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Abstract

Prashant Kumar Ray

Uncovering Latent Patterns In Service-Level Spatiotemporal
Mobile Traffic

Personal mobile communication technologies are amongst the most successful innovations
of the 21st century. The widespread adoption of mobile services has resulted in an exponen-
tial surge in mobile traffic, which effectively mirrors human behavior. Mobile devices main-
tain a continuous interaction with network infrastructure, and the associated geo-referenced
events can be easily logged by service providers, for different purposes, including billing and
resource management. This leads to the implicit potential of monitoring a significant portion
of the entire population at a minimal cost which no other technology provides an equivalent
coverage.

In this context, analyzing mobile traffic along space, time, and app dimensions can provide
actionable insights for improving user experience, optimizing resource allocation, enhanc-
ing security, and driving business success in the mobile app and service industry. In this
thesis, after performing various data preprocessing procedures, including uplink and down-
link traffic aggregation, time and space aggregation as well as scaling, we utilize the Tucker
decomposition method to extract latent factors, which represent patterns across the dimen-
sions of space, time, and mobile applications. We apply the technique to real-world mobile
traffic data generated by a variety of mobile applications (for example Facebook, Gmail,
Skype, Uber etc.) within Paris, France, during 77 consecutive days for every 15 minutes
interval.

We obtained 4 temporal factors capturing day-night mobile traffic behavior, working hours,
commuting, and weekend patterns. In the dimensions of space and mobile applications, we
identified 7 factors each which includes a space factor distinctly differentiating between the
city center and the rest of Paris. An exploration of the obtained latent patterns in spatial,
temporal, and mobile application dimensions reveals interesting interrelationships in user
behaviors.
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Chapter 1

Introduction

1.1 Background
With the widespread adoption of smartphones, they are no longer a pure communication tool
but have gradually become a multimedia interactive platform based on the mobile internet
connectivity. This shift has been accompanied by a significant rise in the use of mobile
services, resulting in a surge in mobile traffic. Mobile devices are continuously interacting
with the network infrastructure, and the associated geo-referenced events are logged by the
operators, for different purposes, including billing and resource management. The surge in
the usage of mobile devices and Internet services contributes to the generation of enormous
amounts of data.

The outcome of this technological success is the substantial presence of mobile subscribers
within today’s population. These subscribers collectively form a considerable segment, en-
compassing data from hundreds of thousands, or even millions, of individuals. Moreover,
this data spans wide geographical areas, ranging from cities to entire nations, and extends
across considerable time spans, encompassing weeks to months. In contrast, conventional
data collection methods, such as census surveys, population studies, phone interviews, or
volunteer recruitment, are unable to offer even remotely comparable insights into human
activities.

The digital traces left by smartphone use have come to provide valuable real-time informa-
tion concerning the movement, interactions, and mobile service consumption of individuals
at unprecedented scales. These digital traces facilitate the study of human behaviors. Various
techniques and analytical perspectives can be employed to capture many aspects of human
behaviors from mobile phone data, which has resulted in various applications. Mobile traffic
data finds application in a spectrum of analyses, including the study of mobility patterns [1,
2, 3, 4] and social interactions [5], explorations of transportation systems [6] estimates of
static and dynamic population density [7, 8, 9], predictions of poverty [10, 11], socioeco-
nomic inequality [12, 13] or digital divides [14], and mappings of land usage [15, 16, 17] or
urban transformation [18] or pollution [19]. Additionally, the utility of mobile network data
extends to assessing the impacts of natural disasters [20] or infectious disease transmission
[21, 22, 23], as well as evaluating the efficacy of the corresponding containment strategies
[24, 25]. These data can also enable studies aimed at understanding how the mobile network
infrastructure is used, improving its management and extending its functionalities.
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1.2 Motivation
The study of mobile traffic demand in existing literature falls into two primary categories.
Firstly, there are works that adopt a user-centric approach, focusing on individual sub-
scribers. These studies delve into various aspects of user behavior, such as mobility pat-
terns, traffic generation, and mobile service usage. Secondly, there are works that adopt an
operator-centric approach, where the interest lies in analyzing demand aggregated across all
users within a specific area, often a cell sector or the coverage region of a base station.

In our research, our primary focus is on the classification problem. This entails the iden-
tification of concealed regular structures within the aggregated traffic generated by mobile
users. While previous research efforts have proposed solutions for detecting either temporal
or spatial structures in the data, limited attention has been given to the more intricate task
of simultaneously examining both space and time dimensions. In this context, Furno [17]
has utilized Exploratory Factor analysis (EFA) on mobile traffic data having space and time
dimensions for the joint spatiotemporal classification of the aggregate demand supplied by a
mobile network operator.

For our research, we have access to rich and highly detailed mobile traffic data, including
traffic information at the level of individual mobile services, encompassing various cities
across France. Consequently, our dataset encompasses three fundamental dimensions: space,
time, and mobile services. Our objectives for this work are as follows:

1. Uncover latent patterns, often referred to as factors, within each of these dimensions.

2. Determine the optimal number of factors for each dimension.

3. Explore how these factors interplay with one another.

This research focuses on analyzing mobile traffic data to expose hidden patterns, considering
the dimensions of space, time, and mobile applications. We employ the tensor decomposition
technique, specifically Tucker decomposition, to identify these latent patterns within each
dimension and investigate their relationships.

The analysis of mobile traffic data across spatial, temporal, and app dimensions holds the
potential to provide actionable insights for enhancing user experience, optimizing resource
allocation, strengthening security, and driving success in the mobile app and service industry.

The dataset used for this study encompasses mobile traffic usage data from 68 different
mobile applications across 20 urban areas in France, with a spatial resolution of 100 x 100
m2. This data spans 77 consecutive days, roughly equivalent to two and a half months, from
March 16, 2019, to May 31, 2019, with a temporal resolution of 15 minutes. The dataset’s
total size exceeds 2.3 TB and was made available as part of the NetMob23 data challenge in
June 2023.

This research specifically focuses on the analysis of mobile traffic data within the city of
Paris.

1.3 Thesis Structure
The remainder of this report is structured as follows:
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1. Chapter 2: Mobile Traffic Data Analysis: Evolution & Research Directions - This
chapter offers an extensive overview of prior research in the field of mobile traffic
analysis, highlighting the key findings and developments.

2. Chapter 3: Uncovering Latent Patterns in Mobile Traffic Data - In this chapter,
we delve into the methodology and approach employed for our research, detailing the
techniques and tools used to analyze mobile traffic data.

3. Chapter 4: Results & Findings - In this chapter, we present the outcomes of our
analysis, showcasing the latent patterns uncovered in mobile traffic data along space,
time, and mobile services, and how these factors relate to each other.

4. Chapter 5: Conclusion & Future Directions - This concluding chapter summarizes
the key insights from our study and discusses their broader implications. Additionally,
it outlines potential avenues for future research in this field.
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Chapter 2

Mobile Traffic Data Analysis: Evolution
& Research Directions

2.1 Background
While mobile traffic analysis is a relatively recent research field, it has experienced rapid
growth, particularly over the last decade. This field delves into the vast data generated by
mobile devices, providing insights into the movement, interactions, and consumption of mo-
bile services by individuals on an unprecedented scale. Mobile traffic provides insights into
the movement, interactions, and consumption of mobile services by individuals on an un-
precedented scale. Unlike traditional data collection methods such as censuses, population
surveys, phone interviews, or volunteer recruitment, mobile traffic data offers a perspective
on human activities that was previously unattainable.

Mobile traffic data, irrespective of where it’s collected, holds a wealth of information about
subscribers’ lives, encompassing their activities, interests, schedules, movements, and pref-
erences. The ability to access such extensive information on such a large scale has proven
to be critically important for research across diverse fields. However, the accessibility of
this rich data source also gives rise to concerns regarding potential violations of mobile
customers’ privacy rights. Among these concerns are issues like individual identification,
tracking of movements, and monitoring of mobile traffic. As a result, regulators have been
working on laws aimed at safeguarding the privacy of mobile users. For example, the Eu-
ropean Data Protection Directive 95/46/EC [26] mandates that all mobile traffic datasets be
anonymized so that no individual is identifiable, before any cross-processing can be run on
the data. Moreover, Directive 2002/58/EC states that anonymized data shall be analyzed only
for the time necessary to provide the intended value-added service[27].

The nature of mobile traffic datasets, facilitates large-scale research across various disci-
plines. However, it is not the only one, other aspects have also contributed to the success of
mobile traffic analyses.

The first supporting cause behind the surge in research volume is the increasing availability
of mobile traffic datasets. Mobile operators have been always monitoring mobile traffic in
their networks, for troubleshooting, efficiency, and billing purposes but they were typically
cautious about sharing it. However, in recent years, there has been a shift towards greater
openness within the research community. This change is partly due to groundbreaking stud-
ies demonstrating the value of mobile traffic data for both academic research and operator
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benefits. As a result, collaborations between academic research groups and network oper-
ators, utilizing real-world mobile traffic datasets, have flourished, leading to a significant
increase in research outcomes and publications.

The second factor favoring the success of the research field is the increasing quality of the
datasets. On one hand, mobile operators, recognizing the potential value of mobile traf-
fic data, are deploying progressively advanced probes in their networks. These probes en-
able finer measurements of subscribers’ activities. On the other hand, mobile services have
evolved from simple calls and texts to Cloud-based, always-on applications. This transfor-
mation results in much more frequent interactions between users (or their devices) and the
network, leading to significantly higher granularity in the recorded activity samples at the
operator’s end. This enhanced accuracy in mobile traffic datasets allows for more intricate
and comprehensive analyses, thereby drawing an even broader research community into the
field.

The third key element, originating from the previously mentioned factors, is the formation
of a highly active and interdisciplinary community that brings together researchers and in-
dustry stakeholders. The synergy between academia and industry has significant implica-
tions. For instance, mobile operators are now actively promoting both fundamental and
applied research in mobile traffic analysis through targeted challenges. Notable examples
include Orange’s Data for Development (D4D) Challenges and Telecom Italia’s Big Data
Challenges. In these initiatives, mobile operators openly provide mobile traffic datasets and
task the research community with conducting analyses to address specific societal or techni-
cal challenges.

Given that all these identified trends are currently strengthening, the future of mobile traffic
analysis as a research field appears promising enough.

2.2 Research Directions
The literature on mobile traffic analysis is very heterogeneous. Structuring the relevant works
in a comprehensive way is not trivial. The classification is thus organized around research
subjects, each of which features multidisciplinary contributions. The global outline of the
proposed hierarchy according to Diala Naboulsi (2015) [27] is shown in Fig. 2.1.

Social analyses investigate the connections between mobile traffic and a diverse range of so-
cial attributes. The primary research emphasis lies in understanding the social dynamics of

FIGURE 2.1: General classification of the mobile traffic analysis literature
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mobile user interactions and exploring how demographic, economic, or environmental fac-
tors impact mobile service consumption. This category also encompasses studies that utilize
social attributes inferred from mobile traffic data for the characterization and mitigation of
disease epidemics.

Mobility analyses deal with the extraction of mobility-related data from mobile traffic. Here,
mobility is considered in its widest context, covering general human movements at both
individual and aggregate levels, as well as specialized patterns related to specific users, such
as travel on transportation systems. This section also provides a comprehensive review of the
literature concerning the reliability of mobile traffic data as a source of mobility information.

Network analyses adopt a technical perspective, concentrating on comprehending the dy-
namics of mobile traffic demand and how to enhance the mobile network infrastructure to
meet these demands more effectively. Research in this category encompasses the characteri-
zation of mobile service usage patterns and leveraging this knowledge to develop enhanced
technological solutions of various kinds.

We will delve into some interesting research domains related to mobile traffic analysis.

2.2.1 Epidemiology
Extensive research over the past year has investigated the impact of the pandemic on internet
traffic at various network levels. Most studies have focused on internet traffic as a whole. In
Central European Internet Service Providers (ISPs), traffic surged by 15% to 20% during the
initial 2020 lockdown, a growth rate much higher than typical years. This increase can be
attributed to government-imposed restrictions, which also caused dynamic changes in week-
day traffic patterns, resembling weekend patterns [28], [29]. Similar trends were observed in
major ISPs in the United States, where peak traffic rates spiked from 30% to 60% during the
first quarter of 2020 [30]. Not only network operators but also online service providers expe-
rienced significant traffic shifts. For example, Facebook noticed intermittent spikes in their
edge network traffic, followed by a sustained increase in load. They also reported changes
in user behavior, such as a heightened interest in live streaming services [31].

Andre and Orlando [23] complements the studies mentioned earlier as it delves into the
dynamics of individual services, going beyond the broad service categories that previous
studies have focused on and it encompasses various containment strategies, allowing us to
observe their diverse effects on mobile traffic. it also explores both spatial and temporal
behaviors, offering a comprehensive perspective on the phenomenon. This provide insights
into how the demands for hundreds of different mobile services are responding to the new
environment created by the pandemic.

Earlier numerous studies have explored the potential correlation between patterns observed
in mobile traffic data and the spread of infectious diseases. Such correlations, if identified,
could offer highly effective yet cost-efficient methods for anticipating and controlling dis-
ease outbreaks. In a seminal work, Wesolowski et al. [32] investigated networks of mobile
user movements alongside maps of malaria prevalence in Kenya. Their objective was to
uncover associations between common patterns of human mobility and parasite infection.
The authors successfully identified several routes of infection transmission that contribute
to the spread of malaria across different regions of Kenya. A similar approach was adopted
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by Enns et al. [33] and Gavri´c et al. [34], both of whom compared mobility and commu-
nication networks derived from mobile traffic data with maps depicting the prevalence of
diseases, specifically malaria and HIV, respectively.

2.2.2 Urbanization And Land Use
Living in an urban or rural environment yields sociological differences that reflect on mo-
bile traffic. Eagle et al.[35] conducted a comprehensive analysis using four years of mobile
traffic data spanning an entire country to study the differences emerging between urban and
rural users. Their findings reveal that subscribers in urban areas engage in 50% more com-
munication as compared to those in rural areas. However, rural users, on average, engage in
longer conversations among them than with individuals living in cities. Schmitt et al. [36]
complement these results by demonstrating a level of segregation between urban and rural
regions. Users in rural areas tend to communicate more frequently with each other than with
individuals living in urban centers. Eagle et al. [37] also illustrate that the call volume of
individuals within urban areas increases, while the call volume directed towards rural regions
decreases.

Furthermore, the geographical distribution of mobile traffic hotspots, characterized as high-
activity locations, is influenced by land use. Trestian et al. [38] identify daytime, noon,
evening, and night time hotspots within a metropolitan region and correlate them with the
geographical characteristics of their respective areas. Similarly, Vieira et al. [39] reveal
that base stations in downtown areas experience high loads during weekday mornings, while
those in commercial and business districts become hotspots for the remainder of weekdays.
During weekends, hotspots emerge around commercial and business centers in the morning
and afternoon and shift to commercial and nightlife areas in the evening and at night.

The discrepancy in the spatial distribution of mobile traffic between weekdays and week-
ends has also been documented in other studies. Pulselli et al. [40] employ geographical
representations of aggregate daily demand in Milan, Italy, and observe that activity tends to
concentrate in the city center on weekdays and in peripheral residential areas on weekends."

2.2.3 Commuting Patterns And Transportation Systems Planning
Mobile data has recently become a valuable source for understanding commuter mobility
patterns. For instance, Furletti et al. [41] successfully distinguished commuters from other
user categories, such as residents and tourists, in Pisa, Italy. Scepanovic et al. [42] ranked
76 regions in Ivory Coast based on their significance in the country’s commuting processes,
while Liu et al. [43] identified commuting activity sequences as the primary driver of mo-
bility in the same region. Kung et al. [3] conducted a comprehensive analysis of commuting
behaviors across various regions and geographical scales, revealing unique commute time
characteristics in different areas.

In the context of improving transportation systems, Berlingerio et al. [44] extracted thirty
common mobility patterns from mobile call data in the city of Abidjan. These patterns, pri-
marily related to home-work commuting, were utilized to plan enhancements to the existing
public bus transit network. Their findings demonstrated that the addition of 4 new routes
could lead to a 10% reduction in overall travel times. Cici et al. [45] leveraged mobile traffic
data to investigate the potential for car sharing in Madrid, Spain. Their results indicated that
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a reduction in the number of cars, by as much as 67%, could be achieved if drivers shared
their cars and agreed to detours of no more than 600 meters in their routes. Lastly, Zhang
et al. [46] identified under-served routes in Shenzhen, PRC, by comparing trajectories de-
rived from mobile traffic with public transport flows. They proposed a new system of bus
lines that could reduce commuter travel times along these routes by approximately 25% on
typical days.

As we conclude this chapter, we have explored some of the dynamic evolution and research
directions in the field of mobile traffic analysis. The rapid growth of this field has been
fueled by the availability of rich mobile traffic datasets, advancements in data quality, and the
synergy between academia and industry stakeholders. The diverse research directions, from
epidemiology to urbanization and transportation system planning, highlight the potential of
mobile traffic analysis in addressing complex societal and technical challenges.

In the next chapter, we delve into the heart of our research methodology. We employ tensor
decomposition technique, specifically, Tucker decomposition, to uncover latent patterns in
mobile traffic data along spatial, temporal, and mobile service dimensions. We aim to shed
light on the intricate interplay between these dimensions, providing valuable insights into
mobile traffic behavior.
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Chapter 3

Uncovering Latent Patterns in Mobile
Traffic Data

3.1 Dataset
The mobile traffic data utilized in this work encompasses usage information from 68 dis-
tinct mobile applications across 20 urban areas (cities) in France. For each city, the data is
organized into squares with spatial resolution of 100 x 100 square meters with time resolu-
tion of 15 minutes for 77 consecutive days. The dataset spans a time frame equivalent to
approximately two and a half months, specifically from March 16, 2019, to May 31, 2019.
The mobile traffic data value is normalized (due to privacy reasons) such that it captures the
proportion of data traffic volumes used by different apps and does not reflect the original
traffic data volume. The overall size of the dataset is more than 2.3 terabytes.

This study involves the analysis of mobile traffic data specific to Paris. The traffic map for
an app in a city at a particular time instance can be represented using a 2-D matrix. The
dimension of this matrix is determined by the location of the extreme square of the city in
each direction (east , west, north and south). For example, Paris city traffic map can be
represented using a 2-D matrix of size (409 x 346).

To identify the squares that are inside or outside the city, another 2-D matrix of same size is
used as a city mask having entries either 0 or 1, where 1 specifies that the square is part of
the city and 0 for the squares which are not part of the city. In Fig.3.1, the squares in green
are the ones which are inside Paris and all the squares in the white are ones that are outside
Paris.

3.2 Statistical Concepts

3.2.1 Median
A measure of central tendency is a single value that attempts to describe a set of data by
identifying the central position within that set of data. The 3 most common measures of
central tendency are the mean, median and mode.

The median of a dataset is the value which falls exactly in the middle when the data is sorted.
The median is the best choice when the data has outliers as median is less affected by outliers
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FIGURE 3.1: Paris City Mask

and skewed data. Suppose we have a dataset with n numeric elements. The steps for finding
median is as following:

1. Sort the data in either increasing or decreasing order

2. Check if number of element n is even or odd.

3. If n is odd, the median is the value that lies at position (n+1)/2 in the sorted dataset.

4. If n is even, the median can be calculated by averaging the two values that lies at
position n/2 and ((n/2)+1)in the sorted dataset.

3.2.2 Revealed Comparative Advantage (RCA)
Comparative analysis involves the methodical examination of entities side by side to high-
light their distinctions and commonalities, often leading to valuable insights or conclusions.
Revealed Comparative Advantage (RCA) extends the concept of comparative advantage and
is commonly used as an index in international economics for calculating the relative advan-
tage or disadvantage of a certain country in a certain class of goods or services as evidenced
by trade flows.

Extending the concept of RCA to the domain of mobile traffic analysis provides a novel
lens through which to examine patterns of mobile service or application consumption. By
calculating RCA values based on actual mobile data consumption, we gain insights into the
comparative strengths of different mobile services usage patterns across regions.

Mathematically, the RCA for a given application i in a location j can be expressed as:

RCA = (Ti j/Tj)/(Ti/T ) (3.1)
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where
Ti j = mobile traffic generated by app i in location j
Tj = total traffic generated by all apps in location j
Ti = total traffic generated by app i in all locations
T = total traffic generated by all apps in all locations

RCA takes a value between 0 and +∞. A app is said to have a revealed comparative advan-
tage in if the RCA value exceeds 1.

3.2.3 Symmetric Revealed Comparative Advantage
Symmetric Revealed Comparative Advantage (SRCA) is an extension of RCA which gener-
ates scores ranging between -1 and +1 and is symmetric around zero. Locations with SRCA
scores close to +1 have a higher revealed comparative advantage, and locations with scores
close to -1 have a lower one. The SRCA score is a function of the RCA and is defined as:

SRCA = (RCA−1)/(RCA+1) (3.2)

3.2.4 Tensor Decomposition
Tensors are multidimensional arrays of numerical values and therefore generalize matrices to
multiple dimensions. In the simplest high-dimensional case, such a tensor would be a three-
dimensional array, which can be thought of as a data cube. Tensor decomposition operators
are of great utility and are used for various purposes such as dimensionality reduction, noise
elimination, identification of latent factors, pattern discovery, ranking, recommendation or
data completion. They are applied in a wide range of applications, including genomics,
analysis of health records, graph mining and identification and evolution of communities in
social networks.[47]

The Tucker decomposition is a form of higher-order PCA. It decomposes a tensor into a core
tensor multiplied by a matrix along each mode as shown in fig 3.2. Elementwise, the Tucker
decomposition can be expressed as shown in equation 3.3.

FIGURE 3.2: Tucker decomposition of a three-way array.
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xi jk ≈
P

∑
p=1

Q

∑
q=1

R

∑
r=1

gpqraipb jqckr for i = 1, . . . , I, j = 1, . . . ,J, k = 1, . . . ,K. (3.3)

Here P, Q, and R are the number of components (i.e., columns) in the factor matrices A, B,
and C, respectively. If P, Q, R are smaller than I, J, K then the core tensor G can be thought
of as a compressed version of X. [48]

3.3 Methodology

3.3.1 Total Traffic Volume Calculation
To begin, the mobile traffic records pertaining to the city of Paris are initially filtered, and
records associated with other cities are discarded. The dataset includes traffic volume data
for both uplink and downlink traffic generated by each app in every 15-minute intervals for
each square within the city. The total traffic volume for an app is computed by summing the
uplink and downlink traffic volumes.

3.3.2 Mobile Traffic Aggregation Over Time
As described earlier, the dataset has temporal resolution of 15 minutes for every mobile
application in a given square. This time resolution is too detailed for the analysis. When
analyzing raw, high-frequency data, isolated outlier events like traffic jams might dispro-
portionately influence the overall patterns and trends. However, by aggregating data over
larger time intervals, the effect of these outliers is diluted. For instance, instead of analyzing
traffic data every 15 minutes, aggregating the data into hourly intervals or longer can help
smooth out the impact of temporary disruptions caused by traffic jams. The resulting aggre-
gated data provides a clearer picture of typical traffic patterns and usage trends, making the
analysis more robust and resilient to short-term irregularities.

For this work, the mobile traffic is aggregated for every application for a given square for
every 30 minutes. This reduces the time dimension of the data by half and now the time
dimension for a particular space and app has length 336 (2 x 24 x 7).

To illustrate, the total mobile traffic volume for Netflix within a specific square during both
the 12:00 and 12:15 intervals is added, and the result is recorded as the observed traffic
volume at 12:00 for Netflix in that square.

3.3.3 Median Week Mobile Traffic
A typical mobile traffic behaviour is deduced by examining the traffic patterns observed in
various locations during different hours throughout a typical week. However, mobile traffic
experiences significant impacts due to a wide range of events, each uniquely shaping the
communication and data usage patterns among mobile users. For instance, the occurrence of
events like football matches or concerts in a specific area often leads to a noticeable surge in
observed traffic during those periods, which can be considered outlier behavior.
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Employing the mean as a measure of central tendency could be sensitive to these abrupt
spikes or extreme values, potentially introducing bias into estimates of typical mobile traffic
levels. However, by considering the median of weekly mobile traffic, we can capture the
middle value of the data, which represents the central tendency without being influenced
by outliers or unusual fluctuations. The median provides a more stable and representative
measure, allowing us to identify the typical level of mobile traffic during different hours
across a typical week, mitigating the impact of daily or hourly variations.

The median weekly traffic for a specific city ’C’, mobile application ’A’, and location ’S’
can be calculated as follows:

1. Load the time aggregated data in the spark dataframe and filter the records for City C.

2. Identify the day name (e.g., Monday) ’D’ and time ’T’ for the timestamps and save
them into two different columns in the spark dataframe.

3. Group the mobile traffic for city C, day D, time T, and mobile application A within
location S.

4. Calculate the median value of the grouped mobile traffic. This value indicates the
typical mobile traffic pattern of application A on day D at time T in location S over a
typical week.

5. Save the median week traffic data for every app , time and space for the city.

3.3.4 Mobile Traffic Aggregation Over Space
The initial spatial representation of mobile traffic in the dataset consists of individual squares,
each measuring 100 x 100 square meters. There are total of 81731 such squares that con-
stitutes Paris city. Similar to time aggregation, the IRIS level mobile traffic aggregation
is performed for the Paris. IRIS represents the fundamental unit that respects certain geo-
graphic and demographic criteria and have borders which are clearly identifiable and stable
in the long term[49]. By aggregating the mobile traffic per IRIS, the space dimension per
app and time is reduced from 81731 to 2800.

Square and IRIS are two different geographical representation for space in France. There can
be different representation possible for measuring space for a given geographical region. For
example, space can be represented in terms of (latitude, longitude) pair or can be represented
in terms of meters. Each representation is identified by a unique CRS (Coordinate Reference
System) code. A Coordinate Reference System (CRS) refers to the way in which spatial
data that represent the earth’s surface, are flattened so that one can “Draw” them on a 2-
dimensional surface.

An IRIS can have multiple squares of 100 x 100 square meters. Some squares falls com-
pletely inside the IRIS while some squares on the IRIS boundary may be shared among
multiple IRISes. To compute total mobile traffic volume generated by an app at a particular
time in an IRIS, it is required to first compute the list of squares that falls completely or
partially inside the IRIS and for each squares what is the portion of area of the square that
falls inside the IRIS.

To illustrate this, let’s assume that a square falls on the boundary and is shared between two
IRISes ’A’ and ’B’. The 70% of area of the square falls inside IRIS ’A’ and rest 30% area of
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FIGURE 3.3: Paris IRIS Map

the square falls inside IRIS ’B’. The traffic generated by Uber application in the square on
Monday 08:00 AM is ’T’. While calculating the total traffic generated by Uber for IRIS ’A’
on Monday 08:00 AM, (0.7 x T) amount of traffic volume would be considered for IRIS ’A’
and (0.3 x T) amount of traffic volume will be part of total Uber traffic in IRIS ’B’. Therefore,
the total traffic volume generated by an app at a particular time in an IRIS is calculated by
adding all the traffic shares of the squares that falls inside (fully/partially) the IRIS.

As mentioned earlier, in order to aggregate mobile traffic at IRIS level, it is required to
calculate the list of squares along with their portion of area that falls inside the IRIS. This
can be calculated as following:

1. Import the shapefile containing IRIS representations for France.

2. Load the shapefile outlining the city’s (Paris) boundaries, ensuring it uses the same
CRS as in step 1.

3. Determine the intersection of both shapes, yielding the proportional overlap between
the two.

4. Exclude IRIS units with a ratio of 0, as they pertain to areas beyond the city limits.

5. Compute the spatial representation for each IRIS located within the city, measuring in
meters.

6. Derive bounds (e.g., ’minimum x,’ ’maximum x,’ ’minimum y,’ ’maximum y’) in
meter-based terms for a specific IRIS. With the knowledge of square size (100 x 100
square meters), deduce shapes measuring 100 x 100 square meters that fit within the
boundaries of the given IRIS.



3.3. Methodology 15

FIGURE 3.4: Example of Square and IRIS intersection

7. Determine the intersection of the shapes obtained in steps 5 and 6. This yields a
compilation of squares within a particular IRIS along with their corresponding overlap
ratios.

3.3.5 Symmetric RCA Calculation For Mobile Traffic
Revealed Comparative Advantage (RCA) highlights the comparative aspect of different app
usage and serves as an indicator of how various mobile apps are utilized within a geograph-
ical location and time frame. However, when an app’s generated traffic is minimal or even
zero compared to the total traffic generated by all apps across the city during a time frame,
the RCA value can become ∞ because of the denominator of the RCA formula. As a result,
RCA mobile traffic values spans from 0 to ∞. Symmetric Revealed Comparative Advantage
(SRCA), derived from RCA, offers the benefit of constraining the values within the range of
-1 to 1. This adjustment maintains the comparative app usage information while confining
the values to a more interpretable and standardized scale.

The SRCA traffic can be calculated as following:

1. Load the median week mobile traffic data which is described in section 3.3.3.

2. Calculate the total mobile traffic generated by a specific app across the entire city, as
well as the cumulative mobile traffic generated by all apps citywide, for each day of
the week and time interval. These values are essential for computing the RCA mobile
traffic for individual apps within a particular geographical location (IRIS), on a specific
day of the week, and during a particular time interval.

3. Calculate the cumulative mobile traffic generated by all apps within an IRIS for each
day of the week and time.

4. Compute the RCA value for each app, across every day of the week and time, for every
IRIS as described in eq. 3.1. Subsequently, calculate the SRCA value using eq. 3.2.

5. Save the SRCA values of mobile traffic for every IRIS, app, day of the week and time.
An interesting observation emerged during the experiment that the SRCA values are
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saved as ’float32’ values by default. However, by saving these values as ’float16’
results is saving considerable amount of memory and it is fast to load as well.

Fig. 3.4 shows the distributions of SRCA values for mobile traffic generated by individual
apps over the course of a typical week. To streamline the analysis, we excluded less pop-
ular mobile services based on their SRCA distribution. Additionally, several Apple-related
services were omitted due to their abundance. In summary, the following mobile services
were discarded: Apple App Store, Apple Siri, Apple Web Services, Apple iCloud, Fortnite,
Microsoft Skydrive, Microsoft Store, Microsoft Web Services, Molotov TV, Tor.

Following this step, we compiled the data into a tensor structure with space, app, and time
as its dimensions. The tensor dimension for Paris is represented as (2800×58×336).

3.3.6 Tucker Decomposition
For performing Tucker decomposition, we have utilized TensorLy library. TensorLy is an
open-source Python library designed for tensor algebra and decomposition. Tensors, in the
context of mathematics and data analysis, extend the concepts of scalars, vectors, and matri-
ces to higher dimensions, making them suitable for representing complex multi-dimensional
data structures. TensorLy provides a collection of tools and functions for working with ten-
sors, including tensor operations, decomposition methods, and tensor algebra. To enhance
computational performance, we leveraged GPUs for these matrix operations.

To perform the Tucker decomposition, the library requires two essential inputs: the tensor
and a list specifying the desired rank along each dimension. In practical terms, this rank
represents the number of factors or prevalent patterns we aim to extract along a particular
dimension. For instance, if we have a tensor with dimensions (N1 ×N2 ×N3) represent-
ing space, mobile services, and time respectively, and our objective is to uncover Rs most
prominent patterns in space, Ra most prominent patterns in mobile apps, and Rt prominent
patterns in time, we supply a list [Rs, Ra, Rt] as input to define the desired ranks. This, along
with the tensor, is then processed using the TensorLy Library. The outcome of the Tucker
decomposition includes a space factor matrix with dimensions (N1 ×Rs), a mobile services
factor matrix with dimensions (N2 ×Ra), a time factor matrix with dimensions (N3 ×Rt)
and a core tensor with dimension (Rs ×Ra ×Rt). Each of these factor matrices captures the
most prevalent patterns within its respective dimension, while the core tensor establishes the
relationships and interactions between these factors. Selecting the appropriate ranks, i.e., de-
termining how many patterns we want along each dimension, is a challenge we will address
in the next chapter.

3.4 Libraries & Frameworks
1. Apache Spark is an open-source data processing framework for large-scale data pro-

cessing.

2. TensorLy is an open-source Python library designed for tensor algebra and decompo-
sition.

3. NumPy (Numerical Python) is an open source Python library that’s used in almost
every field of science and engineering. It’s the universal standard for working with
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FIGURE 3.4: SRCA Distribution of Mobile Services
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numerical data in Python. It provides support for large, multi-dimensional arrays and
matrices, along with an extensive collection of mathematical functions to operate on
these arrays.

4. Pandas is an open-source Python library that provides powerful data manipulation and
analysis capabilities.

5. GeoPandas is an open-source Python library that extends the capabilities of pandas, to
include geospatial data. It provides tools for working with geospatial data, such as ge-
ographical shapes, maps, and spatial attributes, making it easier to analyze, visualize,
and manipulate geographic information within the Python programming ecosystem.

6. Matplotlib is a widely-used Python library for creating static, interactive, and ani-
mated visualizations in various formats. It provides a comprehensive set of tools for
generating high-quality plots, charts, graphs, and other visual representations of data.

7. Folium is a Python library used for visualizing geospatial data.

In the next chapter, we will delve into the outcomes of our research, focusing on the results
obtained through the application of Tucker decomposition on mobile traffic data. Specif-
ically, we will discuss the process of selecting the optimal rank for Tucker decomposition
and present the distinct space, time, and app factors that have emerged from our analysis.
Furthermore, we will explore the interrelationships between these factors and the possible
explanation for the related behaviors.
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Chapter 4

Results & Findings

4.1 Rank Selection For Tucker Decomposition
The determination of ranks for tensor decomposition is not straight forward task, particu-
larly at the outset, as we lack prior knowledge regarding the optimal number of factors or
predominant patterns to extract via Tucker decomposition across the spatial, mobile app, and
time dimensions. To measure the efficacy of this decomposition, we employed the mean
square error (MSE) metric, comparing the original tensor with its reconstructed counterpart
utilizing the factor matrices and core tensor. In essence, when we request an increasing num-
ber of factors, the MSE naturally diminishes. Conversely, a higher number of factors along
the spatial, app, and time dimensions may lead, beyond a certain point, to the emergence of
noisy patterns within the factors. Thus, it becomes imperative to strike a balance between the
number of factors along each dimension and the associated MSE. Our objective hinges on
achieving the minimal requisite factors along each dimension while concurrently minimizing
the MSE, thereby ensuring the robustness and fidelity of our decomposition outcomes.

As previously mentioned, we lacked prior information regarding the optimal rank for the
decomposition. To address this, we systematically generated a range of rank values, span-
ning from 3 to 12 along each dimension. This resulted in a total of 1,000 combinations,
encompassing possibilities from [3,3,3] to [12,12,12]. For each of these combinations, we
meticulously logged the Mean Square Error (MSE) associated with the decomposition pro-
cess.

To determine the optimal rank for the space dimension, we began by filtering the Mean
Square Error (MSE) values for each combination of time and app ranks, while keeping the

FIGURE 4.1: Tucker Decomposition
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space rank constant. For each of these fixed space ranks, we calculated the median MSE and
then plotted these median MSE values against their corresponding space ranks.

Our observation from the Fig. 4.2a indicated that, beyond a space rank of 7, the reduction in
error became negligible with further increases in the space rank. As a result, we determined
the optimal space rank to be 7. It’s important to note that we chose to utilize median MSE
rather than minimum MSE. This choice was made because, if we were to fix the space
rank and progressively increase the factors related to time and mobile apps, the MSE would
invariably decrease. Thus, median MSE provided a more reliable measure in this context.

We followed a similar method to determine the optimal ranks for both the time and app
dimensions. Firstly, for the time rank, we conducted an analysis and plotted the Mean Square
Error (MSE) against different time ranks. Our findings, as depicted in Fig 4.2b, reveal that
the MSE does not exhibit significant changes beyond a time rank of 4. Additionally, during
our practical observations, we noticed that patterns obtained beyond time factor 4 tend to
lose their interpretability.

Subsequently, we applied the same approach to determine the optimal rank for the app di-
mension. Fig 4.2c illustrates the results of this analysis, which indicate that the optimal rank
for the app dimension is 7. In summary, the selected ranks for the Tucker decomposition in
the dimensions of space, app, and time are (7, 7, 4).

4.2 Space Factors
As mentioned previously, Paris is composed of 2800 IRIS, which corresponds to the spatial
dimension in the tensor. We opted for a space rank of 7, which implies that the space factor
matrix resulting from the Tucker decomposition has dimensions of 2800 x 7. Each column
in this matrix represents a distinct space factor. When these factors are individually plotted
against the IRIS, we obtain visual representations of the 7 most prevalent spatial patterns, as
illustrated in Fig 4.3.

The Space factor 0 as shown in Fig.4.3a, represents the general usage profile of mobile
traffic across the city of Paris. A closer examination of the actual map of Paris reveals
that the areas highlighted in blue, signifying the lowest traffic volume compared to other
parts of the city, correspond to parks. While Space factor 1 as shown in fig 4.3b clearly
separates mobile traffic behaviour of city center from that of the rest of Paris. Space factor
2 is indicative of higher mobile traffic volume behavior in areas encompassing the airports
(Paris-Charles de Gaulle (CDG), Paris-Orly Airport, and Paris Airport-Le Bourget), as well
as certain portions of the city having tourist attractions. While, Space factor 3 primarily
emphasizes the suburban areas in Paris that are located at a distance from the city center.
Likewise, other Space factors highlight specific areas within the city that exhibit higher traffic
volumes in comparison to other parts of the city.

4.3 Time Factors
For our analysis, we aggregated time intervals into 30-minute segments over a median week.
Consequently, the time dimension of our tensor is 336 (2 × 24 × 7). Since we asked for 4 time
factors, the resulting factor matrix related to time has a dimension of 336 × 4. Each column
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(A) Space Rank vs MSE (B) Time Rank vs MSE

(C) App Rank vs MSE

FIGURE 4.2: Rank Selection for Tucker Decomposition

in this matrix represents a unique time factor. When we reshape each column into a (48 × 7)
format, corresponding to the 24-hour period over 7 days, we obtain visual representations of
the 4 most prevalent temporal patterns, as illustrated in Fig4.4.

When examining Time Factor 0, as shown in Fig 4.4a, we can notice that the factor loadings
exhibit distinct patterns. Notably, these loadings are prominently higher during the night,
particularly from 12:30 AM to approximately 06:00 AM, with a slight extension observed
during the weekends. Following this period, the loadings gradually diminish during the
waking hours and subsequently remain relatively consistent throughout the remainder of
the day. This time factor 0 represents the typical mobile traffic behavior, distinguishing
between day and night mobile traffic patterns. For Time factor 1, as shown in Fig 4.4b, it
clearly separates the sleep hours from the waking hours with high loadings during the sleep
hours and very low during the awake hours. This behavior indicates that the mobile traffic
during the the day is very less in comparision to the night (sleep hours). Time Factor 2,
as illustrated in Fig. 4.4c, characterizes the mobile traffic behavior during early morning
and working hours, effectively distinguishing these patterns from those occurring during
other times of the day. While, Time Factor 3, displayed in Fig. 4.4d, highlights mobile
traffic patterns associated with commuting and weekends, effectively setting them apart from
patterns observed during other time periods.
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(A) Space Factor 0 (B) Space Factor 1

(C) Space Factor 2 (D) Space Factor 3

(E) Space Factor 4 (F) Space Factor 5

(G) Space Factor 6

FIGURE 4.3: Space Factors
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(A) Time Factor 0

(B) Time Factor 1

(C) Time Factor 2
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(D) Time Factor 3

FIGURE 4.4: Time Factors

4.4 App Factors
The app factor matrix has a dimension of 58 x 7, as we sought to identify 7 distinct patterns
along the app dimension for the 58 mobile services. As initially the apps were arranged in
the tensor according to the name starting from A to Z, the obtained factor matrix after Tucker
decomposition is shown in fig 4.5.

We employ hierarchical clustering, grouping apps with similar loading. The resulting app
factor matrix is illustrated in Fig. 4.6, facilitating a more comprehensive visualization of
the outcomes. This clustering approach effectively groups similar apps together; for in-
stance, streaming apps like Web Streaming, Dailymotion, Netflix, and Youtube are clustered
together. Similarly, social media apps such as Instagram, Facebook, Facebook Live, and
Facebook Messenger are grouped together, as are Telegram, Whatsapp, and Snapchat.

To determine the relationship between an app and its corresponding app factor, we consider
two key elements: the sign of the loading, which indicates the direction of the relationship,
and the magnitude of the loading, which signifies the strength of the relationship.

To determine the app factor most closely related to a specific app, we examine the factor

FIGURE 4.5: App Factors
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FIGURE 4.6: Clustered App Factors

with the highest loading for that app. For example, Uber demonstrates its most pronounced
positive correlation with app factor 3. This suggests that users who frequently use the Uber
app also tend to use other apps or engage in activities associated with App Factor 3. Notably,
Google Maps is also predominantly associated with app factor 3. This alignment between
Uber and Google Maps aligns with real-world usage, as Uber drivers often rely on Google
Maps for navigation when picking up and dropping off passengers.

Conversely, the high-magnitude negative loading of LinkedIn for App Factor 3 suggests
an inverse or negative relationship between LinkedIn usage and the apps or characteristics
represented by this factor. Users who use LinkedIn are less likely to use apps or engage
in activities associated with App Factor 3, and vice versa. This could imply that LinkedIn
serves a different purpose or targets a different audience compared to the apps within App
Factor 3.

4.5 Core Tensor and Factor Relationships
The factor matrices reveal the most common patterns within mobile traffic data concerning
space, apps, and time. Meanwhile, the core tensor helps us understand how these patterns
are connected and how they influence each other. For instance, if we wish to examine how
apps correspond to a specific app factor in both space and time, we can create a slice from the
core tensor by keeping the app factor constant. This slice would form a matrix that illustrates
the connection between space factors and time factors for that particular app factor. Fig 4.7
shows the relationship matrices between the space factors and time factors across different
app factors.

To illustrate the relationship with an example, lets consider the mobile app Uber. From the
fig 4.6, we can see that Uber is more related to app factor 3. To find out how the mobile
traffic profile typically seen for Uber (i.e. app factor 3) in space and time, we can find this
relationship in core tensor. For that, we can take the slice of the core tensor by fixing app
factor equals to 3, we get a matrix having relation between space factors and time factors for
app factor 3 (as shown in fig 4.7 for App Factor 3).

Now, the importance of loadings in the core tensor can be assessed based on their magnitude
and sign. The magnitude of the loadings reflects the strength of the relationship or interaction
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FIGURE 4.7: Space Factors vs. Time Factors for Different App Factors

between the corresponding factors. The sign of the loadings indicates the direction of the
relationship.

If we observe the core tensor slice for app factor 3, the loading associated with the space
factor 3 and Time factor 0 has the largest magnitude with negative sign. It implies that the
space factor 3 has inverse relation with time factor 0 for Uber (App factor 3). In simpler
terms, it suggests that for Uber (App factor 3), space factor 3 is linked to Time factor 0 in
such a way that during late-night to early-morning hours, Uber experiences reduced demand
in areas characterized by high loadings for space factor 3 (highlighted in red). This suggests
that users in these regions tend to request fewer Uber rides during these specific time periods
compared to other locations or times of the day. One possible explanation for this behavior
could be related to the fact that space factor 3 highlights suburban parts of Paris, where there
may be fewer late-night entertainment options like bars, clubs, and restaurants compared to
urban areas. Consequently, this could result in reduced late-night travel for leisure purposes.

From Fig. 4.6, we can also see that Uber has a significant relationship with app factor 2.
Following the same procedure as previously explained, we can extract a slice from the core
tensor by fixing the app factor to 2. In Fig. 4.7, when observing the matrix representing
the relationship between space factors and time factors for app factor 2, we notice that the
loading at space factor 2 and time factor 0 exhibits the highest magnitude with a positive sign.
This suggests that the regions highlighted in red for space factor 2 exhibit a behavior similar
to that of time factor 0, indicating that Uber experiences high demand during the nighttime
hours until the early morning compared to the rest of the day. As mentioned earlier, space
factor 2 includes the regions near the airports of Paris. This mobile traffic behavior may be
attributed to the fact that public transport in Paris is not available from midnight until early
morning, roughly between 01:00 AM and 6:00 AM, which leads to increased demand for
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Uber during these hours.

If we observe highly popular apps like streaming apps (Netflix, YouTube, etc.) and social
media apps (Instagram, Facebook, Twitter etc.) in fig 4.6, they do not exhibit a strong rela-
tionship with any specific app factor. This behavior can likely be attributed to the widespread
use of these apps across different regions and times, making them less influenced by specific
patterns.

If we focus on mobile services which relates mostly to app factor 0, for example, Google
Docs, Dropbox, Skype, and more, and analyze their relationship with the space and time
factors in the core tensor for app factor 0, we observe that the loading associated with space
factor 0 and time factor 0 exhibit the highest magnitude with a negative sign. This suggests
that mobile services attributed to app factor 0 experienced reduced traffic during nighttime as
opposed to daytime. This phenomenon is particularly pronounced in the regions highlighted
in red within space factor 0, which covers a significant portion of the Paris city.

In summary, our comprehensive exploration of mobile traffic data using Tucker decompo-
sition has yielded invaluable insights into the complex interplay of factors influencing mo-
bile usage in Paris. Employing the methodology outlined earlier, one can delve deeper into
understanding how these three factors are interconnected and assess the intensity of their
relationships by examining the loading within the core tensor.
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Chapter 5

Conclusion & Future Directions

In this thesis, we started a comprehensive exploration of mobile traffic analysis in the con-
text of Paris, examining its complex dimensions of space, time, and mobile applications.
Leveraging the powerful Tucker decomposition technique, we aimed to uncover hidden pat-
terns within the mobile traffic data along space, time and mobile services, revealing valuable
insights into the workings of this complex ecosystem.

Our research yielded several noteworthy accomplishments. The Tucker decomposition method
effectively identified latent factors within the three critical dimensions of space, time, and
mobile applications. This allowed us to not only unveil these patterns but also establish con-
nections among them through the core tensor. This capability proved invaluable, enabling us
to conduct in-depth analyses of the relationships between any two factors while considering
the third.

In response to research question:

1. we successfully uncovered latent patterns, often referred to as factors, within each of
the three dimensions: space, time, and mobile applications. Specifically, we identified
7 latent patterns within both the space and mobile app dimensions, as well as 4 latent
patterns within the time dimension.

2. we determined the optimal number of factors for each dimension. For the space and
mobile app dimensions, this optimal number was found to be 7 latent patterns, while
for the time dimension, it was 4 latent patterns.

3. Our research successfully explored the interplay among these latent factors using the
core tensor. This comprehensive analysis allowed us to gain valuable insights into how
these factors relate and influence each other within the mobile traffic data.

However, it’s crucial to acknowledge the challenges and limitations we encountered during
our research. One notable challenge was determining the optimal ranks for the Tucker de-
composition. Without prior knowledge of these ranks, we adopted a brute-force approach,
which, while effective, can be computationally demanding and time-consuming. Addition-
ally, the Tucker decomposition method, unlike Exploratory Factor Analysis (EFA), takes all
dimensions into account simultaneously. This sometimes led to the merging of multiple pat-
terns into a single factor. For instance, we observed instances where commuting and week-
end time patterns were combined within a single time factor, potentially masking specific
insights.
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Looking forward, there are several avenues for future research in this domain. One critical
area of focus should be the development of more efficient techniques for determining the op-
timal rank in Tucker decomposition. Streamlining this process would enhance the method’s
applicability and reduce computational overhead. Moreover, it would be beneficial to explore
advanced algorithms that can disentangle intricate patterns and further refine the granularity
of our analyses.

In conclusion, our investigation into mobile traffic analysis has revealed a wealth of informa-
tion, shedding light on the complex interplay between space, time, and mobile applications.
While challenges remain, our work has laid a solid foundation for future research and has the
potential to contribute significantly to our understanding of mobile traffic behavior in urban
environments.
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