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Abstract 

 
Surface waves (SWs) can carry important information about the near surface. Near surface 
characterization is important for several shallow and deep applications of seismic investigations 
for petroleum and mining engineering. For instance, if there are some oil pipes beneath the surface 
and there is a major leakage, and a polluted area is formed, surface waves can investigate the 
anomaly and with this interpretation the anomaly can be modeled. For deep investigations, it is 
also a common practice to apply corrections to the reflection seismic data (known as static 
corrections) to eliminate the influence of the shallow weathering layers investigating their 
properties through surface wave methods. These corrections are made using estimates of the 
velocity models near the Earth's surface. In addition to the estimation of a velocity model, there 
are simple effective attributes of SWs that can be used for the identification and location of lateral 
variations in the subsurface. While their effectiveness in identifying and locating the anomalies 
has been proven in different studies, the relationship between the anomalies seen in the attribute 
results and the depth of the detected heterogeneities is still an open scientific question. Between 
the possible SW attributes, the autospectrum is an effective way to reveal and image the energy 
content of a seismogram as a function of the frequency content. In this study, the relationship 
between the frequency band affected by autospectral anomalies and the depth of the heterogeneity 
is analyzed by means of several numerical models. Three different picking approaches are applied 
to identify salient frequencies characterizing the anomalies in the autospectra. The selected 
frequencies are then utilized as inputs in the synthetic model dispersion curves to retrieve the 
Rayleigh wave velocity value associated with them. With velocity and frequency in hand, the 
wavelength can be calculated. Several wavelength-depth relationships coming from the literature 
are then tested and compared to see if they are applicable to the problem. Leveraging the 
wavelength-depth relationship, the obtained wavelength from the dispersion curve is converted 
into depth, allowing for the evaluation of the estimation's validity. The ultimate goal of this 
research is to establish a singular relationship between wavelength and the depth of near surface 
anomalies with both lateral and vertical heterogeneity. It's important to note that the maximum 
depth investigated in this work does not exceed 10 meters. 
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Chapter 1 Introduction 

1.1 Surface wave methods, attributes and related researches 

In the field of oil and gas exploration, even though the primary objective is to obtain detailed 
subsurface imaging, it is crucial to first reconstruct models of the velocity near the Earth's surface. 
This is because the seismic signals recorded at the surface are captured in the time domain. When 
seismic waves travel through layers of varying low velocities, especially in the shallow subsurface 
or onshore areas, these layers, often referred to as weathering layers, can significantly distort the 
data by masking the reflections from deeper structures. The surface waves mostly are treated as 
noises, because they can mask the reflected waves and their depth of investigation is very low. The 
vertical part of surface waves that exhibit low frequency, high amplitude, and a slow group velocity 
is identified as ground roll. (Yilmaz et al. 1987). The majority of the ground roll in seismic data is 
made up of surface waves. Traditionally, surface waves (SWs) present in seismic records have 
been treated as unwanted noise and filtered out during reflection seismic processing. On the other 
hand, surface waves can carry important information about near surface. 

Seismic attributes are measurable or computed elements of seismic data, such as amplitude, that 
reveal important details about subsurface geological anomalies, like the types of rocks, fluid 
content, and structural characteristics or heterogeneities. These characteristics are obtained from 
seismic data by applying different methods of data processing and analysis. In the fields of 
geophysics and exploration, seismic attributes are used to increase the accuracy of geological and 
geophysical models as well as the interpretation of subsurface conditions.  

The surface wave method (SWM) is a seismic technique that utilizes the analysis of the geometric 
dispersion of surface waves to characterize subsurface conditions. By examining the dispersion 
characteristics obtained from seismic recordings, it is possible to invert the data and obtain a local 
profile of shear wave velocity. In surface-wave (SW) prospecting, significant lateral and/or vertical 
changes in the near surface can either be a target of investigation or a problem for the 
reconstruction of trustworthy subsurface models. Colombero et al. (2020) defined four surface 
wave attributes and tested them for the detection and localization of sharp lateral variations in the 
shallow subsurface. Energy, energy decay exponent, attenuation coefficient, and autospectrum are 
some attributes that were used for heterogeneity identification and/or localization. 

The autospectral density is a function that displays the energy content of a seismogram. It is a 
function of both frequency and offset. Colombero et al. (2020) revised and optimized all four 
attribute approaches for multifold data, and then applied the method to both synthetic and real data. 
The multifold upgrade enhanced the readability and interpretation of the results by stacking the 
computed parameters obtained for single-shot or single-offset records. On a wide range of 2D 
synthetic models that simulate various target geometries, embedding situations, and impedance 
contrasts with the background, detection and localization abilities are thoroughly assessed. A 
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shallow low-velocity body in a sedimentary sequence and a hard-rock site with two embedded 
subvertical open fractures were used as two field case studies to evaluate the methodology. To 
create standard criteria for location estimation, the horizontal gradients of the four parameters were 
are examined for a quantitative comparison. With errors often comparable to or lower than the 
geophone spacing, all approaches demonstrate the capacity to detect and locate lateral variations 
with lower acoustic impedance than the surrounding material. 

1.2 Thesis objectives 

Subsurface heterogeneities with significant variations in mechanical and physical characteristics 
may be seen in near-surface seismic surveys. Objects with a lower acoustic impedance than the 
background are examples of typical heterogeneities. These consist of embedded low-
velocity bodies, buried slopes, fractures, and faults. As in the case of steeply dipping mineralized 
veins and seams or buried ore deposits, variations with higher acoustic impedance than the 
enclosing medium may also be of interest in other investigations (Colombero et al. 2020). These 
heterogeneities have the potential to impact a wide range of research outcomes, including 
geotechnical engineering studies (Hévin et al. 1998; Gischig et al. 2015), potential hydrogeologic 
and mineral explorations (Bièvre et al. 2012), and regional and local geology (Carpentier et al. 
2012; Hyslop and Stewart, 2015; Ikeda and Tsuji, 2016). Due to limitations in ray coverage and 
refracted ray behavior, ray-based P-wave and S-wave tomography may not be able to adequately 
identify the location and depth of these sharp variations with desirable detail, especially when 
facing low-velocity heterogeneities (Colombero et al. 2016; Ikeda and Tsuji, 2016). As opposed 
to this, surface waves (SWs) that propagate parallel to the ground and attenuate less than body 
waves can be useful for identifying and capturing images of local heterogeneities. For the purpose 
of processing SW data, it is also crucial to identify vertical heterogeneities. Some techniques are 
indeed aimed at the reconstruction of local subsurface 1-D velocity models by assuming a single 
ratio of wavelength to the depth of the desired anomaly. However, in the presence of lateral 
variation, this assumption results in inaccurate velocity models.  

In this thesis, the theoretical foundation regarding seismic surface waves is first discussed in 
Chapter 2. The definition of autospectrum and its applicability to heterogeneity localization are 
addressed. After body waves definitions and their propagation properties, surface waves, their 
differences with body waves, and their dispersive characteristics are discussed. By knowing 
surface wave properties, dispersion curves are introduced. Attributes, the definition of 
autospectrum as an attribute, and its applicability to heterogeneity localization are addressed. As 
the final goal of the thesis is depth estimation, wavelength is calculated by the autospectrum, and 
a relationship between wavelength and depth is introduced to examine the autospectrum depth.  

In Chapter 3, the numerical models and the results are represented. First, the autospectra of various 
synthetic models are computed. In the synthetic data, different anomalies with a variety of 
characteristics are defined as boxes and then the results coming from different approaches of 
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frequency picking are discussed to estimate the depth, several types of frequency picking are 
defined, so different representative frequencies are retrieved from each autospectrum. These 
extracted frequencies are used as inputs of the relevant dispersion curve of the model to calculate 
the wavelength. Wavelength-depth relationships available in the literature are then applied to the 
results to investigate their applicability for the estimation of the depth of autospectral anomalies. 
Finally, new wavelength-depth relationships are defined on the obtained numerical results, to 
improve the estimation. 
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Chapter 2 Method 

2.1 Seismic waves-Difference between body and surface waves 
The energy of seismic waves is transported through or along the surface of a medium and causes 
periodic vibrating vibrations. Body waves and surface waves which are two kinds of waves, are 
divided into these two categories based on their properties and propagation characteristics. Body 
waves propagate in all directions from the source and thus travel through the interior of the Earth 
and surface waves travel along to the interfaces (Evans and Dragoset, 1997). 

Body waves are divided into two different types. P-waves, also known as compressional waves, 
are elastic waves in which the motion of the particles is in the direction of the wave's propagation.  
Since the P-wave is the fastest seismic wave, it is the first one to arrive at a seismic receiver. It 
spreads throughout the Earth's solid and liquid layers. Figure 2.1 depicts the P-wave's direction of 
propagation and direction of vibration. The second kind of body waves is the S-wave. As depicted 
in Figure 2.2, S- or shear waves are elastic waves in which particles oscillate perpendicular to the 
direction of the wave's propagation. S-waves have lower propagation velocities than P-waves and 
can only move through solids because fluids don't experience shear stress. Depending on the 
direction of oscillation there can be two different kinds of S-wave, which are horizontal S-wave 
and vertical S-wave shown by Sh and Sv respectively. 

S and P waves are the only waves that propagate in a homogeneous infinite medium in all 
directions. But if there are interfaces other kinds of waves can be produced and propagated which 
are called surface waves. Surface waves are limited and travel parallel to the interface between the 
two media. (Sheriff et al. 1990). 

Surface waves and body waves are fundamentally different in terms of frequency content, 
polarization, dispersion, and propagation velocity. Nevertheless, in real cases, surface waves can 
display highly complex behavior: (1) surface-wave scattering can occur due to near-surface 
heterogeneities, and a significant portion of the energy may have an incidence out of the receiver-
source plane; and (2) surface waves involve modes other than a pure Rayleigh wave that arises 
when the medium is not homogeneous (Sheriff, 2002). 

One of the most important types of surface waves that is applicable to exploration is the Rayleigh 
wave. It propagates parallel to the surface of the Earth and its amplitude exponentially decreases 
with depth and this reduction is proportional to the wavelength. In this kind of propagation, the 
motion of particles is limited to a vertical plane which contains the direction of propagation and 
they pass through an elliptical route. Retrograde is the name of elliptical particles’ motion. The 

velocity of the Rayleigh wave varies with the wavelength of the wave, as the elastic modulus 
change with depth. The velocity of the wave is related to the frequency or wavelength and this 
phenomenon is called dispersion which will be explained in depth later. In Figure 2.3 the 
propagation of Rayleigh wave is depicted (Sheriff et al. 1990). 
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The other type of surface wave is Love wave which may be generated between two interfaces. 
They sometimes are called horizontal S-waves, as they propagate parallel to the surface of the 
medium. The velocity of the Love wave is higher than the velocity of the S-wave at the surface 
and lower than the velocity of the S-wave at the layer below. These waves do not have a vast 
amount of applications in exploration (Sheriff et al. 1990). Other types of surface waves are tube, 
Stoneley and channel waves. 
 
 

 

Figure 2.1  Displacement for a spherical P-wave (Sheriff et al. 1990) 
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Figure 2.2 Motion during S-wave propagation (Sheriff et al. 1990) 

 

Figure 2.3 Movement of particle due to Rayleigh wave propagation 
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2.2 Dispersion of surface waves 

Dispersion, as it is described in Section 2.1, is the dependency of the velocity of the surface waves 
on frequency or wavelength. Dispersion occurs when waves of different frequencies travel at 
different velocities. All the applications of surface waves explained in the first chapter exploit the 
propagation velocity of surface waves as a function of frequency (D. Boiero, L.V. Socco, 2011). 
A dispersion curve is therefore a graphical representation that depicts how the phase velocity of 
seismic waves varies with frequency or wavelength. In other words, dispersion curves illustrate 
the connection between phase velocity and frequency. Seismic records often contain surface waves 
(SWs), which can be analyzed to extract local dispersion curves (DCs) and their characteristics are 
influenced by the velocity model in the propagation path (Strobbia et al. 2011). As illustrated in 
Figure 2.4 low frequencies with long wavelengths enter high-depth layers, while high frequencies 
with short wavelengths travel near the surface. 

 

 
Figure 2.4 Depicted the dispersion of Rayleigh wave. λ1 related to the wave traveling in a homogeneous medium, while λ2 related 

to the wave which travels in a vertically heterogeneous medium (Socco and Strobbia, 2004). 

 

2.3 S-wave and P-wave velocity models from SW analysis  

A local 1D velocity model can be produced by inverting the DC, if each DC corresponds with a 
small subsurface area (Socco et al. 2017). These curves are an essential tool for identifying how 
seismic waves appear in different mediums and for analyzing the Earth's subsurface structure. 
These DCs provide valuable information for estimating S-wave velocity models in the near-surface 
region. The direct determination of one-way time is facilitated by the time-average velocity, which 
is obtained by considering a reference datum plan depth. This method relies on having a 1D S-
wave velocity model and the corresponding dispersion curve for the seismic line. 
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As it is said already, in order to estimate the dispersion curves of surface waves, it is common 
practice to suppose that they propagate via a 1D medium; however, lateral changes along the 
propagation path might play a significant role that merits special consideration. As demonstrated 
by Kennett and Yoshizawa (2002) and Strobbia and Foti (2006), a wave path with horizontal 
heterogeneity can affect the measured phase velocity of the surface waves. The inversion used to 
get S-wave velocity models is therefore affected by the lateral variations (Lin and Lin 2007). A 
seismic line is frequently used to obtain a number of dispersion curves, which are then inverted 
under the assumption of 1D models. A 2D/3D final Vs distribution is produced by combining the 
results or interpolating them (Grandjean and Bitri 2006). Thus, the impact of lateral variations on 
each dispersion curve is disregarded, and the resulting Vs model is taken to be a good 
representation of the site with smooth fluctuations. Depending on the type of lateral variations 
present and the processing method employed, the above assumption may not always hold true. 

Based on the research by Boiero and Socco (2011), through some calculations, a wave field is 
retrieved. By using any wave field transformation like f-k, dispersion curves can be obtained in a 
1D environment without lateral variation. The frequency and slowness (or wavenumber) are 
calculated in a domain and the corresponding energy is shown in order to picture the dispersive 
waves. The propagation of surface waves is realized by having the high amplitude of surface waves 
and through the recognition of frequency and velocity. As it is illustrated in these researches all of 
them are ignoring the lateral variation and they suppose lateral homogeneous models. In this study, 
the aim is to estimate the depth of an anomaly with lateral variation. 

It is shown that the dependency of surface waves dispersion on the velocity of the P-wave is 
negligible, so we can obtain the Poisson’s ratio from other calculations and use it with the 
combination of the S-wave velocity model to estimate the P-wave velocity model by using the 
Equation 2.1(Socco and Comina 2011). 

(2.1)  

 

 
Where Vp is the velocity of P-wave, Vs is the velocity of S-wave and ν is the Poisson’s ratio. 

Socco and Comina (2011) showed that the surface waves cannot be used to estimate a velocity 
model without utilizing other independent data. From Figure 2.4 where the plot of the Equation 
2.1 is depicted, it is obvious that the dependency of Vp/ Vs in different ranges of Poisson’s ratio 

differs.  
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Figure 2.5 Equation 2: Poisson’s ratio versus Vp/Vs 

 

There is wide recognition in the scientific literature regarding the potential of analyzing SWs to 
extract near-surface S-wave velocity models (Haney and Miller, 2013). The phase velocity of 
Rayleigh waves is close to the velocity of the shear wave in sediments (Pierre-Yves Bard 1985). 
For static computation, near-surface velocity models can be estimated using analysis of surface 
waves. In recent times, also rough methods for estimating statics from dispersion curves of surface 
waves without the need for an inversion algorithm have been proposed and they are still applicable 
to retrieve the desired velocity model (Socco, Mabyalaht 2015). 

Socco et al. (2017), showed that to estimate near-surface S-wave velocity models, local dispersion 
curves (DCs) can be extracted from seismic data that contain surface waves (SWs). The authors 
concentrated on directly inverting the data and estimating time-average S-wave velocity models 
from SW DCs. By using a datum plan depth and time-average velocity, one may easily calculate 
one-way time. In this method by knowing the one-dimensional shear wave velocity model of a 
seismic line and its related dispersion curves, the relationship between investigation depth and 
surface wave wavelength can be estimated. The other time-average S-wave velocity models along 
the line are then estimated directly from the DCs using a data transformation and this wavelength-
depth relationship. This solution eliminates the need for substantial data inversion and offers a 
straightforward process appropriate for industrial processes. The technique was tested on 
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synthetic and real data of real acquisition, and the time-average velocity models showed less than 
10% error at locations with lateral velocity variations. 

The method can be extended to the retrieval of a P-wave velocity model (Socco et al. 2017). As 
well as for the S-wave models, a W-D relationship is estimated from surface waves using an 
established one-dimensional shear wave velocity model along the line and its corresponding 
dispersion curve. The Poisson's ratio affects the W-D relationship, thus a straightforward approach 
for calculating an "apparent" Poisson's ratio profile is then created, which is the Poisson's ratio 
value that connects the velocity of the S-wave to the velocity of the P-wave. In order to create 
time-average velocity models of P-wave, the velocity models of S-wave calculated from the 
dispersion curves are converted. Again on both synthetic and real-world data, the method is 
evaluated, and they discovered that it is capable of obtaining P-wave velocity models with less 
than 10 percent uncertainty in laterally heterogeneous sites. 

2.4 Surface wave attributes 
Surface wave attributes are measurable or computed characteristics derived from the analysis of 
surface waves in seismic explorations. Attributes provide valuable information about subsurface 
properties and can be used for various applications such as the kinds of rocks present, their fluid 
content, and any structural heterogeneities or features. For instance, the phase velocity of surface 
waves is an essential attribute. It is the speed at which a specific wave phase propagates. Variations 
in phase velocity can indicate changes in subsurface properties. The frequency content of surface 
waves can provide insights into the subsurface structure. Different frequencies may interact with 
subsurface materials in unique ways, allowing for structural identification. The amplitude of 
surface waves can reveal information about the subsurface's attenuation properties. Attenuation is 
a measure of how quickly seismic energy is absorbed and dispersed. 

Numerous seismic attributes have been proposed in recent decades to identify, describe, and filter 
surface waves. Determining which of these attributes is more appropriate in a given situation or 
even whether they are independent is a challenging task (Galvis et al. 2017).  

Finding the energy of the seismic traces obtained along a profile is one of the most straightforward 
methods to localize sharp lateral variations. The energy of a receiver is a function of amplitude at 
each frequency and offset. In the presence of back reflection or energy trapping, energy 
concentration or decay is expected. Colombero et al. (2017) by using this method located open 
fractures within a granitic rock mass Back reflection at the discontinuity interfaces were considered 
to be the cause of energy concentrations at fracture locations.  

The energy decay exponent is the negative power that relates the distance ratio of two adjacent 
receivers to their energy proportion. If there is no lateral heterogeneity, by disregarding the 
intrinsic attenuation and recovering the geometrical spreading, the energy decay exponent is 
expected to be zero. In the case of energy decay, it is positive, while concentration causes a 
negative energy decay exponent due to back reflection and/or energy trapping in the heterogeneity. 
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This observation is in coherence with the previous attribute results. This method was adopted for 
multifold data by Socco and Bergamo (2014).  

Sharp lateral variations can be identified and located with the use of the evaluation of marked and 
localized changes in seismic wave attenuation in the subsurface. By disregarding the geometrical 
spreading the attenuation coefficient at each frequency is a function of the energy of two 
subsequent receivers and their offset. The local attenuation of various frequency components of 
the propagating wave field is measured by the attenuation coefficient. When a sharp lateral 
variation is observed, energy reflection at the interface has a significant impact on the attenuation. 
So this attribute can be used for the localization of heterogeneity. 

2.4.1 Autospectrum 

Zerwer et al. (2005) initially convinced the autospectrum method for the identification of cracks 
in concrete beams. The autospectral density of a signal shows the energy content distribution 
throughout a defined frequency range. The autospectral density (Gxx) of a seismic trace z(t) is 
determined by summing the squared real and imaginary components of the discrete Fourier 
transform Z(w) of each trace, as following: 

|Gxx|={Re[Z(w)]}2+{Im[Z(w)]}2                                                                                                (2.3)                                                                              

 

As a result, calculating Gxx for a common-shot gather offers an approach to represent the energy 
distribution of a seismogram based on frequency and offset. 

As an example in Figure 2.6, exemplificative autospectra computed on a synthetic model, 
described in the following, are shown. The model consists of a homogeneous material with a box-
shaped anomaly with the length of 7 m in the center of the seismic line. The acoustic impedance 
at the interface between the box and the background material is -0.48. The four autospectra are 
related to four different modeled depths of the box anomaly (from 2 m to 8 m). 

 



 

18 
 

 

 
Figure 2.6 Autospectra of Box 1 for different depths. Autospectrum of anomalies with 2 m (top left), 4 m (top right), 6 m (bottom 

left) and 8 m (bottom right) depth. The lateral limits are shown by dashed lines.  

All the model parameters are constant, with the only exception of the box depth. Varying the depth 
of the box, the frequencies that are affected by the high-energy anomaly change in each 
autospectrum. As an example, increasing the depth of the box, the frequency is decreasing at the 
lower boundary of the autospectral anomaly.   

The aim of this research is to investigate the relationship between the depth of the anomaly and 
the affected frequencies (or wavelengths). In other words, the final goal is the estimation of the 
depth of the box through the fast autospectral computation. 

2.4.2 Depth estimation from surface wave attributes 

The estimation of depth from SW attributes is a challenging subject. Different authors proposed 
different relationships between the frequency or wavelength interested by the anomaly in the 
attribute plots and the depth of the target. These wavelength-depth relationships are summarized 
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in Table 2.1. Depending on the attribute, the wavelength λ is usually divided by an integer number 

to retrieve a rough estimation of the maximum depth z of the anomaly, following: 

Z=λ/K                                                                                                                                   (2.4) 

Where k is a constant integer value, varying from 1 to 3, depending on the authors.   

Table 2.1 The relationships between wavelength and depth in different researches to retrieve 1-D velocity model 

Authors Method Data Depth 

Hévin et al. (1998) T/I Spectral Ratios Synthetic (cracks in concrete) λ/3 

Shtivelman (2003) Power spectrum Synthetic (void in layered model) λ/2 

Zerwer et al. (2005) Autospectrum Real (cracks in concrete) λ 

Nasseri-Moghaddam et 
al. (2005) 

NALD Synthetic (void detection) λ 

Bièvre et al. (2012)  T/I Spectral Ratios Real (fractures in clay landslide) λ/3 

Bergamo and Socco (2014)  Autospectrum Synthetic and real (fault zone) λ 

Hyslop and Stewart (2015)  Reflectivity Synthetic and real (fault zone) λ/2 

Ikeda and Tsuji (2016) Attenuation Coefficient  Synthetic and real (fractures and 
faults) 

λ/3 

Wavelength-depth relationships are also described in the literature for the direct transformation of 
dispersion curves, without the need for extensive inversion schemes. These relationships seem 
suitable for the retrieval of velocity models, but they’ve never been tested on the SW attributes.  

Surface waves propagate over the free surface across a cylinder whose thickness varies on the 
wavelength. Due to this property, surface waves in a heterogeneous media in the vertical 
direction, reveal their dispersive behavior. Depending on the S-wave velocity of the layers from 
the surface until the wave front thickness, the velocity of propagation related to each 
wavelength will vary. Calculating the displacements triggered by the surface wave propagation at 
various depths can demonstrate this (Socco et al. 2017). 

When there are a lot of dispersion curves that should be inverted it is not a smart way to do it one 
by one. The time-average velocity at the depth of the datum plan must be precise enough to show 
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the lateral variability of the static displacement along the line in order to estimate the static 
corrections. Equation 2.2 illustrates at a certain depth (h), the time average velocity (Vz): 

 

                                                                                                                               
(2.2) 

 
Where h is the depth, hi and Vi are the thickness and the velocity of the ith layer respectively and 
n is the number of layers until that depth. Also Socco et al. (2017) referred the time-average S-
wave velocity as Vsz. In the area of seismic hazard studies, Brown et al. (2000), Comina et al. 
(2011), and Aung and Leong (2015) focused on the reliability of Vsz estimation. Since this 
parameter is used to categorize sites for seismic zonation, they worked on the estimation of the Vsz 
at 30 m depth. Through the analysis of surface waves, they demonstrated how accurate the estimate 
of Vs30 is. Furthermore, they proved that the value of Vs30 accurately represents the SW phase 
velocity at a particular wavelength with a reasonable degree of uncertainty. The above-
mentioned relationship implies a strong connection between the phase velocity at a specific 
wavelength and the Vsz at a particular depth. Or to put it another way, there is a relationship 
between the wavelength and the Z. A weighted average velocity approach, which is based on the 
influence of the impact made by different layers on the velocity at a particular wavelength, has 
been the subject of some research (Leong and Aung, 2012). Furthermore, following a data 
transformation, Socco et al. (2015) developed the idea of the relationship between depth and 
wavelength, to the calculation of the Vsz at any depth. The wavelength of the dispersion curve and 
the depth of the Vsz profile, which corresponds to the point at which the S-wave velocity equals 
the phase velocity of Rayleigh waves, were found to be linearly related. The dispersion curve can 
be converted into a Vsz model using this relationship, which offers the one-way time value at any 
depth within the investigation limit. Socco et al. (2017) then used polynomial fitting to enhance 
the estimation of the wavelength-depth relationship while also examining the uncertainties and the 
effects of utilizing a particular reference velocity profile in the data. In Figure 2.5 an example in 
which, a 1D layered velocity model, its Vsz, and the dispersion curve as a function of wavelength 
is shown. The arrows in Figure 2.5.a focus on the above-mentioned status, where the wavelength 
should be derived for a given Vsz by finding an equal value of phase velocity and Vsz.. Figure 5.2.b 
shows pairs of values for wavelength and depth when phase velocity and Vsz are equal, followed 
by polynomial fitting that makes it possible to extract Vsz from the dispersion curve in the range 
of the inquiry depth limit as a continuing parameter. 
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Figure 2.7 (a) Vertical axis related to the depth for S-wave velocity and to wavelength for the DC, while the horizontal axis 

related to S-wave velocity profile for S-wave velocity and to the SW phase velocity for the DC. The synthetic S-wave model, its 
corresponding true Vsz, the DC of Rayleigh wave and the estimated Vsz are depicted. (b) The wavelength-depth pairs and the 

fitting polynomial which the W-D relationship can be retrieved (Socco et al. 2017). 

This relationship can be demonstrated by calculating the displacements caused by the propagation 
of SWs at various depths. The wavelength-depth relationship approximately represents the 
threshold at which the displacements become insignificant, reaching around 10% of their original 
magnitude. By establishing a relationship between the wavelength of surface waves and the 
investigation depth within the time-average velocity model, it becomes possible to estimate the 
time-average S-wave velocity models at other points along the line directly from the DCs. This 
approach eliminates the need for complex data inversion processes and offers a straightforward 
method that is well-suited for industrial workflows. (Socco et al. 2017) The lack of uniqueness in 
the inversion process is a widely acknowledged disadvantage of surface wave analysis. 

The above described method can therefore be potentially suitable for the transformation of the 
autospectral frequency or wavelength into a depth. To test its applicability, in the present work we 
extracted some reference frequencies from autospectrum and, then entered the frequency value 
into the dispersion curve of the model to obtain a wavelength. We then tested the wavelength-
depth relationship to determine its validity for the conversion of the autospectrum depths. 
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Chapter 3 Data, Processing, and Results 

3.1 Flowchart 

In this chapter, we first give an overview of what is explored in this research by explaining the 
workflow and showing the flowchart. Then we introduce the numerical models and data, as well 
as the processing steps that are applied to them, such as autospectrum, dispersion curves, 
wavelength-depth relationship, and depth estimation. At the end, there will be a comparison 
between the real depth and the estimated one, also an evaluation of how reliable this approach is.  

 

 
Figure 3.1 The research flowchart 

As depicted in Figure 3.1, the proposed workflow is applied to synthetic simulations with different 
geometry, model parameters, and physical properties. The autospectrum is computed on the raw 
data of the simulations and on the deconvolved data obtained on the synthetic model. The need for 
deconvolution is further explained in the following. When the autospectrum is obtained, some 
reference frequencies are identified in it, i.e. the frequency corresponding to the bottom of the 
anomaly, the one corresponding to the maximum of the anomaly, and the frequency corresponding 
to the maximum vertical gradient of the autospectra of the traces acquired on the top of the 
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anomaly. These reference frequencies are converted into wavelengths exploiting the synthetic 
dispersion curves computed on the top of the box heterogeneity. The wavelength-depth 
relationships described in Section 2.4.2 are then tested on the results. Since no clear applicability 
of any of the literature equations seems suitable for the depth estimation, new wavelength-depth 
relationships are proposed for the depth estimation.  

 

3.2 Numerical model 

In order to evaluate the efficacy of our approach, various synthetic models, including a localized 
heterogeneity that served as the detection target, were developed in COMSOL Multiphysics. 
Figure 3.2 illustrates the model schematic, which consists of a homogeneous background(Material 
1) and a box-shaped target heterogeneity (Material 2), varying in length, depth, and physical 
parameters such as Poisson’s ratio and acoustic impedance contrast with respect to the background, 
in different models.  

As a comparison, a layered model with two layers having the same material properties (Material 
2 at the top, Material 1 for the halfspace) is defined. To prevent reflections, a half-space 
configuration with low reflecting boundaries at the bottom and lateral sides of the domain was 
adopted for all models, with a height equal to 1000 meters and a width equal to 2000 meters. The 
bottom corner points were also fixed to have zero displacement. A free surface defines the top 
boundary.  

Figure 3.3 shows a synthetic array of 72 geophones with half-meter spacing that was simulated on 
the top of the model, for a total length of 35.5 m (from G1 to G72). Seven source positions were 
located along the seismic line, with a move-up rate of 12 geophones at its endpoints (S1 and S7) 
and within the array (S2-S6, Figure 3.3). A Ricker wavelet with three different central frequencies 
was used as seismic input at the different source locations. The central frequencies were 30 Hz, 45 
Hz, and 60 Hz. Rayleigh damping was added to the models for all materials in accordance with 
the Q values shown in Table 3.1. 
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Figure 3.2 Schematic section of the 2D synthetic models. 

 

Table 3.1 Physical and mechanical parameters of the different synthetic models. 

 

Starting from the Box 1 configuration, we implemented different models to investigate the impact 
of various parameters on the autospectrum. Specifically, Box 1, Box 2, and Box 3 differ in the 
Poisson's ratio of the materials, Box 4 and Box 5 have the same parameters for Material 2, but 
differences in Material 1. As a consequence, they differ in the contrast in acoustic impedance at 
the interface between the background and the box. In Box 6 and Box 7, the materials are the same 
as in Box 1, but the box heterogeneity has variable length. The final model is a layered model 
consisting of two stacked layers without lateral variation having the material properties of Box 1. 

 

 Z=1,…,10 m 

L=4,7,10 m 

Material 2 

Material 1 
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Figure 3.3 Schematic view of the seismic array on one of the synthetic models (Box 1, with depth = 3 m). 

3.3 Results of the autospectrum 

Although all the results of the research will be considered for final evaluations, only few examples 
of autospectrum computation from different depths of the box are shown in the following. As it is 
mentioned all the models configurations were tested for variable depths of the box between 1 to 
ten m, however only some reference depths are shown in the following figures for clarity. As an 
example, Figure 3.4 shows the autospectra computed with Box1 model configuration and a 30-Hz 
Ricker wavelet, for depths of the box from 2 to 10 m. Analyzing the results, it is clear that the 
anomaly depicted in the autospectra is shifted to lower frequencies while increasing the thickness 
of the box. 

 
Figure 3.4 Autospectra of Box 1 computed on the simulations that adopted Ricker wavelet with central frequency equal to 30 Hz, 

lateral length equals to 7 m and depth from 2 m to 10 m. 
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3.3.1 Source effect 

In order to investigate the probable impact of the central frequency of the wavelet of the source, 
Box 1 was modeled with three different central frequencies, which are 30 Hz, 45 Hz, and 60 Hz. 
Figures 3.5, 3.6, and 3.7 illustrate the autospectrum computed on Box 1, with the central 
frequencies of the wavelet equal to 30 Hz, 45 Hz, and 60 Hz respectively. The most obvious trend 
that can be retrieved from these autospectra is that with increasing depth, the minimum frequency 
in the autospectrum is decreasing, as already depicted in Figure 3.4. This trend illustrates that there 
could be a meaningful relationship between the depth of the anomaly and the frequency. However, 
the frequency band interested by the anomaly is sensibly different if a different source is applied 
to the same model. 

 

 
Figure 3.5 Autospectra of Box 1 for different depths a:4 m, b:6 m, c:8 m, and d:10 m computed on the simulations that adopted 

Ricker wavelet with central frequency equal to 30 Hz.  
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Figure 3.6 Autospectra of Box 1 for different depths a:4 m, b:6 m , c:8 m and d:10 m computed on the simulations that adopted 
Ricker wavelet with central frequency equal to 45 Hz. 

 
Figure 3.7 Autospectra of Box 1 for different depths a:4 m, b:6 m, c:8 m and d:10 m computed on the simulations that adopted 

Ricker wavelet with central frequency equal to 60 Hz.  
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3.3.2 Poisson’s ratio effect 

The second parameter whose effect on the autospectrum is investigated is Poisson’s ratio. As 
summarized in Table 3.1, Boxes 1, 2, and 3 were modeled with Poisson’s ratios of the materials 
equal to 0.25, 0.2, and 0.3, respectively. The autospectra of each box configuration is depicted in 
Figures 3.8, 3.9, and 3.10 for four different depths of the heterogeneity. Again, the selected depths 
are 4 m, 6 m, 8 m, and 10 m. The central frequency of the source wavelet is 45 Hz. In this case, 
despite minor variations in the autospectral amplitude at the different frequencies, the frequency 
band that is interested by the anomaly remains almost constant in the different model 
configurations. 

 
Figure 3.8.  Autospectra of Box 1 for different depths a:4 m, b:6 m, c:8 m and d:10 m computed on the simulations that adopted 

Ricker wavelet with central frequency equal to 45 Hz. 



 

29 
 

 
Figure 3.9.  Autospectra of Box 2  for different depths a:4 m, b:6 m, c:8 m and d:10 m computed on the simulations that adopted 

Ricker wavelet with central frequency equal to 45 Hz. 

 
Figure 3.10.  Autospectra of Box 3  for different depths a:4 m, b:6 m, c:8 m and d:10 m computed on the simulations that adopted 

Ricker wavelet with central frequency equal to 45 Hz. 
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3.3.3 Length effect 

The influence of the width of the box on the autospectral results was also tested. Three different 
lateral lengths were defined: 4 m, 7 m, and 10 m. The boxes that are compared to each other in this 
section are Boxes 5, 6, and 7 in Figures 3.11, 3.12, and 3.13, respectively. The lateral variation of 
the models is clearly visible in these three figures, showing anomalies that are changing in width. 
The different length of the boxes is however also slightly affecting the frequency band interested 
by the anomalies, as it appears from the comparison between the same subsections of Figure 3.11 
to 3.13. 

 
Figure 3.11.  Autospectra of Box 5 for different depths a:4 m, b:6 m, c:8 m and d:10 m computed on the simulations that adopted 

Ricker wavelet with central frequency equal to 45 Hz and the lateral length equals to 7 m. 
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Figure 3.12.  Autospectra of Box 6 for different depths a:4 m, b:6 m, c:8 m and d:10 m computed on the simulations that adopted 

Ricker wavelet with central frequency equal to 45 Hz and the lateral length equals to 4 m. 

 
Figure 3.13.  Autospectra of Box 7 for different depths a:4 m, b:6 m, c:8 m and d:10 m computed on the simulations that adopted 

Ricker wavelet with central frequency equal to 45 Hz and the lateral length equals to 10 m. 



 

32 
 

3.3.4 Reflection coefficient effect 

The next parameter to be shown, is the reflection coefficient (RC) at the interface between Material 
1 and Material 2. As it is shown in Table 3.1 the reflection coefficients differ in the Boxes 3, 4, 
and 5. Figures 3.14, 3.15, and 3.16 summarize the autospectra of the abovementioned boxes for 
different depths of the boxes. The strongest is the contrast in acoustic impedance between the 
materials, the most focused is the anomaly in the results. Also, in this case, the vertical frequency 
range affected by the anomalies is slightly varying even if comparing boxes of the same depth. 

 
Figure 3.14.  Autospectra of Box 3 for different depths a:4 m, b:6 m, c:8 m and d:10 m computed on the simulations that adopted 

Ricker wavelet with central frequency equal to 45 Hz and the RC is -0.48. 
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Figure 3.15.  Autospectra of Box 4 for different depths a:4 m, b:6 m, c:8 m and d:10 m computed on the simulations that adopted 

Ricker wavelet with central frequency equal to 45 Hz and the RC is -0.31. 

 
Figure 3.16.  Autospectra of Box 5 for different depths a:4 m, b:6 m, c:8 m and d:10 m computed on the simulations that adopted 

Ricker wavelet with central frequency equal to 45 Hz and the RC is -0.17. 
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3.4 Deconvolved autospectrum 

Deconvolution is a processing step of reflection seismic aimed at removing or attenuating the 
effect of the source signal on the data. Typically, deconvolution is applied before stacking. Due to 
deconvolution, this basic wavelet is compressed, the reverberations and multiples are attenuated, 
and as a result, the resolution increases. As an example, in Figure 3.17, we observe that, in addition 
to the points above, the ringiness of the stack section has improved by deconvolution as the process 
compresses the waveform at the prominent reflection. Also, in the deconvolved section, the main 
reflections are much more distinguishable. The role of deconvolution is not only wavelet 
compression, but also it removes a considerable part of the multiple energy of the section. The 
deconvolution or wavelet compression can be done utilizing an inverse filter as an operator of the 
deconvolution, as we know, by convolving an inverse filter with a wavelet, the wavelet becomes 
a spike. In the attribute analysis carried out in this thesis, deconvolution might consequently be 
tested to remove the effect of the source in the autospectral results. 

 

Figure 3.17 In the right section, the deconvolved stacked section is depicted, which represents much higher resolution in 
comparison with the left section, which shows a ringy, blurred section. 

As we observe in Section 3.3.1, differences in the frequency range affected by the autospectral 
anomalies exist if applying a different source wavelet to the same model configuration. Since the 
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frequency axis is of interest for the estimation of the box depth, this effect should be considered 
and/or removed from the data. 

The deconvolved autospectra of the models as Section 3.3.1 are shown in Figures 3.18, 3.19, and 
3.20. As we see in these figures the range of frequencies and the shape of the autospectra do not 
change if deconvolution is applied to the data. So the only parameter that made the difference 
between the figures in Section 3.3.1, which was the source effect, is eliminated by deconvolution. 

 

Figure 3.18.  Deconvolved autospectra of Box 1 for different depths a:4 m, b:6 m, c:8 m and d:10 m computed on the simulations 
that adopted Ricker wavelet with central frequency equal to 30 Hz. 



 

36 
 

 

Figure 3.19.  Deconvolved autospectra of Box 1 for different depths a:4 m, b:6 m, c:8 m and d:10 m computed on the simulations 
that adopted Ricker wavelet with central frequency equal to 45 Hz. 

 

Figure 3.20.  Deconvolved autospectra of Box 1 for different depths a:4 m, b:6 m, c:8 m and d:10 m computed on the simulations 
that adopted Ricker wavelet with central frequency equal to 60 Hz. 



 

37 
 

3.5 Frequency Selection 

In order to analyze the relationship between the frequencies interested by the anomalies and the 
depth of the boxes, different reference frequency values were calculated on the autospectra. These 
frequencies were then selected as inputs for the dispersion curves of the models to retrieve the 
corresponding wavelength and test the wavelength-depth relationships. 

To accomplish this task, the autospectral traces located inside the anomalies were summed and 
normalized. From the plot of the normalized autospectral sum as a function of frequency (red line 
in Figure 3.21), two salient frequencies were extracted: one is the frequency corresponding to the 
maximum autospectral density (black dot in Figure 3.21), and the other is the frequency 
corresponding to the bottom of the autospectral anomaly, that was fixed to 5% of the autospectral 
maximum value (red cross in Figure 3.21). These points are referred to as the maximum frequency 
and minimum frequency, respectively. On the normalized autospectral sum, also the gradient was 
computed (blue curve in Figure 3.21). The first maximum in the gradient was selected as an 
alternative way to locate the bottom interface of the anomaly (blue dot in Figure 3.21).  

 

 

Figure 3.21 The normalized autopsectral sum (red curve) and related absolute value of its gradient (blue curve) computed on 
Box1, for depth of the box equal to 10 m central frequency of the wavelet equal to 30 Hz. The black dot identifies the frequency 
with maximum autospectral density (maximum frequency). The red cross highlights the frequency related to the bottom of the 
autospectral anomaly set to 5% of the maximum value (minimum frequency). The blue dot highlights the first maximum in the 

gradient of the autospectral sum (gradient frequency). 
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3.6 Estimating depth by selected frequency 

After defining different approaches to frequency selection, dispersion curves can be used to 
estimate the wavelength interested by the anomaly at these frequencies. Figure 3.22 shows a 
dispersion curve computed on the box for the model Box 1 with 10 m depth and 30 Hz central 
frequency of the wavelet. As an explanation of the approach, in Figures 3.22, 3.23, and 3.24 we 
can comprehend the flow from which we can retrieve the depth estimation. First, within the 
dispersion curve (frequency versus velocity), we select a specific frequency, represented as f0 
(minimum frequency, maximum frequency, or gradient frequency), to extract the corresponding 
phase velocity V0, as demonstrated in Figure 3.22. This velocity value is then employed as an input 
to the dispersion curve plotted as a function of wavelength in Figure 3.23, which yields the 
wavelength λ0 as its output. By importing wavelength into the wavelength-depth relationship 
estimated following Socco and Comina (2017) to test its validity on the depth estimation from 
attribute analysis in Figure 3.24, the estimated depth from the selected frequency is also available. 

 
Figure 3.22 Dispersion curve (frequency – phase velocity). F0 as an input can produce V0. F0 can be either minimum, maximum 

or gradient frequency. 
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Figure 3.23 Dispersion Curve (Velocity versus wavelength). The output of Figure 3.22(V0) is the input of this graph to retrieve 

wavelength. 

 
Figure 3.24 W-D relationship estimated following the approach of Socco et al. (2017). The wavelength extracted from Figure 

3.24 estimates the depth. 
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Generally, increasing the depth of the box, the selected frequencies decrease exponentially, as 
shown in Figures 3.25, 3.26, and 3.27 for gradient, minimum, and maximum frequency picking 
respectively. This dependency illustrated in these figures confirms the primary assumption of the 
research and validates the depth-from-frequency approach. The curves corresponding to the 
deconvolved models exhibit sparsity, whereas those associated with the non-deconvolved models 
demonstrate closer proximity to each other. Moreover, in 1 m depth anomalies, there are high 
differences in frequencies, which might be due to the low thickness, which cannot be depicted 
correctly in the synthetic autospectra. In these figures, we can observe that the most coherent 
curves are those that correspond to the minimum frequency, with the only exception of very 
shallow anomalies (1 m) that are out of the global trend 

 

Figure 3.25 Gradient frequency versus the depth of the model. The left one is the deconvolved model and the right one is the 
normal model without deconvolution. 

 

 

Figure 3.26 Minimum frequency versus the depth of the model. The left one is the deconvolved model and the right one is the 
normal model without deconvolution. 
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Figure 3.27 Maximum frequency versus the depth of the model. The left one is the deconvolved model and the right one is the 
normal model without deconvolution. 

 

After observing the dependency of frequency on the depth of the anomaly, we can try to apply the 
estimation of the depth from the wavelength demonstrated by Socco et al. (2017) for the three 
different frequency approaches. The cross-plots of the estimated depth versus the real depth of the 
boxes are shown in Figures 3.28, 3.29, and 3.30 for the gradient frequency, minimum frequency, 
and maximum frequency respectively. In each figure, two different graphs are shown that are 
related to the deconvolved data and the model without deconvolution.  

 

 

Figure 3.28 The cross-plots of the estimated depth versus real depth of the anomaly. The estimation is done by utilizing the 
gradient frequency. Deconvolved data (left) and raw data without deconvolution (right). 
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Figure 3.29 The cross-plots of the estimated depth versus real depth of the anomaly. The estimation is done by utilizing the 
minimum frequency. Deconvolved data (left) and raw data without deconvolution (right). 

 

Figure 3.30 The cross-plots of the estimated depth versus real depth of the anomaly. The estimation is done by utilizing the 
maximum frequency. Deconvolved data (left) and raw data without deconvolution (right). 

It should be noted that in Figures 3.28, 3.29, and 3.30, there are some removed points. Owing to 
the consistent velocity within the first layer (Material 2), the initial segment of the graph in Figure 
3.24 appears entirely flat. However, as the wave transitions from Material 2 to the subsequent layer 
(Material 1), the wavelength undergoes variation. This transition is evident in Figure 3.24. The 
flatness of the initial graph segment inhibits accurate depth conversion, leading to certain null 
points devoid of physical significance. This phenomenon is more obvious in Figure 3.30. On the 
other hand, as is clear in the visual representation of the last three figures, the estimation, which is 
done by minimum frequency, evidently has the most coherency among others. These results 
illustrate that the wavelength-depth relationship is overestimating the depth. However, the 
maximum frequency is the one providing the closest estimation of the depth to the real values. For 
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the linear model, it performs exceptionally well, and the depth estimation is highly robust, but in 
the presence of lateral heterogeneities, the application of this wavelength-depth relationship is still 
overestimating the depth of the boxes. 

All the procedure is done in order to estimate the depth by having a relationship between the 
wavelength and the depth of the anomaly which is valid for all the models. Various researchers 
have opted to estimate depth by dividing the wavelength by an integer number (K), as depicted in 
Table 2.1 and Equation 2.4. Considering the proposed wavelength-depth relationship in Table 2.1, 
as evident in Figures 3.25, 3.26, and 3.27, the frequencies vary with the depths of the boxes. 
Consequently, K cannot be a constant number; it is a variable depending on the depth of the box, 
so there is a need to establish a new relationship. By dividing the wavelength by the depth, K is 
calculated. Our objective is to determine K as the value that allows us to estimate the depth with 
the least amount of error. Furthermore, to eliminate dependency on the depth, K is defined as 
follows: 

                                                                                                                                         (3.1) 

Where λ is the wavelength calculated by the selected frequency and Z is the depth. Cross-plot of 
K versus real depth are depicted in the following figures. A regression can be applied on the new 
points, in the form: 

                                                                                                                              (3.2) 

Where a and b are the regression coefficients. This regression can give us the desired relationship, 
from which the depth can achieved. By calculating R-squared value the evaluation of the goodness 
of the fitting relationships can be assessed. We can calculate R-squared as following: 

                                                                                                                           (3.3) 

Where SSR is the sum of squared residuals, which is the sum of the squared differences between 
the observed values and the predicted values by the regression model, and SST is the total sum of 
squares, which is the sum of squared differences between the observed values and the mean of the 
dependent variable. In Figures, 3.31, 3.32, and 3.33, the K-Z plots of gradient frequency, minimum 
frequency, and maximum frequency are depicted respectively, both for the models without 
deconvolution and the deconvolved model. 



 

44 
 

 

Figure 3.31 K-Z plots of the gradient frequency. The left one is related to the deconvolved model and the right one is the model 
without deconvolution. 

 

 

Figure 3.32 K-Z plots of the minimum frequency. The left one is related to the deconvolved model and the right one is the model 
without deconvolution. 
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Figure 3.33 K-Z plots of the maximum frequency. The left one is related to the deconvolved model and the right one is the model 
without deconvolution. 

As an overview of these three figures, on the one hand, the deconvolution did not help to improve 
the fitting of the estimation. In other words, in all three regressions, the R-squared parameter 
decreased due to deconvolution. On the other hand, although the most coherency can be seen in 
the minimum frequency, this data illustrates that the best regression belongs to the gradient 
frequency. Moreover, the deconvolved model of the minimum frequency in the layered shape 
exhibits the closest curve to the one-to-one relationship, with a correlation coefficient of 0.99 in 
its fitting, between the wavelength obtained from the wavelength-depth relationship and the 
calculated wavelength using various frequency selection methodologies. Therefore, in a layered 
model, wavelength can be accurately converted to depth using the wavelength-depth relationship 
proposed by Socco et al. (2017), but in presence of sharp lateral variations new wavelength-depth 
relationships must be calibrated. 
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Chapter 4 Conclusion 
In oil and gas exploration, the Surface Wave Method (SWM) is a powerful seismic method that 
characterizes near-surface conditions by analyzing the geometric dispersion of surface waves. The 
vertical profile of shear wave velocity can be obtained by inverting the data and analyzing the 
dispersion characteristics derived from seismic recordings. Furthermore, it is a standard procedure 
to make static corrections (a method of removing the influence of weathering layers from reflection 
seismic data). 

Significant lateral changes in the near surface can either be an additional target of investigation or 
a problem for the reconstruction of trustworthy subsurface models. The usefulness of SW 
attributes, such as autospectrum, in the identification and location of sharp lateral variations, have 
been proven in the literature, while their relationship with the depth and thickness of these lateral 
changes is still under investigation. In this thesis, we tried to investigate this relationship with a 
number of tests of autospectral computation on synthetic data. 

The amplitude of surface waves, in our case Rayleigh waves, decreases exponentially with depth. 
As a consequence, the autospectrum, which is a function of wave energy and frequency, is a useful 
tool for studying how waves propagate in the presence of a lateral anomaly. In order to remove the 
effect of the source on the synthetic data, data deconvolution before autospectral computation 
demonstrated a valid tool to obtain autospectra not affected by the source signal. Slight variations 
in the frequency band affected by the autospectral anomalies were however still noted in the 
presence of anomalies having different lateral extension or different material properties with 
respect to the background. 

Different autospectral frequencies were analyzed to study the dependency of the frequency and 
wavelength on the depth of the simulated heterogeneities. These frequencies were entered in the 
dispersion curve of each model to retrieve the corresponding phase velocity. The wavelength 
related to that phase velocity was extracted. 

Wavelength-depth relationships available in the literature for depth estimation from attribute 
analysis and/or for the conversion of local dispersion curves in layered models were then tested on 
the results to investigate their applicability for the estimation of the depth of autospectral 
anomalies. Since none of the preexisting relationships looked suitable to describe the results, new 
wavelength-depth relationships were defined on the obtained numerical outcomes, to improve the 
depth estimation from autospectral plots. 

For each salient frequency identified in the autospectra, a fitting relationship was proposed and an 
R-squared evaluation was done. The best fitting results were retrieved for the gradient frequency 
approach (R2=0.88) on raw data without deconvolution. However, the minimum frequency and the 
maximum frequency approaches resulted in additional good fitting relationships with R2 higher 
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than 0.8. All these approaches might be therefore reliable for depth estimation, but further tests are 
needed to analyze the validity of the defined relationships on real data. 
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