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Abstract

This report presents an enriching internship experience at Melexis Paris, centered on implement-
ing the AMBA AHB 5 bus protocol for the innovative Callisto platform. The internship involved
the creation of both slave and master models adhering to the protocol’s specifications and devel-
oping a bridge enabling seamless communication between a RISC-V CPU and the new platform.
Additionally, an efficient interconnect system was designed, facilitating smooth communication
among multiple masters and slaves. This successful integration promises reduced access time and
flexible chip utilization, establishing Callisto as an advanced platform to develop cutting-edge
products for our company’s expanding client portfolio.

Ce rapport présente une expérience enrichissante de stage chez Melexis Paris, axée sur l’implém-
entation du protocole de bus AMBA AHB 5 pour la plateforme innovante Callisto. Le stage a
impliqué la création de modèles maîtres et esclaves conformes aux spécifications du protocole, ainsi
que le développement d’un pont permettant une communication fluide entre un processeur RISC-V
et la nouvelle plateforme. De plus, un système d’interconnexion efficace a été conçu pour faciliter
la communication harmonieuse entre plusieurs maîtres et subordonnés. Cette intégration réussie
promet un temps d’accès réduit et une utilisation flexible des puces, établissant ainsi Callisto
comme une plateforme avancée pour le développement de produits de pointe destinés à notre
portefeuille grandissant de clients.

Questa tesi presenta un’esperienza arricchente di stage presso Melexis Paris, incentrata sull’implem-
entazione del protocollo di bus AMBA AHB 5 per la piattaforma innovativa Callisto. Lo stage ha
coinvolto la creazione di modelli master e slave conformi alle specifiche del protocollo, nonché lo
sviluppo di un ponte che consente una comunicazione fluida tra un processore RISC-V e la nuova
piattaforma. Inoltre, è stato progettato un sistema di interconnessione efficiente per agevolare una
comunicazione armoniosa tra vari master e sottoposti. Questa integrazione di successo promette
un tempo di accesso ridotto e un’utilizzo flessibile dei chip, stabilendo così Callisto come una
piattaforma avanzata per lo sviluppo di prodotti all’avanguardia destinati al nostro crescente
portafoglio di clienti
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1 INTRODUCTION

1 Introduction

1.1 Company overview

This report outlines my internship experience at Melexis Paris, a distinguished division of
Melexis, a medium-sized semiconductor company operating globally. Melexis specializes in the
design, production, and distribution of Application Specific Integrated Cicuit (ASIC) tailored for
the automotive industry, where modern vehicles integrate diverse Integrated Cicuits (ICs) to en-
hance intelligence and performance as shown in fig 1. The company offers a wide array of sensor
solutions, including pressure sensors, hall effect motion sensors, and current sensors. Additionally,
they provide electric motor drivers and actuators for various applications like pumps, electric seats,
and windows, as well as Light Emitting Diode (LED) drivers and controllers used in high-end cars
for features like stylish blinkers.

During my internship, I had the privilege of working within the Digital Component Center
(DCC) at Melexis Paris, located in the vibrant business district of La Defense, ranked as the 4th
most attractive business neighborhood worldwide. This district is home to several prestigious in-
ternational corporations, creating a stimulating environment for innovation and growth. Focusing
solely on the design and implementation of advanced digital circuits, the Parisian division stands as
a hub of expertise in this vital field. Leveraging its technical know-how and extensive experience,
Melexis consistently delivers high-performance and reliable solutions to its global clientele.

Throughout this internship, I had the privilege of collaborating with a highly skilled team
of 20 members, including four interns. The atmosphere at Melexis Paris fostered a culture of
collaboration and support, creating a dynamic learning environment where knowledge-sharing
and teamwork were actively encouraged. This experience has been invaluable in shaping my
understanding of digital design and its practical applications in the semiconductor industry.

Figure 1: ICs in Modern Vehicles [2]
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1 INTRODUCTION

1.2 Topic Overview

At Melexis Paris, my internship focused on Register Transfer Level (RTL) digital design, specif-
ically the design and implementation of the Advanced Microcontroller Bus Architecture (AMBA)
Advanced High Performance Bus (AHB) 5 protocol. This initiative is part of the company’s am-
bitious project, Callisto, aimed at integrating an ARM and/or Reduced Instruction Set Computer
(RISC) V CPU into their new platform. By doing so, Melexis aims to enhance computational
power and frequency, aligning with its commitment to providing cutting-edge solutions to its cus-
tomers. Additionally, the project aimed to offer a standard Instruction Set Architecture (ISA)
instead of the custom one developed by Melexis and used in previous projects, allowing clients
greater flexibility in utilizing our chips.

The design process for the AMBA AHB 5 bus protocol was carried out using the hardware
description language SystemVerilog, which offers powerful capabilities for modeling and simulating
digital systems. An example of the written code is provided in Annex. The Cadence tool suite
was utilized for verification and simulation, providing a comprehensive and efficient environment
for developing and validating the protocol implementation.

1.3 Organisation of the internship

The organization of an internship plays a pivotal role in shaping its success and ensuring the
accomplishment of desired objectives. This section aims to provide an overview of how the intern-
ship program is structured, including the milestones, plan, and objectives.

The initial step involved comprehensively understanding the AHB protocol, completely detailed
and explained in the official specification document provided by ARM [6], and comparing it with
the older Wishbone bus protocol used in previous platforms. This analysis provided valuable
insights into the enhancements and benefits offered by the AHB protocol. Subsequently, we pro-
ceeded with the implementation process by creating a slave model specifically designed to comply
with the new protocol. Thorough test benches were developed to verify its functionality and align-
ment with the expected behavior. Similar efforts were dedicated to the development of the master
model, establishing a robust foundation for the overall project.

With functional slave and master models in place, the next focus shifted to the interconnect be-
tween them. This interconnect was divided into two parts: the single master interconnect, allowing
a master to communicate with multiple slaves, and the single slave interconnect, enabling multiple
masters to communicate with a single slave. The ultimate goal was to merge these interconnects
into a single system that facilitates communication between multiple masters and multiple slaves.
This milestone represents the successful implementation of the AHB bus protocol and establishes
a solid foundation for future work on the Callisto platform..

Additionally, we developed a bridge to establish seamless communication between a RISC-V
Central Processing Unit (CPU), utilized at Melexis, and the AHB bus. This bridge plays a vital
role in enabling the CPU to be compatible with the Callisto platform, facilitating its smooth in-
tegration into the overall system.
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1 INTRODUCTION

So, summarizing the essential milestones or foundational elements of my internship in order, we
have:

• Understanding the AHB protocol and comparing it to the previously used protocol.

• Creating a slave model that adheres to the AHB protocol.

• Creating a bridge to facilitate communication between a RISC-V CPU and the new Callisto
Platform.

• Developing the master model following the same protocol

• Establishing an interconnect system between the slave models and the masters.

Finally, it is worth noting that the organizational structure outlined above serves as a guiding
framework for the subsequent sections of this report.

Figure 2: Melexis World Map [2]
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2 ADVANCED HIGH PERFORMANCE BUS(AHB) PROTOCOL

2 Advanced High Performance Bus(AHB) protocol

2.1 AHB as the Fifth Major Revision of the AMBA Protocol

In the context of computer systems and chip designs, a bus refers to a communication path-
way that allows different components to exchange data and signals. It serves as a fundamental
mechanism for interconnecting various Intellectual property (IP) components within a System On
Chip (SOC) design. To facilitate standardized and efficient communication, bus protocols are
developed. These protocols define the rules, formats, and behaviors that govern the interaction
between components connected to the bus.

One such protocol is AHB within the AMBA family, developed by Advanced RISC Machines
(ARM). AMBA provides specifications for on-chip communication and interconnection of IP com-
ponents in SoC designs, including various bus protocols like AHB, APB, AXI, and ACE, tailored
for different performance levels and system requirements.

AHB, or AMBA AHB 5 (fifth revision of AHB), is designed for high-performance on-chip com-
munication and includes advancements and features compared to earlier versions. It offers a stan-
dardized interface for connecting IP components within a SoC, enabling efficient data transfers for
high-performance communication.

The AHB protocol supports multiple bus masters and slaves, creating a flexible and scalable
architecture. It accommodates single-cycle and multi-cycle data transfers, catering to different
transaction types and data requirements.

In the following sections, we will explore the AHB bus protocol in-depth, including the signals
used, pipeline stages involved in communication, and the unique characteristics of burst operations.

2.2 AHB Signal Definitions and Functions

Within the AHB protocol, several key features and concepts contribute to its effectiveness. One
of the fundamental aspects is the presence of a well-defined set of signals. These signals serve as
the communication interface between AHB masters and slaves, facilitating the exchange of control
and data information.

All the signals below are well defined in the official AHB protocol document [6]. It is worth
mentioning that all the signals start with the letter "h." This naming convention is significant as
it signifies their association with the AHB protocol. Moreover, a Word = 32 bits, half_word = 16
bits, and byte = 8 bits.
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2 ADVANCED HIGH PERFORMANCE BUS(AHB) PROTOCOL

AHB
signal Description Values

hclk
1-bit signal: The clock input for the bus. It provides the timing

reference for coordinating the operations and data transfers within
the AHB protocol.

0 (Low level), 1
(High level)

hresetn

1-bit signal: An active-low reset used in the AHB protocol. It
initializes the AHB system and brings it to a well-defined state by

resetting the internal registers and logic, ensuring a known
starting point.

0 (Reset active),
1 (Reset
inactive)

hsel 1-bit signal: Input for the slave. This signal is used to indicate
that the slave is selected according to the decoded address

0(not selected) 1
(selected)

htrans
2-bit signal: The type of transfer being performed within the

AHB protocol. It differentiates between different types of
transfers, such as nonsequential, sequential, or idle cycles.

00
(Nonsequential),
01 (Sequential),

10 (Idle), 11
(Busy)

hsize 3-bit signal: The size or width of the data transfer in the AHB
protocol

000 (Byte), 001
(Half-word), 010

(Word)

hburst
4-bit signal: The type of burst transfer being performed in the

AHB protocol. It defines the sequence of data transfers within a
burst, such as fixed, incrementing, wrapping, or undefined bursts.

000 (Single),
001 (Increment),

... 2.4

hmastlock
1-bit signal: Indicates a locked transaction in the AHB protocol.
It allows a master to gain exclusive access to a slave component

for a series of transfers.

0 (Not locked),
1 (Locked)

haddress

A 32-bit signal: Carries the address information for a data
transfer in the AHB protocol. It specifies the location in memory
or the target register for reading from or writing to the selected

slave component.

Depends on the
memory address

definition

hwrite 1-bit signal: Indicates the type of transfer being performed within
the AHB protocol

0 (Read), 1
(Write)
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2 ADVANCED HIGH PERFORMANCE BUS(AHB) PROTOCOL

hprot
4-bit signal: Provides protection information for data transfers in

the AHB protocol. It includes attributes such as privileged,
non-privileged, secure, or non-secure access.

Depends on the
protection
protocol

implemented

hwstrb 4-bit signal: Specifies the active byte lanes during a Write data
transfer

Depends on the
intended request
example: 0011
(Write bottom
half word only)

hready
1-bit signal: It indicates the readiness of the slave component to

accept a new request and the readiness of the master to provide a
new request.

0 (Not ready), 1
(Ready)

hreadyout
1-bit signal: Serves as an acknowledgment from the slave

component indicating the end of a request and the readiness of
the slave to provide the output data

0 (Not ready), 1
(Ready)

hrdata 32-bit signal: Carries the data read from the slave component
during a read operation in the AHB protocol

Depends on the
data saved on

the memory and
the address

hresp
1-bit signal: Indicates the response or status of a transaction in

the AHB protocol.It communicates the outcome of the data
transfer

0 (Okay), 1
(Error)

Table 1: Implemented AHB signals

In addition to these signals, there are unimplemented AHB signals available as optional addi-
tions that can be incorporated at a later stage (see 7), once the Callisto platform has matured. As
we are currently at the beginning of the platform’s development, we have focused on implementing
the signals mentioned earlier that ensure the full functionality of the bus protocol. The optional
signals introduce new properties that enhance the bus’s capability. These properties include Ex-
tended Memory Types, Secure Transfers, Exclusive Transfers, ....

Each property needs careful adjustments if chosen. For example, a 3-bit extension of the HPROT
signal is necessary if the Extended Memory Types property is True.

These signals, along with their respective number of bits and value ranges, form the core com-
munication infrastructure of the AHB protocol. Understanding their definitions, functions, bit
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widths, and allowed values is crucial for effectively implementing and utilizing the AHB protocol
in system-on-chip designs.

2.3 Pipeline architecture

One of the key reasons for the popularity of the AHB protocol is its pipelined architecture, which
allows for higher frequency and efficiency. The pipelined architecture of the AMBA 5 AHB bus
protocol enables concurrent processing of address and data phases, resulting in improved overall
system performance. Let’s explore the address and data phases in more detail and understand
how the one-stage pipeline contributes to higher frequency and efficiency:

1-Address Phase: During the address phase, the master initiates the transaction by sending
the control signals: the requested address (haddress), transfer size (hsize), transfer type (htrans),
write indication (hwrite), protection signal (hprot), lock signal (hmastlock) and other control sig-
nals if needed. The address phase primarily focuses on establishing the target slave and the specific
operation to be performed.

2-Data Phase: Once the address phase is over, the bus protocol proceeds to the data phase.
In this phase, the slave responds with the requested data (hrdata), response status (hresp), and
readiness indication (hreadyout). Additionally, the master can send the write data (hwdta) and
write strobes (hwstrb) if it is a write operation.

Now, let’s discuss how the one-stage pipeline in the AMBA 5 AHB bus protocol contributes to
higher frequency and efficiency:

Bandwidth refers to the maximum rate at which data can be transferred through a communi-
cation channel or bus. It represents the capacity or the amount of data that can be transmitted
within a given time frame. In the AMBA 5 AHB bus protocol context, bandwidth refers to the
maximum data transfer rate the bus can support. A higher bandwidth means more data can be
transferred per unit of time, resulting in faster communication and data transfer between compo-
nents within a SoC.

In the case of the AMBA 5 AHB protocol, the pipelined architecture and overlapping phases
allow for efficient utilization of the available bus bandwidth. By minimizing idle bus cycles and
enabling concurrent processing of address and data phases, the system can initiate subsequent
transactions without waiting to complete previous transactions. Therefore the protocol can oper-
ate at higher frequencies by effectively utilizing the bus bandwidth, facilitating faster data transfers
and overall system performance and throughput.

Based on the figure 3, by the end of cycle 2, the first request has been completed, and simul-
taneously, the second request has been initiated. Furthermore, by the end of the 4th clock cycle,
three requests have been finished, allowing the initiation of a fourth request. This feature greatly
enhances performance compared to protocols like the Wishbone bus used in previous Melexis plat-
forms. Without this pipeline stage, only two requests would have been completed within the same
timeframe, necessitating additional clock cycles to achieve the performance level of the AHB.
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Figure 3: AHB pipelined architecture

2.4 Burst operation

The AMBA 5 AHB protocol supports burst operations, which further contributes to its attrac-
tiveness and widespread use in modern SOC designs

In the AHB protocol, a burst operation entails the capacity to convey a continuous sequence of
data elements while knowing the upcoming operations from the start. Unlike executing separate
read or write operations for each data item, burst transfers empower the simultaneous transfer of
a data block. The burst length designates the number of data items intended for transfer within
the burst itself.

Burst operations in the AHB protocol offer several benefits and advantages. Firstly, bursts
empower slave units to anticipate forthcoming accesses. This anticipation enables slaves to pre-
compute the subsequent address, initiate its retrieval, and thereby prepare for the ensuing access.
This proactive approach significantly enhances the overall system’s performance.

Secondly, burst transfers enable efficient movement of large data blocks or continuous data
streams, maximizing the utilization of available bus bandwidth. This mainly benefits applications
involving data-intensive tasks like high-speed data processing, memory transfers, or video stream-
ing.

Lastly, burst transfers are particularly advantageous for memory access patterns that exhibit
sequential or burst-like behavior. Instead of accessing memory locations one at a time, the burst
operation allows for consecutive data fetches or writes, which aligns well with the underlying mem-
ory organization and cache architectures. This improves memory system efficiency and reduces
access delays associated with non-sequential memory accesses.

Using the hburst signal defined in the first section, multiple types of bursts can be initiated, as
explained in the table below 2.4.
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hburst
value Description

0x000 Single Transfer: Indicates a single data transfer (non-burst).

0x001 Incrementing Burst of undefined length: the address for each
transfer is incremented by the hsize value.

0x010
4 beat Wrapping Burst: the address wraps back to the starting
address after reaching a 16-byte boundary for a 32 bits transfer

size as an example: 0X48, 0X4C, 0X40, 0x44

0x011 4-beat incrementing burst

0x100 8-beat wrapping burst

0x101 8-beat incrementing burst

0x110 16-beat wrapping burst

0x111 16-beat incrementing burst

Table 2: Burst Types

In the figure below, we can see an example of a burst operation. The control signals, except the
haddress, do not change, and the address is incremented automatically, respecting the burst type
and the transfer size. In this example, the master requests a 4-beat incrementing burst starting
from address x40 with a size of 32 bits. Since each address corresponds to 4 bytes than, the next
addresses are 44, 48, and 4C, as shown in the figure below.

Figure 4: 4 beats incrementing burst
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3 Slave Model and Implementation in the AHB Protocol

Within a bus protocol, devices are categorized as either masters or slaves. The master (man-
ager) devices initiate and control bus transactions, while the slave (subordinate) devices respond
to these transactions and provide the requested data or perform specific tasks.

In this section, we will delve into the slave model utilized in the AHB specification, highlighting
its significance and explaining how it functions within the protocol. Additionally, we will explore
the specific implementation employed during this internship and discuss the distinctive features
incorporated into the developed slave model.

3.1 Slave Model Definition

In order to comprehend the slave model within the AHB protocol, let’s start by visualizing it as
a black box with inputs and outputs, as seen in the figure 5. The role of the slave, as mentioned
earlier, is to receive control signals from the master as inputs and generate the appropriate outputs.
Importantly, the slave model can additionally accommodate waitstates. These waitstates simulate
the behavior of a physical slave that might necessitate extended clock cycles to respond effectively
to the master’s commands.

At Melexis, the slave entity typically corresponds to a memory module, which can be either a
Read Only Memory (ROM) or a Random Access Memory (RAM). On the other hand, the master
corresponds generally to a CPU or a Direct Memory Access (DMA) like an Analog to Digital
Converter (ADC).

Figure 5: AHB slave model [6]

To illustrate a simple transaction, let’s consider the scenario where the master initiates a read
or write request to a specific memory address in the RAM. We will focus on a straightforward read
operation with no waitstates for the purpose of this example.
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During a read operation, the master initiates the process by sending the necessary control signals
to the slave. These control signals typically include the address of the desired memory location
and the command to read data. Upon receiving the read request, the slave locates the requested
memory address within its internal memory space and then retrieves the corresponding data stored
at the specified address. The retrieved data is then sent back as an output from the slave to the
master.

The master, upon receiving the data from the slave, can further process it as needed. This
concludes the simple read operation, demonstrating the basic interaction between the master and
the slave in the AHB protocol. For clarity purposes, in the example shown in figure 6, we only
represent some control signals sent by the master and read data and ready signal sent by the slave.

Figure 6: Straightforward Read Operations

In the depicted example, each color represents a request, and as discussed earlier, each request
consists of two phases: the address phase and the data phase. Let’s walk through the sequence of
events:

In the initial address phase, the master commences a read operation (hwrite = 0) targeting the
memory address ADD1 by transmitting requisite control signals. The model’s representation of the
slave, which is the memory in this context, duly receives and acknowledges these control signals.
Subsequently, in the next clock cycle, the slave responds with the corresponding DATA1 for ADD1.

Simultaneously, the master proceeds to request another read operation, this time targeting the
memory address ADD2. In the third clock cycle, the slave promptly responds to this second re-
quest by providing DATA2.

This process repeats continuously as the master continues to issue requests. By understanding
this fundamental concept, we can proceed to explore the implementation details of the slave model
and its accompanying features within the AHB bus protocol.

3.2 Implementation Details and State Machine

To implement the slave model, the Melexis team aimed to keep it generic and basic, ensuring its
usability for various projects or purposes. Additional advanced functionalities will be discussed in
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the subsequent subsection.

The chosen implementation for the slave model involved a Moore state machine comprising five
states: IDLE, READ, WRITE, and two error states: ERROR1 and ERROR2. According to the
AHB official specification document, there is no obligation that the slave must generate error
states, but this was added as a feature that will be discussed further.

The IDLE state serves as the default state of the slave. Upon receiving control signals, the slave
can transition to either the READ or WRITE state, depending on the nature of the request. If
the request encounters an error during processing, the slave can enter the appropriate error state
accordingly.

Figure 7: Slave model state machine

To gain a deeper understanding of this state machine, let’s delve into its components:
The blue states in the state machine diagram represent the basic implementation of the slave,

without any error handling features. In contrast, the green states, which we will discuss in the
next subsection, represent the states that handle errors.

To enhance the clarity of the state machine graph, each condition is comprehensively explained
in the table 3.2 provided below. This table clearly shows the conditions associated with each
state transition. For the same reason, table 3.2 includes the corresponding output for every Moore
machine state. In the context of the table, when an "X" is present for a particular signal, it signifies
that the signal can assume any value without impacting the final outcome.
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Transition Inputs
htrans hwrite Invalid hselx

Idle
request 00 or 01 x x x

Read
request 11 or 10 0 0 1

Write
request 11 or 10 1 0 1

No select x x x 0

Table 3: Slave state machine transitions

It is crucial to emphasize that the transition from one state to another strictly abides by the
condition that the "hready" signal must be equal to one. In the event that the slave requires ad-
ditional time to process the request, it can introduce wait states, temporarily setting the "hready-
out" signal to zero for a specific number of clock cycles. Once the slave is prepared to provide
the output response to the master, the "hreadyout" signal is reset to one; otherwise, the slave
remains in the current state.

State Outputs
hrdata hready hresp

IDLE X 1 0
READ Address-dependent. waitstates == 0 0
WRITE X waitstates == 0 0
ERROR1 X 0 1
ERROR2 X 1 1

Table 4: Slave state machine outputs

The expression "waitstaes == 0" indicates that if the parameter for the slave, known as
"waitstates" is not equal to zero, the "hready" signal will be set to zero. By utilizing a counter
that progressively decreases the value of "waitstates" , we can reduce it until the slave is finally
ready. This approach ensures proper synchronization and allows the slave to take the necessary
time to fulfill the master’s request, using waitstates when required and signaling readiness by set-
ting the ready signal accordingly.

Lastly, we conducted a comparison between our implementation and the intended slave behav-
ior outlined in the AHB specification document [6]. In order to perform this evaluation, first, We
initialized our slave model as a memory, starting at address 0x40, with a capacity of 16 WORDS.
Each WORD is composed of 4 bytes, resulting in a total size of 16 * 4 BYTES. Next, we config-
ured each memory case i with the word: "FACECAFi," where i corresponds to the case number,
as depicted in the figure 8.
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This memory configuration will also be used for the test benches to follow in order to verify the
subsequent designed blocks and to keep the tests and simulations coherent.

Figure 8: Slave Memory

Finally, we simulated a read request to the memory address x54, which was previously configured
to store the data "FACECAF5", which requires 2 wait states. The figure below illustrates the
expected behavior from the slave (on top) and the wave forms generated by our implemented slave
after simulation (on bottom). Remarkably, our implemented slave demonstrates full compliance
with the AHB protocol, precisely adhering to the specifications outlined in the documentation.

Figure 9: Expected behavior for a 2 wait states read request

Figure 10: Simulation of the implemented slave for a 2 wait states read request
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3.3 Features: Self-Checking and Invalid Response Handling

3.3.1 Error response generation

One significant feature of the slave model is its ability to handle error responses, as detailed
in the specification document. Although the protocol does not mandate that the slave issues
an error response for protocol violations, this feature was added to ensure the model covers all
possible scenarios. To accomplish this, we introduced a signal called "Invalid" that enables the
slave to enter error states. Table 3.2 of the AHB protocol outlines the two states an error re-
sponse must traverse. The first state, referred to as "Error1" is characterized by "hready = 0"
and "hresp = 1" . The second state, "Error2" occurs when both hready and hresp are set to 1.

To provide further flexibility, the "invalid" signal in the slave model can be configured based
on various options. In the Melexis model, the following options were implemented:

• "Always invalid": Setting the invalid signal to 1 guarantees that the slave consistently gener-
ates error responses for every access, regardless of the nature of the access itself.

• "Always valid": When the invalid signal is set to 0, the slave never enters error states and
performs standard read and write operations without generating error responses.

• "Read-only": If a write operation is requested, the invalid signal is set to 1, restricting the
slave to read-only operations, similar to a read-only memory (ROM).

• "Write-only": When a read operation is requested, the invalid signal is set to 1, allowing the
slave to perform write operations exclusively.

To validate the integrity of this feature, we conducted a simulation where the invalid option was
set to "Readonly" despite the request being a write operation (hwrite = 1 ) to address x40. As
anticipated, the figure below exhibits the precise and expected behavior, indicating the occurrence
of 2 error states, as specified in the protocol documentation.

Figure 11: Implemented Slave Error response

The incorporation of a two-cycle response in the AHB bus protocol introduces a crucial mecha-
nism that empowers the Manager to efficiently handle subsequent accesses. This response window
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spanning two cycles grants the Manager sufficient time to cancel the upcoming access by transi-
tioning HTRANS to the IDLE state before the commencement of the next transfer. While the
AHB protocol does not mandate request cancellation, this feature has been added to the imple-
mented master model to enhance its capabilities and detailed in a subsequent section.

Furthermore, in cases where the invalid feature is not activated, and the slave receives erroneous
requests, such as accessing non-existent memory addresses or control signals that violate the pro-
tocol, it was discussed within the team to respond with undefined outputs. In such cases, the data
returned or written would be represented as ’X,’ denoting the undefined nature of this behavior.

3.3.2 Self-Checking

The implemented slave model’s second feature is its self-checking capability, streamlining the
verification process and ensuring proper functioning. Using SystemVerilog, multiple tasks were
implemented to validate the control signals received by the slave from the master. For each master
request, a corresponding slave task was created to compare the bus’s control signal values with the
expected ones specified in the testbench design. If the values match, the check is considered valid,
indicating the slave received the intended request. Any discrepancies are easily identified during
simulation execution in the terminal, eliminating the need for manual waveform inspection.

For instance, when the master initiates a read request, the "slave.read" task verifies the ex-
pected control signals. The desired result is achieved if the request transfers correctly (as shown in
figure 12). Otherwise, the unexpected results are shown in red Annex B(7), and further debugging
may be required by analyzing the simulation waveforms.

Incorporating self-checking capabilities into the slave model enhances the efficiency of the veri-
fication process, saving time, and facilitating the detection of potential issues or deviations from
expected behavior.

Figure 12: Slave Self Checks
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4 Ibex to AHB bridge

After developing a fully functional slave model, the next step was to create a master model capa-
ble of driving input stimuli. Initially, our digital design team at Melexis had an available RISC-V
CPU that could serve as the master to generate requests on the slave. However, a challenge arose
as the RISC-V CPU used a different bus protocol than the AHB. To address this, we needed to
develop a bridge to enable the RISC-V CPU to interact with the AHB slave model.

The following sections will introduce the IBEX CPU and its operation. Then, we will discuss the
implementation of the bridge, facilitating communication between the IBEX CPU and the AHB
slave model. Lastly, we will present the results obtained from this interconnected communication
system.

4.1 RISC-V IBEX CPU

The IBEX CPU is an open-source, 32-bit RISC-V processor written in SystemVerilog and devel-
oped by the lowRISC project. It aims to provide a high-performance and efficient processor core
for various applications [1]. The IBEX CPU is designed with a focus on simplicity, modularity,
and configurability, allowing users to tailor it to their specific needs.

One notable aspect of the IBEX CPU is its compliance with the RISC-V open instruction set
architecture (ISA). It is highly configurable, allowing users to choose the desired features and op-
timizations for their specific use cases. This is why the Melexis digital team decided to use it in
future projects.

This processor incorporates essential components, including 32 registers for data storage and
operations, a fetch stage for instruction retrieval, an Arithmetic Logic Unit (ALU), a memory unit
for data transfers with external memory, a branch unit for evaluating branch instructions, and a
two-stage pipeline (fetch and execute stages) for efficient instruction execution. These components
contribute to the IBEX CPU’s ability to execute RISC-V instructions accurately and efficiently.

The IBEX CPU is classified as a Harvard architecture type CPU, which means it consists of
two distinct groups of buses: an instruction bus for fetching instructions (as an example from the
ROM) and a data bus for retrieving data (as an example from the RAM). A comprehensive de-
scription of the IBEX protocol can be found in the following reference [1]. However, the protocol
itself is not the main focus for our purposes. What is of interest is how to integrate and link
this protocol with the AHB protocol. The subsequent section aims to outline the implementation
details of achieving this integration, bridging the communication between the IBEX protocol and
the AHB protocol.

In order to enable the usage of the IBEX on the AHB bus for other designers, integration of
the bridge with the IBEX core is essential. This integration creates a shell that can be readily
employed by designers for their specific requirements. The figure 13 illustrates the architectural
setup depicting the integration of the IBEX core with the bridge on the AHB bus.
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Figure 13: Ibex Shell

4.2 Bridge implementation

A comprehensive understanding of both protocols is crucial to establishing a robust communi-
cation bridge between the IBEX and AHB protocols. This understanding serves as the foundation
for initiating the link between them as shown in fig 14. The table 4.2 outlines the correspondence
between each signal type in the IBEX protocol and its equivalent in the AHB protocol, facilitating
the mapping process between the two.

Figure 14: Ibex to AHB bridge

During the mapping process, it is important to note that certain signals, such as address and
rdata, remain unchanged as they have similar definitions and functions in both the IBEX and AHB
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protocols. However, additional logic is required for other signals to enable their smooth transfer
from one bus protocol to the other.

In this table, the numbers are represented in Verilog Standard [4]. As an example, when we use
"4’b1100," it conveys that the data is encapsulated within 4 bits, and the corresponding binary
value is "1100."

Bridge
Out-
puts

Assignment

haddress adr.
hwrite we
htrans req and 2’b10
hwdata Instruction bus : X | Data bus : gnt ? wdata: hwdata
hsize case statement (see below 4.2)
hprot 4’b0011 (Data bus) | 4’0010 (Instruction bus)
hburst 4’b0000 (Ibex not capable of doing Bursts)

hmastlock 0 (Ibex not capable of locking transfers)
hrdata rdata

err hready ? hresp : x
rvalid hready and req

Table 5: Bridge Signals Mapping

• When be is 4’b1111, the value of hsize is set to 3’b010. When be is 4’b1100, 4’b0011, or
4’b0010, the value of hsize is set to 3’b001. When be is 4’b0001, 4’b0100, or 4’b1000, the
value of hsize is set to 3’b000; otherwise, hsize= 3’b010, meaning a 32 bits as default transfer
size.

• The expression "gnt ? wdata : hwdata" indicates that when "gnt" equals 1, the value
of "hwdata" will be updated to the value of "wdata" and if "gnt" is not equal to 1,
"hwdata" will retain its current value unchanged.

• the expression "hready ? hresp : x" means if "hready" is true, "hresp" will take the
value of "hresp" itself. If "hready" is false, "hresp" will be set to the value of "x.

4.3 Bridge testing and Results

To ensure the proper functioning of the IBEX CPU, communication with it is established through
the RISC-V assembly language, as defined in the official Instruction Set Architecture (ISA) [7].
By writing requests using the assembly language, the compiler transforms them into data that is
stored in the ROM. Subsequently, the IBEX CPU fetches and executes these stored instructions
sequentially.
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Figure 15: Ibex to AHB bridge testbench

A comprehensive set of requests in assembly language was compiled and stored in the ROM to
validate the bridge implementation. The requests covered various scenarios, such as byte, half-
word, and word store and load operations (Table 6 shows a subset of these requests). The testbench
included instantiated slave models to simulate the ROM and RAM, allowing IBEX to perform its
operations. Further details on the testbench configuration are explained in fig 15

Assembly
language Intended Request

lbu x2,
0x40(x0) Load byte from memory address 0x40 to register x2

lhu x2,
0x48(x0) Load half word from memory address 0x48 to register x2

sw x2,
0x4C(x0) Store word found in register x2 to memory address 0x4C

Table 6: Assembly Language Requests

The CPU fetches requests previously stored on the ROM and executes them on the RAM.
Through self-checking in the slave model and additional tests in the test bench, we simulate the
bridge and verify if the observed behavior aligns with the expected behavior from the master’s
requests. The accompanying figure validates the successful execution of all requests, confirming
accurate data reading and writing.

Figure 16: Ibex to AHB bridge simulation output
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5 Master Model and Implementation in the AHB Protocol

As previously mentioned, the master, also known as the manager, is responsible for initiating and
controlling bus transactions to which the slaves respond. This section explores the significance of
the master model in facilitating efficient data exchanges. Additionally, we will discuss the specific
implementation used during this internship, highlighting the unique features integrated into the
master device for seamless communication across the AHB bus.

5.1 Master Model Definition

In the master model, we can envision it as the counterpart of the slave model. It can be vi-
sualized as a block that generates outputs representing the request information, which will serve
as inputs for the slave. On the other hand, the master model’s inputs correspond to the slave
outputs, which contain the result information of the request.

To illustrate this relationship clearly, the figure below visually represents the master model with
distinctly defined inputs and outputs.

Figure 17: AHB Master Model[6]

The model must effectively synchronize the control signals, such as address, size, and hwrite,
during the address phase while managing the data signals, including write data signal and strobe
signals, to be transmitted during the data phase. Moreover, the model must adhere to the principle
that no new request can be sent until the previous one has been received and processed by the slave.

To illustrate this synchronization, the figure below depicts how a write operation should be
structured to ensure compliance with the AHB protocol. Only the important signals are shown
for clarity.

In figure 18, we observe that the first request is directed to address A, incorporating all the
control signals required during the address phase. Subsequently, the data phase commences in the
next clock cycle, specifying the written data. Remarkably, during this data phase, it is possible
to initiate another request simultaneously directed to address B. This subsequent request can
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involve various operations, such as read, write, burst, or even an idle state, offering flexibility and
versatility to the user’s interactions with the system.

Figure 18: Write transfer

5.2 Implementation

The primary objective of this model is to facilitate the transfer of request information from the
user to the slave, including the desired read and write addresses, along with their corresponding
control signals. To achieve this, we leverage a feature provided by the SystemVerilog language
called Tasks. These tasks function similarly to functions, taking arguments representing control
signals, and when invoked, they drive the relevant signals to stimulate the slave. Consequently, the
master consists of a collection of tasks that users can call to communicate their desired requests
to the slave effectively.

For the user’s convenience, a task has been created for each possible request:

• Tasks for reading from the slave with sizes of 8 bits, 16 bits, and 32 bits.

• Tasks for writing to the slave with sizes of 8 bits, 16 bits, and 32 bits.

• Tasks to generate an IDLE state in the slave.

• Tasks to create Bursts: All possible bursts specified in Table 2.4 can be requested, including
incremental, wrapping, or with undefined lengths.

By employing these well-defined tasks, users can seamlessly interact with the slave model, al-
lowing for smooth and versatile communication between the master and the slave for various read,
write, and burst operations.

However, creating the tasks alone is insufficient, as the model must adhere to the AHB proto-
col by accurately driving the data phase signals at the appropriate time after the address phase
concludes. Furthermore, the tasks cannot be executed independently; they must align with the
master’s readiness to initiate a new request. Consequently, a parallel logic component was metic-
ulously designed alongside the task definitions to ensure a correct master model that remains
compatible with the AHB protocol.
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To thoroughly validate our model and ensure its compliance with the theoretical specifications,
comprehensive test cases were crafted. These test cases encompass all possible conditions, includ-
ing WRITE, READ, and BURST operations with varying sizes, such as BYTE, HALF WORD,
and WORD, along with different wait states. As part of this confirmation process, we present an
example of a simple write operation targeting the memory address x44 to illustrate the procedure
19.

In the testbench, the user initiates the task: master.Write(.address[0x40], .size[0x010],
.htrans[2’b10] , .hwrite[1], .hmastlock[1] , .hburst[3’b000] , .hprot[4’b0011], .hw-
data[32’h0000] , .hwstrb[4’b1111]) . Upon analyzing the waveforms simulation, we observe
that the master accurately provides the correct control signals and data signals (shown in blue).
This successful outcome confirms the model’s accuracy.

Figure 19: Implemented Master Write request to address x44

By conducting these rigorous tests covering a wide range of scenarios, we ensure the reliability
and robustness of our master model, providing confidence in its practical implementation and
adherence to the AHB protocol.

5.3 Features

5.3.1 Cancel access on error

One of the notable enhancements made to the master is its capability to cancel a future request
upon receiving an error during the previous request. While not mandated in the AHB official
specification document, this feature proves to be highly valuable, preventing the continuation of
a sequence of requests if one of them encounters an error. Implementing this functionality allows
the master to drive "HTRANS" to IDLE state, signifying that a request has been halted due to
a previous error, effectively transitioning the slave to an IDLE state as well.

To enable this option, a parameter called Cancel-access-on-error was introduced. When this
parameter is set to 1, the cancellation feature can be executed, and the transfer is terminated, as
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illustrated in the figure below. This added flexibility provides greater control over the communi-
cation process, ensuring that any erroneous request does not propagate further, leading to a more
robust and reliable system

Figure 20: Cancel Access on Error Feature

To achieve this result, the error slave feature was activated by setting the option to alwaysinvalid,
which ensures that the slave always generates an error response. Subsequently, the master sent
two successive requests: a write operation with data 99999999 to address x40 and a read operation
to address x50.

As anticipated, upon accepting the control signals from the master, the slave responded with an
error, transitioning to the first state ERROR1 and setting "HRESP=1" and "HREADY=0" .
Due to the active cancel on access error feature, the master detected the error response "HRESP=1"
and promptly canceled the pending read request to address x50, even though it had started before.
Next, the master sets "HTRANS" to IDLE, signifying the end of the canceled transfer. The
slave enters in the second state ERROR2, characterized by "HREADY" and "HRESP" both
being set to 1.

5.3.2 Self Checking

Another valuable addition to our master model is the capability to perform self-checks on its
inputs, specifically the read data (RDATA) and the validity of the request (HRESP). Similar to the
feature added to our slave model, this enhancement verifies the correctness of the design without
having to look at the waveforms. By incorporating additional inputs, namely "expected_rdata"
and "expected_valid" , to the previously defined master tasks, users can now call the appropriate
task corresponding to their intended request while providing the expected data that will be read
in the case of a read operation and specifying whether the request is expected to encounter an
error or not.

To better illustrate this feature, let’s consider a word read request targeting address x48, which
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was previously configured to contain the data FACECAF2 and the same for address 0x4C contain-
ing the data FACECAF3 as explained in figure 8. When creating the testbench, the user calls the
task

• master.read(0x48, .htrans[10], .expectedrdata[FACECAF2], .expectedvalid[1],...)

• master.read(0x4C, .htrans[10], .expectedrdata[FACECAF3], .expectedvalid[1],...)

The result, as depicted in the figure below, combines the self-checking features of both the slave
and the master. We can observe that the master indeed reads the correct value as expected during
both requests , demonstrating the effectiveness of this self-validation mechanism.

Figure 21: Combined Self Checks feature of the implemented master and slave model

By leveraging the self-checking features of both the master and slave models, we can thoroughly
validate the correctness of our design without the need to investigate waveforms for each simulation.
This significantly saves time and enhances efficiency for the designer.
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6 Interconnect System

With verified AHB protocol-compliant master and slave models, we now focus on the most chal-
lenging part of the internship: creating the interconnect system. Our workflow is structured into
four main parts, aiming to establish robust and efficient communication pathways for smooth data
flow and effective collaboration between various masters and slaves.

During this internship stage, synthesizable designs are crucial. In fact, the slave and master
components are non-synthesizable models, relying on Tasks and while loops, which are not syn-
thesis tolerant. Ensuring synthesizability for the interconnect system blocks and the previously
implemented bridge becomes paramount as we progress. We meticulously adhere to synthesis tool
guidelines while writing RTL code, ensuring compatibility with the hardware description language
and target hardware architecture.

The final RTL code undergoes a LINT test to ensure the design’s physical implementation
viability. This thorough examination assesses compliance with synthesis constraints and verifies
effective synthesis for a physical chip. All digital blocks designed in the following section have
passed the lint test, confirming that the coding guidelines have been respected.

6.1 Single Master Interconnect

In the Single Master Interconnect, our primary objective is to enable seamless communication
between a single master and multiple slaves. We introduced two key components to achieve this
goal: an address decoder and a multiplexer whose mechanism is detailed in the spec document.

Figure 22: Single Master Interconnect

The figure 22 illustrates the configuration of the single master interconnect, showcasing both the
address decoder and the multiplexer and their interconnections.
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6.1.1 Address Decoder

The address decoder plays a critical role in the system by precisely interpreting the master’s
address signals and determining the target slave for the request. This decoding enables the system
to accurately route the request to the designated slave module, ensuring seamless and accurate
data exchanges.

Each slave possesses a specific address range which should be a multiple of 1 Kilobyte (Kb)
blocks, and the address decoder uses the "HSEL" signal to selectively set it to 1 only for the in-
tended slave module. Simultaneously, the other slave modules receive "HSEL=0" , placing them
in an IDLE state.

The design features a single input address that generates the "HSEL" signal for each slave.
The "HSEL" signal is one hot decoded, indicating that for each request, only one bit is set to
1, corresponding to the selected slave (see fig 22 ). For instance, in a system with 3 slaves, the
"HSEL" is a 3-bit signal, where the first bit represents the first slave, the second bit represents
the second slave, and the last bit represents the third slave. So, if "HSEL = 010" , the second
slave was selected.

This intelligent routing mechanism ensures precise delivery of a master’s request to the ap-
propriate slave while preventing the slave from responding to requests not intended for it. This
optimization enhances resource utilization and streamlines communication pathways.

6.1.2 Multiplexor

Working in conjunction with the address decoder, the multiplexer plays a vital role as an inter-
mediary, facilitating efficient communication between the master and the selected slave module.

Each slave module has three outputs: HREADYOUT, HRDATA, and HRESP . The mul-
tiplexer takes the selected slave from the address decoder as input, allowing only the chosen slave
to transfer its outputs to the master. This selection ensures that the master receives data and
responses solely from the intended slave, preventing interference and streamlining communication.

Additionally, the multiplexer generates the "HREADY" input signal for the slaves and the
master, adhering to the AHB protocol’s principle that no slave can be ready for a new request until
the previous transfer is completed. This synchronization ensures precise coordination between the
master and selected slave modules, meeting protocol requirements.

To handle the outputs from the slave, the multiplexer takes the one hot decoded signal from
the decoder as input, identifying the active channel between the master and slaves. It addresses
timing mismatches between the "HSEL" signal (address phase) and the slave outputs (data
phase), using flip-flops to delay the "HSEL" signal and synchronize it with the slave outputs.
The final "HREADY" signal is obtained by choosing the selected slave "HREADYOUT"
signal, ensuring no new request is accepted until the previous one is completed. Figure 23 explains
the topology of this Multiplexor.
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Figure 23: Multiplexor Topology

6.1.3 Testing

We used the previously developed models to validate our implementation as part of our compre-
hensive testbench. The testbench was designed very similar to fig 22 to accommodate one master,
two slaves, and our single master interconnect system. Throughout the testing process, multiple
requests were initiated on both slaves, while we also incorporated a check to ensure the correct
slave was selected for each request.

Leveraging the self-checking capabilities of both models, we analyzed the test results. The out-
come was promising, as the testbench successfully demonstrated that all requests were executed
flawlessly. The interconnect system played a vital role in mediating the transfer between the mas-
ter and slaves, efficiently managing data flow and ensuring smooth communication.

Figure 24: Single Master Interconnect Testbench Results
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NOTE: If the master requests an address that is not supported by any of the slaves, the protocol
requires sending an error response. To achieve this, the protocol mandates the use of a default slave
that becomes active only when the master initiates such a request with a non-existent address.
The design for this default slave is straightforward, as it closely resembles the previously designed
slave model, but this time it is specialized to handle error responses exclusively when selected.

6.2 Single Slave Interconnect

In this subsection, we delve into the design of the single slave interconnect, which serves as the
counterpart to the previously implemented interconnect. However, the primary objective here is
to enable multiple masters to communicate with a single slave seamlessly.

To achieve this, we introduce three essential components: an Input Stage, an Arbiter, and a
Demultiplexer.

Figure 25: Single Slave Interconnect

The Green arrows illustrate the data flow of the request information, including HADDRESS,
HTRANS, HWRITE ... On the other hand, the Red arrows depict the data flow of the slave
outputs, representing the response to the request: HREADYOUT, HRDATA and HRESP .
To ensure clarity, this representation is simplified, omitting numerous internal signals between
components.

6.2.1 Input Stage

As the AHB protocol mandates, we must incorporate an additional block, the INPUT stage.
This stage is of utmost importance as it serves two key purposes. Primarily, it maintains the
request information from masters denied immediate bus access, safeguarding their requests for
subsequent processing upon gaining access. This preservation is essential due to the protocol’s
prohibition against slaves introducing wait states during the address phase, which would otherwise
cause these requests to vanish – a scenario we must avoid. This feature ensures that no data or
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transaction requests are lost during communication.

Secondly, the INPUT stage acts as a safeguard, prohibiting masters from receiving the slave’s
output unless they have initiated a granted transfer with the slave previously. This mechanism
helps maintain data integrity and prevents unauthorized access to the slave’s outputs.

To design this block, the arbiter sends a 1-bit "Gnt" signal input to indicate whether the master
is granted access or not. If the master is granted access, its outputs are directly sent to the arbiter.
However, if the master’s access is not granted and it has initiated a request, all the relevant request
information is stored in a series of FlipFlops. The First MUX plays a critical role in selecting the
appropriate path based on the request status, as illustrated in Figure 26.

Based on the same logic, when the master is granted access, the second MUX allows the outputs
from the slave to directly reach the master. However, if access is not granted, only the default out-
puts are sent, representing a valid request with no wait states and irrelevant read data: "HRESP
= 0" , "HREADY = 1" , and "HRDATA = XX" . These inputs are provided to the master
when no request is demanded.

Figure 26: Input Stage Topology

6.2.2 Arbiter

This arbitration process ensures fair access and orderly communication between the masters and
the slave. In this arbitration process, masters are assigned priorities, and the one with the highest
priority gets constant access to the bus. If the highest priority master has no pending requests,
the arbiter moves on to the master with the next highest priority, granting it access to the bus.
This prioritization mechanism continues for subsequent masters based on their assigned priorities
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[3].

To design this block, we adopted a priority scheme based on the decreasing order of the con-
nected masters. For instance, if we have three masters - Master 0, Master 1, and Master 2 - Master
0 holds the highest priority.

To determine whether a master has initiated a request or not, we rely on the "HTRANS"
signal as an indicator. When "HTRANS" is busy or idle, it signifies the master is not requesting
a transaction. In particular, if the first bit of "HTRANS" is 0, the master is considered inactive,
indicating no current request from that master. By utilizing "HTRANS" and the priority order,
the process of selecting the master with the highest priority among the active masters becomes
straightforward.

Additionally, we integrated the "GNT" (Grant) signal, which plays a crucial role in informing
the input stage about which master is granted access. The GNT signal is one hot decoded, indi-
cating the granted master’s identity. For example, in a system with three masters, if "GNT =
100" , it means that Master 0 has been granted access while the other two masters have not.

By utilizing "HTRANS" , the priority order, and "GNT" signal, we have created a stream-
lined and efficient process for selecting and granting access to masters on the AHB bus. This
implementation ensures effective communication and data transfer between the masters and the
interconnect system, enhancing the overall performance and reliability of the system

6.2.3 Demultiplexor

The demultiplexer plays a crucial role in the system by receiving the slave’s response data to
the request ("HRDATA"), along with "HREADY" and "HRESP" signals, and directing to
the specific master that initiated the request. For other inactive masters, it distributes default
outputs, which are "HREADY = 1" , "HRESP = 0" , and "HRDATA = X" . Essentially,
the demux serves as a data distributor, guiding the output data through the appropriate channel
to the corresponding master based on the control signal "sel_data" .

This "sel_data" signal, sent by the arbiter, serves as an indicator of the winning master in
the arbiter battle, determining the recipient of the request-response. The demultiplexer ensures
efficient communication between the masters and the slave, facilitating data exchange based on
the outcome of the arbiter’s decision

In the figure below, the green arrows depict the data flow of the request information, while the
red arrows represent the data flow of the request output. The internal signal "sel_data" acts as
a link between the arbiter and demux, facilitating communication. Lastly, the "GNT" signal is
transmitted to the input stage, as explained earlier.
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Figure 27: Arbiter and Demux Topology

6.2.4 Testing

To verify our implementation, a testbench was created similar to fig 25, incorporating 2 masters,
1 slave, and the single slave interconnect block. Multiple operations were performed on the slave
from both masters, and an additional check was introduced to validate the expected master that
initiated each request (blue arrows in simulation output).

By leveraging the self-checking capabilities, we successfully verified that the design effectively
manages data flow between the masters and the slave as intended. This validation process confirms
the interconnect’s reliable and efficient functionality.

Figure 28: Single Slave Interconnect Testbench Results
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Figure 29: Bottleneck Configuration

6.3 Bottleneck Interconnect

6.3.1 Architecture

The Bottleneck Interconnect combines the previously implemented single slave interconnect and
single master interconnect. It enables communication between multiple masters and multiple
slaves. The design process was rather straightforward and involved connecting the ports of the
single slave interconnect to those of the single master interconnect, as depicted in the figure above
29.

During the design process of the interconnect blocks, a key priority was to ensure simplicity and
user-friendliness for other designers. To achieve this, we implemented a flexible approach where
the user can easily specify the number of masters and slaves required in the bus configuration.
Leveraging the "generate" feature offered by the SystemVerilog language, the design automati-
cally generates all the necessary blocks to accommodate the requested configuration.

This dynamic generation of blocks based on the provided parameters offers unparalleled flexi-
bility and adaptability. It allows our design to be easily utilized in various projects and scenarios
without requiring manual adjustments or complex modifications. Designers can now seamlessly
incorporate our interconnect solution into their projects, tailored to their specific requirements,
thereby saving time and effort in the development process.

This interconnect type, unfortunately, comes with a significant limitation: it allows only one
active communication channel at a time, preventing simultaneous communication between two
masters and two slaves. This constraint significantly hampers the performance of Harvard ar-
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chitecture CPUs. To surmount this limitation and achieve enhanced performance, an alternative
configuration known as the Crossbar has been developed, which will be further explored in the
final section.

6.3.2 Testing

To thoroughly test our design, we developed a comprehensive testbench featuring 3 masters, 2
slaves, and the bottleneck interconnect just as detailed in fig 29. Multiple requests were initiated
from the various masters to the different slaves, and similar verification strategies, as used in the
previous interconnects, were employed.

The test results were highly promising, as illustrated in the figure below. It confirms that all
requests were successfully executed, showcasing the interconnect’s capability to efficiently manage
and transfer multiple data transfers within the AHB while adhering to its protocol.

Figure 30: Bottleneck Testbench Results

6.4 Crossbar

6.4.1 Architecture

The Crossbar Architecture is designed to facilitate simultaneous communication between mul-
tiple masters and multiple slaves. To achieve this, we modified and managed the previously
designed blocks, ensuring compatibility with this configuration. Additionally, we introduced new
blocks to enable seamless communication within the bus.

3 main blocks were used to design the crossbar: the Input stage, previously implemented, an
Arbiter stage, and A Decoding stage as seen in figure 31.

In this system, a layer corresponds to a single master communicating with multiple slaves [5].
Since the crossbar’s purpose is to enable simultaneous communication between many masters and
many slaves, it essentially functions as a multiplayer system, as illustrated in the figure above.

Page 34/47



6 INTERCONNECT SYSTEM

Figure 31: Crossbar Configuration

6.4.2 Arbiter Stage

The arbiter stage comprises two main blocks: the previously discussed unchanged arbiter block
and Demultiplexer (Demux). In the Crossbar configuration, each slave is associated with a corre-
sponding arbiter stage. The purpose of this stage is twofold: first, to choose among the masters
competing to access the slave, and second, to demux the outputs of these slaves to the masters.
Implementing this block was relatively straightforward, involving the integration of the previously
designed arbiter and Demux without any modifications, as seen in the figure below, in contrast to
the decoder stage.

Figure 32: Arbiter Stage Topology
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6.4.3 Decoder Stage

In accordance with the Crossbar Configuration, each master must be paired with a decoder
stage. This stage incorporates the following building blocks :

• Address Decoder previously designed and unmodified .

• A multiplexer responsible for selecting the specific slave outputs to be transferred to the
master. This multiplexer has been slightly modified to include an additional output called
"ChangedSlave" . This modification enables the multiplexer to indicate whether the HSEL
output from the decoder is different between two successive requests.

The multiplexer enhances its functionality by providing the "ChangedSlave" output, al-
lowing for better tracking of changes in the "HSEL" signal. It serves as a useful indicator
for the system, helping to identify cases where the master switches its target slave between
consecutive requests.

Additionally, two new blocks are introduced to complete the decoder stage.

• The Intercept Stage is essential for synchronizing requests when a master switches from one
slave to another. For example, if Master 0 communicates with Slave 0 and then intends
to communicate with Slave 1, the Intercept Stage ensures that the master can only initiate
the new request after completing the previous one with Slave 0. This synchronization pre-
vents interference between the two requests, ensuring orderly and synchronized data transfers.

To achieve this, the Intercept Stage takes a signal called "ChangedSlave" as input. When
this signal is high, the outputs "Intercepted HTRANS" for each slave are set to IDLE,
making the master appear inactive for all slaves. However, when "ChangedSlave" is low,
the Intercept Stage takes the selected slave from the address decoder as input and transfers
only the value of "HTRANS" provided by the master to the selected slave. This ensures
that "HTRANS" remains IDLE for the unselected slaves.

By implementing this mechanism, the Intercept Stage effectively manages and synchronizes
master requests, maintaining a well-ordered flow of transfers and promoting seamless com-
munication between the masters and slaves.

• The Grant Multiplexor, or GNT Mux, serves the specific purpose of handling the "GNT"
signals received from the arbiter stages. It takes these GNT signals as inputs and ensures that
only the GNT signal from the arbiter stage associated with the targeted slave is transferred
to the input stage. Similar to the logic employed in the slave output data multiplexor, the
GNT Mux ensures the selection of the appropriate GNT signal.
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Figure 33: Decoder Stage Topology

6.4.4 Testing

We rigorously constructed the crossbar’s components according to the specified setup. Using
2 masters and 2 slaves, we conducted various tests to encompass all scenarios. This involved
simultaneous actions, like Master 0 communicating with Slave 1 while Slave 0 responded to Master
1. The simulation results (see figure below) validate the checks, confirming our crossbar’s successful
and expected behavior.

Figure 34: Crossbar Testbench Results

While this setup notably enhances design performance through concurrent transfers, it introduces
the trade-off of heightened area utilization. This demands M Decoders and M input stages for M
masters, along with N arbiter stages for N slaves. Consequently, the resulting chip might be sizable
and costly to manufacture. Therefore, prudent evaluation of these aspects is crucial for selecting
the optimal design approach that aligns with project needs.
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7 Conclusion

In conclusion, we proudly present the validation results of this internship work on implementing
the AHB protocol. Throughout this report, we have diligently explored and developed various com-
ponents, such as the slave model, master model, IBEX to AHB bridge, and interconnect systems.
Now, as the crowning achievement, we seamlessly integrate all these individual blocks, showcasing
the first mature stage of the Callisto platform.

The outcome of this work provides future designers with the essential tools to effectively utilize
this platform, meeting the specific requirements of our valued clients. As we move forward, the
next step after this internship is to replace the slave and master models with real IPs and rigorously
ensure that the functionality remains intact.

The visual representation below showcases the capabilities achieved during this internship at
Melexis, demonstrating what we can do with the Callisto platform today.

Figure 35: Conclusive Internship work

This internship has been an incredibly enriching experience, providing me with a comprehensive
introduction to the digital design field. From understanding the bus protocol through the specifi-
cation document to writing RTL code, creating test benches, running simulations, and rigorously
verifying the code, I have been exposed to the entire digital design flow. This hands-on approach
reaffirmed my passion for this field. I am thrilled to have been offered a long-term contract with
the company as an Associate Digital Engineer before the internship concluded.

I am eager to delve deeper into this field, acquiring more knowledge and honing my skills further.
Contributing to Melexis’ success as a leading semiconductor company fills me with immense ex-
citement and gratitude. I look forward to playing my part in the company’s growth and innovation.
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Annex A+B

Annex: A

AHB
signal Description Values

hexokay

1 bit signal : Exclusive Okay is a signal that indicates whether an
Exclusive Transfer has been successful or not. This signal is

available when the AHB Exclusive Transfers property is set to
True.

0 (OKAY), 1
(NOT OKAY)

hmaster

3 bit signal : The master identifier is created by a master that has
multiple Exclusive-capable threads. To ensure unique

identification of each master, the interconnect modifies this
identifier. This signal is available when the AHB5 Exclusive

Transfers property is enabled..

Depends on the
number of

active masters

hexcl

1 bit signal : The Exclusive Transfer signal signifies that the
ongoing transfer is part of an Exclusive access sequence. Its

support is contingent upon the AHB5 ExclusiveTransfers property
being enabled.

0 (Not
Exclusive), 1
(Exclusive)

hnonsec

1 bit signal : This signal indicates whether the current transfer is
categorized as either a Non-secure transfer or a Secure transfer.
Its availability depends on the AHB5 Secure Transfers property

being enabled.

0 (Not secure),
1 (Secure)

Table 7: Optional AHB signals

Annex: B

Figure 36: Error simulation example output
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Annex C : Test bench Code example

0 ‘ t im e s c a l e 1ns /10 ps
‘ i n c l u d e "models / share / log / log . svh"

2 module tes tbench ( ) ;
crossbar_tb tb ( ) ;

4 import bus_ahb : : ∗ ;
i n i t i a l begin

6

r epeat (2 ) @( posedge tb . c l k ) ;
8

f o rk begin
10 r epeat (1 ) @( posedge tb . c l k ) ;

//normal r eque s t s
12 tb . master0 . Write (32 ’ h0000_0040 , 32 ’ h9999_9999 , 3 ’ b010 ) ;

tb . master0 . Read (32 ’ h0000_048 , 3 ’ b010 , . expected_rdata (32 ’hFACE_CAF2) ) ;
14 tb . master0 . Read (32 ’ h0000_094 , 3 ’ b010 , . expected_rdata (32 ’ h0000_0006 ) ) ;

tb . master0 . Read (32 ’ h0000_0050 , 3 ’ b010 , . expected_rdata (32 ’hFACE_CAF4) , . expected_val id
(1 ’ b1 ) , . given_hmastlock (1 ’ b1 ) ) ;

16 //Read what was wr i t t en by the other master
tb . master0 . Read (32 ’ h0000_080 , 3 ’ b010 , . expected_rdata (32 ’ h1111_2222 ) ) ;

18 // c r ea t e e r r o r in s l av e 0 that w i l l be detec ted by a reque s t from the other master
repeat (2 ) @( posedge tb . c l k ) ;

20 tb . s l ave0 . opt ion <= a lways inva l i d ;
// s e l e c t no s l av e

22 tb . master0 . Read (32 ’ h0000_194 , 3 ’ b010 , . expected_rdata (32 ’ h0000_0000 ) , . expected_val id (0 )
) ;

end
24

26 begin
tb . master1 . Write (32 ’ h0000_0044 , 32 ’hAAAA_AAAA , 3 ’ b010 ) ;

28 tb . master1 . WriteBurst_INCR4 (32 ’ h0000_080 , ’{32 ’ h1111_2222 , 32 ’ h9999_9997 ,32 ’ h9999_9998
,32 ’ h9999_9999 } , 3 ’ b010 , ’ {1 , 1 , 1 , 1} ) ;

tb . master1 . Read (32 ’ h0000_070 , 3 ’ b010 , . expected_rdata (32 ’ hxx ) , . expected_val id (1 ’ b0 ) ) ;
30 end

32 begin
repeat (2 ) @( posedge tb . c l k ) ;

34 tb . s l ave0 . Write (32 ’ h44 , 32 ’hAAAA_AAAA ) ;
tb . s l ave0 . Write (32 ’ h40 , 32 ’ h9999_9999 ) ;

36 tb . s l ave0 . Read (32 ’ h48 ) ;
tb . s l ave0 . I d l e ( ) ;

38 r epeat (5 ) @( posedge tb . c l k ) tb . s l ave0 . I d l e ( ) ;
tb . s l ave0 . Read (32 ’ h50 , . expected_mastlock (1 ) ) ;

40 tb . s l ave0 . I d l e ( ) ;
end

42

begin
44 r epeat (2 ) @( posedge tb . c l k ) ;

tb . s l ave1 . I d l e ( ) ;
46 tb . s l ave1 . I d l e ( ) ;

tb . s l ave1 . I d l e ( ) ;
48 tb . s l ave1 . Write (32 ’ h80 , 32 ’ h1111_2222 , . expected_burst (3 ’ b011 ) ) ;

tb . s l ave1 . Write (32 ’ h84 , 32 ’ h9999_9997 , . expected_trans (2 ’ b11 ) , . expected_burst (3 ’ b011 ) ) ;
50 tb . s l ave1 . Write (32 ’ h88 , 32 ’ h9999_9998 , . expected_trans (2 ’ b11 ) , . expected_burst (3 ’ b011 ) ) ;

tb . s l ave1 . Read (32 ’ h94 ) ;
52 end

54 j o i n
repeat (10) @( posedge tb . c l k ) ;

56 ‘ log_Terminate ;

58 end
endmodule
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Annex D : Block design code example

0 // Desc r ip t i on :
// Platform Ca l l i s t o − Hardware Rev i s ion 1 .0

2 // Bus s l av e model
//

4 // Created : 20−Feb−2023
// by : azb

6 //
// Copyright ( c ) Melex is D i g i t a l Competence Center

8 //
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 //
// bus_slave

12 //
// This model r ep r e s en t a s l av e on the ahb bus , by example a memory . By de f au l t

14 // the memory accept a l l address and a l l a c c e s s . But you can change t h i s us ing
// the de f ined ta sk s .

16 //
// You can use t h i s model to check one ac c e s s us ing the Read and Write ta sk s .

18

module ahb_bus_slave
20 #(

parameter START = 0 ,
22 parameter SIZE = 32 ’ h1000 ,

parameter WAITSTATES = 0
24 ) (

// data s i g n a l
26 output wire [ 3 1 : 0 ] ahb_bus_slave_hrdata , // read data ,

// Trans fe r re sponse s i g n a l s
28 output wire ahb_bus_slave_hreadyout , // ready ,

output wire ahb_bus_slave_hresp , // va l i d t r an s f e r ,
30 // output wire ahb_bus_slave_hexokay , // used in Exlus ive Trans fe r

32 // s e l e c t s i g n a l
input wire ahb_bus_slave_hselx , // access ,

34 //data s i g n a l
input wire [ 3 1 : 0 ] ahb_bus_slave_hwdata , //wdata ,

36 //Adress and con t r o l s i g n a l s
input wire [ 3 1 : 0 ] ahb_bus_slave_haddress , // address ,

38 input wire ahb_bus_slave_hwrite , // write ,
input wire [ 1 : 0 ] ahb_bus_slave_htrans , // t r a n s f e r type : i d l e , busy ,

nonsequent ia l , s equent i a l ,
40 input wire [ 2 : 0 ] ahb_bus_slave_hsize , // t r a n s f e r s i z e byte , hal fword or word

input wire [ 3 : 0 ] ahb_bus_slave_hwstrb , // not supported yet
42 input wire ahb_bus_slave_hready , // the prev ious t r a n s f e r i s complete or

the bus i s f r e e
input wire [ 2 : 0 ] ahb_bus_slave_hburst , // burst type ,

44 input wire ahb_bus_slave_hmastlock , // lock not r e a l l y used only i f we use
s l a v e s that can be acce s s ed by more than one master ,

input wire [ 3 : 0 ] ahb_bus_slave_hprot , // p ro t e c t i on con t r o l 3 b i t s f o r AHB− l i t e
46 // Global s i g n a l s

input wire ahb_bus_slave_hrestn , // r e s e t
48 input wire ahb_bus_slave_hclk // c lock ,

) ;
50

loca lparam ARRAY_SIZE = SIZE / 4 ;
52

event posedge_clk ;
54 always_ff @( posedge ahb_bus_slave_hclk ) begin

−> posedge_clk ;
56 end

58 ‘ i n c l u d e "models / share / log / log . svh"
s t r i n g SlaveName = "bus_slave " ;

60 loca lparam IDLE = 3 ’ b000 , WRITE = 3 ’ b001 , READ = 3 ’ b010 , ERROR1= 3 ’ b011 , ERROR2= 3 ’
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b100 ;
// I n t e r na l r e g i s t e r

62 reg [ 3 1 : 0 ] s l ave_s ta r t = START;
reg [ 3 1 : 0 ] slave_end = START + SIZE − 1 ;

64 reg [ 3 1 : 0 ] s lave_rdata , hrdataout ;
reg s lave_ready ;

66 reg s l ave_va l id ;
reg [ 3 1 : 0 ] mem[ 0 :ARRAY_SIZE−1] ; //memory

68 reg [ 2 : 0 ] s t a t e , next_state ;
reg [ 3 1 : 0 ] add_hold ;

70 reg [ 2 : 0 ] s i ze_hold ;
reg e r r o r , error_hold ;

72 reg [ 2 : 0 ] cnt ;
reg [ 3 1 : 0 ] mask ;

74 reg va l id_address , va l i d_s i z e , v a l i d_t ran s f e r ;

76 i n t wa i t s t a t e = WAITSTATES; // i n t e r n a l wa i t s t a t e s that we can modify in the
tes tbench
reg i n v a l i d ;

78

reg [ 1 : 0 ] t rans ;
80

82 // Shorthand AHB s i g n a l s
// Outputs

84 l o g i c [ 3 1 : 0 ] hrdata ;
l o g i c hreadyout ;

86 l o g i c hresp ;
// l o g i c hexokay ;

88 // Inputs
l o g i c h s e l x ;

90 l o g i c [ 3 1 : 0 ] hwdata ;
l o g i c [ 3 1 : 0 ] haddress ;

92 l o g i c hwr i te ;
l o g i c [ 1 : 0 ] htrans ;

94 l o g i c [ 2 : 0 ] h s i z e ;
l o g i c [ 3 : 0 ] hwstrb ;

96 l o g i c hready ;
l o g i c [ 2 : 0 ] hburst ;

98 l o g i c hmastlock ;
l o g i c [ 3 : 0 ] hprot ;

100 l o g i c hres tn ;
l o g i c hc lk ;

102

a s s i gn ahb_bus_slave_hrdata = hrdata ;
104 a s s i gn ahb_bus_slave_hreadyout = hreadyout ;

a s s i gn ahb_bus_slave_hresp = hresp ;
106 // a s s i gn ahb_bus_slave_hexokay = hexokay ;

108 a s s i gn hse lx = ahb_bus_slave_hselx ;
a s s i gn hwdata = ahb_bus_slave_hwdata ;

110 a s s i gn haddress = ahb_bus_slave_haddress ;
a s s i gn hwri te = ahb_bus_slave_hwrite ;

112 a s s i gn htrans = ahb_bus_slave_htrans ;
a s s i gn h s i z e = ahb_bus_slave_hsize ;

114 a s s i gn hwstrb = ahb_bus_slave_hwstrb ;
a s s i gn hready = ahb_bus_slave_hready ;

116 a s s i gn hburst = ahb_bus_slave_hburst ;
a s s i gn hmastlock = ahb_bus_slave_hmastlock ;

118 a s s i gn hprot = ahb_bus_slave_hprot ;
a s s i gn hres tn = ahb_bus_slave_hrestn ;

120 a s s i gn hc lk = ahb_bus_slave_hclk ;

122
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124 import bus_ahb : : ∗ ;

126 // enum { readonly , wr i t eon ly , a lways inva l i d , a lwaysva l id , addr_s ize_inval id } opt ion ;
opt ion_inva l id opt ion ;

128

//data to hold con t r o l s i g n a l s o f the prev ious a c c e s s
130 always_ff @( posedge hc lk or negedge hres tn ) begin

i f ( hres tn == 0) begin
132 add_hold <= 32 ’hxxxx_xxxx ;

s ize_hold <= 3 ’ bxxx ;
134 error_hold <= 0 ;

end e l s e i f ( hready ) begin
136 add_hold <= haddress ;

s i ze_hold <= hs i z e ;
138 error_hold <= e r r o r ;

end
140 end

// counter f o r wait s t a t e s
142 always_ff @( posedge hc lk or negedge hres tn ) begin

i f ( hres tn == 0 | | s t a t e == IDLE) begin
144 cnt <= wa i t s t a t e ;

end e l s e i f ( s t a t e == READ | | s t a t e == WRITE | | s t a t e == ERROR1) begin
146 cnt <= cnt == 0 ? wa i t s t a t e : cnt − 1 ;

end
148 end

// s t a t e r e g i s t e r
150 always_ff @( posedge hc lk or negedge hres tn ) begin

i f ( hres tn == 0) begin
152 s t a t e <= IDLE ;

end e l s e begin
154 s t a t e <= next_state ;

end
156 end

// s t a t e t r a n s i t i o n FSM
158 always_comb begin

i f ( ( htrans == 2 ’ b00 | | htrans == 2 ’ b01 | | ! h s e l x | | ! h re s tn ) ) begin //busy or I d l e t r a n s f e r
160 i f ( s t a t e == ERROR1)

next_state = cnt == 0 ? ERROR2 : ERROR1 ;
162 e l s e

next_state = hready ? IDLE : s t a t e ;
164 end

e l s e begin // nonsequent i a l or s e qu en t i a l t r a n s f e r
166 case ( s t a t e )

IDLE : begin
168 i f ( h s e l x && hready && ! i n v a l i d )

next_state = hwrite ? WRITE : READ ;
170 e l s e i f ( h s e l x && inva l i d && hready )

next_state = ERROR1 ;
172 e l s e

next_state = IDLE ;
174 end

176 WRITE: begin
i f ( hready && ! i n v a l i d )

178 next_state = hwrite ? WRITE : READ;
e l s e i f ( hready && inva l i d )

180 next_state = ERROR1 ;
e l s e

182 next_state = WRITE ;
end

184

READ: begin
186 i f ( hready && ! i n v a l i d )

next_state = hwrite ? WRITE : READ;
188 e l s e i f ( hready && inva l i d )
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next_state = ERROR1 ;
190 e l s e

next_state = READ ;
192 end

194 ERROR1: begin
next_state = cnt == 0 ? ERROR2 : ERROR1 ;

196 end

198 ERROR2: begin
i f ( hready && ! i n v a l i d )

200 next_state = hwrite ? WRITE : READ;
e l s e i f ( hready && inva l i d )

202 next_state = ERROR1 ;
e l s e

204 next_state = ERROR2 ;
end

206

de f au l t : begin
208 next_state = IDLE ;

end
210 endcase

end
212 end
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Gantt Diagram
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