

Master Photonics for Security Reliability and Safety (PSRS)

 SILICON PHOTONICS CHIP FOR TELECOM APPLICATIONS

Master Thesis Report

Presented by

Alberto Otero Casado

and defended at

University Jean Monnet

22nd August 2023

Academic Supervisor: Dr. Carlo Ricciardi, Politecnico di Torino

Host Supervisor: Dr. Paolo Bardella, Politecnico di Torino

Jury Committee: Dr. Carlo Ricciardi, Politecnico di Torino

 Dr. Matthieu Roussey, University of Eastern Finland

I

Abstract

In recent years, telecommunication networks have experienced a drastic increase in

traffic, which calls for the implementation of novel techniques for switching. With

this aim, the design of a state-of-the-art 1 x 3 Wavelength Selective Switch using

Mach-Zehnder Interferometers and Contra Directional Couplers is presented. The

proposed device operates in the S+C+L bands, using 8 channels per band. To

accomplish the device implementation, Silicon Photonics technologies will be

employed. In the process towards its full realization, first, a novel architecture for the

design of the physical layout will be developed. Within it, the band and channel

treating of the signal are performed at specific physical blocks. The next step involves

implementing the design using the OptoDesigner script language, producing the

components that make up the device and placing connections among them. In

summary, the Wavelength Selective Switch presented proposes an innovative

approach and showcases the potential of advanced switching techniques for

addressing the demands of modern telecommunication networks.

II

Table of contents

Abstract ... I

Table of contents .. II

Table of figures ... VII

Acknowledgements ... IX

1 Motivation .. 1

2 State-of-the-art .. 1

2.1 Silicon Photonics .. 1

2.2 Silicon Photonics Platform ... 2

2.3 Design Process and Process Design Kits ... 3

2.4 Silicon Photonic Switches ... 5

2.4.1 Thermo-optic effect ... 5

2.4.2 Electro-optic effect ... 6

2.4.3 Micro-electromechanical systems ... 6

2.4.4 Phase Changing Materials .. 6

2.4.5 Comparison of the approaches .. 6

3 Chip Design Methodology and Component Description .. 7

3.1 Design process: characteristics and elements ... 7

3.2 Fiber couplers ... 8

3.3 Contra directional Couplers ... 8

3.4 Mach-Zehnder Interferometers ... 9

3.5 Electrical control and pads ... 10

4 Layout of the chip ... 11

4.1 Elements of the layout ... 11

4.2 Theoretical block description ... 12

4.3 Ports of the elements ... 13

4.4 Connections between the elements .. 15

4.5 Approach for designing the layout of the WSS device 17

4.5.1 Channel multiplexer/demultiplexer filters and routing 18

III

4.5.2 Band multiplexer/demultiplexer filters .. 19

4.5.3 Complete WSS layout ... 20

5 Design of the WSS components with OptoDesigner .. 23

5.1 Waveguides design ... 23

5.2 CDC design .. 23

5.2.1 CDC parameters ... 23

5.2.2 Implementing the CDC as a building block ... 24

5.3 MZI design .. 27

5.3.1 Phase shift and thermal control of the MZI ... 28

5.3.2 Implementing the MZI as a building block ... 28

6 WSS full design with OptoDesigner .. 31

6.1 Pseudo-elements .. 31

6.1.1 Pseudo-MZI .. 31

6.1.2 Pseudo-CDC .. 32

6.2 Channel blocks ... 33

6.3 Band blocks .. 36

6.4 Connections to terminal ports ... 39

6.5 WSS optical layout .. 40

6.6 Electrical connections for switching ... 40

6.6.1 Electrical pads ... 40

6.6.2 Vias from electrical pads to MZIs ... 41

6.7 Implementation of the full WSS mask .. 44

7 Fabrication of the chip ... 45

7.1 Europractice ... 47

7.2 Imec .. 47

7.3 IHP .. 47

7.4 LioniX .. 47

7.5 IMB-CNM .. 48

7.6 SMART Photonics ... 48

7.7 CORNERSTONE ... 48

IV

7.8 AIM Photonics .. 48

7.9 CEA-LETI .. 48

7.10 LIGENTEC .. 49

7.11 Applied Nanotools .. 49

7.12 VTT .. 49

8 Future Work ... 49

8.1 Potential strategies based on code enhancement 49

8.2 Potential strategies based on hardware enhancement 50

8.2.1 Fano-resonance devices ... 50

8.2.2 Micro-ring resonators .. 50

9 Conclusion .. 51

References .. 53

Appendix A. Introduction to PHIDL library in Python .. 59

A.1 Programming features and elements of PHIDL .. 59

A.1.1 Device() object ... 59

A.1.2 Shapes .. 59

A.1.3 Grouping objects and references ... 59

A.1.4 Layers ... 60

A.1.5 Ports ... 60

A.1.6 Paths and routing ... 60

Appendix B. PHIDL Python Code for the layout ... 61

Appendix C. Introduction to OptoDesigner Script Language 92

C.1 Programming features of OptoDesigner .. 92

C.1.1 Variables ... 92

C.1.2 Attributes ... 92

C.1.3 Classes .. 93

C.1.4 Loops and conditionals ... 93

C.1.5 Functions .. 93

C.1.6 Documentation and Comments ... 93

C.1.7 Functors .. 93

C.1.8 Override Control ... 93

V

C.1.9 Result .. 94

C.1.10 find command .. 94

C.2 Computer-aided design features of OptoDesigner 94

C.2.1 Materials .. 94

C.2.2 Cross-sections ... 94

C.2.3 Elements, Connectors and Ports .. 94

C.2.4 Building Blocks .. 94

C.2.5 Process Design Kit .. 95

Appendix D. OptoDesigner code of single components .. 96

D.1 Mach-Zehnder Interferometer Building Block ... 96

D.2 Contra-Directional Coupler Building Block ... 102

D.3 Pseudo-MZI Building Block ... 110

D.4 Pseudo-CDC Building Block .. 112

Appendix E. OptoDesigner code of the full WSS design .. 115

Appendix F. Statement of non-plagiarism ... 141

Appendix G. Supervisor approval ... 142

Appendix H. Copyright of the figures ... 143

Figure 1 ... 143

Figure 2 ... 143

Figure 3 ... 143

Figure 4 ... 143

Figure 5 ... 143

Figure 6 ... 143

Figure 7 ... 144

Figure 8 ... 144

Figure 9 ... 144

Figure 11 ... 144

Figure 12 ... 144

Figure 13 ... 145

VI

Figure 14 ... 145

Figure 15 ... 145

Figure 16 ... 145

Figure 17 ... 145

Figure 18 ... 146

Figure 19 ... 146

Figure 20 ... 146

Figure 21 ... 146

Figure 22 ... 146

Figure 23 ... 147

Figure 24 ... 147

Figure 25 ... 147

Figure 26 ... 147

Figure 27 ... 148

Figure 28 ... 148

Figure 29 ... 148

Figure 30 ... 148

Figure 31 ... 149

Figure 32 ... 149

Figure 33 ... 149

Figure 34 ... 149

Figure 35 ... 150

Figure 36 ... 150

Figure 37 ... 150

Figure 38 ... 151

VII

Table of figures

Figure 1. Evolution of the number of components within PICs [7]. _______________ 2

Figure 2. Physical component design process flow. __________________________ 4

Figure 3. Electronic design automation process flow. _________________________ 5

Figure 4. CDC schematic. ___ 9

Figure 5. Diagram illustrating the operation of a Mach-Zehnder interferometer. __ 10

Figure 6. Schematic of the electrically controlled heaters applied to a MZI. (a) Parallel

heater with perpendicular electrical lines layout. (b) Perpendicular heater with

continuing electrical lines. ___ 11

Figure 7. Working sections of the WSS chip. _______________________________ 12

Figure 8. Schematic description of the sections of the WSS chip at channel level. __ 13

Figure 9. Ports of the CDCs for (a) demultiplexing and (b) multiplexing. _________ 14

Figure 10. Port layout schematic for a single MZI. ___________________________ 14

Figure 11. Ports of the cascaded MZIs (a) as the ports of each MZI and (b) as the ports

of the single block. ___ 15

Figure 12. Port schematic of the elements of the WSS chip (with only one

multiplexing network linked to the output port P1). _________________________ 17

Figure 13. Channel blocks used for the design of the chip (simplified layout). (a)

Leftmost channel block without output channel CDCs and its connections to the next

channel. (b) Channel block with 3 output channel CDCs. _____________________ 19

Figure 14. Band block present on the middle of the WSS chip (simplified layout). _ 20

Figure 15. Band block present on the right of the WSS chip (simplified layout). ___ 20

Figure 16. Simplified layout of the WSS device. ____________________________ 21

Figure 17. True layout of the WSS device. _________________________________ 22

Figure 18. CDC BB implementation of the 1st CDC trial (prior to boxing) in Appendix D,

with inputs defined in Table 4. __ 25

Figure 19. CDC BB implementation for the 2nd CDC trial (boxed) in Appendix D, whose

CDC input parameters are defined in Table 4 and Table 5. ____________________ 26

Figure 20. Example of CDC responses for the S, C and L bands. ________________ 27

Figure 21. Schematic of the geometrical characteristics of the MZI. ____________ 28

Figure 22. MZI BB implementationI, with input parameters defined in Table 7, prior

to boxing. __ 29

Figure 23. MZI BB implementation, with input parameters defined in Table 7, after

boxing. __ 29

Figure 24. MZI BB implementation, with input parameters defined in Table 7, boxed

and with heating included. ___ 30

Figure 25. Example of a pseudo-MZI. ____________________________________ 32

Figure 26. Example of a pseudo-CDC. ____________________________________ 33

Figure 27. Initial channel block (of the first band block). _____________________ 34

Figure 28. Middle channel block (of the first band block). ____________________ 35

Figure 29. Final channel block (of the first band block). ______________________ 35

Figure 30. Initial band block. ___ 37

Figure 31. Middle band block. __ 38

VIII

Figure 32. Final band block. __ 38

Figure 33. WSS chip optical layout. ______________________________________ 40

Figure 34. WSS chip electrical connections layout. __________________________ 42

Figure 35. Full mask layout of the designed WSS chip. _______________________ 45

Figure 36. Mask layout of the designed WSS chip with pseudo-MZIs and pseudo-

CDCs. ___ 45

Figure 37. Implementation of a 4-ring resonator through a two-stage ladder with a

parallel heater. __ 51

Figure 38. Implementation of a 4-ring resonator based on Bragg grating through a

two stage ladder with a perpendicular heater. _____________________________ 51

IX

Acknowledgements

I am very grateful to the PSRS consortium and their professors for the valuable

knowledge and the incredible opportunity that this master represents. I am also very

grateful to professor Paolo Bardella for his priceless support and all the skills

transmitted to me.

I would like as well to express my gratitude to my classmates during these two years,

for the good times, experiences and all the valuable insights that I have learned in

their company. Special thanks to Francisco Matos, Héctor Jair Morales, Fernando

Engels and Md Imtiaz Sultan.

Tambien gracias a mi padre y a mi hermano por su apoyo desde siempre. Y por

último muchas gracias a mi madre por su apoyo, cariño y comprensión durante toda

mi vida y especialmente en estos últimos dos años de mi etapa educativa.

Silicon Photonics Chip for Telecom Applications

1

 Motivation

The goal of this thesis is the design of the realization mask (GDSII) of a complete

silicon photonics switch for new telecommunication networks. These switches

present broad applications in networks and optical communications, high-throughput

computing, and similar concepts may be also used in more diverse areas such as

sensing. Key requirements are low power consumption, wide bandwidth, and

reduced footprint [1,2]. Indeed, the amount of data passing through

telecommunication networks has dramatically increased over the past few years,

leading to the need for improved systems to handle all this information. To do so,

bandwidth scalability plays a fundamental role and the throughput must increase: in

this scenario, silicon photonics (SiPh) is an excellent candidate, due to its suitability

the complementary metal-oxide-semiconductor (CMOS) and its low power

consumption [2,3,4,5]. Furthermore, optical switches avoid the need to perform

optical/electrical and electrical/optical conversions, which expand problems such as

the reduction of the bandwidth, an increased demand for energy, further delays, and

higher costs [3,6].

There are several technologies for the fabrication of waveguides and passive and

active components for Photonic Integrated Circuits (PICs), which includes materials

such as Silicon, silicon compounds such as Silicon Nitride (SiN) and Silicon Dioxide

(SiO2), and III-V semiconductors. In any case, Silicon is arguably the most prominent

due to its lower cost, the wide availability and the high quality of foundries working

with the technology. [7,8,9]. Furthermore, by using this technology there is also

enough availability of Multi-Project Wafer (MPW) run options, which prove

important for research purposes and small-scale productions. Some of these are

located in Europe, and can be easily reached for the purpose of this project, such as

CEA-LETI, ePIXfab and Europractice [9,10].

 State-of-the-art

2.1 Silicon Photonics

Over the last decades, SiPh has emerged as a promising technology to develop PICs

using CMOS processes [3]. It comprises the “generation, routing, modulation,

processing and detection of light” [11]. It is being developed to satisfy the needs of

the telecom industry, due to its high throughput, bandwidth, low cost, and the

existence of already developed CMOS processes that are compatible with SiPh

[2,3,10]. Firstly, SiPh was used for sensing applications but by the late 2000s, it

started to be commercialized as integrated circuits (IC). In the following decade, new

applications were developed in the form of PICs [10,12]. This has been possible due

to a great development of the technology behind it, which has allowed a stronger

integration of components over time and a higher integration level, as shown in

Figure 1 [7,13].

Silicon Photonics Chip for Telecom Applications

2

Figure 1. Evolution of the number of components within PICs [7].

Although photonics integration presents a promising future, there are still some

disadvantages when compared to microelectronic integration. The building blocks

(BB) used in PDKs are still much larger than the microelectronic ones, and the optical

power amplifiers consume more power than transistors, even if it is less than what

consumed by microelectronic operational amplifiers [14].

There are several materials that can be used alone to develop PICs: Silicon (Si),

Indium Phosphide (InP) or Gallium Arsenide (GaAs) are examples of this, although not

the only possibilities. Another possibility consists of integrating different material

technologies into single PICs (hybrid and heterogeneous integration). In any case, the

use of SiPh provides a lower cost and reduces waveguide loss, which may change

from 0.1 dB/cm in Si to more than 1 dB/cm for GaAs and InP. Thus, by using Si the

need of power can be decreased [1,7,8,13]. It is also important to notice that the use

of SiPh may be restrained to certain wavelengths, between 1.1 µm to 4 µm; in

comparison to other materials such as SiN that possess a transparency window from

400 nm to 4 µm [11,15].

2.2 Silicon Photonics Platform

Due to its compatibility with CMOS fabrication technologies, the development of SiPh

chips is easier and cheaper with respect to other technologies [2,13]. SiPh

development is normally based on Silicon-on-Insulator (SOI) technologies, although

under a broader definition it includes other technologies such as Silicon Nitride-on-

Insulator. This definition of SiPh relies on every material that is able to make use of

the existing CMOS methodologies [10,16].

Silicon Photonics Chip for Telecom Applications

3

There are two distinctive types of open-access SOI technologies, namely sub

micrometer SOI and thick SOI. These two are classified according to the thickness of

their guiding layer, belonging to thick SOI if it is larger than 1 µm and to sub

micrometer SOI if it is in the range of 220 nm to 500 nm. The latter is nowadays the

most commonly produced flavor of SiPh, and it offers the possibility for small

bendings, up to 5 µm radius [10,17].

For SOI technologies there is currently an investigation on whether laser sources can

be embedded within the PICs. To do so, it has been proposed to perform selective

epitaxial growth of a III-V cavity in the SOI substrate. Another possibility consists of

adding laser sources by using heterogeneous integration [16,18,19].

Since CMOS technologies are well-established within the semiconductor fabrication

industry, there are several foundries and Integrated Device Manufacturers (IDM) that

already produce SiPh PICs, and also different MPW providers. The latter are of special

importance for academic purposes, because of a good compromise between price,

small-scale production, and adaptability of the design. On these, the fabrication mask

and the cost are shared among different clients, which all have a reduced portion of

the wafer. The chips provided are normally sized between 10 mm2 to 50 mm2,

although some companies such as LioniX offer larger areas [11,20]. Their price is of

about 1000$/mm2 However, the waiting times to develop chips using MPW runs may

be of about 3 to 12 months, which adds difficulty for short-timed projects [10,12,17].

2.3 Design Process and Process Design Kits

To use the SiPh platforms Process Design Kits (PDKs) are given from the

semiconductor fabrication facilities (fabs) to users. These contain the blocks to be

used and information about the process followed, including as well the capabilities to

verify the design and circuit simulations [12,21]. Nowadays there are no libraries

used as a standard for the SiPh industry, and thus each fab presents its own solutions

that may differ from one to another [10,21]. In recent times, there has been an effort

between semiconductor fabs and design tool developers to develop libraries and

Process Design Kits (PDKs) associated with their respective open-access technologies.

By doing so, the accuracy and reliability of PICs is enhanced due to the possibility for

developers to simulate and refine the performance of PIC designs prior to fabrication

[21].

Two different flows for performing the design of the PICs are commonly used

nowadays. The first is traditionally used and consists on designing the chip based on

creating first the physical components based on a certain geometry for the materials.

Hence, it will be referred to as the physical component design process flow. The

obtained geometry will be optimized and later, an electromagnetic modelling

technique will be applied to know the behavior of the component. After this it is

possible to either define this component as a BB within a PDK or to merge several of

these components and to perform an optical simulation for the response between

the ports of the full design. If the second approach is used, once it is done, the full

Silicon Photonics Chip for Telecom Applications

4

design can be defined as a BB of a PDK. Following it, the circuit layout is generated by

connecting the BBs hierarchically, which consist of a cell rather than a specific

geometry. Finally, this generated layout follows verification, where the layout is

checked in search of possible errors and violations of the design rules given by the

fab [21,22]. A schematic of the steps followed by the physical component design

process flow can be seen in Figure 2.

The second is an emerging process flow which is based on electronic design

automation. Hence, it will be referred to as the Electronic Design Automation (EDA)

process flow. It is based on using the already built BBs of a PDK to form a logical

circuit, in which the components are connected to the others forming a specific

topology. After forming it, a circuit simulation is completed, where the behavior of

the circuit is characterized for all the elements. Now, if the simulation is satisfactory,

we may proceed to create the circuit layout from the schematic, by hierarchically

attaching the BBs. Now, the packaging is applied to the layout, which may change the

properties of the circuit. Last, a verification process is applied, checking the physical

layout properties, whether its behavior is correct and if it follows what described on

the schematic [21]. For better comprehension, the steps followed by the electronic

design automation process flow can be seen in Figure 3 as a schematic.

Figure 2. Physical component design process flow.

Silicon Photonics Chip for Telecom Applications

5

Figure 3. Electronic design automation process flow.

2.4 Silicon Photonic Switches

Switches are devices capable of establishing desired connections from certain inputs

to certain outputs. For the case of optical switches, the basic blocks most commonly

used to design them are micro-ring resonators (MRR), Mach-Zehnder

interferometers (MZI), a combination of both MMRs and MZIs, and micro-electro

mechanical systems (MEMS) waveguide couplers [1,3].

The MRR is a resonant device, which offers a wavelength selective filtering feature. In

its simplest configuration, it is made by placing very closely a ring-shaped and two

linear waveguides [1,2]. The MZI consists of an interferometer which splits the input

signal into two different paths to later recombine them. By controlling the phase

difference between the two branches we are able to perform the switching [1]. Last,

MEMS are specific devices made of waveguides that are subject to mechanical

forces, being able to change its geometry [2,9]. MRRs present a more promising

approach than MZIs because of their smaller footprint, and lower power

consumption, but they also present disadvantages such as a narrow bandwidth and

temperature susceptibility. The combination of MRR and MZI is still being studied,

but currently it still presents a narrow bandwidth and large insertion loss [1].

Within the SiPh switches we may distinguish four diverse approaches for design. We

may develop the switch utilizing the thermo-optic effect, use the electro-optic effect,

employ phase-changing materials (PCM), or make use of MEMS [1,6].

2.4.1 Thermo-optic effect

The thermo-optical (TO) switches shift the phase of the waves travelling through a

waveguide due to its heating. To do so, a resistive heater is placed along the

waveguide, raising its temperature [6,23]. The phase delay experimented by any

material can be described by Eq. (1):

Silicon Photonics Chip for Telecom Applications

6

𝛥𝜙(𝜆, 𝑇) =

2𝜋

𝜆
𝛥𝑛(𝑇)𝛤𝐿 (1)

where 𝜆 corresponds to the wavelength of the signal, 𝛥𝑛(𝑇) is the temperature-

dependent refractive index change of the material, 𝛤 is the optical confinement

factor of the waveguide, and 𝐿 is the length of the heated section of the waveguide

[6].

2.4.2 Electro-optic effect

The electro-optic (EO) switches change their phase shift due to the carrier dispersion

effect. By applying currents to intrinsic Si, a positive-intrinsic-negative junction (PIN)

is formed, and the carrier dispersion effect is induced. This one will change the

refractive index along the PIN junction [1,6]. Another type of EO switches may be

based on the Kerr, Franz-Keldysh and Pockels effect. The first and second ones are

negligible in comparison to the carrier dispersion in Silicon, while the Pockels effect is

absent, so only the carrier dispersion effect will be studied for Si [3,24].

2.4.3 Micro-electromechanical systems

MEMS function by moving or deforming the waveguides, so that there is a change of

phase at the end of the waveguide. It can be performed by applying a compressive or

tensile force to the material, which may induce absorption and a change in the

refractive index. It can also be performed by stretching or elongating, which in fact

has the effect of a compressive or tensile force, adding a shift of phase due to a new

relative position of the output port of the waveguide. Finally, it can also be

performed by the displacement of a slab of the material, which changes the field

mode in the waveguide, generating a field profile change [2 ,9].

2.4.4 Phase Changing Materials

A different approach consists of adding new material to the silicon-integrated optical

switch, which presents huge changes of their optical properties when an external

stimulus is applied. The most commonly used PCMs in Si switches are vanadium

dioxide (VO2) and Ge2Sb2Te5 (GST). [1]

2.4.5 Comparison of the approaches

The different approaches presented also have different characteristics when applied.

Between these distinctive characteristics, there are certain key parameters that help

to choose the approach for the tuning method, such as the power consumption, the

footprint of the device and the speed of tuning. For a better comprehension, Table 1

presents a comparison between distinct approaches to obtain a SiPh switch at usual

telecommunication wavelengths [1,9].

 Power
Consumption

Footprint Speed Limitations

TO -- + - Footprint
limited by

Silicon Photonics Chip for Telecom Applications

7

inner
characteristics

EO + ++ ++ High optical
losses

MEMS ++ + -

PCM ++ + + bad
wavelength
selectivity

Table 1. Comparison of different approaches to SiPh switch designing.

The EO method presented refers to the carrier dispersion effect. Its main limitation

are the optical losses, which are higher when compared to other methods. It is faster

than the others, being the tuning speed placed in the order of the nanoseconds and

picoseconds generally [1]. The TO approach presents the highest power

consumption, due to the need of heating [23]. Its footprint is limited by the thermo-

optic coefficient and the crosstalk between adjacent devices [9]. The MEMs are a

good approach in terms of power consumption because they mainly need the supply

when a mechanical action is happening. If no mechanical action is happening the

consumption is minimal, just caused by current leakages [9]. Regarding PCMs,

although they present good overall characteristics in terms of power consumption,

footprint, and speed, they cannot be used for wavelength division multiplexing

(WDM), due to a short wavelength selectivity [1].

 Chip Design Methodology and Component Description

3.1 Design process: characteristics and elements

The scope of this project is to design the mask of a Silicon Photonics Chip for

Telecommunications, specifically a Wavelength Selective Switch (WSS). To

accomplish it, firstly an approximate layout with the connections and the positioning

of the single elements will be developed using the PHIDL library from Python, which

allows to create layouts as Graphic Design System (GDS) files. The library is

particularly useful for that stage, because it simplifies many of the low-level layout

details, making easier to focus on the design, rather than in the single components. It

also allows for a robust positioning of the elements, even if changes are introduced.

Later, to perform the mask realization, the software OptoDesigner from Synopsys will

be used, which allows for Photonics Integrated Circuit (PIC) Design using a

proprietary programming language. Among the multiple benefits of using this

software we find that it allows for wide access to different technologies and there

are many supported foundries PDKs, being widely recognized and used in the

semiconductor fab industry [26].

The designed chip will need to fulfill specific characteristics. First, it will need to

operate in the region comprising the S-band (1460-1530 nm), C-band (1530-1565 nm)

and L-band (1565-1625 nm) [27]. The chip will receive in input from a single optical

Silicon Photonics Chip for Telecom Applications

8

fiber 24 channels with 100 GHz spacing, 8 in the S-band, 8 in the C-band and 8 in the

L-band. Through a proper design and connection of Mach-Zehnder interferometers

and directional couplers, the 24 signals will be programmatically routed to 3 output

fibers, implementing therefore a non-blocking multi-band fully optical switch. The

interferometers and couplers have been designed by the research group in

Politecnico di Torino.

To perform the full design of the chip layout given the design specifications, several

designs of individual components and groups (“blocks”) of components will be done

independently. After the design of all of these, they will all be connected to obtain

the full mask. Therefore, the full design will be composed of the following

components: Fiber couplers to act as the input and outputs of the circuit; electrical

control and pads to decide and perform the switching; MZIs which split the signals

according to their wavelengths; and CDCs based on Bragg grating, which are used for

multiplexing and demultiplexing the signals.

3.2 Fiber couplers

Fiber couplers are needed in order to connect the WSS chip to its input and output

ports, as well as testing ports. The reason these are used for fiber-to-chip coupling is

because it significantly reduces the losses from fibers to waveguides, delivering the

most of the power from one side to the other. For an optimal coupling, the size and

geometry of the elements, the fundamental modes supported, the index difference

and the optical alignment need all to be taken into account [28]. There is a critical

angle that defines the last angle 𝜃𝑎 at which there is optical alignment, which takes

into account the index differences between the two different waveguides. This, along

with the coupled-mode theory can be calculated and implemented in order to

improve the coupling. [29].

3.3 Contra directional Couplers

CDCs will be used in order to filter the signals, as band-pass filters. Using several of

them, we are able to obtain all the 8 channels within the 3 used bands (S+C+L optical

telecommunication bands).

The CDCs are components formed by two asymmetric waveguides placed closely to

each other, allowing coupling between them [30,31]. These two waveguides are

specifically grating-assisted couplers, which means that the waveguides exhibit a

serrated profile, featuring corrugations along their surface. The period of the profile

(pitch) will not necessarily be constant, as it might slightly increase throughout the

waveguide. The difference between the last and first pitches is called chirp, and it will

not be null on the CDCs used for band filtering. To better understand CDCs, a

schematic can be seen in Figure 4. For the CDCs, 𝑊1 and 𝑊2 are the width of the two

waveguides, Δ𝑊1 and Δ𝑊2 represent the widths for the corrugations of the two

waveguides, 𝛬1 and 𝛬𝑛 are the periods of the first and last pitches, Δ𝛬 is the chirp, 𝐺

is the gap between the teeth of the two waveguides and L is the length of the CDC

[31].

Silicon Photonics Chip for Telecom Applications

9

Figure 4. CDC schematic.

CDCs couple light for a selected wavelength from one waveguide to the other, with

opposite directions [32]. Unfortunately, symmetrical waveguides cause side lobes, so

in order to avoid it a technique called apodization might be used. This technique

consists on changing the pitches along the waveguides, to obtain the chirp. By doing

so, the effective refractive index and the coupling coefficients are changed, and

therefore the wavelengths belonging to other channels are further attenuated.

[30,31,32].

To calculate the necessary pitch for the grating we can use Eq. (2) which depends on

the central wavelength of the band-pass filter (𝜆𝐷). The other terms on this equation

are 𝑛𝑒𝑓𝑓,1 and 𝑛𝑒𝑓𝑓,2 which correspond to the effective refractive indices of each

waveguide [30].

𝛬 =

𝜆𝐷

𝑛𝑒𝑓𝑓,1 + 𝑛𝑒𝑓𝑓,2
 (2)

3.4 Mach-Zehnder Interferometers

In this project, the MZIs are used after demultiplexing to split a multichannel input

signal into two different signals defined by their wavelength and select one of them.

This is possible due to the fact that by varying the optical path difference it is possible

to concentrate all the power of a particular optical frequency into one of the outputs

[25]. In this case, both the geometrical paths of the MZI are symmetrical, so in order

to introduce phase delay, the thermo-optic effect will be applied to a section of one

of the paths. This effect is described by Eq. (1) and as we can see, it is dependent on

the wavelength.

A diagram illustrating the operation of the MZI is presented in Figure 5. In it, an input

beam is split into two different paths. The light passing through both arms will

endure different phase shifts, leading to an optical delay (𝛥𝛷) between the two

arms. At the second beamsplitter, the light reflecting from one path and the one

transmitted from the other path will merge and produce interference. There will be

Silicon Photonics Chip for Telecom Applications

10

two interferences made by the light from the two paths: one travelling to one

detector and another travelling to another detector. The phase delay between the

waves going to one detector and the other equals to 𝜋 radians, so by adjusting 𝛥𝛷

we may find a value such that the interference is destructive on one side and

constructive on the other [33]. Another way to obtain this result is using quantum

mechanics. By doing so, it will be seen that for a photon entering the MZI, the

probabilities of watching them at the two detectors are respectively the square sine

and square cosine of half the phase shift [34].

Figure 5. Diagram illustrating the operation of a Mach-Zehnder interferometer.

3.5 Electrical control and pads

Apart from optical elements, there are present electrical circuits, whose function

within the chip consists of controlling the switching of the MZIs. To do so, electrical

pads will be connected to heaters, being these heaters closely placed to one of the

arms of the MZI. When a voltage is applied between the electrical pads, current will

flow through the heater, increasing its temperature, and thus, by means of the

thermo-optic effect, adding a phase delay between the two arms. By controlling the

voltage difference, we may control the MZI in such a way that for a certain

wavelength the output power is all concentrated on one output, while being null on

the other.

For the heaters there are several materials that might be used, such as Tungsten,

silicide, and doped silicon [35].

Two different approaches had been proposed and studied to produce phase shift. In

both cases the electrical heater will be placed above the element to which the phase

shift is going to be applied. The first approach consists of a parallel line to the

Silicon Photonics Chip for Telecom Applications

11

element whose refractive index needs to be changed, with perpendicular arms for

the electrical connection, but parallel among them. The second approach consists of

a simple line made by the electrical lines and a small heater on top of the element

whose phase will be shifted. The electrical lines would enter and exit from opposite

sides. Both the cases are represented schematically in Figure 6: (a) and (b)

respectively. For the design of the WSS, the first approach will be used since it is in

close contact to the optical phase shifting element for longer, thus requiring a

smaller current. The second one could be used in other conditions with thick equal to

the length of the element in which the phase shift is developed, but due to a high

number of elements, it cannot be implemented in this manner for the WSS chip.

Figure 6. Schematic of the electrically controlled heaters applied to a MZI. (a) Parallel heater

with perpendicular electrical lines layout. (b) Perpendicular heater with continuing electrical

lines.

 Layout of the chip

Back to the design of the chip, it becomes important to find and design the full layout

of the integrated circuit, since it contains a substantial number of different elements

interconnected. For the design of the layout 2 rules will be followed:

1. The area of the chip should be minimized.

2. The number of waveguide crossings should be minimized.

4.1 Elements of the layout

To compose the full circuit the following elements will be used:

- Mach-Zehnder interferometers (MZIs), which are approximately 500 μm

length and 6 μm width.

- Contra directional couplers (CDCs) for the bands, which are approximately

1500 μm length and 6 μm width.

- Contra directional couplers (CDCs) for the channels, which are approximately

900 μm length and 6 μm width.

Silicon Photonics Chip for Telecom Applications

12

- Fiber couplers for the input, output, and testing ports, which have exactly

127 μm separation among them. Their size is 35.603 μm x 22.152 μm.

while the elements used for connections are:

- Straight optical fibers to connect the elements, whose width is approximately

0.5 μm.

- Curved optical fibers, whose width is assumed to be the same as the straight

ones. The radius of the curves (to the center of the fiber) is fixed to 5 μm to

reduce the propagation losses of the optical signal.

- Crossings between waveguides.

Between the inserted components an empty space of 5 μm is introduced in order to

reduce coupling effects. Crossings impose an even further distance to minimize

optical losses: in this case an empty space is required within a square of 20 μm length

centered at the middle point of the crossing.

Also, the elements to be connected (CDCs and MZIs) have specific port positions,

which must be considered to design the layout correctly.

4.2 Theoretical block description

The designed chip will be capable of working with 3 bands, each of them containing 8

different channels. Thus, there will be 24 channels in total. The 8 channels within a

band must be connected one to another, and the same for the bands. It is important

to note that not all channels and bands are the same, containing different elements

ones from others.

Apart from the band and channel description, the elements and blocks of elements

are assigned distinct functions within the system. Namely, there will be 3 sections

performing contrasting functions: one for filtering the bands and channels, by

demultiplexing the signals, another for switching between them and lastly a

multiplexing one to choose the desired outputs, as shown in Figure 7.

Figure 7. Working sections of the WSS chip.

Silicon Photonics Chip for Telecom Applications

13

These 3 different sections and their inner elements are better described in Figure 8,

where the elements for the demultiplexing, switching and multiplexing sections and

their connections are shown for each channel. These will form networks within the

chip that will perform a specific function for the different channels. Since we have 3

different fiber outputs, there will be 24 channel networks for multiplexing and

demultiplexing.

Figure 8. Schematic description of the sections of the WSS chip at channel level.

4.3 Ports of the elements

To connect the elements in OptoDesigner, we need to consider the position of the

ports. The CDCs for multiplexing and demultiplexing will present diverse directions of

the input and output signals, and the connections to the rest of the schematic will be

different as well. The contra directional couplers for demultiplexing (input CDCs)

possess an input port (denoted as IN), a drop port (DP) and a through port (TH), being

this last one described as the difference between the input and the drop (i.e.

𝑇𝐻𝑑𝑒𝑚𝑢𝑥 = 𝐼𝑁𝑑𝑒𝑚𝑢𝑥 − 𝐷𝑃). On the other hand, the contra directional couplers for

multiplexing (output CDCs) have an input, add (denoted as AD) and through ports,

being this last one described as the sum of the two other ports (i.e. 𝑇𝐻𝑚𝑢𝑥 =

𝐼𝑁𝑚𝑢𝑥 + 𝐴𝐷). To represent this, descriptive schematics of the ports of both the input

and output CDCs are shown in Figure 9.

Silicon Photonics Chip for Telecom Applications

14

 (a) (b)

Figure 9. Ports of the CDCs for (a) demultiplexing and (b) multiplexing.

The MZIs used for switching also present a specific port layout. There are 4 different

ports in each of these, and they are given the same names as the ones for the CDCs.

For this specific project, 3 of them will be used, namely the input port (IN), the

through port (TH) and the drop Port (DP). These two output port are complimentary,

and again the input signal is divided between the two ports (i.e. 𝐼𝑁 = 𝑇𝐻 + 𝐷𝑃). The

schematic describing the ports and its positions within a single MZI is given in Figure

10. Since the power at the output might be controlled by changing the phase shift, it

will be tuned accordingly so that the full input power emerges only in the desired

output port. This makes the choice of the output ports arbitrary, since different

tunings might give the same output if the ports are reversed.

Figure 10. Port layout schematic for a single MZI.

Silicon Photonics Chip for Telecom Applications

15

In this project, MZIs come in pairs of 2, to perform switching between 3 different

channels, by cascading one MZI to the other. As it was previously said, the decision

made to assign the ports is arbitrary, and in this case it will be chosen that the DP

port of the first MZI connects to the IN port of the second MZI. If we define these two

cascaded MZIs as a single block for switching, it will present an input port to a

channel demultiplexer (denoted as IN), three other port connections to 3 different

channel multiplexers (denoted as P1, P2 and P3) and an interconnection between the

two MZIs (denoted as IC1 and IC2). These connections of the ports of the single MZIs

within the block and the ones as a full block are shown in Figure 11.

 (a) (b)

Figure 11. Ports of the cascaded MZIs (a) as the ports of each MZI and (b) as the ports of the

single block.

4.4 Connections between the elements

Now that all the elements of the chip and its ports have been defined, we may start

to describe the connections and the ports that are used to link all the different

components. To connect all these components, we must look at how the structures

connect. Based on the description made on the 4.2 section, it can be seen that the

input port is first connected to the S-Band CDC filter, which connects in cascade to

the C-Band and L-Band filters, as seen in Figure 7. To do so, and since these 3 are

demultiplexers, they are connected through the input port to the previous band CDC

while the previous is connected using the TH port (For the S-Band CDC, the Input port

connects to the Input port of the full WSS chip). These 3 band CDCs are respectively

connected each to a channel CDC demultiplexer using their DP port (Linked to the

Input port of the first channel CDC). Meanwhile, these channel CDCs are connected in

cascade to another seven of them. The connection ports are IN when linked to the

previous one and TH when connected to the next one.

Then, for the switching section, each one of the channel CDCs is connected to a block

of cascaded MZIs through its DP port, while the port used by the MZIs pair is the IN

one.

Now for the multiplexing section, all the three outputs of the MZI pairs (P1, P2 and

Silicon Photonics Chip for Telecom Applications

16

P3) are connected to identical but independent networks. Basically, the first pair of

MZIs belonging to channel #1 is connected to the input port of a channel CDC

multiplexer, which is in turn connected in cascade to the IN ports of another six of

them by using the TH port. Each one of these will also be connected to the output of

the next pair of MZIs through their AD port. After including these 3 channel

multiplexing networks, it becomes necessary to merge them. To do so, 2 band CDC

multiplexers will be used. The TH port of the last channel CDC multiplexer within the

network attached to the L-Band demultiplexer will present a connection to the IN

port of the first band demultiplexer. Similarly, the TH port of the last channel

demultiplexer linked to the middle band multiplexer will connect to the AD port of

this first band multiplexer. Also, its TH port is connected to the input of the second

band multiplexer, and the TH port of the branch linked to the first CDC band

demultiplexer connects to the AD port. Finally, the TH port of this last multiplexer

goes to an output port of the WSS chip.

Because of the difficulty of the connections, a schematic showing the port diagram of

the different elements is present in Figure 12. To improve the readability and

understandability, the networks connected to P2 and P3 for the different pairs of

MZIs are not present. In any case, they present the exact same connections and ports

as the one for P1, these three networks being independent between them.

Silicon Photonics Chip for Telecom Applications

17

Figure 12. Port schematic of the elements of the WSS chip (with only one multiplexing network

linked to the output port P1).

4.5 Approach for designing the layout of the WSS device

Now that the approximate measures of all the optical elements and the connections

between them have been defined, a specific approach is proposed towards designing

the chip, following the rules defined earlier at the beginning of this section. By

following this approach, an approximation of the final layout will be presented. The

reason behind this approximation is that the components that make up the WSS chip

may slightly vary depending on the characteristics of the chip. Therefore, by creating

an approximation of this layout, it can be later tuned with minimum changes to

perform its functions, while still presenting the same shape. To represent the

approximate layout, the PHIDL library from Python is used. The full code and the link

to this library can be found on Appendix A. Using it, the single components will be

placed and connected to each other, with the only need of knowledge of the relative

port positions among them within the components. Furthermore, its user-

friendliness and its ability to rapidly create and manipulate geometries make it a

good choice to start approaching the layout design.

Silicon Photonics Chip for Telecom Applications

18

The connection of the different elements can be made by connecting smaller

networks to one another. In this work, firstly the channel networks will be designed,

containing each the demultiplexing, the switching and the multiplexing part of a

single channel. Eight of these will be connected to make a band network and three of

these band networks plus its connections to the ports will be finally linked to create

the full layout of the WSS chip.

In order to minimize the area, and to ensure similar component properties with

respect to growing issues on the Si substrate, it is proposed to place all the CDCs and

MZIs along the same direction (it will be said to be vertically because of the relative

position within the GDS file), with one channel CDC on top of a MZI, which is also on

top of another channel CDC, summing 2300 μm plus the connections and necessary

spaces. This will be the measure restricting height. Now, for the case of the band

CDCs, they will be placed alone, one after another (horizontally) because of their

huge length (1500 μm). This way we can combine horizontally the band CDCs and the

channel blocks to complete the full layout. Using this type of layout, the chip size

from top to bottom is of 2449.5 μm and 1980.25 μm from right to left, so the total

area needed to build the chip would be 4.85 mm² approximately.

For the representation of the layout, CDCs and Mach-Zehnder interferometers are

replaced by simplified shapes (rectangles). Moreover, two different full designs have

been created: one with the real measures of all the elements and a simplified version

with smaller measures for the elements. In this last version, the height of the channel

CDCs and MZIs has been reduced to 50 μm to make it easier to see the relative

position of the elements when compared to the others, and allow for a debug of the

connections. Band CDCs have been set to 170 μm to keep a good balance between

aspect ratio relation to the channel CDCs and its correct position without any further

connections. Last, the separation distance between the ports has been set to 30 μm.

It is important to notice that the simplified version will be represented for the

visualization of the different smaller structures that compose the full WSS chip, due

to its nature, which greatly simplifies visualization.

Due to the complexity of the design, smaller blocks will be developed, and they will

finally be merged in order to obtain the full WSS design. There will be 3 diverse

blocks, representing the filtering and switching of the single channels and that of the

bands.

4.5.1 Channel multiplexer/demultiplexer filters and routing

The channel blocks are physical components which handle the signal contained in a

single channel. It performs the demultiplexing, switching and multiplexing for any

single channel. Of these blocks, we must distinguish two distinct types. The

differences between them are the presence of multiplexers after the switching stage,

as shown in Figure 13. The channel block without multiplexers is used for the first

channel of a band, since the signal that will be passed to the next channel block is the

only one at that point, and thus there is no need for multiplexing signals. This block is

simpler and due to this simplicity, it does not require the use of crossings. On the

Silicon Photonics Chip for Telecom Applications

19

other hand, the second one will need them due to a more complex layout. It presents

output band CDCs (multiplexers) due to the possibility of having to merge two

different signals, and thus it is present for all the channels within a band except for

the first one.

 (a)

 (b)

Figure 13. Channel blocks used for the design of the chip (simplified layout). (a) Leftmost

channel block without output channel CDCs and its connections to the next channel. (b)

Channel block with 3 output channel CDCs.

4.5.2 Band multiplexer/demultiplexer filters

The band block, is the analogous of the channel block, but with respect to the bands.

It performs the demultiplexing and multiplexing of the single bands. Regarding the

physical layout, it contains 8 channel blocks, which have on their left side the input

band CDC, while on its right there are the 3 output band CDCs. The 8 channel blocks

are not the same, being the first on the left the same as the channel block shown in

Figure 13(a) is present, while the rest of them are as the one shown in Figure 13(b).

This first one has its input channel CDC connected to the input band CDC on its left,

while the output CDCs of the last channel block are connected to the output band

CDCs to its right.

It is important to notice that again there are two diverse types of connections

groups: one present on the left and on the middle, which contains the output band

CDCs for multiplexing; and another to the right which does not contain these CDCs.

These two different band blocks can be seen in Figure 14 and Figure 15.

Silicon Photonics Chip for Telecom Applications

20

Figure 14. Band block present on the middle of the WSS chip (simplified layout).

Figure 15. Band block present on the right of the WSS chip (simplified layout).

4.5.3 Complete WSS layout

Finally, by combining the 3 band blocks we are able to obtain the layout of the chip.

Nevertheless, the input and output ports still need to be added. They will be placed

to the left side of the block, and will have a distance of 127 μm, which is imposed

because of the multichannel fiber-to-chip coupling used for packaging in the industry

Silicon Photonics Chip for Telecom Applications

21

[4]. The simplified layout and the circuit with correct sizes are shown in Figure 16 and

Figure 17 respectively.

Apart from the previously mentioned elements, there are specific terminal ports for

testing. These have been added to test the proper operation of each band. There are

4 testing ports: one for the last input channel CDC of each band and one for the last

input band CDC. The terminal ports are connected to the TH port of each respective

input CDC, which as stated previously, equals to the sum of the input port minus the

drop port. At this port of the input channel CDCs we are measuring, given that they

are placed at the end of the band, the signal must be zero. This is due to the fact that

at this point all the channels within the band must have been already routed.

Similarly, for the input band CDC, the ideal result would be zero, because the other 2

bands should have been routed at the other band demultiplexers, while the one for

this band must be routed to the DP port.

Figure 16. Simplified layout of the WSS device.

Silicon Photonics Chip for Telecom Applications

22

Figure 17. True layout of the WSS device.

Silicon Photonics Chip for Telecom Applications

23

 Design of the WSS components with OptoDesigner

5.1 Waveguides design

The waveguides are used to link optically the different components in the layout.

They are critical, since there are hundreds of them, and they are present in different

shapes within the chip, such as S-bends, semicircles and crossings. Their geometry

has been computed and chosen by simulations. After them, it has been decided the

usage of SiPh waveguides whose width is 𝑊 = 0.55 µm and height 𝐻 = 0.22 µm,

which are standard values for C-band SiPh waveguides. When the width of the

waveguides is required to change, ideal tapered waveguides will be assumed.

5.2 CDC design

5.2.1 CDC parameters

The CDCs are necessary for filtering the incoming 3 bands and their respective

channels. There will be 96 of them with two different purposes: filtering the band

and filtering the channel within a band. Depending on which band and channel they

are filtering, their geometrical specifications may differ. Furthermore, there will be a

major design difference between channel and band CDCs: in the latter, chirp will be

present, meaning that the pitch is not continuous throughout the device, while the

former does not present chirp.

The different characteristics defining the CDCs for the WSS chip can be seen on

Figure 4, and are summarized as the following:

- Width of each of the waveguides (𝑊1 and 𝑊2)

- Width of the corrugations for each waveguide (Δ𝑊1)

- Gap length between the two waveguides (𝐺)

- Length of the corrugated waveguides (𝐿)

- Pitch (Λ)

- Chirp (ΔΛ)

For the development within the WSS chip, we must design those using different

parameters for each of the CDCs, by applying the Coupled-Mode Theory (CMT). The

obtained parameters are presented in Table 2 below, which contains the different

values applied to each of the band couplers, while Table 3 contains the values

applied to the channel couplers.

 S-band C-band L-band

Λ (nm) 275 293 302

ΔΛ (nm) 20 9 18

𝐿 (mm) 1.5 0.8 1.4

𝑊1 (nm) 570

Δ𝑊1 (nm) 100

𝑊2 (nm) 430

Silicon Photonics Chip for Telecom Applications

24

Δ𝑊2 (nm) 60

𝐺 (nm) 100

Table 2. Parameters used for the design of the band CDCs.

 S-band C-band L-band

Λ1 (nm) 284.2 298.9 312.6

Λ2 (nm) 284 298.7 312.4

Λ3 (nm) 283.8 298.5 312.1

Λ4 (nm) 283.6 298.2 311.9

Λ5 (nm) 283.4 298 311.6

Λ6 (nm) 283.2 297.8 311.4

Λ7 (nm) 283 297.6 311

Λ8 (nm) 282.8 297.3 310.9

𝐿 (mm) 0.94

𝑊1 (nm) 600

Δ𝑊1 (nm) 20

𝑊2 (nm) 400

Δ𝑊2 (nm) 40

𝐺 (nm) 300

Table 3. Parameters used for the design of the channel CDCs.

5.2.2 Implementing the CDC as a building block

To implement the CDCs, a function layout will be developed which returns the CDC as

a BB, given its geometrical characteristics as input. The function defining the BB that

implements a CDC can be found in Appendix D. This function can be used for both

band and channel CDCs; and contains specific new parameters which may be useful

for different projects. For instance, it allows to define a functor, which will be used to

modify the width of the corrugations throughout the CDC, multiplying the specified

value by the functor. It also permits the developer to define the duty-cycle of the

device. It is important to notice that the created CDC will not have exactly the length

specified as input, due to the combination of pitch and chirp, which already define

for a certain number of cycles the length of the CDC. As a rule, the CDCs are

considerably larger than their periods, and may include thousands of periods.

Therefore, this change of length can be considered negligible regarding the

functioning of the CDC coupler, since it is always less than the last pitch.

It is important to note that the CDC needs to be boxed in order to be placed in the

WSS chip. This boxing process involves adjusting the position of the CDC and adding

connective waveguides so that there is a smooth transition to external components,

thus placing the elements in a box. To develop it as a function layout, 3 new

parameters will be added, which allow the connections of the CDC as a block within

the WSS chip. These 3 are the width of the box (𝑊𝑏), in the opposite direction of the

coupling length; the width of the waveguides outside the box (𝑊𝑜), to which the

component is connected; and the length of the connecting waveguides (𝐿𝑏),

Silicon Photonics Chip for Telecom Applications

25

measured in the same axis as the coupling length. By making use of these, two S-

bend waveguides are created, connecting the CDC with the outer waveguides and

permitting a gradual convergence between different widths of the waveguides within

and outside the device. As a consequence of the addition of these S-bends, now the

length of the full device will be equal to the length of the corrugated waveguides plus

two times the lengths of the S-bends (i.e. 2𝐿𝑏 + 𝐿.) The two CDC corrugated

waveguides and the S-bends present at the layout will have by default the

OptoDesigner Demofab mask cross-section (MCS) “mcsSOI_DEEP” applied. A

different MCS may be used if it is explicitly specified at the input parameters.

An example of the implementation of a CDC, prior to the boxing process and using

OptoDesigner is given in Figure 18, where the input parameters are the ones given

for the second trial of the CDC in the code in Appendix D, and presented in Table 4.

By using the chosen input parameters of this trial, the geometrical shape of the CDC

and the differences between its subcomponents might be seen. Now, to present the

boxed element, the same CDC block is used for Figure 19, which can be consulted on

the first trial in of the CDC in the code in Appendix D. All the input parameters used

for the design of the physical CDC BB are again listed in Table 4, while the parameters

used for boxing are presented in Table 5.

Functor 𝑊1 𝑊2 Δ𝑊1 Δ𝑊2 Λ Duty-
cycle

𝐿 ΔΛ 𝐺

“functor1”
𝑓(𝑥) = 1

0.57
µm

0.43
µm

0.1
µm

0.06
µm

0.275
µm

50 % 15
µm

0.1
µm

0.05
µm

Table 4. Input parameters used for the CDC implementation trials in Appendix D.

𝑊𝑏 𝑊𝑜 𝐿𝑏
6 µm 0.5 µm 5 µm

Table 5. Input parameters used for 2nd CDC implementation trial (boxed) in Appendix D.

Figure 18. CDC BB implementation, with input parameters defined in Table 4, prior to boxing.

Silicon Photonics Chip for Telecom Applications

26

Figure 19. CDC BB implementation, with input parameters defined in Table 4 and Table 5,

boxed.

As it might be seen in the image, the CDC presents four different ports,

corresponding to each of the S-bend terminals. Of these, three will be used

simultaneously for each single CDC. Basically, the input port (IN) will be connected to

the first waveguide (Top-Left in Figure 19) while the TH one will be connected to the

other end of this waveguide. The other two remaining ports, AD and DP will present

the same relative position with respect to the other two ports, as shown in Figure 9.

The definition of the ports in OptoDesigner will be done using the abbreviated

names, so in order to establish connections to the device, the abbreviations need to

be used. It is important to notice that even if the input and output CDCs are different,

they can be both implemented by using previously described BB in OptoDesigner,

just by choosing correctly the ports to be used. Furthermore, the CDC element can be

rotated and mirrored because of OptoDesigner language features, thus allowing for

any type of placement that we may need while designing larger elements.

Examples of the filtering properties of the CDC filters used for the band and channels

selections are presented in Figure 20.

Silicon Photonics Chip for Telecom Applications

27

Figure 20. Example of CDC responses for the S, C and L bands.

5.3 MZI design

The MZI constitutes the pillar for switching in this project. There will be 48 of them,

and their specific geometrical characteristics will be different depending on the band

in which they are operating, due to the necessity of switching between different

wavelengths. The geometrical characteristics which define the MZI can be seen in

Figure 21, and are summarized as the following:

- Width of the waveguides (𝑊)

- Gap length between the two waveguides (𝐺)

- Length of the phase shift control section (𝐿𝑃)

- Length of the coupling section (𝐿𝐶)

- Length of the interphase section (𝐿𝐼)

- Height between the phase shift control and coupling sections (𝐻)

It becomes important to note that the length of the interphase section does not

equal its exact length, but rather the measure in the same axis as the lengths of the

other two sections.

Silicon Photonics Chip for Telecom Applications

28

Figure 21. Schematic of the geometrical characteristics of the MZI.

For the development within the WSS chip, we must design the values of the different

parameters for each of the MZIs, based on CMT. Table 6 below contains the different

values applied for each parameter.

𝑊 𝐺 𝐿𝑃 𝐿𝐶 𝐿𝐼 𝐻
0.5 µm 0.3 µm 100 µm 16 µm 20 µm 0.5 µm

Table 6. Parameters used for the design of the MZIs.

5.3.1 Phase shift and thermal control of the MZI

To control the delay introduced by the MZIs it becomes necessary to insert electrical

connections for tuning, so that a phase delay is introduced in one of the arms of the

MZI. This delay will be produced at the phase shift control section, with respect to

the other waveguide. For the purpose of this project, the phase shift control will be

implemented by means of thermo-optic phase shift. To do so, a heating line will be

introduced. This component will present two electrical ports: at the beginning and at

the end of the electrical line, which are used to introduce current and thus perform

the tuning. It is composed of three different sections: 2 electrical lines for connection

outside the MZI and a heater placed above the arm of the MZI in which the phase

shift is induced. The electrical lines and the heater will be made using different

materials. For the latter, a heater mask will be applied, whereas the former will have

a metallic mask applied. An example of how the heating line is fully implemented on

the MZI device can be seen in Figure 24.

5.3.2 Implementing the MZI as a building block

To implement the device, a function layout will be developed, which allows to

introduce the geometrical characteristics and return the device as a BB. This function

will take all the design parameters that have been explained at the beginning of

section 5.3, plus new parameters regarding the boxing process.

Silicon Photonics Chip for Telecom Applications

29

The function layout will generate a MZI, composed of two coupling, a phase shift

region and three interphase sections. It will start at the coupling region and end after

an interphase section. This function layout will again be developed including the

boxing process in order to be used in the WSS chip. Therefore, 4 new input

parameters will be included: the width (𝑊𝑏) and length (𝐿) of the box; the width of

the waveguides outside the box (𝑊𝑜), so that the difference can be gradually

overcame; and the width of the electrical connections (𝑊𝑒).

Examples of the implementation of a MZI BB, prior to boxing, and after boxing using

OptoDesigner are given in Figure 22 and Figure 23 respectively. These correspond to

the first and second trial of the MZI in the code at Appendix D. Their values are

presented in Table 7, where the MZI device parameters are in orange cells, whereas

the boxing ones are in cyan cells.

𝑊 𝐺 𝐿𝑃 𝐿𝐶 𝐿𝐼 𝐻 𝑊𝑏 𝑊𝑜 𝐿 𝑊𝑒

1 µm 0.3 µm 30 µm 5 µm 8 µm 0.5 µm 6 µm 0.5 µm 100 µm 5 µm

Table 7. Parameters used for the MZI trials. In orange MZI device parameters. In cyan, boxing

parameters.

Figure 22. MZI BB implementationI, with input parameters defined in Table 7, prior to boxing.

Figure 23. MZI BB implementation, with input parameters defined in Table 7, after boxing.

 As it can be seen in Figure 23, the boxed device possesses 3 different ports, which

correspond respectively to the ones defined in Figure 10. For the purpose of this trial,

Silicon Photonics Chip for Telecom Applications

30

the IN port corresponds to the top-left one; the TH port is connected to the other

end of the same waveguide; and the DP port is the one on the waveguide with no

connections on the other end (lack of an S-bend guide to connect it outside). In

order to connect the elements to the MZI in OptoDesigner, the abbreviations need to

be used. All the optical components for connections and the ones for the MZI device

itself will again be designed by default using the Demofab MCS “mcsSOI_DEEP”. A

different MCS may be used if it is explicitly specified at the input parameters.

After boxing the MZI, the heating line can be introduced at another function layout,

which takes into account the width introduced for boxing in order to adjust the size

of the electrical line. This introduced electrical line will range from being just above

the phase control section to positioning at the border of the box, permitting the

connection of outer electrical lines to the heating section. It is important to notice

that each section of the period of the electrical line will be made by a different type

of material. These are respectively a heater, implemented by the Demofab MCS

“mcsVia_metal”; and a metallic line, implemented by the Demofab MCS

“mcsHEATER_SOI”. For the electrical line there will be two ports at the end and the

beginning of the line in order for current to flow, with a metallic surface. To refer to

them and make connections in OptoDesigner, the abbreviations “VO” and “VI”,

referring to the electrical ports need to be used. The size of these two may be chosen

by defining a value at the input parameters. By doing so, the metallic line will also

change its width. For a better comprehension, Figure 24 is presented, whose code

may be found on the third trial of the MZI trials implementation section, in Appendix

D.

Figure 24. MZI BB implementation, with input parameters defined in Table 7, boxed and with

heating included.

Silicon Photonics Chip for Telecom Applications

31

 WSS full design with OptoDesigner

A schematic of the layout of the device was presented in Figure 17. This layout shows

the approach towards element positioning in the chip, and it will be followed for the

development of the switch in OptoDesigner. Again, for simplicity, the design will be

completed by creating smaller objects, which will be finally merged together to form

the full WSS chip. First, the channel blocks will be created, forming 8 of them a band

block. Later, 3 of these band blocks will be merged, and finally ports and the

connections to the elements will be added. Once all the optical elements are placed,

the electrical connections will be developed, in order to allow the routing of the

different channels.

In order to implement, construct and represent the blocks and the full WSS chip in

OptoDesigner, 2 pseudo-elements will be developed to act as MZIs and CDCs. The

reason behind the introduction of these elements is the high computational power

and time required to develop these, along with easier representation due to simpler

shapes. Therefore, these will be used in the different stages for developing the WSS.

Only after the completion of the development of the full WSS chip, the real elements

will be used to represent the real full design.

6.1 Pseudo-elements

6.1.1 Pseudo-MZI

The real MZI after the boxing process and with the presence of the heating lines

presents a shape as seen in Figure 24. This element contains 3 different MCS, with

diverse shapes and sizes. This fact and the relative thinness of the device when

compared to the full layout adds difficulty to distinguish the element while

representing the full layout. Thus, the pseudo-MZI will be introduced.

To develop the pseudo-MZI, a function layout will be created, which mirrors the

definition and the input parameters of the real MZI layout. Basically, this function will

create a square which simulates the box, along with two other rectangles within it,

representing the waveguides of the MZI, whose widths coincide with those. The

larger rectangle occupies the full length of the box, and acts as the waveguide

connected to IN and TH ports at its ends. To distinguish between them, a long

trapezoid has been developed at the IN port. On the other side of the box there is a

rectangle, representing the waveguide which contains the DR port. This one is half

the length of the other waveguide. Also, two rectangles will be created using the

MCS “mcsVia_metal”, which represent the electrical ports, and are placed at the

same position as these. To facilitate a better understanding, an example of the use of

a pseudo-MZI is presented in Figure 25. The code to develop a pseudo-MZI BB can be

consulted in the trials section of the pseudo-MZI, in Appendix D.

Silicon Photonics Chip for Telecom Applications

32

Figure 25. Example of a pseudo-MZI.

6.1.2 Pseudo-CDC

The real CDCs are complex devices, which are made by the union of different smaller

components in OptoDesigner. For this specific project, a single CDC may have to

implement and merge up to 25000 elements, which is computationally expensive.

Therefore, to reduce the time for developing the pseudo-MZI has been created.

Furthermore, the representation in the following layout will be also simpler, since it

presents a rectangular shape.

The pseudo-CDC function layout mirrors the real CDC one, being able to take its exact

same input parameters, having the same definition as the real one, and producing a

component with the same boxing. Again, there are 2 rectangular rectangles that

represent the waveguides, and their widths equal that of the waveguides to which

the CDC is linked. To distinguish the port layout, once more, a long trapezoid figure

has been introduced at the IN port. On the other side there will be the TH port, and

the other waveguide will possess the DP and the AD ports, being this last one located

on the opposite corner of the IN port. For a better comprehension, Figure 26

implements a pseudo-CDC BB in OptoDesigner. Also, the code for developing this

figure can be consulted in Appendix D, at the trials section of the pseudo-CDC

Silicon Photonics Chip for Telecom Applications

33

Figure 26. Example of a pseudo-CDC.

6.2 Channel blocks

The channel blocks are the simplest blocks containing several optical components

linked. Twenty-four of them will be used to compose the WSS chip, and they

implement all the necessary components to treat a single channel. In OptoDesigner,

there are three types of these, which are defined by the channel that is being treated

within the band. These are the initial channel blocks, the middle ones and the final

one.

The initial channel block is the simplest one, and it is formed by an input channel CDC

(demultiplexer) connected to 2 MZIs in cascade for switching. In it, the connections

to the next channel block are also developed. Basically, the CDC connects through its

DP port to the first MZI via its IN port. The 2 MZIs cascaded work as a 3-output switch

block, whose ports are defined in Figure 11. For simplicity, the definition of the ports

given the MZIs as a block will be used. P1 (TH1), P2 (TH2) and P3 (DP2) will connect in

this case to the 3 different output channel CDCs in the next channel. For a better

comprehension, Figure 27 implements the initial channel block of the S-Band. Also,

the code implementing it can be consulted in Appendix E, at the first trial of the

channel and band blocks implementation, which generates this specific type.

Silicon Photonics Chip for Telecom Applications

34

Figure 27. Initial channel block (of the first band block).

The middle channel block is a bit more complex than the initial one, since it contains

all the elements of the initial one, plus 3 output band CDCs. These are connected to

the P1, P2 and P3 ports of the MZIs via their AD ports. As in the previous block, the

connections to the next channel block are also included, but this time the output

channel CDCs are the one connecting to it. In all the cases, these will connect to the

following channel via its TH port, and will receive the signal from the preceding

channel via their IN port. For a better comprehension, Figure 28 implements a middle

channel block of the S-Band. Also, the code implementing it can be consulted in

Appendix E, at the second trial of the channel and band blocks implementation

section, which generates this specific type.

Silicon Photonics Chip for Telecom Applications

35

Figure 28. Middle channel block (of the first band block).

Last, the final channel block presents a very similar layout to the middle one,

presenting the same elements. The only difference resides on the connections to the

next channel block, which are not present because of its position as the last one. For

a better comprehension, Figure 29 implements the final channel block of the S-Band.

Also, the code used to create this block is located in Appendix E, at the third trial of

the channel and band blocks implementation section, which generates this specific

type.

Figure 29. Final channel block (of the first band block).

Silicon Photonics Chip for Telecom Applications

36

6.3 Band blocks

Band blocks are more complex than the previously introduced channel blocks, and in

fact, they are formed by 8 independent channel blocks. Of these, the first one is of

initial type, the last one of final type and the rest between them are of middle type.

Three of these band blocks will be used to compose the WSS chip, each

implementing all the necessary components to handle a single band. Analogously to

the channel blocks, three types of these will be designed in OptoDesigner. These are

the initial band block, the middle band block and the final band block.

The initial band block is formed by an input band CDC connected to the input CDC of

the first channel block. To do so, the input band CDC connects through its DP port to

the IN port of the input channel CDC. Now, all the 8 channels blocks will be linked

together, and finally at the last channel there will be three connections to the three

output band CDC, used for multiplexing the bands. These will merge the obtained

signals with that of the other two bands. The connections between the output

channel CDCs and the output band CDCs are done via the TH port of the former and

the AD port of the latter. Connections to the next band block are also done via the

output band CDCs, which are linked via their IN ports to the TH of the output band

CDCs of the following band. For a better comprehension, Figure 30 implements the

initial band block. Also, the code implementing it can be consulted in Appendix E, at

the fourth trial of the channel and band blocks implementation section, which

generates this specific type.

It is important to notice that the elements within the initial band block will all be

defined to work for the S-band, with the exception of the of the output band CDC,

which works for the L-band.

Silicon Photonics Chip for Telecom Applications

37

Figure 30. Initial band block.

The middle band block is formed by the same type of components as the initial one,

but there are two main differences. The first on resides on the band at which the

components are operating, being in this case the C-band for all the different

components. The other difference lies on the connections to the following band,

which are attached within the block. Now, the output band CDCs are connected to

the output channel CDCs of the last channel, the former through their IN port and the

latter through their TH port. To visualize it, Figure 31 implements the middle band

block. Also, the code implementing it can be consulted in Appendix E, at the fifth trial

of the channel and band blocks implementation section, which generates this specific

type.

Silicon Photonics Chip for Telecom Applications

38

Figure 31. Middle band block.

The final band block, unlike the other two, does not present output band CDCs, since

the signal has been demultiplexed for the other 2 bands already. All the elements

operate within the L-band. To visualize it, Figure 32 shows the final band block. Also,

the code implementing it can be consulted in Appendix E, at the sixth trial of the

channel and band blocks implementation section, which generates this specific type.

Figure 32. Final band block.

Silicon Photonics Chip for Telecom Applications

39

6.4 Connections to terminal ports

Now that the 3 band blocks are created and connect to each other, the terminal

ports, which connect the WSS device with the outside, can be set within the layout.

To do so the Demofab component demofabFiberCoupler will be used. The terminal

ports will be placed close to the initial band block in the chip, on the opposite side of

the final band block location. They will be situated at the bottom, on the side in

which the IN port of the input band CDCs are located. The distance between the

ports is 127 µm, with first another 127 of spacing at the bottom, from the very last

waveguide, which is connecting to Testing #4 port. In any case and since they occupy

less than half of the chip height, they can be recognized by their relative position to

the corner of the device. To summarize the information relative to the terminal ports

and their relative positions, Table 8 is presented.

Port
Name

Position on
device

Function Direction Connected to

Input 2 Receives the
input signal

Inward Input S-Band CDC
(IN port)

Output
#1

6 Transmits
routed

output signal

Outward Output L-Band CDC #1
(TH port)

Output
#2

4 Transmits
routed

output signal

Outward Output L-Band CDC #2
(TH port)

Output
#3

5 Transmits
routed

output signal

Outward Output L-Band CDC #3
(TH port)

Testing
#1

3 Tests
behavior at
the end of
the S-Band

Outward Input channel CDC #8 (S-Band)
(TH port)

Testing
#2

7 Tests
behavior at
the end of
the C-Band

Outward Input channel CDC #8 (C-Band)
(TH port)

Testing
#3

8 Tests
behavior at
the end of
the L-Band

Outward Input channel CDC #8 (L-Band)

Testing
#4

1 Tests
behavior at

the
beginning of
the L-Band

Outward Input L-Band CDC
(TH port)

Table 8. Terminal ports specifications. The number in the “Position on Device” column

indicate the position starting from the components closer to the input corner.

Silicon Photonics Chip for Telecom Applications

40

6.5 WSS optical layout

Once all the different components of the 3 band blocks have been connected to the

desired terminal ports, we obtain the full optical layout of the WSS chip. Within it, as

previously stated, the different elements will work for different bands. To visualize

the optical layout, Figure 33 is shown, where the connections between the different

band blocks and to the terminal ports can be seen. The code implementing it can be

consulted in Appendix E, in the first trial of the WSS layout implementation section.

Figure 33. WSS chip optical layout.

6.6 Electrical connections for switching

Once the optical layout has been designed, the last step towards the full mask

realization can be performed. This consists on placing the electrical connections that

allow for the switching of MZIs. To do so, two different elements will be used:

electrical pads and electrical vias.

6.6.1 Electrical pads

In order to perform the switching, it is needed an interface that allows the switching

signal to be transmitted to the WSS. For this purpose, electrical pads are introduced,

which will be used as electrical ports. In OptoDesigner there are a few components

already designed for this, but since we are designing following the Demofab rules and

components, the elements defined by the function demofabDCPad_bidir will be used

Silicon Photonics Chip for Telecom Applications

41

as electrical pads. The size of these is 100 x 100 µm, and there is a bounding box of

220 x 220 µm in which no other elements can be placed.

There will be 49 of them, one for each MZI plus one used as a common ground line.

They all will be placed on the opposite side of the optical port, with 7 rows and 7

columns, in order to fit these and their respective connections. There will be a

spacing of 100 µm between the pads within a column, and a spacing of 325 µm

between columns, which comprises the bounding box and the different electrical

connections that will be placed between the columns.

6.6.2 Vias from electrical pads to MZIs

The electrical vias are placed above the optical components. Thus, these can traverse

any point regardless of the optical layout that has been designed, with the exception

of the MZIs, which contain electrical connections of their own. The width of these will

be 10 µm, because it allows to have a current of approximately 10 mA, which is

enough to deliver a 𝜋 phase shift to the MZI. The separation between the electrical

lines will be 5 µm. There are two types of connections: The signal lines and the

ground line. To the first type, a specific voltage will be applied, which in turn

generates a phase shift for the MZI. The ground line, on the other hand, will be used

for voltage reference.

The signal lines will be point to point. These will go from the specific pad to its

corresponding MZI, first traversing the zone in which the pads are connected to the

lower part of the optical layout, just below the MZIs. From there, each line will follow

a horizontal path and then turn vertically to reach its MZI. For simplification of the

electrical layout, the port will correspond to the lower one of the MZI.

On the other hand, the ground line will be point to multipoint. Basically there will be

a common ground line which is connected to the first pad on top. This line will first

come closer to the MZIs, and then turn to follow a horizontal path prior to the MZIs

position. This line will follow until the last horizontal position of the last MZI is

achieved, and meanwhile small vertical lines will connect to this common ground

line, at the position of each interferometer. To visualize all the electrical connections,

Figure 34 is presented, where these can be seen along with the CDCs and MZIs that

compose the layout. The code implementing it can be consulted in Appendix E, in the

second trial of the WSS layout implementation section

Silicon Photonics Chip for Telecom Applications

42

Figure 34. WSS chip electrical connections layout.

Now, to understand the electrical pinout, Table 9 is presented, which summarizes the

information relative to all of the electrical pads. It is important to remark that the

first MZIs within the channels will either switch the signal to its output band CDC or

to the next MZI of that channel. As a consequence, the control of that MZI will only

affect the functioning when the first one is controlled to pass the signal to the second

one.

Port
name

Column
position

Row
position

Function Connected to

GND 1 1 Ground -

S1 1 2 Controls L-Band Channel #8
MZI #2

L-Band Channel #8
MZI #2 (VI port)

S2 1 3 Controls L-Band Channel #8
MZI #1

L-Band Channel #8
MZI #1 (VO port)

S3 1 4 Controls L-Band Channel #7
MZI #2

L-Band Channel #7
MZI #2 (VI port)

S4 1 5 Controls L-Band Channel #7
MZI #1

L-Band Channel #7
MZI #1 (VO port)

S5 1 6 Controls L-Band Channel #6
MZI #2

L-Band Channel #6
MZI #2 (VI port)

S6 1 7 Controls L-Band Channel #6
MZI #1

L-Band Channel #6
MZI #1 (VO port)

S7 2 1 Controls L-Band Channel #5
MZI #2

L-Band Channel #5
MZI #2 (VI port)

Silicon Photonics Chip for Telecom Applications

43

S8 2 2 Controls L-Band Channel #5
MZI #1

L-Band Channel #5
MZI #1 (VO port)

S9 2 3 Controls L-Band Channel #4
MZI #2

L-Band Channel #4
MZI #2 (VI port)

S10 2 4 Controls L-Band Channel #4
MZI #1

L-Band Channel #4
MZI #1 (VO port)

S11 2 5 Controls L-Band Channel #3
MZI #2

L-Band Channel #3
MZI #2 (VI port)

S12 2 6 Controls L-Band Channel #3
MZI #1

L-Band Channel #3
MZI #1 (VO port)

S13 2 7 Controls L-Band Channel #2
MZI #2

L-Band Channel #2
MZI #2 (VI port)

S14 3 1 Controls L-Band Channel #2
MZI #1

L-Band Channel #2
MZI #1 (VO port)

S15 3 2 Controls L-Band Channel #1
MZI #2

L-Band Channel #1
MZI #2 (VI port)

S16 3 3 Controls L-Band Channel #1
MZI #1

L-Band Channel #1
MZI #1 (VO port)

S17 3 4 Controls C-Band Channel #8
MZI #2

C-Band Channel #8
MZI #2 (VI port)

S18 3 5 Controls C-Band Channel #8
MZI #1

C-Band Channel #8
MZI #1 (VO port)

S19 3 6 Controls C-Band Channel #7
MZI #2

C-Band Channel #7
MZI #2 (VI port)

S20 3 7 Controls C-Band Channel #7
MZI #1

C-Band Channel #7
MZI #1 (VO port)

S21 4 1 Controls C-Band Channel #6
MZI #2

C-Band Channel #6
MZI #2 (VI port)

S22 4 2 Controls C-Band Channel #6
MZI #1

C-Band Channel #6
MZI #1 (VO port)

S23 4 3 Controls C-Band Channel #5
MZI #2

C-Band Channel #5
MZI #2 (VI port)

S24 4 4 Controls C-Band Channel #5
MZI #1

C-Band Channel #5
MZI #1 (VO port)

S25 4 5 Controls C-Band Channel #4
MZI #2

C-Band Channel #4
MZI #2 (VI port)

S26 4 6 Controls C-Band Channel #4
MZI #1

C-Band Channel #4
MZI #1 (VO port)

S27 4 7 Controls C-Band Channel #3
MZI #2

C-Band Channel #3
MZI #2 (VI port)

S28 5 1 Controls C-Band Channel #3
MZI #1

C-Band Channel #3
MZI #1 (VO port)

S29 5 2 Controls C-Band Channel #2
MZI #2

C-Band Channel #2
MZI #2 (VI port)

S30 5 3 Controls C-Band Channel #2
MZI #1

C-Band Channel #2
MZI #1 (VO port)

Silicon Photonics Chip for Telecom Applications

44

S31 5 4 Controls C-Band Channel #1
MZI #2

C-Band Channel #1
MZI #2 (VI port)

S32 5 5 Controls C-Band Channel #1
MZI #1

C-Band Channel #1
MZI #1 (VO port)

S33 5 6 Controls S-Band Channel #8
MZI #2

S-Band Channel #8
MZI #2 (VI port)

S34 5 7 Controls S-Band Channel #8
MZI #1

S-Band Channel #8
MZI #1 (VO port)

S35 6 1 Controls S-Band Channel #7
MZI #2

S-Band Channel #7
MZI #2 (VI port)

S36 6 2 Controls S-Band Channel #7
MZI #1

S-Band Channel #7
MZI #1 (VO port)

S37 6 3 Controls S-Band Channel #6
MZI #2

S-Band Channel #6
MZI #2 (VI port)

S38 6 4 Controls S-Band Channel #6
MZI #1

S-Band Channel #6
MZI #1 (VO port)

S39 6 5 Controls S-Band Channel #5
MZI #2

S-Band Channel #5
MZI #2 (VI port)

S40 6 6 Controls S-Band Channel #5
MZI #1

S-Band Channel #5
MZI #1 (VO port)

S41 6 7 Controls S-Band Channel #4
MZI #2

S-Band Channel #4
MZI #2 (VI port)

S42 7 1 Controls S-Band Channel #4
MZI #1

S-Band Channel #4
MZI #1 (VO port)

S43 7 2 Controls S-Band Channel #3
MZI #2

S-Band Channel #3
MZI #2 (VI port)

S44 7 3 Controls S-Band Channel #3
MZI #1

S-Band Channel #3
MZI #1 (VO port)

S45 7 4 Controls S-Band Channel #2
MZI #2

S-Band Channel #2
MZI #2 (VI port)

S45 7 5 Controls S-Band Channel #2
MZI #1

S-Band Channel #2
MZI #1 (VO port)

S47 7 6 Controls S-Band Channel #1
MZI #2

S-Band Channel #1
MZI #2 (VI port)

S48 7 7 Controls S-Band Channel #1
MZI #1

S-Band Channel #1
MZI #1 (VO port)

Table 9. Electrical pinout of the WSS chip. The numbers indicating the position in “row

position” and “column position” go from top to bottom and from right to left.

6.7 Implementation of the full WSS mask

After the design of the optical and electrical layout has been completed, the full

layout of the chip can be implemented. The visibility is reduced in this case because

of the relative small width of MZIs and CDCs in comparison to the size of the full

layout, and the use of the same MCS for the vias, MZIs and CDCs. Both the real full

mask layout and the one composed with the pseudo-MZIs and pseudo-CDCs are

Silicon Photonics Chip for Telecom Applications

45

presented in Figure 35 and Figure 36 respectively. Now that the full mask layout has

been implemented, the last step may be taken, which consists of fabricating the

device, for which small changes might still need to be introduced, due to the

different Design Checking Rules (DRC) that may be introduced by the foundries.

Figure 35. Full mask layout of the designed WSS chip.

Figure 36. Mask layout of the designed WSS chip with pseudo-MZIs and pseudo-CDCs.

 Fabrication of the chip

Silicon Photonics Chip for Telecom Applications

46

Due to our project's scope, it is necessary to find Multi-Project Wafers (MPW)

Providers to build the designed telecom photonics chip. In this section, several

options of providers for fabricating the device are showcased. Now, to select the

foundry that suits this project the best, it becomes necessary to consider distinct

characteristics, such as the price, the production schedule, the technologies offered

and the supported software to design the chip. In this specific case the software

OptoDesigner and the Process Design Kit (PDK) from Synopsys have been used for

the creation of the chip layout, and thus the compatibility with it will be crucial.

In order to compare all the different alternatives, Table 10 contains recompiled

different MPW solutions from different providers. The table is not extensive, and it

comprises only information publicly available through online sources.

Foundry Minimum
Price

Maximum
Price

Minimum
Area

Maximum Area PDK and
software

Imec 6400€ 165000€ 2.5 x 2.5
mm

10.45 x 10.45
mm

Synopsys-
based

IHP 3800€/mm2 8000€/mm2 10 mm2 - Cadence-
based

LioniX 9350€ 24600€ 10 x 10
mm

10 x 20 mm Synopsys-
based

IMB-CNM 7500€ 15000€ 5 x 5 mm 5 x 10 mm Synopsys-
based

SMART
Photonics

- - - - Based on:
Synopsys,
Lumerical,

Nazda,
ANSYS,
Luceda

CORNERSTONE 5250£ 40250£ 5.5 x 4.9
mm

11.47 x 4.9mm Luceda-
based;
GDSII

format

AIM Photonics 20000$ 120000$ 25 mm2 50 mm2 Synopsys-
based

CEA-LETI - - - - Synopsys-
based

LIGENTEC - - - - Based on:
ANSYS,

Lumerical,
Luceda,

Synopsys,
Siemens;

GDS
format

and
KLayout

VTT 7200€ 46000€ 5 x
4.75mm

20 x 19.5mm private-
owned

Silicon Photonics Chip for Telecom Applications

47

PDK
library

Table 10. Comparison between different MPW solutions by providers.

Different MPW solutions have been introduced. Now they will be discussed in the

following subsections for further details, and a broker will be also introduced.

7.1 Europractice

Europractice constitutes a consortium of research organizations that provides

European industry and academia with a platform to develop electronic circuits and

systems [36]. They present discounts for academic and research institutions

subscribed to it. Several foundries are presented for MPW runs for photonic projects:

AMF, CEA-LETI, CORNERSTONE, GlobalFoundries, IHP, imec, LioniX and Teem

Photonics. Each of them presents different prices and different run schedules.

7.2 Imec

Imec is a semiconductor fabrication company with multiple fabrication locations.

Their prices range from 6700€ to 11000€ for the tiniest chips, and it can get up to

165000€ for their biggest sized chips. These sizes are comprised between 2.5 x 2.5

mm to 10.45 x 10.45 mm [37]. In any case, the price may be lowered by purchasing

through Europractice, up to 6400€ [38]. It is important to remark that the use of

Synopsys PDKs is supported.

7.3 IHP

IHP is a non-university research establishment institutionally funded by the German

federal and state governments. They provide photonics solutions in the C/O band

(i.e., from 1.25 µm to 1.55 µm approximately) along with 0.25 µm CMOS technology

and NPN HBTs within the chip. It is also important to remark that it includes both

active and passive photonic devices. This aligns with the specific characteristics of the

desired chip since it will need to include both an electrical part and a photonics part

with both active and passive devices. Regarding the MPW prices, it will range from

3800€/mm2 to 8000€/mm2, with a minimum surface of 10mm2 [39]. For our specific

project, the biggest drawback is that OptoDesigner is not supported by this

establishment, and instead they provide Cadence-based software support.

7.4 LioniX

LioniX is a Dutch microsystems provider, which specializes in photonic and MEMS

devices. They provide MPW photonic chips that are optimized for visible light (400

nm to 700 nm), Near IR (0.85 µm) and C-band (1.55 µm). The latter encompasses a

wavelength that suits this project. Their PDKs are available for Synopsys, which also

suits it [20]. Regarding the prices, they range from 9350€ to 24600€ for 4 samples

sized either 10 x 10 mm or 10 x 20 mm. The purchase price depends on whether

Europractice discount is applied [38].

Silicon Photonics Chip for Telecom Applications

48

7.5 IMB-CNM

IMB-CNM is a Spanish research center for the development of new micro and nano

technologies. They offer photonics solutions for visible and mid infrared wavelengths

(400 nm to 700 nm and 2.5 µm to 25 µm respectively). A PDK for Synopsys software

is offered. Regarding the prices, they start at 7500€ for 20 dies containing each 7 cells

of 5 x 5 mm, and 15000€ for the large cells, which are sized 5 x 10 mm [40].

7.6 SMART Photonics

SMART Photonics is a Dutch photonics manufacturing supplier. It provides PDKs for

several different chip designing software, such as OptoDesigner and OptSim from

Synopsys, and software from Lumerical, Nazca, Luceda and ANSYS. For the design

and MPW production it becomes necessary to sign a non-disclosure agreement with

the company [41].

7.7 CORNERSTONE

CORNERSTONE is a British open-source silicon photonics foundry. Their PDKs are

open source in GDSII format, so they can be used with any type of designing

software. An important advantage if this foundry is chosen is that being open source,

more information and help about the design process may be found online, and the

possible incompatibilities will be more easily overcome. The obtained chips may be

passive or active, ranging from 5250£ for passive devices of 5.5 x 4.9 mm to 40250£

for an active photonics device of 11.47 x 4.9 mm [42].

7.8 AIM Photonics

AIM Photonics is an American R&D center which focuses on the manufacturing of

integrated photonic circuits. To use their MPW manufacturing services it is necessary

to sign a non-disclosure and a payment agreement with the company, and to fill in a

US export control form. An important advantage covered while purchasing their

services is the presence of a help desk for design, wafer production, test, assembly,

and packaging, along with code, videos, and material online. Furthermore, their PDK

can be used with OptoDesigner Software. The semiconductors work with optical

wavelengths ranging from 700 nm to 1.625 µm and the price ranges from 20000 US$

for 20 passive chips sized 25mm2 to 120000 US$ for 20 active chips sized 50mm2 [43].

7.9 CEA-LETI

CEA-LETI is a branch of CEA: a French public institution for research. This specific

branch is thought for technology and microelectronics. The optical wavelengths of

the chips made by means of their technology are in the visible, infrared and THz

regions. Both active and passive chips are allowed, and there is a specific PDK for

OptoDesigner [44].

Silicon Photonics Chip for Telecom Applications

49

7.10 LIGENTEC

LIGENTEC is a Swiss company which works with silicon-nitride based Photonic

Integrated Circuits from the visible to the infrared wavelengths. They have designed

PDKs for different chip designing programs, such as the ones from Lumerical,

KLayout, Calibre, INTERCONNECT and OptoDesigner. Helpdesk is offered for the

design of circuits while working with them [45].

7.11 Applied Nanotools

Applied NanoTools is a Canadian company which offers integrated photonics foundry

services. They work with both Silicon and SiN Photonics. Their MPW runs are

scheduled once every six to eight weeks. Prices and their tailor-made PDK are

private, and it is necessary to have an account with billing address in order to obtain

both [46].

7.12 VTT

VTT is a finish company, which designs 1.2 µm to 4 µm Silicon Photonics devices. The

wavelengths of use range from 1.2 to 6 µm, so it is in the range in which we would

like to work. Also, it becomes possible to integrate both RF and photonics within the

same chip, which is of particular interest for this project. They work with a private-

owned PDK library, so it requires signing a design kit license agreement. In any case,

help is offered for the design. The prices range from 7200€ to 46000€, with the size

of the chips ranging from 5 x 4.75 mm and 20 x 19.5 mm [47].

 Future Work

In the pursuit of further enhancing the performance and capabilities of the WSS chip,

there are two distinct paths to explore that deserve our attention: hardware

enhancement and software code enhancement. Each of these strategies offers

unique opportunities to improve the efficiency of the process, and the footprint and

performance of the device.

8.1 Potential strategies based on code enhancement

A significant impediment while designing the chip has been the implementation of

the CDCs with the developed code. The implementation of this BB in OptoDesigner

by using parameters such as the ones obtained for the realization of the chip and

presented in Table 2 and Table 3 consume a considerable amount of time, up to 3

minutes per CDC in this case. Since the chip presents 96 of these components, it may

take up to 5 hours to obtain the full mask.

In order to avoid this for future developments, the code of the CDC library may be

changed, reducing the computing power needed to develop these components. One

path may consist of reducing the functionality of the CDCs if they are not being used.

Another way would consist of upgrading sections of the code so that the same

actions are performed with greater efficiency.

Silicon Photonics Chip for Telecom Applications

50

8.2 Potential strategies based on hardware enhancement

There are two key paths that may be followed in order to further improve the WSS

chip by replacing the fundamental components by some new ones to perform the

same function. One of them consists of already improving the already defined layout,

by searching for new positional architectures that may reduce even further the area

occupied by the chip, while still minimizing crosstalk and losses. Another procedure

consists of replacing the used components for the filtering and switching sections by

new ones to perform the same task, such as a micro-ring resonators (MRRs)

[1,3,48,49,50]; the combination of MRRs and MZIs [1,51]; or developing approaches,

such as the use of Fano-resonance based devices [50,52].

8.2.1 Fano-resonance devices

Fano resonance is a specific type of resonance that occurs because of the

interference between a discrete state and a continuum band of quantum states

[50,53]. Devices based on this phenomenon present a small footprint, an asymmetric

resonance profile, and a very sharp response in wavelength as bandpass filters.

Furthermore, it can also be tuned by changing their geometrical properties to match

specific requirements [52,54]. Also, they can be developed using CMOS technologies,

which means they can be used with SiPh technology [50,55].

8.2.2 Micro-ring resonators

A common approach for designing switches consists of using MRRs for filtering and

switching [2,56]. This approach normally presents a more compact footprint, since

the size occupied by CDCs is of about 1 mm [56]. These devices are based on the

resonance of a ring by constructive interference when the phase shift of the full trip

equals an integer of 2𝜋 [57]. The micro-ring resonators may present different shapes,

and not necessarily the exact form of a ring. Also, they may contain more than a

single resonant loop, such as a two-stage ladder.

In this specific project, two different solutions have been designed and proposed

employing MRRs for future use in the development of new SiPh switches, by means

of OptoDesigner. They had been designed as a 4-ring resonator, implemented

through a two-stage ladder of two different loops. For the phase shift, electrical

components based on the thermo-optic effect had been designed and implemented

to the full MRR design, using the MCS “mcsHEATER_SOI” for the heating section and

the MCS “mcsVia_metal” for the electrical connections.

The first solution consists on implementing the 4 ring resonator circuit, where the

phase shift control is done with an electrical arm parallel to the ring sections whose

phase shift is to be controlled, as in Figure 6(a). The implementation of this solution

can be seen in Figure 37. The second solution is similar to the first one, but in this

case the phase shift is controlled with an electrical via perpendicular to the ring, as in

Figure 6(b). The implementation of this solution can be seen in Figure 38.

Silicon Photonics Chip for Telecom Applications

51

Figure 37. Implementation of a 4-ring resonator through a two-stage ladder with a parallel

heater.

Figure 38. Implementation of a 4-ring resonator based on Bragg grating through a two stage

ladder with a perpendicular heater.

 Conclusion

In this work, a state-of-the-art mask has been realized for a 1 x 3 WSS chip by using

OptoDesigner Scripting language, an advanced photonic integrated circuit design

tool. The main goal of this thesis was to address the increasing demand for high-

performance communications systems. By a rigorous design and optimization

process, a device capable of switching in the S+C+L band has been completed, which

allows to distinguish in all these bands between 8 channels.

Silicon Photonics Chip for Telecom Applications

52

The elements forming the chip were reviewed, being their characteristics and its

functionality within the layout explained, as well as the connections among them. By

interconnecting the elements, two types of physical blocks were developed: the

channel block, which handles the signals at the channel level; and the band block,

which treats them at the band level. These two are closely related, since the latter is

formed by the link of several of the former, plus specific elements to treat the signal

only at the band level.

In order to complete the mask of the WSS chip, the specific elements that compose

the layout were designed. These are fully parameterized functions which permit to

implement each component in OptoDesigner. These components will be

subsequently interconnected within the WSS, by following the design characteristics

obtained by a previous numerical analysis.

The manufacturing of the device has not been completed, but several MPW

providers have been reviewed. Some of them are offering possibilities for design with

Synopsys PDKs, which may facilitate the process of future manufacturing.

Last, three different approaches towards improving the design have been presented.

The first proposal consisted on reducing the computational complexity of the already

developed CDCs. The second consisted of using Fano resonant devices, which prove

to be a promising new approach towards filtering. Last, an approach on the use of

MRRs for filtering is presented, for which two different implementations have been

given.

Silicon Photonics Chip for Telecom Applications

53

References

1. X. Chen, J. Lin, and K. Wang, “A Review of Silicon-Based Integrated Optical

Switches,” Laser Photonics Rev. 1, 2200571 (2023).

https://doi.org/10.1002/lpor.202200571.

2. Tu, X.; Song, C.; Huang, T.; Chen, Z.; Fu, H. State of the Art and Perspectives on

Silicon Photonic Switches. Micromachines 2019, 10 (1).

https://doi.org/10.3390/mi10010051.

3. Yue, W.; Cai, Y.; Yu, M. Review of 2 × 2 Silicon Photonic Switches. Photonics 2023,

10 (5). https://doi.org/10.3390/photonics10050564.

4. Marchetti, R.; Lacava, C.; Carroll, L.; Gradkowski, K.; Minzioni, P. Coupling

Strategies for Silicon Photonics Integrated Chips [Invited]. Photon. Res. 2019, 7,

201–239. https://doi.org/10.1364/PRJ.7.000201.

5. Blum, R. Integrated silicon photonics for high-volume data center applications. In

Optical Interconnects XX; Schröder, H., Chen, R. T., Eds.; SPIE, 2020; Vol. 11286, p

112860M. https://doi.org/10.1117/12.2550326.

6. Lee, B. G.; Dupuis, N. Silicon Photonic Switch Fabrics: Technology and

Architecture. Journal of Lightwave Technology 2019, 37 (1), 6–20.

https://doi.org/10.1109/JLT.2018.2876828.

7. Margalit, N.; Xiang, C.; Bowers, S. M.; Bjorlin, A.; Blum, R.; Bowers, J. E.

Perspective on the future of silicon photonics and electronics. Applied Physics

Letters 06 2021, 118 (22), 220501. https://doi.org/10.1063/5.0050117.

8. Kaur, P.; Boes, A.; Ren, G.; Nguyen, T. G.; Roelkens, G.; Mitchell, A. Hybrid and

heterogeneous photonic integration. APL Photonics 06 2021, 6 (6), 061102.

https://doi.org/10.1063/5.0052700.

9. Errando-Herranz, C.; Takabayashi, A. Y.; Edinger, P.; Sattari, H.; Gylfason, K. B.;

Quack, N. MEMS for Photonic Integrated Circuits. IEEE Journal of Selected Topics

in Quantum Electronics 2020, 26 (2), 1–16.

https://doi.org/10.1109/JSTQE.2019.2943384.

10. Rahim, A.; Spuesens, T.; Baets, R.; Bogaerts, W. Open-Access Silicon Photonics:

Current Status and Emerging Initiatives. Proceedings of the IEEE 2018, 106 (12),

2313–2330. https://doi.org/10.1109/JPROC.2018.2878686.

11. Siew, S. Y.; Li, B.; Gao, F.; Zheng, H. Y.; Zhang, W.; Guo, P.; Xie, S. W.; Song, A.;

Dong, B.; Luo, L. W.; Li, C.; Luo, X.; Lo, G.-Q. Review of Silicon Photonics

Technology and Platform Development. J. Lightwave Technol. 2021, 39 (13),

4374–4389. https://doi.org/10.1109/jlt.2021.3066203.

12. Chrostowski, L.; Shoman, H.; Hammood, M.; Yun, H.; Jhoja, J.; Luan, E.; Lin, S.;

Mistry, A.; Witt, D.; Jaeger, N. A. F.; Shekhar, S.; Jayatilleka, H.; Jean, P.; Villers, S.

https://doi.org/10.1002/lpor.202200571
https://doi.org/10.3390/mi10010051
https://doi.org/10.3390/photonics10050564
https://doi.org/10.1364/PRJ.7.000201
https://doi.org/10.1117/12.2550326
https://doi.org/10.1109/JLT.2018.2876828
https://doi.org/10.1063/5.0050117
https://doi.org/10.1063/5.0052700
https://doi.org/10.1109/JSTQE.2019.2943384
https://doi.org/10.1109/JPROC.2018.2878686
https://doi.org/10.1109/jlt.2021.3066203

Silicon Photonics Chip for Telecom Applications

54

B.; Cauchon, J.; Shi, W.; Horvath, C.; Westwood-Bachman, J. N.; Setzer, K.; Aktary,

M.; Patrick, N. S.; Bojko, R. J.; Khavasi, A.; Wang, X.; Ferreira de Lima, T.; Tait, A.

N.; Prucnal, P. R.; Hagan, D. E.; Stevanovic, D.; Knights, A. P. Silicon Photonic

Circuit Design Using Rapid Prototyping Foundry Process Design Kits. IEEE Journal

of Selected Topics in Quantum Electronics 2019, 25 (5), 1–26.

https://doi.org/10.1109/JSTQE.2019.2917501.

13. Xiang, C.; Jin, W.; Huang, D.; Tran, M. A.; Guo, J.; Wan, Y.; Xie, W.; Kurczveil, G.;

Netherton, A. M.; Liang, D.; Rong, H.; Bowers, J. E. High-Performance Silicon

Photonics Using Heterogeneous Integration. IEEE Journal of Selected Topics in

Quantum Electronics 2022, 28 (3: Hybrid Integration for Silicon Photonics), 1–15.

https://doi.org/10.1109/JSTQE.2021.3126124.

14. Smit, M.; Williams, K.; van der Tol, J. Past, present, and future of InP-based

photonic integration. APL Photonics 05 2019, 4 (5), 050901.

https://doi.org/10.1063/1.5087862.

15. Porcel, M. A. G.; Hinojosa, A.; Jans, H.; Stassen, A.; Goyvaerts, J.; Geuzebroek, D.;

Geiselmann, M.; Dominguez, C.; Artundo, I. [INVITED] Silicon Nitride Photonic

Integration for Visible Light Applications. Optics & Laser Technology 2019, 112,

299–306. https://doi.org/10.1016/j.optlastec.2018.10.059.

16. Bowers, J. E.; Liu, A. Y. A Comparison of Four Approaches to Photonic Integration.

In 2017 Optical Fiber Communications Conference and Exhibition (OFC); 2017; pp

1–3. https://doi.org/10.1364/ofc.2017.m2b.4.

17. Rahim, A.; Goyvaerts, J.; Szelag, B.; Fedeli, J.-M.; Absil, P.; Aalto, T.; Harjanne, M.;

Littlejohns, C.; Reed, G.; Winzer, G.; Lischke, S.; Zimmermann, L.; Knoll, D.;

Geuzebroek, D.; Leinse, A.; Geiselmann, M.; Zervas, M.; Jans, H.; Stassen, A.;

Domínguez, C.; Muñoz, P.; Domenech, D.; Giesecke, A. L.; Lemme, M. C.; Baets, R.

Open-Access Silicon Photonics Platforms in Europe. IEEE Journal of Selected

Topics in Quantum Electronics 2019, 25 (5), 1–18.

https://doi.org/10.1109/JSTQE.2019.2915949.

18. Shang, C.; Wan, Y.; Selvidge, J.; Hughes, E.; Herrick, R.; Mukherjee, K.; Duan, J.;

Grillot, F.; Chow, W. W.; Bowers, J. E. Perspectives on Advances in Quantum Dot

Lasers and Integration with Si Photonic Integrated Circuits. ACS Photonics 2021, 8

(9), 2555–2566. https://doi.org/10.1021/acsphotonics.1c00707.

19. Liu, A. Y.; Srinivasan, S.; Norman, J.; Gossard, A. C.; Bowers, J. E. Quantum Dot

Lasers for Silicon Photonics \[Invited\]. Photon. Res. 2015, 3 (5), B1–B9.

https://doi.org/10.1364/PRJ.3.0000B1.

20. LioniX international. Multi Project Wafer (MPW) Services and Runs.

https://www.lionix-international.com/photonics/mpw-services/ (accessed 2023-

06-09).

https://doi.org/10.1109/JSTQE.2019.2917501
https://doi.org/10.1109/JSTQE.2021.3126124
https://doi.org/10.1063/1.5087862
https://doi.org/10.1016/j.optlastec.2018.10.059
https://doi.org/10.1364/ofc.2017.m2b.4
https://doi.org/10.1109/JSTQE.2019.2915949
https://doi.org/10.1021/acsphotonics.1c00707
https://doi.org/10.1364/PRJ.3.0000B1
https://www.lionix-international.com/photonics/mpw-services/

Silicon Photonics Chip for Telecom Applications

55

21. Bogaerts, W.; Chrostowski, L. Silicon Photonics Circuit Design: Methods, Tools

and Challenges. Laser & Photonics Reviews 2018, 12 (4), 1700237.

https://doi.org/10.1002/lpor.201700237.

22. Khan, M. U.; Xing, Y.; Ye, Y.; Bogaerts, W. Photonic Integrated Circuit Design in a

Foundry+Fabless Ecosystem. IEEE Journal of Selected Topics in Quantum

Electronics 2019, 25 (5), 1–14. https://doi.org/10.1109/JSTQE.2019.2918949.

23. Liu, S.; Feng, J.; Tian, Y.; Zhao, H.; Jin, L.; Ouyang, B.; Zhu, J.; Guo, J. Thermo-Optic

Phase Shifters Based on Silicon-on-Insulator Platform: State-of-the-Art and a

Review. Frontiers of Optoelectronics 2022, 15 (1), 9.

https://doi.org/10.1007/s12200-022-00012-9.

24. Soref, R.; Bennett, B. Electrooptical Effects in Silicon. IEEE Journal of Quantum

Electronics 1987, 23 (1), 123–129. https://doi.org/10.1109/JQE.1987.1073206.

25. Paschotta, R. https://www.rp-photonics.com/interferometers.html (accessed

2023-06-15).

26. Synopsys. OptoDesigner Photonic Chip and Mask Layout.

https://www.synopsys.com/photonic-solutions/optocompiler/optodesigner.html

(accessed 2023-06-08).

27. Doerr, C.; Chen, L.; Nielsen, T.; Aroca, R.; Chen, L.; Banaee, M.; Azemati, S.;

McBrien, G.; Park, S. Y.; Geyer, J.; Guan, B.; Mikkelsen, B.; Rasmussen, C.;

Givehchi, M.; Wang, Z.; Potsaid, B.; Lee, H. C.; Swanson, E.; Fujimoto, J. G. O, E, S,

C, and L Band Silicon Photonics Coherent Modulator/Receiver. In 2016 Optical

Fiber Communications Conference and Exhibition (OFC); 2016; pp 1–3.

https://doi.org/10.1364/ofc.2016.th5c.4.

28. Montalbo, T. M. Fiber to Waveguide Couplers for Silicon Photonics. Master

Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2004.

https://dspace.mit.edu/bitstream/handle/1721.1/28881/60426202-

MIT.pdf?sequence=2.

29. Emara, M. A Review of Optical Coupler Theory, Techniques, and Applications.

Preprint, 2021.

https://www.researchgate.net/publication/351428198_A_Review_of_Optical_Co

upler_Theory_Techniques_and_Applications.

30. St-Yves, J. Contra-directional couplers as optical filters on the silicon on insulator

platform. Master Thesis, Université Laval, Quebec City, Canada, 2017.

http://hdl.handle.net/20.500.11794/27630.

31. Shi, W.; Wang, X.; Lin, C.; Yun, H.; Liu, Y.; Baehr-Jones, T.; Hochberg, M.; Jaeger,

N. A. F.; Chrostowski, L. Silicon Photonic Grating-Assisted, Contra-Directional

Couplers. Opt. Express 2013, 21 (3), 3633–3650.

https://doi.org/10.1364/OE.21.003633.

https://doi.org/10.1002/lpor.201700237
https://doi.org/10.1109/JSTQE.2019.2918949
https://doi.org/10.1007/s12200-022-00012-9
https://doi.org/10.1109/JQE.1987.1073206
https://www.rp-photonics.com/interferometers.html
https://www.synopsys.com/photonic-solutions/optocompiler/optodesigner.html
https://doi.org/10.1364/ofc.2016.th5c.4
https://dspace.mit.edu/bitstream/handle/1721.1/28881/60426202-MIT.pdf?sequence=2
https://dspace.mit.edu/bitstream/handle/1721.1/28881/60426202-MIT.pdf?sequence=2
https://www.researchgate.net/publication/351428198_A_Review_of_Optical_Coupler_Theory_Techniques_and_Applications
https://www.researchgate.net/publication/351428198_A_Review_of_Optical_Coupler_Theory_Techniques_and_Applications
http://hdl.handle.net/20.500.11794/27630
https://doi.org/10.1364/OE.21.003633

Silicon Photonics Chip for Telecom Applications

56

32. Qiu, H.; Jiang, J.; Yu, P.; Mu, D.; Yang, J.; Jiang, X.; Yu, H.; Cheng, R.; Chrostowski,

L. Narrow-Band Add-Drop Filter Based on Phase-Modulated Grating-Assisted

Contra-Directional Couplers. J. Lightwave Technol. 2018, 36 (17), 3760–3764.

https://doi.org/10.1109/jlt.2018.2852483.

33. Zetie, K. P.; Adams, S. F.; Tocknell, R. M. How Does a Mach-Zehnder

Interferometer Work? Physics Education 2000, 35 (1), 46.

https://doi.org/10.1088/0031-9120/35/1/308.

34. Von der Linde, D. Optical Beam Splitter, Mach–Zehnder Interferometer and the

Delayed Choice Issue. Applied Physics B 2021, 127 (9), 133.

https://doi.org/10.1007/s00340-021-07680-z.

35. Masood, A.; Pantouvaki, M.; Lepage, G.; Verheyen, P.; Van Campenhout, J.; Absil,

P.; Van Thourhout, D.; Bogaerts, W. Comparison of Heater Architectures for

Thermal Control of Silicon Photonic Circuits. In 10th International Conference on

Group IV Photonics; 2013; pp 83–84.

https://doi.org/10.1109/Group4.2013.6644437.

36. Europe Secures EUROPRACTICE Services to European Academia and Industry

until September 2025. https://europractice-ic.com/reticles-kdtju/(accessed 2023-

06-07).

37. Silicon Photonic IC Prototyping: Imec. https://www.imeciclink.com/en/asic-

fabrication/si (accessed 2023-06-07).

38. Europractice. Schedules & Prices. https://europractice-ic.com/schedules-prices-

2023/ (accessed 2023-06-07).

39. IHP. Schedule & Price List. https://www.ihp-

microelectronics.com/services/research-and-prototyping-service/mpw-

prototyping-service/schedule-price-list (accessed 2023-06-09).

40. IMB CNM. Silicon Nitride Photonic Integration Platform. https://www.imb-

cnm.csic.es/en/micro-and-nanofabrication-clean-room/silicon-nitride-photonic-

integration-platform (accessed 2023-06-09).

41. MPW SMART Photonics. https://smartphotonics.nl/our-offering/mpw/ (accessed

2023-06-09).

42. CORNERSTONE. MPW Schedule for 2022/23.

https://www.cornerstone.sotonfab.co.uk/schedule-cost (accessed 2023-06-10).

43. AIM Photonics. Multi-Project Wafers. https://www.aimphotonics.com/mpw

(accessed 2023-06-10).

44. CEA-LETI. Silicon Photonics. https://www.leti-cea.com/cea-

tech/leti/english/Pages/Applied-Research/Technology-Fields/Silicon-

Photonics.aspx (accessed 2023-06-10).

https://doi.org/10.1109/jlt.2018.2852483
https://doi.org/10.1088/0031-9120/35/1/308
https://doi.org/10.1007/s00340-021-07680-z
https://doi.org/10.1109/Group4.2013.6644437
https://europractice-ic.com/reticles-kdtju/
https://www.imeciclink.com/en/asic-fabrication/si
https://www.imeciclink.com/en/asic-fabrication/si
https://europractice-ic.com/schedules-prices-2023/
https://europractice-ic.com/schedules-prices-2023/
https://www.ihp-microelectronics.com/services/research-and-prototyping-service/mpw-prototyping-service/schedule-price-list
https://www.ihp-microelectronics.com/services/research-and-prototyping-service/mpw-prototyping-service/schedule-price-list
https://www.ihp-microelectronics.com/services/research-and-prototyping-service/mpw-prototyping-service/schedule-price-list
https://www.imb-cnm.csic.es/en/micro-and-nanofabrication-clean-room/silicon-nitride-photonic-integration-platform
https://www.imb-cnm.csic.es/en/micro-and-nanofabrication-clean-room/silicon-nitride-photonic-integration-platform
https://www.imb-cnm.csic.es/en/micro-and-nanofabrication-clean-room/silicon-nitride-photonic-integration-platform
https://smartphotonics.nl/our-offering/mpw/
https://www.cornerstone.sotonfab.co.uk/schedule-cost
https://www.aimphotonics.com/mpw
https://www.leti-cea.com/cea-tech/leti/english/Pages/Applied-Research/Technology-Fields/Silicon-Photonics.aspx
https://www.leti-cea.com/cea-tech/leti/english/Pages/Applied-Research/Technology-Fields/Silicon-Photonics.aspx
https://www.leti-cea.com/cea-tech/leti/english/Pages/Applied-Research/Technology-Fields/Silicon-Photonics.aspx

Silicon Photonics Chip for Telecom Applications

57

45. LIGENTEC. MPW - LIGENTEC.

https://www.ligentec.com/offering/mpw/#1634563665378-4abd52e7-1907

(accessed 2023-06-10).

46. Applied Nanotools Inc. Nanosoi Fabrication Service: Applied Nanotools Inc.

https://www.appliednt.com/nanosoi-fabrication-service/ (accessed 2023-06-12).

47. VTT. VTT Silicon Photonics. https://www.vttresearch.com/en/ourservices/silicon-

photonics (accessed 2023-06-12).

48. Zhang, Q.; Han, X.; Fang, X.; Liu, M.; Ge, K.; Jiang, H.; Dong, W.; Zhang, X. A single

passband microwave photonic filter with enhanced flat top and shape factor

based on tunable optical bandpass filter and fiber Bragg gratings. Optics & Laser

Technology 2024, 168, 109838. https://doi.org/10.1016/j.optlastec.2023.109838.

49. Liu, Y.; Chen, Y.; Wang, L.; Yu, Y.; Yu, Y.; Zhang, X. Tunable and Reconfigurable

Microwave Photonic Bandpass Filter Based on Cascaded Silicon Microring

Resonators. J. Lightwave Technol. 2022, 40 (14), 4655–4662.

https://doi.org/10.1109/jlt.2022.3169723.

50. Arianfard, H.; Wu, J.; Juodkazis, S.; Moss, D. J. Advanced Multi-Functional

Integrated Photonic Filters Based on Coupled Sagnac Loop Reflectors. Journal of

Lightwave Technology 2021, 39 (5), 1400–1408.

https://doi.org/10.1109/JLT.2020.3037559.

51. Li, X.; Shen, C.; Yu, X.; Zhang, Y.; Chen, C.; Zhang, X. Bandwidth-tunable optical

filter based on microring resonator and MZI with Fano resonance. Journal of

Optics 2020, 49 (4), 427–432. https://doi.org/10.1007/s12596-020-00642-2.

52. Najjari, V.; Mirzanejhad, S.; Ghadi, A. Plasmonic Refractive Index Sensor and

Plasmonic Bandpass Filter Including Graded 4-Step Waveguide Based on Fano

Resonances. Plasmonics 2022, 17 (4), 1809–1817.

https://doi.org/10.1007/s11468-022-01667-y.

53. Limonov, M. F.; Rybin, M. V.; Poddubny, A. N.; Kivshar, Y. S. Fano resonances in

photonics. Nature Photonics 2017, 11 (9), 543–554.

https://doi.org/10.1038/nphoton.2017.142.

54. Chen, J.; Li, J.; Liu, X.; Rohimah, S.; Tian, H.; Qi, D. Fano resonance in a MIM

waveguide with double symmetric rectangular stubs and its sensing

characteristics. Optics Communications 2021, 482, 126563.

https://doi.org/10.1016/j.optcom.2020.126563.

55. Sherif, S. M.; Swillam, M. A. Silicon-based mid infrared on-chip gas sensor using

Fano resonance of coupled plasmonic microcavities. Scientific Reports 2023, 13

(1), 12311. https://doi.org/10.1038/s41598-023-38926-9.

56. Tunesi, L.; Khan, I.; Masood, M. U.; Ghillino, E.; Carena, A.; Curri, V.; Bardella, P.

Modular Photonic-Integrated Device for Multi-Band Wavelength-Selective

https://www.ligentec.com/offering/mpw/%231634563665378-4abd52e7-1907
https://www.appliednt.com/nanosoi-fabrication-service/
https://www.vttresearch.com/en/ourservices/silicon-photonics
https://www.vttresearch.com/en/ourservices/silicon-photonics
https://doi.org/10.1016/j.optlastec.2023.109838
https://doi.org/10.1109/jlt.2022.3169723
https://doi.org/10.1109/JLT.2020.3037559
https://doi.org/10.1007/s12596-020-00642-2
https://doi.org/10.1007/s11468-022-01667-y
https://doi.org/10.1038/nphoton.2017.142
https://doi.org/10.1016/j.optcom.2020.126563
https://doi.org/10.1038/s41598-023-38926-9

Silicon Photonics Chip for Telecom Applications

58

Switching. En 2022 27th OptoElectronics and Communications Conference

(OECC) and 2022 International Conference on Photonics in Switching and

Computing (PSC); 2022; pp 1–3.

https://doi.org/10.23919/OECC/PSC53152.2022.9850062.

57. Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Kumar Selvaraja, S.;

Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Baets, R. Silicon microring

resonators. Laser & Photonics Reviews 2012, 6 (1), 47–73.

https://doi.org/10.1002/lpor.201100017.

58. McCaughan, A. N.; Tait, A. N.; Buckley, S. M.; Oh, D. M.; Chiles, J. T.; Shainline, J.

M.; Nam, S. W. PHIDL: Python-Based Layout and Geometry Creation for

Nanolithography. Journal of Vacuum Science & Technology B 2021, 39 (6),

062601. https://doi.org/10.1116/6.0001203.

59. Synopsys, Inc. Synopsys OptoDesigner Manual; 2022.

https://doi.org/10.23919/OECC/PSC53152.2022.9850062
https://doi.org/10.1002/lpor.201100017
https://doi.org/10.1116/6.0001203

Silicon Photonics Chip for Telecom Applications

59

Appendix A. Introduction to PHIDL library in Python

The PHIDL library of Python has been used to represent and design an initial

approach for the positioning of the elements in the layout. This library comprises an

easy start towards designing circuits, because of its user-friendliness and flexibility.

Also, it clarity, and consistency, along with the easiness of the Python language

constitute a great factor for fast implementation [58]. This library is open-source and

allows for the creation of GDS files, which are a standard in the chip designing field.

Because of this, information and code examples are easily accessible through the

Internet, which facilitates the process of designing. Furthermore, the lack of Design

Rule Checking (DRC) makes it easier and faster to construct and attach blocks.

Although this could become a problem while designing a layout to be developed into

a real chip, in this case it constitutes an advantage since the design is not final.

A.1 Programming features and elements of PHIDL

Since PHIDL is a library implemented in Python, it is implemented through the object-

oriented paradigm. This implies that all the different elements will be constituted as

objects to which methods can be applied. There are different objects, which may be

very different among them and serve different purposes. Among them, the following

will be highlighted.

A.1.1 Device() object

This is the most important object in the PHIDL library, since all the designs are made

through the use of these. They are equivalent to a space in which different elements

can be inserted and modified. Also, these objects can be merged together in order to

form a new Device object.

A.1.2 Shapes

In this library, there is a great number of different built-in shapes, such as rectangles,

ellipses or even text. Furthermore, these can be packed together into a single

element, with the possibility of changing their relative positions and sizes. Boolean

functions can also be applied to these, in order to create new ones, based on

previous elements

A.1.3 Grouping objects and references

There are two different approaches for combining together, modifying and using

different elements. The first one consists of employing the class Group, which merges

together the different elements, allowing for modifications as a whole or element by

element, such as mirroring, rotating or moving.

The second approach consists of referencing the elements or groups of elements,

which points to the location of the geometry rather than containing it. Again, by

doing so, we are able to modify the element as a whole, but not element by element

in this case.

Silicon Photonics Chip for Telecom Applications

60

A.1.4 Layers

Layers are introduced from GDS files. These are used to distinguish the type of

material or process that define the elements while fabricating them. It may also be

used to tell apart elements of the same material and process that are occupying the

same area, but in different vertical positions. Therefore, it is an identity for

manufacturing. In the case of PHIDL and GDS, they are defined by a number between

0 and 255, which permits to distinguish among them.

A.1.5 Ports

The components used in PHIDL may present ports, which are very useful in order to

establish connections between the different shapes. Each of them can have a name

assigned, and they occupy a specific position within the elements, with a specific

angle.

A.1.6 Paths and routing

PHIDL presents functionalities to create paths and establish routes between the

different ports. These functionalities range from simple algorithms, such as the

creation of as a straight line, to more complex ones. For example, the algorithm may

take into account the other elements in between and avoid them with a specific

separation, creating an automatic route.

Silicon Photonics Chip for Telecom Applications

61

Appendix B. PHIDL Python Code for the layout

The code for developing the layout has been made using the PHIDL library for

Python, which is accessible online at https://pypi.org/project/phidl/. This library also

makes use of the gdspy library, which is accessible online at

https://pypi.org/project/gdspy/.

The code is the following:

Used to install the libraries if not within the computer

gdspy is also needed for gds import

The code of the gdspy library may be found at https://pypi.org/project/gdspy/

The code of the PHIDL library may be found at https://pypi.org/project/phidl/

!pip install -q gdspy

!pip install -q phidl

"""

Blocks of the elements of the WSS

Includes I/O ports, CDC_channel, CDC_band, MZI, vias and its crossings and

curves.

It also includes a special structure called boot, which presents the shape

mentioned. It is used often because its simplicity and usefulness in a circuit

with our characteristics.

This one does not show the forbidden spaces

"""

import gdspy

import phidl.geometry as pg

from phidl import Device

from phidl import quickplot as qp

from phidl import set_quickplot_options as qp_set

width = 0.5 # Width of the vias (fibers)

radius = 5 # Radius of the arcs

W = 6 # Width of the MZIs and CDCs

bb = 20 # Length of the bounding box's crossing square

d = 7 # Length of the bounding box's curve square

D = Device() # To start again all the structures while using this code

"""

Function to create a CDC for the Bands.

This function uses gdspy module and plots a CDC band with vertical or horizontal

alignment. We can set the minimum x and y positions

Inputs: pos_x = 0 -> Initial position on the x-axis

 pos_y = 0 -> Initial position on the y-axis

 alignment = 'Vertical' -> Alignment of the CDC

 ['Vertical' = 'V'] ; ['Horizontal' = 'H']

 It does not distinguish between uppercase and lowercase letters

https://pypi.org/project/phidl/
https://pypi.org/project/gdspy/

Silicon Photonics Chip for Telecom Applications

62

"""

def CDC_band(pos_x = 0, pos_y = 0, alignment = 'Vertical'):

 # Change to lowercase

 alignment = alignment.lower()

 # CDC with horizontal alignment

 if (alignment=='horizontal' or alignment=='h') :

 w = band_l # CDC width, um

 l = W # CDC length, um

 # CDC with vertical alignment

 elif (alignment=='vertical' or alignment=='v') :

 w = W # CDC width, um

 l = band_l # CDC length, um

 # Throw error if the alignment is not properly defined

 else:

 raise ValueError("The introduced alignment is not valid. Please set alignment

as 'V' for vertical or 'H' for horizontal alignment")

 p0 = (pos_x,pos_y)

 p1 = (pos_x + w, pos_y)

 p2 = (pos_x + w, pos_y + l)

 p3 = (pos_x, pos_y + l)

 D.add_polygon([p0,p1,p2,p3], layer = 0)

 #qp(D)

"""

Function to create a CDC for the channels.

This function uses gdspy module and plots a CDC channel with vertical or

horizontal alignment. We can set the minimum x and y positions

Inputs: pos_x = 0 -> Initial position on the x-axis

 pos_y = 0 -> Initial position on the y-axis

 alignment = 'Vertical' -> Alignment of the CDC

 ['Vertical' = 'V'] ; ['Horizontal' = 'H']

 It does not distinguish between uppercase and lowercase letters

"""

def CDC_channel(pos_x = 0, pos_y = 0, alignment = 'Vertical'):

 # Change to lowercase

 alignment = alignment.lower()

 # CDC with horizontal alignment

 if (alignment=='horizontal' or alignment=='h') :

 w = chann_l # CDC width, um

 l = W # CDC length, um

 # CDC with vertical alignment

 elif (alignment=='vertical' or alignment=='v') :

 w = W # CDC width, um

 l = chann_l # CDC length, um

Silicon Photonics Chip for Telecom Applications

63

 # Throw error if the alignment is not properly defined

 else:

 raise ValueError("The introduced alignment is not valid. Please set alignment

as 'V' for vertical or 'H' for horizontal alignment")

 p0 = (pos_x,pos_y)

 p1 = (pos_x + w, pos_y)

 p2 = (pos_x + w, pos_y + l)

 p3 = (pos_x, pos_y + l)

 D.add_polygon([p0,p1,p2,p3], layer = 1)

 #qp(D)

"""

Function to create an MZI.

This function uses gdspy module and plots an MZI with vertical or horizontal

alignment. We can set the minimum x and y positions

Inputs: pos_x = 0 -> Initial position on the x-axis

 pos_y = 0 -> Initial position on the y-axis

 alignment = 'Vertical' -> Alignment of the CDC.

 ['Vertical' = 'V'] ; ['Horizontal' = 'H']

 It does not distinguish between uppercase and lowercase letters

"""

def MZI(pos_x = 0, pos_y = 0, alignment = 'Vertical'):

 # Change to lowercase

 alignment = alignment.lower()

 # CDC with horizontal alignment

 if (alignment=='horizontal' or alignment=='h') :

 w = MZI_l # CDC width, um

 l = W # CDC length, um

 # CDC with vertical alignment

 elif (alignment=='vertical' or alignment=='v') :

 w = W # CDC width, um

 l = MZI_l # CDC length, um

 # Throw error if the alignment is not properly defined

 else:

 raise ValueError("The introduced alignment is not valid. Please set alignment

as 'V' for vertical or 'H' for horizontal alignment")

 p0 = (pos_x,pos_y)

 p1 = (pos_x + w, pos_y)

 p2 = (pos_x + w, pos_y + l)

 p3 = (pos_x, pos_y + l)

 D.add_polygon([p0,p1,p2,p3], layer = 2)

 #qp(D)

Silicon Photonics Chip for Telecom Applications

64

"""

Function that creates a curve in a fiber, that also contains a bounding box of

7x7 um

Inputs: pos_x = 0 -> Initial position on x-axis

 pos_y = 0 -> Initial Position on y-axis

 initial_direction = 'Top' ; ['Top','Bottom','Right','Left'] -> Initial

direction of the fiber

 final_direction = 'Right' ; ['Top','Bottom','Right','Left'] -> Final

direction of the fiber.

 It must

be 90º apart from initial_direction

 These 2 string inputs do not distinguish between uppercase and

lowercase letters

"""

def curve90 (pos_x = 0, pos_y = 0, initial_direction = 'Top', final_direction =

'Right'):

 # Changes the value of the string to lowercase

 initial_direction = initial_direction.lower()

 final_direction = final_direction.lower()

 # From top to right

 if initial_direction == 'top' and final_direction == 'right':

 arc = pg.arc(radius = radius,

 width = width,

 theta = -90,

 start_angle = 180,

 angle_resolution = 0.5,

 layer = 4)

 arc.movex(pos_x+radius)

 arc.movey(pos_y)

 D.add_ref(arc)

 # From top to left

 elif (initial_direction == 'top' and final_direction == 'left'):

 arc = pg.arc(radius = radius,

 width = width,

 theta = 90,

 start_angle = 0,

 angle_resolution = 0.5,

 layer = 4)

 arc.movex(pos_x-radius)

 arc.movey(pos_y)

 D.add_ref(arc)

 # From bottom to right

 elif (initial_direction == 'bottom' and final_direction == 'right'):

 arc = pg.arc(radius = radius,

 width = width,

 theta = 90,

 start_angle = 180,

 angle_resolution = 0.5,

 layer = 4)

 arc.movex(pos_x+radius)

 arc.movey(pos_y)

 D.add_ref(arc)

Silicon Photonics Chip for Telecom Applications

65

 # From bottom to left

 elif (initial_direction == 'bottom' and final_direction == 'left'):

 arc = pg.arc(radius = radius,

 width = width,

 theta = -90,

 start_angle = 0,

 angle_resolution = 0.5,

 layer = 4)

 arc.movex(pos_x-radius)

 arc.movey(pos_y)

 D.add_ref(arc)

 # From right to top

 elif (initial_direction == 'right' and final_direction == 'top'):

 arc = pg.arc(radius = radius,

 width = width,

 theta = 90,

 start_angle = -90,

 angle_resolution = 0.5,

 layer = 4)

 arc.movex(pos_x)

 arc.movey(pos_y+radius)

 D.add_ref(arc)

 # From right to bottom

 elif (initial_direction == 'right' and final_direction == 'bottom'):

 arc = pg.arc(radius = radius,

 width = width,

 theta = -90,

 start_angle = 90,

 angle_resolution = 0.5,

 layer = 4)

 arc.movex(pos_x)

 arc.movey(pos_y-radius)

 D.add_ref(arc)

 # From left to top

 elif (initial_direction == 'left' and final_direction == 'top'):

 arc = pg.arc(radius = radius,

 width = width,

 theta = -90,

 start_angle = -90,

 angle_resolution = 0.5,

 layer = 4)

 arc.movex(pos_x)

 arc.movey(pos_y+radius)

 D.add_ref(arc)

 # From left to bottom

 elif (initial_direction == 'left' and final_direction == 'bottom'):

 arc = pg.arc(radius = radius,

 width = width,

 theta = 90,

 start_angle = 90,

 angle_resolution = 0.5,

 layer = 4)

 arc.movex(pos_x)

 arc.movey(pos_y-radius)

Silicon Photonics Chip for Telecom Applications

66

 D.add_ref(arc)

 # If the initial and/or final direction are not the expected

 else:

 raise ValueError('The introduced initial and/or final directions are not

correct. Please type \'Top\', \'Bottom\', \'Right\' or \'Left\' for

initial_direction.\n \

 For final_direction, please chose a direction 90º apart from the

chosen initial one')

 #qp(D)

"""

Function that generates a crossing at the specified position with a bounding box

Inputs: pos_x = 0 -> Position on the x-axis in which the crossing takes place

 pos_y = 0-> Position on the y-axis in which the crossing takes place

 bounding_box = bb -> Length of the bounding box's square

"""

def crossing(pos_x = 0, pos_y = 0, bounding_box = bb):

 # Horizontal fiber

 p0 = (pos_x-bounding_box/2, pos_y-width/2)

 p1 = (pos_x-bounding_box/2, pos_y+width/2)

 p2 = (pos_x+bounding_box/2, pos_y+width/2)

 p3 = (pos_x+bounding_box/2, pos_y-width/2)

 D.add_polygon([p0,p1,p2,p3], layer = 4)

 # Vertical fiber

 p0 = (pos_x-width/2, pos_y-bounding_box/2)

 p1 = (pos_x-width/2, pos_y+bounding_box/2)

 p2 = (pos_x+width/2, pos_y+bounding_box/2)

 p3 = (pos_x+width/2, pos_y-bounding_box/2)

 D.add_polygon([p0,p1,p2,p3], layer = 4)

 # Defining the ports

 #D.add_port(name = 'vd', midpoint = [pos_x,pos_y-bounding_box/2], width =

width, orientation = -90) # Vertical down

 #D.add_port(name = 'vt', midpoint = [pos_x,pos_y+bounding_box/2], width =

width, orientation = 90) # Vertical top

 #D.add_port(name = 'hl', midpoint = [pos_x-bounding_box/2,pos_y], width =

width, orientation = 180) # Horizontal left

 #D.add_port(name = 'hr', midpoint = [pos_x+bounding_box/2,pos_y], width =

width, orientation = 0) # Horizontal right

 #qp(D)

'''

Function that generates a via from a starting position with a certain length

Inputs: init_x = 0 -> Starting position on the x-axis

 init_y = 0 -> Starting position on the y-axis

 length = 10 -> Length of the fiber

 orientation = 'Top' ; ['Top', 'Bottom', 'Right', 'Left'] -> Via

orientation;

Silicon Photonics Chip for Telecom Applications

67

 It does not distinguish between uppercase and lowercase letters

'''

def via(init_x = 0, init_y = 0, length = 10, orientation = 'Top'):

 # Change to lowercase

 orientation = orientation.lower()

 # Via going to the top

 if orientation == 'top':

 #if length > 0:

 p0 = (init_x-width/2, init_y)

 p1 = (init_x+width/2, init_y)

 p2 = (init_x+width/2, init_y+length)

 p3 = (init_x-width/2, init_y+length)

 D.add_polygon([p0,p1,p2,p3], layer = 4)

 #D.add_port(name = '1', midpoint = [init_x,init_y], width = width,

orientation = -90) # Vertical down

 #D.add_port(name = '2', midpoint = [init_x,init_y+length], width = width,

orientation = 90) # Vertical top

 #else:

 #raise ValueError(f"Input length of the via must be higher than 0.\nIts

current value is: {length}")

 # Via going to the top

 elif orientation == 'bottom':

 #if length > 0:

 p0 = (init_x-width/2, init_y)

 p1 = (init_x+width/2, init_y)

 p2 = (init_x+width/2, init_y-length)

 p3 = (init_x-width/2, init_y-length)

 D.add_polygon([p0,p1,p2,p3], layer = 4)

 #D.add_port(name = '2', midpoint = [init_x,init_y-length], width = width,

orientation = -90) # Vertical down

 #D.add_port(name = '1', midpoint = [init_x,init_y], width = width,

orientation = 90) # Vertical top

 #else:

 #raise ValueError(f"Input length of the via must be higher than 0.\nIts

current value is: {length}")

 # Via going to the right

 elif orientation == 'right':

 #if length > 0:

 p0 = (init_x, init_y-width/2)

 p1 = (init_x, init_y+width/2)

 p2 = (init_x+length, init_y+width/2)

 p3 = (init_x+length, init_y-width/2)

 D.add_polygon([p0,p1,p2,p3], layer = 4)

 #D.add_port(name = '1', midpoint = [init_x, init_y], width = width,

orientation = 180) # Horizontal left

 #D.add_port(name = '2', midpoint = [init_x+length, init_y], width = width,

orientation = 0) # Horizontal right

 #else:

 #raise ValueError(f"Input length of the via must be higher than 0.\nIts

current value is: {length}")

 # Via going to the left

 elif orientation == 'left':

 #if length > 0:

 p0 = (init_x, init_y-width/2)

Silicon Photonics Chip for Telecom Applications

68

 p1 = (init_x, init_y+width/2)

 p2 = (init_x-length, init_y+width/2)

 p3 = (init_x-length, init_y-width/2)

 D.add_polygon([p0,p1,p2,p3], layer = 4)

 #D.add_port(name = '2', midpoint = [init_x-length, init_y], width = width,

orientation = 180) # Horizontal left

 #D.add_port(name = '1', midpoint = [init_x, init_y], width = width,

orientation = 0) # Horizontal right

 #else:

 #raise ValueError(f"Input length of the via must be higher than 0.\nIts

current value is: {length}")

 # If the keyword specified is incorrect

 else:

 raise ValueError ("Orientation value is not correct. Please type 'Top',

'Bottom', 'Right' or 'Left'")

 #qp(D)

'''

Create a path with the same direction for the entry and exit, but with a certain

separation.

The figure has the shape of a boot.

Inputs: pos_x = 0 -> Central position of the entry (X-position)

 pos_y = 0 -> Central position of the entry (Y-position)

 initial_direction = 'Top' ; ['Top', 'Bottom', 'Right', 'Left'] ->

Direction of the entry.

 exit_via = 'Right' ; ['Top', 'Bottom', 'Right', 'Left']-> Position of the

exit from the entry.

 It must be 90º

apart from initial_direction

 safe_space = 'False' ; ['False', 'True'] -> Whether there is a safe space

to place another curve90

 with the same direction as

the entry of the boot or not.

 It corresponds to an extra

via on both the entry and exit

 These extra vias equal to

(radius-width)/2

 'False' if there are not

these extra vias

 'True' if there are

 separation = radius -> Distance of separation between the exit and entry

vias. Must be higher than width,

 This separation is maintained as the minimum of

all points to a curve90 in the

 same direction as the first one on the entry but

with a certain separation if

 safe_space = 'True'

 All the different string inputs do not distinguish between uppercase and

lowercase letters

'''

def boot(pos_x = 0, pos_y = 0, initial_direction = 'Top', exit_via = 'Right',

safe_space = 'False', separation = radius):

 initial_direction = initial_direction.lower()

 exit_via = exit_via.lower()

Silicon Photonics Chip for Telecom Applications

69

 safe_space = safe_space.lower()

 if separation >= width:

 if safe_space == 'true' or safe_space == 'false':

 if initial_direction == 'top':

 if exit_via == 'right':

 if safe_space == 'false':

 curve90(pos_x,pos_y,'Top','Left')

 curve90(pos_x-radius,pos_y+radius,'Left','Top')

 curve90(pos_x-2*radius,pos_y+2*radius,'Top','Right')

 via(pos_x-radius,pos_y+3*radius,separation+width,'Right')

 curve90(pos_x-

radius+separation+width,pos_y+3*radius,'Right','Bottom')

 via(pos_x+separation+width,pos_y+2*radius,2*radius,'Bottom')

 else:

 ss = separation-width # Extra vias length (To

maintain the minimum distance)

 via(pos_x,pos_y,ss,'Top') # Extra entry via

 via(pos_x+separation+width,pos_y,ss,'Top') # Extra exit via

 curve90(pos_x,pos_y+ss,'Top','Left')

 curve90(pos_x-radius,pos_y+radius+ss,'Left','Top')

 curve90(pos_x-2*radius,pos_y+2*radius+ss,'Top','Right')

 via(pos_x-radius,pos_y+3*radius+ss,separation+width,'Right')

 curve90(pos_x-

radius+separation+width,pos_y+3*radius+ss,'Right','Bottom')

 via(pos_x+separation+width,pos_y+2*radius+ss,2*radius,'Bottom')

 elif exit_via == 'left':

 if safe_space == 'false':

 curve90(pos_x,pos_y,'Top','Right')

 curve90(pos_x+radius,pos_y+radius,'Right','Top')

 curve90(pos_x+2*radius,pos_y+2*radius,'Top','Left')

 via(pos_x+radius,pos_y+3*radius,separation+width,'Left')

 curve90(pos_x+radius-separation-width,pos_y+3*radius,'Left','Bottom')

 via(pos_x-separation-width,pos_y+2*radius,2*radius,'Bottom')

 else:

 ss = separation-width # Extra vias length

(To maintain the minimum distance)

 via(pos_x,pos_y,ss,'Top') # Extra entry via

 via(pos_x-separation-width,pos_y,ss,'Top') # Extra exit via

 curve90(pos_x,pos_y+ss,'Top','Right')

 curve90(pos_x+radius,pos_y+radius+ss,'Right','Top')

 curve90(pos_x+2*radius,pos_y+2*radius+ss,'Top','Left')

 via(pos_x+radius,pos_y+3*radius+ss,separation+width,'Left')

 curve90(pos_x+radius-separation-

width,pos_y+3*radius+ss,'Left','Bottom')

 via(pos_x-separation-width,pos_y+2*radius+ss,2*radius,'Bottom')

 else:

 raise ValueError("The circuit goes initially to the top, so we can only

have exit_via = 'Right' or 'Left'")

 elif initial_direction == 'bottom':

 if exit_via == 'right':

 if safe_space == 'false':

 curve90(pos_x,pos_y,'Bottom','Left')

 curve90(pos_x-radius,pos_y-radius,'Left','Bottom')

Silicon Photonics Chip for Telecom Applications

70

 curve90(pos_x-2*radius,pos_y-2*radius,'Bottom','Right')

 via(pos_x-radius,pos_y-3*radius,separation+width,'Right')

 curve90(pos_x-radius+separation+width,pos_y-3*radius,'Right','Top')

 via(pos_x+separation+width,pos_y-2*radius,2*radius,'Top')

 else:

 ss = separation-width # Extra vias length

(To maintain the minimum distance)

 via(pos_x,pos_y,ss,'Bottom') # Extra entry via

 via(pos_x+separation+width,pos_y,ss,'Bottom') # Extra exit via

 curve90(pos_x,pos_y-ss,'Bottom','Left')

 curve90(pos_x-radius,pos_y-radius-ss,'Left','Bottom')

 curve90(pos_x-2*radius,pos_y-2*radius-ss,'Bottom','Right')

 via(pos_x-radius,pos_y-3*radius-ss,separation+width,'Right')

 curve90(pos_x-radius+separation+width,pos_y-3*radius-

ss,'Right','Top')

 via(pos_x+separation+width,pos_y-2*radius-ss,2*radius,'Top')

 elif exit_via == 'left':

 if safe_space == 'false':

 curve90(pos_x,pos_y,'Bottom','Right')

 curve90(pos_x+radius,pos_y-radius,'Right','Bottom')

 curve90(pos_x+2*radius,pos_y-2*radius,'Bottom','Left')

 via(pos_x+radius,pos_y-3*radius,separation+width,'Left')

 curve90(pos_x+radius-separation-width,pos_y-3*radius,'Left','Top')

 via(pos_x-separation-width,pos_y-2*radius,2*radius,'Top')

 else:

 ss = separation-width # Extra vias length

(To maintain the minimum distance)

 via(pos_x,pos_y,ss,'Bottom') # Extra entry via

 via(pos_x-separation-width,pos_y,ss,'Bottom') # Extra exit via

 curve90(pos_x,pos_y-ss,'Bottom','Right')

 curve90(pos_x+radius,pos_y-radius-ss,'Right','Bottom')

 curve90(pos_x+2*radius,pos_y-2*radius-ss,'Bottom','Left')

 via(pos_x+radius,pos_y-3*radius-ss,separation+width,'Left')

 curve90(pos_x+radius-separation-width,pos_y-3*radius-ss,'Left','Top')

 via(pos_x-separation-width,pos_y-2*radius-ss,2*radius,'Top')

 else:

 raise ValueError("The circuit goes initially to the bottom, so we can

only have exit_via = 'Right' or 'Left'")

 elif initial_direction == 'right':

 if exit_via == 'top':

 if safe_space == 'false':

 curve90(pos_x,pos_y,'Right','Bottom')

 curve90(pos_x+radius,pos_y-radius,'Bottom','Right')

 curve90(pos_x+2*radius,pos_y-2*radius,'Right','Top')

 via(pos_x+3*radius,pos_y-radius,separation+width,'Top')

 curve90(pos_x+3*radius,pos_y-radius+separation+width,'Top','Left')

 via(pos_x+2*radius,pos_y+separation+width,2*radius,'Left')

 else:

 ss = separation-width # Extra vias length

(To maintain the minimum distance)

 via(pos_x,pos_y,ss,'Right') # Extra entry via

 via(pos_x,pos_y+separation+width,ss,'Right') # Extra exit via

 curve90(pos_x+ss,pos_y,'Right','Bottom')

 curve90(pos_x+radius+ss,pos_y-radius,'Bottom','Right')

 curve90(pos_x+2*radius+ss,pos_y-2*radius,'Right','Top')

Silicon Photonics Chip for Telecom Applications

71

 via(pos_x+3*radius+ss,pos_y-radius,separation+width,'Top')

 curve90(pos_x+3*radius+ss,pos_y-radius+separation+width,'Top','Left')

 via(pos_x+2*radius+ss,pos_y+separation+width,2*radius,'Left')

 elif exit_via == 'bottom':

 if safe_space == 'false':

 curve90(pos_x,pos_y,'Right','Top')

 curve90(pos_x+radius,pos_x+radius,'Top','Right')

 curve90(pos_x+2*radius,pos_x+2*radius,'Right','Bottom')

 via(pos_x+3*radius,pos_x+radius,separation+width,'Bottom')

 curve90(pos_x+3*radius,pos_x+radius-separation-width,'Bottom','Left')

 via(pos_x+2*radius,pos_x-separation-width,2*radius,'Left')

 else:

 ss = separation-width # Extra vias length

(To maintain the minimum distance)

 via(pos_x,pos_y,ss,'Right') # Extra entry via

 via(pos_x,pos_y-separation-width,ss,'Right') # Extra exit via

 curve90(pos_x+ss,pos_y,'Right','Top')

 curve90(pos_x+radius+ss,pos_x+radius,'Top','Right')

 curve90(pos_x+2*radius+ss,pos_x+2*radius,'Right','Bottom')

 via(pos_x+3*radius+ss,pos_x+radius,separation+width,'Bottom')

 curve90(pos_x+3*radius+ss,pos_x+radius-separation-

width,'Bottom','Left')

 via(pos_x+2*radius+ss,pos_x-separation-width,2*radius,'Left')

 else:

 raise ValueError("The circuit goes initially to the right, so we can

only have exit_via = 'Top' or 'Bottom'")

 elif initial_direction == 'left':

 if exit_via == 'top':

 if safe_space == 'false':

 curve90(pos_x,pos_y,'Left','Bottom')

 curve90(pos_x-radius,pos_y-radius,'Bottom','Left')

 curve90(pos_x-2*radius,pos_y-2*radius,'Left','Top')

 via(pos_x-3*radius,pos_y-radius,separation+width,'Top')

 curve90(pos_x-3*radius,pos_y-radius+separation+width,'Top','Right')

 via(pos_x-2*radius,pos_y+separation+width,2*radius,'Right')

 else:

 ss = separation-width # Extra vias length

(To maintain the minimum distance)

 via(pos_x,pos_y,ss,'Left') # Extra entry via

 via(pos_x,pos_y+separation+width,ss,'Left') # Extra exit via

 curve90(pos_x-ss,pos_y,'Left','Bottom')

 curve90(pos_x-radius-ss,pos_y-radius,'Bottom','Left')

 curve90(pos_x-2*radius-ss,pos_y-2*radius,'Left','Top')

 via(pos_x-3*radius-ss,pos_y-radius,separation+width,'Top')

 curve90(pos_x-3*radius-ss,pos_y-

radius+separation+width,'Top','Right')

 via(pos_x-2*radius-ss,pos_y+separation+width,2*radius,'Right')

 elif exit_via == 'bottom':

 if safe_space == 'false':

 curve90(pos_x,pos_y,'Left','Top')

 curve90(pos_x-radius,pos_y+radius,'Top','Left')

 curve90(pos_x-2*radius,pos_y+2*radius,'Left','Bottom')

 via(pos_x-3*radius,pos_y+radius,separation+width,'Bottom')

Silicon Photonics Chip for Telecom Applications

72

 curve90(pos_x-3*radius,pos_y+radius-separation-

width,'Bottom','Right')

 via(pos_x-2*radius,pos_y-separation-width,2*radius,'Right')

 else:

 ss = separation-width # Extra vias length

(To maintain the minimum distance)

 via(pos_x,pos_y,ss,'Left') # Extra entry via

 via(pos_x,pos_y-separation-width,ss,'Left') # Extra exit via

 curve90(pos_x-ss,pos_y,'Left','Top')

 curve90(pos_x-radius-ss,pos_y+radius,'Top','Left')

 curve90(pos_x-2*radius-ss,pos_y+2*radius,'Left','Bottom')

 via(pos_x-3*radius-ss,pos_y+radius,separation+width,'Bottom')

 curve90(pos_x-3*radius-ss,pos_y+radius-separation-

width,'Bottom','Right')

 via(pos_x-2*radius-ss,pos_y-separation-width,2*radius,'Right')

 else:

 raise ValueError("The circuit goes initially to the left, so we can

only have exit_via = 'Top' or 'Bottom'")

 else:

 raise ValueError("The input safe_space can only have the values 'False' or

'True'")

 else:

 raise ValueError(f"The separation must be higher than the width of the vias

(width={width})")

 #qp(D)

'''

Function that creates an I/O port, which has the shape of a quasi-triangle, with

a minimum (width of the vias) and maximum widths defined by the user

Inputs: init_x = 0 -> X-position at which the via connects to the port

 init_y = 0 -> Y-position of the center of the quasi-triangle (and center

of the via)

 wid = 0.5 -> Width of the incoming via

 height = 50 -> Maximum height of the I/O port at its end

These I/O ports always connect to a via on its left

'''

def IO (init_x = 0, init_y = 0, wid = 0.5, height = 50, length = 40, t = "I"):

 if wid > 0 and height > 0 and length > 0:

 # Creating the quasi-triangle

 p0 = (init_x, init_y+wid/2)

 p1 = (init_x, init_y-wid/2)

 p2 = (init_x-length, init_y-height/2)

 p3 = (init_x-length, init_y+height/2)

 D.add_polygon([p0,p1,p2,p3], layer = 4)

 # Creating the text

 siz = height

 T = pg.text(text = t, size = siz,

Silicon Photonics Chip for Telecom Applications

73

 justify = 'left', layer = 3)

 text = D.add_ref(T)

 text.movex(init_x-length-(len(t)-t.count(' '))*siz)

 text.movey(init_y-siz/2)

 else:

 raise ValueError("The inputs width, height and length must be all higher than

0")

 #qp(D)

"""

Creating the whole Wavelength Selective Switch (WSS) with 50 um

(Without the last band CDCs (on the right))

Final Schematic

"""

MZI_l = 50 # Length of the MZI

chann_l = 50 # Length of the CDC of the channels

#band_l = 50 # Length of the CDC of the bands

band_l = MZI_l+chann_l+5/2*bb+4*radius # Length of the CDC of the bands

(Similar proportion to reality)

IO_h = 22.152 # Height of the I/O ports

IO_l = 35.603 # Horizontal length of the I/O ports

n_channels = 8 # Number of channels per band of the WSS

Distance between two channel structures (from the input of one to the input of

the next)

ms_x = 8*radius+3*W-3*width+bb/2

port_d = 30 # Distance between two consecutive I/O ports

D = Device()

'''

The smallest structure of our WSS, made by 1 input channel CDC, 3 output channel

CDCs and 2 MZIs.

It constitutes a single channel within the WSS.

Inputs: pos_x = 0 -> Initial position on the x-axis (Smallest of the input

channel CDC)

 pos_y = 0 -> Initial position on the y-axis (Smallest of the input

channel CDC)

 structure_type = 0 -> Type of desired channel-structure. 'Contiguous' for

a structure connected to another on its right,

 'Initial' for one not connected to another on its

left,

 and 'Final' for the last one which does not connect

to another channel on its right

 It does not distinguish between uppercase and

lowercase letters

Silicon Photonics Chip for Telecom Applications

74

'''

def channel_struct(pos_x = 0, pos_y = 0, structure_type = 'Initial'):

 structure_type = structure_type.lower()

 if structure_type == 'initial':

 CDC_channel(pos_x,pos_y) # Input CDC channel

 # From input CDC channel to MZI

 via(pos_x+W-width/2,pos_y,radius+width/2+bb,'Bottom')

 # MZIs and its connections

 # MZI 1 (the one on the left)

 MZI(pos_x+W-width,pos_y-(MZI_l+bb+radius+width/2))

 # I (MZI interconnection)

 curve90(pos_x+2*W-1.5*width,pos_y-(MZI_l+bb+radius+width/2),'Bottom','Right')

 via(pos_x+2*W-1.5*width+radius,pos_y-(MZI_l+2*radius+bb+width/2),3*radius,

'Right')

 curve90(pos_x+2*W-3/2*width+bb/2+2*radius,pos_y-

(MZI_l+bb+2*radius+width/2),'right','top')

 # MZI 2 (the one on the right)

 MZI(pos_x+2*W-2*width+bb/2+3*radius,pos_y-(MZI_l+bb+radius+width/2))

 # P1 (to output channel CDC 1 of the next structure)

 via(pos_x+W-width/2,pos_y-(MZI_l+bb+radius+width/2),width+bb,'Bottom')

 curve90(pos_x+W-width/2,pos_y-MZI_l-2*bb-radius-3/2*width,'Bottom', 'Right')

 via(pos_x+W+radius-width/2,pos_y-MZI_l-2*bb-2*radius-3/2*width,W-

width+radius,'Right')

 curve90(pos_x+2*W-3/2*width+2*radius,pos_y-MZI_l-2*bb-2*radius-

3/2*width,'Right','Bottom')

 via(pos_x+2*W-3/2*width+3*radius,pos_y-MZI_l-2*bb-3*radius-

3/2*width,chann_l,'Bottom')

 curve90(pos_x+2*W-3/2*width+3*radius,pos_y-MZI_l-chann_l-2*bb-3*radius-

3/2*width,'Bottom','Right')

 via(pos_x+2*W-3/2*width+4*radius,pos_y-MZI_l-chann_l-2*bb-4*radius-

3/2*width,4*W-5*width+bb/2+2*radius,'Right')

 curve90(pos_x+6*W-13/2*width+6*radius+bb/2,pos_y-MZI_l-chann_l-2*bb-4*radius-

3/2*width,'Right','Top')

 # P2 (to output channel CDC 2)

 via(pos_x+2*W-3/2*width+bb/2+3*radius,pos_y-bb-radius-width/2,bb/2-

radius,'Top')

 curve90(pos_x+2*W-3/2*width+bb/2+3*radius,pos_y-bb/2-2*radius-

width/2,'Top','Right')

 via(pos_x+2*W-3/2*width+bb/2+4*radius,pos_y-bb/2-radius-

width/2,3*radius+W,'Right')

 # P3 (to output channel CDC 3)

 curve90(pos_x+3*W-5/2*width+bb/2+3*radius,pos_y-

(bb+radius+width/2),'Top','Right')

 curve90(pos_x+3*W-5/2*width+bb/2+4*radius,pos_y-

(bb+width/2),'Right','Bottom')

 via(pos_x+3*W-5/2*width+bb/2+5*radius,pos_y-

(bb+radius+width/2),MZI_l+bb/2+width/2, 'Bottom')

 curve90(pos_x+3*W-5/2*width+bb/2+5*radius,pos_y-MZI_l-3/2*bb-radius-

width,'Bottom','Right')

 via(pos_x+3*W-5/2*width+bb/2+6*radius,pos_y-MZI_l-3/2*bb-2*radius-width,W-

width,'Right')

 # Vias between input channel CDCs

 curve90(pos_x+ms_x+width/2,pos_y,'Bottom','Left')

 curve90(pos_x+ms_x-radius+width/2,pos_y-radius,'Left','Top')

 via(pos_x+ms_x-2*radius+width/2,pos_y,chann_l+3/2*width,'Top')

Silicon Photonics Chip for Telecom Applications

75

 curve90(pos_x+ms_x-2*radius+width/2,pos_y+chann_l+3/2*width,'Top','Left')

 via(pos_x+ms_x-

3*radius+width/2,pos_y+chann_l+radius+3/2*width,4*radius+3*W+bb/2-3*width,'Left')

 curve90(pos_x+ms_x-7*radius-3*W+7/2*width-

bb/2,pos_y+chann_l+radius+3/2*width,'Left','Bottom')

 via(pos_x+ms_x-8*radius-3*W+7/2*width-

bb/2,pos_y+chann_l+3/2*width,3/2*width,'Bottom')

 elif structure_type == 'contiguous':

 CDC_channel(pos_x,pos_y) # Input CDC channel

 # From input CDC channel to MZI

 via(pos_x+W-width/2,pos_y,radius+width/2,'Bottom')

 crossing(pos_x+W-width/2,pos_y-radius-width/2-bb/2)

 # MZIs and its connections

 # MZI 1 (the one on the left)

 MZI(pos_x+W-width,pos_y-(MZI_l+bb+radius+width/2))

 # I (MZI interconnection)

 curve90(pos_x+2*W-1.5*width,pos_y-(MZI_l+bb+radius+width/2),'Bottom','Right')

 via(pos_x+2*W-1.5*width+radius,pos_y-(MZI_l+2*radius+bb+width/2),3*radius,

'Right')

 curve90(pos_x+2*W-3/2*width+bb/2+2*radius,pos_y-

(MZI_l+bb+2*radius+width/2),'right','top')

 # MZI 2 (the one on the right)

 MZI(pos_x+2*W-2*width+bb/2+3*radius,pos_y-(MZI_l+bb+radius+width/2))

 # P1 (to output channel CDC 1)

 via(pos_x+W-width/2,pos_y-(MZI_l+bb+radius+width/2),radius+width/2,'Bottom')

 crossing(pos_x+W-width/2,pos_y-(MZI_l+3/2*bb+2*radius+width))

 via(pos_x+W-width/2,pos_y-

(MZI_l+2*bb+2*radius+width),radius+width/2,'Bottom')

 # P2 (to output channel CDC 2)

 via(pos_x+2*W-3/2*width+bb/2+3*radius,pos_y-bb-radius-

width/2,chann_l+bb/2+radius,'Top')

 curve90(pos_x+2*W-3/2*width+bb/2+3*radius,pos_y+chann_l-bb/2-

width/2,'Top','Left')

 curve90(pos_x+2*W-3/2*width+bb/2+2*radius,pos_y+chann_l-bb/2-

width/2+radius,'Left','Bottom')

 # P3 (to output channel CDC 3)

 curve90(pos_x+3*W-5/2*width+bb/2+3*radius,pos_y-

(bb+radius+width/2),'Top','Right')

 curve90(pos_x+3*W-5/2*width+bb/2+4*radius,pos_y-

(bb+width/2),'Right','Bottom')

 via(pos_x+3*W-5/2*width+bb/2+5*radius,pos_y-

(bb+radius+width/2),MZI_l+bb/2+2*radius+width/2, 'Bottom')

 # Output channel CDCs

 CDC_channel(pos_x+W-width,pos_y-MZI_l-chann_l-2*bb-3*radius-3/2*width)

Output Channel CDC 1

 CDC_channel(pos_x+W-width+bb/2+radius,pos_y-width/2-bb/2)

Output Channel CDC 2

 CDC_channel(pos_x+3*W-3*width+bb/2+5*radius,pos_y-MZI_l-chann_l-3/2*bb-

3*radius-width) # Output Channel CDC 3

 # Vias between input channel CDCs

 curve90(pos_x+ms_x+width/2,pos_y,'Bottom','Left')

 curve90(pos_x+ms_x-radius+width/2,pos_y-radius,'Left','Top')

 via(pos_x+ms_x-2*radius+width/2,pos_y,chann_l+3/2*width,'Top')

 curve90(pos_x+ms_x-2*radius+width/2,pos_y+chann_l+3/2*width,'Top','Left')

Silicon Photonics Chip for Telecom Applications

76

 via(pos_x+ms_x-

3*radius+width/2,pos_y+chann_l+radius+3/2*width,4*radius+3*W+bb/2-3*width,'Left')

 curve90(pos_x+ms_x-7*radius-3*W+7/2*width-

bb/2,pos_y+chann_l+radius+3/2*width,'Left','Bottom')

 via(pos_x+ms_x-8*radius-3*W+7/2*width-

bb/2,pos_y+chann_l+3/2*width,3/2*width,'Bottom')

 # Vias between output channel CDCs #1

 curve90(pos_x+2*W-3/2*width,pos_y-MZI_l-2*bb-3*radius-

3/2*width,'Top','Right')

 via(pos_x+2*W-3/2*width+radius,pos_y-MZI_l-2*bb-2*radius-

3/2*width,radius,'Right')

 curve90(pos_x+2*W-3/2*width+2*radius,pos_y-MZI_l-2*bb-2*radius-

3/2*width,'Right','Bottom')

 via(pos_x+2*W-3/2*width+3*radius,pos_y-MZI_l-2*bb-3*radius-

3/2*width,chann_l,'Bottom')

 curve90(pos_x+2*W-3/2*width+3*radius,pos_y-MZI_l-chann_l-2*bb-3*radius-

3/2*width,'Bottom','Right')

 via(pos_x+2*W-3/2*width+4*radius,pos_y-MZI_l-chann_l-2*bb-4*radius-

3/2*width,4*W-5*width+bb/2+2*radius,'Right')

 curve90(pos_x+6*W-13/2*width+6*radius+bb/2,pos_y-MZI_l-chann_l-2*bb-4*radius-

3/2*width,'Right','Top')

 # Vias between output channel CDCs #2

 # To the right of the crossing

 curve90(pos_x+W-width/2+bb/2+radius,pos_y-radius-width/2+radius-

bb/2,'Bottom','Left')

 # To the next mini-structure

 via(pos_x+W-width/2+bb/2+radius,pos_y-radius+chann_l-bb/2-

width/2+radius,radius+width,'Top')

 curve90(pos_x+W-width/2+bb/2+radius,pos_y+chann_l-

bb/2+radius+width/2,'Top','Right')

 via(pos_x+W-width/2+bb/2+2*radius,pos_y+chann_l+2*radius-bb/2+width/2,W-

width+2*radius,'Right')

 curve90(pos_x+2*W-3/2*width+bb/2+4*radius,pos_y+chann_l+2*radius-

bb/2+width/2,'Right','Bottom')

 via(pos_x+2*W-3/2*width+bb/2+5*radius,pos_y+chann_l-

bb/2+radius+width/2,chann_l+radius+width,'Bottom')

 curve90(pos_x+2*W-3/2*width+bb/2+5*radius,pos_y-width/2-

bb/2,'Bottom','Right')

 via(pos_x+2*W-3/2*width+bb/2+6*radius,pos_y-width/2-bb/2-

radius,radius+W,'Right')

 # Vias between output channel CDCs #3

 # To the right of the crossing

 via(pos_x+W-width/2+bb/2,pos_y-(MZI_l+3/2*bb+2*radius+width),W-

width+3*radius,'Right')

 curve90(pos_x+2*W-3/2*width+bb/2+3*radius,pos_y-

(MZI_l+3/2*bb+2*radius+width),'Right','Bottom')

 via(pos_x+2*W-3/2*width+bb/2+4*radius,pos_y-

(MZI_l+3/2*bb+3*radius+width),2*radius+chann_l-bb/2,'Bottom')

 curve90(pos_x+2*W-3/2*width+bb/2+4*radius,pos_y-MZI_l-chann_l-bb-5*radius-

width,'Bottom','Right')

 via(pos_x+2*W-3/2*width+bb/2+5*radius,pos_y-MZI_l-chann_l-bb-6*radius-

width,2*W-radius-2*width,'Right')

 curve90(pos_x+4*W-7/2*width+bb/2+4*radius,pos_y-MZI_l-chann_l-bb-6*radius-

width,'Right','Top')

 # To the next mini-structure

Silicon Photonics Chip for Telecom Applications

77

 curve90(pos_x+4*W-7/2*width+bb/2+5*radius,pos_y-

(MZI_l+3/2*bb+3*radius+width),'Top','Right')

 elif structure_type == 'final':

 CDC_channel(pos_x,pos_y) # Input CDC channel

 # From input CDC channel to MZI

 via(pos_x+W-width/2,pos_y,radius+width/2,'Bottom')

 crossing(pos_x+W-width/2,pos_y-radius-width/2-bb/2)

 # MZIs and its connections

 # MZI 1 (the one on the left)

 MZI(pos_x+W-width,pos_y-(MZI_l+bb+radius+width/2))

 # I (MZI interconnection)

 curve90(pos_x+2*W-1.5*width,pos_y-(MZI_l+bb+radius+width/2),'Bottom','Right')

 via(pos_x+2*W-1.5*width+radius,pos_y-(MZI_l+2*radius+bb+width/2),3*radius,

'Right')

 curve90(pos_x+2*W-3/2*width+bb/2+2*radius,pos_y-

(MZI_l+bb+2*radius+width/2),'right','top')

 # MZI 2 (the one on the right)

 MZI(pos_x+2*W-2*width+bb/2+3*radius,pos_y-(MZI_l+bb+radius+width/2))

 # P1 (to output channel CDC 1)

 via(pos_x+W-width/2,pos_y-(MZI_l+bb+radius+width/2),radius+width/2,'Bottom')

 crossing(pos_x+W-width/2,pos_y-(MZI_l+3/2*bb+2*radius+width))

 via(pos_x+W-width/2,pos_y-

(MZI_l+2*bb+2*radius+width),radius+width/2,'Bottom')

 # P2 (to output channel CDC 2)

 via(pos_x+2*W-3/2*width+bb/2+3*radius,pos_y-bb-radius-

width/2,chann_l+bb/2+radius,'Top')

 curve90(pos_x+2*W-3/2*width+bb/2+3*radius,pos_y+chann_l-bb/2-

width/2,'Top','Left')

 curve90(pos_x+2*W-3/2*width+bb/2+2*radius,pos_y+chann_l-bb/2-

width/2+radius,'Left','Bottom')

 # P3 (to output channel CDC 3)

 curve90(pos_x+3*W-5/2*width+bb/2+3*radius,pos_y-

(bb+radius+width/2),'Top','Right')

 curve90(pos_x+3*W-5/2*width+bb/2+4*radius,pos_y-

(bb+width/2),'Right','Bottom')

 via(pos_x+3*W-5/2*width+bb/2+5*radius,pos_y-

(bb+radius+width/2),MZI_l+bb/2+2*radius+width/2, 'Bottom')

 # Output channel CDCs

 CDC_channel(pos_x+W-width,pos_y-MZI_l-chann_l-2*bb-3*radius-3/2*width)

Output Channel CDC 1

 CDC_channel(pos_x+W-width+bb/2+radius,pos_y-width/2-bb/2)

Output Channel CDC 2

 CDC_channel(pos_x+3*W-3*width+bb/2+5*radius,pos_y-MZI_l-chann_l-3/2*bb-

3*radius-width) # Output Channel CDC 3

 # Vias between output channel CDCs #2

 # To the right of the crossing

 curve90(pos_x+W-width/2+bb/2+radius,pos_y-radius-width/2+radius-

bb/2,'Bottom','Left')

 # Vias between output channel CDCs #3

 # To the right of the crossing

 via(pos_x+W-width/2+bb/2,pos_y-(MZI_l+3/2*bb+2*radius+width),W-

width+3*radius,'Right')

Silicon Photonics Chip for Telecom Applications

78

 curve90(pos_x+2*W-3/2*width+bb/2+3*radius,pos_y-

(MZI_l+3/2*bb+2*radius+width),'Right','Bottom')

 via(pos_x+2*W-3/2*width+bb/2+4*radius,pos_y-

(MZI_l+3/2*bb+3*radius+width),2*radius+chann_l-bb/2,'Bottom')

 curve90(pos_x+2*W-3/2*width+bb/2+4*radius,pos_y-MZI_l-chann_l-bb-5*radius-

width,'Bottom','Right')

 via(pos_x+2*W-3/2*width+bb/2+5*radius,pos_y-MZI_l-chann_l-bb-6*radius-

width,2*W-radius-2*width,'Right')

 curve90(pos_x+4*W-7/2*width+bb/2+4*radius,pos_y-MZI_l-chann_l-bb-6*radius-

width,'Right','Top')

 else:

 raise ValueError('The input structure_type parameter is not valid.\n \

 You have to type "Initial", "Contiguous" or "Final" for structure_type')

'''

Builds a WSS Band Structure, made by a specified number of channel structures,

the 3 band CDCs and one input band CDC

Inputs: pos_x = 0 -> Initial position on the x-axis (Smallest of the 1st input

channel CDC)

 pos_y = 0 -> Initial position on the y-axis (Smallest of the 1st input

channel CDC)

 n = 8 -> Number of channels that compose the band full structure

 band_type = 'Initial' -> Type of desired band structure. 'Contiguous' for

a structure connected to another on its right,

 'Initial' for one connected to another on its

right and to the ports on its left,

 and 'Final' for the last one which does not

connect to another channel on its right

 It does not distinguish between uppercase and

lowercase letters

 testing = True -> Indicates whether to include testing ports in the band

structure

 True if there is testing, and false if there is not

Outputs: bs_x -> Position of the next structure in relation to the position of

the placed band structure

'''

def band_struct(pos_x = 0, pos_y = 0, n = 8, band_type = 'Initial'):

 band_type = band_type.lower()

 if n >= 3:

 if band_type == 'initial':

 bs_x = n*ms_x+19*radius+11*width+4*W # Distance to the position of the

next band structure

 # Placing all the channels

 channel_struct(pos_x,pos_y,'Initial')

 for i in range(n-2):

 channel_struct(pos_x+ms_x*(i+1),pos_y, 'Contiguous')

 channel_struct(pos_x+(n-1)*ms_x,pos_y,'Final')

 # Placing the band CDCs

 CDC_band(pos_x-3*radius-W,pos_y-MZI_l-chann_l-2*bb-4*radius-5/2*width)

Input band CDC

Silicon Photonics Chip for Telecom Applications

79

 CDC_band(pos_x+n*ms_x+6*radius+5*width+2*bb,pos_y-band_l+chann_l-

bb/2+radius+19/2*width) # Output band CDC #1

 CDC_band(pos_x+n*ms_x+radius+2*width,pos_y-band_l+chann_l-

bb/2+radius+width/2) # Output band CDC #2

 CDC_band(pos_x+n*ms_x+6*radius+5*width,pos_y-MZI_l-chann_l-bb-4*radius-

5/2*width) # Output band CDC #3

 # Placing connections between band and channel CDCs

 # Input CDC connection (from band to channel)

 boot(pos_x-3*radius-width/2,pos_y+band_l-MZI_l-chann_l-2*bb-4*radius-

5/2*width,'Top','Right','True')

 via(pos_x-2*radius+width/2,pos_y+band_l-MZI_l-chann_l-2*bb-4*radius-

5/2*width,band_l-MZI_l-chann_l-2*bb-4*radius-5/2*width,'Bottom')

 curve90(pos_x-2*radius+width/2,pos_y,'Bottom','Right')

 curve90(pos_x-radius+width/2,pos_y-radius,'Right','Top')

 # Output CDC #1 connection (from channel to band)

 curve90(pos_x+n*ms_x-7*radius+7/2*width-2*W-bb/2,pos_y-MZI_l-2*bb-3*radius-

3/2*width,'Top','Right')

 via(pos_x+n*ms_x-6*radius+7/2*width-2*W-bb/2,pos_y-MZI_l-2*bb-2*radius-

3/2*width,radius,'Right')

 curve90(pos_x+n*ms_x-5*radius+7/2*width-2*W-bb/2,pos_y-MZI_l-2*bb-2*radius-

3/2*width,'Right','Bottom')

 via(pos_x+n*ms_x-4*radius+7/2*width-2*W-bb/2,pos_y-MZI_l-2*bb-3*radius-

3/2*width,chann_l,'Bottom')

 curve90(pos_x+n*ms_x-4*radius+7/2*width-2*W-bb/2,pos_y-MZI_l-chann_l-2*bb-

3*radius-3/2*width,'Bottom','Right')

 via(pos_x+n*ms_x-3*radius+7/2*width-2*W-bb/2,pos_y-MZI_l-chann_l-2*bb-

4*radius-3/2*width,6*radius+2*width+5/2*bb+2*W,'Right')

 curve90(pos_x+n*ms_x+3*radius+11/2*width+2*bb,pos_y-MZI_l-chann_l-2*bb-

4*radius-3/2*width,'Right','Top')

 via(pos_x+n*ms_x+4*radius+11/2*width+2*bb,pos_y-MZI_l-chann_l-2*bb-

3*radius-3/2*width,2*chann_l+MZI_l+3/2*bb+4*radius+11*width,'Top')

 curve90(pos_x+n*ms_x+4*radius+11/2*width+2*bb,pos_y+chann_l-

bb/2+radius+19/2*width,'Top','Right')

 curve90(pos_x+n*ms_x+5*radius+11/2*width+2*bb,pos_y+chann_l-

bb/2+2*radius+19/2*width,'Right','Bottom')

 # Output CDC #2 connection (from band to channel)

 curve90(pos_x+n*ms_x+radius+5/2*width,pos_y+chann_l-

bb/2+radius+width/2,'Top','Left')

 via(pos_x+n*ms_x+5/2*width,pos_y+chann_l-

bb/2+2*radius+width/2,5*radius+3*W-2*width,'Left')

 curve90(pos_x+n*ms_x-5*radius+9/2*width-3*W,pos_y+chann_l-

bb/2+2*radius+width/2,'Left','Bottom')

 via(pos_x+n*ms_x-6*radius+9/2*width-3*W,pos_y+chann_l-

bb/2+radius+width/2,radius+width,'Bottom')

 #Output CDC #3 connection (from channel to band)

 via(pos_x+n*ms_x-2*radius+3/2*width,pos_y-MZI_l-3/2*bb-3*radius-

width,MZI_l+bb/2+3*radius+width,'Top')

 boot(pos_x+n*ms_x-2*radius+3/2*width,pos_y-bb,'Top','Right')

 via(pos_x+n*ms_x-radius+5/2*width,pos_y-

bb,MZI_l+chann_l+bb/2+3*radius+2*width,'Bottom')

 curve90(pos_x+n*ms_x-radius+5/2*width,pos_y-MZI_l-chann_l-3/2*bb-3*radius-

2*width,'Bottom','Right')

 via(pos_x+n*ms_x+5/2*width,pos_y-MZI_l-chann_l-3/2*bb-4*radius-

2*width,3*width+3*radius,'Right')

 curve90(pos_x+n*ms_x+11/2*width+3*radius,pos_y-MZI_l-chann_l-3/2*bb-

4*radius-2*width,'Right','Top')

 via(pos_x+n*ms_x+11/2*width+4*radius,pos_y-MZI_l-chann_l-3/2*bb-3*radius-

2*width,band_l+radius-width/2,'Top')

Silicon Photonics Chip for Telecom Applications

80

 curve90(pos_x+n*ms_x+11/2*width+4*radius,pos_y+band_l-MZI_l-chann_l-3/2*bb-

2*radius-5/2*width,'Top','Right')

 curve90(pos_x+n*ms_x+11/2*width+5*radius,pos_y+band_l-MZI_l-chann_l-3/2*bb-

radius-5/2*width,'Right','Bottom')

 # Placing connections to the next band CDCs (on its right)

 # Input CDC (from right to left)

 curve90(pos_x-3*radius-W+width/2,pos_y-MZI_l-chann_l-2*bb-4*radius-

5/2*width,'Bottom','Right')

 via(pos_x-2*radius-W+width/2,pos_y-MZI_l-chann_l-2*bb-5*radius-

5/2*width,bs_x-4*radius,'Right')

 curve90(pos_x+bs_x-6*radius-W+width/2,pos_y-MZI_l-chann_l-2*bb-5*radius-

5/2*width,'Right','Top')

 via(pos_x+bs_x-5*radius-W+width/2,pos_y-MZI_l-chann_l-2*bb-4*radius-

5/2*width,band_l,'Top')

 curve90(pos_x+bs_x-5*radius-W+width/2,pos_y+band_l-MZI_l-chann_l-2*bb-

4*radius-5/2*width,'Top','Right')

 curve90(pos_x+bs_x-4*radius-W+width/2,pos_y+band_l-MZI_l-chann_l-2*bb-

3*radius-5/2*width,'Right','Bottom')

 # Output CDC #1 (from right to left) (1st and 2nd crossings between band

CDCs #2 and #3 respectively)

 curve90(pos_x+n*ms_x+6*radius+9/2*width+2*bb+W,pos_y-band_l+chann_l-

bb/2+radius+19/2*width,'Bottom','Right')

 curve90(pos_x+n*ms_x+7*radius+9/2*width+2*bb+W,pos_y-band_l+chann_l-

bb/2+19/2*width,'Right','Top')

 via(pos_x+n*ms_x+8*radius+9/2*width+2*bb+W,pos_y-band_l+chann_l-

bb/2+radius+19/2*width,band_l-6*width,'Top')

 curve90(pos_x+n*ms_x+8*radius+9/2*width+2*bb+W,pos_y+chann_l-

bb/2+radius+7/2*width,'Top','Right')

 curve90(pos_x+n*ms_x+9*radius+9/2*width+2*bb+W,pos_y+chann_l-

bb/2+2*radius+7/2*width,'Right','Top')

via(pos_x+n*ms_x+6*radius+9/2*width+W+3*bb,pos_y+chann_l+3*radius+7/2*width+3/2*b

b,bb/2-radius,'Top')

curve90(pos_x+n*ms_x+6*radius+9/2*width+W+3*bb,pos_y+chann_l+2*radius+7/2*width+2

*bb,'Top','Right')

via(pos_x+n*ms_x+7*radius+9/2*width+W+3*bb,pos_y+chann_l+3*radius+7/2*width+2*bb,

bb/2-radius,'Right')

 # Output CDC #2 (from right to left)

 boot(pos_x+n*ms_x+radius+3/2*width+W,pos_y-band_l+chann_l-

bb/2+radius+width/2,'Bottom','Right')

 via(pos_x+n*ms_x+2*radius+5/2*width+W,pos_y-band_l+chann_l-

bb/2+radius+width/2,band_l+radius+3*width+bb/2,'Top')

curve90(pos_x+n*ms_x+2*radius+5/2*width+W,pos_y+chann_l+2*radius+7/2*width,'Top',

'Right')

via(pos_x+n*ms_x+3*radius+5/2*width+W,pos_y+chann_l+3*radius+7/2*width,3*radius+2

*width-bb/2,'Right')

crossing(pos_x+n*ms_x+6*radius+9/2*width+W,pos_y+chann_l+3*radius+7/2*width)

crossing(pos_x+n*ms_x+6*radius+9/2*width+W+bb,pos_y+chann_l+3*radius+7/2*width)

crossing(pos_x+n*ms_x+6*radius+9/2*width+W+2*bb,pos_y+chann_l+3*radius+7/2*width)

crossing(pos_x+n*ms_x+6*radius+9/2*width+W+3*bb,pos_y+chann_l+3*radius+7/2*width)

Silicon Photonics Chip for Telecom Applications

81

 # Output CDC #3 (from right to left) (1st crossing between band CDCs #2)

 curve90(pos_x+n*ms_x+6*radius+9/2*width+W,pos_y-MZI_l-chann_l-bb-4*radius-

5/2*width,'Bottom','Right')

 curve90(pos_x+n*ms_x+7*radius+9/2*width+W,pos_y-MZI_l-chann_l-bb-5*radius-

5/2*width,'Right','Top')

 via(pos_x+n*ms_x+8*radius+9/2*width+W,pos_y-MZI_l-chann_l-bb-4*radius-

5/2*width,2*chann_l+MZI_l+5*radius+6*width+bb/2,'Top')

 curve90(pos_x+n*ms_x+8*radius+9/2*width+W,pos_y+chann_l-

bb/2+radius+7/2*width,'Top','Right')

 curve90(pos_x+n*ms_x+9*radius+9/2*width+W,pos_y+chann_l-

bb/2+2*radius+7/2*width,'Right','Top')

via(pos_x+n*ms_x+6*radius+9/2*width+W+bb,pos_y+chann_l+3*radius+7/2*width+bb/2,bb

/2-radius,'Top')

curve90(pos_x+n*ms_x+6*radius+9/2*width+W+bb,pos_y+chann_l+2*radius+7/2*width+bb,

'Top','Right')

via(pos_x+n*ms_x+7*radius+9/2*width+W+bb,pos_y+chann_l+3*radius+7/2*width+bb,bb/2

-radius,'Right')

crossing(pos_x+n*ms_x+6*radius+9/2*width+W+2*bb,pos_y+chann_l+bb+3*radius+7/2*wid

th)

crossing(pos_x+n*ms_x+6*radius+9/2*width+W+3*bb,pos_y+chann_l+bb+3*radius+7/2*wid

th)

 # Connections to the ports

 # for the first addition (input channel CDC) (Testing 1)

 via(pos_x+(n-1)*ms_x+width/2,pos_y+chann_l,5/2*width+radius,'Top')

 curve90(pos_x+(n-

1)*ms_x+width/2,pos_y+chann_l+radius+5/2*width,'Top','Left')

 via(pos_x+(n-1)*ms_x+width/2-radius,pos_y+chann_l+2*radius+5/2*width,(n-

1)*ms_x+4*radius+W+width,'Left')

 curve90(pos_x-width/2-5*radius-

W,pos_y+chann_l+2*radius+5/2*width,'Left','Bottom')

 via(pos_x-width/2-6*radius-

W,pos_y+chann_l+radius+5/2*width,MZI_l+2*chann_l-

3*port_d+11/2*width+2*bb+5*radius,'Bottom')

 curve90(pos_x-width/2-6*radius-W,pos_y-MZI_l-chann_l+3*port_d-4*radius-

3*width-2*bb,'Bottom','Left')

 via(pos_x-width/2-7*radius-W,pos_y-MZI_l-chann_l+3*port_d-5*radius-3*width-

2*bb,5*width+5*radius,'Left')

 IO(pos_x-12*radius-W-11/2*width,pos_y-MZI_l-chann_l+3*port_d-5*radius-

3*width-2*bb,width,IO_h,IO_l,'Testing 1')

 # for the second addition (from port to input channel CDC) (Testing 2)

 IO(pos_x-12*radius-W-11/2*width,pos_y-MZI_l-chann_l-2*bb-5*radius-

3*width+7*port_d,width,IO_h,IO_l,'Testing 2')

 via(pos_x-12*radius-11/2*width-W,pos_y-MZI_l-chann_l-2*bb-5*radius-

3*width+7*port_d,radius+width,'Right')

 curve90(pos_x-11*radius-9/2*width-W,pos_y-MZI_l-chann_l-2*bb-5*radius-

3*width+7*port_d,'Right','Top')

 via(pos_x-10*radius-9/2*width-W,pos_y-MZI_l-chann_l-2*bb-4*radius-

3*width+7*port_d,MZI_l+2*chann_l-7*port_d+7*radius+13/2*width+9/2*bb,'Top')

 curve90(pos_x-10*radius-9/2*width-

W,pos_y+chann_l+3*radius+7/2*width+5/2*bb,'Top','Right')

 via(pos_x-9*radius-9/2*width-

W,pos_y+chann_l+4*radius+7/2*width+5/2*bb,n*ms_x+15*radius+9*width+2*W+7/2*bb,'Ri

ght')

Silicon Photonics Chip for Telecom Applications

82

 # for the 3rd addition (from port to input channel CDC) (Testing 3)

 IO(pos_x-12*radius-W-11/2*width,pos_y-MZI_l-chann_l-2*bb-5*radius-

3*width+8*port_d,width,IO_h,IO_l,'Testing 3')

 curve90(pos_x-12*radius-W-11/2*width,pos_y-MZI_l-chann_l-2*bb-5*radius-

3*width+8*port_d,'Right','Top')

 via(pos_x-11*radius-W-11/2*width,pos_y-MZI_l-chann_l-2*bb-4*radius-

3*width+8*port_d,pos_y+MZI_l-8*port_d+2*chann_l+8*radius+15/2*width+9/2*bb,'Top')

 curve90(pos_x-11*radius-W-

11/2*width,pos_y+chann_l+4*radius+9/2*width+5/2*bb,'Top','Right')

 via(pos_x-10*radius-W-

11/2*width,pos_y+chann_l+5*radius+9/2*width+5/2*bb,n*ms_x+16*radius+10*width+2*W+

7/2*bb,'Right')

 # from Input CDC to Input Port

 curve90(pos_x-3*radius-W+width/2,pos_y+band_l-MZI_l-chann_l-2*bb-4*radius-

5/2*width,'Top','Left')

 curve90(pos_x-4*radius-W+width/2,pos_y+band_l-MZI_l-chann_l-2*bb-3*radius-

5/2*width,'Left','Bottom')

 via(pos_x-5*radius-W+width/2,pos_y+band_l-MZI_l-chann_l-2*bb-4*radius-

5/2*width,band_l+width/2-2*port_d,'Bottom')

 curve90(pos_x-5*radius-W+width/2,pos_y-MZI_l-chann_l-2*bb-4*radius-

3*width+2*port_d,'Bottom','Left')

 via(pos_x-6*radius-W+width/2,pos_y-MZI_l-chann_l-2*bb-5*radius-

3*width+2*port_d,6*radius+6*width,'Left')

 IO(pos_x-12*radius-W-11/2*width,pos_y-MZI_l-chann_l-2*bb-5*radius-

3*width+2*port_d,width,IO_h,IO_l,'Input')

 # From output band CDC #1 to output port #1

 via(pos_x+n*ms_x+6*radius+9/2*width+2*bb+W,pos_y+chann_l-

bb/2+radius+19/2*width,2*radius-6*width+bb/2,'Top')

via(pos_x+n*ms_x+6*radius+9/2*width+W+2*bb,pos_y+chann_l+3/2*bb+3*radius+7/2*widt

h,bb/2-radius,'Top')

curve90(pos_x+n*ms_x+6*radius+9/2*width+W+2*bb,pos_y+chann_l+2*bb+2*radius+7/2*wi

dth,'Top','Left')

via(pos_x+n*ms_x+5*radius+9/2*width+W+2*bb,pos_y+chann_l+2*bb+3*radius+7/2*width,

n*ms_x+13*radius+8*width+2*W+2*bb,'Left')

 curve90(pos_x-8*radius-7/2*width-

W,pos_y+chann_l+2*bb+3*radius+7/2*width,'Left','Bottom')

 via(pos_x-9*radius-7/2*width-

W,pos_y+chann_l+2*bb+2*radius+7/2*width,2*chann_l+MZI_l-

6*port_d+4*bb+6*radius+13/2*width,'Bottom')

 curve90(pos_x-9*radius-7/2*width-W,pos_y+6*port_d-MZI_l-chann_l-2*bb-

4*radius-3*width,'Bottom','Left')

 via(pos_x-10*radius-7/2*width-W,pos_y-MZI_l-chann_l-2*bb-5*radius-

3*width+6*port_d,2*radius+2*width,'Left')

 IO(pos_x-12*radius-W-11/2*width,pos_y-MZI_l-chann_l-2*bb-5*radius-

3*width+6*port_d,width,IO_h,IO_l,'Output 1')

 # From output band CDC #2 to output port #2

 via(pos_x+n*ms_x+radius+3/2*width+W,pos_y+chann_l-

bb/2+radius+width/2,bb/2+radius+3*width,'Top')

curve90(pos_x+n*ms_x+radius+3/2*width+W,pos_y+chann_l+2*radius+7/2*width,'Top','L

eft')

via(pos_x+n*ms_x+3/2*width+W,pos_y+chann_l+3*radius+7/2*width,n*ms_x+2*W+6*radius

+3*width,'Left')

 curve90(pos_x-3/2*width-W-

6*radius,pos_y+chann_l+3*radius+7/2*width,'Left','Bottom')

Silicon Photonics Chip for Telecom Applications

83

 via(pos_x-3/2*width-W-

7*radius,pos_y+chann_l+2*radius+7/2*width,2*chann_l+MZI_l-

4*port_d+6*radius+13/2*width+2*bb,'Bottom')

 curve90(pos_x-3/2*width-W-7*radius,pos_y-chann_l-4*radius-3*width-2*bb-

MZI_l+4*port_d,'Bottom','Left')

 via(pos_x-8*radius-W-3/2*width,pos_y-MZI_l-chann_l-2*bb-5*radius-

3*width+4*port_d,4*radius+4*width,'Left')

 IO(pos_x-12*radius-W-11/2*width,pos_y-MZI_l-chann_l-2*bb-5*radius-

3*width+4*port_d,width,IO_h,IO_l,'Output 2')

 # From output band CDC #3 to output port #3 (Crossing between CDC bands #2)

 via(pos_x+n*ms_x+6*radius+9/2*width+W,pos_y+band_l-MZI_l-chann_l-bb-

4*radius-5/2*width,2*chann_l+MZI_l-band_l+7*radius+6*width+bb/2,'Top')

via(pos_x+n*ms_x+6*radius+9/2*width+W,pos_y+chann_l+3*radius+7/2*width+bb/2,bb/2-

radius,'Top')

curve90(pos_x+n*ms_x+6*radius+9/2*width+W,pos_y+chann_l+2*radius+7/2*width+bb,'To

p','Left')

via(pos_x+n*ms_x+5*radius+9/2*width+W,pos_y+chann_l+3*radius+7/2*width+bb,n*ms_x+

12*radius+7*width+2*W,'Left')

 curve90(pos_x-7*radius-5/2*width-

W,pos_y+chann_l+3*radius+7/2*width+bb,'Left','Bottom')

 via(pos_x-8*radius-5/2*width-

W,pos_y+chann_l+2*radius+7/2*width+bb,2*chann_l+MZI_l-

5*port_d+6*radius+13/2*width+3*bb,'Bottom')

 curve90(pos_x-8*radius-5/2*width-W,pos_y-MZI_l-chann_l-2*bb-4*radius-

3*width+5*port_d,'Bottom','Left')

 via(pos_x-9*radius-5/2*width-W,pos_y-MZI_l-chann_l-2*bb-5*radius-

3*width+5*port_d,3*radius+3*width,'Left')

 IO(pos_x-12*radius-W-11/2*width,pos_y-MZI_l-chann_l-2*bb-5*radius-

3*width+5*port_d,width,IO_h,IO_l,'Output 3')

 return bs_x

 elif band_type == 'contiguous':

 bs_x = n*ms_x+19*radius+11*width+4*W # Distance to the position of the

next band structure

 # Placing all the channels

 channel_struct(pos_x,pos_y,'Initial')

 for i in range(n-2):

 channel_struct(pos_x+ms_x*(i+1),pos_y, 'Contiguous')

 channel_struct(pos_x+(n-1)*ms_x,pos_y,'Final')

 # Placing the band CDCs

 CDC_band(pos_x-3*radius-W,pos_y-MZI_l-chann_l-2*bb-4*radius-5/2*width)

Input band CDC

 CDC_band(pos_x+n*ms_x+6*radius+5*width+2*bb,pos_y-band_l+chann_l-

bb/2+radius+19/2*width) # Output band CDC #1

 CDC_band(pos_x+n*ms_x+radius+2*width,pos_y-band_l+chann_l-

bb/2+radius+width/2) # Output band CDC #2

 CDC_band(pos_x+n*ms_x+6*radius+5*width,pos_y-MZI_l-chann_l-bb-4*radius-

5/2*width) # Output band CDC #3

 # Placing connections between band and channel CDCs

 # Input CDC connection (from band to channel)

Silicon Photonics Chip for Telecom Applications

84

 boot(pos_x-3*radius-width/2,pos_y+band_l-MZI_l-chann_l-2*bb-4*radius-

5/2*width,'Top','Right','True')

 via(pos_x-2*radius+width/2,pos_y+band_l-MZI_l-chann_l-2*bb-4*radius-

5/2*width,band_l-MZI_l-chann_l-2*bb-4*radius-5/2*width,'Bottom')

 curve90(pos_x-2*radius+width/2,pos_y,'Bottom','Right')

 curve90(pos_x-radius+width/2,pos_y-radius,'Right','Top')

 # Output CDC #1 connection (from channel to band)

 curve90(pos_x+n*ms_x-7*radius+7/2*width-2*W-bb/2,pos_y-MZI_l-2*bb-3*radius-

3/2*width,'Top','Right')

 via(pos_x+n*ms_x-6*radius+7/2*width-2*W-bb/2,pos_y-MZI_l-2*bb-2*radius-

3/2*width,radius,'Right')

 curve90(pos_x+n*ms_x-5*radius+7/2*width-2*W-bb/2,pos_y-MZI_l-2*bb-2*radius-

3/2*width,'Right','Bottom')

 via(pos_x+n*ms_x-4*radius+7/2*width-2*W-bb/2,pos_y-MZI_l-2*bb-3*radius-

3/2*width,chann_l,'Bottom')

 curve90(pos_x+n*ms_x-4*radius+7/2*width-2*W-bb/2,pos_y-MZI_l-chann_l-2*bb-

3*radius-3/2*width,'Bottom','Right')

 via(pos_x+n*ms_x-3*radius+7/2*width-2*W-bb/2,pos_y-MZI_l-chann_l-2*bb-

4*radius-3/2*width,6*radius+2*width+5/2*bb+2*W,'Right')

 curve90(pos_x+n*ms_x+3*radius+11/2*width+2*bb,pos_y-MZI_l-chann_l-2*bb-

4*radius-3/2*width,'Right','Top')

 via(pos_x+n*ms_x+4*radius+11/2*width+2*bb,pos_y-MZI_l-chann_l-2*bb-

3*radius-3/2*width,2*chann_l+MZI_l+3/2*bb+4*radius+11*width,'Top')

 curve90(pos_x+n*ms_x+4*radius+11/2*width+2*bb,pos_y+chann_l-

bb/2+radius+19/2*width,'Top','Right')

 curve90(pos_x+n*ms_x+5*radius+11/2*width+2*bb,pos_y+chann_l-

bb/2+2*radius+19/2*width,'Right','Bottom')

 # Output CDC #2 connection (from band to channel)

 curve90(pos_x+n*ms_x+radius+5/2*width,pos_y+chann_l-

bb/2+radius+width/2,'Top','Left')

 via(pos_x+n*ms_x+5/2*width,pos_y+chann_l-

bb/2+2*radius+width/2,5*radius+3*W-2*width,'Left')

 curve90(pos_x+n*ms_x-5*radius+9/2*width-3*W,pos_y+chann_l-

bb/2+2*radius+width/2,'Left','Bottom')

 via(pos_x+n*ms_x-6*radius+9/2*width-3*W,pos_y+chann_l-

bb/2+radius+width/2,radius+width,'Bottom')

 #Output CDC #3 connection (from channel to band)

 via(pos_x+n*ms_x-2*radius+3/2*width,pos_y-MZI_l-3/2*bb-3*radius-

width,MZI_l+bb/2+3*radius+width,'Top')

 boot(pos_x+n*ms_x-2*radius+3/2*width,pos_y-bb,'Top','Right')

 via(pos_x+n*ms_x-radius+5/2*width,pos_y-

bb,MZI_l+chann_l+bb/2+3*radius+2*width,'Bottom')

 curve90(pos_x+n*ms_x-radius+5/2*width,pos_y-MZI_l-chann_l-3/2*bb-3*radius-

2*width,'Bottom','Right')

 via(pos_x+n*ms_x+5/2*width,pos_y-MZI_l-chann_l-3/2*bb-4*radius-

2*width,3*width+3*radius,'Right')

 curve90(pos_x+n*ms_x+11/2*width+3*radius,pos_y-MZI_l-chann_l-3/2*bb-

4*radius-2*width,'Right','Top')

 via(pos_x+n*ms_x+11/2*width+4*radius,pos_y-MZI_l-chann_l-3/2*bb-3*radius-

2*width,band_l+radius-width/2,'Top')

 curve90(pos_x+n*ms_x+11/2*width+4*radius,pos_y+band_l-MZI_l-chann_l-3/2*bb-

2*radius-5/2*width,'Top','Right')

 curve90(pos_x+n*ms_x+11/2*width+5*radius,pos_y+band_l-MZI_l-chann_l-3/2*bb-

radius-5/2*width,'Right','Bottom')

 # Placing connections to the next band CDCs (on its right)

 # Input CDC (from right to left)

 curve90(pos_x-3*radius-W+width/2,pos_y-MZI_l-chann_l-2*bb-4*radius-

5/2*width,'Bottom','Right')

Silicon Photonics Chip for Telecom Applications

85

 via(pos_x-2*radius-W+width/2,pos_y-MZI_l-chann_l-2*bb-5*radius-

5/2*width,bs_x-4*radius,'Right')

 curve90(pos_x+bs_x-6*radius-W+width/2,pos_y-MZI_l-chann_l-2*bb-5*radius-

5/2*width,'Right','Top')

 via(pos_x+bs_x-5*radius-W+width/2,pos_y-MZI_l-chann_l-2*bb-4*radius-

5/2*width,band_l,'Top')

 curve90(pos_x+bs_x-5*radius-W+width/2,pos_y+band_l-MZI_l-chann_l-2*bb-

4*radius-5/2*width,'Top','Right')

 curve90(pos_x+bs_x-4*radius-W+width/2,pos_y+band_l-MZI_l-chann_l-2*bb-

3*radius-5/2*width,'Right','Bottom')

 # Output CDC #1 (from right to left) (1st and 2nd crossings between band

CDCs #2 and #3 respectively)

 curve90(pos_x+n*ms_x+6*radius+9/2*width+2*bb+W,pos_y-band_l+chann_l-

bb/2+radius+19/2*width,'Bottom','Right')

 curve90(pos_x+n*ms_x+7*radius+9/2*width+2*bb+W,pos_y-band_l+chann_l-

bb/2+19/2*width,'Right','Top')

 via(pos_x+n*ms_x+8*radius+9/2*width+2*bb+W,pos_y-band_l+chann_l-

bb/2+radius+19/2*width,band_l-6*width,'Top')

 curve90(pos_x+n*ms_x+8*radius+9/2*width+2*bb+W,pos_y+chann_l-

bb/2+radius+7/2*width,'Top','Right')

 #via(pos_x+n*ms_x+9*radius+9/2*width+2*bb+W,pos_y+chann_l-

bb/2+2*radius+7/2*width,-2*radius+bb,'Right')

 curve90(pos_x+n*ms_x+9*radius+9/2*width+2*bb+W,pos_y+chann_l-

bb/2+2*radius+7/2*width,'Right','Top')

via(pos_x+n*ms_x+6*radius+9/2*width+W+3*bb,pos_y+chann_l+3*radius+7/2*width+3/2*b

b,bb/2-radius,'Top')

curve90(pos_x+n*ms_x+6*radius+9/2*width+W+3*bb,pos_y+chann_l+2*radius+7/2*width+2

*bb,'Top','Right')

via(pos_x+n*ms_x+7*radius+9/2*width+W+3*bb,pos_y+chann_l+3*radius+7/2*width+2*bb,

bb/2-radius,'Right')

 # Output CDC #2 (from right to left)

 boot(pos_x+n*ms_x+radius+3/2*width+W,pos_y-band_l+chann_l-

bb/2+radius+width/2,'Bottom','Right')

 via(pos_x+n*ms_x+2*radius+5/2*width+W,pos_y-band_l+chann_l-

bb/2+radius+width/2,band_l+radius+3*width+bb/2,'Top')

curve90(pos_x+n*ms_x+2*radius+5/2*width+W,pos_y+chann_l+2*radius+7/2*width,'Top',

'Right')

via(pos_x+n*ms_x+3*radius+5/2*width+W,pos_y+chann_l+3*radius+7/2*width,3*radius+2

*width-bb/2,'Right')

crossing(pos_x+n*ms_x+6*radius+9/2*width+W,pos_y+chann_l+3*radius+7/2*width)

crossing(pos_x+n*ms_x+6*radius+9/2*width+W+bb,pos_y+chann_l+3*radius+7/2*width)

crossing(pos_x+n*ms_x+6*radius+9/2*width+W+2*bb,pos_y+chann_l+3*radius+7/2*width)

crossing(pos_x+n*ms_x+6*radius+9/2*width+W+3*bb,pos_y+chann_l+3*radius+7/2*width)

 # Output CDC #3 (from right to left) (1st crossing between band CDCs #2)

 curve90(pos_x+n*ms_x+6*radius+9/2*width+W,pos_y-MZI_l-chann_l-bb-4*radius-

5/2*width,'Bottom','Right')

 curve90(pos_x+n*ms_x+7*radius+9/2*width+W,pos_y-MZI_l-chann_l-bb-5*radius-

5/2*width,'Right','Top')

 via(pos_x+n*ms_x+8*radius+9/2*width+W,pos_y-MZI_l-chann_l-bb-4*radius-

5/2*width,2*chann_l+MZI_l+5*radius+6*width+bb/2,'Top')

Silicon Photonics Chip for Telecom Applications

86

 curve90(pos_x+n*ms_x+8*radius+9/2*width+W,pos_y+chann_l-

bb/2+radius+7/2*width,'Top','Right')

 curve90(pos_x+n*ms_x+9*radius+9/2*width+W,pos_y+chann_l-

bb/2+2*radius+7/2*width,'Right','Top')

via(pos_x+n*ms_x+6*radius+9/2*width+W+bb,pos_y+chann_l+3*radius+7/2*width+bb/2,bb

/2-radius,'Top')

curve90(pos_x+n*ms_x+6*radius+9/2*width+W+bb,pos_y+chann_l+2*radius+7/2*width+bb,

'Top','Right')

via(pos_x+n*ms_x+7*radius+9/2*width+W+bb,pos_y+chann_l+3*radius+7/2*width+bb,bb/2

-radius,'Right')

crossing(pos_x+n*ms_x+6*radius+9/2*width+W+2*bb,pos_y+chann_l+bb+3*radius+7/2*wid

th)

crossing(pos_x+n*ms_x+6*radius+9/2*width+W+3*bb,pos_y+chann_l+bb+3*radius+7/2*wid

th)

 # Connections to the previous band CDCs

 # Output CDC #1 (from right band to left band)

 via(pos_x+n*ms_x+6*radius+9/2*width+2*bb+W,pos_y+chann_l-

bb/2+radius+19/2*width,2*radius-6*width+bb/2,'Top')

via(pos_x+n*ms_x+6*radius+9/2*width+W+2*bb,pos_y+chann_l+3/2*bb+3*radius+7/2*widt

h,bb/2-radius,'Top')

curve90(pos_x+n*ms_x+6*radius+9/2*width+W+2*bb,pos_y+chann_l+2*bb+2*radius+7/2*wi

dth,'Top','Left')

via(pos_x+n*ms_x+5*radius+9/2*width+W+2*bb,pos_y+chann_l+2*bb+3*radius+7/2*width,

ms_x+5*radius+4*width+W+3/2*bb,'Left')

 crossing(pos_x+(n-1)*ms_x+width/2,pos_y+chann_l+2*bb+3*radius+7/2*width)

 via(pos_x+(n-1)*ms_x+width/2-bb/2,pos_y+chann_l+2*bb+3*radius+7/2*width,(n-

1)*ms_x+W+width-bb+4*radius,'Left')

 # Output CDC #2 (from the contiguous to the previous one)

 via(pos_x+n*ms_x+radius+3/2*width+W,pos_y+chann_l-

bb/2+radius+width/2,bb/2+radius+3*width,'Top')

curve90(pos_x+n*ms_x+radius+3/2*width+W,pos_y+chann_l+2*radius+7/2*width,'Top','L

eft')

 via(pos_x+n*ms_x+3/2*width+W,pos_y+chann_l+3*radius+7/2*width,ms_x+width+W-

bb/2,'Left')

 crossing(pos_x+(n-1)*ms_x+width/2,pos_y+chann_l+3*radius+7/2*width)

 via(pos_x+(n-1)*ms_x+width/2-bb/2,pos_y+chann_l+3*radius+7/2*width,(n-

1)*ms_x+width-bb+4*radius+W,'Left')

 # Output CDC #3 (from the contiguous to the previous one) (Crossing on band

CDC #2 going to the next band)

 via(pos_x+n*ms_x+6*radius+9/2*width+W,pos_y+band_l-MZI_l-chann_l-bb-

4*radius-5/2*width,2*chann_l+MZI_l-band_l+7*radius+6*width+bb/2,'Top')

via(pos_x+n*ms_x+6*radius+9/2*width+W,pos_y+chann_l+3*radius+7/2*width+bb/2,bb/2-

radius,'Top')

Silicon Photonics Chip for Telecom Applications

87

curve90(pos_x+n*ms_x+6*radius+9/2*width+W,pos_y+chann_l+2*radius+7/2*width+bb,'To

p','Left')

via(pos_x+n*ms_x+5*radius+9/2*width+W,pos_y+chann_l+3*radius+7/2*width+bb,ms_x+5*

radius+4*width+W-bb/2,'Left')

 crossing(pos_x+(n-1)*ms_x+width/2,pos_y+chann_l+3*radius+7/2*width+bb)

 via(pos_x+(n-1)*ms_x+width/2-bb/2,pos_y+chann_l+3*radius+7/2*width+bb,(n-

1)*ms_x+width+4*radius+W-bb,'Left')

 # Connections to the ports

 # For the second addition (input channel CDC to the previous band) (Testing

2) (Crossing on the band CDCs going to previous bands)

 via(pos_x+(n-1)*ms_x+width/2,pos_y+chann_l,3*radius+7/2*width-bb/2,'Top')

 curve90(pos_x+(n-

1)*ms_x+width/2,pos_y+chann_l+3*radius+7/2*width+5/2*bb,'Top','Left')

 via(pos_x+(n-1)*ms_x+width/2-

radius,pos_y+chann_l+4*radius+7/2*width+5/2*bb,(n-1)*ms_x+width+4*radius+W-bb/2-

radius,'Left')

 # For the 3rd addition (input channel CDC to the previous band) (Testing 3)

 via(pos_x+bs_x-4*radius-

W+bb/2,pos_y+chann_l+5*radius+9/2*width+5/2*bb,bs_x+width/2,'Left')

 return bs_x

 elif band_type == 'final':

 bs_x = n*ms_x+19*radius+11*width+4*W # Distance to the position of the

next band structure

 # Placing all the channels

 channel_struct(pos_x,pos_y,'Initial')

 for i in range(n-2):

 channel_struct(pos_x+ms_x*(i+1),pos_y, 'Contiguous')

 channel_struct(pos_x+(n-1)*ms_x,pos_y,'Final')

 # Placing the band CDCs

 CDC_band(pos_x-3*radius-W,pos_y-MZI_l-chann_l-2*bb-4*radius-5/2*width) #

Input band CDC

 # Placing connections between band and channel CDCs

 # Input CDC connection (from band to channel)

 boot(pos_x-3*radius-width/2,pos_y+band_l-MZI_l-chann_l-2*bb-4*radius-

5/2*width,'Top','Right','True')

 via(pos_x-2*radius+width/2,pos_y+band_l-MZI_l-chann_l-2*bb-4*radius-

5/2*width,band_l-MZI_l-chann_l-2*bb-4*radius-5/2*width,'Bottom')

 curve90(pos_x-2*radius+width/2,pos_y,'Bottom','Right')

 curve90(pos_x-radius+width/2,pos_y-radius,'Right','Top')

 # Output CDC #1 connection (from channel to the previous band)

 curve90(pos_x+n*ms_x-7*radius+7/2*width-2*W-bb/2,pos_y-MZI_l-2*bb-3*radius-

3/2*width,'Top','Right')

 via(pos_x+n*ms_x-6*radius+7/2*width-2*W-bb/2,pos_y-MZI_l-2*bb-2*radius-

3/2*width,radius,'Right')

 curve90(pos_x+n*ms_x-5*radius+7/2*width-2*W-bb/2,pos_y-MZI_l-2*bb-2*radius-

3/2*width,'Right','Bottom')

 via(pos_x+n*ms_x-4*radius+7/2*width-2*W-bb/2,pos_y-MZI_l-2*bb-3*radius-

3/2*width,chann_l+width,'Bottom')

Silicon Photonics Chip for Telecom Applications

88

 curve90(pos_x+n*ms_x-4*radius+7/2*width-2*W-bb/2,pos_y-MZI_l-chann_l-2*bb-

3*radius-5/2*width,'Bottom','Right')

 via(pos_x+n*ms_x-3*radius+7/2*width-2*W-bb/2,pos_y-MZI_l-chann_l-2*bb-

4*radius-5/2*width,radius-width+2*W+bb/2,'Right')

 curve90(pos_x+n*ms_x-2*radius+5/2*width,pos_y-MZI_l-chann_l-2*bb-4*radius-

5/2*width,'Right','Top')

 via(pos_x+n*ms_x-radius+5/2*width,pos_y-MZI_l-chann_l-2*bb-3*radius-

5/2*width,MZI_l+2*chann_l+4*bb+5*radius+6*width,'Top')

 curve90(pos_x+n*ms_x-

radius+5/2*width,pos_y+chann_l+2*bb+2*radius+7/2*width,'Top','Left')

 via(pos_x+n*ms_x-

2*radius+5/2*width,pos_y+chann_l+2*bb+3*radius+7/2*width,ms_x+2*width-bb/2-

2*radius,'Left')

 crossing(pos_x+(n-1)*ms_x+width/2,pos_y+chann_l+2*bb+3*radius+7/2*width)

 via(pos_x+(n-1)*ms_x+width/2-bb/2,pos_y+chann_l+2*bb+3*radius+7/2*width,(n-

1)*ms_x+W+width-bb+4*radius,'Left')

 # Output CDC #2 connection (from channel to the previous band)

 via(pos_x+(n-1)*ms_x+W-width/2+bb/2+radius,pos_y+chann_l-bb/2-

width/2,2*radius+4*width+bb/2,'Top')

 curve90(pos_x+(n-1)*ms_x+W-

width/2+bb/2+radius,pos_y+chann_l+7/2*width+2*radius,'Top','Left')

 via(pos_x+(n-1)*ms_x+W-width/2+bb/2,pos_y+chann_l+7/2*width+3*radius,bb/2-

radius+width,'Left')

 via(pos_x+(n-1)*ms_x+width/2-bb/2,pos_y+chann_l+3*radius+7/2*width,(n-

1)*ms_x+width-bb+4*radius+W,'Left')

 crossing(pos_x+(n-1)*ms_x+width/2,pos_y+chann_l+3*radius+7/2*width)

 #Output CDC #3 connection (from channel to the previous band)

 via(pos_x+n*ms_x-2*radius+3/2*width,pos_y-MZI_l-3/2*bb-3*radius-

width,MZI_l+chann_l+5*radius+9/2*width+5/2*bb,'Top')

 curve90(pos_x+n*ms_x-

2*radius+3/2*width,pos_y+chann_l+bb+2*radius+7/2*width,'Top','Left')

 via(pos_x+n*ms_x-

3*radius+3/2*width,pos_y+chann_l+7/2*width+3*radius+bb,ms_x-3*radius+width-bb/2

,'Left')

 crossing(pos_x+(n-1)*ms_x+width/2,pos_y+chann_l+3*radius+7/2*width+bb)

 via(pos_x+(n-1)*ms_x+width/2-bb/2,pos_y+chann_l+3*radius+7/2*width+bb,(n-

1)*ms_x+width+4*radius+W-bb,'Left')

 # Connections to the ports

 # For the 3rd addition (input channel CDC to the previous band) (Testing 3)

 via(pos_x+(n-1)*ms_x+width/2,pos_y+chann_l,3*radius+7/2*width-bb/2,'Top')

 via(pos_x+(n-

1)*ms_x+width/2,pos_y+chann_l+3*radius+7/2*width+5/2*bb,radius+width,'Top')

 curve90(pos_x+(n-

1)*ms_x+width/2,pos_y+chann_l+4*radius+9/2*width+5/2*bb,'Top','Left')

 via(pos_x+(n-1)*ms_x+width/2-

radius,pos_y+chann_l+5*radius+9/2*width+5/2*bb,(n-1)*ms_x+width/2+4*radius+W-

bb/2-radius,'Left')

 # Testing 4 (Addition of the last input band CDC) (from the CDC to the

left)

 via(pos_x-3*radius-W+width/2,pos_y-MZI_l-chann_l-2*bb-4*radius-

5/2*width,radius+width,'Bottom')

 curve90(pos_x-3*radius-W+width/2,pos_y-MZI_l-chann_l-2*bb-5*radius-

7/2*width,'Bottom','Left')

 via(pos_x-4*radius-W+width/2,pos_y-MZI_l-chann_l-2*bb-6*radius-

7/2*width,2*bs_x-radius+width,'Left')

 curve90(pos_x-2*bs_x-3*radius-W-width/2,pos_y-MZI_l-chann_l-2*bb-6*radius-

7/2*width,'Left','Top')

Silicon Photonics Chip for Telecom Applications

89

 via(pos_x-2*bs_x-4*radius-W-width/2,pos_y-MZI_l-chann_l-2*bb-5*radius-

7/2*width,port_d-radius+width/2,'Top')

 curve90(pos_x-2*bs_x-4*radius-W-width/2,pos_y+port_d-MZI_l-chann_l-2*bb-

6*radius-3*width,'Top','Left')

 via(pos_x-2*bs_x-5*radius-W-width/2,pos_y-MZI_l-chann_l-2*bb-5*radius-

3*width+port_d,7*radius+5*width,'Left')

 IO(pos_x-2*bs_x-12*radius-W-11/2*width,pos_y-MZI_l-chann_l-2*bb-5*radius-

3*width+port_d,width,IO_h,IO_l,'Testing 4')

 return bs_x

 else:

 raise ValueError("The input band_type is not correct. Please type

'Initial', 'Contiguous' or 'Final")

 else:

 raise ValueError(f"The introduced number of channels n={n} is not correct. It

must be equal or higher than 3")

'''

Creates a full WSS (Wavelength Selective Switch) structure with defined numbers

of channels and 3 bands.

Inputs: pos_x = 0 -> Initial position on the x-axis (Smallest position of the 1st

input band CDC)

 pos_y = 0 -> Initial position on the y-axis (Smallest position of the 1st

input band CDC)

 n_channels = 8 -> Number of channels per band.

 It must be higher than 3

 testing = True -> Indicates whether to include testing ports in the WSS

 True if there is testing, and false if there is not

Output: position_next -> Position in which to place the next structure

'''

def wss(pos_x = 0, pos_y = 0, n_channels = 8):

 if n_channels >= 3:

 # Connecting the band structures

 b_l = band_struct(pos_x,pos_y,n_channels,'Initial') # Initial band

structure

 b_m = band_struct(pos_x+b_l,pos_y,n_channels,'Contiguous') # Middle band

structure

 l_b = band_struct(pos_x+b_l+b_m,pos_y,n_channels,'Final') # Last band

structure

 position_next = 2*b_l+l_b

 return position_next

 else:

 raise ValueError(f"The introduced number of channels was: {n_channels}\n\

 This number must be equal or higher than 3.")

Silicon Photonics Chip for Telecom Applications

90

channel_struct(0,0,'Initial') # Creation of an initial channel structure

(Without output CDCs)

D.write_gds('Initial_channel.gds')

D = Device() # To restart the structure

channel_struct(0,0,'Final') # Creation of a normal channel structure

D.write_gds('Contiguous_channel.gds')

D = Device() # To restart the structure

band_struct(0,0,n_channels,'Initial') # Creation of an initial band structure

D.write_gds('Initial_band.gds')

D = Device() # To restart the structure

band_struct(0,0,n_channels,'Contiguous') # Creation of a contiguous band

structure

D.write_gds('Normal_band.gds')

D = Device() # To restart the structure

band_struct(0,0,n_channels,'Final') # Creation of a final band structure

D.write_gds('Final_band.gds')

D = Device() # To restart the structure

wss(0,0,n_channels) # Creation of the full WSS chip structure (50um)

D.write_gds('WSS_50um.gds')

'''

Creation of the MZI schematic

'''

len = 5.5 # Length of the connections

D = Device()

via(+W-width/2,-(bb+radius+width/2),len,'Top')

MZIs and its connections

MZI 1 (the one on the left)

MZI(+W-width,-(MZI_l+bb+radius+width/2))

I (MZI interconnection)

curve90(+2*W-1.5*width,-(MZI_l+bb+radius+width/2),'Bottom','Right')

via(+2*W-1.5*width+radius,-(MZI_l+2*radius+bb+width/2),3*radius, 'Right')

curve90(+2*W-3/2*width+bb/2+2*radius,-(MZI_l+bb+2*radius+width/2),'right','top')

MZI 2 (the one on the right)

MZI(+2*W-2*width+bb/2+3*radius,-(MZI_l+bb+radius+width/2))

P1 (to output channel CDC 1 of the next structure)

via(+W-width/2,-(MZI_l+bb+radius+width/2),len,'Bottom')

P2 (to output channel CDC 2)

via(+2*W-3/2*width+bb/2+3*radius,-bb-radius-width/2,len,'Top')

P3 (to output channel CDC 3)

via(+3*W-5/2*width+bb/2+3*radius,-(bb+radius+width/2),len,'Top')

D.write_gds('MZI_schematic.gds')

"""

Creating the whole Wavelength Selective Switch (WSS) with the real measures

Silicon Photonics Chip for Telecom Applications

91

(Without the last band CDCs (on the right))

Final Schematic

"""

MZI_l = 500 # Length of the MZI (500 um)

chann_l = 900 # Length of the CDC of the channels (900 um)

band_l = 1500 # Length of the CDC of the bands (1.5mm)

IO_h = 22.152 # Height of the I/O ports

IO_l = 35.603 # Horizontal length of the I/O ports

n_channels = 8 # Number of channels per band of the WSS

Distance between two channel structures (from the input of one to the input of

the next)

ms_x = 8*radius+3*W-3*width+bb/2

port_d = 127 # Distance between two consecutive I/O ports

D = Device()

wss(0,0,n_channels) # Creation of the full WSS chip structure

D.write_gds('WSS.gds')

Silicon Photonics Chip for Telecom Applications

92

Appendix C. Introduction to OptoDesigner Script Language

The mask of the chip will be designed using the OptoDesigner Script Language (Spt)

from Synopsys. It consists of a PIC design tool that offers inherent support for layout

design, covering diverse shapes and angles. This is achieved through completely

defined photonic libraries. [59]. This software allows for the creation of PICs by

means of scripting and it can also be used along with other software from Synopsys

such as OptSim, which serves as a Schematic Capture Tool. It allows to virtually

create the prototype as a schematic and exports later code representing the created

schematic as a layout to OptoDesigner. In any case, for the purpose of this project,

the design of the switch will be done just by using Spt.

Spt is based on scripting, and by using these scripts it is possible to define a structure,

perform simulations and generate mask layouts [59]. The language contains a certain

resemblance to the C programming language, supporting some object-oriented

programming concepts, such as classes, objects, and inheritance. Among its

programming features it can be seen that the programming tool allows for the use of

variables, arrays, loops and conditionals, functions, functors, classes, results,

overriding and non-overriding capabilities, and documentation and comments

functionalities.

It also possesses specific computer-aided design (CAD) features, specifically related

to circuit fabrication, among which we remark materials, cross-sections, building

blocks, elements, connectors, ports and PDKs.

C.1 Programming features of OptoDesigner

Spt contains lot of different programming features that allow for the resolution and

creation of the design. Among them, the following will be highlighted due to their

usefulness in developing the WSS chip and their differences to the most commonly

used programming languages.

C.1.1 Variables

Variables are used to assign an alphanumerical value to a symbolic name. They can

be changed over the course of the program and using OptoDesigner it is possible not

to define the specific type of variable to be used. Apart from classical programming

variable types such as float or int, OptoDesigner implements the use of complex

numbers, points with two coordinates referring to a position within the layout and

matrices.

C.1.2 Attributes

Attributes are specific elements attached to the variables that store additional

information about it. They are similar to the attributes of the classes present in Java,

despite their specific syntax being different.

Silicon Photonics Chip for Telecom Applications

93

C.1.3 Classes

In Spt, classes can only have one parent class, therefore the inheritance is partial. For

these classes, the variables are set to be private.

C.1.4 Loops and conditionals

Loops and conditionals are remarkably similar in syntax to the ones in C. The do,

while, switch, for and if cases are present, and there is also a specific operator

denoted by “?” which is used to separate the condition and the statements for the

use of an if-else conditional.

C.1.5 Functions

Programming functions are similarly used as in other programming languages, but

there is no need to define argument types. Spt allows as well for the implementation

of default inputs. Functions might be accessible via the Kamus dialog box, which is a

specific box of OptoDesigner program. Using this dialog box, the user can enter the

value of different arguments by using several widgets.

C.1.6 Documentation and Comments

The documentation may be done by making use of fields, which are specific

keywords given to functions, classes, and materials. There are different fields which

have been predefined in Spt. Among these fields there is one called domain, which

can be set to specify the nature of the circuit or sub circuit being designed. Thus, it

can be specified whether it should be treated in the optical domain, RF domain or DC

domain.

The comments used in OptoDesigner present the same syntax as the ones in C, and

they can be multiline or just a single line.

C.1.7 Functors

Functors are user-definable mathematical functions, which allow us to interpret the

function at any specific required value. These are also present in functional

programming. For the specific case of Spt, the functor 𝑓(𝑥) and its derivatives are

known. It is important to notice that functors cannot be passed as such to functions,

and rather it is necessary to pass a string containing the name of the functor to be

used. This is caused due to its static nature, which makes it not possible to overwrite

it during the whole script execution. On the other hand, this characteristic allows for

it to be evaluated much faster than a function.

C.1.8 Override Control

Functions and layouts can be overridden if they are redefined later in the script. This

characteristic may bring harsh consequences, so the keyword nonoverridable is given

to prevent a function or layout from being overridden. There exists also the keyword

forceoverriding and overriding. The first one forces the overriding to happen in any

case, even if the function or layout was defined as nonoverridable. The latter instead

checks whether the function, layout, or class that you want to override exists, and

throws an error. It is specifically important because if we define the same function on

Silicon Photonics Chip for Telecom Applications

94

a subclass and on its parent class, there may be overriding from the subclass function

to the parent class.

C.1.9 Result

Results are like variables, but they contain output from simulation and have a specific

storage in a Result Database. It is important to notice that results and variables can

be used interchangeably while performing mathematical operations.

C.1.10 find command

The find command is a specific keyword that can be used to find the minimum,

maximum or the root value within a mathematical function 𝑓(𝑥). The outcome is

stored in a Result Database, but there are no guarantees for the returned value to be

the true one.

C.2 Computer-aided design features of OptoDesigner

Spt contains as well specific features for CAD design, from which the following will be

highlighted due to their usefulness in order to create the WSS chip.

C.2.1 Materials

These represent the ones used for any component in the layout. They have specific

characteristics which module their mechanical, electromagnetic, and optical

behavior. They can be added or imported by uploading a PDK. They present

inheritance the same way as classes do.

C.2.2 Cross-sections

Cross-sections consist of vertical slices made up of layers of different materials. They

can be placed using different geometries, and there is the possibility to modify the

overlapping sections in which two distinct materials intersect.

C.2.3 Elements, Connectors and Ports

These are the basic blocks for designing. The elements are geometric figures defined

by a mathematical function and some properties. The connectors are a specific type

of elements which are used to place connections between the elements. To do so,

these connections will be established between ports, which are defined at specific

positions. These are also used as the reference for the connections between the

elements in OptoDesigner. One important characteristic of ports is that they can be

defined either at a relative position with respect to other ports, or as an absolute

position within the full schematic. This characteristic obliges to have at least one port

defined at an absolute position, so that floating elements are avoided.

C.2.4 Building Blocks

Group of elements packed together than can be later treated as a single element.

They work like layout functions that can be inserted in the full layout. They can be

given a specific mask cross-section and ports.

Silicon Photonics Chip for Telecom Applications

95

For the development of the WSS chip the building blocks will be particularly useful

since they allow for the capsularization of the different devices and functioning

blocks of the switch.

C.2.5 Process Design Kit

PDKs are libraries which include BBs and information about the technologies of a

foundry. For the purpose of this project the Demofab library will be used, and all the

different elements will be based upon BBs and materials from it.

Silicon Photonics Chip for Telecom Applications

96

Appendix D. OptoDesigner code of single components

D.1 Mach-Zehnder Interferometer Building Block

The code used to create the MZI BB for OptoDesigner is presented below. It should

be saved as a file at the same folder as the one implementing the WSS (Appendix E),

with the name “MZI_lib.spt”.

/**

 Library for the creation of MZIs

**/

//Name of the file to be used as a library: "MZI_lib.spt"

// Select the PDK library that you would like to activate from the PDK file

// function layouts from the DEMOFAB library are used

pda::enableFoundry("DEMOFAB, DEMOFAB.SOI");

#include @layout;

pdkAutoRouter_showOnlyArrows(0);

/*

Creates a single period of a Mach-Zehnder Interferometer, made of an exchange and

phaseshift subcomponents plus 2 S-bend phases to go from one subcomponent to the

other.

Inputs: double ptc_length -> Length of the thermal phase shift section (default =

100um)

 double exchanger_length -> Length of the coupling section (default =

16um)

 double interphase_length -> Horizontal length of the interphase section

(default = 20um)

 double height -> Height of the interphase section (default = 0.5um)

 double width -> Waveguides width (default = 0.5um)

 double gap -> Separation between the closer points of the two waveguides

(default = 0.3um)

** Important Remarks ** All the size measures are expressed in micrometers

*/

layout periodMZI(double ptc_length = 100,

 double exchanger_length = 16,

 double interphase_length = 20,

 double height = 0.5,

 double width = 0.5,

 double gap = 0.3,

 string mk = "mcsSOI_DEEP"

)

 Domain_Optics

 AuthorInfo "Alberto Otero Casado"

Silicon Photonics Chip for Telecom Applications

97

{

 // To uncommented only if used alone

 //var RoutingGrid = Tech.getDefaultOrNewAutoRouterGrid(this, "Optical",

"FinalCircuitOptical", 40, 40);

 mask::CSselect(mk);

 // Elements of the upper arm

 ml::demofabStraight(: exchanger_length, width) EX_up;

 ml::demofabSbend(in0->EX_up@out0 : interphase_length, height, width) SB2_up;

 ml::demofabStraight(in0->SB2_up@out0 : ptc_length, width) PS_up;

 ml::demofabSbend(in0->PS_up@out0: interphase_length, -height, width) SB1_up;

 ml::demofabStraight(in0->SB1_up@out0 : exchanger_length, width) EX2_up;

 ml::demofabSbend(in0->EX2_up@out0 : interphase_length, height, width) SB3_up;

 // Elements of the lower arm

 ml::demofabStraight(in0->EX_up@in0+[0,-gap-width,0] : exchanger_length, width)

EX_down;

 ml::demofabSbend(in0->EX_down@out0 : interphase_length, -height, width)

SB2_down;

 ml::demofabStraight(in0->SB2_down@out0 : ptc_length, width) PS_down;

 ml::demofabSbend(in0->PS_down@out0 : interphase_length, height, width)

SB1_down;

 ml::demofabStraight(in0->SB1_down@out0 : exchanger_length, width) EX2_down;

 ml::demofabSbend(in0->EX2_down@out0 : interphase_length, -height, width)

SB3_down;

 // Adding ports

 ml::setPort(this : Input->EX_up@in0);

 ml::setPort(this : Through->SB3_up@out0);

 ml::setPort(this : Drop->SB3_down@out0);

 // Persist routing parameters into the MoML file

 this = Tech.populateAutoRouterInformation(this);

 // Set the promoted I/O ports domain

 mask::elementPortRegexSetDomain(this, "(in|out)([[:int:]])", OpticsDomain);

 mask::port2layout(&this);

}

/*

Creates the heating section of the MZI, which is placed above the phase control

section.

Inputs: double height -> Height of the electrical section connecting the

electrical ports to the heater

 double length -> Length of the heating section

 double heater_width -> Width of the heater (also of the MZI waveguides)

 double wire width -> Width of the electrical connections between the

heater and the electrical ports

** Important Remarks ** All the size measures are defined in micrometers

*/

Silicon Photonics Chip for Telecom Applications

98

layout heaterPeriod (double height,

 double length,

 double heater_width,

 double wire_width

)

 Domain_DC

 AuthorInfo "Alberto Otero Casado"

{

 mask::CSselect("mcsVia_metal");

 ml::demofabStraight(: height-heater_width, wire_width) DW; // First

line, coming down closer to the phase control section

 mask::CSselect("mcsHEATER_SOI");

 ml::demofabStraight(in0->DW@out0+[heater_width/2,-wire_width/2,90] : length,

heater_width) HZ; // Second line, parallel and close to the phase control

section

 mask::CSselect("mcsVia_metal");

 ml::demofabStraight(in0->HZ@out0+[-wire_width/2,heater_width/2,90] : height-

heater_width, wire_width) UP; // Third line, moving away from the phase control

section

 // Input and output electrical ports

 ml::setPort(this : VI->DW@in0);

 ml::setPort(this : VO->UP@out0);

}

/*

Creates a Mach-Zehnder Interferometer, boxing included (Adding waveguides to

connect to external components)

Inputs: double ptc_length -> Length of the thermal phase shift section (default =

100um)

 double exchanger_length -> Length of the coupling section (default =

16um)

 double interphase_length -> Horizontal length of the interphase section

(default = 20um)

 double height -> Height of the interphase section (default = 0.5um)

 double width -> Waveguides width (default = 0.5um)

 double gap -> Separation between the closer points of the two waveguides

(default = 0.3um)

 double length -> Length of the MZI device (in the box) (default = 500um)

 double box_width -> Width of the box in which the MZI is placed (default

= 6um)

 double w_out -> Width of the external waveguides to which the MZI

connects (default = 0.5um)

 string mk -> Mask to be applied to the components of the MZI (default =

"mcsSOI_DEEP")

** Important Remarks ** All the measure sizes are expressed in micrometers. This

function does not include the thermo-optical heaters.

*/

layout MZI_pck_NoHeat(double ptc_length = 100,

Silicon Photonics Chip for Telecom Applications

99

 double exchanger_length = 16,

 double interphase_length = 20,

 double height = 0.5,

 double width = 0.5,

 double gap = 0.3,

 double length = 500,

 double box_width = 6,

 double w_out = 0.5,

 string mk = "mcsSOI_DEEP"

)

 dlgname "MZI with boxing (no phase shift control)"

 Domain_Optics

 AuthorInfo "Alberto Otero Casado"

{

 // To be uncommented if it is used alone

 //var RoutingGrid = Tech.getDefaultOrNewAutoRouterGrid(this, "Optical",

"FinalCircuitOptical", 40, 40);

 double length_bend = (length-

(3*interphase_length+2*exchanger_length+ptc_length))/2;

 double h_bend1 = (box_width-gap-w_out-width)/2; // Height of the first

S-bend (Input Port)

 double h_bend2 = (box_width-gap-w_out-width)/2-height; // Height of the 2nd

and 3rd S-bends (Through and Drop Ports)

 ml::periodMZI(:

ptc_length,exchanger_length,interphase_length,height,width,gap,mk) P0;

 // Adding the boxing lines (For connections to external waveguides)

 ml::SBend(cout->P0@Input: wlin(w_out,width), length_bend, -h_bend1) S1;

 ml::SBend(cin->P0@Through: wlin(width,w_out), length_bend, h_bend2) S2;

 ml::SBend(cin->P0@Drop: wlin(width,w_out), length_bend, -h_bend2) S3;

 // Adding the ports

 ml::setPort(this : Input->S1@cin);

 ml::setPort(this : Through->S2@cout);

 ml::setPort(this : Drop->S3@cout);

 // Persist routing parameters into the MoML file

 this = Tech.populateAutoRouterInformation(this);

 // Set the promoted I/O ports domain

 mask::elementPortRegexSetDomain(this, "(in|out)([[:int:]])", OpticsDomain);

 mask::port2layout(&this);

}

/*

Creates a Mach-Zehnder Interferometer, boxing and thermo-optical heaters included

Inputs: double ptc_length -> Length of the thermal phase shift section (default =

100um)

Silicon Photonics Chip for Telecom Applications

100

 double exchanger_length -> Length of the coupling section (default =

16um)

 double interphase_length -> Horizontal length of the interphase section

(default = 20um)

 double height -> Height of the interphase section (default = 0.5um)

 double width -> Waveguides width (default = 0.5um)

 double gap -> Separation between the closer points of the two waveguides

(default = 0.3um)

 double length -> Length of the MZI device (in the box) (default = 500um)

 double box_width -> Width of the box in which the MZI is placed (default

= 6um)

 double w_out -> Width of the external waveguides to which the MZI

connects (default = 0.5um)

 double w_elec -> Width of the external electrical connections to which

the heater is connected (default = 0.5um)

 string mk -> Mask to be applied to the components of the MZI (default =

"mcsSOI_DEEP")

** Important Remarks ** All the measure sizes are expressed in micrometers.

*/

layout MZI(double ptc_length = 100,

 double exchanger_length = 16,

 double interphase_length = 20,

 double height = 0.5,

 double width = 0.5,

 double gap = 0.3,

 double length = 500,

 double box_width = 6,

 double w_out = 0.5,

 double w_elec = 0.5,

 string mk = "mcsSOI_DEEP")

 dlgname "MZI with boxing and heaters"

 Domain_Optics

 AuthorInfo "Alberto Otero Casado"

{

 // To be uncommented if it is used alone

 //var RoutingGrid = Tech.getDefaultOrNewAutoRouterGrid(this, "Optical",

"FinalCircuitOptical", 40, 40);

 double l_bend = (length-

(3*interphase_length+2*exchanger_length+ptc_length))/2;

 double h_bend1 = (box_width-gap-w_out-width)/2; // Height of the first

S-bend (Input Port)

 double h_bend2 = (box_width-gap-w_out-width)/2-height; // Height of the 2nd

and 3rd S-bends (Through and Drop Ports)

 ml::periodMZI(:

ptc_length,exchanger_length,interphase_length,height,width,gap,mk) P0;

 // Adding the boxing waveguides

 ml::SBend(cout->P0@Input: wlin(w_out,width), l_bend, -h_bend1) S1;

 ml::SBend(cin->P0@Through: wlin(width,w_out), l_bend, h_bend2) S2;

 ml::SBend(cin->P0@Drop: wlin(width,w_out), l_bend, -h_bend2) S3;

 // Adding the heaters

 ml::heaterPeriod(VI-

>S1@cin+[l_bend+exchanger_length+interphase_length+w_elec/2,w_out/2,-90] :

Silicon Photonics Chip for Telecom Applications

101

 h_bend1+width/2+w_out/2-height , ptc_length,width,w_elec) H;

 // Adding the optical ports

 ml::setPort(this : Input->S1@cin);

 ml::setPort(this : Through->S2@cout);

 ml::setPort(this : Drop->S3@cout);

 // Adding the electrical ports

 ml::setPort(this: VI->H@VI);

 ml::setPort(this: VO->H@VO);

 // Persist routing parameters into the MoML file

 this = Tech.populateAutoRouterInformation(this);

 // Set the promoted I/O ports domain

 mask::elementPortRegexSetDomain(this, "(in|out)([[:int:]])", OpticsDomain);

 mask::port2layout(&this);

}

/**

// Trials for the Full MZI

//**Important Remark ** The sentence at the beginning of the function layouts

(var RoutingGrid) must be uncommented to implement these trials

**/

/*

// All the specified lengths are in um

double ptc_length = 30; // Phase Thermal Control length

double exchanger_length = 5; // Exchanger length

double interphase_length = 8; // Length of the interphase between the

exchange and the PTC (in the same axis of these 2)

double height = 0.5; // Height of the interphases

double width = 1; // Width of the lines

double gap = 0.3; // Gap between the 2 exchangers

double length = 100; // Length in which the MZI must be done

double b_w = 6; // Width of the MZI after boxing

double w_elec = 5; // Width of the electrical connections

double w_out = 0.5; // Width of the waveguides outside the MZI

*/

// 1st trial (withouth boxing)

//ml::periodMZI(Input->[0] :

ptc_length,exchanger_length,interphase_length,height,width,gap) P0;

// 2nd trial (boxing included but no heaters)

//ml::MZI_pck_NoHeat(Input->[0,-w_out/2,0]:

ptc_length,exchanger_length,interphase_length,height,width,gap,length,b_w,w_out)

MNH;

// Third trial (boxing and heaters included)

// ml::MZI(Input->[0,-w_out/2,0]:

ptc_length,exchanger_length,interphase_length,height,width,gap,length,b_w,w_out,w

_elec) MZ;

Silicon Photonics Chip for Telecom Applications

102

D.2 Contra-Directional Coupler Building Block

The code used to create the CDC BB for OptoDesigner is presented below. It should

be saved as a file at the same folder as the one implementing the WSS (Appendix E),

with the name “CDC_lib.spt”.

/**

 Library for the creation of CDCs

**/

//Name of the file to be used as a library: "CDC_lib.spt"

// Select the PDK library that you would like to activate from the PDK file

// function layouts from the DEMOFAB library are used

pda::enableFoundry("DEMOFAB, DEMOFAB.SOI");

#include @layout;

pdkAutoRouter_showOnlyArrows(0);

/*

Creates a one period Bragg Phaseshift, made by 2 subelements having the tooth and

the width (upper and lower)"

Inputs: string f -> Name of the functor (function) to be applied to the width of

the large-width subelement. (default=functor1)

 double width -> Width of the elements (default=450nm)

 double delta_width -> Width of the teeth of the bragg cell (times the

functor f) (default=900nm)

 double length_1 -> Length of the first tooth-width subelement

(default=121nm)

 double length_2 -> Length of the second tooth-width subelement

(default=121nm)

 double starting_point -> Starting position to evaluate the function f for

the large-width subelement. It will be evaluated at

starting_point+length_short+(length_large/2) (default=0)

 int UpOrDown -> Boolean stating if the first segment goes up or down. If

it equals 0 it will go down, while any other value means it goes up (default = 0

-> Down)

 string mk -> Mask to be applied to the element (default = "mcsSOI_DEEP")

Important Remarks The functor must be defined outside of the layout and its

name (string variable) is passed as the first input. If not specified, the width

of the large subelement would be the one specified at bragg_width. Also, the name

functor1 would better not be used to define the functor (equals 1 in all cases).

All the size measures are expressed in micrometers

*/

layout braggPeriod(string f = "functor1",

 double width = 0.5,

 double delta_width = 0.1,

 double length_1 = 0.121,

 double length_2 = 0.121,

Silicon Photonics Chip for Telecom Applications

103

 double starting_point = 0,

 int UpOrDown = 0,

 string mk = "mcsSOI_DEEP"

)

 Domain_Optics

 AuthorInfo "Alberto Otero Casado"

{

 double fx = sys::callFunctor(f, starting_point+length_1+(length_2/2));

 double ws; // Shift to the width in the vertical position (with respect to

the previous element)

 if (UpOrDown == 0){

 ws = -delta_width*fx;

 }

 else{

 ws = delta_width*fx;

 }

 mask::setLayoutPort(this, "in0", "out0");

 double w = width+delta_width;

 // Problems with the layout using the following command

 //var RoutingGrid = Tech.getDefaultOrNewAutoRouterGrid(this, "Optical",

"FinalCircuitOptical", 40, 40);

 // Subelements of the period

 mask::CSselect(mk);

 ml::demofabStraight(: length_1,w) Input;

 ml::pxDomainTransition(in0->Input@out0:) Matcher; // To

avoid width mismatch error

 ml::demofabStraight(in0-> Matcher@out0+[0,-ws,0]: length_2, w) Output;

 ml::pxDomainTransition(in0->Output@out0:) Matcher_Output; // To

avoid width mismatch error

 // Defining the ports

 ml::setPort(this : in0->Input@in0);

 ml::setPort(this : out0->Matcher_Output@out0);

 // Persist routing parameters into the MoML file

 this = Tech.populateAutoRouterInformation(this);

 // Set the promoted I/O ports domain

 mask::elementPortRegexSetDomain(this, "(in|out)([[:int:]])", OpticsDomain);

 mask::port2layout(&this);

 }

/*

Create a Periodic Bragg Phaseshift, made by alternating upper and lower tooth-

width subelements.

Inputs: string f -> Name of the functor (function) to be applied to the width of

the large-width subelements. (default=functor1)

 double width -> Width of the phaseshift (default=500nm)

Silicon Photonics Chip for Telecom Applications

104

 double delta_width -> Width of the teeth of the phaseshift (to be

multiplied by a function f) (default=100nm)

 double period -> (Initial Pitch) Length of the period composed by the

first and second subelements (default=242nm)

 double duty_cycle -> Duty-cycle for all the periods, (percentage of

length occupied by the second subelement over the full period) (default=50%)

 double length -> Length of the whole phaseshift (default=24.2um)

 int UpOrDown -> Boolean stating if the first segment goes up or down. If

0 it will go down, else it goes up (default = 0 -> Down)

 double chirp -> Periodical difference between the first and the last

pitchs. (default=0)

 string mk -> Mask to be applied to the element (default = "mcsSOI_DEEP")

Important Remarks The functor must be defined outside of the layout and its

name (string variable) is passed as the first input. . Also, the name functor1

would better not be used to define the functor (equals 1 in all cases). If a one-

period Bragg phaseshift is to be used, the layout braggPeriod may be preferably

used. All the size measures are expressed in micrometers

*/

layout braggPhaseshift(string f = "functor1",

 double width = 0.5,

 double delta_width = 0.1,

 double period = 0.242,

 double duty_cycle = 50,

 double length = 24.2,

 int UpOrDown = 0,

 double chirp = 0,

 string mk = "mcsSOI_DEEP"

)

 Domain_Optics

 AuthorInfo "Alberto Otero Casado"

{

 mask::setLayoutPort(this, "in0", "out0");

 // To be used if the element is placed alone

 //var RoutingGrid = Tech.getDefaultOrNewAutoRouterGrid(this, "Optical",

"FinalCircuitOptical", 40, 40);

 double ws; // Shift to the tooth subelement in the vertical position (with

respect to the previous subelement)

 double ps = period*(100-duty_cycle)/100; // Length of the small subelement

(in the period)

 double pl = period*duty_cycle/100; // Length of the large subelement

(in the period)

 double p1; // Changed length of the first

subelement

 double p2; // Changed length of the 2nd

subelement

 double rest; // Difference from the length to the

end of the device

 // Calculate how many cycles are necessary

 int cycles = 1;

 int j;

 double length_now = cycles*period;

 double length_variable;

 double length_prev;

Silicon Photonics Chip for Telecom Applications

105

 // Calculating number of cycles, length of the device and remaining to the

specified length

 while(length_now <= length){

 cycles = cycles+1;

 length_prev = length_now;

 length_variable = chirp*cycles/2; // Equal to summing all the variable

lengths

 length_now = cycles*period+length_variable;

 }

 cycles = cycles-1;

 rest = length-length_prev;

 // To check how to start the teeth positioning

 double fx = sys::callFunctor(f,(period*cycles)+ps+(pl/2));

 if (UpOrDown == 0){

 ws = -delta_width*fx;

 }

 else{

 ws = delta_width*fx;

 }

 // Creating the whole bragg periodic phaseshift

 var phase_element[cycles+2];

 // First bragg_period (has absolute position)

 phase_element[0] = ml::braggPeriod(: f,width,delta_width,ps,pl,0,UpOrDown,mk);

 //All the bragg_period elements for all the full periods

 for (int i=1; i<cycles; i++){

 p1 = ps+i*chirp/(cycles-1)/2;

 p2 = pl+i*chirp/(cycles-1)/2;

 //p2 = pl*(1+(i+1)*chirp/period/cycles);

 phase_element[i] = ml::braggPeriod(in0-> phase_element[i-

1]@out0+[0,ws]:f,width,delta_width,p1,p2,i*period,UpOrDown,mk);

 }

 phase_element[cycles] = ml::pxDomainTransition(in0->phase_element[cycles-

1]@out0:);

 phase_element[cycles+1] = ml::demofabStraight(in0-> phase_element[cycles] @

out0 + [0,ws/2,0]: rest,width);

 // Defining the ports

 ml::setPort(this : in0->phase_element[0]@in0); // First bragg_period

element

 ml::setPort(this : out0->phase_element[cycles+1]@out0); // Last bragg_period

element

 // Persist routing parameters into the MoML file

 this = Tech.populateAutoRouterInformation(this);

 // Set the promoted I/O ports domain

 mask::elementPortRegexSetDomain(this, "(in|out)([[:int:]])", OpticsDomain);

 mask::port2layout(&this);

}

Silicon Photonics Chip for Telecom Applications

106

/*

Create a Periodic CDC, made by two close corrugated waveguides. Prior to boxing,

only containg the two Bragg grating waveguides.

Inputs: string f -> Name of the functor (function) to be applied to the width of

the elements (default=functor1)

 double width_up -> Width of the teeth of the upper phaseshift

(default=600nm)

 double width_down -> Width of the teeth of the lower phaseshift

(default=400nm)

 double shift_up -> Shift made to the teeth with respect to the previous

one in the upper phaseshift (default=20nm)

 double shift_down -> Shift made to the teeth with respect to the previous

one in the lower phaseshift (default=40nm)

 double period -> (Initial pitch length) Length of the period composed by

the 2 subelements (default=242nm)

 double duty_cycle -> Duty-cycle for all the periods, (percentage of

length occupied by the second subelement over the full period) (default=50%)

 double length -> Maximum length of the whole phaseshift (default=24.2um).

Will use the number of cycles to be the closer without surpassing it. The

difference between the length and the rest will be occupied by flat waveguides in

the center whose width equals to the ones of the corrugated waveguides without

the teeth

 double chirp -> Periodical difference between the first and the last

pitchs (default=0)

 double gap -> determines the gap between the closest points of the two

phaseshifts (default=300nm)

 string mk -> Mask to be applied to the element (default = "mcsSOI_DEEP")

Important Remarks The functor must be defined outside of the layout and its

name (string variable) is passed as the first input. For optimal functioning, the

CDC should have a length at least bigger than one full period. Also, the name

functor1 would better not be used to define the functor (equals 1 in all cases).

All the size measures are expressed in micrometers

*/

layout CDC_prebox(string f = "functor1",

 double width_up = 0.6,

 double width_down = 0.4,

 double teeth_up = 0.02,

 double teeth_down = 0.04,

 double period = 0.242,

 double duty_cycle = 50,

 double length = 24.2,

 double chirp = 0,

 double gap = 0.3,

 string mk = "mcsSOI_DEEP"

)

 dlgname "Contra directional Coupler (prior to boxing)"

 Domain_Optics

 AuthorInfo "Alberto Otero Casado"

{

 //mask::setLayoutPort(this, "in0", "out0");

 //var RoutingGrid = Tech.getDefaultOrNewAutoRouterGrid(this, "Optical",

"FinalCircuitOptical", 40, 40);

 double ps = period*(100-duty_cycle)/100; // Length of the small subelement

(in the period)

Silicon Photonics Chip for Telecom Applications

107

 double pl = period*duty_cycle/100; // Length of the large subelement

(in the period)

 int cycles = length/period; // Number of cycles of the Periodic

Bragg phaseshift (down-rounded)

 double rest = length - (cycles*period); // The remainder of length after

completing all full periods

 double fx = sys::callFunctor(f,(period*cycles)+ps+(pl/2));

 double shift_up = teeth_up*fx;

 double shift_down = teeth_down*fx;

 ml::braggPhaseshift(: "functor1", width_up, teeth_up, period, duty_cycle,

length, 1, chirp,mk) BPS_up;

 ml::braggPhaseshift(in0-> BPS_up@in0 + [0,-gap-shift_up-shift_down-

(width_up+teeth_up)/2-(width_down+teeth_down)/2,0] :

 "functor1", width_down, teeth_down, period, duty_cycle,

length, 0, chirp,mk) BPS_down;

 // Defining the ports

 ml::setPort(this : Input->BPS_up@in0);

 ml::setPort(this : Through->BPS_up@out0);

 ml::setPort(this : Drop->BPS_down@in0);

 ml::setPort(this : Add->BPS_down@out0);

 this = Tech.populateAutoRouterInformation(this);

 // Set the promoted I/O ports domain

 mask::elementPortRegexSetDomain(this, "(in|out)([[:int:]])", OpticsDomain);

 mask::port2layout(&this);

}

/* Create a Periodic CDC, made by alternating short-width and large-width

subelements. Uses boxing to connect it to other elements.

If the length is a multiple of the period, the CDC is created with equal length

subelements. Otherwise the last one may be higher, containing also the rest.

Inputs: string f -> Name of the functor (function) to be applied to the width of

the large-width subelements.

 double width_up -> Width of the upper corrugated waveguide

(default=600nm)

 double width_down -> Width of the lower corrugated waveguide

(default=400nm)

 double teeth_up -> Width of the teeth of the upper corrugated waveguide

(default=20nm)

 double teeth_down -> Width of the teeth of the lower corrugated waveguide

(default=40nm)

 double period -> Initial pitch length, composed by the 2 subelements

(default=242nm)

 double duty_cycle -> Duty-cycle of the periods (percentage of length

occupied by the second subelement over the full period) (default=50%)

 double length -> Maximum length of the whole bragg grating

(default=24.2um). Will use the number of cycles to be the closer without

surpassing it. The difference between the length and the rest will be occupied by

flat waveguides in on the right side whose width equals to the one of the

waveguides without the teeth.

 double chirp -> Periodical difference between the first and the last

pitchs (default=0)

Silicon Photonics Chip for Telecom Applications

108

 double gap -> determines the gap between the closest points of the two

corrugated waveguides (default=300nm)

 double box_width -> Determines the width of the box in which the CDC is

contained (default=6um)

 double l_bend -> Length of the S-bends that connects the CDC to external

waveguides (default=5um)

 doueble w_out -> Width of the external waveguides connecting to the CDC

 string mk -> Specifies the mask to be applied to the elements of the

layout (default = "mcsSOI_DEEP")

Important Remarks The functor must be defined outside of the layout and its

name (string variable) is passed as the first input. For optimal functioning, the

CDC should have a length at least bigger than one full period. Also, the name

functor1 would better not be used to define the functor (equals 1 in all cases).

All the size measures are defined in micrometers.

*/

layout CDC(string f = "functor1",

 double width_up = 0.6,

 double width_down = 0.4,

 double teeth_up = 0.02,

 double teeth_down = 0.04,

 double period = 0.242,

 double duty_cycle = 50,

 double length = 24.2,

 double chirp = 0,

 double gap = 0.3,

 double box_width = 6,

 double l_bend = 5,

 double w_out = 0.5,

 string mk = "mcsSOI_DEEP"

)

 dlgname "Contra directional Coupler (CDC) with boxing"

 Domain_Optics

 AuthorInfo "Alberto Otero Casado"

{

 // Following two lines only to be used if the function is used alone

 //mask::setLayoutPort(this, "in0", "out0");

 //var RoutingGrid = Tech.getDefaultOrNewAutoRouterGrid(this, "Optical",

"FinalCircuitOptical", 40, 40);

 double ps = period*(100-duty_cycle)/100; // Length of the small subelement

(in the period)

 double pl = period*duty_cycle/100; // Length of the large subelement

(in the period)

 int cycles = length/period; // Number of cycles of the Periodic

Bragg phaseshift (down-rounded)

 double fx = sys::callFunctor(f,(period*cycles)+ps+(pl/2));

 double shift_up = teeth_up*fx;

 double shift_down = teeth_down*fx;

 double h_bend = (box_width-teeth_up-teeth_down-width_up-width_down-gap)/2; //

Height of the S-bend

 // 1st waveguide

 mask::CSselect(mk);

 ml::SBend(: wlin(w_out,width_up), l_bend, -h_bend) S1;

Silicon Photonics Chip for Telecom Applications

109

 ml::braggPhaseshift(in0->S1@cout+[0,teeth_up/2,0]:

"functor1",width_up,teeth_up,period,duty_cycle,length,1,chirp,mk) BPS_up;

 ml::SBend(cin->BPS_up@out0: wlin(width_up,w_out), l_bend, h_bend) S2;

 // 2nd waveguide

 ml::braggPhaseshift(in0-> BPS_up@in0 + [0,-gap-shift_up-shift_down-

(width_up+teeth_up)/2-(width_down+teeth_down)/2,0] :

"functor1",width_down,teeth_down,period,duty_cycle,length,0,chirp,mk) BPS_down;

 ml::SBend(cout->BPS_down@in0+[0,teeth_down/2,0]: wlin(w_out,width_down),

l_bend, h_bend) S3;

 ml::SBend(cin->BPS_down@out0: wlin(width_down,w_out), l_bend, -h_bend) S4;

 // Defining the ports

 ml::setPort(this : Input->S1@cin);

 ml::setPort(this : Through->S2@cout);

 ml::setPort(this : Drop->S3@cin);

 ml::setPort(this : Add->S4@cout);

 this = Tech.populateAutoRouterInformation(this);

 // Set the promoted I/O ports domain

 mask::elementPortRegexSetDomain(this, "(in|out)([[:int:]])", OpticsDomain);

 mask::port2layout(&this);

}

/**

Trials for the CDC

**Important Remark ** The sentence at the beginning of the function layouts (var

RoutingGrid) must be uncommented to implement these trials

**/

/*

double w_up = 0.57; // Width of the upper phaseshift

double w_down = 0.430; // Width of the lower phaseshift

double teeth_up = 0.1; // Width of the teeth of the upper phaseshift

double teeth_down = 0.06; // Width of the teeth of the lower phaseshift

double period = 0.275; // Length of the period of the Bragg

Phaseshift

double duty_cycle = 50; // Duty-cycle = 50%

double L_tot = 15; // Length of the full CDC

double gap = 0.05; // Gap between the closest points of the CDC

double chirp = 0.1; // Chirp of the CDC

double b_w = 6; // Box width of the CDC

double l_bend = 5; // Length of the S-bend (in the same axis as

the bragg grating waveguides)

double w_out = 0.5; // Width of the wvg outside the CDC

functor functor1 1; // F(x) = 1 --> So that the large subelements

have always the same width (1st trial)

*/

Silicon Photonics Chip for Telecom Applications

110

// First trial example (Full CDC)

//ml::CDC(Input->[0] :

"functor1",w_up,w_down,teeth_up,teeth_down,period,duty_cycle,L_tot,chirp,gap,b_w,

l_bend,w_out) CDC1;

// Second trial example (CDC without boxing)

//ml::CDC_prebox(Input->[0] :

"functor1",w_up,w_down,teeth_up,teeth_down,period,duty_cycle,L_tot,chirp,gap)

CDC2;

D.3 Pseudo-MZI Building Block

The code used to create the pseudo-MZI BB for OptoDesigner is presented below. It

should be saved as a file at the same folder as the one implementing the WSS

(Appendix E), with the name “MZI_lib.spt”:

/**

 Library for the creation of Pseudo-MZIs

**/

//Name of the file to be used as a library: "MZI_lib.spt"

// Select the PDK library that you would like to activate from the PDK file

// function layouts from the DEMOFAB library are used

pda::enableFoundry("DEMOFAB, DEMOFAB.SOI");

#include @layout;

pdkAutoRouter_showOnlyArrows(0);

/*

Function layout to mirror the MZI BB

Inputs: double ptc_length -> Does not change the behaviour of the block

 double exchanger_length -> Does not change the behaviour of the block

 double interphase_length -> Does not change the behaviour of the block

 double height -> Does not change the behaviour of the block

 double width -> Does not change the behaviour of the block

 double gap -> Does not change the behaviour of the block

 double length -> Length of the box in which the pseudo-MZI is contained

 double box_width -> Width of the box

 double w_out -> Width of the external waveguides to which the pseudo-MZI

connects

 double w_elec -> Width of the external electrical connections to which

the heater is connected

 string mk -> Mask to be applied to the components of the MZI

** Important Remarks ** The parameters of this function layout are the same as

the ones given to the real MZI blocks (heating and boxing included), although in

this case only length, box_width, w_out, w_elec and mk will be really used. These

Silicon Photonics Chip for Telecom Applications

111

define the measures of the introduced fake block. All the measure sizes are

expressed in micrometers.

*/

layout MZI(double ptc_length,

 double exchanger_length,

 double interphase_length,

 double height,

 double width,

 double gap,

 double length,

 double box_width,

 double w_out,

 double w_elec,

 string mk

)

 AuthorInfo "Alberto Otero Casado"

{

// To be uncommented if the block is used alone

//var RoutingGrid = Tech.getDefaultOrNewAutoRouterGrid(this, "Optical",

"FinalCircuitOptical", 40, 40);

double l_bend = (length-(3*interphase_length+2*exchanger_length+ptc_length))/2;

// Length of the bend

mask::CSselect(mk);

ml::demofabStraight(: length, box_width) PCK; // Box

ml::demofabStraight(in0->PCK@in0+[0,(box_width-w_out)/2,0] : length, w_out) C1;

ml::Straight(cin->C1@in0 : wlin(w_out,w_out/4), length/2) Ini ;

ml::demofabStraight(out0->PCK@out0+[0,(w_out-box_width)/2,0] : length/2, w_out)

C2;

// Heater input port (VI)

mask::CSselect("mcsVia_metal");

ml::demofabStraight(in0-

>PCK@in0+[w_elec/2+l_bend+exchanger_length+interphase_length,box_width/2,-90] :

w_out,w_elec) H0;

// Heater output port (VO)

ml::demofabStraight(in0->PCK@in0+[length-l_bend-2*interphase_length-

exchanger_length-w_elec/2,box_width/2,-90] : w_out,w_elec) Hn;

// Setting the ports

ml::setPort(this : Input->C1@in0);

ml::setPort(this : Through->C1@out0);

ml::setPort(this : Drop->C2@out0);

// Electrical ports

ml::setPort(this : VI->H0@in0);

ml::setPort(this : VO->Hn@in0+[0,0,180]);

this = Tech.populateAutoRouterInformation(this);

// Set the promoted I/O ports domain

mask::elementPortRegexSetDomain(this, "(in|out)([[:int:]])", OpticsDomain);

mask::port2layout(&this);

}

Silicon Photonics Chip for Telecom Applications

112

/**

Trial to use the pseudo-MZI and see the electrical port connections

**Important Remark ** The sentence at the beginning of the function layout (var

RoutingGrid) must be uncommented to implement these trials

**/

/*

// To be uncommented if the trials are to be implemented

double ptc_length = 30; // Phase Thermal Control length

double exchanger_length = 5; // Exchanger length

double interphase_length = 8; // Length of the interphase between the

exchange and the PTC (in the same axis of these 2)

double height = 0.5; // Height of the interphases

double wi = 1; // Width of the lines

double gap = 0.3; // Gap between the 2 exchangers

double length = 100; // Length in which the MZI must be done

double b_w = 6; // Width of the MZI after boxing

double w_elec = 5; // Width of the electrical connections

double w_out = 0.5; // Width of the waveguides outside the MZI

string mask_MZI = "mcsSOI_Mod1"; // Mask to be used for the pseudo-MZI

// Trial: Implementation of the pseudo-MZI

ml::MZI(Input->[0] : ptc_length, exchanger_length, interphase_length, height, wi,

gap, length, b_w, w_out, w_elec, mask_MZI) MZ;

*/

D.4 Pseudo-CDC Building Block

The code used to create the pseudo-CDC BB for OptoDesigner is presented below. It

should be saved as a file at the same folder as the one implementing the WSS

(Appendix E), with the name “CDC_lib.spt”:

/**

 Library for the creation of Pseudo-CDCs

**/

//Name of the file to be used as a library: "CDC_lib.spt"

// Select the PDK library that you would like to activate from the PDK file

// function layouts from the DEMOFAB library are used

pda::enableFoundry("DEMOFAB, DEMOFAB.SOI");

#include @layout;

pdkAutoRouter_showOnlyArrows(0);

Silicon Photonics Chip for Telecom Applications

113

/*

Function layout to mirror the CDC BB

Inputs: string f -> Does not change the behaviour of the block

 double width_up -> Width of the upper waveguide

 double width_down -> Width of the lower waveguide

 double teeth_up -> Does not change the behaviour of the block

 double teeth_down -> Does not change the behaviour of the block

 double period -> Does not change the behaviour of the block

 double duty_cycle -> Does not change the behaviour of the block

 double length -> Length to be added to the block (corresponds to the

length of the Bragg grating in the real CDC)

 double chirp -> Does not change the behaviour of the block

 double gap -> Does not change the behaviour of the block

 double box_width -> Determines the width of the box in which the CDC is

contained

 double l_bend -> Length to be added to the block (x2) (Corresponds to the

S-bends in the real CDC)

 doueble w_out -> Width of the external waveguides connecting to the CDC

 string mk -> Specifies the mask to be applied to the elements of the

layout

Important Remarks The parameters of this function layout are the same as the

ones given to the real CDC blocks (boxing included), although in this case only

width_up, width_down, length, l_bend, box_width and mk will be really used. These

define measures used for the fake block. All the measure sizes are expressed in

micrometers.

*/

layout CDC(string f,

 double w_up,

 double w_down,

 double teeth_up,

 double teeth_down,

 double period,

 double duty_cycle,

 double length,

 double chirp,

 double gap,

 double b_w,

 double l_bend,

 double w_out,

 string mk

)

 AuthorInfo "Alberto Otero Casado"

{

// To be uncommented only if the block is used alone

//var RoutingGrid = Tech.getDefaultOrNewAutoRouterGrid(this, "Optical",

"FinalCircuitOptical", 40, 40);

mask::CSselect(mk);

ml::demofabStraight(: length+2*l_bend, b_w) PCK; // Box

ml::demofabStraight(in0->PCK@in0+[0,(b_w-w_out)/2,0] : length+2*l_bend, w_out)

C1;

ml::Straight(cin->C1@in0 : wlin(w_out,w_out/4), length/2) Ini ;

Silicon Photonics Chip for Telecom Applications

114

ml::demofabStraight(in0->PCK@in0+[0,(w_out-b_w)/2,0] : length+2*l_bend, w_out)

C2;

// Setting the ports

ml::setPort(this : Input->C1@in0);

ml::setPort(this : Through->C1@out0);

ml::setPort(this : Drop->C2@in0);

ml::setPort(this : Add->C2@out0);

this = Tech.populateAutoRouterInformation(this);

// Set the promoted I/O ports domain

mask::elementPortRegexSetDomain(this, "(in|out)([[:int:]])", OpticsDomain);

mask::port2layout(&this);

}

/**

Pseudo-CDC trial section

**Important Remark ** The sentence at the beginning of the function layouts (var

RoutingGrid) must be uncommented to implement these trials

**/

/*

double w_up = 0.57; // Width of the upper phaseshift

double w_down = 0.430; // Width of the lower phaseshift

double teeth_up = 0.1; // Width of the teeth of the upper phaseshift

double teeth_down = 0.06; // Width of the teeth of the lower phaseshift

double period = 0.275; // Length of the period of the Bragg

Phaseshift

double duty_cycle = 50; // Duty-cycle = 50%

double L_tot = 15; // Length of the full CDC

double gap = 0.05; // Gap between the closest points of the CDC

double chirp = 0.1; // Chirp of the CDC

double b_w = 6; // Box width of the CDC

double l_bend = 5; // Length of the S-bend (in the same axis as

the bragg grating waveguides)

double w_out = 0.5; // Width of the wvg outside the CDC

string mk_CDC = "mcsSOI_Mod1"; // Mask cross-section to be used for the

pseudo-CDC

functor functor1 1; // F(x) = 1 --> So that the large subelements

have always the same width (1st trial)

// Trial: Implementation of the pseudo-CDC

ml::CDC(Input->[0] :

"functor1",w_up,w_down,teeth_up,teeth_down,period,duty_cycle,L_tot,chirp,gap,b_w,

l_bend,w_out,mk_CDC) CDC1;

*/

Silicon Photonics Chip for Telecom Applications

115

Appendix E. OptoDesigner code of the full WSS design

The code used to develop the full chip in OptoDesigner is presented below. Along

with it, two files should be saved in the same folder to implement the CDCs and MZIs,

with the names “CDC_lib.spt” and “MZI_lib.spt” respectively. The code of these is

presented in Appendix D.

 /**
Implementation of the full WSS chip

**/

// Select the PDK library that you would like to activate from the PDK file

// function layouts from the DEMOFAB library are used

pda::enableFoundry("DEMOFAB, DEMOFAB.SOI");

#include @layout;

#include CDC_lib.spt; // Library containing the Contra-directional Couplers

#include MZI_lib.spt; // Library containing the Mach-Zehnder Interferometers

pdkAutoRouter_showOnlyArrows(0);

// Lengths of the components

double MZIS_l = 500; // Length of the MZI in the S-band (500 um)

double MZIC_l = 500; // Length of the MZI in the C-band (500 um)

double MZIL_l = 500; // Length of the MZI in the L-band (500 um)

double chan_l = 940; // Length of the CDC of the channels (940 um)

double bandS_l = 1500; // Length of the CDC of the S-band (1.5mm)

double bandC_l = 800; // Length of the CDC of the C-band (0.8mm)

double bandL_l = 1400; // Length of the CDC of the L-band (1.4mm)

// Chirps and periods of the CDC components

double chirpS = 0.02; // Chirp of the S-band

double chirpC = 0.009; // Chirp of the C-band

double chirpL = 0.018; // Chirp of the L-band

double pitchS = 0.275; // Pitch of the S-Band (band CDC)

double pitchC = 0.293; // Pitch of the C-Band (band CDC)

double pitchL = 0.302; // Pitch of the L-Band (band CDC)

double pitchS1 = 0.2842; // Pitch of the 1st channel of the S-band

double pitchS2 = 0.284; // Pitch of the 2nd channel of the S-band

double pitchS3 = 0.2838; // Pitch of the 3rd channel of the S-band

double pitchS4 = 0.2836; // Pitch of the 4th channel of the S-band

double pitchS5 = 0.2834; // Pitch of the 5th channel of the S-band

double pitchS6 = 0.2832; // Pitch of the 6th channel of the S-band

double pitchS7 = 0.283; // Pitch of the 7th channel of the S-band

double pitchS8 = 0.2828; // Pitch of the 8th channel of the S-band

double pitchC1 = 0.2989; // Pitch of the 1st channel of the C-band

double pitchC2 = 0.2987; // Pitch of the 2nd channel of the C-band

double pitchC3 = 0.2985; // Pitch of the 3rd channel of the C-band

double pitchC4 = 0.2982; // Pitch of the 4th channel of the C-band

double pitchC5 = 0.298; // Pitch of the 5th channel of the C-band

double pitchC6 = 0.2978; // Pitch of the 6th channel of the C-band

double pitchC7 = 0.2976; // Pitch of the 7th channel of the C-band

double pitchC8 = 0.2973; // Pitch of the 8th channel of the C-band

double pitchL1 = 0.3126; // Pitch of the 1st channel of the L-band

double pitchL2 = 0.3124; // Pitch of the 2nd channel of the L-band

double pitchL3 = 0.3121; // Pitch of the 3rd channel of the L-band

Silicon Photonics Chip for Telecom Applications

116

double pitchL4 = 0.3119; // Pitch of the 4th channel of the L-band

double pitchL5 = 0.3116; // Pitch of the 5th channel of the L-band

double pitchL6 = 0.3114; // Pitch of the 6th channel of the L-band

double pitchL7 = 0.311; // Pitch of the 7th channel of the L-band

double pitchL8 = 0.3109; // Pitch of the 8th channel of the L-band

// Width, corrugations and gaps of the CDCs

double band_W1 = 0.57; // Width of the 1st waveguide of a band CDC

double band_W2 = 0.43; // Width of the 2nd waveguide of a band CDC

double band_corr1 = 0.1; // Width of the corrugations of the 1st waveguide of a

band CDC

double band_corr2 = 0.06;// Width of the corrugations of the 2nd waveguide of a

band CDC

double band_G = 0.1; // Gap between the two waveguides of a band CDC

double chan_W1 = 0.57; // Width of the 1st waveguide of a channel CDC

double chan_W2 = 0.43; // Width of the 2nd waveguide of a channel CDC

double chan_corr1 = 0.1; // Width of the corrugations of the 1st waveguide of a

band CDC

double chan_corr2 = 0.06;// Width of the corrugations of the 2nd waveguide of a

band CDC

double chan_G = 0.1; // Gap between the two waveguides of a band CDC

// Parameters of the MZIs

double ex_l = 16; // Length of the exchanger section (16um)

double ptc_l = 100; // Length of the Phase Thermal Control section (100um)

double inter_l = 20; // Length of the Interphase section (20um)

double MZI_G = 0.3; // Gap between the two waveguides in the exchanger

section (0.3um)

double MZI_w = 0.5; // Width of the waveguides of the MZI (0.5um)

double MZI_h = 0.5; // Height between the Phase Thermal Control and Exchange

sections (0.5um)

// Different masks to be used if we want to use the real MCS

// Either this or the following definition must be uncommented

string mask_MZI_S = "mcsSOI_DEEP"; // Mask to represent the S-band MZIs

string mask_MZI_C = "mcsSOI_DEEP"; // Mask to represent the C-band MZIs

string mask_MZI_L = "mcsSOI_DEEP"; // Mask to represent the L-band MZIs

string mask_chanS = "mcsSOI_DEEP"; // Mask to represent the S-band channel

CDCs

string mask_chanC = "mcsSOI_DEEP"; // Mask to represent the C-band channel

CDCs

string mask_chanL = "mcsSOI_DEEP"; // Mask to represent the L-band channel

CDCs

string mask_CDC_S = "mcsSOI_DEEP"; // Mask to represent the S-band CDCs

(band CDC)

string mask_CDC_C = "mcsSOI_DEEP"; // Mask to represent the C-band CDCs

(band CDC)

string mask_CDC_L = "mcsSOI_DEEP"; // Mask to represent the L-band CDCs

(band CDC)

/*

// Different masks to be used if we want to distinguish between the componentes

// Either this or the previous definition must be uncommented

string mask_MZI_S = "mcsBB_RF"; // Mask to represent the S-band MZIs

string mask_MZI_C = "mcsBB_DC"; // Mask to represent the C-band MZIs

string mask_MZI_L = "mcsDie_Demo"; // Mask to represent the L-band MZIs

Silicon Photonics Chip for Telecom Applications

117

string mask_chanS = "mcsBB_TAPER"; // Mask to represent the S-band channel

CDCs

string mask_chanC = "mcsPCM_align"; // Mask to represent the C-band channel

CDCs

string mask_chanL = "mcsPackageDC"; // Mask to represent the L-band channel

CDCs

string mask_CDC_S = "mcsDiceline"; // Mask to represent the S-band CDCs

(band CDC)

string mask_CDC_C = "mcsSOI_RIB"; // Mask to represent the C-band CDCs

(band CDC)

string mask_CDC_L = "mcsSOI_Mod1"; // Mask to represent the L-band CDCs

(band CDC)

*/

// Variables for the full design

double radius = 5; // Radius for the bendings

double W = 6; // Width of the CDC and MZI boxing

double width = 0.5; // Width of the waveguides

double bb = 20; // Distance of the bounding box of a crossing (nothing can

be placed)

functor functor1 1; // F(x) = 1

double dt = 50; // 50% Duty-cycle

double port_d = 127; // Distance between two consecutive ports (127um) (Photonics

standard)

double ms_x = 8*radius+3*W-3*width+bb/2; // Distance to the position of

the next channel block (Input CDC to Input CDC)

double bs_x = 8*ms_x+19*radius+11*width+4*W; // Distance to the position of

the next band block

functor functor1 1; // Constant Function for the Bragg elements

int n_mzi = 48; // Number of MZIs, and pads to apply electrical

voltage (There will also be one GND)

double pad_bb = 220; // Length and height of the bounding boxes of the pads

double w_pad = 10; // Size of the electrical connections when exiting the

DC pads

int nr = 7; // Number of rows of electrical pads

int nc = 7; // Number of rows of electrical pads

// Lengths of the components after boxing (to be used with the waveguides outside

the components)

double l_bend = radius; // Length of the S-bends added to the CDCs

double chan_lp = chan_l+2*l_bend; // Length of the CDC of the channels (950

um)

double bandS_lp = bandS_l+2*l_bend; // Length of the CDC of the S-band (1.51mm)

double bandC_lp = bandC_l+2*l_bend; // Length of the CDC of the C-band (0.81mm)

double bandL_lp = bandL_l+2*l_bend; // Length of the CDC of the L-band (1.41mm)

/* Creates a boot layout for the circuit (Connection with the shape of a boot)

Inputs: double r -> Radius of curvature of the boot

 double w -> Width of the waveguide

** Important Remarks ** All the size measures are expressed in micrometers

*/

Silicon Photonics Chip for Telecom Applications

118

layout boot(double r,

 double w)

{

 // From the heel side to the arch side (anterior of the boot to posterior)

 ml::demofabStraight(: 2*r, w) S1;

 ml::demofabArc(in0->S1@out0 : 90,r,w) A1;

 ml::demofabStraight(in0->A1@out0 : r+w,w) S2;

 ml::demofabArc(in0->S2@out0 : 180,r,w) A2;

 ml::demofabArc(in0->A2@out0 : -90,r,w) A3;

 // Setting the ports

 ml::setPort(this : AN->S1@in0);

 ml::setPort(this : PO->A3@out0);

 this = Tech.populateAutoRouterInformation(this);

 // Set the promoted I/O ports domain

 mask::elementPortRegexSetDomain(this, "(in|out)([[:int:]])", OpticsDomain);

 mask::port2layout(&this);

}

/* Creates a channel block.

Inputs: int type -> Type of channel to be used: 0 for the initial ones of

band_blocks, 1 for the middle ones of a band and 2 for the final ones

 double MZI_l -> Length of the MZI

 double pitchInput -> pitch of the input channel CDC

 double pitch1 -> Pitch of output channel CDC #1

 double pitch2 -> Pitch of output channel CDC #2

 double pitch3 -> Pitch of output channel CDC #3

 string mk_MZI -> Mask cross-section (MCS) of the MZI

 string mk_CDC_I -> Mask cross-section (MCS) of the input channel CDC

 string mk_CDC_O -> Mask cross-section (MCS) of the output channel CDCs

** Important Remarks ** All the size measures are expressed in micrometers

(includes pitches)

*/

layout chan_block(int type,

 double MZI_l,

 double pitchInput,

 double pitch1,

 double pitch2,

 double pitch3,

 string mk_MZI,

 string mk_CDC_I,

 string mk_CDC_O

)

 dlgname "Channel Block"

 Domain_Optics

 AuthorInfo "Alberto Otero Casado"

{

// To be uncommented if this function layout is used alone

Silicon Photonics Chip for Telecom Applications

119

//var RoutingGrid = Tech.getDefaultOrNewAutoRouterGrid(this, "Optical",

"FinalCircuitOptical", 40, 40);

// CDC Input to MZI 1

ml::CDC(:

"functor1",chan_W1,chan_W2,chan_corr1,chan_corr2,pitchInput,dt,chan_l,0,chan_G,W,

radius,width, mk_CDC_I) CI;

mask::CSselect("mcsSOI_DEEP");

ml::demofabStraight(in0->CI@Drop+[0,0,180] : bb+width/2+radius, width) S1;

ml::MZI(Input->S1@flipPortY(out0) : ptc_l, ex_l, inter_l, MZI_h, MZI_w, MZI_G,

MZI_l, W, width, w_pad, mk_MZI) M1;

// MZI 1 to 2

mask::CSselect("mcsSOI_DEEP");

ml::demofabArc(in0->M1@Drop : -90,radius,width) A1;

ml::demofabStraight(in0->A1@out0 : 3*radius, width) MM;

ml::demofabArc(in0->MM@out0 : -90,radius,width) A2;

ml::MZI(Input->A2@flipPortY(out0) : ptc_l, ex_l, inter_l, MZI_h, MZI_w, MZI_G,

MZI_l, W, width, w_pad, mk_MZI) M2;

mask::CSselect("mcsSOI_DEEP");

ml::setPort(this : In_CDC->CI@Input); // Input of the input channel CDC (To

place the blocks correctly later)

// Electrical ports

ml::setPort(this : VO1->M1@VO); // VO of the first MZI

ml::setPort(this : VO2->M2@VO); // VO of the second MZI

ml::setPort(this : VI1->M1@VI); // VI of the first MZI

ml::setPort(this : VI2->M2@VI); // VI of the second MZI

switch (type){

 // If it is the initial channel (leftmost)

 case(0) :

 // Connections to the next channel block

 // From Input CDC to the next one

 ml::demofabStraight(in0->CI@Through : 1.5*width, width) S2;

 ml::demofabArc(in0->S2@out0 : -90,radius,width) A3;

 ml::demofabStraight(in0->A3@out0 : 4*radius+3*W+bb/2-3*width, width) S3;

 ml::demofabArc(in0->S3@out0 : -90,radius,width) A4;

 ml::demofabStraight(in0->A4@out0 : chan_lp+1.5*width, width) S4;

 ml::demofabArc(in0->S4@out0 : 180,radius,width) A5;

 // From MZI 1 to output CDC #1 (P1)

 ml::demofabStraight(in0->M1@Through : width+bb, width) S5;

 ml::demofabArc(in0->S5@out0 : -90,radius,width) A6;

 ml::demofabStraight(A6@out0 : W-width+radius, width) S6;

 ml::demofabArc(S6@out0 : 90,radius,width) A7;

 ml::demofabStraight(A7@out0 : chan_lp, width) S7;

 ml::demofabArc(in0->S7@out0 : -90,radius,width) A8;

 ml::demofabStraight(in0->A8@out0 : 4*W-5*width+bb/2+2*radius, width) S8;

 ml::demofabArc(in0->S8@out0 : -90,radius,width) A9;

 // From MZI 2 to output CDC #2 (P2)

 ml::demofabStraight(in0->M2@Through : bb/2-radius, width) S9;

 ml::demofabArc(in0->S9@out0 : -90,radius,width) A10;

 ml::demofabStraight(in0->A10@out0 : 3*radius+W+bb, width) S10;

 ml::demofabArc(in0->S10@out0 : 90,radius,width) A11;

 // From MZI 2 to output CDC #3 (P3)

 ml::demofabArc(in0->M2@Drop : -180,radius,width) A12;

Silicon Photonics Chip for Telecom Applications

120

 ml::demofabStraight(in0->A12@out0 : MZI_l+2*radius+bb/2+width/2, width)

S11;

 ml::demofabArc(in0->S11@out0 : 90,radius,width) A13;

 ml::demofabStraight(in0->A13@out0 : 2*W-2*width+bb+3*radius, width) S12;

 ml::demofabArc(in0->S12@out0 : -90,radius,width) A14;

 ml::demofabStraight(in0->A14@out0 : 2*radius+chan_lp-bb/2, width) S13;

 ml::demofabArc(in0->S13@out0 : 90,radius,width) A15;

 ml::demofabStraight(in0->A15@out0 : 2*W-radius-2*width, width) S14;

 ml::demofabArc(in0->S14@out0 : 90,radius,width) A16;

 // Setting the ports

 ml::setPort(this : IN->A5@out0); // To the next input CDC on the next

channel block

 ml::setPort(this : P1->A9@out0);

 ml::setPort(this : P2->A11@out0);

 ml::setPort(this : P3->A16@out0);

 ml::setPort(this : IP->CI@Input); // To the Input band CDC

 break;

 // If it is a channel block in the middle of the band block

 case(1) :

 // MZI 1 to output CDC #1 (P1)

 ml::demofabStraight(in0->M1@Through : 2*radius+width+bb, width) S2;

 ml::CDC(Add->S2@out0+[0,0,180] :

"functor1",chan_W1,chan_W2,chan_corr1,chan_corr2,pitch1,dt,chan_l,0,chan_G,W,radi

us,width, mk_CDC_O) CO1;

 // MZI 2 to output CDC #2 (P2)

 mask::CSselect("mcsSOI_DEEP");

 ml::demofabStraight(in0->M2@Through : chan_lp+bb/2+radius, width) S3;

 ml::demofabArc(S3@out0 : 180,radius,width) A3;

 ml::CDC(Add->A3@out0+[0,0,180] :

"functor1",chan_W1,chan_W2,chan_corr1,chan_corr2,pitch2,dt,chan_l,0,chan_G,W,radi

us,width, mk_CDC_O) CO2;

 // MZI 2 to output CDC #3 (P3)

 mask::CSselect("mcsSOI_DEEP");

 ml::demofabArc(in0->M2@Drop : -180,radius,width) A4;

 ml::demofabStraight(in0->A4@out0 : MZI_l+bb/2+4*radius+width/2, width) S4;

 ml::CDC(Add-

>S4@flipPortY(out0)+[0,0,180]:"functor1",chan_W1,chan_W2,chan_corr1,chan_corr2,pi

tch3,dt,chan_l,0,chan_G,W,radius,width, mk_CDC_O) CO3;

 mask::CSselect("mcsSOI_DEEP");

 // Connections to the next channel block

 // From Input CDC to the next one (on the next channel)

 ml::demofabStraight(in0->CI@Through : 1.5*width, width) S5;

 ml::demofabArc(in0->S5@out0 : -90,radius,width) A5;

 ml::demofabStraight(in0->A5@out0 : 4*radius+3*W+bb/2-3*width, width) S6;

 ml::demofabArc(in0->S6@out0 : -90,radius,width) A6;

 ml::demofabStraight(in0->A6@out0 : chan_lp+1.5*width, width) S7;

 ml::demofabArc(in0->S7@out0 : 180,radius,width) A7;

 // From output CDC #1 to the next one (on the next channel)

 ml::demofabArc(in0->CO1@Through : 90,radius,width) A8;

 ml::demofabStraight(in0->A8@out0 : radius, width) S8;

 ml::demofabArc(in0->S8@out0 : 90,radius,width) A9;

 ml::demofabStraight(in0->A9@out0 : chan_lp, width) S9;

 ml::demofabArc(in0->S9@out0 : -90,radius,width) A10;

Silicon Photonics Chip for Telecom Applications

121

 ml::demofabStraight(in0->A10@out0 : 4*W-5*width+bb/2+2*radius, width) S10;

 ml::demofabArc(in0->S10@out0 : -90,radius,width) A11;

 // From output CDC #2 to the next one (on the next channel)

 ml::demofabStraight(in0->CO2@Through : radius+width, width) S11;

 ml::demofabArc(in0->S11@out0 : -90,radius,width) A12;

 ml::demofabStraight(in0->A12@out0 : W-width+2*radius, width) S12;

 ml::demofabArc(in0->S12@out0 : -90,radius,width) A13;

 ml::demofabStraight(in0->A13@out0 : chan_lp+radius+width, width) S13;

 ml::demofabArc(in0->S13@out0 : 90,radius,width) A14;

 ml::demofabStraight(in0->A14@out0 : radius+W+bb, width) S14;

 ml::demofabArc(in0->S14@out0 : 90,radius,width) A15;

 // From output CDC #3 to the next one (on the next channel)

 ml::demofabArc(in0->CO3@Through : 90,radius,width) A16;

 ml::demofabStraight(in0->A16@out0 : W-width+3*radius+bb, width) S15;

 ml::demofabArc(in0->S15@out0 : 90,radius,width) A17;

 ml::demofabStraight(in0->A17@out0 : 2*radius+chan_lp-bb/2, width) S16;

 ml::demofabArc(in0->S16@out0 : -90,radius,width) A18;

 ml::demofabStraight(in0->A18@out0 : 2*W-radius-2*width, width) S17;

 ml::demofabArc(in0->S17@out0 : -90,radius,width) A19;

 // Setting the ports

 ml::setPort(this : IN->A7@out0); // To the next Input CDC on the next

channel block

 ml::setPort(this : IP->CI@Input); // To the previous Input CDC on the

previous channel block

 break;

 // If it is the last channel block on the band (rightmost one)

 case(2) :

 // MZI 1 to output CDC #1 (P1)

 ml::demofabStraight(in0->M1@Through : 2*radius+width+bb, width) S2;

 ml::CDC(Add->S2@out0+[0,0,180] :

"functor1",chan_W1,chan_W2,chan_corr1,chan_corr2,pitch1,dt,chan_l,0,chan_G,W,radi

us,width,mk_CDC_O) CO1;

 // MZI 2 to output CDC #2 (P2)

 mask::CSselect("mcsSOI_DEEP");

 ml::demofabStraight(in0->M2@Through : chan_lp+bb/2+radius, width) S3;

 ml::demofabArc(S3@out0 : 180,radius,width) A3;

 ml::CDC(Add->A3@out0+[0,0,180] :

"functor1",chan_W1,chan_W2,chan_corr1,chan_corr2,pitch2,dt,chan_l,0,chan_G,W,radi

us,width,mk_CDC_O) CO2;

 // MZI 2 to output CDC #3 (P3)

 mask::CSselect("mcsSOI_DEEP");

 ml::demofabArc(in0->M2@Drop : -180,radius,width) A4;

 ml::demofabStraight(in0->A4@out0 : MZI_l+bb/2+4*radius+width/2, width) S4;

 ml::CDC(Add-

>S4@flipPortY(out0)+[0,0,180]:"functor1",chan_W1,chan_W2,chan_corr1,chan_corr2,pi

tch3,dt,chan_l,0,chan_G,W,radius,width,mk_CDC_O) CO3;

 // Setting the port connections

 ml::setPort(this : IP->CI@Input); // Connection to the input CDC on

the previous channel block

 ml::setPort(this : Test->CI@Through); // Connection to the Testing Port

 ml::setPort(this : C1B->CO1@Through); // Connection from last output

channel CDC #1

Silicon Photonics Chip for Telecom Applications

122

 ml::setPort(this : C2B->CO2@Through); // Connection from last output

channel CDC #2

 ml::setPort(this : C3B->CO3@Through); // Connection from last output

channel CDC #3

 ml::setPort(this : C2I->CO2@Input); // Input port of the output channel

CDC #2

 break;

 }

 this = Tech.populateAutoRouterInformation(this);

 // Set the promoted I/O ports domain

 mask::elementPortRegexSetDomain(this, "(in|out)([[:int:]])", OpticsDomain);

 mask::port2layout(&this);

}

/* Creates a band block formed by 8 channel blocks (an initial one to the left, 6

in the middle and a final one).

 Does not include the connections to the ports.

 There are 3 different types of bands: Initial, Middle one and Final one. The

latter only includes an input band CDC, while the others also have 3 output band

CDCs of the same band. Nevertheless, the Initial and Middle one possess different

connections to the next band CDCs

Inputs: int type -> Type of band block. 0 for initial one, 1 for the middle one

and 2 for the final one

*/

layout band_block(int type)

 dlgname "Band Block"

 Domain_Optics

 AuthorInfo "Alberto Otero Casado"

{

// To be uncommented only if the block is used alone

//var RoutingGrid = Tech.getDefaultOrNewAutoRouterGrid(this, "Optical",

"FinalCircuitOptical", 40, 40);

switch(type) {

 // If it is an Initial band block (leftmost)

 case(0) :

 // Channel block within the band

 ml::chan_block(: 0, MZIS_l, pitchS1, pitchS1, pitchS1,

pitchS1,mask_MZI_S,mask_chanS,mask_chanS) C1;

 ml::chan_block(IP->C1@IN : 1, MZIS_l, pitchS2, pitchS2, pitchS2,

pitchS2,mask_MZI_S,mask_chanS,mask_chanS) C2;

 ml::chan_block(IP->C2@IN : 1, MZIS_l, pitchS3, pitchS3, pitchS3,

pitchL3,mask_MZI_S,mask_chanS,mask_chanS) C3;

 ml::chan_block(IP->C3@IN : 1, MZIS_l, pitchS4, pitchS4, pitchS4,

pitchL4,mask_MZI_S,mask_chanS,mask_chanS) C4;

 ml::chan_block(IP->C4@IN : 1, MZIS_l, pitchS5, pitchS5, pitchS5,

pitchL5,mask_MZI_S,mask_chanS,mask_chanS) C5;

 ml::chan_block(IP->C5@IN : 1, MZIS_l, pitchS6, pitchS6, pitchS6,

pitchL6,mask_MZI_S,mask_chanS,mask_chanS) C6;

Silicon Photonics Chip for Telecom Applications

123

 ml::chan_block(IP->C6@IN : 1, MZIS_l, pitchS7, pitchS7, pitchS7,

pitchL7,mask_MZI_S,mask_chanS,mask_chanS) C7;

 ml::chan_block(IP->C7@IN : 2, MZIS_l, pitchS8, pitchS8, pitchS8,

pitchL8,mask_MZI_S,mask_chanS,mask_chanS) C8;

 // From the 1st input channel CDC to the input band CDC

 mask::CSselect("mcsSOI_DEEP");

 ml::demofabArc(in0->C1@In_CDC+[0,0,180] : -90,radius,width) A1;

 ml::demofabStraight(in0->A1@out0 : radius, width) S1;

 ml::demofabArc(in0->S1@out0 : 90,radius,width) A1X;

 //ml::demofabStraight(in0->B1@PO : radius-width,width) S2;

 ml::CDC(Drop-

>A1X@flipPortY(out0):"functor1",band_W1,band_W2,band_corr1,band_corr2,pitchS,dt,b

andS_l,chirpS,band_G,W,radius,width,mask_CDC_S) CIB;

 // From the last output channel CDC #1 to the band CDC #1

 mask::CSselect("mcsSOI_DEEP");

 ml::demofabArc(in0->C8@C1B : 90,radius,width) A2;

 ml::demofabStraight(in0->A2@out0 : radius, width) S3;

 ml::demofabArc(in0->S3@out0 : 90,radius,width) A3;

 ml::demofabStraight(in0->A3@out0 : chan_lp, width) S4;

 ml::demofabArc(in0->S4@out0 : -90,radius,width) A4;

 ml::demofabStraight(in0->A4@out0 : 8*radius+2.5*width+5/2*bb+2*W, width)

S5;

 ml::demofabArc(in0->S5@out0 : -90,radius,width) A5;

 ml::demofabStraight(in0->A5@out0 :

2*chan_lp+MZIS_l+3/2*bb+6*radius+11*width, width) S6;

 ml::demofabArc(in0->S6@out0 : 180,radius,width) A6;

 ml::CDC(Add->A6@out0+[0,0,180] :

"functor1",band_W1,band_W2,band_corr1,band_corr2,pitchL,dt,bandL_l,chirpL,band_G,

W,radius,width,mask_CDC_L) CO1B;

 // From the last output channel CDC #2 to the band CDC #2

 mask::CSselect("mcsSOI_DEEP");

 ml::demofabStraight(in0->C8@C2B : radius+width, width) S7;

 ml::demofabArc(in0->S7@out0 : -90,radius,width) A7;

 ml::demofabStraight(in0->A7@out0 : 5*radius+3*W-2*width, width) S8;

 ml::demofabArc(in0->S8@out0 : -90,radius,width) A8;

 ml::CDC(Add-

>A8@flipPortY(out0)+[0,0,180]:"functor1",band_W1,band_W2,band_corr1,band_corr2,pi

tchL,dt,bandL_l,chirpL,band_G,W,radius,width,mask_CDC_L) CO2B;

 // From the last output channel CDC #3 to the band CDC #3

 mask::CSselect("mcsSOI_DEEP");

 ml::demofabStraight(in0->C8@C3B : MZIS_l+bb/2+5*radius+width) S9;

 ml::boot(PO->S9@flipPortY(out0)+[0,0,180] : radius,width) B2;

 ml::demofabStraight(in0->B2@AN+[0,0,180] :

MZIS_l+chan_lp+bb/2+5*radius+2*width, width) S10;

 ml::demofabArc(in0->S10@out0 : 90,radius,width) A9;

 ml::demofabStraight(in0->A9@out0 : 2.5*width+3*radius, width) S11;

 ml::demofabArc(in0->S11@out0 : 90,radius,width) A10;

 ml::demofabStraight(in0->A10@out0 : bandL_lp+radius-width/2, width) S12;

 ml::demofabArc(in0->S12@out0 : -180,radius,width) A11;

 ml::CDC(Add->A11@flipPortY(out0)+[0,0,180] :

"functor1",band_W1,band_W2,band_corr1,band_corr2,pitchL,dt,bandL_l,chirpL,band_G,

W,radius,width,mask_CDC_L) CO3B;

 // Connections to the next band block

 // From this input band CDC to the one at next block

Silicon Photonics Chip for Telecom Applications

124

 mask::CSselect("mcsSOI_DEEP");

 ml::demofabStraight(in0->CIB@Through : 2.5*width, width) S13;

 ml::demofabArc(in0->S13@out0 : -90,radius,width) A12;

 ml::demofabStraight(in0->A12@out0 : bs_x-4*radius+width/2, width) S14;

 ml::demofabArc(in0->S14@out0 : -90,radius,width) A13;

 ml::demofabStraight(in0->A13@out0 : bandC_lp, width) S15;

 ml::demofabArc(in0->S15@out0 : 180,radius,width) A14;

 // From this output band CDC #1 to the one at next block

 ml::demofabArc(in0->CO1B@flipPortY(Input)+[0,0,180] : 180,radius,width)

A15;

 ml::demofabStraight(in0->A15@out0 : bandL_lp-6*width, width) S16;

 ml::demofabArc(in0->S16@out0 : -90,radius,width) A16;

 ml::demofabArc(in0->A16@out0 : 90,radius,width) A17;

 ml::demofabStraight(in0->A17@out0 : 2.5*bb+radius, width) S17;

 ml::demofabArc(in0->S17@out0 : -90,radius,width) A18;

 ml::demofabStraight(in0->A18@out0 : 8*ms_x+2*W+5*width+2*bb+8*radius,

width) S18;

 ml::demofabArc(in0->S18@out0 : -90,radius,width) A19;

 ml::demofabStraight(in0->A19@out0 : 2.5*bb+2*radius-7*width, width) S19;

 // From this output band CDC #2 to the one at next block

 ml::boot(PO->CO2B@Input : radius,width) B3;

 ml::demofabStraight(in0->B3@AN+[0,0,180] : bandL_lp-7*width+3/2*bb) S20;

 ml::demofabArc(in0->S20@out0 : 90,radius,width) A20;

 ml::demofabStraight(in0->A20@out0 : 7*radius+4.5*width+3*bb+2*W+8*ms_x,

width) S21;

 ml::demofabArc(in0->S21@out0 : 90,radius,width) A21;

 ml::demofabStraight(in0->A21@out0 : 3/2*bb-8*width-radius, width) S22;

 // From this output band CDC #3 to the one at next block

 ml::demofabArc(in0->CO3B@Input+[0,0,180] : -180,radius,width) A22;

 ml::demofabStraight(in0->A22@out0 : 2*chan_lp+MZIS_l+5*radius+6*width+bb/2,

width) S23;

 ml::demofabArc(in0->S23@out0 : 90,radius,width) A23;

 ml::demofabArc(in0->A23@out0 : -90,radius,width) A24;

 ml::demofabStraight(in0->A24@out0 : bb+3*radius, width) S24;

 ml::demofabArc(in0->S24@out0 : 90,radius,width) A25;

 ml::demofabStraight(in0->A25@out0 : 2*bb+8*radius+8*ms_x+6*width+2*W,

width) S25;

 ml::demofabArc(in0->S25@out0 : 90,radius,width) A26;

 ml::demofabStraight(in0->A26@out0 : 2*bb+5*width+7*radius+2*chan_lp+MZIC_l-

bandC_lp, width) S26;

 // Setting the ports

 ml::setPort(this : CDC1->C1@In_CDC);

 ml::setPort(this : IB->CIB@Input); // Input of the Input Band CDC

 ml::setPort(this : OB->A14@out0); // Last line connecting to the next

Input Band CDC

 ml::setPort(this : T->C8@Test); // Through of the last input channel

CDC (To test port #1))

 ml::setPort(this : O1->CO1B@Through); // Through of the output L-band CDC

#1 (To output port #1)

 ml::setPort(this : O2->CO2B@Through); // Through of the output L-band CDC

#2 (To output port #2)

 ml::setPort(this : O3->CO3B@Through); // Through of the output L-band CDC

#3 (To output port #3)

 // Electrical ports (Output)

 ml::setPort(this : VO_1->C1@VO1);

 ml::setPort(this : VO_2->C1@VO2);

 ml::setPort(this : VO_3->C2@VO1);

Silicon Photonics Chip for Telecom Applications

125

 ml::setPort(this : VO_4->C2@VO2);

 ml::setPort(this : VO_5->C3@VO1);

 ml::setPort(this : VO_6->C3@VO2);

 ml::setPort(this : VO_7->C4@VO1);

 ml::setPort(this : VO_8->C4@VO2);

 ml::setPort(this : VO_9->C5@VO1);

 ml::setPort(this : VO_10->C5@VO2);

 ml::setPort(this : VO_11->C6@VO1);

 ml::setPort(this : VO_12->C6@VO2);

 ml::setPort(this : VO_13->C7@VO1);

 ml::setPort(this : VO_14->C7@VO2);

 ml::setPort(this : VO_15->C8@VO1);

 ml::setPort(this : VO_16->C8@VO2);

 ml::setPort(this : VI_1->C1@VI1);

 ml::setPort(this : VI_2->C1@VI2);

 ml::setPort(this : VI_3->C2@VI1);

 ml::setPort(this : VI_4->C2@VI2);

 ml::setPort(this : VI_5->C3@VI1);

 ml::setPort(this : VI_6->C3@VI2);

 ml::setPort(this : VI_7->C4@VI1);

 ml::setPort(this : VI_8->C4@VI2);

 ml::setPort(this : VI_9->C5@VI1);

 ml::setPort(this : VI_10->C5@VI2);

 ml::setPort(this : VI_11->C6@VI1);

 ml::setPort(this : VI_12->C6@VI2);

 ml::setPort(this : VI_13->C7@VI1);

 ml::setPort(this : VI_14->C7@VI2);

 ml::setPort(this : VI_15->C8@VI1);

 ml::setPort(this : VI_16->C8@VI2);

 break;

 // If it is the middle band block

 case(1) :

 // Channel blocks within the band

 ml::chan_block(: 0, MZIC_l, pitchC1, pitchC1, pitchC1,

pitchC1,mask_MZI_C,mask_chanC,mask_chanC) C1;

 ml::chan_block(IP->C1@IN : 1, MZIC_l, pitchC2, pitchC2, pitchC2,

pitchC2,mask_MZI_C,mask_chanC,mask_chanC) C2;

 ml::chan_block(IP->C2@IN : 1, MZIC_l, pitchC3, pitchC3, pitchC3,

pitchC3,mask_MZI_C,mask_chanC,mask_chanC) C3;

 ml::chan_block(IP->C3@IN : 1, MZIC_l, pitchC4, pitchC4, pitchC4,

pitchC4,mask_MZI_C,mask_chanC,mask_chanC) C4;

 ml::chan_block(IP->C4@IN : 1, MZIC_l, pitchC5, pitchC5, pitchC5,

pitchC5,mask_MZI_C,mask_chanC,mask_chanC) C5;

 ml::chan_block(IP->C5@IN : 1, MZIC_l, pitchC6, pitchC6, pitchC6,

pitchC6,mask_MZI_C,mask_chanC,mask_chanC) C6;

 ml::chan_block(IP->C6@IN : 1, MZIC_l, pitchC7, pitchC7, pitchC7,

pitchC7,mask_MZI_C,mask_chanC,mask_chanC) C7;

 ml::chan_block(IP->C7@IN : 2, MZIC_l, pitchC8, pitchC8, pitchC8,

pitchC8,mask_MZI_C,mask_chanC,mask_chanC) C8;

 // From the 1st input channel CDC to the input band CDC

 mask::CSselect("mcsSOI_DEEP");

 ml::demofabArc(in0->C1@In_CDC+[0,0,180] : -90,radius,width) A1;

 ml::demofabStraight(in0->A1@out0 : radius, width) S1;

 ml::demofabArc(in0->S1@out0 : 90,radius,width) A1X;

Silicon Photonics Chip for Telecom Applications

126

 ml::demofabStraight(in0->A1X@out0 : bandS_lp-bandC_lp+2*radius-

6.5*width,width) S2;

 ml::CDC(Drop->S2@flipPortY(out0) :

"functor1",band_W1,band_W2,band_corr1,band_corr2,pitchC,dt,bandC_l,chirpC,band_G,

W,radius,width,mask_CDC_C) CIB;

 // From the last output channel CDC #1 to the band CDC #1

 mask::CSselect("mcsSOI_DEEP");

 ml::demofabArc(in0->C8@C1B : 90,radius,width) A2;

 ml::demofabStraight(in0->A2@out0 : radius, width) S3;

 ml::demofabArc(in0->S3@out0 : 90,radius,width) A3;

 ml::demofabStraight(in0->A3@out0 : chan_lp, width) S4;

 ml::demofabArc(in0->S4@out0 : -90,radius,width) A4;

 ml::demofabStraight(in0->A4@out0 : 8*radius+2*width+5/2*bb+2*W, width) S5;

 ml::demofabArc(in0->S5@out0 : -90,radius,width) A5;

 ml::demofabStraight(in0->A5@out0 :

2*chan_lp+MZIC_l+3/2*bb+6*radius+11*width, width) S6;

 ml::demofabArc(in0->S6@out0 : 180,radius,width) A6;

 ml::CDC(Add->A6@out0+[0,0,180] :

"functor1",band_W1,band_W2,band_corr1,band_corr2,pitchC,dt,bandC_l,chirpC,band_G,

W,radius,width,mask_CDC_C) CO1B;

 // From the last output channel CDC #2 to the band CDC #2

 mask::CSselect("mcsSOI_DEEP");

 ml::demofabStraight(in0->C8@C2B : radius+width, width) S7;

 ml::demofabArc(in0->S7@out0 : -90,radius,width) A7;

 ml::demofabStraight(in0->A7@out0 : 5*radius+3*W-2*width, width) S8;

 ml::demofabArc(in0->S8@out0 : -90,radius,width) A8;

 ml::CDC(Add-

>A8@flipPortY(out0)+[0,0,180]:"functor1",band_W1,band_W2,band_corr1,band_corr2,pi

tchC,dt,bandC_l,chirpC,band_G,W,radius,width,mask_CDC_C) CO2B;

 // From the last output channel CDC #3 to the band CDC #3

 mask::CSselect("mcsSOI_DEEP");

 ml::demofabStraight(in0->C8@C3B : MZIC_l+bb/2+5*radius+width) S9;

 ml::boot(PO->S9@flipPortY(out0)+[0,0,180] : radius,width) B2;

 ml::demofabStraight(in0->B2@AN+[0,0,180] :

MZIC_l+chan_lp+bb/2+5*radius+2*width, width) S10;

 ml::demofabArc(in0->S10@out0 : 90,radius,width) A9;

 ml::demofabStraight(in0->A9@out0 : 3*width+3*radius, width) S11;

 ml::demofabArc(in0->S11@out0 : 90,radius,width) A10;

 ml::demofabStraight(in0->A10@out0 : bandC_lp+radius-width/2, width) S12;

 ml::demofabArc(in0->S12@out0 : -180,radius,width) A11;

 ml::CDC(Add->A11@flipPortY(out0)+[0,0,180] :

"functor1",band_W1,band_W2,band_corr1,band_corr2,pitchC,dt,bandC_l,chirpC,band_G,

W,radius,width,mask_CDC_C) CO3B;

 // Connections to the next band block

 // From this input band CDC to the one at next block

 mask::CSselect("mcsSOI_DEEP");

 ml::demofabArc(in0->CIB@Through : -90,radius,width) A12;

 ml::demofabStraight(in0->A12@out0 : bs_x-4*radius, width) S14;

 ml::demofabArc(in0->S14@out0 : -90,radius,width) A13;

 ml::demofabStraight(in0->A13@out0 : bandL_lp, width) S15;

 ml::demofabArc(in0->S15@out0 : 180,radius,width) A14;

 // From this output band CDC #1 to the one at next block

 ml::demofabArc(in0->CO1B@flipPortY(Input)+[0,0,180] : 180,radius,width)

A15;

 ml::demofabStraight(in0->A15@out0 : bandC_lp-6*width, width) S16;

Silicon Photonics Chip for Telecom Applications

127

 ml::demofabArc(in0->S16@out0 : -90,radius,width) A16;

 ml::demofabArc(in0->A16@out0 : 90,radius,width) A17;

 ml::demofabStraight(in0->A17@out0 : 2.5*bb-width, width) S17;

 ml::demofabArc(in0->S17@out0 : -90,radius,width) A18;

 ml::demofabStraight(in0->A18@out0 : 8*ms_x+5*width+2*radius, width) S18;

 ml::demofabArc(in0->S18@out0 : -90,radius,width) A19;

 ml::demofabStraight(in0->A19@out0 : 2*chan_lp+MZIL_l+7*radius+4*bb+5*width,

width) S19;

 ml::demofabArc(in0->S19@out0 : -90,radius,width) A19_A;

 ml::demofabStraight(in0->A19_A@out0 : 0.5*bb+W+2*radius+width, width)

S19_A;

 ml::demofabArc(in0->S19_A@out0 : -90,radius,width) A19_B;

 ml::demofabStraight(in0->A19_B@out0 : chan_lp, width) S19_B;

 ml::demofabArc(in0->S19_B@out0 : 90,radius,width) A19_C;

 ml::demofabStraight(in0->A19_C@out0 : radius, width) S19_C;

 ml::demofabArc(in0->S19_C@out0 : 90,radius,width) A19_D;

 // From this output band CDC #2 to the one at next block

 ml::boot(PO->CO2B@Input : radius,width) B3;

 ml::demofabStraight(in0->B3@AN+[0,0,180] : bandC_lp-8*width+3/2*bb-radius,

width) S20;

 ml::demofabArc(in0->S20@out0 : 90,radius,width) A20;

 ml::demofabStraight(in0->A20@out0 : 6*radius+3*width+bb+8*ms_x, width) S21;

 ml::demofabArc(in0->S21@out0 : 90,radius,width) A21;

 ml::demofabStraight(in0->A21@out0 : 0.5*bb+4*width+2*radius, width) S22;

 // From this output band CDC #3 to the one at next block

 ml::demofabArc(in0->CO3B@Input+[0,0,180] : -180,radius,width) A22;

 ml::demofabStraight(in0->A22@out0 : 2*chan_lp+MZIC_l+5*radius+6*width+bb/2,

width) S23;

 ml::demofabArc(in0->S23@out0 : 90,radius,width) A23;

 ml::demofabArc(in0->A23@out0 : -90,radius,width) A24;

 ml::demofabStraight(in0->A24@out0 : 1.5*bb-width, width) S24;

 ml::demofabArc(in0->S24@out0 : 90,radius,width) A25;

 ml::demofabStraight(in0->A25@out0 : 3*bb+8*radius+7*ms_x+3*width+2*W,

width) S25;

 ml::demofabArc(in0->S25@out0 : 90,radius,width) A26;

 ml::demofabStraight(in0->A26@out0 : chan_lp+MZIL_l+3*bb+5*radius+4.5*width,

width) S26;

 // Setting the ports

 ml::setPort(this : CDC1->C1@In_CDC);

 ml::setPort(this : IB->CIB@Input); // Input of the Input Band CDC

 ml::setPort(this : OB->A14@out0); // Last arch connecting to the next

Input Band CDC

 ml::setPort(this : T->C8@Test); // Testing port of the last input

channel CDC

 // Port set to have the position of the bottom-right corner of the bounding

box of the optical parts

 ml::setPort(this : southeast->S19@out0+[width/2,-radius-width/2,0]);

 // Port set to have the position of the top-right corner of the bounding

box of the optical parts

 ml::setPort(this : northeast->S19@in0+[-radius-width/2,width/2,-90]);

 // Electrical ports (MZIs)

 ml::setPort(this : VO_1->C1@VO1);

 ml::setPort(this : VO_2->C1@VO2);

 ml::setPort(this : VO_3->C2@VO1);

 ml::setPort(this : VO_4->C2@VO2);

 ml::setPort(this : VO_5->C3@VO1);

Silicon Photonics Chip for Telecom Applications

128

 ml::setPort(this : VO_6->C3@VO2);

 ml::setPort(this : VO_7->C4@VO1);

 ml::setPort(this : VO_8->C4@VO2);

 ml::setPort(this : VO_9->C5@VO1);

 ml::setPort(this : VO_10->C5@VO2);

 ml::setPort(this : VO_11->C6@VO1);

 ml::setPort(this : VO_12->C6@VO2);

 ml::setPort(this : VO_13->C7@VO1);

 ml::setPort(this : VO_14->C7@VO2);

 ml::setPort(this : VO_15->C8@VO1);

 ml::setPort(this : VO_16->C8@VO2);

 ml::setPort(this : VI_1->C1@VI1);

 ml::setPort(this : VI_2->C1@VI2);

 ml::setPort(this : VI_3->C2@VI1);

 ml::setPort(this : VI_4->C2@VI2);

 ml::setPort(this : VI_5->C3@VI1);

 ml::setPort(this : VI_6->C3@VI2);

 ml::setPort(this : VI_7->C4@VI1);

 ml::setPort(this : VI_8->C4@VI2);

 ml::setPort(this : VI_9->C5@VI1);

 ml::setPort(this : VI_10->C5@VI2);

 ml::setPort(this : VI_11->C6@VI1);

 ml::setPort(this : VI_12->C6@VI2);

 ml::setPort(this : VI_13->C7@VI1);

 ml::setPort(this : VI_14->C7@VI2);

 ml::setPort(this : VI_15->C8@VI1);

 ml::setPort(this : VI_16->C8@VI2);

 break;

 // If it is a Final band block (rightmost)

 case(2) :

 // Channel blocks within the band

 ml::chan_block(: 0, MZIL_l, pitchL1, pitchL1, pitchL1,

pitchL1,mask_MZI_L,mask_chanL,mask_chanL) C1;

 ml::chan_block(IP->C1@IN : 1, MZIL_l, pitchL2, pitchL2, pitchL2, pitchL2,

mask_MZI_L, mask_chanL, mask_chanL) C2;

 ml::chan_block(IP->C2@IN : 1, MZIL_l, pitchL3, pitchL3, pitchL3, pitchL3,

mask_MZI_L, mask_chanL, mask_chanL) C3;

 ml::chan_block(IP->C3@IN : 1, MZIL_l, pitchL4, pitchL4, pitchL4, pitchL4,

mask_MZI_L, mask_chanL, mask_chanL) C4;

 ml::chan_block(IP->C4@IN : 1, MZIL_l, pitchL5, pitchL5, pitchL5, pitchL5,

mask_MZI_L, mask_chanL, mask_chanL) C5;

 ml::chan_block(IP->C5@IN : 1, MZIL_l, pitchL6, pitchL6, pitchL6, pitchL6,

mask_MZI_L, mask_chanL, mask_chanL) C6;

 ml::chan_block(IP->C6@IN : 1, MZIL_l, pitchL7, pitchL7, pitchL7, pitchL7,

mask_MZI_L, mask_chanL, mask_chanL) C7;

 ml::chan_block(IP->C7@IN : 2, MZIL_l, pitchL8, pitchL8, pitchL8, pitchL8,

mask_MZI_L, mask_chanL, mask_chanL) C8;

 // From the 1st input channel CDC to the input band CDC

 mask::CSselect("mcsSOI_DEEP");

 ml::demofabStraight(in0->C1@In_CDC+[0,0,180] : bandS_lp-bandL_lp+2.5*width,

width) S0;

 ml::demofabArc(in0->S0@out0 : -90,radius,width) A1;

 ml::demofabStraight(in0->A1@out0 : radius, width) S1;

 ml::demofabArc(in0->S1@out0 : 90,radius,width) A2;

Silicon Photonics Chip for Telecom Applications

129

 ml::CDC(Drop->A2@flipPortY(out0) :

"functor1",band_W1,band_W2,band_corr1,band_corr2,pitchL,dt,bandL_l,chirpL,band_G,

W,radius,width,mask_CDC_L) CIB;

 // Setting the ports

 ml::setPort(this : CDC1->C1@In_CDC);

 ml::setPort(this : IB->CIB@Input); // Input of the Input

Band CDC

 ml::setPort(this : TC->C8@Test); // Through port of the

last input channel CDC (To testing Port #3)

 ml::setPort(this : TB->CIB@Through); // Throught port of the

input L-band CDC (To testing Port #4)

 ml::setPort(this : LC->C8@C3B+[0,MZIL_l,0]); // Last output channel

CDC #3 of the band (IN port)

 ml::setPort(this : L2->C8@C2I); // Last output channel

CDC #2 of the last band (IN port)

 // Electrical ports of the MZIs

 ml::setPort(this : VO_1->C1@VO1);

 ml::setPort(this : VO_2->C1@VO2);

 ml::setPort(this : VO_3->C2@VO1);

 ml::setPort(this : VO_4->C2@VO2);

 ml::setPort(this : VO_5->C3@VO1);

 ml::setPort(this : VO_6->C3@VO2);

 ml::setPort(this : VO_7->C4@VO1);

 ml::setPort(this : VO_8->C4@VO2);

 ml::setPort(this : VO_9->C5@VO1);

 ml::setPort(this : VO_10->C5@VO2);

 ml::setPort(this : VO_11->C6@VO1);

 ml::setPort(this : VO_12->C6@VO2);

 ml::setPort(this : VO_13->C7@VO1);

 ml::setPort(this : VO_14->C7@VO2);

 ml::setPort(this : VO_15->C8@VO1);

 ml::setPort(this : VO_16->C8@VO2);

 ml::setPort(this : VI_1->C1@VI1);

 ml::setPort(this : VI_2->C1@VI2);

 ml::setPort(this : VI_3->C2@VI1);

 ml::setPort(this : VI_4->C2@VI2);

 ml::setPort(this : VI_5->C3@VI1);

 ml::setPort(this : VI_6->C3@VI2);

 ml::setPort(this : VI_7->C4@VI1);

 ml::setPort(this : VI_8->C4@VI2);

 ml::setPort(this : VI_9->C5@VI1);

 ml::setPort(this : VI_10->C5@VI2);

 ml::setPort(this : VI_11->C6@VI1);

 ml::setPort(this : VI_12->C6@VI2);

 ml::setPort(this : VI_13->C7@VI1);

 ml::setPort(this : VI_14->C7@VI2);

 ml::setPort(this : VI_15->C8@VI1);

 ml::setPort(this : VI_16->C8@VI2);

 break;

}

this = Tech.populateAutoRouterInformation(this);

// Set the promoted I/O ports domain

mask::elementPortRegexSetDomain(this, "(in|out)([[:int:]])", OpticsDomain);

mask::port2layout(&this);

Silicon Photonics Chip for Telecom Applications

130

}

/*

Creates the WSS layout with the optical ports and the band blocks

Input: e_pads -> 0 if the electrical connections + pads will be set in place. 1

if they won't. (default = 0)

*/

layout WSS(int e_pads = 0)

 dlgname "WSS block"

 Domain_Optics

 AuthorInfo "Alberto Otero Casado"

{

 var RoutingGrid = Tech.getDefaultOrNewAutoRouterGrid(this, "Optical",

"FinalCircuitOptical", 40, 40);

 // Concatenating the bands

 ml::band_block(: 0) B1;

 ml::band_block(IB->B1@OB : 1) B2;

 ml::band_block(IB->B2@OB : 2) B3;

 // Connections to the ports

 // From the input S-band CDC to the input port

 mask::CSselect("mcsSOI_DEEP");

 ml::demofabArc(in0->B1@IB+[0,0,180] : -180,radius,width) A1;

 ml::demofabStraight(in0->A1@out0 : bandS_lp+3.5*width-2*port_d+5*radius-bb,

width) S1;

 ml::demofabArc(in0->S1@out0 : 90, radius,width) A2;

 ml::demofabStraight(in0->A2@out0 : 6*radius+6*width, width) S2;

 ml::demofabFiberCoupler(out0->S2@out0+[0,0,180] :) FC1;

 // From the last input channel CDC of the first band block to Testing port #1

 ml::demofabStraight(in0->B1@T : 2.5*width+radius, width) S3;

 ml::demofabArc(in0->S3@out0 : 90,radius,width) A3;

 ml::demofabStraight(in0->A3@out0 : 7*ms_x+4*radius+W, width) S4;

 ml::demofabArc(in0->S4@out0 : 90,radius,width) A4;

 ml::demofabStraight(in0->A4@out0 : MZIS_l+2*chan_lp-

3*port_d+6*width+2*bb+8*radius) S5;

 ml::demofabArc(in0->S5@out0 : -90,radius,width) A5;

 ml::demofabStraight(in0->A5@out0 : 5*width+5*radius, width) S6;

 ml::demofabFiberCoupler(out0->S6@out0+[0,0,180] :) FC2;

 // From the output L-band CDC #2 to output port #2

 ml::demofabStraight(in0->B1@O2 : 0.5*bb+radius+3*width, width) S7;

 ml::demofabArc(in0->S7@out0 : -90,radius,width) A6;

 ml::demofabStraight(in0->A6@out0 : 8*ms_x+2*W+6*radius+2*width, width) S8;

 ml::demofabArc(in0->S8@out0 : -90,radius,width) A7;

 ml::demofabStraight(in0->A7@out0 : 2*chan_lp+MZIS_l-

4*port_d+7*radius+7*width+2.5*bb, width) S9;

 ml::demofabArc(in0->S9@out0 : 90,radius,width) A8;

 ml::demofabStraight(in0->A8@out0 : 4*width+4*radius, width) S10;

 ml::demofabFiberCoupler(out0->S10@out0+[0,0,180] :) FC3;

 // From the output L-band CDC #3 to output port #3

Silicon Photonics Chip for Telecom Applications

131

 ml::demofabStraight(in0->B1@O3 : 2*chan_lp+MZIS_l-

bandL_lp+6*radius+6*width+2.5*bb, width) S11;

 ml::demofabArc(in0->S11@out0 : -90,radius,width) A9;

 ml::demofabStraight(in0->A9@out0 : 8*ms_x+12*radius+5.5*width+2*W, width) S12;

 ml::demofabArc(in0->S12@out0 : -90,radius,width) A10;

 ml::demofabStraight(in0->A10@out0 : 2*chan_lp+MZIS_l-

5*port_d+9*radius+7*width+3*bb, width) S13;

 ml::demofabArc(in0->S13@out0 : 90,radius,width) A11;

 ml::demofabStraight(in0->A11@out0 : 3*width+3*radius, width) S14;

 ml::demofabFiberCoupler(out0->S14@out0+[0,0,180] :) FC4;

 // From the output L-band CDC #1 to output port #1

 ml::demofabStraight(in0->B1@O1 : 3*radius-6*width+2.5*bb, width) S15;

 ml::demofabArc(in0->S15@out0 : -90,radius,width) A12;

 ml::demofabStraight(in0->A12@out0 : 8*ms_x+13*radius+7.5*width+2*W+2*bb,

width) S16;

 ml::demofabArc(in0->S16@out0 : -90,radius,width) A13;

 ml::demofabStraight(in0->A13@out0 : 2*chan_lp+MZIS_l-

6*port_d+3.5*bb+11*radius+7*width, width) S17;

 ml::demofabArc(in0->S17@out0 : 90,radius,width) A14;

 ml::demofabStraight(in0->A14@out0 : 2*width+2*radius, width) S18;

 ml::demofabFiberCoupler(out0->S18@out0+[0,0,180] :) FC5;

 // From the last input Band CDC (L-band) to Testing port #4

 ml::demofabStraight(in0->B3@TB : radius+0.5*width, width) S19;

 ml::demofabArc(in0->S19@out0 : 90,radius,width) A15;

 ml::demofabStraight(in0->A15@out0 : 2*bs_x+6*radius+6.5*width, width) S20;

 ml::demofabArc(in0->S20@out0 : 90,radius,width) A16;

 ml::demofabStraight(in0->A16@out0 : port_d-2*radius-width/2, width) S21;

 ml::demofabArc(in0->S21@out0 : -90,radius,width) A17;

 ml::demofabFiberCoupler(out0->A17@out0+[0,0,180] :) FC6;

 // From the last input channel CDC of the middle band block (C-Band) to

Testing port #2

 ml::demofabStraight(in0->B2@T : 2.5*bb+2*radius+2.5*width, width) S22;

 ml::demofabArc(in0->S22@out0 : 90,radius,width) A18;

 ml::demofabStraight(in0->A18@out0 : bs_x+7*ms_x+8*radius+W+4.5*width, width)

S23;

 ml::demofabArc(in0->S23@out0 : 90,radius,width) A19;

 ml::demofabStraight(in0->A19@out0 : MZIS_l+2*chan_lp-

7*port_d+10*radius+7*width+4.5*bb, width) S24;

 ml::demofabArc(in0->S24@out0 : -90,radius,width) A20;

 ml::demofabStraight(in0->A20@out0 : width+radius, width) S25;

 ml::demofabFiberCoupler(out0->S25@out0+[0,0,180] :) FC7;

 // From the last input channel CDC of the final band block (L-Band) to Testing

port #3

 ml::demofabStraight(in0->B3@TC : 2.5*bb+4*radius+4.5*width, width) S26;

 ml::demofabArc(in0->S26@out0 : 90,radius,width) A21;

 ml::demofabStraight(in0->A21@out0 : 2*bs_x+7*ms_x+9*radius+W+5.5*width, width)

S27;

 ml::demofabArc(in0->S27@out0 : 90,radius,width) A22;

 ml::demofabStraight(in0->A22@out0 : MZIS_l+2*chan_lp-

8*port_d+11*radius+8*width+4.5*bb, width) S28;

 ml::demofabArc(in0->S28@out0 : -90,radius,width) A23;

 ml::demofabFiberCoupler(out0->A23@out0+[0,0,180] :) FC8;

 // To see the northernmost and southermost points regarding the optical layout

 ml::setPort(this : south-> S20@in0+[0,-width/2,0]);

 ml::setPort(this : north->S27@in0+[0,width/2,0]);

Silicon Photonics Chip for Telecom Applications

132

 // Electrical connections and pads if specified by the input e_pads

 if (e_pads == 1){

 var pads [n_mzi+1]; // Electrical pads (The number of MZIs used plus a

ground line)

 var ruler; // Ruler for the distances from the electrical pads to

the MZI ports

 var v_lines[n_mzi+1]; // Vertical electrical lines exiting from the DC Pads

(i+1 so that it coincides with pads)

 double y; // Length from the upper to the lower part of the

optical layout

 double y1; // Vertical distance from the 1st pad to the IN port

of the output channel CDCs #3

 ruler = ml::diffPort(this@north,B2@northeast);

 y = abs(ruler.y); y = y+width;

 /* It has been decided to create the 49 electrical pads as an array of 7x7.

This value has been taken because

 it seems to be a good one to have the electrical lines at the bottom and

the GND line on top.

 Anyway, other configurations are possible.

 The [0,0] pad corresponds to the ground

 */

 // Creating the electrical pads and their main lines so that they do not

coincide vertically

 for (int j = 0; j < nc; j++){

 for (int i = 0; i < nr; i++){

 pads[nr*j+i] = ml::demofabDCPad_bidir(dc1->B2@northeast-[(1.5*nr-

0.5)*w_pad*(j+1)+pad_bb*j,y-pad_bb/2-i*(pad_bb),0] :);

 mask::CSselect("mcsVia_metal");

 // For the next vertical lines (dont change and have pads[0]@dc1)

 if (i == 0 && j == 0){

 ruler = ml::diffPort(pads[0]@dc1,B3@LC);

 // Vertica distance from the first pad to the IN port of the last

output channel CDC#3 (last channel of the last band)

 y1 = abs(ruler.y);

 }

 else{

 ml::demofabStraight(in0->pads[nr*j+i]@dc1 : 1.5*w_pad*(nr-1-i),

w_pad);

 v_lines[nr*j+i] = ml::demofabStraight(last+[w_pad/2,-w_pad/2,90] :

y1-i*pad_bb-w_pad+i*1.5*w_pad +j*(nr*1.5*w_pad) , w_pad);

 }

 }

 }

 // Voltage lines to every MZI

 // To the final band block

 ruler = ml::diffPort(v_lines[1]@out0, B3@VI_16);

 ml::demofabStraight(in0->v_lines[1]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[2]@out0, B3@VO_15);

Silicon Photonics Chip for Telecom Applications

133

 ml::demofabStraight(in0->v_lines[2]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[3]@out0, B3@VI_14);

 ml::demofabStraight(in0->v_lines[3]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[4]@out0, B3@VO_13);

 ml::demofabStraight(in0->v_lines[4]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[5]@out0, B3@VI_12);

 ml::demofabStraight(in0->v_lines[5]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[6]@out0, B3@VO_11);

 ml::demofabStraight(in0->v_lines[6]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[7]@out0, B3@VI_10);

 ml::demofabStraight(in0->v_lines[7]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[8]@out0, B3@VO_9);

 ml::demofabStraight(in0->v_lines[8]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[9]@out0, B3@VI_8);

 ml::demofabStraight(in0->v_lines[9]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[10]@out0, B3@VO_7);

 ml::demofabStraight(in0->v_lines[10]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[11]@out0, B3@VI_6);

 ml::demofabStraight(in0->v_lines[11]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[12]@out0, B3@VO_5);

 ml::demofabStraight(in0->v_lines[12]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[13]@out0, B3@VI_4);

 ml::demofabStraight(in0->v_lines[13]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

Silicon Photonics Chip for Telecom Applications

134

 ruler = ml::diffPort(v_lines[14]@out0, B3@VO_3);

 ml::demofabStraight(in0->v_lines[14]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[15]@out0, B3@VI_2);

 ml::demofabStraight(in0->v_lines[15]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[16]@out0, B3@VO_1);

 ml::demofabStraight(in0->v_lines[16]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 // To the middle band block

 ruler = ml::diffPort(v_lines[17]@out0, B2@VI_16);

 ml::demofabStraight(in0->v_lines[17]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[18]@out0, B2@VO_15);

 ml::demofabStraight(in0->v_lines[18]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[19]@out0, B2@VI_14);

 ml::demofabStraight(in0->v_lines[19]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[20]@out0, B2@VO_13);

 ml::demofabStraight(in0->v_lines[20]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[21]@out0, B2@VI_12);

 ml::demofabStraight(in0->v_lines[21]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[22]@out0, B2@VO_11);

 ml::demofabStraight(in0->v_lines[22]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[23]@out0, B2@VI_10);

 ml::demofabStraight(in0->v_lines[23]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[24]@out0, B2@VO_9);

 ml::demofabStraight(in0->v_lines[24]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[25]@out0, B2@VI_8);

 ml::demofabStraight(in0->v_lines[25]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

Silicon Photonics Chip for Telecom Applications

135

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[26]@out0, B2@VO_7);

 ml::demofabStraight(in0->v_lines[26]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[27]@out0, B2@VI_6);

 ml::demofabStraight(in0->v_lines[27]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[28]@out0, B2@VO_5);

 ml::demofabStraight(in0->v_lines[28]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[29]@out0, B2@VI_4);

 ml::demofabStraight(in0->v_lines[29]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[30]@out0, B2@VO_3);

 ml::demofabStraight(in0->v_lines[30]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[31]@out0, B2@VI_2);

 ml::demofabStraight(in0->v_lines[31]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[32]@out0, B2@VO_1);

 ml::demofabStraight(in0->v_lines[32]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 // To the initial band block

 ruler = ml::diffPort(v_lines[33]@out0, B1@VI_16);

 ml::demofabStraight(in0->v_lines[33]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[34]@out0, B1@VO_15);

 ml::demofabStraight(in0->v_lines[34]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[35]@out0, B1@VI_14);

 ml::demofabStraight(in0->v_lines[35]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[36]@out0, B1@VO_13);

 ml::demofabStraight(in0->v_lines[36]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[37]@out0, B1@VI_12);

Silicon Photonics Chip for Telecom Applications

136

 ml::demofabStraight(in0->v_lines[37]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[38]@out0, B1@VO_11);

 ml::demofabStraight(in0->v_lines[38]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[39]@out0, B1@VI_10);

 ml::demofabStraight(in0->v_lines[39]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[40]@out0, B1@VO_9);

 ml::demofabStraight(in0->v_lines[40]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[41]@out0, B1@VI_8);

 ml::demofabStraight(in0->v_lines[41]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[42]@out0, B1@VO_7);

 ml::demofabStraight(in0->v_lines[42]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[43]@out0, B1@VI_6);

 ml::demofabStraight(in0->v_lines[43]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[44]@out0, B1@VO_5);

 ml::demofabStraight(in0->v_lines[44]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[45]@out0, B1@VI_4);

 ml::demofabStraight(in0->v_lines[45]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[46]@out0, B1@VO_3);

 ml::demofabStraight(in0->v_lines[46]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[47]@out0, B1@VI_2);

 ml::demofabStraight(in0->v_lines[47]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

 ruler = ml::diffPort(v_lines[48]@out0, B1@VO_1);

 ml::demofabStraight(in0->v_lines[48]@out0+[w_pad/2,w_pad/2,-90] :

abs(ruler.y)+0.5*w_pad, w_pad);

 ml::demofabStraight(last+[w_pad/2,w_pad/2,-90] : abs(ruler.x)+1.5*w_pad,

w_pad);

Silicon Photonics Chip for Telecom Applications

137

 // Ground lines to the MZIs

 // Common Ground line

 ml::demofabStraight(in0->pads[0]@dc1 : 1.5*w_pad*(nr-1), w_pad) GND_1;

 // Distance from the last wvg to the TH port of channel CDC#2 (last channel of

the last band)

 ruler = ml::diffPort(GND_1@out0, B3@L2);

 v_lines[0] = ml::demofabStraight(last+[w_pad/2,-w_pad/2,90] : abs(ruler.y)-

w_pad, w_pad);

 ruler = ml::diffPort(v_lines[0]@out0, B1@VI_1); // Distance to the first MZI

(VI port)

 ml::demofabStraight(last+[-w_pad/2,w_pad/2,-90] : abs(ruler.y)+1.5*w_pad,

w_pad) GND_L;

 // GND lines to the initial band MZIs

 ml::demofabStraight(last+[-w_pad/2,w_pad/2,90] : abs(ruler.x)+0.5*w_pad,

w_pad);

 ruler = ml::diffPort(GND_L@out0, B1@VO_2);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B1@VI_3);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B1@VO_4);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B1@VI_5);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B1@VO_6);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B1@VI_7);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B1@VO_8);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B1@VI_9);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B1@VO_10);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B1@VI_11);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B1@VO_12);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B1@VI_13);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B1@VO_14);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B1@VI_15);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

Silicon Photonics Chip for Telecom Applications

138

 ruler = ml::diffPort(GND_L@out0, B1@VO_16);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 // GND lines to the middle band MZIs

 ruler = ml::diffPort(GND_L@out0, B2@VI_1);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B2@VO_2);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B2@VI_3);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B2@VO_4);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B2@VI_5);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B2@VO_6);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B2@VI_7);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B2@VO_8);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B2@VI_9);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B2@VO_10);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B2@VI_11);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B2@VO_12);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B2@VI_13);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B2@VO_14);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B2@VI_15);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B2@VO_16);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 // GND lines to the final band MZIs

 ruler = ml::diffPort(GND_L@out0, B3@VI_1);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B3@VO_2);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

Silicon Photonics Chip for Telecom Applications

139

 ruler = ml::diffPort(GND_L@out0, B3@VI_3);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B3@VO_4);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B3@VI_5);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B3@VO_6);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B3@VI_7);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B3@VO_8);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B3@VI_9);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B3@VO_10);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B3@VI_11);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B3@VO_12);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B3@VI_13);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B3@VO_14);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B3@VI_15);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 ruler = ml::diffPort(GND_L@out0, B3@VO_16);

 ml::demofabStraight(in0->GND_L@out0+[w_pad/2+ruler.x,w_pad/2,90] :

abs(ruler.y), w_pad);

 }

 // Setting the ports

 ml::setPort(this : IBB->B1@IB); // Port at the Input port of the Input Band

CDC of the S-Band

 ml::setPort(this : I1->B1@CDC1); // Port to the Input of the first input

channel CDC

 this = Tech.populateAutoRouterInformation(this);

 // Set the promoted I/O ports domain

 mask::elementPortRegexSetDomain(this, "(in|out)([[:int:]])", OpticsDomain);

 mask::port2layout(&this);

}

Silicon Photonics Chip for Telecom Applications

140

/**

Trials to implement the channel blocks and band blocks

** Important remark ** The sentence at the beginning of the function layouts

chann_block() and band_block() (var RoutingGrid) must be uncommented to implement

these trials

**/

// Trial 1 for the initial channel block

//ml::chan_block(IP->[0,0,90] : 0, MZIS_l, pitchS1, pitchS1, pitchS1,

pitchS1,mask_MZI_S,mask_chanS,mask_chanS) C1;

// Trial 2 for a middle channel block

//ml::chan_block(IP->[0,0,90] : 1, MZIS_l, pitchS2, pitchS2, pitchS2,

pitchS2,mask_MZI_S,mask_chanS,mask_chanS) C2;

// Trial 3 for the final channel block

//ml::chan_block(IP->[0,0,90] : 2, MZIS_l, pitchS8, pitchS8, pitchS8,

pitchS8,mask_MZI_S,mask_chanS,mask_chanS) C8;

//Trial 4 for the initial band block

//ml::band_block(CDC1->[0,0,90] : 0) B1;

// Trial 5 for the middle band block

//ml::band_block(CDC1->[0,0,90] : 1) B2;

// Trial 6 for the final band block

//ml::band_block(CDC1->[0,0,90] : 2) B3;

/**

Trials to implement the WSS layout

** Important Remark ** The sentences at the beginning of the function layouts

chann_block(), band_block(), MZI() and CDC() (var RoutingGrid) must all be

commented to implement these trials

**/

// Trial 1 to implement the WSS optical layout

//ml::WSS(I1->[0,0,90] :);

// Trial 2 to implement the WSS full layout (optical + electrical)

ml::WSS(I1->[0,0,90] : 1);

Silicon Photonics Chip for Telecom Applications

141

Appendix F. Statement of non-plagiarism

I hereby declare that all information in this report has been obtained and presented

in accordance with academic rules and ethical conduct and the work I am submitting

in this report, except where I have indicated, is my own work.

Silicon Photonics Chip for Telecom Applications

142

Appendix G. Supervisor approval

I, the undersigned, Paolo Bardella, supervisor of Alberto Otero Casado, student of the

PSRS EMJMD, during his master thesis at Politecnico di Torino certify that I approve

the content of this master thesis report entitled “Silicon Photonics Chip for Telecom

applications”.

Silicon Photonics Chip for Telecom Applications

143

Appendix H. Copyright of the figures

Figure 1

The presented figure is a modification of the 5th figure on [7], and it belongs to its

authors: Near Margalit, Chao Xiang, Steven M. Bowers, Alexis Bjorlin, Robert Blum

and John E. Bowers.

The image has been modified, so that it only includes (a).

© 2021 Author(s). All article content, except where otherwise noted, is licensed

under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

Figure 2

© Copyright 2023 Alberto Otero Casado. This figure is licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). You are free to use,

share, and adapt this figure for any purpose, even commercially, as long as you give

appropriate credit by providing a link to the original work (if available) and indicating

any changes made.

License details: https://creativecommons.org/licenses/by/4.0/

Figure 3

© Copyright 2023 Alberto Otero Casado. This figure is licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). You are free to use,

share, and adapt this figure for any purpose, even commercially, as long as you give

appropriate credit by providing a link to the original work (if available) and indicating

any changes made.

License details: https://creativecommons.org/licenses/by/4.0/

 Figure 4

The presented figure has been created by Lorenzo Tunesi, PhD student at Politecnico

di Torino. I have been given permission to use it for the purpose of this report.

Figure 5

The presented figure is a modification of the one created by Ansgar Hellwig, which

has been released into the public domain. Link to the original file and public domain

statement

Figure 6

© Copyright 2023 Alberto Otero Casado. This figure is licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). You are free to use,

share, and adapt this figure for any purpose, even commercially, as long as you give

https://politoit-my.sharepoint.com/personal/s313441_studenti_polito_it/Documents/(http:/creativecommons.org/licenses/by/4.0/)
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://commons.wikimedia.org/wiki/File:Mach-Zehnder_interferometer.svg
https://commons.wikimedia.org/wiki/File:Mach-Zehnder_interferometer.svg

Silicon Photonics Chip for Telecom Applications

144

appropriate credit by providing a link to the original work (if available) and indicating

any changes made.

License details: https://creativecommons.org/licenses/by/4.0/

 Figure 7

© Copyright Lorenzo Tunesi, PhD student at Politecnico di Torino.

Permission is given for the solely use of the figure in this document.

Figure 8

© Copyright Lorenzo Tunesi, PhD student at Politecnico di Torino.

Permission is given for the solely use of the figure in this document.

Figure 9

© Copyright Lorenzo Tunesi, PhD student at Politecnico di Torino.

Permission is given for the solely use of the figure in this document.

The image has been modified, with the addition of the headings “Output CDCs” and

“Output CDCs”.

Figure 10

© Copyright 2023 Alberto Otero Casado. This figure is licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). You are free to use,

share, and adapt this figure for any purpose, even commercially, as long as you give

appropriate credit by providing a link to the original work (if available) and indicating

any changes made.

License details: https://creativecommons.org/licenses/by/4.0/

 Figure 11

© Copyright 2023 Alberto Otero Casado. This figure is licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). You are free to use,

share, and adapt this figure for any purpose, even commercially, as long as you give

appropriate credit by providing a link to the original work (if available) and indicating

any changes made.

License details: https://creativecommons.org/licenses/by/4.0/

 Figure 12

© Copyright 2023 Alberto Otero Casado. This figure is licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). You are free to use,

share, and adapt this figure for any purpose, even commercially, as long as you give

appropriate credit by providing a link to the original work (if available) and indicating

any changes made.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Silicon Photonics Chip for Telecom Applications

145

License details: https://creativecommons.org/licenses/by/4.0/

 Figure 13

© Copyright 2023 Alberto Otero Casado. This figure is licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). You are free to use,

share, and adapt this figure for any purpose, even commercially, as long as you give

appropriate credit by providing a link to the original work (if available) and indicating

any changes made.

License details: https://creativecommons.org/licenses/by/4.0/

 Figure 14

© Copyright 2023 Alberto Otero Casado. This figure is licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). You are free to use,

share, and adapt this figure for any purpose, even commercially, as long as you give

appropriate credit by providing a link to the original work (if available) and indicating

any changes made.

License details: https://creativecommons.org/licenses/by/4.0/

 Figure 15

© Copyright 2023 Alberto Otero Casado. This figure is licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). You are free to use,

share, and adapt this figure for any purpose, even commercially, as long as you give

appropriate credit by providing a link to the original work (if available) and indicating

any changes made.

License details: https://creativecommons.org/licenses/by/4.0/

 Figure 16

© Copyright 2023 Alberto Otero Casado. This figure is licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). You are free to use,

share, and adapt this figure for any purpose, even commercially, as long as you give

appropriate credit by providing a link to the original work (if available) and indicating

any changes made.

License details: https://creativecommons.org/licenses/by/4.0/

 Figure 17

© Copyright 2023 Alberto Otero Casado. This figure is licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). You are free to use,

share, and adapt this figure for any purpose, even commercially, as long as you give

appropriate credit by providing a link to the original work (if available) and indicating

any changes made.

License details: https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Silicon Photonics Chip for Telecom Applications

146

 Figure 18

Copyright © 2023 Synopsys, Inc. All rights reserved.

This image was generated using OptoDesigner software. OptoDesigner is a trademark

of Synopsys, Inc.

This image is provided for educational and research purposes only. It is not

warranted to be accurate or complete, and Synopsys assumes no liability for its use.

For more information about OptoDesigner, please visit the Synopsys website at

http://www.synopsys.com.

Figure 19

Copyright © 2023 Synopsys, Inc. All rights reserved.

This image was generated using OptoDesigner software. OptoDesigner is a trademark

of Synopsys, Inc.

This image is provided for educational and research purposes only. It is not

warranted to be accurate or complete, and Synopsys assumes no liability for its use.

For more information about OptoDesigner, please visit the Synopsys website at

http://www.synopsys.com.

Figure 20

© Copyright Paolo Bardella, Assistant Professor at the Electronic and

Telecommunication Department of Politecnico di Torino.

Permission is given for the solely use of the figure in this document.

Figure 21

© Copyright Lorenzo Tunesi, PhD student at Politecnico di Torino.

Permission is given for the solely use of the figure in this document.

The image has been modified. The numerical values of the different parameters of

the MZI have been changed by their symbolic representations.

Figure 22

Copyright © 2023 Synopsys, Inc. All rights reserved.

This image was generated using OptoDesigner software. OptoDesigner is a trademark

of Synopsys, Inc.

This image is provided for educational and research purposes only. It is not

warranted to be accurate or complete, and Synopsys assumes no liability for its use.

For more information about OptoDesigner, please visit the Synopsys website at

http://www.synopsys.com.

http://www.synopsys.com/
http://www.synopsys.com/
http://www.synopsys.com/

Silicon Photonics Chip for Telecom Applications

147

 Figure 23

Copyright © 2023 Synopsys, Inc. All rights reserved.

This image was generated using OptoDesigner software. OptoDesigner is a trademark

of Synopsys, Inc.

This image is provided for educational and research purposes only. It is not

warranted to be accurate or complete, and Synopsys assumes no liability for its use.

For more information about OptoDesigner, please visit the Synopsys website at

http://www.synopsys.com.

Figure 24

Copyright © 2023 Synopsys, Inc. All rights reserved.

This image was generated using OptoDesigner software and has been modified by

Alberto Otero Casado. OptoDesigner is a trademark of Synopsys, Inc.

This image is provided for educational and research purposes only. It is not

warranted to be accurate or complete, and Synopsys assumes no liability for its use.

The modifications made to this image consists of adding labels.

For more information about OptoDesigner, please visit the Synopsys website at

http://www.synopsys.com.

 Figure 25

Copyright © 2023 Synopsys, Inc. All rights reserved.

This image was generated using OptoDesigner software. OptoDesigner is a trademark

of Synopsys, Inc.

This image is provided for educational and research purposes only. It is not

warranted to be accurate or complete, and Synopsys assumes no liability for its use.

For more information about OptoDesigner, please visit the Synopsys website at

http://www.synopsys.com.

Figure 26

Copyright © 2023 Synopsys, Inc. All rights reserved.

This image was generated using OptoDesigner software. OptoDesigner is a trademark

of Synopsys, Inc.

This image is provided for educational and research purposes only. It is not

warranted to be accurate or complete, and Synopsys assumes no liability for its use.

For more information about OptoDesigner, please visit the Synopsys website at

http://www.synopsys.com.

http://www.synopsys.com/
http://www.synopsys.com/
http://www.synopsys.com/
http://www.synopsys.com/

Silicon Photonics Chip for Telecom Applications

148

Figure 27

Copyright © 2023 Synopsys, Inc. All rights reserved.

This image was generated using OptoDesigner software and has been modified by

Alberto Otero Casado. OptoDesigner is a trademark of Synopsys, Inc.

This image is provided for educational and research purposes only. It is not

warranted to be accurate or complete, and Synopsys assumes no liability for its use.

The modifications made to this image consists of adding labels.

For more information about OptoDesigner, please visit the Synopsys website at

http://www.synopsys.com.

Figure 28

Copyright © 2023 Synopsys, Inc. All rights reserved.

This image was generated using OptoDesigner software and has been modified by

Alberto Otero Casado. OptoDesigner is a trademark of Synopsys, Inc.

This image is provided for educational and research purposes only. It is not

warranted to be accurate or complete, and Synopsys assumes no liability for its use.

The modifications made to this image consists of adding labels.

For more information about OptoDesigner, please visit the Synopsys website at

http://www.synopsys.com.

Figure 29

Copyright © 2023 Synopsys, Inc. All rights reserved.

This image was generated using OptoDesigner software and has been modified by

Alberto Otero Casado. OptoDesigner is a trademark of Synopsys, Inc.

This image is provided for educational and research purposes only. It is not

warranted to be accurate or complete, and Synopsys assumes no liability for its use.

The modifications made to this image consists of adding labels.

For more information about OptoDesigner, please visit the Synopsys website at

http://www.synopsys.com.

Figure 30

Copyright © 2023 Synopsys, Inc. All rights reserved.

This image was generated using OptoDesigner software and has been modified by

Alberto Otero Casado. OptoDesigner is a trademark of Synopsys, Inc.

This image is provided for educational and research purposes only. It is not

warranted to be accurate or complete, and Synopsys assumes no liability for its use.

http://www.synopsys.com/
http://www.synopsys.com/
http://www.synopsys.com/

Silicon Photonics Chip for Telecom Applications

149

The modifications made to this image consists of adding labels.

For more information about OptoDesigner, please visit the Synopsys website at

http://www.synopsys.com.

Figure 31

Copyright © 2023 Synopsys, Inc. All rights reserved.

This image was generated using OptoDesigner software and has been modified by

Alberto Otero Casado. OptoDesigner is a trademark of Synopsys, Inc.

This image is provided for educational and research purposes only. It is not

warranted to be accurate or complete, and Synopsys assumes no liability for its use.

The modifications made to this image consists of adding labels.

For more information about OptoDesigner, please visit the Synopsys website at

http://www.synopsys.com.

Figure 32

Copyright © 2023 Synopsys, Inc. All rights reserved.

This image was generated using OptoDesigner software and has been modified by

Alberto Otero Casado. OptoDesigner is a trademark of Synopsys, Inc.

This image is provided for educational and research purposes only. It is not

warranted to be accurate or complete, and Synopsys assumes no liability for its use.

The modifications made to this image consists of adding labels.

For more information about OptoDesigner, please visit the Synopsys website at

http://www.synopsys.com.

Figure 33

Copyright © 2023 Synopsys, Inc. All rights reserved.

This image was generated using OptoDesigner software and has been modified by

Alberto Otero Casado. OptoDesigner is a trademark of Synopsys, Inc.

This image is provided for educational and research purposes only. It is not

warranted to be accurate or complete, and Synopsys assumes no liability for its use.

The modifications made to this image consists of adding labels.

For more information about OptoDesigner, please visit the Synopsys website at

http://www.synopsys.com.

Figure 34

Copyright © 2023 Synopsys, Inc. All rights reserved.

http://www.synopsys.com/
http://www.synopsys.com/
http://www.synopsys.com/
http://www.synopsys.com/

Silicon Photonics Chip for Telecom Applications

150

This image was generated using OptoDesigner software and has been modified by

Alberto Otero Casado. OptoDesigner is a trademark of Synopsys, Inc.

This image is provided for educational and research purposes only. It is not

warranted to be accurate or complete, and Synopsys assumes no liability for its use.

The modifications made to this image consists of adding labels.

For more information about OptoDesigner, please visit the Synopsys website at

http://www.synopsys.com.

Figure 35

Copyright © 2023 Synopsys, Inc. All rights reserved.

This image was generated using OptoDesigner software and has been modified by

Alberto Otero Casado. OptoDesigner is a trademark of Synopsys, Inc.

This image is provided for educational and research purposes only. It is not

warranted to be accurate or complete, and Synopsys assumes no liability for its use.

The modifications made to this image consists of adding labels.

For more information about OptoDesigner, please visit the Synopsys website at

http://www.synopsys.com.

Figure 36

Copyright © 2023 Synopsys, Inc. All rights reserved.

This image was generated using OptoDesigner software and has been modified by

Alberto Otero Casado. OptoDesigner is a trademark of Synopsys, Inc.

This image is provided for educational and research purposes only. It is not

warranted to be accurate or complete, and Synopsys assumes no liability for its use.

The modifications made to this image consists of adding labels.

For more information about OptoDesigner, please visit the Synopsys website at

http://www.synopsys.com.

Figure 37

Copyright © 2023 Synopsys, Inc. All rights reserved.

This image was generated using OptoDesigner software and has been modified by

Alberto Otero Casado. OptoDesigner is a trademark of Synopsys, Inc.

This image is provided for educational and research purposes only. It is not

warranted to be accurate or complete, and Synopsys assumes no liability for its use.

The modifications made to this image consists of adding labels.

http://www.synopsys.com/
http://www.synopsys.com/
http://www.synopsys.com/

Silicon Photonics Chip for Telecom Applications

151

For more information about OptoDesigner, please visit the Synopsys website at

http://www.synopsys.com.

Figure 38

Copyright © 2023 Synopsys, Inc. All rights reserved.

This image was generated using OptoDesigner software and has been modified by

Alberto Otero Casado. OptoDesigner is a trademark of Synopsys, Inc.

This image is provided for educational and research purposes only. It is not

warranted to be accurate or complete, and Synopsys assumes no liability for its use.

The modifications made to this image consists of adding labels.

For more information about OptoDesigner, please visit the Synopsys website at

http://www.synopsys.com.

http://www.synopsys.com/
http://www.synopsys.com/

