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ABSTRACT 
Utilizing geothermal energy helps combat climate change by reducing greenhouse gas 

emissions. Efficient energy storage, especially through aquifer thermal energy storage (ATES) 

systems, is crucial. Despite potential, global ATES adoption is limited, mainly storing low-

temperature heat. Improving efficiency involves storing higher-temperature water for use in 

colder seasons. 

This study investigates the potential of the long short-term memory (LSTM), the deep learning 

approach to forecast ATES well temperatures for the Koppert-Cress horticultural facility. 

LSTM is a sub-branch of the deep learning method and deep learning is also the sub-branch of 

machine learning technology which is one kind of artificial intelligence (AI) technology. It 

delves into optimal data resolution, input and target variables, and loss functions. The research 

presents two LSTM-based model architectures, harnessing historically measured data to 

generate an extended forecast horizon concurrently. Robustness and stability are assessed via 

cross-validation, with model performances meticulously compared against original data. 

Furthermore, the LSTM-based model's performance is benchmarked against available data 

from the ATES system. 

The findings indicate that when employing ATES historical data as input, the LSTM model 

demonstrates consistent and robust performance across the forecast horizon, rendering it 

suitable for operational deployment. Notably, the system predominantly operates in heating 

mode (37% of the time), reflecting the region's climate demands for heat. Moreover, a strong 

correlation is observed between environmental conditions and warm-well temperatures. 

The initial LSTM model serves as a foundational part of this study for model development and 

data familiarization, with the primary objective of predicting the warm-well and the cold-well 

temperatures. Subsequently, the second LSTM architecture is used to perform forecasting over 

a longer time horizon to minimize the loss function, i.e., a function of the disagreement between 

predicted and actual data. 

The research outcomes reveal the reliability of both models, characterized by low evaluation 

metrics for the regression errors (MSE, RMSE, MAE) and high accuracy (R2) values in 

predicting wells’ temperatures. The singular LSTM model achieves the highest R2 of 0.97, 

while the parallel model achieves an R2 of 0.87. This study advances the operational 

understanding of temperature outcomes from ATES wells through the application of LSTM 

deep learning. Future research avenues may explore the integration of this ML model into 

control systems and assess the quantification of heat requirements for upcoming time horizons 

within buildings, facilitating proactive energy management strategies. 
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Introduction 
Heating and cooling buildings account for about 25% of global energy consumption making 

them a significant source of greenhouse gas (GHG) emissions. This is especially true for 

regions with temperate climates, where heating and cooling needs vary with the seasons. To 

reduce emissions associated with heating and cooling, the implementation of the aquifer 

thermal energy storage (ATES) system, is an effective strategy. These systems accumulate 

cooling capacity during winter and heating capacity during summer, ultimately reducing 

emissions when operating an air conditioning system. (Beernink. S. et. al., 2022). 

An underground thermal energy storage system (UTES) consists of several key components, 

including one or more heat sources, an HVAC "heating, ventilation, and air conditioning" 

system, a shallow geothermal system, and underground storage tanks where thermal energy is 

stored. As shown in Figure 1A, external heat sources and shallow geothermal systems 

contribute to heat supply to meet user demand during times of high heating demand. In contrast, 

during periods of low or negative heat demand (indicating a need for cooling), a shallow 

geothermal system will store excess heat underground, as shown in Figure 1B. There are two 

main types of geothermal systems suitable for UTES, each with its own application, strengths, 

weaknesses, and design considerations. Closed-loop UTES are often referred to as borehole 

thermal energy storage (BTES), while open-loop UTES are referred to as aquifer thermal 

energy storage (ATES). It should be noted that, to our knowledge, UTES systems are currently 

installed primarily serving individual buildings and regional heating/cooling networks. 

However, UTES technology has potential for other applications, such as aquaculture, heating 

of anaerobic digesters, and low-temperature processes in food production, among many others. 

It is important to point out that all shallow geothermal systems, whether used for heating or 

cooling, are capable of storing thermal energy underground. However, the term "UTES" 

generally refers to systems specifically designed to store heat from external sources, such as 

solar heat or waste heat. To distinguish them from UTES installations, other shallow 

geothermal systems are referred to as "conventional" systems (Casasso. A. et. al., 2021). 

 

Figure 1: Link the main components of the UTES system operating in heating (A) and cooling (B) modes, namely: HVAC 

system (includes heat pump, domestic hot water (DHW tank,  heating/cooling, and auxiliary terminals), backup heat 

generator and geothermal system. The red and blue lines represent heat transfer fluid flow is heated and cooled respectively 

(Ref: Casasso. A. et. al., 2022). 
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1.1 Distinguishing aquifer thermal energy storage (ATES) from conventional 

open-loop geothermal systems 

Aquifer thermal energy storage (ATES) systems differ from conventional open-loop 

geothermal systems in the use of collection wells and injection wells. In traditional open-loop 

systems, each well serves a specific purpose. The production well is strategically located 

upstream in the direction of groundwater flow, while the injection well is located downstream. 

This arrangement facilitates the alternating injection of warm water (as shown in Figure 2A) 

and cold water streams (as shown in Figure 2B). In contrast, the ATES system is divided into 

two distinct regions: a warm zone and a cold zone. During the cooling season (as shown in 

Figure 2C), cold water is drawn, which then absorbs heat from the building and the additional 

heat source. This now-heated water is then pumped back into the aquifer as warm water. In 

contrast, during the heating season, hot water previously pumped is withdrawn, after releasing 

stored heat into the building (as shown in Figure 2D). It is then returned to the cold well as cold 

water. Compared with the conventional open-loop system, the ATES system shows improved 

efficiency. This efficiency increase, usually measured by the heat pump's coefficient of 

efficiency (COP), is the result of the ATES system extracting colder water for cooling and 

hotter water for heating, thus being optimal. optimize its performance in both operating modes 

(Casasso. A. et. al., 2022). 

 

 
Figure 2: Open loop geothermal system (A: cooling mode; B: heating mode) and an aquifer thermal energy storage (ATES) 

system (C: cooling + heat injection; D: heating + cold injection) (Casasso. A. et. al., 2022). 
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1.2 Aquifer thermal energy storage (ATES) system 

The reduction of greenhouse gas (GHG) emissions in urban environments has led to the 

widespread adoption of the aquifer thermal energy storage system (ATES), not only in the 

Netherlands but also around the world.  ATES systems are characterized by reduced primary 

energy consumption and greenhouse gas emissions compared with conventional systems, but 

they still require energy inputs. significantly, including electricity to power heat pumps and 

circulating water pumps, as well as occasional dependence on fossil fuels for boilers to reach 

full heat capacity. therefore, improving the performance of the ATES system can further reduce 

greenhouse gas emissions and reduce pressure on the power grid. The initial investment for 

ATES systems is relatively high and depends on their maximum heating capacity. As a result, 

ATES systems are typically designed to meet basic heating needs, covering about 80% of total 

heat demand. Additional installations, often using peak (gas) boilers, are responsible for 

meeting peak heating demand. A cost-effective approach to increase heating capacity and 

reduce dependence on peak boilers is to increase the temperature difference between warm and 

cold wells. However, in many systems, water cooling is limited due to the risk of freezing in 

the heat pump evaporator during winter cold tank charging and potential condensation 

problems in the building during the winter. However, it can result in the availability of the 

process of direct cooling of the cold well in the summer. Therefore, increasing the temperature 

of the warm well appears as a promising strategy to improve heating capacity while enhancing 

the efficiency of the heat pump, or even making it redundant under extreme conditions. 

specifically. However, in most countries, regulatory restrictions limit warm well injection 

temperatures in the ATES system to either 25°C or 30°C, making it difficult to issue such 

system changes, even inaccessible. Fortunately, many regulatory agencies allow the application 

of high-temperature ATES (HT-ATES) as a pilot project.  

In search of sustainable heating and cooling solutions, the ATES system was initially installed 

in a greenhouse by the horticulture company Koppert-Cress in 2012. Later, as part of a Ha Noi 

research project with a focus on reducing greenhouse gas emissions and the above aspects, this 

ATES system was converted into a pilot HT-ATES system in 2015. This study dives into 

designing and implementing an LSTM model for predicting the wells' temperature after 

converting the LT-ATES system to the HT-ATES one (Bloemendal. M. et. al., 2022). 

 

1.3 Machine learning 

1.3.1 Introduction to machine learning 
Machine learning is similar to teaching computers to learn from examples (available data). 

Instead of telling them exactly what to do, lots of examples are shown to them, and they figure 

out patterns in their own decision. It helps computers make decisions and predictions without 

being explicitly programmed. 

1.3.2 Introduction to deep learning 
Deep learning is a method used in ML where computers learn to do tasks by looking at lots of 

examples. It's like teaching a computer to recognize patterns, such as images speech, or time 
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series data, by showing it many different examples of those patterns. The computer uses 

complex algorithms inspired by the human brain neuron architecture to understand and 

interpret the data it's given. As it sees more examples, it gets better at recognizing these patterns 

and can make predictions or decisions based on what it has learned. 

 

Figure 3: Artificial intelligence vs machine learning vs deep learning 

 

1.3.3 Neuron layers 
In deep learning, neurons are like the building blocks of the system, inspired by the way human 

brains work. They receive inputs, process them using mathematical operations, and produce an 

output. These neurons are organized into layers, forming a neural network, which helps the 

computer understand complex patterns in data. 

1.3.4 Epochs 
Epochs refer to the number of times the entire dataset is used to train the neural network. During 

each epoch, the computer goes through all the examples in the dataset, learns from them, and 

adjusts its internal settings to improve its accuracy in making predictions or recognizing 

patterns. Think of epochs as the computer's way of studying and revising from a textbook 

multiple times to better understand the material. 

1.3.5 Batches 
Batches, on the other hand, break down the dataset into smaller chunks. Instead of processing 

all the examples at once, which can be overwhelming for the computer's memory and 

processing power, the data is divided into batches. The neural network learns from each batch 

of data, makes adjustments, and then moves on to the next batch. Batches allow the computer 

to learn in manageable steps, similar to how you might learn a large topic by studying smaller 

sections at a time rather than trying to understand everything all at once. 

1.3.6 Dense layer 
The last block in the LSTM model, the dense layer, connects every neuron in the preceding 

layer to every neuron in the dense layer. Its great degree of neuronal connectivity accounts for 

its dubbed "dense" nature. 

In an LSTM network, the recurrent layers—which resemble LSTM layers—activate often 

before the dense layer. The task of a thick layer is to transform the data from the prior layers 
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into the final data. The neurons in the dense layer submit the input to an activation function and 

a weighted sum. 

1.3.7 Machine Learning 
Machine learning (ML) represents a subset of artificial intelligence that specializes in creating 

adaptive algorithms that can make decisions based on data, rather than conforming to static 

programming instructions. The main goal of ML is to empower computer programs to improve 

their performance on specific tasks through experiential learning. In the field of astronomy and 

geosciences, the potential benefits of applying ML are significant. Although the integration of 

ML techniques into these fields is happening gradually, there are still some published studies 

using ML methods in these fields (Bouchefry. K. et. al., 2020). 

 

1.4 Deep learning - LSTM model 

Deep learning (DL) techniques have attracted considerable attention due to their ability to 

efficiently capture the complexity of highly non-linear systems. In the field of nonlinear time 

series data modeling, recent studies have highlighted the potential of DL methods, especially 

LSTM (long short-term memory) networks. These DL approaches have shown significant 

improvements in prediction accuracy, scalability, and regional generalization capabilities 

compared with traditional conceptual models (Shamshirband et al., 2019). LSTM models, 

specifically designed for the analysis of sequential data such as time series, have shown great 

promise in a variety of applications. For example, Kratzert et al. (2019) successfully applied 

LSTM models in more than 500 basins in the United States, yielding improved flow predictions 

compared to conventional conceptual models. For a deeper understanding of the LSTM 

architecture, you can refer to Kratzert et al. (2018), while Figure 3 provides a visualization of 

a standard LSTM plot. 

 

Figure 4: Standard LSTM model visualization. In the context of this description, the symbols are as follows: c[t] represents 

the state of the cell at time step t. h[t] is the hidden state at step t. x[t] represents the input at time step t. f represents the gate 

of oblivion. I correspond to the front door. g denotes a cell update. o represents the exit door. (Ref: towardsdatascience.com) 

 

1.5 Problem statement 

In the context of combating climate change and reducing greenhouse gas emissions, the 

integration of renewable energy sources and sustainable heating and cooling solutions has 

become increasingly vital. One innovative approach to address this challenge is the adoption 

of aquifer thermal energy storage (ATES) systems. Originally designed as low-temperature 
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ATES (LT-ATES), these systems have evolved into high-temperature ATES (HT-ATES), 

offering improved performance and expanded applicability. However, the transition of ATES 

systems from LT-ATES to HT-ATES presents both challenges and opportunities. This 

transformation involves significant alterations in the temperature dynamics of injected and 

extracted water in wells, crucial for harnessing thermal energy efficiently. The growing reliance 

on intermittent renewable energy sources underscores the need for effective energy storage 

solutions, encompassing electricity and heat. Within this context, the subsurface offers a 

promising avenue for storing substantial heat quantities, predominantly through ATES systems. 

Despite its potential, ATES technology remains relatively niche, with the Netherlands hosting 

90% of these systems globally (Casasso. A. et. al.,2022). Most existing ATES systems primarily 

store low-temperature heat (below 30°C) (Casasso. A. et. al.,2022). To enhance energy density 

and overall efficiency, it becomes imperative to explore methods for efficiently storing higher-

temperature water in aquifers during warm seasons and subsequently recovering this higher-

exergy heat for heating in colder periods. To address these multifaceted challenges and unlock 

the full potential of HT-ATES systems, this research aims to employ machine learning (ML) 

models a subset of artificial intelligence to predict outcomes resulting from dynamic changes 

in input data, including water temperature, flow rates, and more. By leveraging ML techniques, 

this study seeks to overcome barriers associated with temperature management in ATES 

systems during the transition from LT-ATES to HT-ATES, ultimately contributing to the 

advancement of sustainable heating and cooling solutions within the broader context of 

renewable energy integration. 

 

1.6 Objective 
 

In this thesis, the following objectives will be pursued: 

1- Develop a machine learning (ML) model, with a focus on deep learning techniques, 

tailored to the specific requirements of an aquifer thermal energy storage (ATES) 

system. 
2- Identify and evaluate the most suitable ML approaches for accurately replicating the 

complex operational dynamics of an ATES. 

 

1.7  Organizing of thesis 

This report is organized into the following chapters: 
1- Introduction: Chapter 1 introduces the aquifer thermal energy storage (ATES) 

system, deep learning, and long short-term memory (LSTM). It also outlines the 

problem statement and the study's objectives. 
2- Theoretical Background and Literature Review: Chapter 2 provides an 

overview of the theoretical foundations relevant to the study and conducts an 

extensive review of the existing literature in the field. 
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3- Methodology: Chapter 3 delves into the methodology employed in the study. It 

covers the datasets used, and the data processing procedures, and provides an 

insight into the model architectures applied. 
4- Results: Chapter 4 is dedicated to presenting the study's results, featuring data 

visualizations and a detailed analysis of the achieved outcomes. 
5- References 
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Literature review 
 

2.1  Basic of ATES 

An ATES (aquifer thermal energy storage) system comprises a pair of wells, one cold and one 

warm, interconnected with a heat pump (HP) through a chilled water network and a heat 

exchanger. These wells serve as the source and sink for groundwater. Submersible pumps are 

employed to transfer groundwater between the two wells via the heat exchanger, facilitating 

heat exchange with the building cooling/heating system. 

During the summer, when cooling is needed, the system utilizes cold groundwater directly for 

cooling purposes. Conversely, in the winter when heating is required, the heat pump's 

condenser provides heating at the desired temperature. Meanwhile, the heat from the 

evaporator side of the heat pump is extracted from the warm well, cooling down the 

groundwater and effectively storing cooling capacity in the cold well. The operation of the heat 

pump and submersible pumps necessitates electricity. 

In the summer, the heat pump is mostly idle as free cooling can be directly obtained from the 

cold well. However, when the cooling capacity of the cold well falls short, the heat pump can 

be activated to provide additional cooling to the building. The cooling capacity generated at 

the evaporator is supplied to the building, while the heat produced at the condenser side is 

either stored in the warm well or dissipated to the outside air using a dry cooler. 

In cases where there is a simultaneous demand for heating and cooling, both the heat produced 

at the condenser and the cooling capacity from the evaporator are delivered to the building. 

The proportion of heating to cooling demand determines whether the ATES system supplies 

extra heat to the heat pump or direct cooling to the building. 

When the heating and cooling requirements of the building are imbalanced over multiple years, 

a dry cooler is employed to store excess heat during the summer or surplus cooling capacity in 

the winter. This stored energy can then be utilized to meet the energy demand in the subsequent 

season. Operating the dry cooler involves electricity usage for circulation pumps and ATES 

well pumps (Beernink. S. et. al., 2022). 

 

2.2 LT-ATES transition to HT-ATES for enhancing energy efficiency 

Aquifer thermal energy storage (ATES) systems, when combined with a heat pump, play a 

pivotal role in generating and storing both heat and cold, thereby reducing energy consumption 

for space heating and cooling in buildings. In many countries, these systems traditionally limit 

the temperature of stored heat to a maximum of 25-30°C. However, when higher-temperature 

heat sources are available (such as waste heat or solar heat), it becomes more efficient to store 

heat at elevated temperatures. This not only enhances the performance of the heat pump but 

can also make an abundance of heat resources possible. Consequently, there exists significant 
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potential for achieving additional energy savings by transitioning from conventional low-

temperature ATES systems to high-temperature ATES (HT-ATES). 

This transformative approach has been successfully implemented and tested in the Netherlands, 

specifically for the Koppert-Cress greenhouse. The greenhouse has been utilizing a low-

temperature ATES (LT-ATES) system since 2012. However, starting in 2015, there was a 

gradual increase in the storage temperature, with the warm well now capable of storing heat at 

temperatures of up to 40°C (Bloemendal. M. et. al., 2022) 

 

2.3 Optimizing energy storage on ATES by adopting the machine-learning 

The transition towards a net-zero carbon economy has spurred substantial growth in renewable 

energy production both in the United States and worldwide. However, among the various 

renewable energy resources, wind and solar power have emerged as the fastest-growing sectors. 

While they contribute significantly to the energy mix, they also introduce challenges due to the 

intermittent nature of electricity generation, exacerbating the supply-load imbalance on electric 

grids. For instance, in California, the electricity demand typically surges by approximately 13 

GW from noon to nighttime on an average day. Unfortunately, this peak in demand coincides 

with a reduction in solar energy supply. To tackle this issue, the concept of reservoir thermal 

energy storage (RTES) has gained prominence. RTES involves injecting hot fluid into a 

subsurface reservoir and later recovering the geothermal energy when needed. This approach 

holds promise for rectifying supply and load imbalances on a grid-scale, thanks to its 

substantial storage capacity and dispatchable nature. It's worth noting that RTES goes by other 

names such as aquifer/geological thermal energy Storage (ATES/GeoTES), which employs a 

permeable formation to store thermal fluid, and borehole thermal energy storage (BTES), 

which uses closed pipelines to store thermal fluid, with heat transfer to the surrounding 

formation through thermal conduction (Jin, W. et. al., 2022). 

The inception of RTES can be traced back to 1965 in Shanghai when multiple textile factories 

began storing cold water during the winter months for later use in cooling during the hot 

summer season (Shi. X. et. al., 2016). 

The substantial computational requirements of physical modeling, coupled with the time-

consuming pre and post-processing steps, often deter stakeholders from investing in reservoir 

thermal energy storage (RTES). They require rapid evaluations and may not have access to 

supercomputing resources (Jin. W. et. al., 2021). 

As recognized by Bergen (Bergen. K.J. et. al., 2019) machine learning emerges as one of the 

most potent tools for tasks such as surrogate model development, geoscience exploration, and 

geoengineering. In the realm of subsurface energy engineering, the adoption of machine 

learning has experienced a remarkable surge in recent years. 
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2.4 LSTM model mechanism and its operation on time series data 

Long short-term memory (LSTM) networks are a specialized type of recurrent neural network 

(RNN) designed to address the vanishing gradient problem and better capture long-range 

dependencies in sequential data. What sets LSTMs apart are their unique gating mechanisms, 

which endow them with the ability to perform selective operations on their cell state. 

The key components of an LSTM are the forget gate, the input gate, and the output gate. These 

gates play pivotal roles in shaping the behavior of the LSTM network: 

1. Forget Gate: The forget gate allows an LSTM to selectively forget or retain 

information stored in its cell state from previous time steps. It does this by learning to 

weigh the importance of each piece of information, making it an invaluable tool for 

preventing irrelevant or outdated data from impacting the current state. 

2. Input Gate: The input gate facilitates the selective updating of the cell state with 

new information from the current time step. It controls which parts of the new input 

information are relevant and should be incorporated into the cell state, thereby ensuring 

that only pertinent data is integrated. 

3. Output Gate: The output gate determines what information from the cell state should 

be revealed as the output of the current time step. This allows the LSTM to selectively 

output information that is most relevant to the task at hand, contributing to its 

adaptability and effectiveness in capturing long-term dependencies. 

The combined operation of these gates empowers LSTMs to handle sequences with extended 

temporal dependencies effectively. Tasks that require modeling and prediction of sequences 

with intricate and long-lasting patterns, such as natural language processing, speech 

recognition, and time series forecasting, greatly benefit from the advanced capabilities of 

LSTMs. These networks have proven their worth in numerous applications where 

understanding and utilizing past information to make informed decisions about future events 

is critical. 
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Methodology 

3.1 Study area 

Koppert-Cress, a horticulture company located in the Western Netherlands region, 

implemented the ATES system in 2012, consisting of 4 hot wells and 4 cold wells, as shown in 

Figure 4. Koppert-Cress greenhouses exhibit a substantial heat need during the winter, as 

opposed to their cooling needs during the summer months. The excess heat is thus captured 

near their greenhouse and stored in hot water wells in the summer for use in the winter. This 

heat capture includes various 'passive' sources, such as solar panels, water heat, and waste heat 

from a nearby combined heat and power (CHP) facility. 

Following the transition from low-temperature ATES (LT-ATES) to high-temperature ATES 

(HT-ATES) in 2015, these additional heat sources and some other cold sources were gradually 

incorporated into heating and cooling systems. The temperature of the heat obtained from these 

additional sources fluctuates throughout the year, of which part is available at temperatures 

above 25°C (Bloemendal et al., 2020). 

 
Figure 5: Koppert-Cress greenhouse site – well locations (Ref: Bloemendal et al., 2020). 

 

The strategic integration of multiple heat sources into the ATES system has significantly 

improved the energy efficiency and sustainability of Koppert-Cress operations. The company 
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has effectively harnessed a variety of heat sources, each contributing to the overall heating and 

cooling needs of its greenhouses. 

Solar panels, a clean and renewable source of energy, have been harnessed to capture solar 

energy and convert it into heat during sunny times. In addition, the use of waste heat from a 

nearby combined heat and power plant (CHP) not only reduces energy waste but also promotes 

a circular economy by reusing excess heat that would otherwise be wasted. 

The transition from LT-ATES to HT-ATES in 2015 marks a significant step forward in energy 

storage capabilities. High-temperature storage effectively retains heat at high temperatures, 

which is perfect for meeting the high heating needs of a greenhouse during colder months. 

By combining these different heat sources and optimizing their use through the ATES system, 

Koppert-Cress has succeeded in creating a flexible and sustainable solution to meet heating 

and cooling needs. This approach not only reduces the company's carbon footprint but also 

serves as a model for sustainable practices in the horticulture industry. 

 

3.2 Dataset 

To evaluate the energy performance of the Koppert-Cress ATES system, various environmental 

and operational factors are continuously monitored. Specifically, operational data from the 

system's wells were collected between 2012 and 2023, providing information with a 5-minute 

resolution. This data includes important parameters such as cold and warm wells’ temperatures, 

flow rate (both inlet and outlet), flow direction, and thermal energy for the eight wells in the 

system. 

This comprehensive data set enables a detailed analysis of ATES system performance over 

time. With such detailed information, Koppert-Cress can closely monitor the operation and 

efficiency of wells, ensuring optimal system operation and meeting greenhouse heating and 

cooling requirements. By continuously monitoring these operational aspects, Koppert-Cress 

can make informed decisions to improve energy efficiency, reduce energy waste, and make the 

necessary adjustments to maintain energy efficiency. maintain sustainable and environmentally 

friendly gardening practices. This commitment to data-driven insights underscores their 

commitment to efficiency and environmental friendliness in their operations. 

 

3.3 Metrological data 

This study, in addition to utilizing the operational data collected from ATES system wells of 

the Koppert-Cress, also uses environmental data obtained from the Royal Netherlands 

Meteorological Institute (www.knmi.nl). This environmental data is an important input to 

machine learning models as driven data that detects and captures temperature changes in hot 

and cold wells. 

By integrating this external environmental data into its ML model, improves its ability to 

understand and predict how natural factors, such as weather conditions and seasonal changes, 
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affect the performance of its ATES system. This data-driven approach not only helps optimize 

energy management but also reinforces their commitment to sustainable practices by 

minimizing energy consumption and maximizing resource efficiency. 

 

3.4 Selecting the proper machine learning model 

In this thesis, when time series data is available for 5-minute intervals, the choice of deep 

learning technique is very important. In the field of deep learning, two main methods can be 

used for this purpose: 

Recurrent neural networks (RNNs) and long short-term memory networks (LSTMs). Given the 

large length and volume of the data set, it is necessary to consider the “forgetting problem” 

associated with the RNN method. 

The RNN model, although suitable for sequential data, has limitations when it comes to long-

term dependence on the data. Information from earlier time steps tends to be forgotten or 

"deleted" as it travels over the network. This can lead to suboptimal performance when 

capturing complex patterns or relationships in the data (Figure 5). 

 

Figure 6: Recurrent neural networks (RNNs) (Ref: towardsdatascience.com) 

 

To overcome this limitation, the decision to use the LSTM method was made. LSTM, which 

stands for long short-term memory, is an enhanced variant of the RNN model. What sets LSTM 

apart is its ability to selectively store and retain information in longer sequences through the 

use of internal neural connections. These connections, often referred to as gates, allow the 

LSTM model to remember and efficiently use relevant information from past time steps, 

thereby mitigating the forgetting problem associated with standard RNNs (figure 6). 
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Figure 7: Long short-term memory (LSTM) (Ref: towardsdatascience.com) 

 

By choosing an LSTM for our deep learning model, we take a proactive approach to ensure 

that the model can capture and maintain important patterns and dependencies in a variety of 

time series data. This decision reflects a deep understanding of the challenges posed by the 

dataset and demonstrates a commitment to using the most appropriate techniques to achieve 

accurate and insightful results in the thesis. 

 

3.5 Different LSTM model architectures in this study 

In this study, LSTM-based model architectures were chosen to predict warm and cold wells 

operating temperatures. Four separate architectures were designed and tested specifically for 

this study. Each of these architectures uses two groups of LSTMs, effectively integrating both 

the look-back window and forecast horizon data from the sequencer. These architectures are 

like singular LSTM topologies, cascade LSTM, or parallel LSTM configurations. 

In the following, detailed descriptions of the four model architectures will be presented, 

providing a comprehensive understanding of their design and functionality. 

 

3.5.1 Model 1 

Model 1, as illustrated in Figure 7, features a single LSTM with one layer that is connected to 

a dense layer. The LSTM component is responsible for sequentially processing historical data 

from the past L days, often referred to as the "look-back window." It operates continuously up 

to the current time and generates the final output. All data from the geothermal wells and 

meteorological sources are utilized as input for this model. The outputs generated by the LSTM 

are combined and directed into the Dense layer, which concurrently produces predictions 

aligned with the length of the forecast horizon (fh) set by the sequencer. These predictions 

constitute the ultimate output of Model 1. 
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Figure 8: Singular LSTM model with a single layer 

 

3.5.2 Model 2 

Model 2, as shown in Figure 8, illustrates a cascade LSTM with two layers of LSTMs in a 

cascade configuration. All data from geothermal wells and meteorological sources are used as 

input to LSTM 1. The output of LSTM 1 is then transferred to LSTM 2, and then the output of 

LSTM 2 is transferred to the dense layer. Responsibility for the sequential processing of the 

historical data of the past L days, known as the "look-back window", is delegated to the LSTM 

component. It runs continuously until the present time and produces the final result. The dense 

layer, in turn, simultaneously generates predictions corresponding to the length of the forecast 

horizon (fh) specified by the sequencer. These predictions are the final output of Model 2. 

 

 

 

Figure 9: Cascade LSTM model 

 

3.5.3 Model 3  

Model 3, as shown in Figure 9, is designed with two layers of LSTMs in parallel mode, which 

are then bonded to a dense layer. The LSTM-1 is responsible for the sequential processing of 

historical data over the past L days. It runs continuously until the present time, eventually 

producing the final result. The LSTM-2, on the other hand, manages data for future time points 

(t + fh), using only the predicted ambient temperature as input at each time step. LSTM-2 

returns a complete output sequence based on this input. Note that for the LSTM-2 input, only 

the sequencer's forecast horizon data is used. Outputs derived from LSTM-1 and LSTM-2 are 

concatenated and redirected to the dense layer. This dense layer simultaneously generates 

predictions for elongated time points (t + fh), which serve as the final output of Model 3. 

The hyperparameter tuning for this model architecture was conducted concerning prior studies 

that have extensively examined and optimized hyperparameters for LSTM models in 

streamflow prediction (Gauch et al., 2021; Kratzert et al., 2018, 2019; Nevo et al., 2022). These 

studies served as valuable references for fine-tuning the hyperparameters of the model used for 

predicting warm and cold wells temperatures. 

X ( t – L, t)  LSTM Dense Ŷ ( t, t+ fh ) 

X ( t – L, t)  LSTM 2 Dense Ŷ ( t, t+ fh ) LSTM 1 
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Figure 10: Parallel LSTM model with one dense layer 

 

3.5.4 Model 4  

Model 4, as shown in Figure 10, is structured with two parallel layers of LSTM, then bonded 

to two different dense layers. LSTM-1 is responsible for historical data of the sequencer for the 

last L days. It worked continuously until the present time finally giving results. In contrast, 

LSTM-2 processes data for future time points (t + fh) and relies only on predicted ambient 

temperature as input at each time step. LSTM-2 generates a complete output sequence based 

on this input, with the caveat that it only uses the sequencer's forecast horizon data for its inputs.  

The outputs produced by the LSTM-1 and LSTM-2 are concatenated and directed to two 

separate dense layers. Each of these dense layers is used to predict individual well 

temperatures. These dense layers simultaneously generate predictions for elongated time points 

(t + fh), forming the final output of model 4. 

The purpose of this model consists of two parts: first, compare the accuracy of its prediction 

with the previous model, and second, evaluate whether the temperatures of the two wells 

influence each other. 

 

 

 

 

 

 

Figure 11: Parallel LSTM model with two separate dense layers 

 

 

 

 

Ŷ1 ( t, t + fh ) 

Ŷ2 ( t, t + fh ) 

Dense 1 

Dense 2 

concatenate 

X2 ( t, t + fh )  LSTM 2 

X1 ( t – L, t ) LSTM 1 
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3.6 Data processing 

Data analyzing or preprocessing, and post-processing methods and steps used in this study 

are explained in this session. 

 

3.6.1 Data analyzing or preprocessing 

During the data analysis phase, a series of general steps were taken to prepare the data for the 

DL models. These steps include data visualization, classifying flow direction data, identifying 

and handling outliers, and resampling data. Splitting data in training, validation, and testing 

data sets, parameters scaling, and preparation of the sequencer. The following is a detailed 

explanation of these steps. 

 

3.6.2 Data visualization 

In the process of creating long-short term memory (LSTM) models for the analysis of aquifer 

thermal energy storage (ATES) systems, data visualization plays an important role. This step 

involves creating visual representations of the ATES system data to gather information, identify 

patterns, and understand the inherent data structure before using it to train machine learning 

models such as LSTMs. 

The data distribution of the ATES system is explored through data visualization. This is 

achieved by creating a histogram, box plot, or heat chart to observe how the data is distributed 

among different features. The goal is to detect any asymmetry, outliers, or patterns in the data. 

Temporary trends are also detected. Line charts or time series graphs are used to show how 

system parameters change over time, including temperature fluctuations in hot and cold wells 

throughout the day or between seasons. 

The relationships between different variables are also elucidated through data visualization. 

This is essential for selecting appropriate features for the LSTM model and evaluating the 

potential influence of one variable on another. This information serves as a guide for feature 

engineering, which involves creating new features or transforming existing features to improve 

model performance. For example, the handling of flow direction data. It makes it easier to 

interpret model predictions. After training the LSTM model, a comparison is made between its 

prediction and the actual data, using visualization to assess accuracy and understand possible 

areas of error. In a nutshell, a comprehensive understanding of data is achieved through data 

visualization, followed by decisions about data preprocessing, feature selection, and model 

design. Through data visualization, the LSTM model will be able to have knowledge and 

proficiency in capturing the underlying patterns and dynamics of the ATES system. 
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3.6.3 Flow direction classification 

Flow direction values range from 0 to 2, including decimals. To prepare this data for inclusion 

in the ML model and based on information provided by the Koppert-Cress company, a value 

of 0 means the system is off. Values greater than zero to one indicate a cooling mode in which 

water is pumped from a cold well to a hot well. Values greater than one to two indicate a heating 

mode in which water is pumped from a hot well to a cold well. Therefore, flow direction data 

has been classified into three categories: zero, one, and two for shutdown, cooling, and heating 

modes respectively. 

 

3.6.4 Outliers identification and replacement 

During data visualization, outliers in the data set were identified through the use of a box plot 

(Figure 11). To deal with the presence of these outliers, a robust approach is taken: 

they are replaced by mean interpolation, where neighboring data points are considered for 

determination. This approach is preferred over eliminating outliers because it retains valuable 

data and helps maintain the integrity of the data set. 

 

 
Figure 12: The outliers in the cold well temperature data 
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3.6.5 Resampling data 

Original data are measured at 5-minute intervals. To streamline machine learning training and 

evaluate prediction accuracy in different scenarios, the data is resampled at different time 

intervals such as 1, 4, 8, 12, and 24 hours. In Python, there are two separate methods for this 

purpose: resampling and rolling. The resampling method provides an efficient tool for 

aggregating data over specified periods, thereby facilitating smoother data management over a 

while. The rolling method, on the other hand,  involves using a sliding window to compute new 

data points. This approach is particularly useful when performing continuous scrolling data 

analysis, which is advantageous for tasks such as applying time series smoothing or examining 

trends over specific periods. The results of the two methods are compared in Figure 12. As seen 

in the figure the rolling method data has more coverage over the original data. 

 
Figure 13: Comparison of resampling and rolling methods results 

 

3.6.6 Data Segmentation for model development and evaluation 

The dataset has experienced a cautious division handle, coming about within the creation of 

three particular subsets: Training, validation, and testing datasets. These subsets have been 

designated extents of 70%, 15%, and 15% of the whole dataset, respectively. This key division 

serves as an essential part of the advancement and assessment of machine learning. 

1. Training dataset (70%): 

The biggest parcel, the training set, includes 70% of the dataset. This section plays a principal 

part in preparing ML models for prediction. By uncovering the demonstration of this broad 

dataset to the model, it can learn and adjust its inside parameters to capture the fundamental 

patterns and connections inside the information. 

2. Validation dataset (15%): 

The validation dataset, comprising 15% of the information, serves as a basic component for 

fine-tuning the demonstration amid its improvement stage. It acts as an autonomous benchmark 

for evaluating the model's execution. Alterations to show hyperparameters and design are 

guided by how well the show generalizes to this dataset. 
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3. Testing dataset (15%): 

The testing dataset, to apportion 15% of the information, serves as the extreme assessment 

ground for machine learning. It gives an impartial evaluation of the model's prescient 

capabilities on concealed information. The model's execution on this dataset could be a solid 

pointer to its ability to form exact expectations in real-world scenarios. 

This astute apportioning of the information into preparing, approval, and testing subsets 

guarantees that the ML model is prepared successfully, fine-tuned for optimal execution, and 

thoroughly assessed for its real-world appropriateness. It could be a pivotal step in building a 

vigorous and dependable prescient demonstration.  

 

 
Figure 14: Data proportions 

 

 

3.6.7 Parameters scaling 

In this study, deep learning (DL) models are used to analyze data with multiple input variables, 

each with a different range of values and units. These variations of the input variables can 

impact the sensitivity of the model to different factors, potentially leading to a reduction in the 

model's performance. To mitigate this problem, it is important to apply scaling to the input 

variables.  

The scaling process applied here is normalization. It starts by using the time series data of the 

input variables specifically for the training dataset. It is essential to emphasize that the scaler 

is built based on the training dataset only, not including any test or validation dataset. This 

precaution is taken to avoid any possibility of “data leaks” that could affect the fairness and 

accuracy of the model evaluation. 

From the training data set, the mean �̅� and standard deviation 𝜎𝑥 for each input variable are 

calculated. Then, for each data point in the time series, the normalized value 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 is calculated 

using equation 1. The scaler, which encapsulates the mean and standard deviation of each 

variable taken separately from the training dataset, is stored locally. This standardized scaling 

method is also extended to the target variable to ensure consistency in the scaling process. 
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Equation 1 

3.6.8 Preparation of sequences 

In the field of time series modeling, sequence preparation plays a central role in efficiently 

exploiting available data and tailoring it to the unique requirements of the model architecture. 

select. In the context of this study, we designed two distinct sequence lengths tailored to the 

specific needs of our model design. These sequence’s lengths are as follows: 

1- LSTM-1 string length (look-back window): 

A sequence length is specified for LSTM-1. This particular length serves as a "look-back 

window" for LSTM-1, allowing the model to take into account important historical context 

when making predictions. 

2- LSTM-2 series length (forecast horizon): 

In contrast, the LSTM-2 (or second group of LSTMs). In this case, the length of the series 

corresponds to the "forecast horizon" of LSTM-2, allowing the model to make shorter-term 

predictions with a more focused view of recent data. 

To provide a visual representation of this sequence preparation procedure, you may refer to 

Figure 14, which shows a diagram detailing how these sequences were constructed and aligned 

with the parallel model architecture. This preparatory step ensures that our models are 

optimized to efficiently capture and exploit temporal patterns in the data, meeting the unique 

requirements of each LSTM variant. 

 
Figure 15: Sequencer setup. “look-back window” data is separated for LSTM1 and “forecasting horizon” is divided or 

LSTM2 
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3.6.9 Postprocessing 

In the post-processing stage, some essential processes are performed to process the predicted 

values. These processes include tasks such as back-scaling predicted values, visualization, and 

comparative analysis with the original data. 

 

3.6.9.1 Back-scaling predicted values 

During the preprocessing stage, the target variable (the predicted values) undergoes scaling, 

producing normalized values denoted by 𝑦𝑠𝑐𝑎𝑙𝑒𝑑. To achieve this normalization, we calculate 

the mean �̅� and standard deviation 𝜎𝑦 of the observed target variable using the training dataset. 

We then use the scaler to reverse the transition, ensuring that the modeled target is scaled back 

to the original scale, as adjusted by Equation 2. 

 
Equation 2 

 

3.7 Evaluation metrics for long short-term memory (LSTM) Model results 

 

3.7.1 Mean absolute error (MAE) 

Definition: The MAE calculates the average size of errors between actual and anticipated 

values. It is determined by first averaging the absolute disparities between each anticipated 

value and its matching actual value. 

Interpretation: A lower MAE means that, on average, the model's predictions are more in line 

with the actual data. Compared to other metrics like MSE, it is less susceptible to outliers. 

𝑀𝐴𝐸 =  
∑ |Ŷ𝑖 − 𝑌𝑖|𝑛

𝑖=1

𝑛
 

Equation 3 

 

3.7.2 Mean squared error (MSE)  

Definition: MSE also looks at prediction errors but squares them before averaging. This makes 

it more sensitive to large errors. 

Interpretation: Like MAE, we want a lower MSE. It emphasizes big mistakes more, so it's 

crucial to minimize this if outliers are significant. 
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𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑌𝑖 − Ŷ𝑖)

2𝑛

𝑖=1
 

Equation 4 

 

 

3.7.3 Root mean squared error (RMSE): 

Definition: RMSE is just the square root of MSE. It's useful because it gives us an error 

measurement in the same units as our data, making it easier to understand. 

Interpretation: Similar to MSE, we aim for a smaller RMSE for more accurate predictions. 

𝑅𝑀𝑆𝐸 =  √∑ (𝑌𝑖 − Ŷ𝑖)
2𝑛

𝑖=1

𝑛
 

Equation 5 

 

3.7.4 Coefficient of determination (R2 or R-squared): 

Definition: R2 tells us how well our model fits the data. It ranges from 0 to 1, where 0 means 

our model is not useful, and 1 means it's a perfect fit. 

Interpretation: Higher R2 values are better. They indicate that our model explains more of the 

variation in the data. It helps us understand how well our predictions align with reality. 

 

𝑅2 =  1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
 

𝑅𝑆𝑆 =  ∑(𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)2

𝑁

𝑖

 

𝑇𝑆𝑆 =  ∑(𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑦𝑚𝑒𝑎𝑛)2

𝑁

𝑖

 

Equation 6 
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Results 
The results will be presented and discussed in this chapter in two sections: section 4.1 illustrates 

the data visualization and findings, and section 4.2 compares the performance of different 

LSTM model architectures. Each section addresses a sub-research question, first presenting the 

results and findings, followed by a discussion. 

 

4.1 Data visualization 

 

4.1.1 Cold and warm well temperature comparison during heating and cooling 

mode.  

Distinct patterns are revealed in the operation of the ATES when operating in both cooling and 

heating modes. In the visualization, the cooling mode is represented by blue data points, while 

the heating mode is indicated by red data points. Valuable information about the thermal 

characteristics of the system is provided by the observed temperature dynamics in these modes.  

During the cooling cycle, higher temperatures are normally detected at warm wells. This 

phenomenon is due to the ATES system absorbing excess heat from the building during this 

period. Efficient heat transfer by the heat pump allows this heat to be stored in the water. The 

heat-rich water is then pumped into the warm well, contributing to the increase in the 

temperature of the warm well (Figure 15).  

In contrast, when the system is in heating mode, the temperature in the cold well is usually 

lower. This property is the result of extracting heat from the water in the system to heat the 

building. Therefore, the water temperature decreases during this period. To restore balance, 

cooler water is pumped into the cold well, helping to lower the temperature (Figure 16). 

 

 
Figure 15: The warm well experiences a higher temperature during building cooling mode because of absorbing heat from 

the building and storing warm water inside the warm well. 
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Figure 16: The cold well experiences a lower temperature during building heating mode because of leaves its heat to the 

building and stores cold water inside the cold well. 

 

 

4.1.2 Flow direction 

As mentioned in the methods section, flow direction values range from 0 to 2, including 

decimals. In this context, the value zero corresponds to the system shutdown period. Values 

greater than zero to one indicate cooling mode, while values greater than one to two indicate 

heating mode. Figure 17 illustrates that the heating mode accounted for 37.7% of the total 

duration, while the cooling mode accounted for 22.8%. This allocation indicates a higher 

heating demand, underscoring the importance of prioritizing heating mode in the system.  

About 68.9% of the time, the system operates in modes 0, 1, or 2, reflecting its typical operating 

states. The remaining 31.1% can be attributed to the transition period between cooling and 

heating modes, providing valuable opportunities for measurement and data analysis. 

 
Figure 16: 37.7% of the time in heating mode and 22.8% of the time in cooling mode. Emphasizing on heating mode of the 

system. The system operates within modes 0, 1, and 2 for 68.9% of the time, with 31.1% as transitional periods. 

 

To streamline the data analysis process, a classification scheme has been introduced to 

categorize flow direction data into three distinct classes: 

1. The designation “0” signifies periods of system shutdown. 
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2. Values within the range of 0 to 1 have been replaced with number “1” to represent the cooling 

cycle. 

3. Values exceeding 1 to 2 are replaced with the number “2” and employed to denote the heating 

mode. 

This classification methodology has been implemented to enhance the clarity and 

manageability of data analysis, ensuring that flow direction data can be readily interpreted and 

comprehended within the defined categories. 

 

4.1.3 Correlation between flow direction and wells’ temperatures 

Figure 18 illustrates the schematic of ATES wells, sensor locations, and the heat exchanger in 

the Koppert Cress ATES system. 

 

 

 
Figure 17: Schematic of ATES wells, sensor locations 

 

The most pronounced temperature fluctuations occur within the water discharged from the heat 

exchanger, as it undergoes energy gain or loss within the heat exchanger (HE). In contrast, the 

HE tends to maintain a relatively stable temperature profile. This consistency arises from its 

source within the well, where the temperature remains relatively constant over time. 

Figure 19 illustrates that, within each cooling or heating cycle, the temperature fluctuations are 

more pronounced in the injection water supplied to the well compared to the temperature of 

the produced water from the well. This disparity is particularly evident in modes lasting over 

five hours. 



40 
 

The impact of the cooling mode on the warm well temperature (or injection water temperature) 

is most conspicuous during June and July, primarily due to the longer duration of the cooling 

mode in comparison to the heating mode during this specific period. 

Typically, the highest temperatures are recorded at the onset of the cooling phase, coinciding 

with the initiation of the heat pump`s cooling operation for the building. During this phase, the 

water within the heat exchanger absorbs the maximum amount of heat. Subsequently, as the 

cooling mode progresses and transitions into the heating mode, the heat pump progressively 

reduces its heat absorption by the water. 

 

 
Figure 18: More temperature variation is experienced in injecting water into wells in comparison to extracted water from 

wells. Cooling mode impacts warm well temperature mostly during June and July, with peak temperatures at the start of the 

cooling phase. 

 

 

The amount of heat absorbed by the building depends on the temperature requirements inside 

the structure. The degree of temperature fluctuations during a cooling cycle is closely related 

to the energy needs inside the building. The main goal of the HVAC system is to maintain a 

stable indoor temperature. Therefore, when the inside of the building is warmer, the heat 

exchanger (HE) will absorb higher temperatures, while the lower building temperature causes 

the HE to absorb cooler temperatures, all of which are of concern to the public. temperature 

stability. (figure 20) 
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Figure 19: Heat Exchanger adapts to building temperature demands, which leads to absorbed temperature fluctuations 

during cooling cycles, for maintaining consistent temperatures inside the structure. 

 

In the earlier discussion during the cooling mode temperature variation was explained, it 

follows that during the heating mode too. When water is injected into the cold well, the most 

significant temperature fluctuation (resulting in the lowest temperature reading) is expected to 

be observed at the cold well. This is in line with the dynamic temperature adjustments 

characteristic of the ATES system`s operation. (figure 21) 

 
Figure 20: In the heating mode, when cooler water is injected into the cold well, the coldest temperatures are detected by the 

cold well sensor. 

 

 

4.1.4 Correlation between environmental temperature and the flow direction 

When environmental temperature and flow direction are compared together, clear patterns 

emerge. The system typically works in heating mode when the outside temperature is below 

ten degrees (figure 22). The system switches into cooling mode when the ambient temperature 

progressively increases. In contrast, the system switches back to heating mode as the 

temperature drops (figure 23). 
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Figure 21: The system predominantly operates in heating mode when the exterior temperature remains below 10 degrees 

 

 

 
Figure 22: when the ambient temperature progressively increases the system switches into cooling mode. In contrast, the 

system switches back to heating mode as the temperature drops. 

 

4.1.5 Correlation between environmental temp and warm well temperature 

The comparison of temperature variations between the environment and well temperatures 

reveals intriguing correlations. Typically, there is a robust correlation between warm well 

temperature and environmental temperature, particularly when the environmental temperature 

exceeds fifteen degrees. Under such conditions, these two graphs tend to align closely. 

However, it's noteworthy that in some instances, the warm-well temperature surpasses the 

maximum environmental temperature. This occurrence can be attributed to additional heat 

sources such as solar panels, and neighboring company's waste water heat that impart extra 

energy to the water, thus elevating the warm well temperature. 
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Figure 23: A strong correlation is observed between warm well temperature and environmental temperature, especially when 

the latter exceeds 15 degrees. 

 

 
Figure 24: The warm well temperature occasionally exceeds the highest recorded environmental temperature. This 

phenomenon can be ascribed to supplementary heat sources, such as solar panels and waste heat from neighboring 

companies. 
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4.1.6 Correlation between environmental temp and cold well temperature 

On the other hand, it's important to note that when it comes to cold well temperature and their 

relationship to ambient temperature (figure 26), the odd absence of any clear and consistent 

relationship is noticed. This interesting lack of correlation can be unraveled by examining the 

basic principles that govern heat pumps when operating in cooling mode, as well as the 

limitations imposed by extremely low temperatures. 

When the heat pump is in heating mode, its main purpose is to transfer heat from the water to 

the inside of the building, thereby cooling water. This process involves the circulation of a heat 

transfer fluid, usually water, through a series of coils and pipes. However, it is important to 

keep the water temperature above a certain threshold, usually around 5 degrees, to avoid the 

risk of freezing in the heat pump condenser. The need to prevent freezing in the heat pump 

system at extremely low temperatures places a limit on the temperature of the cooler. This 

limitation can create a disconnect between the cold well temperature and the ambient 

temperature. Even when the outside environment has a significant drop in temperature, the heat 

pump will work to maintain the cold well temperature within a certain range, ensuring that the 

temperature remains above the critical freezing point. 

This unique behavior demonstrates the adaptability and intelligence of heat pump systems in 

managing temperature variations and maintaining the safety and efficiency of their operations. 

So while it may seem counterintuitive to suggest that the cold well temperature does not 

consistently reflect the ambient temperature, it is evidence of the complex engineering and 

control mechanisms that underlie the operation. behavior of heat pumps, especially when 'they 

are deployed for cooling purposes. 

 

 
Figure 25: The cold well temperature and environmental temperature comparison. 
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4.1.7 Data outliers and abnormalities, and their Management 

During data analysis, two distinct categories of outliers were encountered.  

4.1.7.1 Sensing errors 

The first category was related to sensor locations (figures 27 & 28 & 29). After a careful review 

of the source data and a comparison with similar timeframes in other years, as well as the 

creation of visual plots, the underlying reasons for these anomalies were identified. 

It was observed that these outliers were associated with the placement of the sensors 

themselves. It should be noted that the sensors are not positioned within the wells; instead, they 

are strategically installed somewhere between the heat pumps and the wells. Consequently, the 

function of monitoring the temperature of the water as it exits or enters the wells is carried out 

by them. 

Several factors can contribute to the emergence of outliers in this context. For instance, when 

the system undergoes temporary shutdowns or switches between cooling and heating modes, 

the flow of water can momentarily cease. During these periods of flow interruption, 

temperature fluctuations either cooling down or heating up are experienced by the water within 

the pipes. These fluctuations are duly detected by the sensors, and these variations are recorded 

and stored in the dataset. 

Therefore, it is crucial to recognize that these recorded numbers do not represent the true 

temperature of the wells themselves. Instead, the transient changes in water temperature as it 

is moved through the system are reflected by them. As a result, any analysis or interpretation 

of the data must take into account the nature of these sensor readings and their underlying 

causes, rather than treating them as authentic representations of the actual well temperatures. 

 
Figure 26: Cold well outliers 
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Figure 27: Cold well outliers 

 
Figure 28: Cold well outliers 
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4.1.7.2 Cable malfunction 

The second category of data anomalies pertained to a specific period in 2020 when warm well 

temperatures were recorded to be exceeding 100 degrees, while cold well temperatures 

surpassed 65 degrees. These readings sharply contrasted with the typical temperature ranges 

observed in the wells, where the maximum temperature for warm wells usually hovers around 

40 degrees, and for cold wells, it stays at approximately 12 degrees. Further investigation 

revealed that this unusual data was a result of a cable malfunction that occurred on that 

particular day, leading to the erroneous recording of these abnormal temperature values (see 

Figures 4.16 & 4.17). 

 
Figure 29: Warm and cold wells abnormalities 

 

 
Figure 30: The exact time of abnormities and their amounts 
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Also, similar abnormalities were seen in flow rates (Figures 4.18 & 4.19). 

 
Figure 31: flow rate abnormalities 

 

 
Figure 32: Exact time of abnormities and their amounts 
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4.2 LSTM models results 

As a comprehensive detail, before attending to the LSTM models’ results it is fundamental to 

note this ATES system started in 2012 up to the present day. Over these years, various changes 

have happened, such as the transition from LT-ATES to HT-ATES in 2015, the presentation of 

a pond in 2016, solar panels, and waste heat from a neighboring combined heat and power 

(CHP) plant in 2017, and the expansion of a cold store in 2018. 

Consequently, it becomes evident that the system experienced significant transformations 

during this period. Therefore, as observed after this transitional phase, the data started to exhibit 

a greater degree of stability. Consequently, a decision was made to utilize data from this post-

transition period onwards. This decision was driven by the objective of minimizing 

uncertainties in the dataset. Thus, data spanning from 2019 to the present has been employed 

for analysis and modeling. 

 

4.2.1 Singular LSTM model 

Initially, the singular LSTM model was implemented in the dataset. After some hyper-

parameter adjustments, optimal results were obtained with 12-hour resolution data. Then a 

systematic process was applied, in which the resolution of the data was gradually increased. 

over 8 hours and 4 hours, and finally applied a data usage model with a resolution of 5 minutes. 

 

 

Figure 33: Singular LSTM model 

 

 

4.2.1.1 Singular LSTM model, for predicting one feature (warm well 

temperature) 

 

4.2.1.1.1 Singular LSTM model, for predicting one feature (warm well 

temperature in) at 12 hours data resolution 

The outcomes of this experiment, which evaluates the model's execution through the 

convergence plot comparing training loss and validation loss based on mean squared error 

(MSE), are illustrated in Figure 35. The x-axis shows the epochs of iteration, while the y-axis 

illustrates the value of the evaluation metrics (loss function) of training data. After 8 epochs 

training of the model starts to stabilize. As the early stop function is used inside of the LSTM 

model training stops after 34 epochs to prevent overfitting the model. 

X ( t – L, t)  LSTM Dense Ŷ ( t, t+ fh ) 
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Besides, Figure 36 presents key measurements, where MSE stands at 4.10, RMSE at 2.02, R-

squared (R2) at 0.06, and MAE at 1.58. 

These measurements uncover that the model is competent in capturing the general temperature 

variation for forecast, although it battles to imitate it. Figure 37 outwardly illustrates this by 

exhibiting the comparison between the real temperature values (in blue) crossing nine months 

and the comparing predicted values (in orange). 

Figure 38 gives a comprehensive diagram, enveloping training, validation, test, and predicted 

values. 

 
Figure 34: Convergence plot of training and validation losses 

 

 
Figure 35: ML model evaluating metrics 

 

 
Figure 36: Actual and predicted temperatures for warm well 
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Figure 37: Training, validation, test, and prediction values of warm well temperature 

 

4.2.1.1.2 Singular LSTM model, for predicting one feature (warm well 

temperature in) at 8 hours data resolution 

The results of this experiment, which assesses the model's performance using a convergence 

plot that compares training loss and validation loss based on Mean Squared Error (MSE), are 

depicted in Figure 39. Additionally, Figure 40 presents key performance metrics, with MSE 

recorded at 4.63, RMSE at 2.15, R-squared (R2) at 0.20, and MAE at 1.66. 

These metrics reveal that the model is proficient in capturing the overall temperature variation 

for forecasting, albeit with some limitations in accurately reproducing it. This is visually 

evident in Figure 41, which illustrates the comparison between the actual temperature values 

(in blue) spanning nine months and their corresponding predicted values (in orange). 

For a more comprehensive overview encompassing training, validation, test, and predicted 

values, please refer to Figure 42. 

 

 

 
Figure 38: Convergence plot of training and validation losses 
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Figure 39: ML model evaluating metrics 

 

 
Figure 40: Actual and predicted temperatures for warm well 

 

 
Figure 41: Training, validation, test, and prediction values of warm well temperature 

 

4.2.1.1.3 Singular LSTM model, for predicting one feature (warm well 

temperature in) at 4 hours data resolution 

 
The results of this experiment, where the model's execution is assessed through the 

convergence plot, are depicted in Figure 43. The x-axis portrays the epochs of iteration, while 

the y-axis showcases the evaluation metrics' (loss function) values for the training data. It 

becomes evident that, after 10 epochs of training, the model begins to stabilize. Furthermore, 

to guard against overfitting, an early stop function was employed within the LSTM model, 

causing training to halt after 120 epochs. 

In Figure 44, crucial measurements are presented. The Mean Squared Error (MSE) registers at 

5.83, the Root Mean Squared Error (RMSE) at 2.41, R-squared (R2) at 0.23, and the Mean 
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Absolute Error (MAE) at 1.88. It is noteworthy that R-squared demonstrates a marked 

improvement compared to previous experiments. 

These measurements reveal the model's competence in capturing the overall temperature 

variation for forecasting purposes, and it outperforms previous experiments. Figure 45 visually 

underscores this by displaying a comparison between actual temperature values (depicted in 

blue) spanning nine months and the corresponding predicted values (in orange). 

Figure 46 provides a comprehensive overview, encompassing training, validation, test, and 

predicted values. 

 
Figure 42: Convergence plot of training and validation losses 

 

 
Figure 43: ML model evaluating metrics 

 

 
Figure 44: Actual and predicted temperatures for warm well 
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Figure 45: Training, validation, test, and prediction values of warm well temperature 

 

4.2.1.1.4 Summary and key takeaways of the singular LSTM model for 

predicting one feature 

As it is seen increasing the data resolution from 12 hours to 4 hours makes the model to be 

able to predict the temperature variation trend better.  

 

4.2.1.2 Cascade LSTM model, for predicting one feature (warm well 

temperature) 

This experiment has been designed to compare the results achieved by the singular LSTM 

model versus the cascade LSTM model. The objective of this experiment was to investigate 

whether by using a complicated LSTM model is it possible to improve the results for this 

system. Also decided to change the early stop value to a higher amount to let the model train 

to higher epochs to evaluate its effect on results. 

 

4.2.1.2.1 Cascade LSTM model, for predicting one feature (warm well 

temperature) at 1-hour data resolution with 200 epochs 

In this experiment, we configured the model to run for a total of 200 epochs, with early stopping 

criteria set at 5 waiting iterations. Interestingly, the training process halted at the 98th epoch as 

a preventive measure against overfitting. The convergence plot, presented in Figure 47, reveals 

that the validation loss stabilized at approximately 0.15, showing no further improvement. 

However, notable enhancements were observed in the evaluation metrics, with the mean 

squared error (MSE) registering at 0.0042, the root mean squared error (RMSE) at 0.06, and 

the coefficient of determination (R2) at 0.58, as depicted in Figure 48. Furthermore, a visual 

comparison between actual temperature values and predicted values, as displayed in Figures 

49 and 50, underscored some improvements in the model's predictive performance. 
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Figure 46: Convergence plot of training and validation losses 

 

 
Figure 47: ML model evaluating metrics 

 

 
Figure 48: Actual and predicted temperatures for warm well 

 

 
Figure 49: Training, validation, test, and prediction values of warm well temperature 
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4.2.1.2.2 Cascade LSTM model, for predicting one feature (warm well 

temperature) at 1-hour data resolution with 2000 epochs 

In this experiment, the model was configured to run for a total of 2000 epochs, with early 

stopping criteria which was set to 55 waiting, the training process was automatically terminated 

at the 120th epoch as a precautionary measure against overfitting. The convergence plot, as 

presented in Figure 51, indicated that the validation loss stabilized at approximately 0.18, 

reflecting a less favorable outcome compared to the previous experiment. Nevertheless, it 

should be noted that similar results were observed in the evaluation metrics, including a mean 

squared error (MSE) of 0.0039, a Root mean squared error (RMSE) of 0.062, and a coefficient 

of determination (R2) of 0.61, as depicted in Figure 52. 

Furthermore, a visual comparison was made between actual temperature values and predicted 

values, as illustrated in Figures 53 and 54, revealing similar results to the previous experiment. 

 

 
Figure 50: Convergence plot of training and validation losses 

 

 
Figure 51: ML model evaluating metrics 
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Figure 52: Actual and predicted temperatures for warm well 

 

 
Figure 53: Training, validation, test, and prediction values of warm well temperature 

 

4.2.1.2.3 Summary and key takeaways of the cascade singular LSTM model for 

predicting one feature 

Implementing the cascade LSTM model not only failed to enhance prediction accuracy but 

also led to a notable increase in training time. 

 

4.2.1.3 Singular LSTM model, for predicting two features (warm well and 

cold well temperature) 

This experiment has been designed to compare the results achieved by the models when one 

feature (warm well temperature) is predicted versus when two features (warm well temperature 

and cold well temperature) are predicted by using the singular LSTM. The objective of this 

experiment is to investigate whether these two features are influenced by each other or not. 

 

4.2.1.3.1 Singular LSTM model, predicting two features (warm well and cold 

well temperature) - at 5 minutes data resolution 

The convergence plot began to stabilize after 13 epochs. There was a noticeable improvement 

in the loss function, which decreased significantly from 0.03 to 0.001, as shown in Figure 55. 

Additionally, we observed promising enhancements in the mean squared error (MSE) values 

for the cold well (0.0005) and warm well (0.0002), root mean squared error (RMSE) for the 
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cold well (0.023) and warm well (0.016), as well as the mean absolute error (MAE) for the cold 

well (0.012) and warm well (0.0076), as illustrated in Figure 56. Furthermore, a perfect match 

was evident when comparing the predicted values to the actual values, as demonstrated in 

Figures 57 and 58. 

 
Figure 54: Convergence plot of training and validation losses 

 
Figure 55: ML model evaluating metrics 

 
Figure 56: Actual and predicted temperatures for warm well 
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Figure 57: Training, validation, test, and prediction values of warm well temperature 

 

4.2.1.3.2 Summary and key takeaways of the singular LSTM model for 

predicting two feature 

According to the achieved results from the last experiment, it is seen these two features (warm 

well and cold well temperature) have a direct impact on each other results. Therefore by using 

higher resolution data (e.g. 5-minute intervals) for predicting two features at the same time, the 

LSTM model can predict the temperatures precisely. 

This approach yielded success with the forecasting horizon of 5 minutes. The upcoming 

experiments are aimed at extending the forecasting horizon. 

 

4.2.2 Parallel LSTM model 

This architecture incorporates two parallel LSTM layers connected to dense layer/layers. 

LSTM-1 is responsible for sequentially processing historical data spanning the past L days 

(often referred to as the "look-back window") up until the current time. On the other hand, 

LSTM-2 handles future time data, utilizing only the forecasted meteorological variable as input 

at each time step and generating a complete sequence of outputs. It's important to note that for 

LSTM-2 inputs, only forecasted meteorological variables, specifically environmental 

temperature, are utilized; no ATES variables such as well temperatures or flow data are 

included. The outputs from LSTM-1 and LSTM-2 are concatenated and passed to the Dense 

layer, which generates predictions for the forecast horizon period. 
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4.2.2.1 Parallel LSTM, 4 inputs to LSTM-2, predicting one feature 

 

4.2.2.1.1 Parallel LSTM, 4 inputs to LSTM-2, predicting one feature, at 12-hour 

data resolution 

Regarding the convergence plot, after just 7 epochs, the early stop mechanism, set to stop after 

5 consecutive epochs without improvement, halted the training iterations. The validation loss 

reached a low of 0.018 remarkably quickly (as shown in Figure 59). Evaluation metrics yielded 

MSE = 0.005, RMSE = 0.072, R2 = 0.19, and MAE = 0.057, as indicated in Figure 60. Visual 

comparisons of the predicted values can be observed in Figures 61 and 62. 

This LSTM architecture demonstrates an ability to capture temperature patterns to some extent, 

although the results are not perfect. Previous experiments have shown that higher-resolution 

data typically enables the LSTM model to better capture system patterns. However, training 

the model on high-resolution data is time-intensive, taking approximately 7 hours each time of 

training. This necessitates tuning ML hyperparameters and conducting multiple training runs 

to optimize the model's performance. 

Therefore, the strategy employed was to initially test the model on low-resolution data, 

adjusting hyperparameters to achieve preliminary results more quickly. In subsequent stages, 

the data resolution will gradually increase, and new hyperparameter values will be identified 

and fine-tuned in parallel. 

 
Figure 58: Convergence plot of training and validation losses 

 
Figure 59: ML model evaluating metrics 
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Figure 60: Actual and predicted temperatures for warm well 

 

 
Figure 61: Training, validation, test, and prediction values of warm well temperature 

 

4.2.2.1.2 Parallel LSTM, 4 inputs to LSTM-2, predicting one feature, at 8-hour 

data resolution 

Regarding the convergence plot, the validation loss reached a minimum of 0.014. The early 

stop mechanism intervened, stopping the training iterations after 68 iterations (as shown in 

Figure 63). Evaluation metrics, including MSE, RMSE, and MAE, were consistent with 

previous experiments, while there was a notable improvement in the R2 value, which reached 

0.30, as depicted in Figure 64. Visual comparisons of the predicted values can be observed in 

Figures 65 and 66. As evident in the graphs below, working with higher-resolution data does 

increase the time required for model training. However, it results in significantly improved 

predictions when compared to lower-resolution data. 
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Figure 62: Convergence plot of training and validation losses 

 

 
Figure 63: ML model evaluating metrics 

 

 
Figure 64: Actual and predicted temperatures for warm well 

 
Figure 65: Training, validation, test, and prediction values of warm well temperature 
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4.2.2.1.3 Parallel LSTM, 4 inputs to LSTM-2, predicting one feature, at 4-hour 

data resolution 

Concerning the convergence plot, the validation loss increased to 0.02 after 99 epochs (as 

illustrated in Figure 67). The evaluation metrics, including MSE=0.005, RMSE=0.077, and 

MAE=0.06, showed consistent performance, albeit with a decrease in the R2 value to 0.25, as 

indicated in Figure 68. Visual comparisons of the predicted values can be observed in Figures 

69 and 70. 

 
Figure 66: Convergence plot of training and validation losses 

 
Figure 67: ML model evaluating metrics 

 

 
Figure 68: Actual and predicted temperatures for warm well 
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Figure 69: Training, validation, test, and prediction values of warm well temperature 

 

 

4.2.2.1.4 Parallel LSTM, 4 inputs to LSTM-2, predicting one feature, at 1-hour 

data resolution 

The validation loss stabilized at 0.015 after 86 epochs (as depicted in Figure 71). The evaluation 

metrics closely resemble those from the previous case, with the notable improvement of the R2 

value, which now stands at 0.41, as shown in Figure 72. Visual comparisons of the predicted 

values are available in Figures 73 and 74. 

 
Figure 70: Convergence plot of training and validation losses 

 

 
Figure 71: ML model evaluating metrics 
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Figure 72: Actual and predicted temperatures for warm well 

 
Figure 73: Training, validation, test, and prediction values of warm well temperature 

 

4.2.2.1.5 Parallel LSTM, 4 inputs to LSTM-2, predicting one feature, at 5-min 

data resolution 

A significant improvement was seen in the validation loss stabilized at 0.006 after 38 epochs 

(as depicted in Figure 75). The evaluation metrics also prove promising results, MSE=0.002, 

RSME=0.044, R2 = 0.78. This amount of R square proves that the parallel model can mimic 

the pattern of time changes acceptably. Predicted values show a notable improvement as shown 

in Figures 77 and 78. 

 
Figure 74: Convergence plot of training and validation losses 



66 
 

 
Figure 75: ML model evaluating metrics 

 

 
Figure 76: Actual and predicted temperatures for warm well 

 

 
Figure 77: Training, validation, test, and prediction values of warm well temperature 

 

 

4.2.2.2 Parallel LSTM, 1 input to LSTM-2, predicting two features 

 

4.2.2.2.1 Parallel LSTM, 1 input to LSTM-2, predicting two features by two 

different dense layers, 4-hour data resolution 

Concerning the convergence plot, the validation loss reached its minimum at 0.02. The early 

stop mechanism triggered, terminating the training iterations after 88 rounds (as displayed in 

Figure 79). Evaluation metrics for both warm and cold wells are presented in Figure 80. Visual 

comparisons of the predicted values can be observed in Figures 81 and 82. 
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Figure 78: Convergence plot of training and validation losses 

 

 
Figure 79: ML model evaluating metrics 

 

 
Figure 80: Actual and predicted temperatures for warm well 
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Figure 81: Training, validation, test, and prediction values of warm well temperature 

 

 

4.2.1.1 Parallel LSTM, 1 input to LSTM-2, predicting two features by two 

different dense layers, 2-hour data resolution 

Concerning the convergence plot, the validation loss reached its minimum at 0.016. The early 

stop mechanism triggered, terminating the training iterations after 73 rounds (as displayed in 

Figure 83). Evaluation metrics for both warm and cold wells are presented in Figure 84. Visual 

comparisons of the predicted values can be observed in Figures 85 and 86. 

Comparing the results of the model with one dense layer with a model with two dense layers 

illustrates the model with one dense layer is able to predict more accurately. 
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Figure 82: Convergence plot of training and validation losses 

 

 
Figure 83: ML model evaluating metrics 

 

 
Figure 84: Actual and predicted temperatures for warm well 
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Figure 85: Training, validation, test, and prediction values of warm well temperature 

 

 

4.2.2.2.2 Parallel LSTM, 1 input to LSTM-2, predicting two features by two 

different dense layers, 5-min data resolution 

The convergence plot illustrates that the validation loss reached its minimum at 0.021. The 

early stop mechanism triggered, terminating the training iterations after 89 rounds (as displayed 

in Figure 87). Evaluation metrics for both warm and cold wells are presented in Figure 88. 

Visual comparisons of the predicted values can be observed in Figures 89 and 90. 

 

 
Figure 86: Convergence plot of training and validation losses 
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Figure 87: ML model evaluating metrics 

 
Figure 88: Actual and predicted temperatures for warm well 

 
Figure 89: Training, validation, test, and prediction values of warm well temperature 
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4.3 Discussion 

In summary, this study observed temperature variations in the cold and warm wells during 

heating and cooling cycles. Heating mode accounted for approximately 37.7% of the total 

operational duration. Temperature fluctuations were most pronounced in water discharged from 

the heat exchanger, while the charged water into the heat exchanger itself maintained a 

relatively stable temperature profile. 

Analyzing environmental temperature and flow direction revealed clear patterns, with the 

system switching between heating and cooling modes based on ambient temperature changes. 

Notably, a strong correlation existed between warm well temperature and environmental 

temperature, especially when the latter exceeded 15 degrees Celsius, but at times, the warm 

well temperature surpassed the highest recorded environmental temperature due to additional 

heat sources. 

It is crucial in HE to keep the water temperature above approximately 5 degrees Celsius to 

prevent freezing in the heat pump evaporator (Bloemendal. M. et. al., 2022), which can create 

a limitation on the cooler's operating temperature and result in a disconnect between the cold 

well temperature and the ambient temperature. 

To assess the performance of LSTM prediction models, four key evaluation metrics were 

employed: root mean square error (RMSE), mean absolute error (MAE), mean square error 

(MSE), and the coefficient of determination (𝑅²) (Silva. D. G. et. al., 2022). 

The root mean squared error (RMSE) is bounded within the range of 0.00 to +inf. The closer 

its value is to 0.00, the more accurate the predictions are considered, and it aligns with the same 

scale as the measured data. Equation 3.5 outlines the mathematical formulation of RMSE. 

Mean absolute error (MAE) calculates the average absolute disparity between predicted and 

measured values. It can take on values ranging from 0.00 to +inf, with a smaller value 

indicating more accurate predictions. Importantly, MAE shares the same scale as the measured 

data. Equation 3.3 illustrates the mathematical representation of MAE. The mean squared error 

(MSE) quantifies the average squared difference between predicted and measured values, with 

values in the range of 0.00 to +inf. The closer it is to 0.00, the better. MSE utilizes the same 

scale as the measured data but squares the differences. Its equation is presented below as (Eq. 

3.4). The coefficient of determination (R2) quantifies a model's predictive effectiveness, 

ranging from -inf to 1.00. A value closer to 1.00 signifies superior predictive performance. 

Conversely, a negative R2 suggests a mismatch between the model's fit and the data trend, a 

scenario sometimes encountered in non-linear regression models. This coefficient is typically 

expressed as a percentage and can be defined mathematically, as shown in Equation 3.6. 

In conclusion, the effectiveness of LSTM models when applied to ATES time series data has 

been demonstrated by the attainment of accurate prediction values and favorable evaluation 

metrics. This study aligns with the recent trend in scientific research, where LSTM models 

have been the subject of intensive investigation due to their proven ability to effectively model 

and predict the intricate dynamics of nonlinear and time-varying systems. 
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Furthermore, a comprehensive exploration of various LSTM cell derivatives and network 

architectures tailored specifically for time series prediction in the context of ATES data has 

been provided in this work. This work contributes to the broader body of knowledge, as 

evidenced by Lindeman's (B.) perspective, by showcasing the valuable role played by LSTM 

models in advancing our understanding and predictive capabilities within the realm of time 

series applications. (Lindeman. B. et. al., 2021).  

Two different LSTM models were implemented on ATES data. The condensed outcomes, 

showcasing the R2, MSE, RMSE, and MAE metrics computed with the optimal hyperparameter 

settings, have been documented in both Table 1 and Table 2. Moreover, the datasets employed 

were carefully selected to serve as independent, unseen data, facilitating a robust assessment 

of the models' performance. 

Number 

of layers 
Data 

resolution 

Number of 

features 

for 

prediction 

Cold well Warm well 
Forecast 

horizon R2 RMSE MSE MAE R2 RMSE MSE MAE 

1 12 hr 1 - - - - 0.16 2.025 4.102 1.587 48 hr 
1 8 hr 1 - - - - 0.20 2.153 4.638 1.660 32 hr 
1 4 hr 1 - - - - 0.23 2.416 5.839 1.888 16 hr 
2 1 hr 1 - - - - 0.61 0.063 0.004 - 240 min 
1 5 min 2 0.86 0.023 0.0005 0.012 0.97 0.016 0.000 0.007 5 min 

Table 1: Singular LSTM 

LSTM-2 

inputs 
Data 

resolution 

Number of 

features 

for 

prediction 

Cold well Warm well 
Forecast 

horizon R2 RMSE MSE MAE R2 RMSE MSE MAE 

4 12 hr 1 - - - - 0.19 0.072 0.005 0.057 48 hr 
4 8 hr 1 - - - - 0.30 0.072 0.005 0.056 32 hr 
4 4 hr 1 - - - - 0.25 0.077 0.005 0.060 16 hr 
4 1 hr 1 - - - - 0.41 0.076 0.005 0.057 240 min 
4 5 min 1 - - - - 0.78 0.044 0.002 0.024 50 min 
1 4 hr 2 0.32 0.072 0.005 0.057 0.27 0.064 0.004 0.046 480 min 
1 2 hr 2 0.43 0.072 0.005 0.055 0.36 0.044 0.001 0.032 240 min 
1 5 min 2 0.65 0.034 0.001 0.022 0.87 0.038 0.001 0.024 250 min 

Table 2: Parallel LSTM 

 

Overall, both models exhibit reasonably strong performance in predicting well temperatures. 

The singular model consistently outperforms in terms of accuracy measures such as R2 and 

regression errors (MSE, RMSE, and MAE) during training. Conversely, the parallel model 

excels in predicting over longer periods in each iteration. Both models demonstrate proficiency 

in predicting unseen data. 

For short-term predictions, the singular model offers a quicker response time. However, when 

it comes to forecasting over longer periods, the parallel model is recommended due to its 

improved accuracy. It's worth noting that the parallel model, while slower than the singular 

LSTM model, yields better results with lower loss functions for extended prediction horizons. 
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Conclusions 
Throughout the course of this study, lower temperatures were observed in the cold well during 

the building heating mode, primarily due to heat being released to the building from water 

while cold water was stored within the cold well itself. Conversely, higher temperatures were 

experienced in the warm well during the building cooling mode, as heat was absorbed from the 

building and warm water was stored within the warm well. 

It was noted during this investigation that the heating mode accounted for 37.7% of the total 

operational duration which is the highest amount in comparison to cooling and shut down 

mode. 

Significantly, the most substantial temperature fluctuations were encountered within the water 

discharged from the heat, attributable to thermal energy exchange occurring within the heat 

exchanger (HE). In contrast, a relatively stable temperature profile was maintained by the HE 

itself, stemming from its source within the well, where temperatures remained relatively 

constant over time. 

When temperature variations between the environment and flow direction were compared, 

distinct patterns were unveiled. Typically, the system operated in heating mode when the 

external temperature fell below 10 degrees Celsius, transitioning into cooling mode as the 

ambient temperature progressively increased. Subsequently, the heating mode was resumed as 

temperatures decreased once more. 

Furthermore, an intriguing correlation was observed when temperature variations between the 

environment and well temperatures were analyzed. A robust association was identified between 

warm well temperature and environmental temperature, particularly when the latter exceeded 

15 degrees Celsius. Under such conditions, these two variables were found to closely align. 

However, it is worth noting that on occasion, the highest recorded environmental temperature 

was surpassed by the warm well temperature. This phenomenon could be attributed to 

supplementary heat sources, such as solar panels and waste heat from neighboring companies, 

injecting additional energy into the water, thereby elevating the warm well temperature. 

It is of paramount importance to ensure that the water temperature remains above a specific 

threshold, typically set around 5 degrees Celsius, to prevent the risk of freezing within the heat 

pump condenser. This precautionary measure, aimed at avoiding freezing within the heat pump 

system, especially during extremely low temperatures, results in a constraint being imposed on 

the cooler's operating temperature. Consequently, this limitation may lead to a disparity 

between the cold well temperature and the prevailing ambient temperature. 

In the context of LSTM models used for temperature forecasting, it's important to note that 

both singular and parallel LSTM models excel at predicting future temperatures with high 

precision. However, they differ in terms of training time and forecasting capabilities. 

The singular LSTM model requires a longer training period to achieve high prediction 

accuracy, but it specializes in forecasting within a relatively short time window, typically up to 

5 minutes into the future. In contrast, the parallel LSTM model, while having a shorter training 
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time, can provide forecasts that extend approximately 50 times further into the future compared 

to the singular model. This means the parallel LSTM model offers both faster training and the 

ability to make predictions over much longer time periods. 

To sum up, the parallel LSTM model not only trains more quickly but also extends its 

forecasting horizon significantly beyond that of the singular LSTM model. This performance 

difference highlights the value of the parallel LSTM approach, particularly in applications 

where rapid training and extended forecasting are important considerations. 
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