitation tradeoff
In reinforcement learning, the exploration-exploitation trade-off refers to the balance
between exploring new actions and states in the environment, denoted by at, and
exploiting the current knowledge about the environment to maximize reward,
denoted by rt. This trade-off can be formalized as a decision problem, where the
agent must choose between exploration and exploitation at each timestep t.

One way to model this decision problem is using a multi-armed bandit framework,
where the agent must choose between different actions, each with a different expected
reward. The expected reward for each action can be represented by a mean value
µi and a variance σ2

i . The agent can then use a strategy, such as epsilon-greedy
exploration or Thompson sampling, to balance exploration and exploitation.

11

Reinforcement Learning

For example, the epsilon-greedy exploration strategy involves choosing the action
with the highest expected reward with probability 1− ϵ, and choosing a random
action with probability ϵ. This can be formalized as:

at =

arg maxai
µi with probability 1− ϵ

random action with probability ϵ

Alternatively, the Thompson sampling strategy involves sampling from the posterior
distribution of the expected reward for each action, and choosing the action with
the highest sample. This can be formalized as:

at = arg max
ai
N (µi, σ2

i)

where N (µi, σ2
i) represents a normal distribution with mean µi and variance σ2

i .
Finding the right balance between exploration and exploitation is a key challenge
in reinforcement learning. If the agent explores too little, it may not learn about
the full potential of the environment and may become stuck in a suboptimal policy.
If it explores too much, it may waste time and resources on actions that do not
lead to high reward. There are various strategies that can be used to address
this trade-off, including epsilon-greedy exploration, Thompson sampling, and UCB
algorithms.

3.5 Dynamic programming
Dynamic programming is a well know set of algorithms used to learn optimal
behaviour over finite and known MDP. This kind of methods are indeed at the
basis of most of the new algorithm to solve RL problems. Due to its computational
cost and the fact that in RL problems the MDP is not known it is not a good
way to address this kind of problem by itself, but it the right manipulation of the
algorithms and using approximation functions it one of the main approach to RL.
The key idea of DP is to use Bellman equations to update the policy, the way to
use it depends on the algorithms. In this section some of the main ideas of DP and
some algorithms will be discussed and explained.

3.5.1 Policy evaluation
Let π be a policy over a known MDP, the goal is to exploit the value function
of such policy. To do so it is enough to use a recurrent algorithm based on the
Bellman equation, which at every step do the following process

V π
k+1(s) = E [r(s, a) + γV π

k (s′)] . (3.8)

12

Reinforcement Learning

Using 1 we know that the operator associated to such equation is a contraction,
thus if exists the value function V π is the fixed point of such iteration.

3.5.2 Policy improvement
Once one is able to evaluate policy over an MDP it is necessary to be able to
improve it, thus finding a new policy π′ such that V (s)π < V (s)π′ . To this end
policy improvement theorem comes in help.

Theorem 2. Let be π and π′ two policies over the same MDP, such that

Qπ(s, π′(s)) ≥ V (s)π ∀s ∈ S. (3.9)

It follows directly that π′ is as good as π or "better". Where "better" means that its
value function has a greater value.

Proof. Consider a succession over the policy, where

π0 = π ∀s ∈ S = S0

π1 = π0 ∀s ∈ S0\{s0} = S1 π1(s0) = π′(s0), s0 ∈ S0
...

πk+1 = πk ∀s ∈ Sk\{sk} = Sk+1 πk+1(sk) = π′(sk), sk ∈ Sk,

this succession converges to π′. By hypothesis we know that

Qπ(s, π(s)) = Qπ0(s, π0(s)) = E [R(s, π0(s)) + γV (s′)π0] (3.10)

and it also that
Qπk

(sk+1, πk+1(sk+1)) ≥ V (sk)πk (3.11)

by definition of the policies. Without loosing generality it can be assumed that
the succession over the policy is made such that sk+1 is the state visited after sk
following the policy π′. Now it is possible to prove that

V (s0)π ≤Qπ0(s0, π1(s)) = E [R(s0, π1(s0)) + γV (s1)π0]
≤E [R(s0, π1(s0)) + γ (R(s1, π2(s1) + V (s1)π0)]

...

≤E
C
KØ
i=0

γiR(si, πi+1(si)
D

= E
C
KØ
i=0

γiR(si, π′(si)
D

= V (s0)π
′
.

This is true for all s0, thus the theorem is proved, having equal or greater value
function for all the states.

13

Reinforcement Learning

The building of a policy which satisfies the theorem hypothesis is very simple,
let be π a policy that has been evaluated by policy evaluation. One can create a
new policy as

π′(s) = argmax
a

Qπ(s, a), (3.12)

this new policy which take the action that gives the better result in each state
assuming to follow the previous policy π afterward, satisfies the hypothesis of the
previous theorem, thus it will be "better" than π. Such policy is known as greedy
policy. Suppose that the new policy π′ is equally good to π but not better, one
would obtain the following

V π′(s) = max
a∈A

E
è
R(s, a) + γV π′(s′)

é
, (3.13)

but this is the Bellman equation, it follows that if this is satisfied π′ is an optimal
policy and π is too, since it is as good as the other.

3.5.3 Policy iteration
Once one knows how to evaluate a policy and how to improve it, it is easy to
find an algorithm which find the best policy. This algorithm ,which is shown
in 1, is based on three main steps, the first one is to decide the policy, the
second is to evaluate such policy and the third aim to improve it thanks to policy
improvement. Reiterating this steps at every time a better policy is exploited.
Being it monotonically increasing it will find the optimal policy.

3.5.4 Value iteration
One problem of the policy iteration is that at every step it have to evaluate the new
value function V π which by the policy evaluation algorithm can take multiple steps,
since the convergence is given to the limit. For this reason it would be helpful
in terms of time spending to be able to truncate the steps necessary to get the
value function. In 2 is shown the new approach, at each loop one step of policy
evaluation and one step of policy improvement are taken. It has been shown that
such approach can have faster convergence. From the algorithm it is clear how this
is an approximation of the best policy due to θ.

3.6 Monte Carlo methods
In this section Monte Carlo methods for RL will be introduced briefly, due to
their incompatibility with the offline version of RL which is the main purpose
of this work. Monte Carlo methods do not need any previous knowledge of the

14

Reinforcement Learning

Algorithm 1 Policy iteration
Require: V (s) ∈ R and π(s) ∈ A ∀s ∈ S

while stop! = True do
while ∆ > θ do

∆← 0
for s ∈ S do

v ← V (s)
V (s)← q

s′,r p(s′, r|s, π(s)) [r + γV (s′)]
∆← max (∆, |v − V (s)|)

end for
end while
stop← True
for s ∈ S do

a← π(s)
π(s)← argmaxqs′,r p(s′, r|s, π(s)) [r + γV (s′)]
if a! = π(s) then

stop← False
end if

end for
end while

Algorithm 2 Value iteration
Require: V (s) ∈ R ∀s ∈ S except V (terminal) = 0

while ∆ > θ do
∆← 0
for s ∈ S do

v ← V (s)
V (s)← q

s′,r p(s′, r|s, π(s)) [r + γV (s′)]
∆← max (∆, |v − V (s)|)

end for
end while
for s ∈ S do

π(s)← argmaxqs′,r p(s′, r|s, π(s)) [r + γV (s′)]
end for

15

Reinforcement Learning

environment, but it is necessary to be able to simulate the transitions or be able
to make experiment in the real application. In the other hand many off-policy
methods have been proposed following the Monte Carlo logic, those are the basis of
some offline RL methods, but they will be discussed in the next chapter 4. Having
the wanted trajectories one is able to compute the expected value of the value
function and determine the optimal policy trough it. As in DP some of the main
important step will be introduced to be able to better understand all the algorithms
of RL and offline RL.

3.6.1 Monte Carlo prediction and evaluation
Suppose to be able to sample trajectories following a certain policy, than it would
be easy to make estimations of the value function of every state under the policy π.
Indeed it would be the average of the return of each trajecotory which pass by the
state s. It is easy to verified that such estimation converges to the real value V π(s)
as the number of trajectories goes to infinity. In Monte Carlo methods is usually
preferred to estimate Q-values instead of the value function, due to the fact that
usually the model of the environment is not available. The way to estimate such
value is the same as for the value function, by averaging the return of a trajectory
form the state s where the specific action a is taken. It is important to notice how
it is not sure that all the possible action are explored in every state, for example
if one has a deterministic policy only one action per state will be exploited, thus
using this kind of methods is very important to remember the exploration.

3.6.2 Monte Carlo control
Same ideas of policy improvement as in DP can be used in Monte Carlo methods,
indeed theorem 3 is not referred specifically to DP settings. One must take more
care with Monte Carlo methods due to its slow convergence that can lead a very
dangerous errors. As in DP one can take the greedy-policy, evaluate it and repeat
the process until the greedy policy does not update anymore.

3.7 Temporal Difference Learning

3.7.1 SARSA
SARSA methods land on on-policy algorithm, it is based on TD prediction method.
In SARSA the aim is to learn Q-values, thus there is a small change on the temporal
difference setting, but the idea is kept indeed the new update rule is

Q(st, at)← Q(st, at) + α [R(s, a) + γQ(st+1, at+1)−Q(st, at)] . (3.14)

16

Reinforcement Learning

Where Q(s, a) is set to zero for final state. It is trivial to find a control algorithm
to exploit an optimal policy from this update. Its convergence is based on the idea
of visiting each state-action pair infinite times. Indeed with an ϵ-greedy approach
which scales over time, but ensure the visit of all state-actions infinitely many times
it converges to the optimal policy with probability 1. In 3 the pseudo-code for an
update over a single episode is presented.

Algorithm 3 SARSA
Require: Q(s, a) ∈ R ∀s ∈ S and ∀a ∈ A except Q(terminal, ·) = 0
α ∈ (0,1] ϵ ≥ 0
while s! = terminal do

a ∼ ϵ-greedy policy
take action a and get R, s′

a′ ∼ ϵ-greedy policy
end while

3.7.2 Q-learning
This method is the off-policy counterpart to SARSA, the main change of this
methods is how the update is made

Q(st, at)← Q(st, at) + α
5
R(s, a) + γmax

a
Q(st+1, a)−Q(st, at)

6
.

By imposing that in the new state the action is taken as the one which gives the
maximum Q-value, thus the only part affected by the policy is which state-actions
pairs are visited and update. This is crucial because as it will be explained better in
the offline reinforcement learning part the exploitation from the Q-learning of some
policy has still a big effect on how the algorithm works and learn the best policy.
Thus one should not think that off-policy algorithm are not based on policies and
they can work directly in an offline setting as they are.

It has been shown that this approach suffer from the so-called maximization
bias. Indeed, fixing a state, being the Q-value an approximation , one can have
an error which overestimate the value of some action a. This error can easily
propagate and lead to superior errors. To mitigate this fact many solutions has
been proposed, the most known is Double Q-learning form Hasselt et al. 2015, an
update version has been proposed in Fujimoto, Hoof, et al. 2018 which is called
Clipped Double Q-learning, but is based on Deep RL which will be discussed in
3.11.3. The main idea to mitigate the overestimation of some action is to use
another approximator to estimate the Q-value of the new state. Indeed in Double

17

Reinforcement Learning

Q-learning two approximation are used, leading to a bigger memory consumption,
but better results. The new update rule are

Q1(st, at)← Q1(st, at) + α
5
R(s, a) + γQ2

3
st+1, argmax

a
Q1(st+1, a)

4
−Q1(st, at)

6
Q2(st, at)← Q2(st, at) + α

5
R(s, a) + γQ1

3
st+1, argmax

a
Q2(st+1, a)

4
−Q2(st, at)

6
As one can see in this new update the other approximator is used to estimate
what the one updated think is the best action. This way leads to better results,
but is still too strict to use the one not updated, in some cases it is possible that
in general one approximator is biased based on the state and it overestimate the
Q-values, this would lead to an approximation error which can keep going over
steps.

Algorithm 4 Q-learning
Require: Q(s, a) ∈ R ∀s ∈ S and ∀a ∈ A except Q(terminal, ·) = 0
α ∈ (0,1] ϵ ≥ 0
while s! = terminal do

a ∼ ϵ-greedy policy
take action a and get R, s′

a′ ∼ argmaxa∈A Q(s′, a)
Q(s, a)← Q(s, a) + α[R(s, a) + γQ(s′, a′)−Q(s, a)]

end while

3.8 Policy gradient
Policy gradient methods are a type of reinforcement learning algorithm that are
used to learn a policy for an agent to follow in an environment. These algorithms
learn a policy by estimating the gradient of the expected reward with respect to
the policy parameters, and using this gradient to update the policy in a way that
increases the expected reward.

Policy gradient methods are particularly useful for learning continuous or high-
dimensional policies, such as policies that involve selecting actions in a continuous
action space. They can also be used to learn policies in environments where the
reward signal is sparse or noisy, as they are able to make use of the entire episode of
interactions with the environment to estimate the gradient of the expected reward.

One of the key advantages of policy gradient methods is their ability to learn
directly from the environment, without the need to estimate a value function. This
makes them particularly well-suited to learn tasks where the value function is

18

Reinforcement Learning

difficult to estimate, or where it is not possible to represent the value function
explicitly.

However, policy gradient methods also have several limitations, including the
need for large amounts of data and computation, and the difficulty of ensuring that
the learned policy is stable and converges to a satisfactory solution. Despite these
limitations, policy gradient methods have been successfully applied to a wide range
of reinforcement learning tasks and have contributed to significant progress in the
field.

3.8.1 The log-derivative trick
The log-derivative trick is a result in probability theory and machine learning that
allows us to rewrite the gradient of an expected value as an expectation of the
product of the function and the gradient of the log probability.

To prove the log-derivative trick, one start by expressing the expected value
of a function f(x) as an integral over the distribution p(x, θ) where θ is a certain
parameter:

Ep(x,θ)[f(x)] =
Ú
f(x)p(x, θ)dx

Applying the gradient over θ and using the chain rule to express the gradient of
the expected value with respect to the distribution p(x, θ) as:

∇θEp(x,θ)[f(x)] = ∇θ

Ú
f(x)p(x, θ)dx

=
Ú
∇θ[f(x)p(x, θ)]dx

=
Ú
f(x)∇θ[p(x, θ)]dx+

Ú
∇θ[f(x)]p(x, θ)dx

Taking f(x) independent from θ, it follows that the gradient is equal to 0, thus
the second term disappear. For what concern the first one, one can multiply and
divide by p(x, θ) and remembering that

∇θ log f(θ) = ∇θf(θ)
f(θ)

, one get

∇θEp(x,θ)[f(x)] =
Ú
f(x)∇θp(x, θ)

p(x, θ) p(x, θ)dx

=
Ú
f(x)∇θ log (p(x, θ))dx = Ep(x,θ [f(x)∇θ) log (p(x, θ))]

19

Reinforcement Learning

This completes the proof of the log-derivative trick.
The log-derivative trick is a useful result in probability theory and machine

learning that allows us to simplify calculations involving gradients and expecta-
tions. It is often used in optimization and learning, particularly in the context of
reinforcement learning, where it is used to derive the policy gradient theorem.

3.8.2 Policy gradient theorem
The policy gradient theorem is a fundamental result in reinforcement learning that
provides a way to estimate the gradient of the expected return with respect to
the policy parameters. It is based on the idea of using the gradient of the log
likelihood of the actions taken under the policy to estimate the gradient of the
expected return.

To prove the policy gradient theorem, we start by expressing the expected return
as an expectation over the distribution of states and actions:

J(θ) = Eπ(θ)[Gt] = Eπ(θ)

C ∞Ø
k=0

γkrt+k+1

D

=
Ø
st,at

p(st, at)
C ∞Ø
k=0

γkrt+k+1

D

=
Ø
st,at

p(st, at)
C ∞Ø
k=0

γkEπ(θ)[rt+k+1|st, at]
D

where p(st, at) = P(st, at) = P(st)πθ(at|st) is the joint probability of taking
action at in state st.

Next, we can use the log-derivative trick to rewrite the gradient of the expected
return as:

∇θJ(θ) = ∇θ

Ø
st,at

p(st, at)
C ∞Ø
k=0

γkEπ(θ)[rt+k+1|st, at]
D

=
Ø
st,at

p(st, at)∇θ

C ∞Ø
k=0

γkEπ(θ)[rt+k+1|st, at]
D

=
Ø
st,at

p(st, at)
∞Ø
k=0

γk∇θEπ(θ)[rt+k+1|st, at]

Now applying the log derivative trick one can obtain

Ø
st,at

p(st, at)
∞Ø
k=0

γkEπ(θ)[rt+k+1|st, at]∇θ log πθ(at|st)

20

Reinforcement Learning

= Eπ(θ)[∇θ log πθ(at|st)Qπ(st, at)]
which is the desired result. This completes the proof of the policy gradient

theorem.
It is worth noting that the policy gradient theorem assumes that the policy is

differentiable with respect to the parameters, which may not always be the case.
In practice, it may be necessary to use approximation techniques, such as Monte
Carlo sampling, to estimate the gradient.

3.8.3 Use of policy gradient
Policy gradient methods are a type of reinforcement learning algorithm that are
used to learn a policy for an agent to follow in an environment. These algorithms
learn a policy by estimating the gradient of the expected reward with respect to
the policy parameters, and using this gradient to update the policy in a way that
increases the expected reward. Suppose that we want to learn a policy πθ(a|s) that
takes as input a state s and outputs a distribution over actions a. The expected
return for a given state s under the policy πθ can be represented by the expected
value of the return over all possible actions and future states, given by:

J(θ) = Eπθ
[Gt] = Eπθ

C ∞Ø
k=0

γkrt+k+1

D
(3.15)

where Gt is the return at timestep t, rt+k+1 is the reward at timestep t+ k+ 1, and
γ ∈ [0,1] is the discount factor.

To learn the policy πθ, it is possible to use a policy gradient algorithm to estimate
the gradient of the expected return with respect to the policy parameters θ:

∇θJ(θ) = Eπθ
[∇θ log πθ(at|st)Qπ(st, at)] (3.16)

where Qπ(st To estimate the gradient ∇θJ(θ), there are a lot of algorithms such
as the reinforce algorithm, which involves sampling actions from the policy and
using the sampled returns to estimate the gradient. The reinforce algorithm can
be expressed as:

θ ← θ + α∇θJ(θ) (3.17)
where α is the learning rate. Alternatively, it is possible to use a baseline to reduce
the variance of the gradient estimate. A common choice of baseline is the value
function V π(s), which estimates the expected return for a given state s under the
current policy π. The gradient estimate with a value function baseline can be
expressed as:

∇θJ(θ) = Eπθ
[∇θ log πθ(at|st)(Qπ(st, at)− V π(st))] (3.18)

21

Reinforcement Learning

This form of the gradient estimate is known as the advantage function and is often
used in policy gradient methods. There are many variants of the policy gradient
algorithm, each with its own advantages and limitations. Some of the key factors to
consider when choosing a policy gradient algorithm include the type of environment,
the complexity of the policy, the amount of data available, and the computational
resources available.

3.9 Actor-critic methods
Many times it is not possible to straightforwardly apply Q-learning to continuous
action spaces, because in continuous spaces finding the greedy policy requires an
optimization of at at every step. This optimization is too slow to be practical
with large, unconstrained function approximators and nontrivial action spaces.
To address this problem Actor-Critic have been introduced, it will be shown how
this methods have take a great place into reinforcement learning methods, mostly
thanks to deep learning. This approach combines aspects of both value-based and
policy-based reinforcement learning algorithms. First let us introduce two of the
main elements of this kind of algorithms.

The actor

The actor is responsible for determining the policy, which defines the agent’s
behavior in the environment. It selects actions based on the current state to
maximize the expected cumulative reward. In the context of neural networks, the
actor can be represented as a function approximator (like a deep neural network)
that takes the environment state as input and outputs a probability distribution
over possible actions. (policy-based)

The critic

The critic evaluates the actions chosen by the actor. It estimates the value or the
expected cumulative reward of being in a certain state and following a certain
policy. The critic helps the actor by providing feedback on the quality of its
actions. Similar to the actor, the critic can also be implemented using a function
approximator. (value-based)

Actor-Critic flow

Here is how this kind of model usually learn from the environment:

22

Reinforcement Learning

1. The agent interacts with the environment, receives a reward, and transitions
to a new state. The agent’s actions are taken from the actor distribution, in
some cases some exploration is forced into this.

2. The critic’s parameters are updated to minimize the difference between the
predicted value of the current state and the actual received reward plus the
estimated value of the next state. This helps the critic to better approximate
the value function.

3. The actor’s parameters are updated to maximize the expected reward, taking
the critic’s evaluation into account. This is done by performing policy gradient
ascent using the advantage function, which represents how much better or
worse an action is compared to the average action.

The actor-critic method combines the benefits of both value-based methods and
policy-based methods, allowing for more stable and efficient learning in complex
environments. By continuously updating both the policy and the value func-
tion, the actor-critic algorithm can find optimal or near-optimal policies in online
reinforcement learning scenarios.

3.10 Model-based approach
Model-based reinforcement learning is a type of machine learning algorithms that
are used to learn a policy for an agent to follow in an environment. In model-
based reinforcement learning, the agent has access to a model of the environment,
which allows it to make predictions about the consequences of its actions and plan
its behavior accordingly. One advantage of model-based reinforcement learning
is that it allows the agent to learn more efficiently, as it can use the model of
the environment to explore and learn about the consequences of different actions
without needing to actually take those actions in the environment. This can be
particularly useful in situations where the cost of interacting with the environment is
high. However, model-based reinforcement learning is not always the best approach,
particularly in the context of offline reinforcement learning. In offline reinforcement
learning, the agent must learn from a fixed dataset of past interactions with the
environment, rather than learning online in real-time. In this setting, it is often
difficult or impossible to build an accurate model of the environment, as the data
may be incomplete or outdated. As a result, model-based reinforcement learning
may not be able to effectively learn a policy in this setting. Instead, model-free
reinforcement learning algorithms, which do not rely on a model of the environment,
may be a more effective approach to offline reinforcement learning. These algorithms
typically involve learning a value function, which estimates the expected reward for

23

Reinforcement Learning

a given state or state-action pair, and using the value function to guide the agent’s
actions.

3.11 Deep-RL
Deep reinforcement learning is a subfield of machine learning that combines the
concepts of reinforcement learning and deep learning. It involves using artificial
neural networks, which are a type of machine learning algorithm that is inspired
by the structure and function of the brain, to learn policies for decision-making
and control tasks. Deep reinforcement learning has been applied to a wide range of
problems, including control tasks in robotics, game playing, and natural language
processing. It has achieved impressive results on many of these tasks, surpassing
human-level performance in some cases. One of the key advantages of deep
reinforcement learning is its ability to learn from high-dimensional sensory input,
such as images or audio, and to learn policies that are able to adapt to changing
environments. This makes it a powerful tool for learning complex tasks that require
the ability to perceive and interpret the environment. However, deep reinforcement
learning also poses several challenges, including the need for large amounts of data
and computation, and the difficulty of interpreting the learned policies. Despite
these challenges, deep reinforcement learning has the potential to revolutionize
many areas of artificial intelligence and has attracted significant attention from
researchers and industry alike. There are several reasons why deep reinforcement
learning may be superior to traditional reinforcement learning in some cases:

• Ability to learn from high-dimensional sensory input: Deep reinforcement
learning algorithms are able to learn from high-dimensional sensory input, such
as images or audio, and can learn policies that are able to adapt to changing
environments. This makes them particularly well-suited to learn complex
tasks that require the ability to perceive and interpret the environment.

• Improved performance: In some cases, deep reinforcement learning algorithms
have been able to achieve superior performance to traditional reinforcement
learning algorithms on a wide range of tasks, including control tasks in robotics,
game playing, and natural language processing.

• Ability to learn from unstructured data: Deep reinforcement learning algo-
rithms are able to learn from unstructured data, such as images or audio,
which can be difficult to process using traditional machine learning methods.
This allows them to learn from data that may not be easily represented in a
structured form.

• Improved generalization: Deep reinforcement learning algorithms are able
to learn complex, non-linear relationships in the data and can generalize to

24

Reinforcement Learning

unseen situations. This allows them to learn policies that are able to adapt
to changing environments and perform well on tasks that may not have been
seen during training.

However, it is important to note that deep reinforcement learning is not always
the best approach, and traditional reinforcement learning algorithms may still be
superior in some cases. The choice of algorithm will depend on the specific task.

3.11.1 Deep learning
The structure

Deep learning (DL) is a technique of learning that utilizes a function f : X → Y ,
which is parameterized with w ∈ Rn, such that the output y is determined by
f(x;w) . The foundation of this field of research is the artificial neuron, modeled
after the biological neurons found in the brains of animals and humans. A neuron
is composed of multiple inputs, known as dendrites, that come from preceding
neurons. The neuron processes these inputs and, if the value reaches a certain
threshold, it sends a signal through its single output, called an axon. The inputs
are processed by taking the weighted sum, adding a bias term b, and applying an
activation function f , according to the relationship y = f(qn

i=1 wixi + b). In order
to achieve optimal performance, the parameter set w must be adjusted through a
process known as learning. A deep neural network (NN) is a structure that utilizes a
collection of artificial neurons arranged in a series of processing layers. These layers
perform non-linear transformations that guide the learning process. More complex
structure can be created using artificial neurons. One very important structure
which will be at the basis of most NN used in this thesis it a fully-connected hidden
layer. The hidden layers have a value given by the first operation

hj = f(
nØ
i=1

wixi + b)

The output is given by reiterating the same operation with different weights and a
different function

ok = g(
mØ
j=1

ajhh + d)

Activation function The class of function f plays a key role in the NN structure.
Their purpose is to introduce non-linearity into the output of the neuron, allowing
the neural network to learn a broader range of functions and to make more complex
decision boundaries.

25

Reinforcement Learning

Figure 3.1: Representation of a fully connected hidden layer

Activation functions are typically applied element-wise to the output of a linear
combination of the inputs and weights. The most commonly used activation
functions in neural networks are:

• Sigmoid: which produces output values between 0 and 1 and is commonly
used in the output layer of a binary classification problem.

f(x) = 1
1 + e−x

• ReLU (Rectified Linear Unit): which produces output values between 0 and x
and is commonly used in the hidden layers of neural networks.

f(x) = max(0, x)

• Tanh (Hyperbolic Tangent): which produces output values between -1 and 1
and is commonly used in the hidden layers of neural networks.

f(x) = tanh(x) = ex − e−x

ex + e−x

• Softmax: which produces output values between 0 and 1 and is commonly
used in the output layer of a multi-class classification problem. It normalizes
the output values of the neuron to a probability distribution.

f(xi) = exiq
j e

xj

26

Reinforcement Learning

Activation functions play a crucial role in the training and performance of a
neural network. Each activation function has its own unique characteristics and is
suited for different types of tasks. For example, the sigmoid activation function is
commonly used in the output layer of a binary classification problem because it
produces output values between 0 and 1, which can be interpreted as a probability.
On the other hand, the ReLU activation function is commonly used in the hidden
layers of neural networks because it allows for faster training and a reduction in
the vanishing gradient problem.

The learning

The learning process of a neural network involves adjusting the parameters, such
as the weights and biases, of the network in order to optimize its performance
on a given task. This process is typically done through a method known as
backpropagation. The training process starts by providing the neural network with
a set of input-output pairs, called training data. The network uses these inputs to
make predictions, and the error between the predictions and the actual outputs is
calculated. This error is then propagated backwards through the network, adjusting
the weights and biases of each layer in a way that minimizes the error. The process
of adjusting the weights and biases is done using an optimization algorithm, such
as stochastic gradient descent, which iteratively updates the parameters in the
direction that minimizes the error. The training process continues until the error
reaches an acceptable level or the performance of the network on a validation set
stops improving. Once the network has been trained, it can be used for making
predictions on new, unseen data. It’s important to note that the learning process
in NN’s can be computationally expensive and time-consuming, especially for large
datasets and complex architectures. In the next paragraphs the learning process
will be summarize schematically.

Forward step Several inputs X are given to the NN and the outputs Y are
archived.

Loss function A loss function, also known as a cost function, is a mathematical
function that quantifies the difference between the network’s predictions and the
actual outputs. The goal of the training process is to minimize the value of the loss
function. The choice of loss function depends on the task that the neural network
is being trained to perform. For example, in a regression task, the mean squared
error (MSE) is often used as the loss function, while in a classification task, the
cross-entropy loss is commonly used. The most common loss functions used in
neural networks are the mean squared error (MSE) and cross-entropy loss. MSE
is typically used in regression tasks and measures the average squared difference

27

Reinforcement Learning

between the predicted and actual values. Cross-entropy loss, on the other hand,
is commonly used in classification tasks and measures the difference between the
predicted probability distribution and the true distribution. The loss function plays
an important role in the training of neural networks, as it provides a measure of
the network’s performance and guides the optimization process. The loss function
is an essential component of the training process in a neural network, it quantifies
the difference between the network’s predictions and the actual outputs and guides
the optimization process to minimize the error. In many cases using a pure loss
function leads to overfitting problems. Overfitting occurs when a model becomes
too complex and memorizes the training data instead of generalizing to new data.
This can lead to poor performance on unseen data and a lack of generalization
ability. Regularization is a technique used to combat overfitting by adding a penalty
term to the loss function that discourages large values of the parameters, such as
weights and biases. This helps to keep the model from becoming too complex by
constraining the size of the parameters. The regularization term helps to keep
the weights and biases small, which reduces the model’s capacity to memorize the
training data and forces it to learn more general features of the data. There are
several types of regularization methods that can be used to regularize a loss in a
neural network training. The most common ones are:

• L1 Regularization (also called Lasso regularization) which adds the absolute
value of the weights to the loss function.

LL1 = L+ λ
Ø
i

|wi|

• L2 Regularization (also called Ridge regularization) which adds the square of
the weights to the loss function.

LL2 = L+ λ
Ø
i

w2
i

• Dropout: which drop some neurons during the training process with a certain
probability.

Where L is the un-regularized loss function and λ is the regularization strength,
which is a hyperparameter that determines the amount of regularization applied to
the model. The choice of regularization method depends on the specific problem
and the characteristics of the data. L1 regularization is useful for sparse models, L2
regularization for models with small weights, and Dropout is useful for preventing
overfitting. Regularization can be applied to any type of neural network and is a
crucial step in training a neural network in order to prevent overfitting and improve
the generalization performance of the model.

28

Reinforcement Learning

Backpropagation Backpropagation is an algorithm used to train neural networks
by adjusting the weights and biases of the network in order to minimize the error
between the network’s predictions and the actual outputs. The algorithm uses
the gradients of the loss function with respect to the network’s parameters to
update the weights and biases. The backpropagation algorithm starts by providing
the network with an input and forwarding it through the layers to calculate the
output. Then the error between the predicted output and the actual output is
calculated using the loss function. The error is then propagated backwards through
the network, starting from the output layer and working backwards through the
hidden layers. The gradients of the loss function with respect to the network’s
parameters are calculated using the chain rule of calculus. The weights and biases
are then updated using the gradients and a chosen optimization algorithm, such as
stochastic gradient descent. In mathematical terms it is based on the chain rule
which computes derivatives of composed function by multiplying local derivatives,
in the case of a loss function one have

∂L(f(x;w))
∂wi,j

= ∂L(f(x;w))
∂f(x;w)

∂f(x,w)
∂wi,j

.

Therefore, the chain rule is used to pass the calculated global gradient of loss
∂L(w)
∂w

backwards through the network, in the opposite direction of the forward pass.
The process computes the local derivatives during the forward pass and estimates
the local gradient of loss during backpropagation by determining the product of
the local derivative and the local gradient of the loss of the connected neuron of the
next layer. If the neuron has multiple connections to other neurons, the algorithm
sums up all of the gradients.

Update of the parameters The last step is the update of the parameters such
as weights and biases, those are updated during the training process in order to
optimize the performance of the network on a given task. The update process can
be represented mathematically by the following formula:

wi,j = wi,j + ∆wi,j
Where:

• wi,j is the weight between the i-th input unit and the j-th output unit

• ∆wi,j is the change of weight
∆wi,j is calculated using the gradient of the loss function with respect to the weight,
the learning rate and an optimization algorithm. For example, in the case of using
stochastic gradient descent the update can be represented by the following:

∆wi,j = −η ∂L

∂wi,j

29

Reinforcement Learning

Where:

• L is the loss function

• η is the learning rate

The learning rate is a hyperparameter that determines the step size of the updates.
It controls how much the weights and biases are updated in each iteration. A
small learning rate will make the optimization process slower but more precise. It’s
important to note that the update process is done for all the parameters, meaning
that the weights and biases are updated after each iteration. In summary, the
update of the parameters in a neural network is a crucial step in the training process
that allows the network to learn and improve its performance on a given task.
The update is typically done using an optimization algorithm such as stochastic
gradient descent and the change of weight is calculated using the gradient of the
loss function with respect to the parameters, the learning rate and the optimization
algorithm.

3.11.2 Value-based methods
Value-based methods for reinforcement learning (RL) are a class of algorithms that
estimate the value of a given state or action in order to make optimal decisions.
These methods use a value function, represented as a neural network, to estimate
the expected future reward for each state or action. The value function is trained
using supervised learning techniques, with the goal of predicting the expected
return for a given state or action. Deep neural networks (DNN) are commonly
used to represent the value function in value-based methods for RL. DNNs have
the ability to approximate complex, non-linear functions, making them well-suited
for approximating the value function in RL. The DNN is trained using experience
replay and a variant of stochastic gradient descent called Q-learning. In this section
some of the most important and potent methods will be discussed.

3.11.3 DQN
In 2013 Mnih et al. Mnih, Kavukcuoglu, et al. 2013 have introduced the Deep
Q-Network (DQN algorithm. DQN is a value-based method for reinforcement
learning (RL) that uses a deep neural network to approximate the Q-function. The
Q-function represents the expected return for a given state-action pair, and the
goal of the DQN algorithm is to learn the optimal Q-function in order to make the
best decisions. DQN uses experience replay to store past experiences and a variant
of stochastic gradient descent called Q-learning to update the parameters of the
neural network. This allows DQN to learn from raw sensory input, such as image

30

Reinforcement Learning

or video, and to handle high-dimensional and continuous state spaces. One of the
key innovations of DQN is the use of a technique called fixed Q-targets, which helps
to stabilize the training process and improve the performance of the algorithm.
This technique decouples the target Q-values from the current Q-values, allowing
the network to learn from more stable targets. DQN has been able to achieve
human-level performance on a wide range of Atari games and it’s considered one
of the most successful RL methods. It has also been used to control robots and
other physical systems, and it’s also a base for other more advanced RL methods
like Double DQN, Dueling DQN, and Rainbow.

DQN algorithm

As it has been discussed in section 3.11.1 DNN can be used to approximate functions.
Such approach can be very useful. The main way to define such an algorithm is
trough its loss- function. In the case of DQN it is of the following form

LQ(θ) = Es,a∼ρ(·)
è
(yi −Q(s, a; θ)2

é
where

yi = Es′∼T (s)

5
r + γmax

a′
Q(s′, a′; θ)|s, a

6
and ρ is a probability distribution over the action given the state. After reaching
the convergence the policy obtained is given by

a = max
a∈A

Q(s, a; θ)

The DQN algorithm also incorporates an experience memory replay buffer, which
is crucial to its success. This replay buffer is used to store past experiences and
allows the algorithm to learn from them. Without the replay buffer, the algorithm
would be prone to overfitting because the data is not independent and identically
distributed. The replay buffer stores a limited number of experiences, replacing old
experiences with new ones as they are collected. The experiences are collected in the
form of tuples (st, at, rt, st+1) using an epsilon-greedy policy. During the learning
phase, a subset of these experiences, called a mini-batch, is used to update the
parameters of the neural network. This improves the performance of the algorithm
by reducing variance in the updates.

Prioritised Experience Replay In 2016 Schaul et al. Schaul et al. 2015 have
introduced a new formulation of the experience memory replay buffer which is
called Prioritized Experience Replay buffer (PER). The idea behind prioritized
experience replay is that some experiences may be more valuable for learning than
others. For example, experiences where the agent made a big mistake or achieved

31

Reinforcement Learning

a high reward may be more informative for learning than other experiences. By
prioritizing these experiences, the agent can learn more efficiently. PER can be
implemented by assigning a priority value to each experience, based on a measure
of its importance. For example, the temporal difference error (TD-error) or the
absolute error between the predicted Q-value and the target Q-value can be used
as a measure of importance. Experiences with higher priority values are more
likely to be sampled during the learning phase. PER can provide a significant
improvement in the performance of RL algorithms. It has been shown to speed up
the convergence and stability of learning, and to improve the final performance of the
agent. It is particularly useful in problems with sparse rewards and non-stationary
environments.

3.12 Reinforcement Learning algorithms

In this section two reinforcement learning algorithms will be explained, the choice
of this two particular approach it is based on the fact that they are the one with
the best results in the experiments done in this study. Thus a brief introduction to
their main attributes and functionality will be made.

3.12.1 TD3

First introduced by Fujimoto, Hoof, et al. 2018, it is a actor-critic method based on
the idea of using a deep policy gradient, this approach had already been tried by
Lillicrap et al. 2019 with an algorithm called Deep Deterministic Policy Gradient
(DDPG) which have shown great results. Here first DDPG and than TD3 will be
introduced.

DDPG

DDPG (Deep Deterministic Policy Gradient) is an actor-critic algorithm used
in reinforcement learning for continuous action spaces. It maintains two neural
networks: an actor network π(s|ϕ) and a critic network Q(s, a|θ), where s is the
state, a is the action, ϕ and θ are the respective parameters.

Critic Update: DDPG uses a target Q-network to stabilize learning. The target
Q-network parameters θ′ are slowly updated to the current Q-network parameters:

θ′ ← τθ + (1− τ)θ′ (3.19)

32

Reinforcement Learning

The critic loss function is defined as the mean squared error between the predicted
Q-values and the target Q-values:

L(θ) = E
51
Q(s, a|θ)− (r + γQ(s′, π(s′|ϕ)|θQ′)

22
6

(3.20)

Where r is the reward, s′ is the next state, π(s′|ϕ) is the target actor’s output for
the next state s′, and γ is the discount factor. The critic parameters θ are updated
by minimizing L(θ) using gradient descent.

Actor Update: The actor is updated to maximize the expected return as
estimated by the critic. The actor loss is defined as:

L(ϕ) = E [Q(s, π(s|ϕ)|θ)] (3.21)

The actor parameters ϕ are updated by performing gradient ascent on J(ϕ). The
gradient of the actor loss with respect to its parameters is given by:

∇ϕL(ϕ) = E
è
∇aQ(s, a|θ|a=π(s)∇ϕπ(s|ϕ)

é
(3.22)

The actor parameters ϕ are updated using this gradient.

Exploration: DDPG incorporates noise in action selection to encourage explo-
ration:

at = µ(st|θµ) +Nt. (3.23)
Where Nt is the noise added to the action.
These equations represent the core of the DDPG algorithm, balancing exploration
and exploitation in a continuous action space by updating the actor and critic
networks through policy and value gradients.

TD3

TD3 (Twin Delayed Deep Deterministic Policy Gradient) is an extension of DDPG
designed to improve stability and performance. Similar to DDPG, it maintains two
actor networks π(s|ϕ) and two critic networks Q1(s, a|θ1) and Q2(s, a|θ2).

Critic Update: The critic loss is similar to DDPG, with the addition of target
value smoothing and target noise:

L(θ1) = E
è
(Q1(s, a|θ1)− (r + γmin(Q′

1(s′, ã′), Q′
2(s′, ã′)))2é (3.24)

L(θ2) = E
è
(Q2(s, a|θ2)− (r + γmin(Q′

1(s′, ã′), Q′
2(s′, ã′)))2é (3.25)

33

Reinforcement Learning

Where Q′
1(s′, ã′) and Q′

2(s′, ã′) are target critic values of the next state with added
noise. Where

ã′ = π(s′|ϕ) +Nt, (3.26)

Nt is the target policy smoothing noise. This is applied to reduce overestimation
bias.

Actor Update: TD3 employs a trick called "target policy smoothing" to improve
stability. The actor loss is defined as:

L(ϕ) = E [Q1 (s, π(s|ϕ) +Nt|θ1)] (3.27)

The actor parameters ϕ are updated by performing gradient ascent on L(ϕ). The
gradient of the actor loss with respect to its parameters is given by:

∇ϕL(ϕ) = E
è
∇aQ1 (s, a|θ1) |a=π(s)∇ϕπ(s|ϕ)

é
(3.28)

The actor parameters ϕ are updated using this gradient.
TD3 achieves more stable and efficient learning in continuous action spaces by

incorporating these modifications into the traditional DDPG algorithm.

3.12.2 Soft Actor Critic
Soft Actor-Critic (SAC) is a deep reinforcement learning algorithm that maximizes
the entropy of the policy in addition to expected cumulative reward. It was
introduced by Haarnoja et al. 2018. SAC maintains a stochastic policy π(a|s, ϕ)
and two value functions: Q1(s, a|θ1) and Q2(s, a|θ2).

Actor Update: The actor is trained to maximize both expected reward and
entropy, encouraging exploration. The objective function for the actor is:

L(ϕ) = Est∼D

5
Eat∼π(·|st)

5
α log(π(at|st, ϕ))− min

i=1,2
Qi(st, at|θi)

66
(3.29)

Where D is the replay buffer and α is the temperature parameter.

Critic Update: The critic networks are updated to minimize the Bellman error
with the entropy-regularized reward:

L(θ1) =E(st,at,rt,st+1)∼D
è1
2(Q1(st, at|θ1)− (rt+

γEat+1∼π(·|st+1) [min(Q1(st+1, at+1|θ1), Q2(st+1, at+1|θ2))]))2
é

(3.30)

34

Reinforcement Learning

Algorithm 5 Twin Delayed Deep Deterministic Policy (TD3)
1: Initialize actor network π(s) and two Q-networks Q1(s, a), Q2(s, a) with random

weights
2: Initialize target networks Q′

1, Q′
2, and π′ with same weights as their respective

online networks
3: Initialize target policy smoothing noise ϵ ∼ clip(N (0, σ),−c, c)
4: Initialize target policy smoothing coefficient σ, noise clip c, target update

frequency d, and discount factor γ
5: Initialize replay buffer D
6: for each episode do
7: Initialize state s
8: for each step in the episode do
9: Select action a from the current policy with noise: a = π(s) + ϵ

10: Execute action a, observe reward r and next state s′

11: Store (s, a, r, s′) in D
12: if step mod d = 0 then
13: Sample a minibatch of transitions (si, ai, ri, s′

i) from D
14: Compute target Q-values:
15: yi = ri + γmin(Q′

1(s′
i, π

′(s′
i) + ϵ′), Q′

2(s′
i, π

′(s′
i) + ϵ′))

16: Update Q-networks:
17: L = 1

N

q
i(yi −Q1(si, ai))2 + (yi −Q2(si, ai))2

18: end if
19: if step mod d = 0 then
20: Update the actor network using the deterministic policy gradient:
21: ∇θJ(ϕπ) = 1

N

q
i∇aQ1(si, a)|a=π(si)∇θπ(si)

22: end if
23: Update target networks with soft updates:
24: θQ′

1
= τθQ1 + (1− τ)θQ′

1
25: θQ′

2
= τθQ2 + (1− τ)θQ′

2
26: θπ′ = τθπ + (1− τ)θπ′

27: end for
28: end for

35

Reinforcement Learning

L(θ2) =E(st,at,rt,st+1)∼D
è1
2(Q2(st, at|θ2)− (rt+

γEat+1∼π(·|st+1) [min(Q1(st+1, at+1|θ1), Q2(st+1, at+1|θ2))]))2
é

(3.31)

Algorithm 6 Soft Actor-Critic (SAC)
1: Initialize critic networks Q1(s, a), Q2(s, a), and actor network π(s) with random

weights
2: Initialize target networks Q′

1, Q′
2, and π′ with same weights as their respective

online networks
3: Initialize replay buffer D and temperature parameter α
4: for each episode do
5: Initialize state s
6: for each step in the episode do
7: Select action a from the current policy: a = π(s) + ϵ, where ϵ ∼ N (0, 1)
8: Execute action a, observe reward r and next state s′

9: Store (s, a, r, s′) in D
10: Sample a minibatch of transitions A(si, ai, ri, s′

i) from D
11: Compute target Q-values:
12:

yi = ri + γ min
j=1,2

Q′
j(s′

i, π
′(s′

i))− α log(π(s′
i, θπ))

13: Update critic networks by minimizing the mean squared loss:
14:

L = 1
N

Ø
i

(yi −Q1(si, ai))2 + (yi −Q2(si, ai))2

15: Update the actor network:
16:

∇ϕ
1
N

Ø
s∈A

3
min
j=1,2

Qθj
(si, a)|a=π(si) − α log πϕ(a|si)

4
17: Update target networks with soft updates:

θQ′
1

= τθQ1 + (1− τ)θQ′
1

θQ′
2

= τθQ2 + (1− τ)θQ′
2

θπ′ = τθπ + (1− τ)θπ′

18: end for
19: end for

36

Chapter 4

Offline Reinforcement
Learning

As it has been shown in the previous section that RL is an online learning. This
kind of learning is both the strength and the weakness of RL. Meanwhile the online
setting allows the algorithm to find the optimal policy (or at least a policy which
is very close in term of performance to the optimal), on the other hand in some
settings it is not possible or it is not convenient to do this kind of experiment.
Applying RL algorithms to real scenarios can be very expensive or dangerous, for
example letting a robot have his own experience to learn the optimal behaviour
can lead to its destruction or someone being harmed. Nevertheless the power of RL
have to be used. In the past years data-driven methods have taken a major role in
ML, thanks to their ability of scaling with data, from visual recognition, natural
language processing. The aim of incorporate such behaviour in RL algorithm has
become more and more urgent. On the other hand such an approach has shown
other types of challenges, those will be discussed in 4.2.
Offline Reinforcement Learning (ORL), also called Batch Reinforcement Learning,
algorithm have been introduced as a proposal to handle this challenge. The main
difference from RL is that there is no more interacting with the environment, thus
the algorithm is not able to explore new states and policies. ORL approach can be
effectively seen as a data-driven formulation of the RL problem. In this chapter
an overview of the main methods to address this challenge will be introduced and
discussed, for what concern specific algorithms those will be discussed in the next
chapter 5.

37

Offline Reinforcement Learning

4.1 Setting of Offline Reinforcement Learning
As it has been discussed in this new setting the algorithm is not able to interact
with the environment to obtain new observations and rewards, instead the batch of
"experience" is fixed.

D =
î
(sit, ait, sit+1, r

i
t)
ï

(4.1)

are our set of data, where every element is composed by state, action, next-state
and immediate reward. It can be composed by trajectories or random sample of
action in a random state. The dataset is used to learn the optimal policy, it can
be seen as the training set of a normal supervised learning problem. From this
collection the algorithm have to exploit sufficient understanding of the underlying
MDP and obtain the best policy π∗. From the dataset it is possible to exploit
the distribution of the sample states dπβ (s) and the behaviour policy πβ. This
two assets can be both given by a previous algorithm or be approximate from the
dataset.
To address this kind of problem many methods have been tried, most of the methods
based on Q-learning are easily adapted to such a scenario. In the other hand, as
discussed when this kind of methods have been introduced, most of them rely on
acquiring new data following a specific policy, it is trivial to understand that this is
not possible, therefore modification and additions have been proposed to mitigate
the inaccuracy caused by this.

4.2 Difficulties of Offline Reinforcement Learning
As one can expect this new setting poses new and different problems compared
to RL, some easily addressable other more difficult to understand and propose a
solution. In this section some of the most challenging and known difficulties will
be discussed.

4.2.1 Distributional shift
Most of RL algorithms are based on making assumptions on which policy could
give better results , after this consulting the environment such assumptions can
be confirmed or not. It is clear that such thing is not possible in a static setting
as ORL. This cause a major problem when such policy have to be evaluated or
update, since π is different from πβ this can lead to out of distribution states where
computing the values have an approximating error such that the algorithm could
misinterpret the policies. Most of today’s machine learning tools does not permit
to train and evaluate on batch of data from different distributions. Never the less
evaluating new ways to reach some goal is the base of RL and ORL, thus this

38

Offline Reinforcement Learning

problem has to be faced in some way and can not be avoid. Proposal to face this
difficulty will be discussed in details where ORL algorithms will be introduced.

4.2.2 Exploration
It is intuitive that having a static set of data it is not possible to have an exploration,
so if the dataset is not optimal and does not show some region with high reward
it is possible to not be able to exploit an optimal policy. On the other hand such
a problem is not the scope of ORL and there is no way to address this challenge.
Since this is the case it is not productive to try to find solutions and in the following
discussion the dataset D will be assumed to be adequate to find optimal solutions.

4.3 Importance sampling methods
In this section a group of methods that rely on direct estimation of the policy will
be introduced, most of them use importance sampling as a tool to directly evaluate
the return of a policy or compute the policy gradient.
Importance sampling is a variance reduction technique use in Monte Carlo methods,
the main idea is that some sample are more important from the others to estimate
some quantity. More importantly for this work, importance sampling can be used
to estimate one distribution sampling from another, this can be widely used in
ORL.

4.3.1 Basic theory
Suppose to wish to estimate the expected value of a function of some random
variable

X : Ω→ R

in some probability space (Ω,F ,P). Thus we have to solve

Ep[f(X)] =
Ú

D
f(x)p(x)dx,

where p is the probability density function of X, D ⊂ Rd and outside of it the
probability is null. Let now q be a probability density function on Rd, such that
q(x) > 0 when f(x)p(x) /= 0. Than the following holds

Ep[f(X)] =
Ú

D
f(x)p(x)dx =

Ú
D

f(x)p(x)
q(x) q(x)dx = Eq

C
f(x)p(x)
q(x)

D
(4.2)

where the second expected value is computed for X ∼ q. The factor p(x)
q(x) is called

likelihood-rate, the distribution p nominal-distribution and q importance distribution.

39

Offline Reinforcement Learning

Multiplying the function for the likelihood-rate it is possible to compensate the fact
that the samples are from a different distribution.
Let now Q =

î
x ∈ Rd|q(x) > 0

ï
, than the following calculations follows directly

Eq
C
f(x)p(x)
q(x)

D
=
Ú

Q

f(x)p(x)
q(x) q(x)dx =

Ú
Q
f(x)p(x)dx

=
Ú

D
f(x)p(x)dx+

Ú
Q∩Dc

f(x)p(x)dx−
Ú

Qc∩D
f(x)p(x)dx

=
Ú

D
f(x)p(x)dx, (4.3)

since when x ∈ Q∩Dc p(x) = 0 and if x ∈ Qc∩D f(x)p(x) = 0. It is worth noting
how by definition of Q it is impossible to have a point x ∈ Q such that q(x) = 0,
thus the problem is well posed and there are no problem with the fraction. This
method can be expanded to work with different function and same importance
distribution, it is enough to ask that q satisfies the requirements for each function.
It is possible now applying the standard unbiased estimator for the mean value to
the new formulation, obtaining

µ̂ = 1
n

nØ
i=1

f(xi)p(xi)
q(xi)

. (4.4)

Theorem 3. Let µ̂ be the estimator of the expected value Ep [f(x)] = µ, p and q
probability density as before, than Eq [µ̂] = µ and V arq [µ̂] = σ2

q

n
. Where

σ2
q =

Ú
Q

(f(x)p(x))2

q(x) dx− µ2 =
Ú

Q

(f(x)p(x)− µq(x))2

q(x) dx. (4.5)

Following the steps in the previous part Q = {x|q(x) > 0} can be substitute to
D = {x|p(x) > 0}.

Proof. Directly from 4.3 one can obtain that

Eq
C
f(x)p(x)
q(x)

D
=
Ú

D
f(x)p(x)dx = µ. (4.6)

Applying the expected value to µ̂ the following holds

Eq [µ̂] = Eq
C

1
n

nØ
i=1

f(xi)p(xi)
q(xi)

D
= 1
n

nØ
i=1

Eq
C
f(xi)p(xi)
q(xi)

D
= 1
n
nµ = µ, (4.7)

showing that µ̂ is an unbiased estimator for the expected value of some function f
under the probability density distribution p. To show the variance of the estimator

40

Offline Reinforcement Learning

it is enough to compute it explicitly remembering that samples xi are i.i.d. and
that

V arq

C
f(x)p(x)
q(x)

D
=Eq

Af(x)p(x)
q(x)

B2
− µ2

=
Ú
Q

A
f(x)p(x)
q(x)

B2

q(x)dx− µ2 = σ2
q ,

it follows directly that

V arq[µ̂] =V arq
C

1
n

nØ
i=1

f(xi)p(xi)
q(xi)

D
= 1
n2

nØ
i=1

V arq

C
f(xi)p(xi)
q(xi)

D

= 1
n2

nØ
i=1

σ2
q =

σ2
q

n
(4.8)

It is important to notice how even if V ar[f(X)] is finite there is no guarantee
that σq is bounded too.

4.3.2 Self-Normalized importance sampling
In many real cases it is possible that both the distribution p and q are known up to
a normalizing constant (i.e. p(x) = cp0(x) and q(x) = bq0(x), where only p0(x) and
q0(x) are known). To deal with this problem it is possible to compute the ratio
W (x) = p(x)

q(x) and consider the following estimation

µ̃q =
1
n

qn
i=1

f(xi)p(xi)
q(xi)

1
n

qn
i=1

p(xi)
q(xi)

=
qn
i=1 W (xi)f(xi)qn

i=1 W (xi)
(4.9)

is called self-normalized importance sampling estimate. It is clear how the as-
sumption on p and q must be stronger, indeed we need that q(x) > 0 whenever
p(x) > 0.
Theorem 4. Under the assumption on p and q made before, the self-normalized
importance sampling estimate converges in probability to the expected value Ep[f(x)]
(i.e. P (limn→∞ µ̃q = µ) = 1)
Proof. By applying the strong law of large number to the numerator and denomi-
nator separately we obtain that

P
A

1
n

nØ
i=1

W (xi)f(xi)→∞ µ

B
= 1

P
A

1
n

nØ
i=1

W (xi)f(xi)→∞ 1
B

= 1.

41

Offline Reinforcement Learning

Where in the second the expected value is done with f(x) = 1 for almost every
x ∈ Ω.

Theorem 5. The estimator in equation 4.9 is biased.

Proof. As we have seen in 3 the estimator

µ̂ = 1
n

nØ
i=1

f(xi)p(xi)
q(xi)

,

is unbiased. Now take into consideration the estimator of the ratio

ω̂ = 1
n

nØ
i=1

W (xi),

this is an unbiased estimator of the normalizing constant. Indeed

Eq[
1
n

nØ
i=1

W (xi)] = 1
n

nØ
i=1

Ú
Q
W (xi)q(x)dx

=
Ú

Q

p(x)
q(x)q(x)dx =

Ú
D
p(x)dx = 1 = Eq[W (x)]

Let X be a strictly positive random variable random, than by Jensen inequality

E[1/X]

4.3.3 Off-policy evaluation via importance sampling
The value function of a given policy is an expected value, where actions are taken
in the policy distribution. In offline reinforcement learning such policy can not be
experimented to gain an effective value of such function, since the dataset follow a
different distribution πβ, importance sampling is a natural way to estimate such
value.

V π(s) =Ea∼π[Gt|s = s0] = Ea∼π

C
KØ
i=0

γir(si, ai)|s = s0

D

=Ea∼πβ

C
KÙ
i=0

π(ai|si)
πβ(ai|si)

KØ
i=0

γir(si, ai)
-----s = s0

D

≈ 1
n

nØ
j=1

KÙ
i=0

π(aji |s
j
i)

πβ(aji |s
j
i)

KØ
i=0

γir(sji , a
j
i)

=
nØ
j=1

W j
K

KØ
i=0

γir(sji , a
j
i)

42

Offline Reinforcement Learning

Such estimator can have a potentially unbounded variance, due to the product of
importance weights. To minimize effect it is possible to use the self-normalized
importance sampling by dividing for the weights sum, which is still a consistent
estimator and can have much lower variance. Precup et al. 2000 suggest that it
is possible to improve the estimator by studying the problem. In this case since
r(si, ai) does not depend on future states and action it is possible to rewrite the
expected value as follow

Ea∼πβ

C
KÙ
i=0

π(ai|si)
πβ(ai|si)

KØ
i=0

γir(si, ai)
-----s = s0

D

=Ea∼πβ

 KØ
i=0

t′Ù
t=0

π(ai|si)
πβ(ai|si)

γir(si, ai)
-----s = s0

 ≈ 1
n

nØ
j=1

KØ
i=0

w(x)jiγir(s
j
i , a

j
i). (4.10)

Again this estimator can have very high variance, even weighing this in many
application is still too unstable to be used.

4.3.4 Doubly Robust Estimator
Jiang and Li 2016 have introduced the Doubly Robust Estimator, which is a good
estimator if πβ is known or the model is correct, but still remain unbiased if the
former does not hold and if the latter does not hold than the error is proportionate
to the model error.

DR(V π(s)) =
nØ
j=1

KØ
i=0

w(x)jiγir(s
j
i , a

j
i)

−
nØ
j=1

Ø
i=0

γi
1
wjiQ

π(st, at)− wji−1Ea∼π [Qπ(st, a))
é
. (4.11)

In P. S. Thomas and Brunskill 2016, this this method has been studied in details
and a mathematical derivation of the infinite horizon formulation has been given.
Even though this is an improvement of the importance sampling strategy more
sophisticated estimator have been introduced by Y.-X. Wang et al. 2017 and
Farajtabar et al. 2018.
Having a good estimator is usually not enough to address ORL problem, since the
goal is to find a policy which has overall good performance the guarantee to have a
good performance is very important. To this end the study of confidence interval is
the key, some of them are based on distributional assumption and bootstrapping.P.
Thomas et al. 2015 derived confidence bounds based on concentration inequalities
specialized to deal with the high variance and potentially large range of the
importance weighted estimator. Estimators and confidence interval together can
be used to look for new policies having a lower bound on their performance. This
can be used in policy improvement.

43

Offline Reinforcement Learning

4.3.5 The off-policy gradient
Importance sampling methods can be used to directly estimate other useful quantity.
As we have introduced in section 3.8 one way to improve a policy is thorough the
policy gradient. In this section the way to use importance sampling to estimate
such value will be studied and than use of it will be explained. First recall the
formulation of the policy gradient

∇θV
πθ = Ea∼πθ

C
KØ
t=0

γt∇θ log πθ(at|st)Â(st, at)
D
. (4.12)

As done in the previous section one can apply the importance sampling method
directly to this expected value, obtaining

∇θV
πθ =Ea∼πθ

C
KÙ
i=0

π(ai|si)
πβ(ai|si)

KØ
t=0

γt∇θ log πθ(at|st)Â(st, at)
D

≈
nØ
j=1

W j
K

KØ
t=0

γi∇θ log πθ(at|st)Â(st, at). (4.13)

As before we can lower the variance by using the self-normalized importance
sampling and again remembering the properties of the problem it is possible to
rewrite 4.13 in a per-decision form.

Â(st, at) =
KØ
t′=t

γt
′−tr(st′ , at′)− b(sit) (4.14)

the reward does not depend on future state and action, thus as before we can drop
those dependencies leading to the form

∇θV
πθ ≈

nØ
j=1

KØ
t=0

γiW j
t∇θ log πθ(at|st)

KØ
t′=t

A
W j
t′

W j
t

(γt′−tr(st′ , at′)− b(sit)
B
. (4.15)

Having this form it is possible to sample form πβ to estimate the gradient of another
policy. All the criticism discussed for the estimation of the value function are still
valid, indeed the high variance is one of the main problem in real applications.
Methods to mitigate this problem have been introduced giving better result, but,
even if they are mathematically correct, they need a huge amount of samples to be
accurate. One example is the soft max regularization.By rewriting the estimator as

nØ
j=1

W j
K

KØ
t=0

γi∇θ log πθ(at|st)Â(st, at) + λ log
A

nØ
i=1

W i
K

B
. (4.16)

44

Offline Reinforcement Learning

It is worth noting how this formulation is still consistent since

lim
n→∞

nØ
i=1

W i
K = 1.

There are plenty of possible regularization term, but Levine and Koltun 2013 has
shown how this is the best, by trial and error.

4.4 Dynamic programming for Offline Reinforce-
ment Learning

Dynamic programming methods as discussed in 3.5 are based on learn value
functions or Q-values. Most of them do this through approximating the function by
simple regressions or deep learning methods. In principle such way to address the
problem should give good performance without any adjustment, indeed it should
be enough to set a fixed buffer of states, actions, next states and rewards. On the
other hand as discussed in 3.12.2 new method such as actor critic or SAC even
if consider to be off-policy algorithms they are based on sampling from the actor
distribution during the exploration, in ORL setting this is not possible leading to
distributional shift between the behaviour policy πβ and the actor policy π. Many
methods have been proposed but two main categories of solutions shine. One is to
force the actor policy to be close to the behaviour one and the other is based on
uncertainty, both will be discussed in this section trying to emphasize pro and cons
of both of them. Before going deep into the algorithms it is important to stress and
understand better how distributional shift can have impact on such algorithms.

4.4.1 Impact of distributional shift on dynamic program-
ming methods

Distributional shift has two different impact on dynamic programming methods,
one is the shift over the states and the other over the actions. The latter affect
the training part and the former the test. This two problems have to be addressed
separately and with different methods.

Action distributional shift Having a fixed dataset of states, actions and next-
states does not permit an exploration and can lead to errors that can be accumulate
over time. Take into consideration a standard Q-learning where in each step the
value of a given (st, at) is update with the following

Q(st, at) = Q(st, at) + λ
5
r(st, at) + γ max

at+1∈A
Q(st+1, at+1)−Q(st, at)

6
. (4.17)

45

Offline Reinforcement Learning

As one can expect the action which maximize the Q-value can be different from the
one from the dataset. Thus the approximation of Q(st+1, at+1) will be affected by
an error. In most of the algorithms used today the maximum is changed, instead
it is preferred to evaluate the Q-value along a policy π , even in this case the
distributional shift between π and πβ gives an error. While this seems to have
a minor effect on final result due to the approximation over a dataset which is
consider to be dense and with enough data to cover the whole space this is not
the case. To be better understood take into consideration an approximating error
which always gives Q-value greater then the real one in some state (S,A). If this is
the case actor-critic methods will try to enforce such state-action situation due to
the previous great results. Having a positive approximation error such estimation
can be over estimate at every step. This effect is due to the fact that the Q-value
has to be evaluated in states where it will never be train in. Having such errors
in every step it can lead to an arbitrary bad performance. In RL setting this is
mitigate thanks to the possibility from the algorithm to try such a policy and learn
how good or bad it really is.

State distributional shift This type of distributional shift mostly affect the
algorithm at test time. It is natural that having a fixed dataset, in real application
it is likely to find state that were not in the training set. This can be because initial
state in the dataset or a policy which differs from the behaviour policy, while in
the first case it is not possible to fix such a problem in the second constraining the
policy to be close to the behaviour one is possible. One of the attempt made is
to constrain the Kullback divergence between the two policies to be bounded. It
has been studied and prove that such an attempt help the state distributional shift
problem, in the other hand it can leads to sub-optimal solutions. In this case it
is important to choose whether is better to achieve better performance or having
a more safe algorithm that ensure to reach the goal in a longer and less efficient
ways.

4.4.2 Policy constraints methods

The main idea behind policy constraints methods is to make the policy be as close
as possible to the behaviour policy. This limits the evaluation out-of-distribution
actions, leading to less approximating errors. If the policy π is equal to πβ one
would not have accumulation of error and standard results of RL can be applied.
During the training of an ORL algorithm the only states available are the one from
the dataset, thus it is not necessary to impose a constrain also on dπ(s). Such
constraints can be applied in two different ways:

46

Offline Reinforcement Learning

Policy penalty Policy penalty methods directly incorporate a penalty into the
update of the algorithms approximator. As an example if on consider an actor-critic
method it is possible to add a penalty into the update of both the actor and the
Q-value. This penalty is made such that it increase its magnitude as π differs from
πβ.

Qπ
k+1 ← arg min

Q

I
E(s,a,s′)∈D

è1
Q(s, a)−

1
r(s, a) + γEa′∼π

è
Q̂π(s′, a′)

é2
− αγD(πk(·|s′)|πβ(·|s′)

22éJ
(4.18)

πk+1 ← arg max
π

î
Es∈D

è
Ea∼π

è
Q̂(s, a)− αD(πk(·|s)|πβ(·|s)

ééï
(4.19)

It is also possible to incorporate the penalty modifying the reward substrating
the penalty. Various formulation of the penalty has been proposed, the most well
known is the Kullbabk divergence.

Policy constraints Another way to force the learned policy to be close to the
behaviour one is to constrain it by force. Adding a verification where the two policy
have to be in some way similar, this term as before can be various and different
proposal have been made. Incorporating it into a actor-critic method the following
formulation would come out

Qπ
k+1 ← arg min

Q

I
E(s,a,s′)∈D

è1
Q(s, a)−

1
r(s, a) + γEa′∼π

è
Q̂π(s′, a′)

é2 22éJ
(4.20)

πk+1 ← arg max
π

î
Es∈D

è
Ea∼π

è
Q̂(s, a)|πβ(·|s′)

ééï
s.t. D(πk+1|πβ) < ϵ (4.21)

for some ϵ chosen.

The way to define such a constraint or penalty differs from one method to the other
but they can be summarized in three different categories.

Explicit f-divergence policy constraints

Definition 3. Let P and Q be two different probability distribution over Ω, such
that P << Q (i.e. P is absolute continuous with respect to Q, for every Q
measurable set A such that Q(A) = 0 than P(A) = 0). Then, for a convex function

f : [0,∞)→ (−∞,∞] s.t. f(1) = 0, f(0) = lim
t+→0

f(t)

47

Offline Reinforcement Learning

the f-divergence from P from Q is define as

Df (P||Q) =
Ú

Ω
f

A
dP
dQ

dQ
B

(4.22)

Most known examples of f-divergence in this field are

KL-divergence

DKL(P||Q) =
Ú

Ω
p(x) log

A
p(x)
q(x)

B
dx (4.23)

This is a distance between the two probability distribution. Its formulation is
similar to the entropy one, it gives an idea of how much one will get different result
using Q as a model when the real distribution is P.

χ2-divergence This family of divergences includes two main subset:

Dχ2
P
(P||Q) =

Ú
Ω

(q(x)− p(x))2

p(x) dx (4.24)

Dχ2
N

(P||Q) =
Ú

Ω

(p(x)− q(x))2

q(x) dx (4.25)

Total-variation distance Let be P and Q two probability measures over (Ω,F),
than the total variation distance between the two is define as

δ(P,Q) = sup
A∈F
|P(A)−Q(A)| (4.26)

thus it is the largest difference in probability of all the possible set A ∈ F .

4.5 Offline model-based Reinforcement Learning
In Model-based Offline Reinforcement Learning (MB-ORL), the agent learns a
model of the environment dynamics from a dataset of past interactions. The learned
model can then be used to simulate future interactions, and the agent can use
it to optimize its policy. Unlike online RL, where the agent interacts with the
environment to collect data and updates its policy accordingly, MB-ORL utilizes a
dataset of past interactions to learn a policy. This approach allows the agent to
learn from past interactions without the need for further data collection, making it
useful in scenarios where data collection is costly or difficult. Additionally, having
a model of the environment can provide the agent with a deeper understanding

48

Offline Reinforcement Learning

of the problem and the ability to plan and reason about the effects of different
actions. However, learning an accurate model of the environment can be challenging,
particularly if the dataset is limited or the environment is complex. Additionally,
the agent may need to balance the exploration-exploitation trade-off when learning
the model and the policy. Overall, MB-ORL offers the ability to learn from past
interactions without the need for further data collection and provides the ability to
plan and reason about the environment. With the advancements in deep learning,
it is possible to learn more accurate models and better policies using offline data.
In Model-based Offline Reinforcement Learning, one important factor to consider is
distributional shift, which refers to the difference between the distribution of states
and actions encountered during training and during deployment. This can happen
when the agent is deployed in a different environment, or when the environment
changes over time. Distributional shift can affect the performance of MB-ORL
models in several ways. One issue is that the model learned from the offline dataset
may not accurately represent the dynamics of the new environment, resulting in
poor performance. Additionally, the policy learned from the offline dataset may not
be optimal for the new environment, leading to suboptimal performance. Another
issue is that the offline dataset may not include samples from all possible states and
actions, leading to a bias in the learned model and policy. This can cause the agent
to perform poorly in states and actions that were not represented in the offline
dataset. To address distributional shift, several methods have been proposed such as
domain adaptation, domain randomization and meta-learning. Domain adaptation
methods aim to adjust the learned model and policy to the new environment by
fine-tuning on a small amount of online data. Domain randomization methods
aim to make the learned model and policy more robust to different environments
by training on a variety of simulated environments. Meta-learning methods aim
to learn a policy that can adapt quickly to new environments by learning from
a variety of tasks. Overall, distributional shift is an important consideration in
MB-ORL and several methods have been proposed to address it. However, it is
still an open research problem and more work is needed to develop robust and
efficient methods for dealing with distributional shift in MB-ORL.

49

Chapter 5

Offline Reinforcement
Learning algorithms

After having introduced ORL in its general settings, in this chapter some of the
most used yet powerful algorithms to tackle this problem will be explained. The
one described below are the ones that will be used in the experiments, which is the
core of this thesis.

5.1 BCQ
In Fujimoto, Meger, et al. 2019 one of the first try to address the Offline Rein-
forcement Learning problem has been proposed Batch-Constrained deep Q-learning
(BCQ), by using a variational autoencoder the algorithm is able to "create" new
possible actions. Here a brief explanation of the algorithm will be done by focussing
on pros and cons of this approach.

5.1.1 Algorithm overview
For a given state, BCQ generates plausible candidate actions with high similarity to
the batch, and then selects the highest valued action through a learned Q-network.
Than the algorithm bias this value estimate to penalize rare, or unseen, states
through a modification to Clipped Double Q-learning.

VAE

To let the algorithm create new unseen state-actions pair the writers propose the
use of a conditional variational autoencoder (VAE) which was first introduced
in Kingma and Welling 2013. The way it works is through the modelling of the

50

Offline Reinforcement Learning algorithms

distribution by transforming an underlying latent space by using an encoder E(s, a)
and than it recovers new actions using a decoder D(s). This two elements are
trained one alongside the other through the following loss function:

â ∼ D(s), µ, σ ∼ E(s, a),
Lvae(ω) = Ea∼D,â∼vae(s)((a− â)2 +DKL(N (µ, σ)|N (0,1)). (5.1)

Where in one side it is made it learning to decode actions similar to the one from
the dataset and in the other it is forced to have a specific distribution in the latent
space.

Q-values

As in many other cases the Q-values learning is done by four different neural
networks, two are the network which are actually learning by "competing" one
against the other and two are the targets that are slowly update step by step. The
update of such neural network is done in the following way

aj ∼ D(s)
LQ(θ) =E(s,a)∼D

è1
Q(s, a)−max

aj
(r + γmax(λmin

i=1,2
Qi
θ̂i

(s, aj)

+ (1− λ) max
i=1,2

Qi
θ̂i

(s, aj)
2é

θ̂i = αθ̂i + (1− α)θi (5.2)

Noise

The perturbation model it is used to increase the diversity of seen actions, allowing
the algorithm to evaluate more possibilities when it has to decide which action
should be taken. Such noise can be modelled as a normal distribution where the
parameters are learned through the following loss

LΛ(ξ) = Eâ∼vae(s) [−Qθ(s, â+ Λξ(s, â)] (5.3)

Policy

Here the policy is actually taken as a real argmax over the possible actions, indeed
it is not modelled as a neural network, but instead each action is chosen as

π(s) = arg max
ai∼vae(s)

[Qθ(s, ai + Λξ(s, ai)] (5.4)

51

Offline Reinforcement Learning algorithms

Algorithm 7 Batch-constrained deep Q-learning (BCQ)

1: Initialize Q-function parameters θ1, θ2, , target Q-function parameters θ̂1, ˆtheta2,
initialize the parameter ω of the VAE, the parameter ξ of the perturbation
model and offline data replay buffer D

2: for each VAE preliminary update step do
3: sample a batch B = {(s, s′, a, R)} ∼ D
4: â ∼ Dω(s), µ, σ ∼ Eω(s, a)
5: compute the loss Lvae(ω)
6: update the parameters ω ← ω + λω∇ωL(ω)
7: end for
8: for each gradient step do
9: sample a batch B = {(s, s′, a, R)} ∼ D

10: â ∼ Dω(s), µ, σ ∼ Eω(s, a)
11: compute the loss Lvae(ω)
12: update the parameters ω ← ω + λω∇ωL(ω)
13: sample n actions: {ai ∼ Gω(s′)}ni=1
14: perturb the actions {ai = ai + Λxi(s′, ai)}ni=1
15: set y = r + γmaxai

(λminj=1,2 Q
j

θ̂j
(s, ai) + (1− λ) maxj=1,2 Q

j

θ̂j
(s, ai))

16: compute the loss LQ(θ)
17: update the parameters θ ← θ + λθ∇θL(θ)
18: compute the loss LΛ(ξ)
19: update the parameters ξ ← ξ + λξ∇ξL(ξ)
20: soft update the targets parameters: θ̂i = αθ̂i + (1− α)θi
21: end for

52

Offline Reinforcement Learning algorithms

5.2 IQL
In this section the state of the art in ORL will be discussed, it have been introduced
by Kostrikov et al. 2021. This new approach to ORL is based on the idea that
in-distribution constraint used before might not be sufficient to avoid extrapolation
errors, instead they tried to learn the optimal policy by in-sample learning without
querying out of distribution actions. They did so by approximating an upper
expectile of the distribution over values with respect to the distriution of the
dataset action. The main contribution of the article is to introduce implicit Q-
learning (IQL), a new method able to perform multi-step dynamic programing
while not querying for out of distribution actions.

5.2.1 Mathematical preliminaries
Expectile regression

One of the main point of this new method is to implement the expectile regression.
Expectile regression has been widely used in statistic and econometric to estimate
statistics of random variable.

Definition 4. The τ ∈ (0,1) expectile of a random variable X the solution to the
following problem

argmin
mτ

Eτx∼X [Lτ2(x−mτ)] (5.5)

where
Lτ2(x−mτ) = |τ − 1(x−mτ < 0)|(x−mτ)2 (5.6)

This is an asymmetric loss function, indeed with τ < 0.5 it downgrade the value
of x values greater than mτ while weights more larger values. It is worth noting
how this loss function can be optimize by gradient decend.

Value function with expectile regression

Expectile regression is a powerful tool to estimate statistics of a random variable.
It is possible to incorporate it to learn and estimate an upper expectile of the
temporal-difference target. While the squared form of temporal difference error is
given by

L(θ) = E(s,a,s′)∼D

C3
r(a, s) + γmax

a′
Qθ̂(s

′, a′)−Qθ(s, a)
42
D
, (5.7)

implementing it as a an expectile regression gives

L(θ) = E(s,a,s′,a′)∼D [Lτ2(r(s, a)− γQθ̂(s
′, a′)−Qθ(s, a)] . (5.8)

53

Offline Reinforcement Learning algorithms

In the article they also notice how this formulation take a drawback with it self.
In some ORL settings the new state s′ is not always fixed and it is given by a
probability distribution s′ ∼ p(·|s, a). Thus it is possible that some state-actions
that give good values are just lucky and that is not incorporate into the state itself.
To address this problem their solution is to train another value function which
approximate the expectile whit respect only to the action distribution. The resultin
loss is

LV (ψ) = E(s,a)∼D [Lτ2(Qθ̂(s, a)− Vψ(s))] . (5.9)

This target value function is than used to train the Q-value function with a normal
MSE loss, having

LQ(θ) = E(s,a,s′)∼D
è
(r(s, a) + γV (s′)−Qθ(s, a))2é

. (5.10)

Policy extrapolation

The process followed does not give a explicit formulation of the policy. Ispiered
by Peters and Schaal 2007, Q. Wang et al. 2018 Peng et al. 2019,Nair et al. 2021
where they proposed to use advantage wheight regression.

Lπ(ϕ) = E(s,a)∼D [exp (βQθ̂(s, a)− Vψ(s)) log(πϕ(a|s))] (5.11)

Algorithm 8 Implicit Q-Learning (IQL)

1: Initialize θ, θ̂, ψ and π
2: Initialize replay buffer D, discount factor γ, learning rate α and λψ,λθ,λπ
3: for each gradient step do
4: sample a batch {s, s′, a, R} ∼ D
5: compute the value loss L(ψ)
6: update the value weights ψ ← ψ + λψ∇ψL(ψ)
7: compute the Q-loss L(θ)
8: update the Q-value weights θ ← θ + λθ∇θL(θ)
9: soft-update the Q-value target weights θ̂ ← (1− α)θ̂ + αθ

10: end for
11: for each policy-update do
12: compute the policy loss L(π)
13: update the policy weights π ← π + λπ∇πL(π)
14: end for

54

Offline Reinforcement Learning algorithms

5.3 CQL
CQL stands for "Conservative Q-Learning. The "conservative" in the name refers
to the way the algorithm updates the Q-values. In traditional Q-learning, the
Q-values are updated based on the maximum expected future reward, which can
lead to over-estimation of the Q-values. CQL addresses this issue by using a more
conservative update rule that takes into account the uncertainty in the Q-value
estimates. By being more cautious in its updates, CQL is less likely to over-estimate
the Q-values and can improve the stability and performance of the algorithm. CQL
algorithms refer to both Q-learning and actor-critic methods. In this section this
approach introduced by Kumar et al. 2020 will be discussed in details, all the
further analysis of the theorem and their proof can be found in the article cited.

5.3.1 Mathematical preliminaries
The empirical Bellman operator

Empirical Bellman operator is an estimation of the true Bellman operator based on
the samples from the underlying process, it uses the sample transitions and rewards
to estimate the expected value of the next state. For example, given a dataset of
transitions D = {(si, ai, ri, s′

i)} for i = 1...N, the empirical Bellman operator can
be defined as:

B̂π ˆ(V)(s) = 1
N

NØ
i=1

(ri + γ ∗ V (s′
i)) for (si, ai, ri, s′

i) ∈ D with si = s

Where B̂π ˆ(V) is the estimation of the true Bellman operator BπV by using the
sample transitions (si, ai, ri, s′

i) and the current value function V.

Algorithm 9 Conservative Q-Learning (CQL)
1: Initialize θ
2: for each gradient step do
3: sample a batch {s, s′, a, R} ∼ D
4: compute CQL(R)
5: update the Q-value weights θ ← θ + λθ∇θCQL(R)
6: end for

5.3.2 Conservative off-policy evaluation
As in many offline RL algorithm this method is based on being able to estimate
policy π which is different from the policy behaviour πβ. The aim of this approach

55

Offline Reinforcement Learning algorithms

is to not overestimate the Q-value on such policies, this problem is addressed by
learning a lower bound of Q. This is done by minimize Q-values along side the
Bellman error. Since this algorithm naturally queries out-of-distribution state-
action the following assumption on such unseen state-action is that they still belongs
to a marginal distribution µ(s, a) = dπ(s)µ(a|s), this means that all the queried
states belongs to the distribution of the dataset D (i.e. all the states where the
update of the Q-values will be made belong to the dataset). Having this in mind
the following update rule does exactly what has been discussed

Q̂k+1 ← argmin
Q
αEs∼Da∼µ(a|s) [Q(s, a)] + 1

2E(s,a)∼D

51
Q(s, a)− B̂πQ̂(s, a)

22
6
.

In the paper they prove how this update lower-bounds the Q-values for each (s, a).
This method can be too conservative in terms of Q-values, being our goal to
estimate V π(s) one can argue that such approach can be misleading when all the
information are given. Knowing this they propose the new less conservative update
rule

Q̂k+1 ←argmin
Q
αEs∼Da∼µ(a|s)

è
Q(s, a)− Es∼D,a∼πβ

[Q(s, a)]
é

+ 1
2E(s,a)∼D

51
Q(s, a)− B̂πQ̂(s, a)

22
6
. (5.12)

Adding the new term they, in practical terms, make a maximization over the
behavior policy πβ. This leads this new update to not be a point wise lower bound
on the V π(s), but this does holds in terms of expected value (i.e. Eπ(a|s)(Q̂(s, a)) ≤
V π(s)).Indeed it is easy to notice how action that follows the behavior policy can
be over-estimate.

5.3.3 Conservative Q-learning for ORL
The approach described in the previous section it is a general way to estimate a
lower bound for Q-values under some distribution µ. Assume to want to estimate
the value function under some policy π, by just solving the equation 5.12 with
µ = π one is able to estimate a lower bound for the real value function and than
apply a simple policy improvement step. However this approach is too expensive
in computational terms. Another approach is to take µ(a|s) as the approximation
of the current best policy given by the Q-values. This is formally given by the
following family of optimization problems:

CQL(R) = min
Q

max
π

α
1
Es∼D, a∼µ(a|s) [Q(s, a)]− Es∼D,a∼πβ

[Q(s, a)]
é

+ 1
2E(s,a)∼D

51
Q(s, a)− B̂πQ̂(s, a)

22
6

+R(µ). (5.13)

R(µ) can be chosen accordingly to the problem for example

56

Offline Reinforcement Learning algorithms

• R(π) = −DKL(π, ρ) where ρ is a prior distribution that can be equal to the
behaviour policy one.

• R(π) = Es∼D [H(π(·|s))] where H(·) stands for the entropy.

The following is the form of the loss function in terms of neural network parameters.

LQ(θ) =α(Es∼D,a∼π[Qθ(s, a)]− E(s,a)∼D[Qθ(s, a)])

+ 1
2E(s,a,r,a′,s′)∼D[(Qθ(s, a)− r(s, a) + γQθ̂(s

′, a′))2] (5.14)

The way to extrapolate the policy from this Q-values proposed in Kumar et al.
2020 is the standard which takes as action the one the maximize the Q-values,
however for implementation simplicity the one used is

Lπ(ϕ) = Es∼D,a∼π [α log(π(a|s))−Qθ̂(s, a)] (5.15)

5.3.4 CQL conclusion
In conclusion, CQL is a valuable method for offline reinforcement learning. It
utilizes a conservative update rule for the Q-values which results in improved sample
efficiency compared to standard Q-learning. CQL has been successfully applied to
a variety of tasks and has shown promising results in numerous studies. Its ability
to learn from offline data makes it a useful tool for real-world applications where
data collection is costly or difficult. Overall, CQL is a valuable addition to the
offline RL methods

5.4 SAC-N
In An et al. 2021 two of the most powerful methods to address the offline rein-
forcement learning problem have been released. This two algorithm share the same
approach, while the one described in this section is more naive the one that will be
discussed in the next one will be more complex.

5.4.1 N-clipping Q-learning
As discussed in section 3.7.2 one of the methods to avoid overestimation of Q-values
in the online setting is to have more than one approximators to evaluate this value.
One of the main examples where this has been successfully implemented is the
Soft-Actor-Critic algorithm, where two neural network approximators are used.
The main idea of this new new algorithm is to take this and exaggerate it to have

57

Offline Reinforcement Learning algorithms

a better under estimation of the value, indeed how will be shown below this would
be a good estimation of a lower bound of the value. Now let us take into account
a normal SAC method as described in 3.12.2 where instead of having only two
Q-value approximators N are taken. The algorithm just change in the critic and
actor update in the following way:

Actor update : for what concern the actor the change is in the loss function as
below

L(ϕ) = Est∼D

5
Eat∼π(·|st)

5
α log(π(at|st, ϕ))− min

i=1,...,N
Qi(st, at|θi)

66
(5.16)

Critic update : as one can expect the critic update change in the same fashion,
indeed for each critic network the loss becomes

L(θi) =E(st,at,rt,st+1)∼D
è1
2

3
Qi(st, at|θi)−

3
rt+

γEat+1∼π(·|st+1)

5
min

j=1,...,N
(Qj(st+1, at+1|θj))

6 4426
(5.17)

5.4.2 Mathematical justification
The clipped Q-learning algorithm, which chooses the worst-case Q-value instead to
compute the pessimistic estimate, can also be interpreted as utilizing the Lower
Confidence Bound of the Q-value predictions. Without loosing generality one can
assume that the Q-value Q(s, a) follows a Gaussian distribution with mean m(s, a)
and standard deviation σ(s, a). Also, let Qi(s, a)Ni=1 be realizations of Q(s, a). Then,
we can approximate the expected minimum of samples as

E
è
Qi(s, a)Ni=1

é
= m(s, a)− Φ−1

A
N − π

8
N − π

4 + 1

B
σ(s, a) (5.18)

where Φ−1 stands for the inverse of the cumulative distribution function of a normal
gaussian.

5.5 Ensamble Diversified Actor-Critic
N-SAC can require a very high amount of networks to work properly, indeed for
simple tasks with a very good dataset the order of approximators needed is 500.
To address this problem in An et al. 2021 a study on what makes the difference
between a high performance results and a low one has been made. Here the idea,
the proof and the following algorithm will be discussed.

58

Offline Reinforcement Learning algorithms

5.5.1 The gradient alignment problem

In the cited article the authors have empirically found how the performance of
SAC-N is negatively correlated with the degree to which the input gradients of
Q-functions ∇aQθi

(s, a) are aligned, which increases with N. This observation
imply that the performance of the learned policy degrades significantly when the
Q-functions share a similar local structure. Here how they addressed and explained
this problem mathematically will be shown. Let be ∇aQθi

(s, a) the normalized
gradient of the i-th Q function. Assuming that the gradients are aligned one can
find a direction w such that the variance of the out of distribution actions along it
is minimum. It is also possible to assume that for actions that are on distribution
the value Qθi

(s, a) is actually equivalent for each i i.e. Qθi
(s, a) = Q(s, a). One can

obtain the following variance by exploiting the first order Taylor approximation:

Var(Qθi
(s, a+ kw)) ≈ Var((Qθi

(s, a) + k⟨w,∇aQθi
(s, a)⟩)

= k2Var⟨w,∇aQθi
(s, a)⟩)

= k2wTVar(∇aQθi
(s, a))w. (5.19)

Computing the total variance of the matrix Var(∇aQθi
(s, a)), (i.e. the trace of it,

which is equal to the sum of the eigenvalues), one can obtain

Tr (Var(∇aQθi
(s, a))) = Tr

A
1
N

NØ
i=1

(qi − q̄)(qi − q̄)T
B

= 1
N

NØ
i=1

Tr
1
(qi − q̄)(qi − q̄)T

2

= 1
N

NØ
i=1

1
(qi − q̄)T(qi − q̄)

2

= 1
N

NØ
i=1

1
qT
i qi − 2qT

i q̄ + q̄Tq̄
2
, (5.20)

where qi = ∇aQθi
(s, a) Remembering that the gradients are normalized the following

holds

Tr (Var(∇aQθi
(s, a))) = 1− 2

A
1
N

NØ
i=1

qi

BT

q̄ + ||q̄||22

= 1− ||q̄||22 . (5.21)

59

Offline Reinforcement Learning algorithms

It is possible to upper-bound the smallest eigenvalue λmin by some constant ϵ. To
do so first let us take into consideration the following

||q̄||22 = 1
N2

NØ
1≤i,j≥N

⟨qi, qj⟩

= 1
N2

 NØ
i=1
⟨qi, qi⟩+

Ø
1≤i /=j≥N

⟨qi, qj⟩


≥ 1
N2 (N +N(N − 1)(1− ϵ))

= 1− N − 1
N

ϵ. (5.22)

Thus an upper-bound of the total variance has been found,

Tr (Var(∇aQθi
(s, a))) ≤ N − 1

N
ϵ. (5.23)

The trace of a matrix is also equal to the sum of the eigenvalues. It follows that

λmin ≤
1
|A|

|A|Ø
i=1

λi

=≤ 1
|A|

Tr (Var(∇aQθi
(s, a)))

≤ 1
|A|

N − 1
N

ϵ, (5.24)

where λi are the eigenvalue of the Var matrix, λmin is the minimum of them and
|A| is the cardinality of the actions. Now assume that w = wmin is the eigenvector
associated to λmin, taking into account 5.19 one can obtain the following relation

ThiscanbeseenasalossfunctionandwithasmallmodificationthefinalandVar(Qθi
(s, a+ kwmin)) ≈ k2wT

minVar(∇aQθi
(s, a))wmin

= k2λmin

≥ 1
|A|

N − 1
N

k2ϵ.

(5.25)

Therefore, since the goal of this study is to maximize the variance the problem can
be reformulate as a maximization over θi of the following

Es,a∼D [λminVar(∇aQθi
(s, a))] . (5.26)

60

Offline Reinforcement Learning algorithms

However the computational cost of this would be very high, being it iterative.
Thanks to 5.21 this can be reformulate as the minimization of

Es,a∼D

K 1
N

NØ
i=1
∇aQθi

(s, a), 1
N

NØ
j=1
∇aQθj

(s, a)
L . (5.27)

This can be seen as a loss function and with a small modification the final and
used form is

LQi
(θi) = Es,a∼D

(Qθi
(s, a)− y(r, s′))2 + η

N − 1
Ø

1≤i,j≤N

e
∇aQθi

(s, a),∇aQθj
(s, a)

f
(5.28)

In the end this can be interpreted as measuring the pairwise alignment of the
gradients using cosine similarity, which they denote as the Ensemble Similarity
(ES) metric. To update the policy the standard method from SAC is implemented

Lπ(ϕ) = Es∼D,a∼π

5
α log π(a|s)− min

i=1,...,N
Qθi

(s, a)
6

(5.29)

LQ(θ) = E(s,a)∼D

53
Q(s, a)−max

aj
(r + γ(λmin

i=1,2
Qi
θ̂
(s, aj) + (1− λ) max

i=1,2
Qi
θ̂
(s, aj)

46
(5.30)

Lvae(ω) = Ea∼D,â∼vae(s)((a− â)2 +DKL(N (µ, σ)|N (0,1)) (5.31)

π : S → A (5.32)

61

Offline Reinforcement Learning algorithms

Algorithm 10 Ensamble Diversified Actor-Critic (EDAC)
1: Initialize policy parameters θ, Q-function parameters {ϕ}Ni , target Q-function

parameters {ϕ′}Ni and offline data replay buffer D
2: for each gradient step do
3: sample a batch B = {(s, s′, a, R)} ∼ D
4: Compute target Q-values:
5:

y(r, s′) = r + γ(min
i=1,...,N

Q{ϕ′}i
(s′, a′)− β log πθ(a′|s′)), a′ ∼ πθ(·|s′)

6: Update each Q-function with gradient descent using
7:

∇ϕi

1
|B|

Ø
(s,s′,a,R)∈B

(Qϕi
(s, a)− y(r, s′))2 + η

N − 1
Ø

1≤i /=j≤N
ESϕi,ϕj

(s, a)


8: Update the policy using:
9:

∇θ
1
|B|

Ø
s∈B

min
i=1,...,N

Qϕi
(s, âθ)− β log πθ(âθ|s)

where
âθ ∼ πθ(s)

10: Soft-update the Q-value weights: ϕ′
i ← (1− α)ϕ′ + αϕ

11: end for

62

Chapter 6

Experiment setup

After online and offline reinforcement learning methods has been discussed in the
previous chapters is now time to introduce the environment where those will be
applied. A more in detail report of the environment can be found Martini et al.
2023.

6.1 The software

In this section the software utilized in the experiments will be explain in all its
details.

6.1.1 Gazebo environment

As highlighted before real experiment can be very expensive in both terms of time
and money, thus it is worth having a way to being able to simulate real scenarios
as good as possible. When robots are involved into the research GAZEBO is
one of the more suitable and utilized tool. GAZEBO is an open-source 3D robot
simulator, that allows the user to create complex real scenarios. It is a physics based
environment which can model and simulate complex robot dynamics, incorporate
sensor data, and emulate real-world challenges. Its realism is very well suited for
both RL and ORL algorithms and it is an efficient way to learn policies which than
can be incorporate and trained into a real robot.
Thanks to the incorporation of python and ROS (Robot Operating System) it is
possible to interact with the GAZEBO environment and being able to train and
test RL and ORL algorithms.

63

Experiment setup

6.1.2 Robot Operating System
The Robot Operating System (ROS) is a powerful and flexible framework that has
become one of the most used tools in robotics research and development. It enables
the user to create and manipulate robots, being it modular it makes very simple
to project complex machines. The core of this framework, which it relies on, are
nodes and topics.

• Nodes: Nodes are fundamental computational units in ROS. They are individ-
ual software modules or processes that perform specific tasks within a robotic
system. Nodes can be thought of as small programs that can be written in
languages like Python or C++. Nodes are designed to be very specific and
modular. Those are typically responsible for tasks like sensor data processing,
motor control, localization and mapping.

• Topics: Topics are channels which allows the communication between ROS
nodes, those channels can be used by the nodes to receive and send signal or
information. Data sent on a topic is structured as messages. ROS provides
a wide range of message types for various data types, such as images, sensor
readings, commands, and custom data structures.

• Node-Topic interaction: Nodes interact with each other by publishing
and subscribing to topics. A node that publishes data to a topic is called a
"publisher," while a node that receives data from a topic is called a "subscriber."
Multiple nodes can publish and subscribe to the same topic, allowing for
distributed and parallel processing of data. This publish-subscribe model
promotes modularity and flexibility, as nodes can be added, removed, or
replaced without affecting the entire system’s functionality.

In the environment used in this thesis all the nodes are written in Python.

6.1.3 TensorFlow
TensorFlow is a versatile and widely used machine learning framework developed by
Google. It empowers developers and researchers to build and train machine learning
models for various tasks, such as image recognition, natural language processing
and as in this case reinforcement learning or offline reinforcement learning. Tensors
are the fundamental data structures in TensorFlow. They are multi-dimensional
arrays that can hold numerical data of various types (e.g., floats, integers). Tensors
can be constants (immutable) or variables (mutable), and they serve as the primary
data carriers within TensorFlow. TensorFlow operates using a directed graph
called a computational graph. In this graph, nodes represent operations, and edges
represent the flow of data (tensors) between operations. The computational graph

64

Experiment setup

is created when you define operations in TensorFlow, and it is executed when you
run a TensorFlow session. It differs from other framework such as PyTorch in the
way the computational graph is created. While in TensorFlow it is necessary to
specify when and where create the graph in PyTorch this is done automatically.
The choice of one over the other is a matter of preferences, in this case TensorFlow
has been chosen due to previous work by the Pic4Ser department.

6.2 Reinforcement learning elements
In this section the environment utilized for this study will be explained. The
analysis of it will be made based on RL elements as described in 3.1.

6.2.1 The environment
The environment studied is an in-door setting, where a robot can move and reach
goals. Being it in-door allows it to be easier to study, it is not affected by weather
or night-day cycle which can interfere with the sensor utilized. In the other hand
this setting makes it difficult for the sensors to detect the objects due to their size.
In this case the setting is based on a fictional house however due to the generality
of the algorithm used it is easily changeable to other kind of in-door structure such
as factories or laboratories.

6.2.2 The agent
The agent as written above is a square robot with four wheels. The size of the
machine is 0.508 m of length and 0.430 m for what concern the width. Such type
of robot can be utilized in various fields such as production, work assistance and in
general can be seen as a self-driving car.

6.2.3 The goal
As described above the aim of this learning process is to find a better way to teach
to an AI installed on a mobile robot how to reach a specific position. To do so the
goal in each iteration is set to be a point of the environment. This is passed to the
algorithm in the form of a relative position to the robot in terms of distance and
angle,

G = (d, α). (6.1)
In the other hand it would be too restrictive asking to have the center of the
robot be exactly aligned with the goal, thus for the algorithm the goal would be
reached if the machine reaches position near to it, i.e. the robot "collides" with a
circumference of radius 0.4 m centered in the goal.

65

Experiment setup

6.2.4 The states

In this setting the states are taken as tensor of the form [38,1], while the first two
input are computed as the distance and the angle (in odometry terms) between
the robot and the goal, the last 36 are taken by lidars. Here both odometry and
lidar will be explained.

Odometry

Odometry is crucial in the navigation of autonomous robots, including autonomous
cars, drones, and mobile robots used in logistics, agriculture, and healthcare. It
is the science of precisely measuring the movement of a robot as it traverses its
environment. Odometry serves as a fundamental technique for estimating a robot’s
position in a known or unknown environment. By continuously tracking wheel or
sensor movements, it accumulates data to determine the robot’s relative position
with respect to its starting point. Accurate odometry data is essential for motion
control, enabling robots to execute tasks such as path following, obstacle avoidance,
and precise maneuvers. It is worth noting how odometry is subjected by to error
accumulation over time, mall inaccuracies in measurements can lead to significant
positioning errors. Odometry can be sensitive to changes in the environment, such
as uneven terrain or wheel-surface interactions. In the case of differential drive
robots, where wheel movements are tracked, odometry equations can be expressed
as follows:

dl and dr : Distance traveled by the left and right wheels, respectively.
∆s : Linear distance traveled by the robot’s center between time steps.
∆θ : Change in orientation.

These quantities are related by:

∆s = dl + dr
2 , ∆θ = dr − dl

L

where L represents the distance between the robot’s two wheels.
Using the incremental motion model, the robot’s new pose (x′, y′, θ′) can be updated
from the previous pose (x, y, θ) as follows:

66

Experiment setup

x′ = x+ ∆s · cos
A
θ + ∆θ

2

B

y′ = y + ∆s · sin
A
θ + ∆θ

2

B
θ′ = θ + ∆θ

LiDAR

LiDAR, which stands for Light Detection and Ranging, is a remote sensing technol-
ogy that utilizes laser light to measure distances and create detailed 3D maps of
objects and environments. LiDAR operates on the principle of time-of-flight, where
it measures the time it takes for a laser pulse to travel to an object and back.

t = 2d
c

(6.2)

where d is the distance to the object and c is the speed of light. Using time-of-
flight measurements, the distance (d) to an object can be calculated as:

d = ct

2 (6.3)

LiDAR systems emit laser pulses and measure the time it takes for these pulses to
return after bouncing off objects. LiDAR technology finds applications in various
fields, including:

1. Topographic Mapping: LiDAR is used to create high-resolution elevation
models for applications in geology, forestry, and land-use planning.

2. Autonomous Vehicles: LiDAR is a crucial sensor for self-driving cars,
helping them perceive their surroundings and navigate safely.

3. Robotics: LiDAR is integrated into robotic systems for mapping and naviga-
tion, making it possible for robots to navigate in complex environments.

4. Environmental Monitoring: LiDAR is used to monitor changes in forests,
coastlines, and ecosystems.

5. Archaeology and Cultural Heritage: LiDAR helps archaeologists discover
and map ancient ruins and cultural heritage sites hidden beneath vegetation.

LiDAR is a powerful remote sensing technology that relies on the measurement of
laser pulse travel times to calculate distances to objects.

67

Experiment setup

6.2.5 The reward
The reward which drives the whole learning process is very important in this kind
of task. In principle the aim of the AI is to reach the goal, indeed a reward of 1000
is given every time the robot "collides" with it. In the other hand one of the main
problem that this work is focus on is to reduce the coast of the learning, thus to
drive the algorithm to avoid any collision a cost of 600 is subtracted each time the
machine bumps into some obstacle. It has been observed that, even if in principle
this should be enough, adding a reward to push the robot to reduce the distance
from the goal leads to better performances. In the end the final reward can be
written as

R = 30(d− d′)− 1(if collision)600 + 1(if goal)1000. (6.4)

68

Chapter 7

Experiments and results

In this chapter the core of this thesis will be discussed. After all the elements have
been discussed it is now time to put all together. In particular the focus will be
on the difficulties and results of applying offline reinforcement learning methods
in real cases and how this could still be a powerful approach as a pre-trainer of
online RL, indeed how can this be utilized to minimize both the learning step of
an online RL method and the "cost" will be part of this study.

7.1 Dataset
As one can expect one of the main difficulties of the offline reinforcement learning
is to get usable dataset, in the real world such thing can be done by hand (i.e. a
human spend his time on getting the dataset), using less refine AI or by using old
data stored over time. Such dataset can be very different, for example using an
"expert" leads to have a very good data, in such case an imitation learning approach
can be the way to go. In the other hand one of the main task offline reinforcement
learning have to address is to extrapolate very good policy from every type of data.
To do so different dataset have been stored using different approach. Here how
they were taken and their characteristics will be explained.

7.1.1 Dataset from online reinforcement learning
This kind of dataset has been taken by saving all the transition taken by an online
reinforcement learning method. One would expect this kind of dataset would be
very well suited for the offline reinforcement learning, since the online algorithm
has already learned from it. How we will see, even if in theory this should lead to a
similar understanding of the task and the environment, this is not completely the
case. How we have discussed in the chapter 3 leaving the algorithm explore what

69

Experiments and results

it thinks is the best approach is one of the key of a successful online reinforcement
learning training. This dataset are composed by all the transitions a RL algorithm
have taken to completely learn the task. To have more "good" and various results
the training was not stopped when the algorithm reached convergence, but instead
a fixed number of transitions was pre-set. It is important to notice how even RL
algorithms have difficult times learning this kind of task, indeed even at convergence
they were not able to perform all task within the same parameters, leading to the
idea that such NN were not general enough for such job.

SAC

The most used as RL algorithm to take the dataset in this study was Soft Actor
Critic which was already explained in 3.12.2. To have dataset that shows good and
bad behaviours all the transitions where stored in the replay buffer, meaning that
each try the algorithm has made is saved and can be used in the offline settings.
To show and learn how different dataset leads to different results four different
buffers were stored with transition from this algorithm each having different size
and parameters. This will be shown in table REFERENZA TABELLA, where all
the dataset are described. To have more idea of how also data from bad behaviour
can be useful an expert dataset was taken. In this case only episodes where the
goal was reached were stored. This will be called the "Expert dataset".

TD3

To avoid our results be too correlated to the soft-actor critic algorithm two more
have been taken from TD3 algorithm, explained in 3.12.1.

Dynamic Window Approach (DWA)

This a state-of-the-art algorithm for mobile robot was first introduced in Fox et al.
1997, it will be further explain in A.1. Since this is not a learning algorithm it
would not be possible to directly store all the transition, since most of them would
follow an optimal policy. To avoid this the dataset has been taken introducing an
"exploration" of action, following an ϵ−greedy approach.

70

Experiments and results

Name Size Method
Expert 3000000 SAC

SAC_500k 5000000 SAC
SAC_300k 3000000 SAC
TD3_300k 3000000 TD3
DWA_100k 1000000 DWA

Table 7.1: Description of different configurations.

7.2 Experiment setup
Here the evaluation and the comparison between offline methods will be made. All
the algorithms where written in Python by using the Tensorflow package. They all
share some components such as the Q-value network or the policy one. Here the
specificity of the shared components will be explained.

Q-value network

The Q-value network has been made as a standard multilayer perceptron neural
network, with two sets of hidden layers with a size of 256 each. After each step
ReLu activation function was applied. It takes as input the concatenation over axis
0 of the state and the action and gives the extimated Q-value output.

Actor network

The actor network has been modeled as a Gaussian actor, again with a multilayer
perceptron neural network with two sets of hidden layers with 256 neuron each,
except for the last outputs a ReLu activation function was always applied at each
step. It takes as input the state and gives as result a tensor of mean and one of
the log of the standard deviation, which combined gives a Gaussian distribution
over the actions, it is worth noting how in this setup each dimension of the action
is taken as independent from the others. This is used as the distribution over the
actions by clipping the value over the eligible ones.

Offline trainer

Each algorithm share the same training structure. That will be shown in the
following algorithm.

7.2.1 Parameters
Each algorithm have its own parameters however some of them are shared

71

Experiments and results

Algorithm 11 Offline trainer
1: get ϵ small
2: get max_steps
3: not_convergence← True
4: while not_convergence & steps < max_steps do
5: sample a batch from the dataset of size d, {(s, s′, a, R)} ∼ D
6: Do one step of training with the sample batch
7: conv ← Convergence_measure(algorithm)
8: if conv < ϵ then
9: not_convergence← False

10: end if
11: steps← steps+ 1
12: end while

72

Experiments and results

7.3 Results
In this section the obtained results will be discussed. First the performances over
the different dataset of each offline algorithm will be shown dataset and than a
comparison between how they perform over some tasks will be discussed and in
the end some thoughts about the differences in performance between online and
offline approaches will be analysed. All the results obtained below are achieved by
trying every single combination of initial points and goal positions.

7.3.1 BCQ
Due to the use of a Variational Auto Encoder this algorithm is the most dataset
dependent, indeed the fact that the possible actions taken by the agent are very
similar to the one from the dataset lead to high variance in terms of performances.
How one can see in 7.1 the best results are obtained with the DWA dataset. In the
other cases the results show how this method struggles with this kind of tasks and
it would not be suggested in the case of low quality dataset, where other kind of
approaches are instead capable to find better policies.

Figure 7.1: Reward during the training of BCQ algorithm

7.3.2 IQL
In figure 7.4 the performance of IQL algorithm over the different dataset are shown.
It is very important to notice how the results are have differences over the different
dataset, having the best result for DWA, however the trend of the training over
such dataset suggest to reach very early an overfitting, such problem seems to scale
with the dataset size, on the other hand other kind of training do not suffer from

73

Experiments and results

this problem making it difficult to analyse properly this behaviour. Overall this
seems to be the best offline approach for this kind of task having both a very fast
learning and overall results that are comparable to the online approach.

Figure 7.2: Reward during the training of IQL algorithm

7.3.3 CQL

Conservative Q-Learning shows the worst results over all the methods, even if it
does not reach very bad results learning from some specific dataset. This behaviour
is given by the fact that it learns to avoid collisions, but it is not able to perform
the requested task in most of the cases. Indeed few test were successfully completed
by this method, in most of the cases it stopped near some obstacle not being able
to follow a good trajectory.

7.3.4 EDAC

This methods have overall the good performances, the training which took a the
most noticeable result is the one made on the DWA dataset even if it seems to suffer
from an high variance. This results suggest that further investigations are possible.
Indeed due to its simplicity and easy transfer from an online model, it would be a
very easy approach to handle offline learning. However it is very noticeable from
the results how in most of the setting the algorithm start to overfitting the data
giving lower results from around 70000 learning steps. This behaviour does seems
to scale with the dataset size.

74

Experiments and results

Figure 7.3: Reward during the training of CQL algorithm

Figure 7.4: Reward during the training of IQL algorithm

7.3.5 Examples of cases
Here three examples of task and results are analysed with more focus on the
trajectories.

Pose:[1.5 ,7.5, -1.57], Goal: [-4,4] As one can see from 7.5, this task has been
completed from all the algorithms following similar trajectories, it is worth notice
how even if this task does not seems an easy one form a human prospective the

75

Experiments and results

algorithm are able to complete it without trouble. One of the reasons why this is
the case is because of the wall that "guides" the trajectory.

Figure 7.5: Trajectories from:[1.5 ,7.5, -1.57] to [-4,4]. Yellow: IQL, red: EDAC,
light blue: BCQ, green: CQL

Pose:[8 ,-9, 3.14], Goal: [3.5,-3.5] From the results analysed before it is Here
is shown how some tasks were successfully completed only by two of the four
algorithms, indeed in figure 7.6 one can notice how they have found a trajectory to
solve the task, however it was not the fastest one. As seen before CQL continue to
stop into some hard decision states.

Pose:[7 ,9, 3.14], Goal: [-7,7] In figure 7.7 one of the most difficult task is
shown. As one can notice IQL, EDAC and BCQ collided against some objects,
while following the behaviour seen before CQL stopped before colliding, however it
did not completed the task as well.

76

Experiments and results

Figure 7.6: Trajectories from:[8 ,-9, 3.14] to [3.5,-3.5]. Yellow: IQL, red: EDAC,
light blue: BCQ, green: CQL

7.4 Comparison between online and offline ap-
proach

After having evaluate how good are the performance of the offline approaches one
can ask how are they in comparison to online methods. Here some considerations
will be made in terms of results, time-consuming and difficulties.

7.4.1 Results
One can expect the results obtained by an online training to be way more optimal in
terms of performances, however here something unexpected will be shown. Indeed
if one take into account the results over all the tasks obtained by online RL methods
it would encounter lower results due to the fact that this kind of approaches on one
hand learn by still taking into consideration the exploration and in the other are
capable to deal with some specific task at time. Even if all the tasks were completed
over the training the algorithms were able to complete few of them with the same
set of parameters. This can be caused by different reasons, one in on-policy training
by the fact that the algorithm focus the learning on just one task, however this

77

Experiments and results

Figure 7.7: Trajectories from:[7 ,9, 3.14] to [-7,7]. Yellow: IQL, red: EDAC, light
blue: BCQ, green: CQL

should not be the case for what concern off-policy methods due to their learning
structure. For off-policy methods some factors can lead to this problem, one is that
in most cases, such as SAC, being the exploration incorporated with the Q-values
leads to lower performances, this would be easily fixed by lowering the temperature
in the last steps of learning, another can be the fact that being the space various
and with differences that are not easy to interpret not having a control over the
Q-values can lead to some unexpected results. However this kind of problems of the
online learning can be mitigate by taking more trial, leading to better performances
over this setting. In the other hand one of the main reason to use reinforcement
learning approaches is to avoid the study of the single problem to find the optimal
strategy.

7.4.2 Time consuming
One of the most important aspect of finding new learning methods is the time
used to make the algorithm understand the task and make it able to complete
it. Here one factor is the discriminant on what approach is better to deal with
the mobile robot task, the presence of the dataset. Indeed ,if one, due to various
reasons, already have a structure dataset with the records of an agent computing

78

Experiments and results

the requested task it is very convenient in terms of time (and results) applying
offline reinforcement learning methods, indeed the most time consuming part of
the learning are the simulations, by a lot. In the other hand if this is not the case
and the application of a non-expert agent does not lead to severe lost in financial
terms applying an online reinforcement learning algorithm can be better.

7.4.3 Difficulties
Online and offline reinforcement learning pose both a lot of difficulties, some of
them are similar some are specific of a method. First of all both are very time
consuming due to the large number of hyperparameters and the high dependence
of the results form them. Some of them in an online setting are "trainable" during
the learning, such as the "temperature" in SAC, making it easier for the user to
find the optimal ones. On the other hand being not possible to interact and getting
feedback about the performances in an offline setting make this approach impossible
for it. One of the main problem of RL in general is the study of the problem
being fundamental for such learning approach, as an example the choice of the
perfect reward function is one of the things which can deeply change an algorithm
behaviour. As mentioned in the section before the main discriminants in terms of
difficulties and time consuming are both having already a dataset and the ease of
doing new simulations, both virtual or real. In many cases one can find himself
in a situation where both this condition are in the worst possible case scenario,
not having a dataset and being it very hard to simulate an online setting. In this
case many options are possible if one still want to use a RL approach, one is to
make the dataset by hand, for example by moving the robot through a human
pilot, another which in this case I would suggest is to use other kind of algorithm,
which are safer in terms of outcomes, such as DWA to take a dataset and than use
it to make an offline algorithm learn an optimal or sub-optimal policy.

79

Chapter 8

Conclusions

This thesis aimed to assess the current state of Offline Reinforcement Learning
(ORL) methods applied to mobile robots within a GAZEBO simulation of a real
mobile robot in an indoor setting. The primary goal was to guide the robot to
a specific position using only the relative coordinates of the goal and 36 LiDAR
distance data.
Initially, an introduction and review of Online Reinforcement Learning (RL) meth-
ods were conducted, with a specific focus on TD3 and SAC. These methods were
employed to obtain datasets for the offline segment of the project. Subsequently,
an exploration of key methods addressing the challenges of Offline Reinforcement
Learning was undertaken. This analysis highlighted the difficulties associated
with a fixed dataset, including issues during training and the application of such
algorithms in real environments, such as distributional shift and the inability to
explore new states and actions. This analysis serves as the foundation for most
ORL methods.
Following a general evaluation of ORL methods, four specific algorithms—Batch-
constrained Q-learning, Implicit Q-learning, Conservative Q-learning, and Ensemble
Diversified Actor-Critic—were selected based on their superior performance over
the benchmark D4RL. Each algorithm was meticulously examined, elucidating the
underlying thought processes, providing mathematical proofs, and justifying their
selection.
Before delving into the experiments, details of the experimental environment were
presented, including information on LiDAR, odometry, and each reinforcement
learning component. A specific focus was placed on one of the key aspects of offline
reinforcement learning—the acquisition of various datasets.
The results of all experiments were scrutinized, revealing that Implicit Q-learning
(IQL) outperformed the other algorithms overall, although Ensemble Diversified
Actor-Critic (EDAC) also exhibited commendable results, albeit with a greater
dependence on dataset.

80

Conclusions

To conclude this thesis, it emphasizes that, in general, Offline Reinforcement Learn-
ing methods are not yet ready for practical utilization in mobile robot tasks. The
challenges lie in the difficulty of finding optimal hyperparameters and learning steps,
which, while manageable in a simulated setting, loses practicality in real-world
scenarios. Moreover, many ORL methods are surpassed by conventional approaches.
Despite these problems, the field has witnessed significant growth in recent years,
offering optimism for future approaches. Finally, it is noted that small neural
networks, as employed in this thesis, still struggle to master complex tasks in
detail.

81

Appendix A

A.1

Here Dynamic Window Approach (DWA) will be briefly explain. DWA is a local
motion planning algorithm commonly used in mobile robotics. It enables a robot
to navigate in real-time by evaluating different velocity commands and selecting
the one that leads to a safe and optimal.

A.1.1 Motion equations

Let x(t) and y(t) denote the robot’s coordinate at time t in some global coordinate
system, and let the robot’s orientation (heading direction) be θ(t). The motion
of a synchro-drive robot is constrained in a way such that the translational velo
city v always leads in the steering direction θ of the robot. Let be x(ti) and y(ti)
denote the coordinates of the robot at time ti . Let v(t) denote the translational
velocity of the robot at time t, and ω(t) its rotational velocity. Then the evolution
on time of the coordinates x and y can be expressed as:

x(ti) = x(t0) +
Ú ti

t0
v(t) cos θ(t)dt (A.1)

y(ti) = y(t0) +
Ú ti

t0
v(t) sin θ(t)dt (A.2)

In a real setting it is not possible to continuously control the robot, thus let be t0
and tn the initial and final time respectively and n the number of possible control
over this period. Than the acceleration v̇(t) and the first derivative over time of
the angular velocity ω̇(t) will remain constant piece-wise in every small interval
ti+1 − ti. Knowing this one can rewrite the former as

83

x(ti) =x(t0) +
n−1Ø
i=0

Ú ti+1

ti
(v(ti) + v̇(ti)(t− ti)

· cos
3
θ(ti) + ω(ti)(t− ti) + 1

2 ω̇(ti)(t− ti)2
4
dt (A.3)

y(ti) =y(t0) +
n−1Ø
i=0

Ú ti+1

ti
(v(ti) + v̇(ti)(t− ti)

· sin
3
θ(ti) + ω(ti)(t− ti) + 1

2 ω̇(ti)(t− ti)2
4
dt. (A.4)

As shown in Fox et al. 1997 by solving the integral one can get the following form
which is more suitable for in a practical setting:

x(tn) = x(t0) +
n−1Ø
i=1

F i
x(ti+1) (A.5)

y(tn) = y(t0) +
n−1Ø
i=1

F i
y(ti+1) (A.6)

where

F i
x(t) =


vi

ωi
(sin(ω(ti)− sin (θ(ti) + ωi(t− ti))) , ωi /= 0

vi cos(ω(ti)t, ωi = 0
(A.7)

F i
y(t) =

−
vi

ωi
(cos(ω(ti)− cos (θ(ti) + ωi(t− ti))) , ωi /= 0

vi sin(ω(ti)t, ωi = 0
(A.8)

It is worth noting how if ωi = 0 than the robot follow a straight line, in the
other hand if not the following holds3

F i
x(ti)−

3
− vi
ωi

sin(θ(ti)
442

+
3
F i
y −

vi
ωi

cos(θ(ti)
42

=
3
vi
ωi

42
(A.9)

This shows how the trajectories are circles of radius vi

ωi
.

A.1.2 Overview of the algorithm
The following scheme is taken directly from Fox et al. 1997:

Search space The s e arch space of the possible velocities is reduced in three
steps:

84

1. Circular trajectories: The dynamic window approach considers only circular
trajectories (curvatures) uniquely determined by pairs (v, ω) of translational
and rotational velocities. This results in a two-dimensional velocity search
space.

2. Admissible velocities: The restriction to admissible velocities ensures that
only safe trajectories are considered. A pair (v, ω) is considered admissible,
if the robot is able to stop before it reaches the closest obstacle on the
corresponding curvature.

3. Dynamic window: The dynamic window re stricts the admissible velocities
to those that can be reached within a short time interval given the limited
accelerations of the robot.

Optimization The objective function

G(v, ω) = σ (α · heading + β · dist + γ · vel) (A.10)

is maximized. With respect to the current position and orientation of the robot
this function trades off the following aspects:

1. Target heading:heading is a measure of progress towards the goal location.
It is maximal if the robot moves directly towards the target

2. Clearance:dist is the distance to the closest obstacle on the trajectory. The
smaller the distance to an obstacle the higher is the robot’s desire to move
around it.

3. Velocity: vel is the forward velocity of the robot and supports fast movements.

The function σ smoothes the weighted sum of the three components and results in
more side-clearance from obstacles.

85

Bibliography

Fox, D., W. Burgard, and S. Thrun (1997). «The dynamic window approach to
collision avoidance». In: IEEE Robotics & Automation Magazine 4.1, pp. 23–33.
doi: 10.1109/100.580977 (cit. on pp. 3, 70, 84).

Haarnoja, Tuomas, Aurick Zhou, Pieter Abbeel, and Sergey Levine (2018). Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with
a Stochastic Actor. arXiv: 1801.01290 [cs.LG] (cit. on pp. 4, 34).

Fujimoto, Scott, Herke van Hoof, and David Meger (2018). Addressing Function
Approximation Error in Actor-Critic Methods. arXiv: 1802.09477 [cs.AI]
(cit. on pp. 4, 17, 32).

Mnih, Volodymyr, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Tim-
othy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu (2016).
Asynchronous Methods for Deep Reinforcement Learning. arXiv: 1602.01783
[cs.LG] (cit. on p. 4).

Fu, Justin, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine (2021).
D4RL: Datasets for Deep Data-Driven Reinforcement Learning. arXiv: 2004.
07219 [cs.LG] (cit. on p. 5).

Fujimoto, Scott, David Meger, and Doina Precup (2019). Off-Policy Deep Rein-
forcement Learning without Exploration. arXiv: 1812.02900 [cs.LG] (cit. on
pp. 5, 50).

Kumar, Aviral, Aurick Zhou, George Tucker, and Sergey Levine (2020). «Conserva-
tive Q-Learning for Offline Reinforcement Learning». In: CoRR abs/2006.04779.
arXiv: 2006.04779. url: https://arxiv.org/abs/2006.04779 (cit. on pp. 5,
55, 57).

Kostrikov, Ilya, Ashvin Nair, and Sergey Levine (2021). Offline Reinforcement
Learning with Implicit Q-Learning. doi: 10.48550/ARXIV.2110.06169. url:
https://arxiv.org/abs/2110.06169 (cit. on pp. 5, 53).

An, Gaon, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song (2021). Uncertainty-
Based Offline Reinforcement Learning with Diversified Q-Ensemble. arXiv: 2110.
01548 [cs.LG] (cit. on pp. 5, 57, 58).

86

https://doi.org/10.1109/100.580977
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/1812.02900
https://arxiv.org/abs/2006.04779
https://arxiv.org/abs/2006.04779
https://doi.org/10.48550/ARXIV.2110.06169
https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/2110.01548
https://arxiv.org/abs/2110.01548

BIBLIOGRAPHY

Yu, Tianhe, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey
Levine, Chelsea Finn, and Tengyu Ma (2020). MOPO: Model-based Offline
Policy Optimization. arXiv: 2005.13239 [cs.LG] (cit. on p. 5).

Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement Learning: An
Introduction. Second. The MIT Press. url: http://incompleteideas.net/
book/the-book-2nd.html (cit. on p. 6).

Hasselt, Hado van, Arthur Guez, and David Silver (2015). Deep Reinforcement
Learning with Double Q-learning. arXiv: 1509.06461 [cs.LG] (cit. on p. 17).

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller (2013). Playing Atari with Deep Rein-
forcement Learning. doi: 10.48550/ARXIV.1312.5602. url: https://arxiv.
org/abs/1312.5602 (cit. on p. 30).

Schaul, Tom, John Quan, Ioannis Antonoglou, and David Silver (2015). Prioritized
Experience Replay. doi: 10.48550/ARXIV.1511.05952. url: https://arxiv.
org/abs/1511.05952 (cit. on p. 31).

Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra (2019). Continuous control
with deep reinforcement learning. arXiv: 1509.02971 [cs.LG] (cit. on p. 32).

Precup, Doina, Richard Sutton, and Satinder Singh (June 2000). «Eligibility Traces
for Off-Policy Policy Evaluation». In: Computer Science Department Faculty
Publication Series (cit. on p. 43).

Jiang, Nan and Lihong Li (2016). Doubly Robust Off-policy Value Evaluation for
Reinforcement Learning. arXiv: 1511.03722 [cs.LG] (cit. on p. 43).

Thomas, Philip S. and Emma Brunskill (2016). Data-Efficient Off-Policy Policy
Evaluation for Reinforcement Learning. arXiv: 1604.00923 [cs.LG] (cit. on
p. 43).

Wang, Yu-Xiang, Alekh Agarwal, and Miroslav Dudik (2017). Optimal and Adaptive
Off-policy Evaluation in Contextual Bandits. arXiv: 1612.01205 [stat.ML] (cit.
on p. 43).

Farajtabar, Mehrdad, Yinlam Chow, and Mohammad Ghavamzadeh (2018). More
Robust Doubly Robust Off-policy Evaluation. arXiv: 1802.03493 [cs.AI] (cit.
on p. 43).

Thomas, Philip, Georgios Theocharous, and Mohammad Ghavamzadeh (Feb. 2015).
«High-Confidence Off-Policy Evaluation». In: Proceedings of the AAAI Con-
ference on Artificial Intelligence 29.1. doi: 10.1609/aaai.v29i1.9541. url:
https://ojs.aaai.org/index.php/AAAI/article/view/9541 (cit. on p. 43).

Levine, Sergey and Vladlen Koltun (17–19 Jun 2013). «Guided Policy Search».
In: Proceedings of the 30th International Conference on Machine Learning. Ed.
by Sanjoy Dasgupta and David McAllester. Vol. 28. Proceedings of Machine
Learning Research 3. Atlanta, Georgia, USA: PMLR, pp. 1–9. url: https:
//proceedings.mlr.press/v28/levine13.html (cit. on p. 45).

87

https://arxiv.org/abs/2005.13239
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/1509.06461
https://doi.org/10.48550/ARXIV.1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://doi.org/10.48550/ARXIV.1511.05952
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1511.03722
https://arxiv.org/abs/1604.00923
https://arxiv.org/abs/1612.01205
https://arxiv.org/abs/1802.03493
https://doi.org/10.1609/aaai.v29i1.9541
https://ojs.aaai.org/index.php/AAAI/article/view/9541
https://proceedings.mlr.press/v28/levine13.html
https://proceedings.mlr.press/v28/levine13.html

BIBLIOGRAPHY

Kingma, Diederik P and Max Welling (2013). Auto-Encoding Variational Bayes.
arXiv: 1312.6114 [stat.ML] (cit. on p. 50).

Peters, Jan and Stefan Schaal (2007). «Reinforcement Learning by Reward-Weighted
Regression for Operational Space Control». In: Proceedings of the 24th Inter-
national Conference on Machine Learning. ICML ’07. Corvalis, Oregon, USA:
Association for Computing Machinery, pp. 745–750. isbn: 9781595937933. doi:
10.1145/1273496.1273590. url: https://doi.org/10.1145/1273496.
1273590 (cit. on p. 54).

Wang, Qing, Jiechao Xiong, Lei Han, peng sun peng, Han Liu, and Tong Zhang
(2018). «Exponentially Weighted Imitation Learning for Batched Historical
Data». In: Advances in Neural Information Processing Systems. Ed. by S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Vol. 31.
Curran Associates, Inc. url: https://proceedings.neurips.cc/paper_
files/paper/2018/file/4aec1b3435c52abbdf8334ea0e7141e0-Paper.pdf
(cit. on p. 54).

Peng, Xue Bin, Aviral Kumar, Grace Zhang, and Sergey Levine (2019). Advantage-
Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning.
arXiv: 1910.00177 [cs.LG] (cit. on p. 54).

Nair, Ashvin, Abhishek Gupta, Murtaza Dalal, and Sergey Levine (2021). AWAC:
Accelerating Online Reinforcement Learning with Offline Datasets. arXiv: 2006.
09359 [cs.LG] (cit. on p. 54).

Martini, Mauro, Andrea Eirale, Simone Cerrato, and Marcello Chiaberge (2023).
«PIC4rl-gym: a ROS2 Modular Framework for Robots Autonomous Navigation
with Deep Reinforcement Learning». In: 2023 3rd International Conference
on Computer, Control and Robotics (ICCCR), pp. 198–202. doi: 10.1109/
ICCCR56747.2023.10193996 (cit. on p. 63).

88

https://arxiv.org/abs/1312.6114
https://doi.org/10.1145/1273496.1273590
https://doi.org/10.1145/1273496.1273590
https://doi.org/10.1145/1273496.1273590
https://proceedings.neurips.cc/paper_files/paper/2018/file/4aec1b3435c52abbdf8334ea0e7141e0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/4aec1b3435c52abbdf8334ea0e7141e0-Paper.pdf
https://arxiv.org/abs/1910.00177
https://arxiv.org/abs/2006.09359
https://arxiv.org/abs/2006.09359
https://doi.org/10.1109/ICCCR56747.2023.10193996
https://doi.org/10.1109/ICCCR56747.2023.10193996

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation
	Problem statement
	Thesis outline

	State-of-the-Art
	Mobile robot algorithm
	Reinforcement Learning for mobile robots
	Offline Reinforcement Learning for mobile robots

	Reinforcement Learning
	Elements of RL
	Markov decision process
	Bellman equation
	Problems and approaches to RL
	Differences from other type of learning
	Exploration vs Exploitation tradeoff

	Dynamic programming
	Policy evaluation
	Policy improvement
	Policy iteration
	Value iteration

	Monte Carlo methods
	Monte Carlo prediction and evaluation
	Monte Carlo control

	Temporal Difference Learning
	SARSA
	Q-learning

	Policy gradient
	The log-derivative trick
	Policy gradient theorem
	Use of policy gradient

	Actor-critic methods
	Model-based approach
	Deep-RL
	Deep learning
	Value-based methods
	DQN

	Reinforcement Learning algorithms
	TD3
	Soft Actor Critic

	Offline Reinforcement Learning
	Setting of Offline Reinforcement Learning
	Difficulties of Offline Reinforcement Learning
	Distributional shift
	Exploration

	Importance sampling methods
	Basic theory
	Self-Normalized importance sampling
	Off-policy evaluation via importance sampling
	Doubly Robust Estimator
	The off-policy gradient

	Dynamic programming for Offline Reinforcement Learning
	Impact of distributional shift on dynamic programming methods
	Policy constraints methods

	Offline model-based Reinforcement Learning

	Offline Reinforcement Learning algorithms
	BCQ
	Algorithm overview

	IQL
	Mathematical preliminaries

	CQL
	Mathematical preliminaries
	Conservative off-policy evaluation
	Conservative Q-learning for ORL
	CQL conclusion

	SAC-N
	N-clipping Q-learning
	Mathematical justification

	Ensamble Diversified Actor-Critic
	The gradient alignment problem

	Experiment setup
	The software
	Gazebo environment
	Robot Operating System
	TensorFlow

	Reinforcement learning elements
	The environment
	The agent
	The goal
	The states
	The reward

	Experiments and results
	Dataset
	Dataset from online reinforcement learning

	Experiment setup
	Parameters

	Results
	BCQ
	IQL
	CQL
	EDAC
	Examples of cases

	Comparison between online and offline approach
	Results
	Time consuming
	Difficulties

	Conclusions

