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Introduction

Artificial Neural Networks (ANN) are computing devices inspired from the brain,
in which neurons (i.e. real variables) are connected between themselves with certain
weights, and we wish to tune those weights to perform certain tasks. ANN were
first invented acknowledging that the brain works in an entirely different way than
the computer does. The aim was therefore to understand and eventually harness
the brain’s computational power.

To give some historical context, the first model of a biological neuron – the per-
ceptron – was invented in 1943 by McCulloch and Pitts, and then improved upon by
Rosenblatt in 1957. The multi-layer perceptron (MLP) was created soon after, by
stacking layers of neurons with a feed-forward architecture. Here, the analogy with
the brain was somewhat lost because biological neural networks do not have a feed-
forward architecture (for the most part). But this was, first, a legitimate attempt,
and second, justified by the MLP’s performances. Contrary to its single-layer coun-
terpart, the MLP could indeed do non-linear classifications. And the simpler setting
of a feed-forward architecture allowed for an efficient training method with Gradi-
ent Descent (GD), called the Backpropagation algorithm. This algorithm (dating
back to the 70’s) uses the network’s forward architecture to solve the uneasy task of
computing gradients of synaptic weights in the hidden layers of neurons. With the
advent of the Internet in the 90’s and the multitude of data it provided for tuning a
large number of parameters, the MLP took off and became – to this day – ubiquitous
in Artificial Intelligence.

This was all well and good from a performances standpoint, but what about
understanding how the brain works? As mentioned previously, biological neural
networks do not have a feed-forward architecture: connections can go backwards
and, in particular, form loops. This type of neural networks is called Recurrent
Neural Networks (RNN) and is much harder to train. Indeed, one usually trains
neural networks by defining a cost function parameterized by the synaptic weights,
and then minimizes this cost function with GD. But the presence of loops induces
instabilities in the gradients: on a loop, gradients can be either amplified or dimin-
ished, leading to diverging or vanishing gradients.
Some algorithms were however invented to train RNNs with GD. Because of loops,
one has in principle to take into account the echoing effects of synaptic modifications,
and thus needs to compute gradients through time. The two main algorithms that
accomplish this are Real-Time Recurrent Learning (RTRL) and Back-Propagation
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Through Time (BPTT). Both algorithms are based on the realization that every
RNN is forward in time. RTRL is an on-line technique that deals with the indirect
effects of weight modifications by simulating them forward in time; while BPTT lets
the network evolve in batches, and propagates backwards the errors at the end of
each batch to update the synaptic weights. Nevertheless, it is fair to say that these
algorithms are not very efficient, and are not biologically plausible.

In order to make progress in our understanding of how the brain works, a new
line of research at the frontier between neuroscience and physics is being carved. The
goal for physicists working on this topic is to invent algorithms for training RNNs
that are biologically plausible. In that spirit, recent advances have been made.
In 2009, Sussillo and Abbott developed a procedure to train a RNN that exhibits
spontaneous chaotic activity to generate desired patterns [1, 2]. Rather than progres-
sively decreasing an error function as in GD, their approach is to keep the error small
from the start, so that delayed effects due to the loopy architecture of the network
can be neglected. They coined their method First-Order Reduced and Controlled
Error (FORCE). Although they worked with neurons modelled as smooth functions,
Nicola and Clopath [3] recently showed that the FORCE algorithm also works for
spiking neurons, which are more realistic. Even more recently in 2017, Miconi [4]
created a learning algorithm that checks a lot of boxes for biological plausibility: it
uses a Hebbian learning rule (the same that the brain supposedly uses) and it works
with sparse and delayed rewards.
However, these algorithms have been discovered heuristically, and a thorough theo-
retical analysis remains to be performed. Here lies an opportunity for the physicist
specialized in statistical mechanics to step in and add insights to the discussion.

Indeed, ANNs find a natural formulation in the language of statistical mechanics
because, at its core, training an ANN amounts to minimizing a cost function in a
space of high dimensions. The first to make the link with statistical physics was
Hopfield, with his seminal work of 1982 and 1984 [5, 6]. Hopfield reformulated the
problem of training a RNN as a spin-glass problem. He showed how one could write
the symmetric synaptic weights of the network, so as to embed memories as fixed
point attractors. The memories could then be retrieved by initializing the network
with a noisy version of that memory, meaning in its basin of attraction.

The objective for this internship is therefore to study algorithms to train RNNs
with the tools of statistical physics. Specifically, we will study the FORCE learning
algorithm. We will try to write a simple model of a RNN, to then analyze it with
Dynamical Mean Field Theory (DMFT). The work performed during this internship
has lead to the creation of an article that is in the process of being published (see
ref.[12]).
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Chapter 1

Methods

1.1 Standard Model

A recurrent neural network (RNN) is usually modelled by a set of dynamical
equations for the activities xi ∈ R of the neurons, akin to their membrane potential.
In the simplest setting, one considers i = 1, ...N neurons evolving according to

τ
dxi

dt
= −xi(t) +

g√
pN

N∑
j=1

J j
i rj(t), (1.1)

where ri = tanh(xi) is a non-linear function of the xi, modelling the neuronal firing
rate. J j

i is the synaptic strength between neuron i and j. The J j
i ’s are fixed and

independently identically distributed as J j
i ∼ N (0, 1). p is the sparsity of the matrix

J . τ is the neuronal time constant assumed to be the same for all neurons. g is the
coupling strength.

In the thermodynamic limit, the system undergoes a transition from a non-
chaotic to a chaotic state at gc = 1. The matrix g√

pN
J indeed belongs to the

Gaussian orthogonal ensemble (GOE) so the distribution of its eigenvalues will con-
verge to a semi-circle of radius g as N → ∞. The fixed point x = 0 is therefore
linearly stable if g < 1, and if g > 1, it has been shown that there are positive
Lyapunov exponents [7].

As mentioned in the Introduction, the tricky part about training this network
is the presence of feedback loops. One way to go around this issue is to add a linear
readout to the network and train the readout weights – with no feedback. Such
networks are called Liquid-State or Echo-State Machines. They use the random,
chaotic and non-linear part of the network as a “reservoir” to do transformations
or classifications on inputs, but they are not well-suited for pattern generation [2].
Instead, one would like to solve the truly recurrent problem – where the output is fed
back into the network – to do pattern generation. In doing so, one has to deal with
the fact that a weight modification that first appeared to bring the output closer
to its desired value, can later on have uncontrolled effects, detrimental to training.
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Figure 1.1: Standard Network configuration for FORCE learning.

Sussillo and Abbot found a simple and elegant solution to the problem, which we
will discuss next.

1.2 FORCE Learning

A simple way to look at the activity of the whole network is to add a linear
readout, defined as

z(t) =
N∑
i=1

woiri(t).

This output neuron z(t) is then fed back into the network (see fig.1.1), so the dy-
namical equations now read

τ
dxi

dt
= −xi(t) +

g√
pN

N∑
j=1

J j
i rj(t) + wfiz(t) (1.2)

where wo, wf are respectively the output and feedback weights. The wfi’s are cho-
sen randomly and independently from a uniform distribution in [−1, 1]. To make
things easier, only the output weights wo are trained, although one could also train
the whole matrix of connections J [2]. The goal of training is to learn a pre-defined
function f , so that after learning z(t) ≃ f(t).

The idea behind the FORCE learning algorithm is that the quantity z(t) =
f(t) + ϵ(t) is fed back into the network, so delayed effects due to the loopy nature
of the network will be of order ϵ(t). Therefore, if the error e(t) that drives weight
modifications is much larger than ϵ(t), delayed effects can be neglected and weights
can be updated by a simple gradient descent. The proposed rule to update the
output weights wo thus reads

wo(t) = wo(t− dt)− η(t)e(t)r(t) (1.3)
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and will work only if e(t) ≫ ϵ(t) during the whole training phase.

Defining z+(t− dt) = wT
o (t− dt)r(t) and e(t) = z+(t− dt)− f(t), we get using

eq.(1.3) that

z(t) = wo(t) · r(t) = z+(t− dt)− η(t)e(t)rT (t)r(t) = f(t) + ϵ(t),

so
ϵ(t) = e(t)[1− η(t)rT (t)r(t)],

and delayed effects will be negligible if 1 − η(t)rT (t)r(t) ≪ 1, so for a well-chosen
learning rate η(t). In fact if η(t) = 1/rT (t)r(t), then ϵ(t) = 0 at all times. But this
is not good because if z(t) always matches f(t) perfectly, the system never explores
the phase space enough to find a stable attractor, and therefore never really learns
f(t). Instead in ref. [2], Sussillo suggests to initialize η(t) close to 1/rT (t)r(t) so that
ϵ(t) ≪ e(t) from the start – but to then relax this condition, letting η(t) decrease
slowly as |e(t)| → 0 and learning proceeds. The proposed η-schedule is

τ
dη

dt
= −η2(t) +

|e(t)|γη(t)
τ

, (1.4)

where γ is a parameter tuned empirically. This was the first version of the learning
algorithm (a.k.a. FORCE-I). While it has the advantage of being simple and some-
what plausible for biological systems, the FORCE-I learning algorithm is very slow
to converge and sensitive to initialization.

In order to find a way of improving performances, Sussillo and Abbott looked
at the averaged correlation matrix of network activities C = ⟨r(t)rT (t)⟩t, and no-
ticed that the system’s trajectory during learning was dominated by a few principal
components of C. They consequently guessed that learning could be made faster in
the directions of large eigenvalues and proposed to replace η(t) by multiple learning
rates, given by the matrix P (t). The update rule for P (t) is given by eq.(1.5), which
constitutes the optimized version of the algorithm, a.k.a. FORCE-II [1, 2].

P (0) = I/α

P (t) = P (t− dt)− P (t− dt)rT (t)r(t)P (t− dt)

1 + rT (t)P (t− dt)r(t)

(1.5)

where I is the identity matrix. Defined in this way, P (t) converges to (
∑

t r
T (t)r(t)+

αI)−1, i.e. the inverse of C plus a regularization term [8]. Assuming t is large enough
for P (t) to have converged to the aforementioned value, the learning rate in the di-
rection of the eigenvector a is Pa(t) = (λat+α)−1, where the λa’s are the eigenvalues
of C. Thus we see that learning is divided into two stages [1]. If t < α/λa, then
Pa(t) ≈ 1/α > 0 and learning serves to keep the error ϵ(t) = z(t)− f(t) small. But
once t > α/λa, Pa(t) → 0, so woa reaches a stationary value and learning in the

5



�2

�1

0

1

2

�0.05

0.00

0.05

w
oi

(a) (b) (c)

...

40t.u. 1000t.u.

Figure 1.2: Example of FORCE-II learning. Left panel: network output z(t) in blue,
weight update ∥dwo(t)∥ = ∥wo(t)−wo(t− dt)∥ in orange. (a) prior to training, the
output z(t) is chaotic. (b) during training, z(t) closely matches f(t). The weight
update is initially big to bring z(t) close to f(t), then decreases as the weights wo(t)
reach a stationary value. In the plot, ∥dwo(t)∥ has been re-scaled by a factor 20. (c)
after training, the weights wo are fixed and the network autonomously outputs the
function f(t). Right panel: trace of 20 randomly picked weights woi during training.
The parameters used for the simulation are: N = 1000, p = 0.1, τ = 1, dt = 0.1,
g = 1.5 and α = 1. The function learned is f(t) = 0.67 sin(0.05πt)+ 1.34 sin(0.1πt).
Training lasted 2000 time units (t.u.), at the end of which ∥dwo(t)∥ ≈ 10−5.

direction a stops. So the advantage of introducing one learning rate Pa for every
eigen-direction a is that learning will be fast in the directions where λa is large, while
learning in the directions with small λa will keep ϵ(t) small and ensure stability. In
passing, we can note that the constant α also influences the speed of learning: the
smaller α, the faster the learning – but if α is too small, weight updates can over-
shoot and learning can become unstable.

The FORCE-II algorithm is consequently much more efficient than its previous
version. But it is less biologically plausible since, to update woi, it requires non-local
information in the form of the correlations of the activities of the whole network.

In practice, eq.(1.2) is Euler-discretized and learning proceeds until wo reaches
a stationary value. The network needs to be chaotic prior to training (g > 1). The
more chaotic, the better, as learning will converge faster – up to a point (g ≈ 1.6)
where the network is so chaotic that learning fails [2]. The function f(t) to be learned
must be of sufficient amplitude and frequency to suppress chaos during learning [9].
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1.3 Dynamical Mean Field Theory (DMFT)

The appropriate tool from statistical physics to study RNNs is Dynamical Mean
Field Theory (DMFT), which maps the high-dimensional dynamical equations de-
scribing the neurons’ activities onto an effective single-neuron picture that is exact
in the N → ∞ limit. This section gives a summary of the method based on ref.[10].

Consider first the one-dimensional Langevin equation

dx

dt
= −∂H0

∂x
− ∂HJ

∂x
+ η(t), (1.6)

where HJ is the part of the Hamiltonian with quenched disorder, and η(t) is a Gaus-
sian noise with average 0 and two-times correlation function ⟨η(t)η(t′)⟩ = D0(t, t

′).
Eq.(1.6) can equivalently be written

L0(x) + LJ(x) = η(t), (1.7)

with L0(x) = ∂tx+ ∂xH0 and LJ(x) = ∂xHJ .

Let’s compute the generating functional using the Martin–Siggia–Rose–Janssen–deDominicis
path-integral formalism.

ZJ =

∫
DxP (x) =

∫
DxDη P (η)δ(L0(x) + LJ(x)− η(t))

=

∫
DxDx̂Dη P (η)exp

{
i

∫
t

x̂(t)[L0(x) + LJ(x)− η(t)]

}
=

∫
DxDx̂ exp

{
−1

2

∫
t,t′

x̂(t)D0(t, t
′)x̂(t′) + i

∫
t

x̂(t)[L0(x) + LJ(x)]

}
,

where we first wrote the δ in exponential form and then performed the average over
η. Now, averaging over the disorder J

ZJ =

∫
DxDx̂ e−

1
2
x̂D0x̂+ix̂L0(x)eix̂LJ (x),

where we used a short-hand notation for the time integrals, e.g.

x̂D0x̂ =

∫
t,t′

x̂(t)D0(t, t
′)x̂(t′).

Assuming we can write exp{ix̂LJ(x)} = exp{∆(x, x̂)}, with ∆(x, x̂) = −1
2
x̂D1x̂+

ix̂L1 + ... , the average over the disorder J will re-normalize D0 and L0. We thus
end up with an effective Langevin equation

L0(x) + L1(x, x̂) = ξ(t), (1.8)

with ⟨ξ(t)ξ(t′)⟩ = D0(t, t
′) +D1(x, x̂).

This computation can easily be generalized to the case where x is multidimen-
sional, and we end-up with an effective single-site Langevin equation (see appendix
A).
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Chapter 2

Results

2.1 Exactly Solvable Model

The Standard Model described by eqs. (1.1) can be solved with Dynamical
Mean Field Theory (DMFT), but the solution goes through a sampling step and is
therefore not exact (see [11]). Is it possible to simplify eqs.(1.1) to write an exactly
solvable model ? If so, is the simplified model still relevant – or did it lose essential
physical properties ?

What complicates the DMFT analysis of eqs.(1.1) is the presence of the tanh
function, which has biological grounds but is hard to deal with analytically. Thus,
we posit that it can be replaced by any other non-linear function, and we choose to
replace it by a quadratic function, which is simpler. After doing this, we also need
to change the confining term −xi(t) in eqs.(1.1) into −µ(t)xi(t), where the function
µ(t) ensures that the dynamics of the xi’s is not diverging. The Exactly Solvable
Model thus created reads

τ
dxi

dt
= −µ(t)xi(t) +

ĝ

N

N∑
j,k=1

J jk
i xj(t)xk(t) +Hi(t), (2.1)

where Hi(t) is a possible input current and the Ji’s are GOE random matrices with

J jk
i = Jkj

i , J jk
i = 0, (J j ̸=k

i )2 = 1, (J jj
i )2 = 2.

This model is always chaotic, whatever the value of ĝ.

With DMFT (see section 1.3 for a summary of the method), the system of
equations (2.1) is mapped onto the following single-neuron equation

τ
dx

dt
= −µ(t)x(t) + ξ(t) +H(t), (2.2)

where ξ(t) is a gaussian noise whose statistical properties can be computed (see
appendix A) and the computation yields

ξ(t) = 0, ξ(t)ξ(t′) = 2ĝ2C2(t, t′),
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with C(t, t′) = 1
N

∑
i xi(t)xi(t

′) = ⟨x(t)x(t′)⟩ξ being the two-times correlation func-
tion of the xi’s. The dimensionality of the system of equations (2.1) has thus been
reduced, at the cost of introducing memory into the system.

Now, multiplying eq.(2.2) by x(t′) and averaging over the noise ξ, one gets

∂tC(t, t′) = −µ(t)C(t, t′) +

∫ t′

0

ds 2ĝ2C2(t, s)R(t′, s) + ⟨H(t)x(t′)⟩ξ, (2.3)

where R(t, t′) = ⟨ δx(t)
δξ(t′)⟩ξ is the response function of the xi’s, and we used the fact

that ⟨ξ(t)x(t′)⟩ξ =
∫ t′

0
ds 2ĝ2C2(t, s)R(t′, s) (see [10]).

Taking a derivative of eq.(2.2) with respect to ξ(t′) and averaging over the noise
ξ, we then get

∂tR(t, t′) = −µ(t)R(t, t′) + δ(t, t′) +

〈
δH(t)

δξ(t′)

〉
ξ

. (2.4)

The DMFT analysis of the model introduced in this section therefore yields a
closed system of equations for the correlation function C and the response function
R. Provided one specifies the form of µ(t) and H(t), these equations can be inte-
grated numerically with a forward Euler scheme, and they give access to an exact
solution in the N → ∞ limit.

The theoretical advances obtained with the Exactly Solvable model of eqs.(2.1)
are thus substantial – but these gains are useless if the aforementioned model does
not accurately describe a RNN. To see this, we tested if we recovered – with the Ex-
actly Solvable model – standard results obtained with the model of eqs.(1.1). These
results are discussed in the next two sections.

2.2 Hebbian Driving

Recently in [11], Clark and Abbott considered the Standard model of eqs.(1.1)
and added an input current of the form

Hi(t) =
N∑
j=1

Aj
i (t)xj(t), (2.5)

where the connections Aj
i (t) follow the dynamical equation

p
dAj

i (t)

dt
= −Aj

i (t) +
k

N
xi(t)xj(t), (2.6)

with p the synaptic time constant and k the plasticity strength. Eqs.(2.5) and (2.6),
together with (1.1), describe coupled neuronal-synaptic dynamics, where the synap-
tic connections fluctuate around a random fixed value J j

i with an amplitude Aj
i (t)
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that evolves according to an Hebbian rule. Indeed, according to eq.(2.6), the con-
nection Aj

i (t) increases if the product xi(t)xj(t) > 0 (i.e. if neurons i and j have
similar activities) and decreases otherwise, which is in keeping with the biological
rule “neurons that fire together wire together”.
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Figure 2.1: Upper panel: A) The phase diagram for the Exactly Solvable model with
random couplings modulated by an Hebbian plasticity. B) Traces of 5 randomly
picked xi’s. The simulations were done with τ = 1, dt = 0.01 and p = 2.5. The
values of g and k match those of the corresponding points in the phase diagram. In
plots (i) and (iii), N = 100, while N = 200 in plot (ii). Lower panel: the behavior of
a set of dynamical correlation functions as extracted from the numerical integration
of the DMFT equations. tmax = 500 and tH = 250. The green lines represent C(t, t′)
as a function t− t′ and we use them as a proxy for qEA.

Adding this Hebbian plasticity to the Standard model, Clark and Abbott found
that – for g > 1 – if one lets the connections Aj

i (t) evolve up to a halting time tH ,
and then clamp them to their value Aj

i (tH), they could distinguish between three
phases, depending on the value of k.

• if k is sufficiently small, the activity of the xi’s after halting the synaptic
dynamics of the Aj

i ’s remains chaotic, and this is the Chaotic Phase (CP)

• if k is sufficiently large, the xi’s go to a fixed point and their activities become
constant. This is called the Freezabe Chaotic Phase (FCP)

• and for intermediate values of k, the activity of the xi’s after the halting time
tH remains chaotic, but the xi’s at t > tH are not completely uncorrelated
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from their value at tH . The space of visited configurations is smaller than in
the CP and is somewhat centered around the state x(tH). This is called the
Semi-Freezabe Chaotic Phase (SFCP)

We applied the same synaptic dynamics of eqs.(2.5) and (2.6) to the Exacty
Solvable model described by eq. (2.1) and found a similar phenomenology (see the
upper panel of fig. 2.1). Let’s now write the DMFT equations for the correlation
and response functions we get under Hebbian driving.

The dynamical equation (2.6) can be integrated, which yields

Aj
i (t) = Aj

i (0) +
k

pN

∫ t

0

ds e−(t−s)/pxi(s)xj(s).

So, assuming Aj
i (0) = 0, we get

⟨Hi(t)xi(t
′)⟩ξ =

k

p

∫ t

0

ds e−(t−s)/p⟨xi(s)xi(t
′)⟩ξ

1

N

N∑
j=1

xj(s)xj(t) =
k

p

∫ t

0

ds e−(t−s)/pC(t, s)C(t′, s)

〈
δHi(t)

δξi(t′)

〉
ξ

=
k

p

∫ t

t′
ds e−(t−s)/p

〈
δxi(s)

δξi(t′)

〉
ξ

1

N

N∑
j=1

xj(s)xj(t) =
k

p

∫ t

t′
ds e−(t−s)/pC(t, s)R(s, t′).

We still need to specify the form of the confining function µ(t). In this case, we
choose to impose spherical constraints, meaning that

∥x(t)∥
N

= C(t, t) = 1.

Consequently, we obtain the following system of equations for the correlation
and response function

∂tC(t, t′) = −µ(t)C(t, t′) +
∫ t′

0
ds 2ĝ2C2(t, s)R(t′, s) + k

p

∫ t

0
ds e−(t−s)/pC(t, s)C(t′, s)

∂tR(t, t′) = −µ(t)R(t, t′) + δ(t, t′) + k
p

∫ t

t′ ds e
−(t−s)/pC(t, s)R(s, t′)

µ(t) =
∫ t′

0
ds 2ĝ2C2(t, s)R(t′, s) + k

p

∫ t

0
ds e−(t−s)/pC(t, s)C(t′, s),

(2.7)

where the equation for µ(t) is obtained by taking the t′ → t limit and imposing
C(t, t) = 1 in the equation for the evolution of C(t, t′). The system of eqs.(2.7) can
be integrated numerically with a forward Euler scheme. A set of correlation and
response functions are plotted in the lower panel of fig.2.1.

In order to distinguish between the three phases, we introduce the order param-
eter

qEA = lim
t, t′→∞, t−t′→∞

C(t, t′).

As can be seen by the green traces in the lower panel of fig.2.1 which we use as a
proxy for qEA, we have that
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• qEA = 0 in the CP

• 0 < qEA < 1 in the SFCP

• qEA = 1 in the FCP.

Some progress can be made in describing analytically the three phases by writing
asymptotic solutions of the system of eqs.(2.7). See [12] for more a more detailed
explanation.

2.3 FORCE learning with the Exactly Solvable

model

As mentioned in section 1.2, the Standard model can learn to generate patterns
with an algorithm called FORCE. Can the Exactly Solvable model learn to generate
patterns as well? We’ll first look at numerical simulations of the FORCE algorithm,
and then write a DMFT analysis of FORCE learning. We’ll focus on FORCE-II
learning as it is more efficient.

2.3.1 Numerical simulations

In this setting, we define

Hi(t) = wfiz(t), (2.8)

with z(t) =
1

N

N∑
i=1

woixi(t). (2.9)

We choose wfi = 1 for i = 1, ... N for simplicity, but the analysis developped in
this section can be generalized to case where the wfi’s are chosen randomly. The
woi’s are the output weights and we wish to tune them with the FORCE learning
algorithm, so that – after training – z(t) reproduces a desired function f(t). The
FORCE algorithm is adapted to the Exactly Solvable model by replacing all the ri’s
in eqs.(1.3) and (1.5) by xi’s, and sometimes re-scaling by a factor 1/N to have the
proper scaling for the DMFT analysis below. We get the following Euler-discretized
iterative procedure

xi(t+ dt) = xi(t) + dt
[
−µ(t)xi(t) +

ĝ
N

∑N
j,k=1 J

jk
i xj(t)xk(t) + z(t)

]
z+(t) = 1

N
wT

o (t)x(t+ dt)

e(t+ dt) = z+(t)− f(t+ dt)

P (t+ dt) = P (t)− 1
N
P (t)xT (t+ dt)x(t+ dt)P (t)/[1 + 1

N
xT (t+ dt)P (t)x(t+ dt)]

wo(t+ dt) = wo(t)− e(t+ dt)P (t+ dt)x(t+ dt),

(2.10)

with P (0) = I/α. I is the identity matrix and α a learning constant.
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We choose to work here with a confining term of the form

µ(t) = C(t, t) =
1

N

N∑
i=1

xi(t)xi(t).

Implementing the procedure (2.10) numerically, we find that the Exactly Solv-
able model is able to learn to generate simple periodic functions. In all numerical
simulations presented in this section, we work with dt = 0.01, N = 100, α = 0.001
and ĝ = 0.7

√
3/4.

In the left panel of fig.2.2, we consider the task of learning a constant function,
and periodic perturbations around a constant value. Specifically, we choose

f(t) = A+Bg(t, ω) (2.11)

with g(t, ω) =
1√

a2 + b2
(a sin(2πω0t) + b sin(2πω1t)) (2.12)

and where A = 1, B ∈ {0, 0.1, 1}, a = 0.6, b = 1.2 and ω = ω∗ = {ω0 = 0.1, ω1 =
0.2}. In the right columns of fig.2.2, we plotted the trace of some woi’s during train-
ing. Learning has converged once the woi’s reach a stationary value. So, in the left
panel, we see that the larger the amplitude B, the longer the learning time.

In the right panel of fig.2.2, we instead consider the task of learning a periodic
function of varying frequency. We choose to learn the same function as in eqs.(2.11)
and (2.12) but with A = 0, B = 2 and ω ∈ {0.5ω∗, ω∗, 2ω∗}. We note that there
seem to be an optimum value of ω at around ω∗, where learning is the fastest.

The goal of learning is that the output weight wo reaches a stable attractor where
the network outputs z(t) ≈ f(t). The attractor reached is never completely stable
(some Lyapunov exponents are always positive). But the time it takes to move
away from the stable attractor once learning is halted is increased the longer the
training time. To show this, we plotted in the left panel of fig.2.3 the trajectory of
wo(t) during training, projected on the first two principal components (PCs) of the
averaged correlation matrix of network’s activities C = ⟨x(t)xT (t)⟩t. The function
learned here is f(t) = 3 sin(t/2)/2. We see that wo reaches quickly a fixed point
attractor (after learning for just 8 periods of f). In the right panel of fig.2.3, we
plot the periodic error ϵ(n) defined as

ϵ(n) =

∫ (n+1)T

nT

ds |z(s)− f(s)|2, (2.13)

where T is the period of f .

We look at the performances after learning for nh ∈ {8, 40, 80} periods of f .
We see that ϵ(n) grows exponentially fast once learning is halted, with an exponent
that is smaller the larger nh, so the larger the training time. For training times suf-
ficiently large for wo(t) to have reached a stable fixed point attractor, we see some
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Figure 2.2: The Exactly Solvable model can learn to generate a variety of simple
periodic functions with the FORCE learning algorithm. Left panel: learning to
generate a constant function, and a periodic perturbation of varying amplitude
around a constant value. (a) pre-training phase. The activity of the network’s
output z(t) in blue is chaotic. (b) training phase. z(t) reproduces the function f(t)
that the network is learning. In orange is shown the weight update ∥dwo(t)∥ =
∥wo(t) − wo(t − dt)∥. The weight update is initially big to bring z(t) close to f(t)
instantly, then ∥dwo(t)∥ → 0 as learning proceeds. ∥dwo(t)∥ has here been re-scaled
by a factor 0.1. (c) post-training phase. The output weights wo are fixed and the
network autonomously outputs z(t) ≃ f(t). In the right column is shown the traces
of some randomly picked decoder weights woi’s during training. Right panel: same
as Left panel but when learning a simple periodic function of varying frequency. In
all simulations, learning lasted 1500 t.u.

fluctuations in performances due to finite size effects. Notice in particular that the
orange curve, where training is halted after nh = 40, is below the blue one, where
training is halted after nh = 80.

In conclusion, the Exactly Solvable model has the capacity to learn to generate
simple periodic functions with the FORCE algorithm, which is an important prop-
erty that the Standard model of RNNs also shares.

2.3.2 DMFT analysis of FORCE learning

With the Exactly Solvable model, we are able to write exact DMFT equations.
We now take on the task of performing the DMFT analysis of the FORCE learning
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Figure 2.3: Left panel: trajectory of wo(t) during training, projected on the first
two principal components (PCs) of the averaged correlation matrix of network’s
activities C = ⟨x(t)xT (t)⟩t. The colored dots correspond to the state of wo(t) after
learning for nh ∈ {8, 40, 80} periods of f . The explained variance of the first two
PCs is ≃ 0.961. Right panel: periodic error ϵ(n) after learning for different training
times.

procedure for our simplified model.

Recalling that

C(t, t′) = ⟨x(t)x(t′)⟩ξ

R(t, t′) =

〈
δx(t)

δξ(t′)

〉
ξ

,

we can write the discretized DMFT equations of the dynamical system of eq.(2.2)
with H(t) = z(t) and µ(t) = C(t, t). We get the following system of equations

C(t+ dt, t′)− C(t, t′) = dt
[
−C(t, t)C(t, t′) + 3g2

2

∑t′/dt
i=0 C2(t, idt)R(t′, idt) + z(t)m(t′)

]
C(t+ dt, t+ dt)− C(t, t) = 2dt

−C(t, t)2 +
3g2

2

t/dt∑
i=0

C2(t, idt)R(t, dt) + z(t)m(t)− dtC(t, t)z(t)m(t)


+ dt2

3g2

2
C2(t, t) + C3(t, t) + z2(t)− 3g2C(t, t)

t/dt∑
i=0

C2(t, idt)R(t, idt)


R(t+ dt, t′)−R(t, t′) = −µ(t)R(t, t′)dt+ δt/dt,t′/dt

m(t+ dt)−m(t) = dt [−µ(t)m(t) + z(t)]

,

(2.14)
with C(0, 0) = 1, R(0, 0) = m(0) = z(0) = 0 and 2ĝ2 = 3g2/2.
The function m(t) is the magnetization, defined as

m(t) =
1

N

N∑
i=1

xi(t) = ⟨x(t)⟩ξ. (2.15)
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And the initial conditions come from the fact that we take the xi(0)’s extracted
from a Gaussian measure with 0 mean, we take the woi(0)’s uncorrelated from the
xi(0)’s, and we impose ∥x(0)∥ = N .

We now need an equation for the evolution of

z(t) =
1

N
wT

o (t)x(t) = ⟨wo(t)x(t)⟩ξ.

From the system of equations (2.10), we get

z(t+ dt) = z+(t)− e(t+ dt)P(t+ dt, t+ dt, t+ dt), (2.16)

where we have denoted

P(t, t′, t′′) =
1

N
xT (t)P (t′)x(t′′). (2.17)

We can find an equation for z+(t) recursively. We get

z+(t+ dt) = −
t/dt∑
i=1

e(idt)P(t+ dt, idt, idt) , t ≥ dt. (2.18)

Finally, we can write a recursive relation for P(t, t′, t′′){
P(t, 0, t′) = 1

α
C(t, t′)

P(t, s+ dt, t′) = P(t, s, t′)− P(t, s, s+ dt)P(s+ dt, s, t′)/[1 + P(s+ dt, s, s+ dt)].
(2.19)

The system of equations (2.14), together with eqs.(2.16), (2.18) and (2.19), form
a closed set of DMFT equations that can be integrated numerically. These equations
describe the dynamics of the system in the N → ∞ limit.

We now show the results of numerically integrating the DMFT equations de-
scribing the dynamics of FORCE-II learning for the Exactly Solvable model. In
the figures shown below, we work with dt = 0.1 and α = 0.001. We checked in
appendix B that the results of the numerical integration of the DMFT equations
were consistent with the simulations.

The numerical implementation is rather straight-forward and the running time
of the algorithm is small since we are just propagating equations. But the numeri-
cal integration is limited by the available memory, because we need to store all the
entries of the 3-tensor P(t, t′, t′′).

Figure 2.4 shows a qualitative picture of FORCE algorithm’s performances in
the N → ∞ limit. The function learned is a simple sinus function f(t) = sin(t). We
see again that the longer the training time (i.e. the larger nh), the closer the colored
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curve z(t) follows the black curve f(t) after learning is halted.

Figure 2.5 instead shows a more precise view of the algorithm’s performances.
The function learned is f(t) = 3sin(t)/2. The quantity |z(t)− z+(t− dt)| is propor-
tional to ∥dwo(t)∥ so it decreases during training and the smaller its value at the end
of learning, the better the convergence of the algorithm. In the right panel of fig.2.5,
we see that |z(t)− z+(t− dt)| decreases exponentially fast during learning. And in
the left panel, we see that the periodic error ϵ(n) also decreases exponentially fast
during training, and then grows exponentially fast once learning is halted, with an
exponent that is larger the smaller nh.
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Figure 2.4: Qualitative view of the performances of FORCE-II learning in the N →
∞ limit. black curve: function learned f(t) = sin(t). colored curves: network output
z(t), when learning is halted after a varying number nh of periods of f .
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Figure 2.5: Performances of FORCE-II learning in the N → ∞ limit. left panel:
periodic error ϵ(n) during and after learning, for different halting times. right panel:
|z(t)− z+(t− dt)| ∝ ∥dwo(t)∥ during training. The numerical integration lasted in
total 210 t.u.

In conclusion, we find that the Exactly Solvable model is also able to learn to
generate simple periodic patterns in the N → ∞ limit. This result was not a given,
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as only finite size simulations had been done previously with the Standard model
[1, 2]. This result is interesting from a biological standpoint because biological neural
networks are made of billions of neurons. So in this case, the N → ∞ limit is a
better model than finite size simulations of N = 100 or 1000 neurons.
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Discussion

To recall the train of thought followed in this work, we first started by study-
ing the Standard model of recurrent neural networks (RNNs), which is the simplest
model one can write on biological grounds. Although already quite simple, this
model is not exactly solvable with Dynamical Mean-Field Theory (DMFT) because
of the presence of a tanh function. Therefore, we did something that is a hallmark
of statistical physics: we further simplified the Standard model, and then hoped
that we didn’t lose some of its essential physical properties in the process. Specifi-
cally, we assumed that the relevant features of the Standard model are that it is a
chaotic and high-dimensional system. In that respect, we posited that the specific
form of the tanh function wasn’t crucial, and we replaced it by a simpler quadratic
non-linearity. We coined the resulting network the Exactly Solvable model.

Then, we had to check that the newly found model describes appropriately a
RNN. We checked that the Exactly Solvable model has the same phenomenology
under Hebbian driving as the Standard model. And we checked that the Exactly
Solvable model is also able to learn to generate patterns. These two results allow
us to corroborate the idea that a RNN can – at first glance – be approximated by a
simple chaotic and high-dimensional system. Henceforth, we can use our simplified
model to derive new and interesting analytical results.

With the formalism developed in section 2.3.2, we now have access to the phase
diagram of FORCE learning, meaning that we can find under which conditions
learning is possible. We know that there needs to be a proper interplay between the
level of chaos in the system and the function f(t) being learned. Indeed, the level
of chaos needs to be sufficient to generate f(t) – but if it is too high, learning fails
[2]. And the “proper” amount of chaos also depends on the amplitude and period
of f(t) [9].
In that respect, it is interesting to note that the Hebbian driving discussed in section
2.2 is a powerful modulator of the level of chaos in the system. So one can ask if
the optimal level of chaos for FORCE-learning the task at hand could be reached
by previously tuning the synaptic weights with an Hebbian driving.
In section 2.3.2, we looked at the dynamics of z(t) and z+(t), but we could also write
equations describing the dynamics of the output weights wo(t) during learning. Do-
ing so would allow us to look at the space of good configurations for the generation
of f(t), and how such a configuration is reached during training.
Lastly, the formalism developed in section 2.3.2 can easily be generalized to the case
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with multiple readout neurons zl(t). Generalizing, one could look at the competi-
tion between the different output neurons, specifically: Can the network learn to
generate multiple functions? And if not, how does the network forget? This phe-
nomenon is known as catastrophic forgetting in the Neural Networks community, and
it describes the tendency of artificial neural networks to forget previously learned
information upon learning new information.

One objective when studying RNNs – besides finding new and potentially better
ways to do computations – is to understand how biological networks work. The goal
here is to come-up with learning algorithms that are biologically plausible. In this
work, we studied in depth the FORCE-II learning algorithm. This algorithm is very
efficient for pattern generation but it is not biologically plausible, because the matrix
P of learning rates is essentially proportional to the inverse correlation matrix of
the whole network. Therefore to update one weight, the algorithm needs non-local
information like the activities of all the neurons in the network. Instead, our current
understanding of how biological networks work tells us that synaptic modification
only requires local information. One example of such a biological learning rule is
the Hebb rule, which states that the modification of the synaptic weight J j

i is only
based on the activities of neurons i and j.
Consequently, following the quest for understanding how the brain learns, the same
reasoning as the one developed in this work could be applied to more biologically
plausible learning algorithms. Namely, one could try to write an exactly solvable
model for spiking neurons. The neurons in this work were indeed modelled as smooth
functions, but we know that biological neurons are highly non-linear: when the mem-
brane potential reaches a certain threshold value, a sharp electrical potential called
a spike is generated. Models to describe such neurons have been developed [13], and
the idea would again be to simplify one of these models to make it solvable with
DMFT, while retaining its physical properties.
Another interesting direction towards biological plausibility would be to study re-
inforcement learning algorithms, which work by rewarding desired outcomes and
punishing undesired ones. One reinforcement learning method that successfully
trains RNNs is called node-perturbation [14, 15], and it solves the credit assignment
problem (i.e. finding which weight modification is responsible for the change in the
output) by applying small perturbations to neuronal activities and keeping an “eli-
gibility trace” of the resulting changes. A variant of node-perturbation that is even
more biologically plausible – but for which we have far less theoretical understanding
– is called Miconi’s algorithm [4]. Contrary to node-perturbation, it utilizes Hebbian
learning and delayed gratification, which is reminiscent of the effect that dopamine
has on the brain.

Finally, we conclude by saying that the Standard model and the Exactly Solvable
model studied in this work have a wide array of applicability that goes far beyond
RNNs. Indeed, this type of dynamical equations are also studied in social networks
with evolving ties, gene expression dynamics and ecosystems with variable inter-
species interactions. Furthermore, the specific setting of FORCE learning studied
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in this work could be applicable to many other complex systems, from cell and
human populations to financial markets. These systems can indeed be made of
chaotic constituents having to monitor the feedback loop from their environment.
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Appendix

A Effect of the quenched disorder term with DMFT

Let’s compute the effect of the quenched disorder term with DMFT in eq. (2.1).
With the notations of section 1.3 generalized to N dimensions, we define the actions

L0 = ∂tx(t) + µ(t)x(t)−H(t)

LJ = − ĝ

N

N∑
j,k=1

J jk
i xj(t)xk(t).

We need to compute

ix̂(t).LJ = −i
∑
i

∫
t

[
2ĝ

N

∑
j<k

J jk
i x̂i(t)xj(t)xk(t) +

ĝ

N

∑
j

J jj
i x̂i(t)x

2
j(t)

]
.

J j ̸=k
i and J jj

i are independent so the averages can be computed separately. The
computation yields

exp ix̂(t).LJ = exp

{
1

2

2ĝ2

N2

∫
t,t′

∑
i

ix̂i(t)ix̂i(t
′)
∑
j,k

xj(t)xj(t
′)xk(t)xk(t

′)

}

=

∫
DQδ(NC(t, t′)− x(t).x(t′))δ(ND(t, t′)− ix̂(t).ix̂(t′))e

1
2
2ĝ2N

∫
t,t′ D(t,t′)C2(t,t′)

=

∫
DQDl exp

{
N

∫
t,t′

[
il1(C(t, t′)− x(t)x(t′)) + il2(D(t, t′)− x̂(t)x̂(t′)) +

1

2
2ĝ2D(t, t′)C2(t, t′)

]}
,

where Q = (C, D) and l = (l1, l2).

Now we use the saddle-point approximation. Taking a derivative with respect to
the Q’s, we get

il1 + 2ĝ2C(t, t′)D(t, t′) = 0 ⇒ l1 ∝ D(t, t′) = 0 because of causality

il2 + ĝ2C(t, t′)2 = 0 ⇒ il2 = −ĝ2C(t, t′)2.
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Therefore

exp ix̂(t).LJ = exp

∫
t,t′

[
������
il2D(t, t′) − il2x̂(t)x̂(t

′)) +
�����������1

2
2ĝ2D(t, t′)C2(t, t′)

]
= exp

{
−1

2

∫
t,t′

∑
i

x̂i(t)
(
2ĝC2(t, t′)

)
x̂i(t

′)

}
.

Now all the sites are decoupled in the generating functional so the system is
equivalent to the single-site effective Langevin equation

∂tx = −µ(t)x(t) + ξ(t) +H(t),

with ξ(t) = 0 and ξ(t)ξ(t′) = 2ĝ2C2(t, t′).

B Consistency between the numerical integration

of the DMFT equations and simulations

To check that the DMFT equations derived in section 2.3.2 were correct, we
compared the result of their numerical integration to simulations (see fig. 6 below).
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Figure 6: Consistency between DMFT equations and simulations. black curve:
numerical integration of the DMFT equations derived in section 2.3.2. blue curves:
results of simulations. The main curve corresponds to the mean over 100 samples
and the error bars correspond to the standard deviation. We used N = 400 for the
simulations, f(t) = 1, dt = 0.01, g = 0.5 and α = 0.001.
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