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Abstract

In this thesis work, a methodological approach is proposed for application in
Natural Language Processing (NLP) tasks exploiting the capabilities of latest
Generative Artificial Intelligence (Generative AI) text-to-text models. With this
methodology, it will be possible to delineate data features scope effectively, enhance
model prompting based on expected input and output, and appropriately select
the most suitable Generative model for the required NLP task.

The dissertation begins with an analysis of the foundations of the subject,
providing an overview of both NLP architectures, from Recurrent Neural Networks
to today’s Transformer, and Generative AI state-of-the-art models from GoogleAI,
MetaAI and OpenAI. Then the methodology is presented describing its phases, the
different options to treat different features of data (such as data sensitivity and
input formats) along with the generative model selection process and performance
evaluation criteria. Next the methodology is applied to 10 different NLP tasks, from
simple comprehension tasks to a difficult and temporally articulated assignment
involving a real robotic agent such as Boston Dynamics’ SPOT. The effectiveness
of the methodology is discussed, evaluating its performance, underlining strengths,
weaknesses and possible ways to solve them. Finally, future developments and
solutions, helpful in enhancing the linguistic comprehensions of Generative models,
are presented.
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Chapter 1

Introduction

In the last 80 years, Artificial Intelligence (AI) paved its way into modern society:
from the first program able to play a chess game written by Alan Turing in 1951
to modern autonomous driving vehicles, the key role of AI world has always
been the machine reproduction of human cognitive capabilities such as thinking,
recognizing patterns and making decision. One of the first branch of AI world
was Machine Learning (ML) in which researchers focused their intents on the
creation of models enabled to learn from data and make predictions or decisions
without being explicitly programmed to, but only looking at the characteristics of
the data. The more the technologies improved, especially by increasing machines
computational power, the more researchers started enlarging the field of application
of ML algorithms: with the parallelization provided by GPUs, researchers could
develop models able to mock how our brain computes external inputs using previous
experience and multiple input at the same time. Using very complex models known
as Neural Networks, researchers were able to catch intrinsic and deeper correlations
between data samples, improving the classifications techniques of heterogeneous
type of data such as images, sounds or video. In this scenario, Natural Language
Processing (NLP) sunk its root: with NLP, Deep Learning models are used in order
to understand the underlying characteristics of human language, such as context,
named entity inside a text or figures of speech.

Due to the priceless value of human communications in business world, NLP
became a high valuable sector of investment inside businesses as it offers several
significant advantages that can positively impact various operational and strategic
aspects:

• The evaluation of the sentiment of a product through comments, posts and
reviews can lead to specific production decisions.

• The implementation of chatbots, able to communicate properly with the client,
can automatize the support center procedures.
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Introduction

• With personal advertisement based on client’s interests and previous choices, a
website can propose products that the client will be more interested in buying,

At the same time, Generative AI became the main trend of research in different
AI laboratories of major companies: representing a specific branch in which models
are capable of creating unique and never seen multimedia content such as images,
video or text practically indistinguishable to a human-created one. Generative AI
played a key role in improving NLP technologies in recent years. Newest models
from top-tier AI companies obtained high-quality results in tasks such as language
translation, question-answering, content creations and speech recognition systems.
It becomes evident, therefore, the interest of a company in integrating these
generative models to enhance the performance achieved by simple NLP models: for
example, the integration of a generative chatbot model will make the performance
comparable to a human, as responses will be generated in real-time based on the
question, making the interaction with the virtual operator more human-like and
extracting much more information from the text.

The bottleneck of this integration lies in the vastness of the generative landscape,
combined with its ever-evolving nature due to the continuous release of new models,
which can make researching and integrating these models a challenging choice.

The methodology proposed in this thesis work fits into this scenario: with this
approach, the aim is to standardize the process of analyzing the required tasks with
relative inputs and outputs, selecting the model and evaluating the performance
while minimizing the temporal and economic costs. Through this standardization,
a more detailed perimeter evaluation of the features can be created, systematically
framing the task and determining the most suitable model to choose. Models
handling private and sensitive data, for example, may not be able to use external
vendors and must integrate models internally within the company, thus requiring
downloadable open-source models.

In this process, the development and progresses of both NLP and Generative
AI worlds were analyzed in order to obtain a complete view of the subject of the
research, from their beginnings to newest models offered by prominent companies.
Having assessed the capabilities of these models and their suitability for various
tasks, 10 tasks that span a wide spectrum of complexity. These tasks were
chosen to provide a comprehensive overview of the natural language processing
landscape, from straightforward tasks to more intricate ones. Moreover, with the
last task belonging to the realm of robotics and language translation, the model was
incrementally guided to generate the desired output, illustrating its adaptability
and learning capabilities in three different scenarios.
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Chapter 2

State of the Art

This chapter will provide an overview of the evolution of NLP structures and the
actual state of the art of generative models, with a focus on the models developed
by the three leading companies in Generative AI: OpenAI [1], Meta AI [2], and
Google AI [3].

2.1 Natural Language Processing

NLP refers to artificial intelligence algorithms capable of analyzing, representing,
and thus understanding natural language. The purposes can vary from content
comprehension to translation, even to autonomously generating text based on input
data or documents. NLP mainly deals with texts, understood as sequences of
words in a language that convey one or more messages (e.g., web pages, posts,
tweets, logs, business information), while speech processing (speech recognition) is
considered a separate field.

The interaction between humans and machines involves various aspects, such as
phonetics, phonology, morphology, syntax, semantics, pragmatics, and discourse as
a whole. Consequently, there are numerous NLP tasks that automate these areas,
Today, NLP confronts us with the analysis of complex sentences that, in order to
be correctly interpreted, must be broken down into elementary units: words. In
addition to analyzing individual words, understanding the semantics of the entire
sentence is necessary. From a technical perspective, to transition from analyzing
individual words to comprehending the sentence as a whole (Natural Language
Understanding),
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State of the Art

2.1.1 Word Embeddings
Word embeddings consists in a numeric word representations understandable by
machines. One of the first application of word embedding was represented by N-
gram models [4] which used this numerical representation to evaluate only statistical
patterns inside the sentence, such as word frequencies. With the Word2Vec [5]
approach, introduced by Google in 2013, models started to evaluate these relations:
using a two layer Neural Network, models were able to create high quality word
embeddings in a OneHot representation using two different techniques, CBOW and
SkipGram:

• With CBOW (Continuous Bag of Words) the objective is the prediction of
a target word given a specific context window of tokens. For example, with
a context window C=2 and the input “The kid runs fast”, CBOW tries to
predict the word “runs” given “The” and “kid” as context window. CBOW
sums the context words vectors and tries to predict the target word vector
representation. CBOW becomes useful in all the cases in which the context
provides meaningful information about the target word.

• Skip-Gram, on the contrary, tries to predict the context (intended as surround-
ing words) given the target word: with the word “kid”, Skip-Gram would
try to predict “the” and “kid”. In this case, the output will be the vector
representation of the context. This technique is more effective when dealing
with larger datasets and when capturing semantic relations between words.

These vectorial representations were able to catch both semantic and syntactic
relations between words (as shown in Fig. 2.1) and since each embedding dimension
represents different aspects of the word’s meaning, models can use them to capture
word similarities: similar words will produce similar embeddings. Due to this
property, Word2Vec has become useful for all downstream NLP tasks such as
sentiment analysis or language modeling.

Book
Library

Supermarket
Groceries

Worse

Bad

Good

Better

Best

Worst

Figure 2.1: Semantic and Syntactic relations.

However, due to the word-centered nature of the algorithm, its training time
was proportional to the number of words in the corpus multiplied by the number
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of dimensions in the word embeddings. Moreover, Word2Vec can lead to problems
with polysemous words: since the embeddings are context-independent, they do
not consider the possible different meanings of a specific word but only look at how
the word is distributed inside a text corpus.

One solution to the lack of contextualization problem is provided by the Recurrent
Neural Network (RNN) architecture [6]. Unlike classic feed-forward NNs, RNNs
keep a hidden state that updates at each time step and acts as a memory of the
previous inputs. Each word token is processed sequentially based on the content
of this hidden state, which serves as a compressed representation of the previous
inputs. However, the main issue with RNN architectures is the vanishing gradient
problem: with long sentences (and thus, a large number of time steps), the gradient
tends to shrink exponentially during backpropagation resulting in slow or even no
updates on the latest layers of the model, leading to poor performance.

2.1.2 Attention
In order to solve the vanishing gradient problem, different solutions were deployed,
such as LSTM (Long Short Term Memory) [7], which will be the backbone of the
future models like ELMo [8], or the promising mechanism of Attention developed by
Bahdanau et al. [9] . Focusing on the latter, the main idea behind the attention is
to replicate human behaviour in language translation by processing a full sentence
and then focusing on the most valuable parts of that specific input phrase rather
than evaluate each word sequentially.

An improved version of the attention mechanism is the self-attention [10]: while
Bahdanau attention weights are calculated based on the similarity between the
current decoder hidden state and the encoder output at each time step, the self-
attentions weights are computed based on the similarity between the input and
all the previous words in a certain sequence. This process can be described in 3
phases:

1. Input Representation: the input data is transformed into a set of Query, Key,
and Value vectors, each one representing a particular attention weight. The
three vectors represent, respectively, the current context or state of the model,
the set of feature vectors extracted from the input data and the actual content
or information associated with each element in the input sequence.

2. Scoring: the model computes a set of scores (using a dot product between key
and query vectors) that indicate the relevance of each key vector to the query
vector.

3. Aggregation: the mechanism combines the value vectors with the scores to
produce a weighted sum or other aggregation of the values. The weights used

5
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in the aggregation are typically determined by applying a softmax function to
the scores, which produces a set of normalized weights that sum to one (Eq.
2.1).

Attention(Q, K, V ) = softmax(QKT

√
dk

)V (2.1)

Q, K and V are respectively the Query, Key and Value vectors and dk is the
dimension of Key/Query vector.

2.1.3 Transformer
Google implemented the self-attention mechanism in the Transformer [10] archi-
tecture, which is a neural network architecture that consists of an Encoder and a
Decoder. The Encoder creates an embedded representation of the token sequence
in the input, and the Decoder processes this representation to generate an output.
The Encoder has 6 layers, each comprising a Multi-Head Self-Attention layer and
a Feed Forward Neural Network layer. The Decoder has the same 6 layers as the
Encoder, with an additional layer in each that performs Multi-Head Self-Attention
on the Encoder’s output. In multihead self-attention, the attention mechanism is
expanded by using multiple parallel attention heads with their own set of learnable
parameters (query, key, and value vectors) and computes its own attention weights
independently. In this way, the model is allowed to catch different aspects and
patterns of the input sequence simultaneously since each attention head can focus
on different parts of the sequence, capturing different relationships and have a more
complete global vision of all the dependencies of the input data.

A specific description of the whole Transformer architecture and workflow, as
shown in Fig. 2.2, is listed below:

1. The input tokens are converted into a dense vector representation by multi-
plying them with a learned embedding matrix to create input embeddings.

2. The position of each token in the input sequence is traced using a function
called Positional Encoding, which maps each position of the sequence to a
vector that is added to the input embedding to enable the model to distinguish
all positions in the sequence.

3. The embeddings are processed by the Decoder by the Multi-Head Attention
layer, which computes attention scores between every pair of positions in the
sequence and uses them to compute a weighted sum of the input embeddings.

4. The output of the Multi-Head Attention layer is passed through a Feedforward
Neural Network, which consists of two linear projections with a ReLU activation

6
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Figure 2.2: Transformer architecture [10].

in between. This allows the model to perform non-linear transformations of
the input.

5. Residual connections and a Normalization layer are used respectively to
propagate the gradient better and to normalize the output at zero mean and
unit variance, ensuring gradient stability.

6. The output of the Feedforward Network is passed through a linear layer and
converted into a probability distribution by a softmax activation function. The
model then selects the token with the highest probability as the output token,
which is fed back into the model for the next step until the end-of-sequence
token is generated or the maximum output length is reached.

The Transformer implementation solved most of the previous architecture’s prob-
lems, such as vanishing gradients, long-term dependencies, flexible and parallelizable
inputs. On detail, input parallelization allowed a more robust training with more
larger datasets.The implementation of the transformer into NLP model created
a new branch of models called Large Language Model (LLM). LLMs are in fact

7
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characterized by their numbers of training data and model parameters (in the order
of billions), in particular a sub family of LLMs is the Pretrained Language Models:
Pretrained Language Models are LLMs able to learn high-quality general language
structures, trained using unsupervised or self-supervised learning technique and
then finetuned for a specific task.

The first notorious architecture to achieve state of the art performances was
introduced by Google in 2018: BERT [11] (Bidirectional Encoder Representations
from Transformer) used the computational power of Transformer’s Encoder with
an innovative technique of language modelling called Masked Language Modelling.
With this technique, a fixed amount of input tokens are substitute with a special
[MASK] token and then the model is trained to predict the masked work based
on the context of the whole phrase (Fig. 2.3) with both a left-to-right approach
(learning from previous words) and with a right-to-left approach (learning from
next words).

BERT Masked Language Model

The [MASK] is on the kennel[CLC] [SEP]

The dog is on the kennel[CLC] [SEP]

Figure 2.3: Masked Language Model flowchart.

2.2 Generative AI
Generative AI is a subfield of AI whose objective is to develop models that can
create new data that is similar and coherent to the input they are generated from.
The application fields of Generative AI range across different sectors:

• The creative feature of Generative AI to generate new, unseen contents finds
application in all areas related to art, such as creating new poems, song lyrics
or in visual arts;

• The possibility to customize the content based on the provided inputs becomes
fundamental in the advertising field, generating suggested content that is
suitable for the user.

• With the generation of novel content, Generative AI finds application in the
area of Data Augmentation, creating synthetic data used for training other
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Machine Learning models.

This work is focused on text-to-text tasks of Generative AI. Text-to-Text tasks
aims to create a mapping between a textual input, given to the model as sentences
or simple keywords, and a generate relevant and coherent textual output in a
natural language form. This field finds a lot of applicability: code sourcing, text
summarization, question answering, cloze task. In this section, the state of the
art models from OpenAI, Google and Meta, will be evaluated, discussing their
architectures and their performances in various benchmarks.

2.2.1 GPT-1
GPT [12] (Generative Pretrained Transformer) is a series of generative models
produced by OpenAI that has established itself as a pioneer in the field of generative
natural language processing over the past 5 years, capturing the attention of both
researchers for its potential and the masses for the potential dangers that its
abilities can provoke.

In 2018, the first iteration of GPT models was released. GPT, nowadays
commonly referred as GPT-1, was born almost concurrently with BERT and was a
PLM based on multiple Transformer layers. Specifically, the model consisted of a
12-layer decoder-only transformer with masked self-attention heads, followed by
a softmax layer. The two fundamental aspects of the model were unsupervised
pre-training and supervised finetuning:

• The pre-training consists of predicting the next word given the sequence of
previous words by the maximization of the loss function (Eq. 2.2):

L(U) =
nØ

i=1
log P (ui|ui − k, . . . , ui−1; Θ) (2.2)

where U is the unsupervised corpus of tokens, k is the size of the context
window and P is the conditional probability modeled using a neural network
with parameters Θ. These parameters are trained using stochastic gradient
descent which consist on an iterative algorithm that aims to find the optimal
set of parameters (weights and biases) that minimize the loss function of a
model: at each iteration, a randomly selected subset of training examples
(known as a mini-batch) is used to compute the gradient with the respect of
the parameters of the mini-batch and then the parameters are updated by
taking a step in the opposite direction of the gradient, scaled by a learning
rate.

• The finetuning aims to adapt the pretrained model for a specific supervised
task: the new dataset C with its instances as tokens [x1, x2, . . . , xm] along with
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a label y, is passed to the pre-trained model, which weight will be froze, in
order to obtain the final transformer’s block activation, which will be fed to a
new added linear output layer with parameters Wy to predict y (Eq. 2.3).

P (y|x1, . . . , xm) = softmax(hm
l Wy) (2.3)

In this way, the new objective function is obtained (Eq. 2.4).

L2(C) =
Ø
x,y

log P (y|x1, . . . , xm) (2.4)

The strength of GPT-1, compared to previous models, is based on the number
of parameters used, which was 117 million, and the number of documents used
during the training phase. Additionally, the unsupervised nature of the training
phase eliminated the need for human supervision of data and hand-labeling. The
dataset used for training was the BookCorpus [13], which included about 11,000
books and a total of 800 million words. Despite the model’s strong potential in
various NLP benchmarks, such as next word prediction and automatic text fill,
it was not very effective in capturing and processing information outside of the
scope of knowledge in which it was trained, generating repetitive and nonsensical
texts. Moreover, the language capabilities of the model deteriorated as the length
of the sentences increased. This was due to the model’s limited long-term memory,
which was already restricted to 512 characters, resulting in a loss of fluency and
coherence in the responses.

2.2.2 GPT-2
The weaknesses of GPT-1 set the stage for the next iteration: GPT-2 [14]. With
GPT-2, OpenAI maintained the same model architecture as GPT-1, with some
small changes regarding the normalization layer, and the same methodology for both
pretraining and finetuning phases. The main innovations in this model consisted
of the number of parameters used, with four different versions based on the size
of the model (Table 2.1), with the largest having 1.5 billion parameters, and the
fact that the model was multi-task: it was not trained for a specific task (just
like GPT-1), but it was trained on a new training dataset composed of WebText,
a collection of 40 GB of textual information from various web pages created by
OpenAI, and CommonCrawl [15], allowing the model to broaden its knowledge
and task applicability. Moreover, the token length was doubled, with a maximum
length of 1024 characters. GPT-2 achieved state-of-the-art performance on zero-
shot performance on 7 out of 8 tested language modeling datasets but still had
poor performance in text summarization.

10



State of the Art

Version Parameters Size
GPT-2 “Small” 117 million 473 MB

GPT-2 “Medium” 345 million 1.5 GB
GPT-2 “Large” 774 million 3.2 GB

GPT-2 “XL” (GPT-2) 1.5 billion 6.7 GB

Table 2.1: Parameters for each GPT-2 version.

2.2.3 GPT-3
Building on the success of GPT-2’s in-context learning, OpenAI sought to further
improve performance by scaling the model. In June 2020, they introduced GPT-3
[16], an autoregressive model with 175 billion parameters, three orders of magnitude
larger than its predecessor (Table 2.3). The model is based on the same architecture
as GPT-2, but with alternating dense and locally banded sparse attention patterns
in the transformer layers, similar to the Sparse Transformer[17]. OpenAI trained
eight different models of varying sizes, ranging from 125 million to 175 billion
parameters, using a dataset refined from the CommonCrawl, which contained
nearly a trillion words of general knowledge mixed with other high-quality datasets
to increase diversity. By looking at the GPT-3 dataset distribution in Table 2.2, it
can be seen that it was not sampled proportionally to its size, but based on quality,
with high-quality datasets sampled less frequently than lower-quality ones during
training. The models were evaluated on more than 20 NLP datasets in few-shots,
one-shot, and zero-shot settings, depending on how many task examples were given
to the models, with the latter requiring no examples for the given task.

Training dataset Quantity (tokens) Weight in training mix
Filtered CommonCrawl 40B 60%

WebText2 19B 22%
Books1 19B 8%
Books2 55B 8%

Wikipedia 3B 3%

Table 2.2: Composition of training dataset for GPT-3.

The results of all the test done by GPT-3 benchmarks in the zero-shot, one-shot,
and few-shot settings remark the potential of the in-context learning model, in
some cases nearly matching the performance of state-of-the-art fine-tuned systems
and in a few trials also reaching new state of the art results. The main innovation
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introduced by GPT-3 was the confirmation that, with a n-shot perspective, the
same (or close) results as fine-tuned models could be achieved.

Model Parameters Dataset size estimation Max sequence
length

GPT-1 117M 4.5GB 512
GPT-2 1.5B 40GB 1024
GPT-3 175B 570GB 2048

Table 2.3: Comparison of characteristics of GPT-1, GPT-2, and GPT-3. For
GPT-3, the size refers to the filtered version of the CommonCrawl dataset.

2.2.4 ChatGPT

ChatGPT is a finetuned version of GPT-3.5, which was launched in November 2022
as a public application for research purposes and is an upgraded version of GPT-3.
Unlike all previous GPT models, ChatGPT is designed for conversational AI. The
model is trained to answer follow-up questions, generate prompted stories and jokes,
restyle input texts, and more. During the training phase, OpenAI used both a
supervised learning approach, in which the model was fed by a conversation in which
a trainer played the role of both model and human, and an unsupervised learning
approach, done by integrating Reinforcement Learning from Human Feedback
(RLHF) [18]. This approach was previously used for its sibling model InstructGPT
[19]. With RLHF, the model is prompted and different outputs are sampled, then
a human ranks the responses from best to worst, and these evaluations are used
to train a reward model to adjust and finetune the model’s responses to be more
similar to human responses. Moreover, OpenAI gives the user the option to provide
feedback by upvoting or downvoting the model responses, which allows for on-the-fly
finetuning of the model.
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Figure 2.4: Description of ChatGPT training with supervised learning, unsuper-
vised learning and model rewarding.

ChatGPT has gained a lot of popularity in the months following its release,
capturing the attention of the entire global community and giving rise to both hopes
for its hypothetical applications and doubts and concerns regarding its malicious
uses and the data policy.

On March 2023, OpenAI released a ChatGPT API (Application Programming
Interface) to allow the integration of the technology into other application, enlarging
the domain of application for the model.

2.2.5 PaLM

PaLM (Pathways Language Model) [20] is a language model developed by Google
and specifically designed for few-shot classification, following in the footsteps of
other competitors in the field. The model is composed of 540 billion parameters
and was trained using a new machine learning approach called Pathways. Unlike
other models that are trained using a single TPU or pipeline parallelism to scale
across different GPU clusters, Google’s Pathways enables training a single model
across thousands or tens of thousands of accelerators, achieving a very high effi-
ciency of 46.2% in model FLOPs (observed throughput relative to theoretical max
throughput) and 57.8% in hardware FLOPs utilization. The model architecture
is based on a decoder-only transformer setup, using SwiGLU activation functions
and departing from the standard formulation of the transformer: with previous
implementation, the Masked Language Prediction (MLP) moved from a sequential
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setting (Eq. 2.5)

y = x + MLP (LayerNorm(x + Attention(LayerNorm(x)) (2.5)

to a parallelized one, resulting in faster training speed (Eq. 2.6).

y = x + MLP (LayerNorm(x)) + Attention(LayerNorm(x) (2.6)

The training dataset, composed by 780 billion tokens, was obtained by a weighted
mix of different sources in different languages (around 20% of non-english data).

Data source Proportion of data
Social media conversations (multilingual) 50%

Filtered webpages (multilingual) 27%
Books (English) 13%
GitHub (code) 5%

Wikipedia (multilingual) 4%
News (English) 1%

Table 2.4: PaLM training dataset composition [20].

PaLM 540B outperforms prior state-of-the-art models on 24 of the 29 tasks in the
1-shot setting and 28 of the 29 tasks in the few-shot setting. Interestingly, PaLM
540B outperforms prior state-of-the-art models by more than 10 points in the few-
shot setting on some of the Reading Comprehension and NLI tasks. In the Massive
Multitask Language Understanding (MMLU) benchmark, it reaches an average
score of 69.3%. In the field of Commonsense Reasoning, prior state-of-the-art models
use a combination of task-specific finetuning, domain-specific architectures, and
task-specific verifiers to achieve strong results. However, PaLM’s few-shot results
match or exceed the finetuned state-of-the-art across several different arithmetic
and commonsense reasoning tasks, thanks to a combination of scale and chain-of-
thought prompting. In the chain-of-thought method, the model is prompted to
generate a natural language logical inference chain before making its prediction.

Task
0-shot
Prior
SOTA

PaLM
540B

1-shot
Prior
SOTA

PaLM
540B

Few-shot
Prior
SOTA

PaLM
540B

TriviaQA 71.3a 76.9 75.8a 81.4 75.8a
(1) 81.4(1)

NaturalQuestions 24.7a 21.2 26.3a 29.3 32.5a
(1) 39.6(64)

WebQuestions 19.0a 10.6 25.3b 22.6 41.1b
(64) 43.5(64)
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Lambada 77.7f 77.9 80.9a 81.8 87.2c
(15) 89.7(8)

HellaSwag 80.8f 83.4 80.2c 83.6 82.4c
(20) 83.8(5)

StoryCloze 83.2b 84.6 84.7b 86.1 87.7b
(70) 89.0(5)

Winograd 88.3b 90.1 89.7b 87.5 88.6a
(2) 89.4(5)

Winogrande 74.9f 81.1 73.7c 83.7 79.2a
(16) 85.1(5)

Drop(F1) 57.3a 69.4 57.8a 70.8 58.6a
(2) 70.8(1)

CoQA(F1) 81.5b 77.6 84.0b 79.9 85.0b
(5) 81.5(5)

QuAC(F1) 41.5b 45.2 43.4b 47.7 44.3b
(5) 47.7(1)

SQuADv2(F1) 71.1a 80.8 71.8a 82.9 71.8a
(10) 83.3(5)

SQuADv2(EM) 64.7a 75.5 66.5a 78.7 67.0a
(10) 79.6(5)

RACE-m 64.0a 68.1 65.6a 69.3 66.9a
(8) 72.1(8)

RACE-h 47.9c 49.1 48.7a 52.1 49.3a
(2) 54.6(5)

PIQa 82.0c 82.3 81.4a 83.9 83.2c
(5) 85.2(5)

ARC-e 76.4e 76.6 76.6a 85.0 80.9e
(10) 88.4(5)

ARC-c 51.4b 53.0 53.2b 60.1 52.0a
(3) 65.9(5)

OpenbookQa 57.6b 53.4 55.8b 53.6 65.4b
(100) 68.0(32)

BoolQ 83.7f 88.0 82.8a 88.7 84.8c
(32) 89.1(8)

Copa 91.0b 93.0 92.0a 91.0 93.0a
(16) 95.0(5)

RTE 73.3e 72.9 71.5a 78.7 76.8(5) 81.2(5)
WiC 50.3a 59.1 52.7a 63.2 58.5c

(32) 64.6(5)

Multirc(F1a) 73.7a 83.5 74.7a 84.9 77.5a
(4) 86.3(5)

WSC 85.3a 89.1 83.9a 86.3 85.6a
(2) 89.5(5)

ReCoRD 90.3a 92.9 90.3a 92.8 90.6(2) 92.9(2)
CB 48.2a 51.8 73.2a 83.9 84.8a

(8) 89.3(5)

ANLIR1 39.2a 48.4 42.4a 52.6 44.3a
(2) 56.9(5)

ANLIR2 39.9e 44.2 40.0a 48.7 41.2a
(10) 56.1(5)

ANLIR3 41.3a 45.7 40.8a 52.3 44.7a
(4) 51.2(5)

Table 2.5: Results obtained by the PaLM 540B model across 29 NLP benchmarks.
For the few-shot results, the number of shots for each task are mentioned in
parenthesis. The splits for each task are the same ones used in Du et al. (2021)
and Brown et al. (2020). Superscripts denote results from past work: a) GLaM
62B/64E (Du et al., 2021), b) GPT-3 175B , c) Megatron-Turing NLG 530B (Smith
et al., 2022), d) Gopher (Rae et al., 2021), e) LaMDA (Thoppilan et al., 2022)
(results reported from Wei et al. (2022a), f) Chinchilla (Ho mann et al., 2022)).
Figure from [20].
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2.2.6 LLaMA

Meta AI, formerly known as Facebook AI, published its open-source model called
LLaMA in 2023 [21]. With LLaMA, Meta aimed to demonstrate how a model
trained solely with public datasets could achieve, and sometimes exceed, the
potential of other larger pretrained models. The pretraining followed the same
technique as GPT-3, and the dataset (Table 2.6) was created by a weighted mix
of public-only datasets with the same proportionality measure as GPT-3. The
model architecture is essentially the same as the Transformer, with the same
prenormalization as GPT and a different activation function: ReLU (Eq. 2.7)
activation function

ReLU(x) = max(0, x) (2.7)

was replaced by the SwiGLU (Eq. 2.8)

SwiGLU(x) = x ∗ sigmoid(β ∗ x) + (1 − sigmoid(β ∗ x)) ∗ (Wx + b) (2.8)

SwiGLU uses a gating mechanism, which enables it to activate neurons selectively
based on the input it receives, reducing overfitting and improving generalization.

Dataset Sampling prop. Epochs Disk size
CommonCrawl 67.0% 1.10 3.3 TB

C4 15.0% 1.06 783 GB
Github 4.5% 0.64 328 GB

Wikipedia 4.5% 2.45 83 GB
Books 4.5% 2.23 85 GB
ArXiv 2.5% 1.06 92 GB

StackExchange 2.0% 1.03 78 GB

Table 2.6: Dataset training mix for LLaMA.

Four different model, from 6 to 65 billion parameters, were trained and tested
over various benchmark. As it shown on Table 2.7, despite being smaller than
competitors, LLaMA has managed to achieve excellent results, outperforming GPT-
3 and even reaching state-of-the-art performance, on many tasks such as Question
Answering (TriviaQA ad NaturalQuestions), Code Generation (HumanEval) and
CommonSense Reasoning.
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Model Parameters BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA

GPT-3 175B 60.5 81.0 - 78.9 70.2 68.8 51.4 57.6
PaLM 540B 88.0 82.3 - 83.4 81.1 76.6 53.0 53.4

7B 76.5 79.8 48.9 76.1 70.1 72.8 47.6 57.2
LLaMA 13B 78.1 80.1 50.4 79.2 73.0 74.8 52.7 56.4

33B 83.1 82.3 50.4 82.8 76.0 80.0 57.8 58.6
65B 85.3 82.8 52.3 84.2 77.0 78.9 56.0 60.2

Table 2.7: LLaMA performances in CommonSense Reasoning.

2.2.7 GPT-4

In March 2023, OpenAI published a paper introducing their new iteration of the
GPT model, called GPT-4 [22]. This model represents a significant change from
previous iterations, as it is a multimodal model capable of processing both textual
and image information. This opens up a new subset of vision tasks in NLP, such
as predicting consequences of actions in pictures (for example, given an image of
a balloon, asking the model to predict the consequences of cutting the balloon’s
string) or explaining humor in a specific image. With context windows of 8,192 and
32,768 tokens, OpenAI tested GPT-4’s capabilities both with and without the vision
module across multiple public benchmarks. The results obtained outperformed
most of the previous models’ performance: in classical Language Modeling tasks,
As shown in Table 2.8 GPT-4 achieved state-of-the-art performance in most tasks
with a gain of more than 10% compared to the previous SOTA methodology.
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Dataset
GPT-4
evualuated

few-shots

GPT-3.5
evualuated

few-shots

LM SOTA
evualuated

few-shots

SOTA
Best external

(with specific finetuning)

MMLU
multiple choice question

in 57 subjects

(professional and academic)

86.4%
5-shots

70.0%
5-shots

70.7%
5-shots U-PaLM

75.2%
5-shots Plan-PaLM

HellaSwag
Commonsense reasoning around

everyday events

95.3%
10-shots

85.5%
10-shots

84.2%
LLaMA (validation

set)

85.6%
ALUM

AI2 Reasoning Challenge
Grade-school multiple choice

science questions. Challenge-set.

96.3%
25-shot

85.2%
25-shot

85.2%
8-shot PaLM

86.5%
ST-MOE

WinoGrande
Commonsense reasoning around

pronoun resolution

87.5%
5-shot

81.6%
5-shot

85.1%
5-shot PaLM

85.1%
5-shot PaLM

HumanEval
(Python coding tasks)

67.0%
0-shot

48.1%
0-shot

26.2%
0-shot PaLM

65.8%
CodeT + GPT-3.5

DROP (F1 Score)
Reading comprehension

and arithmetic.

80.9
3-shot

64.1
3-shot

70.8
1-shot PaLM

88.4
QDGAT

GSM-8K
Grade-school mathematics

questions

92.0%
5-shot

57.1%
5-shot

58.8%
8-shot Minerva

87.3%
Chinchilla

Table 2.8: GPT-4 perfomances on academic benchmark.

GPT-4 was also tested on different public exam simulations. The peculiarity
of this task lies in the fact that the model was never specifically trained for a
particular exam, but a few-shot methodology was used instead. The exams, which
comprised both multiple-choice and open questions, required specific prompts
(including images) to be designed for the model and were evaluated using public
methodologies. The results were not influenced by reinforcement learning from
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human feedback (Table 2.9), showing the potential of multi-task training. Most of
GPT-4’s performance on these tasks was successful, with a remarkable top 10%
score achieved on the Uniform Bar Examination.

Exam Score Score
using RLHF

AP Art History (MCQ) 72.5% 66.2%

AP Biology (MCQ) 98.3% 96.7%

AP Calculus BC (MCQ) 66.7% 57.8%

AP Chemistry (MCQ) 58.3% 71.7%

AP English Language and
Composition (MCQ) 55.6% 51.1%

AP English Literature and
Composition (MCQ) 63.6% 69.1%

AP Environmental
Science (MCQ) 72.5% 67.5%

AP Macroeconomics (MCQ) 83.3% 76.7%

AP Microeconomics (MCQ) 90.0% 76.7%

AP Physics 2 (MCQ) 62.2% 71.1%

AP Psychology (MCQ) 98.0% 96.0%

AP Statistics (MCQ) 60.0% 62.5%

AP US Government (MCQ) 85.5% 83.6%

AP US History (MCQ) 89.1% 87.3%

AP World History (MCQ) 94.5% 98.2%

MKSAP Questions (MCQ) 77.9% 74.7%

Table 2.9: GPT-4 exam scores comparison between plain model and RLFH model.
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Even if architectural and training informations were not published due to
competitive reasons, GPT-4 performance results place the model among the most
high-performing models of all time.
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Chapter 3

Methodology

3.1 Goal

The methodology proposed in this thesis work aims to propose a protocol applicable
to all the project that integrate generative models. The use of this framework
would fit into different use cases belonging to completely different sectors. Possible
applications could be as follows:

• Once the documentation regarding different drugs is provided to the framework
by a medicine company, a doctor could consult the framework to ask a
summarization of the side effects for a specific medicine.

• Given the use and maintenance manuals of different agricultural tools, an
operator could consult the model to receive information about the maintenance
intervals of a specific agricultural machine.

• Provided regulations and documentation related to a business sector, an HR
manager could consult the framework to receive summaries regarding specific
protocols.

By leveraging the capabilities of generative models and natural language pro-
cessing, potential professionals or companies could receive adequate support in
their work, enhancing performance efficiency through the precision of models and
reducing latency in operations. Furthermore, for private data applications, any
new documentation could be automatically incorporated into the respective mod-
els, eliminating the need for frequent appointments with representatives or the
downloading and retrieval of new modules.
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3.2 Methodology
The structure of the methodology, as shown in Fig. 3.1, can be divided in fixed
phases each one described in the following section.

Task and Topic
definition

Dataset Selection
and Analysis Model Selection Performance

Evaluation

Figure 3.1: Methodology pipeline.

3.2.1 Task and Topic Definition
The customer presents the topics on which the generative model should be prepared,
highlighting the main areas of interest and all the related subtopics that may exist.
Once the topics are described, which are useful for labeling the documentation as
specifically as possible, the tasks on which the model should be trained will be
defined, along with their corresponding expected results. This approach creates
a precise scope of action within which the model should operate. The more
information provided in this phase, the better the model can be shaped to meet the
customer’s expectations, thus avoiding outputs that do not align with the actual
purpose of the model.

For example, if the client desires a model capable of answering specific questions
related to various topics, the required task would be a Question Answering (QA)
task. Consequently, the chosen model must be specialized in that particular task,
thereby narrowing down the scope of selection to models specifically designed for
QA.

3.2.2 Dataset Selection and Analysis
Once the topics and required tasks have been established, the base documentation
must be defined. In this phase, for each topic identified in the previous stage,
corresponding document sets are provided containing all the relevant information
necessary for the model to fulfill its tasks. The complexity of this phase lies in the
diverse nature of the datasets involved:

• Different types of data need to be processed differently using various tools. For
example, if the document set is heterogeneous and comprises files in formats
such as docx, pdf, or sets of images, different tools are required to process
the inputs.
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• Any noisy data should be corrected, and extraneous information should be
eliminated to avoid introducing additional sources of noise.

• The sensitivity of the data determines the structures utilized in its processing.
The presence of sensitive data, such as user profiles, personal information,
or biometric data, necessitates that the models employed prioritize privacy
and do not rely on third-party users capable of storing and utilizing this
information.

• The more detailed the documentation pertaining to a specific topic, the more
precise the model’s response will be, regardless of the task type.

• Prepare the client’s provided documents for model ingestion. This may involve
cleaning and preprocessing the text, converting it into a suitable format, and
creating appropriate training, validation, and test data sets.

3.2.3 Model Selection
After cleaning, processing and analyzing the dataset, it is crucial to carefully select
the respective generative models to be used for performing the required tasks. The
choice of models and their types is influenced by several factors:

• The nature of the data, such as its sensitivity, primarily affects the choice of
model. If the data is not publicly available but contains sensitive information,
a company cannot rely on third-party models or API calls to external sources.
Therefore, it is essential to find a locally deployable model to ensure data
confidentiality or employ data masking techniques.

• The availability of resources on the client’s side influences the selection of a
more powerful and resource-intensive model compared to others. The goal is
to find the optimal trade-off between model capability and resource availability.
If the model’s responses are subject to latency requirements, it is necessary to
rely on faster models, which may require additional resources.

In order to select the proper model for our application, the tokenizer and the
weights can be requested directly to vendors, such as for LLaMA, or the choice
can move to open-source models publicly available. Regarding this category, open-
source LLMs can be found in public repositories and communities such as GitHub
[23] or Hugging Face [24]. In these spaces, users are provided with model details,
implementations, licenses, playgrounds and API in order to perform inference.
Moreover, a user could finetune a base model for a particular task and then release
it on the same platform. On HuggingFace specific fine-tuned models are available
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for specific task usage, such as MosaicML’s MPT-7B-Storywriter [25] and MPT-
30B-Chat [26], which are fine-tuned version of base MPT 7B and 30B models from
MosaicML [27], namely for storytelling and instruct purposes.

3.2.4 Performance Evaluation
The evaluations of performance, being generative tasks, can be done qualitatively
by manually assessing the effectiveness of the model for a given task. This is done
by comparing the model’s generated responses with the expected ones, such as
those that an expert human could produce for the same type of task. The key
aspect of the evaluation consists on a Human-in-the-Loop approach, similar to
the one applied with ChatGPT: by analyzing model’s output responses, areas for
improvement can be identified and addressed. Depending on the results, prompt
engineering could be used in order to provide high quality context prompts to the
model, follow a n-shot approach by giving some examples to the model or simply
adjusting the dataset with accurately selected preprocessing or data augmentation
techniques.

3.3 First Steps to Apply the Methodology in a
Real Use Case

Once the four phases of the proposed methodology have been outlined, the Model
Selection and Performance Analysis are strictly related to the first two steps,
namely Task and Topic Definition and Dataset Selection and Analysis. The more
information exchanged with the client regarding the project’s intent, nature of the
data and the accessibility of the data itself, the better defined the nature of the
data will be, making it easier to choose the model and put it into production faster,
ultimately leading to improved performance.

One possible solution to define the correct data perimeter could consist on using
a fixed template in which the client provides specific dimensions for each task on
which the trained model is desired. An example of feature perimeter could include:

• The desired output data type from the model, such as textual data, images,
websites, or their combinations.

• The definition of the task category, such as information retrieval or text
classification.

• The definition of the topic related to the data-task pair to facilitate data
indexing, for instance.
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• The data source and the method of data acquisition, such as using specific
APIs or parsing from specific documents (single or multiple).

• Eventual data update timelines, especially for dynamic data.

• Data specificity, as certain data may be specific to a requester’s role, ensuring
confidentiality, or to a certain state, such as different internal policies for
multinational companies.

• The need for a conversational agent that tracks the context of previous
conversations or simply provides instant question-answering capabilities.
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Chapter 4

Use Cases

This chapter will discuss 10 different scenarios of application of the methodology,
listed in Table 4.1, each one representing a specific generative task. These tasks
will be presented in order of complexity. The evaluation will start with tasks
characterized by simple but structural prompts, in order to understand how gener-
ative models work, and to have the basis for being able to structure more complex
generative tasks such as the Natural Language Command Translation at the end
of the chapter. This last task been integrated into the orchestrator for Boston
Dynamics SPOT robot, thus allowing to control it simply by using natural language
prompt.

Task Example Model

Text Summarization Road regulations GPT-3.5-turbo-16k

Question Answering Pharmaceutical instructions GPT-3.5-turbo-16k

StoryTelling Relative Theorem: Child-Friendly Translation GPT-3.5-turbo

Named Entity Recognition Road regulation fines and limits GPT-3.5-turbo-16k

Code Generation PDF text extraction GPT-3.5-turbo

Code Understanding Habitat-Lab GPT-3.5-turbo-16k

Code Review Rust Code Optimization GPT-3.5-turbo

From CSV to NL Customers File Analysis GPT-3.5-turbo

Smart Search + Question Answering Pharmaceutical Pamphlets LLamaIndex + ChatGPT

Natural Language
to Command Translation

Controlling a robot agent
with Natural Language prompt GPT-3.5-turbo

Table 4.1: List of covered generative tasks.

All the tasks were evaluated using English prompts over different language
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documents. The model used in all tasks evaluation was the GPT-3.5-turbo and its
16k token length version for long documents and text.

Due to the generative nature of all the tasks, in order to have a more objective
measure of the performance each evaluation consists on the analysis of 5 attempts
with the same prompt and context.

The code used for the evaluation and the set of outputs obtained for each task
can be found in the repository at the following link:
https://github.com/stestrippoli/NLP-tasks

4.1 Task: Text Summarization on Road Regula-
tion Documents

4.1.1 Task and Topic Definition
With text summarization, the goal is to obtain an outline of a specific input text.
The textual output should be concise and should contain all the useful information
from the original input file.

4.1.2 Dataset Selection and Analysis
For this task, the summarization was made using a road regulation document [28]
regarding speed limits. The pdf file used for this task was composed by seven pages,
each page containing a header and footer text which give no information to the
task completion. After extracting the text, the text was pre-processed by removing
unwanted multiple whitespaces, header and footer and resolving character decoding
issues such as accented words in order to obtain the least number of tokens.

context:
limiti_velocita_cleaned.txt

answer:

The text is an amendment to Article 142 of

Legislative Decree No. 285/1992 regarding speed
limits for different types of roads. The

maximum speed limit is set at 130 km/h for
highways, 110 km/h for main roads, 90 km/h for

secondary and local roads, and 50 km/h for

roads in urban areas. The speed limit can be
increased up to 70 km/h in urban areas where it

is feasible, and up to 150 km/h on highways
with three lanes and an emergency lane. The

amendment also includes  provisions for

different speed limits for specific vehicles
and the positioning of vehicles on the road.

Violating speed  limits can result in
administrative fines and the suspension of a

driver's license.

prompt:
Write a summarization of the previous

text.

Figure 4.1: Example of the Summarization task.
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4.1.3 Model Selection

The model selected was GPT-3.5-turbo-16k.

4.1.4 Performance Evaluation

From the five generated results it can be observed that all of them provide a good
summarization of the text, highlighting key points related to speed limits and
vehicle positioning regulations. An example is provided in Fig. 4.1.

In terms of how well the answers fulfill the request to write a summarization of
the text, all of the answers provide a concise and accurate overview of the main
points. However, some answers provide more details and specifics compared to
others. Answer 3, for example, provides a more detailed breakdown of the speed
limits on different types of roads and conditions for increasing the speed limit.
Answer 4 also includes additional information about minimum and maximum speed
limits set by road owners. Overall, all answers provide a satisfactory summarization
of the text.

4.2 Task: Question Answering on Pharmaceuti-
cal Instructions

4.2.1 Task and Topic Definition

The question answering task can be divided into two different sub-tasks: the first
one involves generating questions about a given input text. Once generated, the
questions will become the input for the question answering task.

4.2.2 Dataset Selection and Analysis

As input text, the package leaflet of a drug called Zetamicin [29] has been used
in PDF format. After extracting the text and performing preprocessing actions,
which consisted of removing unnecessary lines to reduce the number of tokens,
the text was provided to the model as context and the model was then asked to
generate three questions based on the text (Fig. 4.2).
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question:

Extract 3 questions about previous text.

answer:
"1. What are the possible side effects of taking
Zetamicin?",
"2. How should Zetamicin be stored?",
"3. What is the recommended dosage of Zetamicin
for children and adults with normal renal
function?"

Figure 4.2: Question generation.

Once generated, the same question were prompted to the model in order to
obtain the relative answers (Fig. 4.3). With this approach, both the generation of
the answers and the relative answering phases are tested.

"1. What are the possible side effects

of taking Zetamicin?"

"1. The possible side effects of taking

Zetamicin include nephrotoxicity and

neurotoxicity."

Figure 4.3: Question answering.

4.2.3 Model Selection
The model selected was GPT-3.5-turbo-16k. Since the document used exceeded
the capabilities of the base turbo model, the 16k token length version was selected.

4.2.4 Performance Evaluation
The questions generated cover various aspects of ZETAMICIN, including its pos-
sible side effects, storage guidelines, and recommended dosage for children and
adolescents. Overall, they offer relevant information about the medication. How-
ever, some questions lack specificity and could be enhanced with more detailed
explanations or clarifications. The fifth question stands out for its comprehensive
response, addressing the specific inquiry about ZETAMICIN’s active ingredient and
demonstrating a strong understanding of the request. Regarding the answers of
the previous generated questions, all the answers are correct, with different degrees
of specificity on the responses.
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4.3 Task: Storytelling on Theorem of Relativity
4.3.1 Task and Topic Definition
With the Storytelling task the model has to generate a particular story given
a specific context and the style in which the text must be written. In this use
case the model was asked to generate a fable that could explain the complicated
Relativity Theory to a child, using fantastic elements. The story should be written
in a children comprehensible language and without complicated term and should
explain all the concept maintaining the narrative thread.

4.3.2 Dataset Selection and Analysis
As shown in Fig. 4.4, the prompt included the details about the elements that
should be used in the story, such as ogres, witches and potions. The full output
can be consulted in the Appendix A.1.1.

question:

"Write a children story in which you explain the

relativity theory with terms comprehensible by

children. Use witches, ogres and potions as

elements."

answer:

Once upon a time, in a magical land filled

with witches, ogres, and potions, there

lived a little witch named Luna. Luna was

different from the other witches because she

loved to explore and discover new things.

One day...

Figure 4.4: Storytelling task. The complete output is in Appendix A.1.1

4.3.3 Model Selection
The model selected was GPT-3.5-turbo.

4.3.4 Performance Evaluation
Overall, the five answers meet the request of creating a children’s story that explains
the theory of relativity using witches, ogres, and potions as imaginative elements.
Each story features a young witch named Willow, who is inquisitive and eager to
learn. The concept of time dilation and its relation to speed is explained in all
stories, using magical potions to transport characters to different dimensions or
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alter their perception of time. The stories also showcase various magical creatures,
such as ogres, to demonstrate the effects of relativity on their experiences of time.

Despite the similarities, there are some differences among the stories. The first
story centers more on the witches’ exploration of relativity, while the others involve
ogres and their understanding of the concept. In the second and fourth stories,
an ogre named Oliver plays a specific role, while other stories feature different
characters. The third story introduces additional characters, Olivia and Ollie, who
learn alongside Willow. The fourth story incorporates an enchanted forest and a
relativity elixir to access the realm of relativity.

In terms of fulfilling the request, all the answers effectively use creative story-
telling and magical elements to explain the theory of relativity in a way suitable for
children. However, the level of detail and depth of explanation varies between the
answers. Some stories focus more on the characters’ experiences and the wonder of
magic, while others provide a more explicit explanation of relativity. The suitability
of each answer may depend on the target audience’s age and understanding of the
scientific concept.

4.4 Task: Named Entity Recognition on Road
Regulation Fines and Limits

4.4.1 Task and Topic Definition

With Named Entity Recognition (NER) the objective is to identify the nominal
entity inside a textual corpus. Given a specific input text, the goal is to correctly
identify and label these entities in order to analyze, understand, and utilize them
in various NLP applications such as information extraction, translation, sentiment
analysis, and many others.

4.4.2 Dataset Selection and Analysis

The corpus used in this task is the same road regulation document used in the
summarization task and the model was asked to identify the entities of fines, speed
limits and road typology inside the text.
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context:

limiti_velocita_cleaned.txt

answer:

1. Fines:

- Somma da lire

sessantatremilacinquecentodieci a lire

duecentocinquantaquattromilatrenta

...

2. Limits:

- 130 km/h

- 110 km/h

- 90 km/h

...

3. Road typologies:

- Autostrade (highways)

- Strade extraurbane principali (main

suburban roads)

- Strade extraurbane secondarie (secondary

suburban roads)

...

question:

"Please perform named entity recognition on the

previous text fo the entities of fines and

relative crime, limits and roads tipologies.

Don't explain anything that was not asked."

Figure 4.5: Named Entity Recogniton.

4.4.3 Model Selection
The model selected was GPT-3.5-turbo-16k. Also in this case, the 16k token length
model was used since the document exceeded the capabilities of the base turbo
model.

4.4.4 Performance Evaluation
The answers, which Fig. 4.5 is an example, provide a good representation of the
named entities related to fines and relative crimes, limits, and road typologies.
They generally include common entities and some specific variations based on
the provided text. However, there are slight differences in the specific entities
mentioned, which may be due to variations in the way named entity recognition is
performed or the specific entities recognized by different NER models. For example,
some answers include additional entities such as specific speed limit values like “130
km/h”, “110 km/h”, “90 km/h” or some fines such as “sospensione della patente di
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guida”.

4.5 Task: Code Generation on PDF Text Extrac-
tion

4.5.1 Task and Topic Definition
With Code Generation, want to generate functional code by specifying the pro-
gramming language and any parameters to the model. The produced code should
be working and exportable.

4.5.2 Dataset Selection and Analysis
In this case, the model was asked to generate a Python function called ’pdf_to_text’
capable of extracting text from a PDF. Once obtained the output and created a
.py file containing the generated code, the same function was tested by using it on
a simple document related to a call for applications taken from the Polytechnic’s
website [30] in PDF format. An example is provided in Fig. 4.6.

question:

Create a python function able to extract textual

information from a pdf file called pdf_to_txt.

Make sure to answer with the function only

without example or other textual informations, to

use latest versions of external modules and

without giving recomendations.
answer:

import PyPDF2

def pdf_to_txt(file_path):

    with open(file_path, 'rb') as file:

        reader = PyPDF2.PdfReader(file)

        text = ''

        for page in reader.pages:

            text += page.extract_text()

    return text

Figure 4.6: Code Generation.

4.5.3 Model Selection
The model selected was GPT-3.5-turbo.
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4.5.4 Performance Evaluation

In summary, all five of the Python function generated by the model successfully
extracts textual information from a PDF file. They share similarities in their use
of the PyPDF2 library, opening the PDF file in binary mode (“rb”) for reading,
iterating through the PDF pages, concatenating the extracted text, and returning
the output as the extracted text.

However, there are differences among the solutions. Some answers use the
PyPDF2.PdfReader class and its extract_text() method, while others utilize the
PyPDF2.PdfFileReader class along with getPage() and extract_text() methods.

Despite these differences, all solutions offer valid and effective ways to accom-
plish the task of text extraction from a PDF file. Some solutions adopt more
modern approaches, directly accessing reader.pages[page_num], while others opt
for simplicity without compromising functionality, using len(reader.pages).

4.6 Task: Code Understanding on HabitatLab
Repository

4.6.1 Task and Topic Definition

The Code Understanding tasks consist on asking the model to explain a specific
piece of code, such as functions or classes implementation, giving details about the
implementation and how the class works. An example is reported in Fig. 4.7.

4.6.2 Dataset Selection and Analysis

The provided input contained the implementation of the classes Env, contained
in the env.py file from the Facebook Research Habitat-Lab [31] repository. Then
the model was asked to explain the content of the file by describing classes and
methods and focusing on the implementation of the first 5 function in order to test
the explainability power of it.

34



Use Cases

context:

env.py

answer:

The given code defines two classes: `Env` and

`RLEnv`. 

1. `Env` class:

   - This class represents the fundamental

environment class for the Habitat framework.

  ...

2. `RLEnv` class:

   - This class is a wrapper over the `Env`

class and subclasses `gym.Env`.

   ...

The first three methods of the `Env` class

are:

- `__init__(self, config: "DictConfig",

dataset: Optional[Dataset[Episode]] = None) ->

None`: ...

question:

"Explain the python code given before.  Describe

all the classes and relative methods. Explain in

detail the first 3 function of the class Env."

Figure 4.7: Code Understanding. The complete response is in Appendix A.1.2

4.6.3 Model Selection

The model selected was GPT-3.5-turbo-16k since the code length exceeded the
4096 token length limit.

4.6.4 Performance Evaluation

The description of the Env class is consistent across all answers, emphasizing its
significance as the fundamental environment class in the Habitat framework. They
highlight its components, including the dataset, simulator, and task, and underscore
its essential methods for resetting the environment, taking actions, and obtaining
observations.
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4.7 Task: Code Review on Rust Code Optimiza-
tion

4.7.1 Task and Topic Definition
The task of Code Review involves reading existing code and optimizing it in terms
of time complexity, readability, coherence, and error correction. Given a specific
code, the model should be able to reproduce the same optimized code.

4.7.2 Dataset Selection and Analysis
As input to the model, a Rust code related to the implementation of a calendar
manager is provided, and then the model is asked to optimize it (Fig. 4.8).

question:

"Try to optimize the given Rust code in terms

of time optimization, variable names

refractoring and other optimization

techniques."

answer:

In this optimized version, I have made the
following changes:

1. Removed unnecessary imports and unused
variables.
2. Simplified the error handling in the
`from` method using the `?` operator.
3. Replaced manual string parsing with

`str::parse()` in the `from` method.
...

context:

main.rs

Figure 4.8: Code Review. The full response is in Appendix A.1.3

4.7.3 Model Selection
The model selected was GPT-3.5-turbo-16k.

4.7.4 Performance Evaluation
All five answers focus on optimizing the given Rust code, with an emphasis on time
optimization, variable name refactoring, and other optimization techniques. The
similarities among the answers include removing unnecessary imports, variables,
and code blocks, as well as optimizing the input file reading process using BufReader
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and read_line functions. The Date struct is refactored in all answers to implement
various traits for enhanced functionality. The optimization, however, is not perfect:
some of the output code generated compiling error, such as missing implementations
of traits. Since the model is updated with Rust documentation up to 2021, some
of the error obtained could be caused to updated documentations of the language.

4.8 Task: From CSV to Natural Language on
Customers File Analysis

4.8.1 Task and Topic Definition
In this task, the goal is to extract quantitative and qualitative analyses from tabular
data, extracting intrinsic information and describing the characteristics of the entire
table. The model is expected to provide an analysis based on a given input file.

4.8.2 Dataset Selection and Analysis
In our case, described in Fig. 4.9, the first 20 records from a public sample file [32]
were used. The file was previously converted into textual data and passed to the
model. Once processed, the model is queried to provide an analysis of the data
and select information based on intrinsic data.

question:
Using the previous text from a csv,
produce an analysis of the data.
Moreover, select the oldest
Subscription Date and the newest.

answer:

Analysis of the data:

1. Composition:
   a. Total number of records: 20
   b. Fields in each record: Index,
Customer Id, First Name, Last Name,

Company, City, Country, Phone 1, Phone 2,
Email, 
Subscription Date, Website

2. Intrinsic Information:
   a. Oldest Subscription Date: 2020-01-23

   b. Newest Subscription Date: 2022-04-22

context:

customer.csv

Figure 4.9: CSV to Text.
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4.8.3 Model Selection
The model selected was GPT-3.5-turbo.

4.8.4 Performance Evaluation
Regarding the fulfillment of the request, all five answers deliver the required analysis
and successfully identify intrinsic information of the data, such as the oldest and
newest Subscription Dates. Answer 1 offers the most comprehensive analysis with
detailed attribute descriptions, while answer 4 provides additional information
about data types. Answer 5 provides a concise and clear summary of the analysis.
Overall, all five answers effectively address the request, but they vary in terms of
level of detail and supplementary information.

4.9 Task: Q&A + Summarization on Pharma-
ceutical Pamphlets

4.9.1 Task and Topic Definition
In this case, the tasks for which the model is to be consulted mainly consist of
question answering and summarization. Furthermore, the aim is to create an
ecosystem capable of being frequently updated without having to retrain the model
from scratch.

4.9.2 Dataset Selection and Analysis
As a dataset, a group of documents related to drug leaflets from the Menarini
pharmaceutical company has been used. The documents are multiple and in PDF
format, which will need to be properly processed by a parser. All the documents
are publicly distributed on the AIFA website

4.9.3 Model selection
The proposed solution consists on a structure composed by a smart search engine,
LlamaIndex [33], and a generative model, ChatGPT. As described in Fig. 4.10,
after indexing all the documents, a smart search engine was used to find the
right document to fulfill the requested query and then, once obtained the relative
embedding, the generative model will create a natural language response. The key
feature of this approach relies on its flexibility: which enables modification and
expansion of the specialized document set without costly retraining. The pre-trained
models used in this methodology provide powerful reasoning and contextualization
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Question ChatGPT

Answer

LlamaIndex

INDEX

Figure 4.10: Structure of task Q&A + Summarization on Pharmaceutical Pam-
phlets.

capabilities, resulting in responses that are easily understandable to the reader.
This approach is well-suited for a range of natural language processing tasks, such
as question answering, chatbots or summarization, due to its combination of the
natural language understanding capabilities of semantic search and the contextual
comprehension of GPT.

4.9.4 Performance Evaluation
The results obtained from the model depend on the type of prompt provided: in
simple QA tasks related to a specific drug, such as asking for the active ingredient,
dosage or interaction, it provides correct results based on the documentation.
Performance can be further enhanced by additional indexing based on the type of
drug to achieve optimal results from documents not publicly available.

4.10 Task: From Natural Language to Robotic
Commands

4.10.1 Task and Topic Definition
The goal of this task is to transform natural language commands into interpretable
commands for other devices. By providing a sequence of natural language com-
mands, the model should be able to convert the input into a serialization of
commands that will later be fed to other devices. The difficulty of this task lies in
the temporal analysis of the input: the model must effectively generate commands
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Figure 4.11: Boston Dynamics SPOT Robot grabbing a bottle from Natural
Language prompt. The test was executed on Area-42 laboratories of Reply’s
Lingotto headquarter in June 2023.

that consistently respect the given input order. The presence of articulated com-
mands written non-sequentially can confuse the model which will produce output
different to the expected ones.

4.10.2 Dataset Selection and Analysis

The task has been tested based on the set of commands used to monitor Boston
Dynamics SPOT Robot [34]. The model is prompted by explaining the command
set and providing a list of information, especially regarding the temporal and
sequential complexity of the input. Then the natural language input command is
provided, and the model will generate a list of commands in the appropriate format
for Boston Dynamics SPOT Robot input. An example of the robot in action is
provided in Fig. 4.11.

Multiple attempts have been made, from simple prompt such as the one provided
in Fig. 4.12, and the success of the attempts is proportional to the amount of
information, constraints, and examples provided as prompts: the more the model
is prompted, the more the output aligns with the expected result.
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question:
Take the bottle over the robotics desk and
take it to the metaverse desk after passing

to the mobility desk.

answer:

1. Navigation: Move to the robotics

desk. [Navigation:robotics_desk]. 

2. Grasp: Grasp the bottle.

[Grasp:bottle]\n

3. Navigation: Move to the mobility

desk. [Navigation:mobility_desk]

4. Place: Place the bottle on the

mobility desk. [Place]

5. Navigation: Move to the metaverse

desk. [Navigation:metaverse_desk]

6. Place: Place the bottle on the

metaverse desk. [Place]

context:

Starting from a robot command in natural

language, you should convert it into a ordered

list of tasks.  We have three type of task with

three type of output:     

1:Navigation: Movement task with output

[Navigation:destination_name].

2:Grasp: Grasp task with output

[Grasp:object_to_be_grasped]

3: Place: No attribute, with output [Place].

Figure 4.12: From Natural Language to Robot Commands, With the first version
of the prompt, the output is not correct.

4.10.3 Model Selection
The model selected was GPT-3.5-turbo.

4.10.4 Performance Evaluation
For the performance evaluation, 15 subjects have been requested to produce three
requests, each one belonging to three different categories:

• For the first category, hereinafter referred as Closed, the request should
contain only fixed object and places. This category is useful to underline the
performance of the robot in a fixed, closed environment.
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• For the second category, named Open, the requests should include any kind
of object and place. With this category of requests, the model is not biased to
any specific object or place.

• For the third category, called Temporal, the requests should be more articu-
lated, with more steps and multiple tasks sequences: the samples belonging to
this category should not be written sequentially reflecting the chronological
order of the task but should include adverbs and different formulations. With
this prompts the model is stressed to understand the underlying chronological
sequence.

The complete list of prompts for each category can be found in Appendix A.2.2.

The model was evaluated using a prompt engineering technique: for each level,
there is a specific pair of request and prompt, and the correctness of the output
produced by the two elements is assessed. Based on the results and errors generated
at each level, prompt and request are modified for the following level to correct
the model’s behavior. Once stressed to a successful point, the complexity of the
request is modified and enriched with more difficult particulars in order to test
its limits. Each one of the 15 output are compared to the exact unique command
translation. Also in this case, each request was tested 5 times.

The first level of prompting involved providing the model only the instruc-
tions regarding the three types of tasks allowed and their corresponding output
formatting.

context = "Starting from a robot command in natural language, you
should convert it into a ordered list of tasks. We have three types
of tasks with three types of output:

1: Navigation: Movement task with output [Navigation:destination_name].
2: Grasp: Grasp task with output [Grasp:object_to_be_grasped].
3: Place: No attribute, with output [Place]."

As shown in Table 4.2, all the 45 requests were translated wrong in each of
the 5 attempts. The generated responses included additional introductions (The
ordered list of tasks would be:...) and they did not respect the provided
format of the task translation and the temporal order of actions was not respected.
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Category Success Rate Accuracy Percentage

Closed 0/75 0%

Open 0/75 0%

Temporal 0/75 0%

Table 4.2: Results for the first attempt.

For the second level, the context was enriched with details regarding the correct
format of the output (In the output include just the squared brackets format
explained before.), specifying the exclusion of verbal introduction and special
characters. The full context can be found in Appendix A.2.1.

With this new details, the results listed in Table 4.3 shows improvement for
the Closed category, in which the tasks contained in each requests are written
sequentially and using always the same combination of objects, shows improvement
in the translation. The model produced wrong translations with the other categories
since their requests are more articulated and generalized on different objects.

Category Success Rate Accuracy Percentage

Closed 17/75 22.67%

Open 0/75 0%

Temporal 0/75 0%

Table 4.3: Results for the second attempt.

In the third level, the context is modified with more indications about the
temporal order of each prompt: the model should start considering the temporal
order of the Grasp and Place actions in order to avoid a Place action without a
previous Grasp task. The full context can be found in Appendix A.2.1.

With this temporal specification, the model translated correctly half of the
requests of the Open group. Moreover, the results for the Closed category improved
(Table 4.4) and the errors in those translation were caused by some misspelled
words (Navigate instead of Navigation) that need to be corrected by a sharpened
context. The model is still not able to recognize and resolve the prompts of the
third Temporal group.
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Category Success Rate Accuracy Percentage

Closed 52/75 69.33%

Open 44/75 58.67%

Temporal 3/75 4%

Table 4.4: Results for the third attempt.

In the fourth level, more formatting instructions were added into the context in
order to solve the misspelling problems, limiting the model on using the three names
of the task (You must use only the three task names (Navigation, Grasp
and Place) and avoid any special character or synonym) and prioritizing
the identification of the place relative to the Grasp and Place tasks. With these
specification, optimal results are obtained for the first two categories. Even if the
model is able to identify the place in which a Place/Grasp need to be done, it still
does not recognize the temporal order in the sentences.

Category Success Rate Accuracy Percentage

Closed 53/75 70.67%

Open 71/75 94.67%

Temporal 7/75 9.33%

Table 4.5: Results for the forth attempt.

The context of the fifth level emphasizes the importance of the order of Navi-
gations tasks and and ask the model to first target the location where there is a
Place or a Grasp task before the translation. It also mentions the possibility of
having multiple stops (navigations) before a specific Place. The results, reported
in Tab. 4.6, shows how this configuration improves the interpretation of temporal
articulated commands: the model is now able to identify the objects and the places
where the object must be picked or moved.
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Category Success Rate Accuracy Percentage

Closed 61/75 81.33%

Open 70/75 93.33%

Temporal 26/75 34.67%

Table 4.6: Results for the fifth attempt.

For the sixth level, the context was changed from a zero-shot perspective to
a one-shot setting, adding an example of possible application (Example: with the
prompt "take the bottle from the table, and take it to the chair after
passing to the bathroom" you should produce: [Navigation:table],
[Grasp:Bottle], [Navigation:Bathroom], [Navigation:chair], [Place].).
Moreover, this context adds a step to perform a temporal analysis and find the
correct order before translating the command into the ordered list of tasks. As
shown in Table 4.7, the one-shot example increased the performance scores for all
of the three request categories: with the provided example the model is able to
translate correctly all of the 15 requests belonging to the Open category, while
the performance results for the Temporal category are almost doubled from the
previous attempt.

Category Success Rate Accuracy Percentage

Closed 75/75 100%

Open 72/75 96%

Temporal 43/75 57.33%

Table 4.7: Results for the sixth attempt.

The results obtained in each level, summarized in Figure 4.13 and accessible
through the GitHub repository [35], prove how the right prompting technique is
fundamental for the generation of the expected responses: in each level, the context
was enriched with new instructions and commands carefully designed to solve
the errors made in the previous level, allowing the model to deeply understand
the specifics, identify the right temporal order of each request and translate the
requests correctly. With this approach, the performance scores for the first two
categories, which represent respectively the applications of the translation in fixed
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and casual environments, are maximized. The results for the third category are
sufficiently good compared to the temporal difficulty and the language formulation
of the requests.
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Figure 4.13: Performance overview. Full results can be consulted in the Github
repository [35].
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Chapter 5

Conclusions

This thesis aimed to introduce a methodological approach for the implementation of
text-to-text NLP tasks using state-of-the-art generative models. In an application
context, the proposed approach would significantly reduce production delays, as
outlining the data perimeter in the initial phase and identifying key features such
as size, confidentiality, or update times would allow for the identification of the
appropriate model coherent with the expected results from the client. Moreover, by
standardizing the evaluation process, a proper analysis of performance for different
and variable results from generative models could be provided.

The results obtained for the analyzed tasks demonstrate how, despite different
levels of task complexity, the examined models are capable of generating highly
coherent results consistent with the content of the input and resembling responses
that could plausibly be generated by a human. As highlighted by the natural
language to robot commands translation task, the use of the methodology combined
with prompt engineering leads to a maximization of the performance results, as
the model receives an adequate context to properly satisfy the request. Detailed
prompts, therefore, correspond to equally detailed responses.

At the same time, however, some limitations were faced: one consists on the
number of tokens the models can accept as input, leading to constraints for the
input data, such the impossibility of using multi-page documents with an elevated
number of pages. Another limitation is related to the model’s obsolescence: using
models trained on datasets up until September 2021, it is observed that the model
may generate errors in some coding tasks due to, for example, the use of deprecated
functions or updates in the documentation of the programming languages used.

A future development of the methodology could consist on the integration of
multi-modal generative models in order to include NLP tasks related to non-textual
input content, such as images, video or audio. With multi-modal models, NLP
can amplify machine translation capabilities through the integration of visual
information extracted from images or videos, leading to more refined translations.
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Moreover, it can elevate sentiment analysis by assimilating non-textual data like
facial expressions or vocal intonations.

In conclusion, this thesis demonstrate the efficiency of this methodological
approach for text-to-text NLP tasks that could be extended on non-textual input
data, enlarging its domain of applicability.
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Appendix

A.1 Task Examples

A.1.1 StoryTelling Output
Once upon a time, in a magical land filled with witches, ogres, and potions,
there lived a little witch named Luna. Luna was different from the other witches
because she loved to explore and discover new things. One day, while flying on her
broomstick, Luna stumbled upon a mysterious potion hidden deep in the enchanted
forest.

Curiosity sparked in Luna’s eyes as she picked up the potion. Little did she
know, this potion held the power to teach her about a fascinating concept called
the relativity theory. Luna hurried back to her cozy cottage, eager to unravel the
secrets hidden within the potion.

As Luna peered into her cauldron, she poured the potion slowly, and a magical
mist began to rise. Suddenly, the potion transformed into a swirling portal that
transported Luna to a strange world where witches, ogres, and potions all seemed
to behave differently.

In this new world, Luna met a friendly ogre named Oliver. Oliver explained to
Luna that in this world, everything moved differently because time and space were
interconnected. He told her that time could stretch or shrink, depending on how
fast you moved or how strong the magic around you was.

With wide eyes, Luna was fascinated. Oliver offered to demonstrate the concept
with a magical race. Luna and Oliver stood side by side, and Luna cast a spell to
make them both run at the same speed. As they sprinted through the enchanted
meadow, Luna noticed something amazing: the faster they ran, the slower time
seemed to pass. It was as if everything around them was moving in slow motion.

Luna was amazed but also a little confused. She asked Oliver how this was
possible. The friendly ogre explained that it was all because of the relativity theory.
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He said, "Just like magic, time and space can twist and turn, but they always
follow certain rules. When you move very quickly, time slows down for you, while
everything else seems to speed up."

Luna nodded, beginning to understand. She realized that even in her own world,
different witches and ogres could experience time differently depending on their
speed or the magic they used. The relativity theory was like a secret ingredient in
the potion of the universe, making everything connected and in constant motion.

As Luna bid farewell to Oliver and returned to her own world, she carried the
newfound knowledge of the relativity theory with her. She knew that understanding
the world around her required curiosity, exploration, and a touch of magic.

From that day forward, Luna continued to explore and discover new wonders of
the magical land. And whenever she encountered a fellow witch or ogre, she would
share her knowledge of the relativity theory, teaching them how time and space
could twist and turn but always followed certain rules.

And so, Luna became known as the wise witch who understood the mysteries
of the universe, all thanks to a magical potion, a friendly ogre, and a little bit of
curiosity.

A.1.2 Code Understanding
The given code defines two classes: ‘Env‘ and ‘RLEnv‘.

1. ‘Env‘ class:
- This class represents the fundamental environment class for the Habitat frame-
work.
- It has attributes such as ‘observation_space‘, ‘action_space‘, ‘_config‘, ‘_dataset‘,
‘number_of_episodes‘, ‘_current_episode‘, ‘_episode_iterator‘, ‘_sim‘, ‘_task‘,
‘_max_episode_seconds‘, ‘_max_episode_steps‘, ‘_elapsed_steps‘, ‘_episode_start_time‘,
‘_episode_over‘, ‘_episode_from_iter_on_reset‘, and ‘_episode_force_changed‘.
- The constructor ‘__init__‘ takes a configuration dictionary and an optional
dataset as input and initializes the environment object.
- The ‘_setup_episode_iterator‘ method sets up the episode iterator using the
dataset.
- The ‘current_episode‘ property returns the current episode.
- The ‘episode_iterator‘ property returns the episode iterator.
- The ‘episodes‘ property returns the list of episodes.
- The ‘sim‘ property returns the simulator object.
- The ‘episode_start_time‘ property returns the start time of the current episode.
- The ‘episode_over‘ property returns a boolean indicating whether the current
episode is over.
- The ‘task‘ property returns the embodied task associated with the environment.
- The ‘get_metrics‘ method returns the metrics associated with the task.
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- The ‘_past_limit‘ method checks if the maximum number of steps or maximum
time limit for an episode has been reached.
- The ‘_reset_stats‘ method resets the statistics for the current episode.
- The ‘reset‘ method resets the environment and returns the initial observations.
- The ‘_update_step_stats‘ method updates the step statistics after performing
an action. - The ‘step‘ method performs an action in the environment and returns
the observations after the action.
- The ‘seed‘ method sets the random seed for reproducibility.
- The ‘reconfigure‘ method updates the configuration of the environment.
- The ‘render‘ method renders the current state of the environment.
- The ‘close‘ method closes the environment.
- The ‘__enter__‘ and ‘__exit__‘ methods allow using the environment as a
context manager.

2. ‘RLEnv‘ class:
- This class is a wrapper over the ‘Env‘ class and subclasses ‘gym.Env‘.
- It provides an interface for RL environments and requires users to define methods
such as ‘get_reward_range‘, ‘get_reward‘, ‘get_done‘, and ‘get_info‘.
- The constructor ‘__init__‘ initializes the ‘RLEnv‘ object by creating an instance
of ‘Env‘ and setting the observation space, action space, number of episodes, and
reward range.
- It also provides methods for getting the current episode, resetting the environment,
stepping through the environment, setting the random seed, rendering, and closing
the environment.
- It also defines the ‘__enter__‘ and ‘__exit__‘ methods to use the environment
as a context manager.

The first three methods of the ‘Env‘ class are:

- ‘__init__(self, config: "DictConfig", dataset: Optional[Dataset[Episode]] =
None) -> None‘: This is the constructor of the ‘Env‘ class. It takes a configuration
dictionary and an optional dataset as arguments. It initializes the environment
object by setting the configuration, dataset, current episode, episode iterator, sim-
ulator, task, maximum episode seconds, maximum episode steps, elapsed steps,
episode start time, and episode over flag. It also sets the observation space and
action space based on the sensor suites of the simulator and task. It loads the first
scene from the dataset if available and sets the scene dataset and scene ID in the
configuration. Finally, it sets the number of episodes.

- ‘_setup_episode_iterator(self)‘: This method sets up the episode iterator
using the dataset. It converts the iterator options from the configuration into a
dictionary and passes it to the ‘get_episode_iterator‘ method of the dataset.
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- ‘reset(self) -> Observations‘: This method resets the environment and returns
the initial observations. It calls the ‘_reset_stats‘ method to reset the statistics,
clears the shortest path cache of the current episode, and obtains a new current
episode if the episode iterator is set. It reconfigures the environment with the
current episode’s scene dataset and scene ID. Then, it calls the ‘reset‘ method of
the task and updates the task’s measurements. Finally, it returns the observations
obtained from the task.

A.1.3 Code Review

Sure! Here’s an optimized version of the Rust code:

use std::cmp::{min, Ordering};
use std::fmt::{Display, Formatter, Result};
use std::fs::File;
use std::io::{self, BufRead, BufReader, Error};
use std::ops::Sub;

struct Calendar {
schedule: Vec<(Date, Date)>,
bounds: (Date, Date),

}

impl Calendar {
fn new(schedule: Vec<(Date, Date)>, bounds: (Date, Date)) ->

Self {
Calendar { schedule, bounds }

}

fn from(path: &str) -> Result<Self> {
let input = File::open(path)?;
let reader = BufReader::new(input);

let line = reader.lines().next().ok_or_else(||
io::Error::new(io::ErrorKind::InvalidData, "Invalid input
format"))??;

let time: Vec<_> = line.trim().split(’:’).map(|s|
s.parse().unwrap()).collect();

let d1 = Date::new(time[0], time[1]);
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let line = reader.lines().next().ok_or_else(||
io::Error::new(io::ErrorKind::InvalidData, "Invalid input
format"))??;

let time: Vec<_> = line.trim().split(’:’).map(|s|
s.parse().unwrap()).collect();

let d2 = Date::new(time[0], time[1]);

let bounds = (d1, d2);

let schedule: Vec<(Date, Date)> =
reader.lines().map(|line| {

let line = line.unwrap();
let time: Vec<_> = line.trim().split(’:’).map(|s|

s.parse().unwrap()).collect();
let d1 = Date::new(time[0], time[1]);

let line = reader.lines().next().unwrap().unwrap();
let time: Vec<_> = line.trim().split(’:’).map(|s|

s.parse().unwrap()).collect();
let d2 = Date::new(time[0], time[1]);

(d1, d2)
}).collect();

Ok(Calendar::new(schedule, bounds))
}

}

struct Date {
h: i32,
m: i32,

}

impl Date {
fn new(h: i32, m: i32) -> Self {

Date { h, m }
}

}

impl Display for Date {
fn fmt(&self, f: &mut Formatter<’_>) -> Result {
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write!(f, "{:02}:{:02}", self.h, self.m)
}

}

impl Ord for Date {
fn cmp(&self, other: &Self) -> Ordering {

self.h.cmp(&other.h).then(self.m.cmp(&other.m))
}

}

impl PartialOrd for Date {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {

Some(self.cmp(other))
}

}

impl PartialEq for Date {
fn eq(&self, other: &Self) -> bool {

self.h == other.h && self.m == other.m
}

}

impl Eq for Date {}

impl Sub for Date {
type Output = Date;

fn sub(self, rhs: Self) -> Self::Output {
let minutes = (self.h * 60 + self.m) - (rhs.h * 60 +

rhs.m);
Date {

h: minutes / 60,
m: minutes % 60,

}
}

}

fn main() {
let args: Vec<String> = std::env::args().collect();
let c1 = Calendar::from(&args[1]).unwrap();
let c2 = Calendar::from(&args[2]).unwrap();
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let int = args[3].parse::<i32>().unwrap();
let intd = Date::new(int / 60, int % 60);

let s1 = c1.bounds.0;
let e1 = c1.bounds.1;
let s2 = c2.bounds.0;
let e2 = c2.bounds.1;

let mut i1 = c1.schedule.iter().peekable();
let mut i2 = c2.schedule.iter().peekable();

let mut s = Date::new(0, 0);
if s1 >= s2 {

s = s1;
loop {

let b1 = i1.peek().copied().unwrap_or(&e1);
let b2 = i2.peek().copied().unwrap_or(&e2);

let b = min(b1.0, b2.0);
if b - s > intd {

println!("{} {}", s, b);
}
s = max(b1.1, b2.1);

if i1.next().is_none() && i2.next().is_none() {
break;

}
}

}
}

In this optimized version, I have made the following changes:

1. Removed unnecessary imports and unused variables.
2. Simplified the error handling in the ‘from‘ method using the ‘¿ operator.
3. Replaced manual string parsing with ‘str::parse()‘ in the ‘from‘ method.
4. Removed unnecessary ‘unwrap()‘ and ‘clear()‘ calls.
5. Simplified the ‘fmt‘ implementation for ‘Display‘ trait in the ‘Date‘ struct.
6. Implemented ‘Ord‘, ‘PartialOrd‘, ‘PartialEq‘, ‘Eq‘, and ‘Sub‘ traits for ‘Date‘ in
a more concise and idiomatic way.
7. Replaced ‘std::cmp::Ordering‘ with ‘Ordering‘ for brevity.
8. Used ‘peekable()‘ iterator adaptors to avoid unnecessary cloning and unwrapping
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in the main loop.
9. Replaced the ‘ge()‘ method with a combination of ‘cmp()‘ and ‘eq()‘ methods in
the ‘PartialOrd‘ implementation for ‘Date‘.
10. Improved variable naming for better readability.

These optimizations should improve the performance and maintainability of the
code.

A.2 Natural Language to Robotic Commands

A.2.1 List of Contexts

Context 1

"Starting from a robot command in natural language, you should convert it into
a ordered list of tasks. We have three type of task with three type of output: 1:
Navigation: Movement task with output [Navigation:destination_name] 2: Grasp:
Grasp task with output [Grasp:object_to_be_grasped] 3: Place: No attribute,
with output [Place]",

Context 2

"Starting from a robot command in natural language, you should convert it into
a ordered list of tasks. We have three type of task with three type of output: 1:
Navigation: Movement task with output: [Navigation:destination_name] 2: Grasp:
Grasp the object task with output: [Grasp:object_to_be_grasped] 3: Place: Place
the object, output: [Place] In the output include just the squared brackets format
explained before and avoid any special character: each task should be separated by
a comma.",

Context 3

"Starting from a robot command in natural language, you should convert it into
a ordered list of tasks. We have three type of task with three type of output: 1:
Navigation: Movement task. output: [Navigation:destination_name] 2: Grasp:
Grasp objects task, output: [Grasp:object_to_be_grasped] 3: Place: Place object,
output: [Place] In the output include just the squared brackets format explained
before and avoid any special character: each task should be separated by a comma.
Whenever there is a Grasp task, be careful on considering where the object should
be placed and therefore Navigate to it",
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Context 4

"Starting from a robot command in natural language, you should convert it into
a ordered list of tasks. We have three type of task with three type of output: 1:
Navigation: Movement task. output: [Navigation:destination_name] 2: Grasp:
Grasp objects task, output: [Grasp:object_to_be_grasped] 3: Place: Place object,
output: [Place] In the output include just the squared brackets and you must use
only the three task names (Navigation, Grasp and Place) and avoid any special
character or synonym: each task should be separated by a comma and a space
([task], [task], ...). Whenever there is a Grasp task, be careful on considering
where the object should be placed and therefore make a Navigation to it after-
ward. Use the underscore to separate multiple word names (washing machine ->
washing_machine).",

Context 5

"Starting from a robot command in natural language, you should convert it into
a ordered list of tasks. We have three type of task with three type of output: 1:
Navigation: Movement task. output: [Navigation:destination_name] 2: Grasp:
Grasp objects task, output: [Grasp:object_to_be_grasped] 3: Place: Place object,
output: [Place] In the output include just the squared brackets and you must use
only the three task names (Navigation, Grasp and Place) and avoid any special
character or synonym: each task should be separated by a comma and a space
([task], [task], ...). Whenever there is a Grasp task, be careful on considering
where the object should be placed and therefore make a Navigation to it after-
ward. Use the underscore to separate multiple word names (washing machine
-> washing_machine). MOST IMPORTANT: be careful about the order of the
navigations and target the place in which you have a Place or a Grasp. You can
have MULTIPLE STOPS (so navigations) before a specific Place.",

Context 6

"Starting from a robot command in natural language, you should convert it into
a ordered list of tasks. We have three type of task with three type of output: 1:
Navigation: Movement task. output: [Navigation:destination_name] 2: Grasp:
Grasp objects task, output: [Grasp:object_to_be_grasped] 3: Place: Place object,
output: [Place] In the output include just the squared brackets and you must use
only the three task names (Navigation, Grasp and Place) and avoid any special
character or synonym: each task should be separated by a comma and a space
([task], [task], ...). Use the underscore to separate multiple word names (washing
machine -> washing_machine). MOST IMPORTANT: be careful about the order
of the navigations and target the place in which you have a Place and from you
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have a GRASP. You can have MULTIPLE STOPS (so navigations) before a specific
Task, so for first do a temporal analysis, find the right order and then translate. For
example with the input: "take the bottle from the table, and take it to the chair after
passing to the bathroom" you should produce:[Navigation:table], [Grasp:Bottle],
[Navigation:Bathroom], [Navigation:chair], [Place].",

A.2.2 List of Prompts

Closed

1. Go to the bathroom, take the bottle and place it on the table.

2. Go to the table, take the paper and place it in the bathroom.

3. Move the paper from the chair to the table.

4. Go to the table, pick up the glass and put it down to the chair.

5. Start by going to the bathroom, grasp the bottle and proceed to place it on
the chair.

6. Take the paper from the bathroom and move it to the chair.

7. When you’re arrived at the chair, pick the paper and move it to the bathroom.

8. Take the glass on the table and place it on the chair.

9. From the chair pick the glass and put it on the bathroom.

10. Move the glass from the bathroom to the chair.

11. Once you are at the table, pick the glass and place it on the chair.

12. Pick up the glass from the bathroom and place it on the chair.

13. Move the glass from the chair to the bathroom.

14. Start by going to the table, pick the glass and place it to the bathroom.

15. Once you arrived at the table, pick the bottle and drop it on the chair.
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Open

1. Go to the bathroom, take the bottle and place it on the table.

2. Go to the table, take the paper and place it in the bathroom.

3. Move the paper from the chair to the table.

4. Go to the table, pick up the glass and put it down to the chair.

5. Start by going to the bathroom, grasp the bottle and proceed to place it on
the chair.

6. Take the paper from the bathroom and move it to the chair.

7. When you’re arrived at the chair, pick the paper and move it to the bathroom.

8. Take the glass on the table and place it on the chair.

9. From the chair pick the glass and put it on the bathroom.

10. Move the glass from the bathroom to the chair.

11. Once you are at the table, pick the glass and place it on the chair.

12. Pick up the glass from the bathroom and place it on the chair.

13. Move the glass from the chair to the bathroom.

14. Start by going to the table, pick the glass and place it to the bathroom.

15. Once you arrived at the table, pick the bottle and drop it on the chair.

Temporal

1. After passing in front of the Red Office, go to the vending machine, pick the
snack and come back in the Green Office.

2. You’re in the entrance. Pick the toothbrush in the bathroom, put it in the bin
on the balcony and go back to the kitchen. Then proceed to pick the glass
and put it in the bedroom after passing through the hallway. Go back to the
starting point.

3. Bring the remote from the living room and bring it to the kitchen after passing
through the hallway. Then, pick it again and put it back in the living room.

4. From the bathroom, pick the perfume and put it in the laundry room after
stepping by the entrance.
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5. Go to the entrance, pick the leash and put it in the living room. Then pick
the keys, pass through the kitchen and put them in the stairs.

6. Go to the metaverse desk, pick the water bottle and put it into the navigation
desk just after passing in front of the logistic point.

7. You’re in Area42. Move to the office 342, pick the phone on the table and
move it to the office 342. Then come back to the starting point.

8. Bring to the main entrance the book from the disco room. Then pass through
office32 and office33. Come back.

9. Before picking the book from the library and put it on the kitchen floor, please
move the bottle from the table to the desk.

10. Take the phone from the desk to the room but only after bringing the charger
there from the sofa.

11. Go to the laundry, pick the detergent and leave it in the bathroom. Then,
after passing in front of the main entrance, take the coat from the kitchen and
move it in the bedroom.

12. After moving the bag from the bedroom to the kitchen, go to the balcony and
pick the towel. Then place the towel in the laundry room.

13. From Area42, pick the charger and put it in the office 411. Then go to the
disco room after stepping to the office c1.

14. Before picking the coat from the chair in the living room, pick the shoe from
the closet in the bedroom and put it in the entrance.

15. Take the mug from the kitchen to the office1 but only after picking the coffee
from the office2 to the kitchen.

60



Bibliography

[1] url: https://openai.com// (cit. on p. 3).
[2] url: https://ai.meta.com/ (cit. on p. 3).
[3] url: https://ai.google/ (cit. on p. 3).
[4] William Cavnar and John Trenkle. «N-Gram-Based Text Categorization».

In: Proceedings of the Third Annual Symposium on Document Analysis and
Information Retrieval (May 2001) (cit. on p. 4).

[5] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Esti-
mation of Word Representations in Vector Space. 2013. arXiv: 1301.3781
[cs.CL] (cit. on p. 4).

[6] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase Repre-
sentations using RNN Encoder-Decoder for Statistical Machine Translation.
2014. arXiv: 1406.1078 [cs.CL] (cit. on p. 5).

[7] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. «A Review of
Recurrent Neural Networks: LSTM Cells and Network Architectures». In:
Neural Computation 31.7 (July 2019), pp. 1235–1270. issn: 0899-7667. doi:
10.1162/neco_a_01199 (cit. on p. 5).

[8] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. «Deep contextualized word repre-
sentations». In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies. 2018, pp. 2227–2237 (cit. on p. 5).

[9] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. «Neural machine
translation by jointly learning to align and translate». In: arXiv preprint
arXiv:1409.0473 (2015) (cit. on p. 5).

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. 2017. arXiv: 1706.03762 [cs.CL] (cit. on pp. 5–7).

61

https://openai.com//
https://ai.meta.com/
https://ai.google/
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1406.1078
https://doi.org/10.1162/neco_a_01199
https://arxiv.org/abs/1706.03762


BIBLIOGRAPHY

[11] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec
Radford, Mark Chen, and Ilya Sutskever. Zero-Shot Text-to-Image Generation.
2021. arXiv: 2102.12092 [cs.CV] (cit. on p. 8).

[12] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. «Im-
proving language understanding by generative pre-training». In: OpenAI
Technical Report, 2018 (2018). url: https://d4mucfpksywv.cloudfront.
net/better- language- models/language_models_are_unsupervised_
multitask_learners.pdf (cit. on p. 9).

[13] Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urta-
sun, Antonio Torralba, and Sanja Fidler. Aligning Books and Movies: Towards
Story-like Visual Explanations by Watching Movies and Reading Books. 2015.
arXiv: 1506.06724 [cs.CV] (cit. on p. 10).

[14] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. «Language Models are Unsupervised Multitask Learners». In:
OpenAI Blog (2019) (cit. on p. 10).

[15] Common Crawl Corpus. Web Corpus. Version 2021-09. 2021. url: https:
//commoncrawl.org/ (cit. on p. 10).

[16] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. arXiv:
2005.14165 [cs.CL] (cit. on p. 11).

[17] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. «Generating
long sequences with sparse transformers». In: Proceedings of the International
Conference on Learning Representations (ICLR). 2019 (cit. on p. 11).

[18] Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and
Dario Amodei. Deep reinforcement learning from human preferences. 2023.
arXiv: 1706.03741 [stat.ML] (cit. on p. 12).

[19] Long Ouyang et al. Training language models to follow instructions with
human feedback. 2022. arXiv: 2203.02155 [cs.CL] (cit. on p. 12).

[20] Aakanksha Chowdhery et al. PaLM: Scaling Language Modeling with Path-
ways. 2022. arXiv: 2204.02311 [cs.CL] (cit. on pp. 13–15).

[21] Hugo Touvron et al. LLaMA: Open and Efficient Foundation Language Models.
2023. arXiv: 2302.13971 [cs.CL] (cit. on p. 16).

[22] OpenAI. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL] (cit. on
p. 17).

[23] url: https://github.com// (cit. on p. 23).
[24] url: https://huggingface.co/models (cit. on p. 23).
[25] url: https://huggingface.co/mosaicml/mpt-7b-storywriter (cit. on

p. 24).

62

https://arxiv.org/abs/2102.12092
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/1506.06724
https://commoncrawl.org/
https://commoncrawl.org/
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2303.08774
https://github.com//
https://huggingface.co/models
https://huggingface.co/mosaicml/mpt-7b-storywriter


BIBLIOGRAPHY

[26] url: https://huggingface.co/mosaicml/mpt-7b-chat (cit. on p. 24).
[27] url: https://www.mosaicml.com/t (cit. on p. 24).
[28] Sample CSV files. Accessed on July 17, 2023. url: https://github.com/

datablist/sample-csv-files (cit. on p. 27).
[29] Foglio illustrativo: informazioni per l’utilizzatore ZETAMICIN. Online. Ac-

cessed on July 17, 2023. url: https://farmaci.agenziafarmaco.gov.
it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_000542_
024829_FI.pdf&sys=m0b1l3 (cit. on p. 28).

[30] Politecnico di Torino. Bando per erogazione del contributo ministeriale per le
spese di locazione abitativa sostenuta dagli studenti fuori sede. Accessed on July
17, 2023. url: https://didattica.polito.it/pls/portal30/sviluppo.
pkg_apply_admin.download_bando?p_id_bando=34038&p_tipo=bando
(cit. on p. 33).

[31] Andrew Szot et al. «Habitat 2.0: Training Home Assistants to Rearrange their
Habitat». In: Advances in Neural Information Processing Systems (NeurIPS).
2021. url: https://github.com/facebookresearch/habitat-lab/blob/
main/habitat-lab/habitat/core/env.py (cit. on p. 34).

[32] Gazzetta Ufficiale. Art.9 Limiti di Velocità. Accessed on July 17, 2023. url:
https://www.gazzettaufficiale.it/atto/serie_generale/caricaArt
icolo?art.versione=1&art.idGruppo=0&art.flagTipoArticolo=0&art.
codiceRedazionale=002G0022&art.idArticolo=9&art.idSottoArticol
o=1&art.idSottoArticolo1=10&art.dataPubblicazioneGazzetta=2002-
02-12&art.progressivo=0#:~:text=Ai%20fini%20della%20sicurezza%
20della,per%20le%20strade%20nei%20centri (cit. on p. 37).

[33] Jerry Liu. LlamaIndex. Nov. 2022. doi: 10.5281/zenodo.1234. url: https:
//github.com/jerryjliu/llama_index (cit. on p. 38).

[34] url: https://dev.bostondynamics.com/ (cit. on p. 40).
[35] url: https://github.com/stestrippoli/NLP-tasks/tree/main/robotp

rompt/results (cit. on pp. 45, 46).

63

https://huggingface.co/mosaicml/mpt-7b-chat
https://www.mosaicml.com/t
https://github.com/datablist/sample-csv-files
https://github.com/datablist/sample-csv-files
https://farmaci.agenziafarmaco.gov.it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_000542_024829_FI.pdf&sys=m0b1l3
https://farmaci.agenziafarmaco.gov.it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_000542_024829_FI.pdf&sys=m0b1l3
https://farmaci.agenziafarmaco.gov.it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_000542_024829_FI.pdf&sys=m0b1l3
https://didattica.polito.it/pls/portal30/sviluppo.pkg_apply_admin.download_bando?p_id_bando=34038&p_tipo=bando
https://didattica.polito.it/pls/portal30/sviluppo.pkg_apply_admin.download_bando?p_id_bando=34038&p_tipo=bando
https://github.com/facebookresearch/habitat-lab/blob/main/habitat-lab/habitat/core/env.py
https://github.com/facebookresearch/habitat-lab/blob/main/habitat-lab/habitat/core/env.py
https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.versione=1&art.idGruppo=0&art.flagTipoArticolo=0&art.codiceRedazionale=002G0022&art.idArticolo=9&art.idSottoArticolo=1&art.idSottoArticolo1=10&art.dataPubblicazioneGazzetta=2002-02-12&art.progressivo=0#:~:text=Ai%20fini%20della%20sicurezza%20della,per%20le%20strade%20nei%20centri
https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.versione=1&art.idGruppo=0&art.flagTipoArticolo=0&art.codiceRedazionale=002G0022&art.idArticolo=9&art.idSottoArticolo=1&art.idSottoArticolo1=10&art.dataPubblicazioneGazzetta=2002-02-12&art.progressivo=0#:~:text=Ai%20fini%20della%20sicurezza%20della,per%20le%20strade%20nei%20centri
https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.versione=1&art.idGruppo=0&art.flagTipoArticolo=0&art.codiceRedazionale=002G0022&art.idArticolo=9&art.idSottoArticolo=1&art.idSottoArticolo1=10&art.dataPubblicazioneGazzetta=2002-02-12&art.progressivo=0#:~:text=Ai%20fini%20della%20sicurezza%20della,per%20le%20strade%20nei%20centri
https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.versione=1&art.idGruppo=0&art.flagTipoArticolo=0&art.codiceRedazionale=002G0022&art.idArticolo=9&art.idSottoArticolo=1&art.idSottoArticolo1=10&art.dataPubblicazioneGazzetta=2002-02-12&art.progressivo=0#:~:text=Ai%20fini%20della%20sicurezza%20della,per%20le%20strade%20nei%20centri
https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.versione=1&art.idGruppo=0&art.flagTipoArticolo=0&art.codiceRedazionale=002G0022&art.idArticolo=9&art.idSottoArticolo=1&art.idSottoArticolo1=10&art.dataPubblicazioneGazzetta=2002-02-12&art.progressivo=0#:~:text=Ai%20fini%20della%20sicurezza%20della,per%20le%20strade%20nei%20centri
https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.versione=1&art.idGruppo=0&art.flagTipoArticolo=0&art.codiceRedazionale=002G0022&art.idArticolo=9&art.idSottoArticolo=1&art.idSottoArticolo1=10&art.dataPubblicazioneGazzetta=2002-02-12&art.progressivo=0#:~:text=Ai%20fini%20della%20sicurezza%20della,per%20le%20strade%20nei%20centri
https://doi.org/10.5281/zenodo.1234
https://github.com/jerryjliu/llama_index
https://github.com/jerryjliu/llama_index
https://dev.bostondynamics.com/
https://github.com/stestrippoli/NLP-tasks/tree/main/robotprompt/results
https://github.com/stestrippoli/NLP-tasks/tree/main/robotprompt/results

	List of Tables
	List of Figures
	Introduction
	State of the Art
	Natural Language Processing
	Word Embeddings
	Attention
	Transformer

	Generative AI
	GPT-1
	GPT-2
	GPT-3
	ChatGPT
	PaLM
	LLaMA
	GPT-4


	Methodology
	Goal
	Methodology
	Task and Topic Definition
	Dataset Selection and Analysis
	Model Selection
	Performance Evaluation

	First Steps to Apply the Methodology in a Real Use Case

	Use Cases
	Task: Text Summarization on Road Regulation Documents
	Task and Topic Definition
	Dataset Selection and Analysis
	Model Selection
	Performance Evaluation

	Task: Question Answering on Pharmaceutical Instructions
	Task and Topic Definition
	Dataset Selection and Analysis
	Model Selection
	Performance Evaluation

	Task: Storytelling on Theorem of Relativity
	Task and Topic Definition
	Dataset Selection and Analysis
	Model Selection
	Performance Evaluation

	Task: Named Entity Recognition on Road Regulation Fines and Limits
	Task and Topic Definition
	Dataset Selection and Analysis
	Model Selection
	Performance Evaluation

	Task: Code Generation on PDF Text Extraction
	Task and Topic Definition
	Dataset Selection and Analysis
	Model Selection
	Performance Evaluation

	Task: Code Understanding on HabitatLab Repository
	Task and Topic Definition
	Dataset Selection and Analysis
	Model Selection
	Performance Evaluation

	Task: Code Review on Rust Code Optimization
	Task and Topic Definition
	Dataset Selection and Analysis
	Model Selection
	Performance Evaluation

	Task: From CSV to Natural Language on Customers File Analysis
	Task and Topic Definition
	Dataset Selection and Analysis
	Model Selection
	Performance Evaluation

	Task: Q&A + Summarization on Pharmaceutical Pamphlets
	Task and Topic Definition
	Dataset Selection and Analysis
	Model selection
	Performance Evaluation

	Task: From Natural Language to Robotic Commands
	Task and Topic Definition
	Dataset Selection and Analysis
	Model Selection
	Performance Evaluation


	Conclusions
	Appendix
	Task Examples
	StoryTelling Output
	Code Understanding
	Code Review

	Natural Language to Robotic Commands
	List of Contexts
	List of Prompts


	Bibliography

