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ABSTRACT 

Infrastructures play a pivotal role in community development, exerting an immense 

influence on economic growth. Structural Health Monitoring (SHM) is a multidisciplinary field 

encompassing the infrastructure’s monitoring and condition assessment. Within this field, 

Operational Modal Analysis (OMA) offers a wide range of vibration-based monitoring solutions 

to address concerns regarding the integrity of civil assets while ensuring uninterrupted 

serviceability. OMA employs procedures to extract damage-sensitive features, indicating the 

structural integrity, without any need to measure the input excitation. This thesis focuses on 

adapting Automated Frequency Domain Decomposition (AFDD) using the Modal Assurance 

Criterion (MAC) to acquire essential modal properties such as natural frequencies and mode 

shapes.  

In the first part, after formulating the adapted methodology, the optimal performance of 

AFDD is established through a comprehensive sensitivity analysis using a Machine Learning (ML) 

algorithm. The analysis considers various factors influencing the extracted modal properties to 

develop a robust procedure. These influential factors include noise levels, spatial resolution of 

sensors, recordings duration, and variation of hyperparameters present in the methodology. In this 

regard, field measurements from a cable-stayed bridge are analyzed by AFDD, optimizing the 

method by constructing stabilization diagrams. In these diagrams, the extracted natural frequencies 

from AFDD are compared with the data corresponding to the Finite Element (FE) counterparts. 

Gaussian Mixture Model (GMM) is employed to cluster the extracted frequencies based on their 

accuracy and determine the optimal ranges for each hyperparameter of the AFDD.   

Furthermore, this thesis presents an extensive output-only modal identification of various 

infrastructures using three distinct case studies: the Yonghe cable-stayed bridge, PolyU footbridge, 
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and Moletta tower in the Maximus archaeological site. The dynamic characterization is performed 

by traditional Frequency Domain Decomposition (FDD), optimized AFDD, and covariance-driven 

Stochastic Subspace Identification (cov-SSI). The accuracy of the optimized AFDD method is 

evaluated, along with the potential limitations of each approach. Specifically, the effectiveness of 

these methods in identifying closely spaced, weakly excited modes, dealing with spurious peaks, 

and accurately identifying complex ones is examined. The study reveals valuable insights for each 

case study and highlights the risks of failing to identify particular vibrational modes when 

implementing OMA procedures.  

In summary, this thesis presents an optimized AFDD approach for the long-term extraction 

of modal properties while comparing its performance with other well-defined methods. The 

findings from the case studies shed light on the strengths and limitations of each applied approach, 

offering valuable insights for the health assessment and monitoring of civil infrastructures.  

Keywords: Modal identification, Automated Frequency Domain Decomposition, Gaussian 

Mixture Model, Covariance- driven stochastic subspace identification, Cable-stayed bridges, 

Footbridges, Archeological sites.  
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1. INTRODUCTION 

1.1. Structural health monitoring of civil infrastructures 

Civil infrastructures constitute a significant part of societies, providing essential means for 

transportation, commerce, and cultural enrichment. The civil assets, ranging from bridges to 

buildings, have a pivotal contribution into our daily lives. However, as they degrade and face 

various harsh environmental conditions, ensuring their integrity and safety becomes a critical 

concern. Under these circumstances, Structural Health Monitoring (SHM) emerges as a vital field 

within the civil engineering discipline, providing reliable solution in monitoring of aged assets. 

SHM is a multidisciplinary field which encompass the continuous monitoring of an asset’s 

condition and integrity. Generally, its application result in the detection and diagnosis of structural 

defects in real time, allowing for proper interventions to avoid catastrophic failures. By 

implementing SHM methodologies, engineers widen the lifespan of infrastructures, lessen the 

maintenance costs, and improve user safety. 

The traditional inspection methods, primarily visual inspections, are periodic and limited 

in scope. However, the SHM utilization involves a continuous and automatic monitoring scheme. 

Furthermore, it is able to record subtle changes occurred in the behavior of a structure over time, 

even those not detected through visual inspection. Early detection of defects such as the formation 

of cracks, plastic strains and deformations, or material degradation enables engineers to address 

them on time and avoid their escalation. 

SHM is consisted of innovative tools with versatile range of application. It can be applied 

to a wide range of civil assets, from cable-stayed bridges and under water tunnels to commercial 

buildings and immense dams. In the monitoring of each asset, unique challenges exist where SHM 

provides tailored solutions to address them on a proper time. Thus, with a high level of adoption 
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without any dependence on complexity or scale of the structure, SHM can be utilized to offer 

effective monitoring. 

  

(a) Sunshine Skyway Cable-stayed bridge, Florida, 
US. 

(b) Torre della Ghirlandina, Modena, 
Italy. 

Fig. 1-1. Diverse adaptivity of SHM for various infrastructures. 

At the core of SHM, sophisticated sensor technologies play a vital role. They are optimally 

instrumented on or embedded into the structure to record a variety of data, including vibrations, 

strains, and temperature. The collected data is later processed to attain insights into the structural 

integrity and performance. Advances in the development of sensors have led to the technology 

with high accuracy and reliable systems. 

SHM not only does enhance the user safety but also proven to be a cost-effective solution 

in the long term. By early detection of defects, the need for extensive and costly retrofits or 

replacements is subsided. In addition, in the era of growing concerns about the climate changes, it 

contributes to enhance sustainability. 
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Fig. 1-2. Triton accelerogram used in SHM tasks at Politecnico di Torino. 

In details, by extending the service life of existing infrastructures through optimal 

retrofitting, it reduce the demand for new constructions that is resource-intensive and 

environmentally incompatible. The sustainable asset managements, obtained by SHM outcomes, 

align with global attempts to minimize the environmental impact of infrastructures developments. 

Another advantage of this broad discipline is its valuable information for stakeholders 

obtained from the generated monitoring data. It enables them to make proper decisions about 

maintenance, and retrofitting strategies. Additionally, this data-driven field can be established to 

optimize the design of future structures, incorporating lessons learned from the monitoring 

process. 

In the realm of civil engineering, two primary approach of Experimental Modal Analysis 

(EMA) and Operational Modal Analysis (OMA) exist. EMA involves performing controlled tests 

on a structure, with known excitation sources like shakers or impact hammers, to extract its modal 

properties such as natural frequencies, mode shapes, and damping ratios. These properties serve 

as a foundation to understand a structure's dynamic behavior. OMA, on the other hand, focuses on 

achieving modal properties from ambient vibrations, making it well-suited for monitoring real-

world structures. SHM can employs extracted outputs from EMA to establish baseline 
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characteristics and subsequently use OMA techniques in continuous monitoring of civil assets. By 

comparing real-time operational modal parameters to baseline values, irregularities are detected as 

an indication of damage. However, in majority of SHM tasks, it is highly impossible to prepare 

proper boundary conditions or sufficient excitation of complex infrastructures. Consequently, the 

use of contemporary technology such as point cloud measurement incorporated with Finite 

Element (FE) modelling are replaced with EMA solution. 

1.2. Operational modal analysis: 

Operational Modal Analysis (OMA) is a distinctive field within the SHM that focuses on 

extracting vital data about the dynamic behavior of structures under operational conditions. It is a 

rigorous tool for assessing the health and performance of civil assets, without the interruption of 

serviceability. OMA allows engineers to get details about the modal properties of structures, such 

as natural frequencies, mode shapes, and damping ratios, under real-world operating conditions. 

The modal properties are further incorporated into the condition assessments of existing structures 

(Sunca et al. 2021), updating of FE models (Sabamehr et al. 2018), damage identification 

(Limongelli and Giordano 2020), and vibrational control policies (Pereira et al. 2022). 

Additionally, OMA techniques are classified as the primary nondestructive techniques that are 

compatible with historical sites in the context of monitoring and characterization. In this section, 

the methodologies employed in OMA are explored, both in the time and frequency domains, to 

better understand the principles and their applications. 

The Random Decrement Technique (RDT) is powerful method proposed in the time 

domain of OMA (Vesterholm et al. 2020). It is useful when dealing with non-stationary input or 

random excitation, which is well-suited for real-world tasks. The method begins by processing a 

specific point in the time-domain output signal, often associated with a local peak. This selected 
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point, known as the reference point, serves as the starting position for analysis. Next, a series of 

time increments, typically consisting of equal time intervals, are taken in both the forward and 

backward directions from the reference point. These increments create a set of data segments, each 

centered on the reference point. Subsequently, the modal properties are extracted from these 

individual data segments following a certain mathematical manipulations such as applying 

Eigensystem Realization Algorithm (ERA) (Hill n.d.). This methodology has some limitation in 

detecting closely spaced modes, and requires extreme computational efforts for large dataset.  

In the time domain, one the most primary techniques is Stochastic Subspace Identification 

(SSI) (VanOverschee, 1996). It excels at extracting modal parameters from ambient vibration 

response based on their statistical properties. The methodology is divided into Data-driven SSI 

(Data-SSI) and Covariance-driven SSI (cov-SSI) depending on the processing roots. In Data-SSI, 

the focus is on the recorded ambient vibration itself. This method does not rely on any specific 

assumptions about the system or the input excitation. It typically involves Singular Value 

Decomposition (SVD) techniques that is applied directly to the measured data. Cov-SSI, on the 

other hand, leverages the covariance matrix of the recorded signal. It assumes that the input 

excitation is stationary and has specific statistical properties. By analyzing the covariance matrix, 

the modal properties are estimated. The application of the SSI methodologies entails the estimation 

of a parameter named model order, which is challenging in the case of dynamically complex 

structures. Consequently, an iterative approach is employed, where various model orders are 

assigned to system, and stabilization diagrams are constructed. Within these stabilization diagrams, 

a separation is made between physical and spurious poles by setting specific thresholds, as 

elaborated upon in the methodology section.  
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One of the main challenges in using the SSI procedure is the ambiguous nature of the 

stabilization diagram, which complicates the differentiation between physical and non-physical 

dynamic modes. To tackle this issue, Li introduced a time-discrete state-space model that bridges 

the Second Order Blind Identification (SOBI) (Pan et al. 2022) and cov-SSI algorithms. This novel 

model is designed to eliminate the ambiguity typically encountered in stabilization diagrams (Li 

et al. 2022). This innovative methodology directly identifies the model order using SOBI and 

subsequently employs cov-SSI, eliminating the need to construct stabilization diagrams. 

Moreover, it distinguishes between physical and noisy modes by analyzing source signals in both 

the time and frequency domains. Physical modal responses identified by SOBI exhibit sinusoidal 

decay in the time domain and manifest as spectral peaks in the frequency domain. This approach 

has demonstrated promising results in characterizing structures such as the Heritage Court Tower 

in Vancouver and the Longyangxia Dam in China.  

In the frequency domain, the general peak picking technique, Frequency Domain 

Decomposition (FDD) (Brincker et al. 2001), and the least-squares complex-frequency method 

(Verboven n.d.) are well-defined procedures. When an infrastructure is excited, higher energy is 

released close to its natural frequencies. This observation led to one of the widely known 

methodology that is called general peak picking. The method takes a single-step action to 

determine the Power Spectral Density (PSD) matrix using the Discrete Fourier Transform (DFT). 

In the PSD, the peaks represent the frequencies at which the structure vibrates most prominently. 

The method can effectively capture well-separated modes and those with low damping ratios. 

However, identifying closely-spaced modes is challenging and limited. Therefore, it is solely used 

to have a preliminary estimate in the number of modes existing in the system.  
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FDD is another OMA technique that is easy to implement and provides an intuitive 

interaction with the user. Emerging from the previous method, the FDD can handle its 

shortcomings by decomposing the resultant PSD using SVD. The modal properties extracted by 

FDD are natural frequencies and mode shapes, while its enhanced version (EFDD) has the ability 

to estimate the damping ratios as well. The mathematical backgrounds of this procedure are 

presented in the methodology section. 

In overall, traditional techniques require the expert intervention for analysis and 

interpretation. Moreover, applying conventional methods to convert ambient vibration responses 

into dynamic behavior, in real-time condition, is impossible for long term monitoring of many 

infrastructures. As a result, there has been a significant focus on automating traditional algorithms 

and mitigating their inherent constraints. 

1.3. Automated OMA techniques 

Automated OMA (AOMA) methods have emerged as a revolutionary approaches to 

efficiently extract modal parameters in long term monitoring of civil assets. The existing AOMA 

procedures in the time domain depend on Machine Learning (ML) algorithms for clustering of  the 

poles within a stabilization diagrams (Zhong et al. 2023), (Boroschek and Bilbao 2019). In a 

primary study by Magalhaes, the cov-SSI procedure was automated by means of a hierarchical 

clustering algorithm which analyzed the derived poles in a stabilization diagram (Magalhães et al. 

2009). Physical modes were distinguished from spurious ones by identifying clusters with a 

specific number of data points. This algorithm was utilized in the modal identification of the 

Infante D. Henrique Bridge in Portugal. Nevertheless, it necessitates the establishment of specific 

thresholds by an expert beforehand. 
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 In a separate study, Ye introduced a novel approach to create stabilization diagrams by 

combining the NExT/ERA (James et al. 1995) techniques with hierarchical clustering analysis (Ye 

et al. 2021). Initially, this method was employed on the input data to identify pre-existing modes 

for various model orders. Subsequently, the collected data underwent filtration using two specific 

thresholds, which were associated with the damping ratio and a novel consistency index. This 

filtration process aimed to determine the physical modes within each model order. Once the modes 

were filtered, a stabilization diagram was constructed, and hierarchical clustering was utilized to 

automate the analysis of this diagram and extract modal properties. Additionally, during the 

clustering process, the Tau test was employed to exclude data with discrete damping ratios, which 

were considered as outliers. This innovative approach was implemented in the characterization of 

the Guangzhou TV Tower in China. It is important to note that this procedure still requires expert 

oversight due to the significant number of parameters that need to be preconfigured. 

Despite the extensive efforts in developing automated OMA techniques in the time domain, 

identifying closely spaced modes, lightly excited modes, and generalization for all structural 

systems is still an open issue. Specifically, the work conducted by Dederichs has highlighted the 

limitations in the performance of automated approaches using clustering algorithms (Dederichs 

and Øiseth 2023). It demonstrated the ability of six prominent techniques to extract modal 

properties automatically from the Hardanger suspension bridge in Norway. Their performance was 

evaluated based on the known dynamic modes of the bridge in terms of mode detection rate, false 

mode detections, and duplicate modal detections. For instance, the detection rate derived for these 

methodologies was in the range of 39.8-81.2%. Overall, each technique exhibited strengths and 

weaknesses, and their performance was unpredictable for the benchmark. 
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Just as in the time domain, there have been multiple attempts to automate conventional 

procedures in the frequency domain. In a study by Kim, the automatic process involved detecting 

peak regions in the SV spectrum using a Faster R-CNN convolutional neural network and 

subsequent post-processing to identify vibration modes (Kim and Sim 2019). The network was 

trained by generated numerical models related to an MDOF system. It outperformed the automated 

SSI counterpart (Magalhães et al. 2009) in the modal identification of various case studies, 

achieving an F1 score of 0.92 with less computational effort. Yet, the main limitation of the neural 

network lies in the distinction of closely-spaced modes with high damping and points located at 

the boundaries of the peak regions in the SV spectrum.  

In another study by Jeong, a deep learning network was trained and validated for automatic 

peak picking in the SV spectrum to estimate the tension force of bridge cables (Jeong et al. 2021). 

The network was able to document the changes in the tension force regardless of prior knowledge 

about the cable dynamics. The study revealed the robustness of automated methods in the 

frequency domain, suitable for application in various fields of SHM. The benefit of using ML 

algorithms is their independence from frequency range selection or fixing predefined thresholds. 

However, they are highly affected by the training data set and their hyperparameter tuning. 

Consequently, the use of ML algorithms for automating FDD remains experimental.  

The AFDD methodology, based on the geometry of mode shapes, was proposed by 

Brincker to identify closely spaced modes and reduce the reliance on expert intervention (Brincker 

et al. 2007). It was based on identifying a domain around an SV peak using a modal domain and 

coherence function. This approach not only automates the EFDD for damping estimations but also 

distinguishes non-physical modes of vibration. Magalhães further adopted this technique using the 

Modal Assurance Criterion (MAC). This technique successfully distinguished between vibrational 
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and non-physical modes in monitoring the Infante D. Henrique Bridge in Portugal. In that study, 

the MAC threshold was fixed at 0.4 by the user experience. Moreover, it was recommended to 

perform a preliminary analysis to establish the appropriate thresholds within the methodology, 

accounting for various factors influencing modal estimations. While using AFDD with MAC has 

proven to be effective, several factors can influence its accuracy.  

1.4. Objectives and outlines of project 

The primary limitation of prior studies on the AFDD lies in the identification of non-

complex modes of vibration. Besides, introducing a universal set of thresholds compatible with 

different infrastructures is necessary to avoid further hyper-parameter tuning. In essence, there is 

a need to set all thresholds to their optimal values, reducing reliance on expert intervention and 

preliminary analysis of individual case studies. Consequently, the first objective of this study is to 

investigate the effect of factors characterizing the SHM system, such as noise level, record length, 

number of sensors, and their configuration, on the performance of adopted AFDD with MAC. A 

series of sensitivity analyses were performed using real data from the Yonghe cable-stayed bridge 

in China as the benchmark and data are processed using ML algorithms. This case study is selected 

since there is a lack of in-depth studies on damage identification and monitoring of cable-stayed 

bridges based on experimental data (An et al. 2019). As a result, the optimal MAC threshold, 

accounting for all influential factors, was determined, hindering the need for further hyper-

parameter tuning.  

The second goal of this study is to test the performance of the AFDD with the optimal thresholds 

on significantly different and complex case studies by comparing it to the traditional FDD and the 

cov-SSI. The first case study is the Yonghe cable-stayed bridge in China, which was used to 

determine the optimal MAC threshold and a different ambient vibration record is considered. The 
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second case study is the PolyU footbridge on the Main Campus of the Hong Kong Polytechnic 

University. Footbridges are typically characterized by their complex dynamics and this condition 

is pronounced with the irregular shape of this case study. Excessive vibration of the Millennium 

Bridge in London, Changi Mezzanine in Singapore, Toda Park Bridge in Japan, and the hazardous 

collapse of the Vltava River bridge in Prague highlight the lack of monitoring and SHM studies 

on them (Xia et al. 2021). 

The third application concerns a monumental part of the Circus Maximus in Rome, Italy, 

namely the Moletta tower. The Circo Maximus is one of the largest archeological sites in the world, 

and it is highly exposed to various sources of excitations. In addition, it is buried under alluvial 

soil due to flooding events which makes its dynamic characterization challenging because of soil-

structure interaction (Puzzilli et al. 2021).  
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2. METHODOLOGY 

In this section, a brief description of cov-SSI and traditional FDD are presented with a focus on 

the mathematical concepts. It is followed by the formulation of adapted AFDD with MAC. 

2.1. Gaussian Mixture Model 

The Gaussian Mixture Model (GMM) is a widely used unsupervised ML technique for clustering 

applications. It models complex data sets into separate clusters by combining multiple normal 

distributions named Gaussian components. In addition, by modeling the normal behavior of 

datasets, any data point significantly deviating from the learned distribution can be identified as 

an anomaly. A Gaussian Mixture Model for data point present in the vector x with the dimension 

of D is defined by a weighted sum of K Gaussian components expressed as (Bishop 2009): 

1

( ) ,
K

k n k k
k

p x x μ Σ  (2-1) 

In which  represents the Gaussian distribution, and each Gaussian component is characterized 

by its mean (k), covariance matrix (k), and mixing coefficient (k). To estimate the parameters 

of the Gaussian components that best describe the input dataset, the Maximum Likelihood 

Estimation (MLE) is employed. The likelihood function is defined as the product of the Probability 

Density Functions (PDFs) of the individual Gaussian components, each weighted by its mixing 

coefficient. Its logarithmic form for the input matrix of X = {x1, x2, …, xN} is:   

1 1

ln ( , , ) ln ,
N K

k n k k
n k

p X π μ Σ x μ Σ

 
(2-2) 

Expectation-Maximization (EM) is a robust algorithm to maximize this likelihood solution, 

which determines k, k, k iteratively (Dempster et al. 1977). It consists of two main steps: 

Expectation and maximization steps denoted as E and M steps. 
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In the E-step, the posterior probabilities, denoted as  (znk) is computed, which represent the 

probability of data point xn belonging to Gaussian component k. These probabilities are calculated 

by the following relation: 

1

,

,

k n k k
nk K

j n j j
j

z
x μ Σ

x μ Σ

 

(2-3) 

In the M-step, the GMM parameters are updated using the posterior probabilities calculated in 
the E-step as follows: 

1

1 N
new
k nk n

nk

z
N

μ x  (2-4) 

 

1

1 N Tnew new new
k nk n k n k

nk

z
N

Σ x μ x μ  (2-5) 

 

new k
k

N
N

 (2-6) 

 

1

N

k nk
n

N z  (2-7) 

Where  is the total number of data points, NK is the sum of posterior probabilities for component 

k, and znk represents the latent variable, indicating the GMM component assignment for data point 

xn. 

2.2. Covariance-driven Stochastic Subspace Identification 

The SSI technique use a state-space model to reformulate a second-order partial differential 

equation in terms of two separate first-order state and observation problems. Through the cov-SSI 

identification, the following discrete-time state space model is proposed, where the input is 

assumed as a white noise signal: 
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1k k k

k k k

x A x w
y C x v  

(2-8) 

Eq.2-8) describes the model, where kx  and ky  are the state and recorded output vectors at time 

instant k. The discrete state and output matrices are A and C from which the modal properties are 

extracted. The vector kw  represents the model inaccuracy, while kv  describes the sensor 

measurement bias. The analysis begins by estimating the output covariance ( iR ) from the 

correlation between ambient vibration responses summarized in Eq. (2-9). 

1

1

1 N i
T

i k i k
kN i

R y y  (2-9) 

Where N  is the length of the discrete output, i is the time lag parameter, and T
ky  is the output’s 

transpose. The Toeplitz matrix 1|iT  is then computed from the output covariance ( iR ) as indicated 

in Eq. (2-10).  

1 1

1 2
1|

2 1 2 2

i i

i i
i

i i i

R R R
R R R

T

R R R  

(2-10) 

The cov-SSI is a stochastic realization problem aiming at building an observable and controllable 

model (Van Overschee 1996). To build the model, for a system with order n, it is necessary to 

obtain the observability matrix O  and the controllability matrix  with rank equal to n. Matrices 

O  and  are estimated from the Singular Value Decomposition (SVD) of the Toeplitz matrix ( 1|iT

) presented below: 

1| 1 1 1

1/2
1 1

1 1/2
1 1

T
i i i

i
T

i

T O Γ U Σ V

O U Σ

Γ Σ V  

(2-11) 

In Eq. (2-11) 1U  and 1V  are orthogonal matrices consisting of singular vectors, 1Σ  contains the 

singular values arranged in ascending order, and  is assumed to be an identity matrix. After the 
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determination of O  and  matrices, many algorithms can be used to determine the discrete state 

and output matrices ( A  and C ) (Hermans and Van Der Auweraer 1999). Once the components of 

the state space model are determined, the natural frequencies and mode shapes are obtained by 

performing Eigen Value Decomposition (EVD).  

In the cov-SSI analysis, two main parameters should be defined. The first parameter is the time 

lag. This can be selected by analyzing the PSD diagram and identifying the system's fundamental 

frequency (Zhou et al. 2022). Based on the sampling frequency ( sf ) and fundamental frequency (

ff ), the time lag i  would be: 

1.5 s

f

f
i

f  
(2-12) 

The order of a system is the second parameter folded by high uncertainty. For this, a value within 

the range of 4 to 30 times the desired number of modes is suggested (Wu, Wen-Hwa et al. 2016). 

Plotting and interpreting a stabilization diagram is inevitable since the model’s order is usually 

overestimated. In the stabilization diagram, the following errors for stability criteria are defined 

(Lee et al. 2018): 

( 1) ( )

( )

( 1) ( )

( )

1

100% 1%

100% 5%

1 MAC( , ) 100% 3%

Frequency: 

Damping ratio: 

Mode shape: 

p p

p

p p

p

p p

f f

f

 (2-13) 

In Eq. (2-13) f , , and  are the natural frequencies, damping ratios, and mode shapes, 

respectively. The parameter p denotes the system order, and MAC is the modal assurance criterion 

between derived mode shapes. The MAC of two vectors (a, b) can be calculated from the following 

relation: 
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2

MAC( , )=
T

T T

a b
a b

a a b b
 (2-14) 

In the current study, a MATLAB script is adopted to perform the cov-SSI analysis. 

2.3. Traditional Frequency Domain Decomposition 

Based on the theories related to stochastic processes, the relation between two realizations 

can be defined by a Correlation Function (CF) matrix. It is comprised of diagonal elements as the 

autocorrelations and non-diagonals as cross-correlations. For the Gaussian signals or close ones, 

the correlation function contains significant properties if and only if they are stationary, and 

ergodic, with a mean value equal to zero. In the vibrational analysis, the components of the CF 

matrix for two random signals of x(t) and y(t) are defined as: 

( ) [ ( ) ( )]
( ) [ ( ) ( )]
( ) [ ( ) ( )]

x

y

xy

R E x t x t
R E y t y t
R E x t y t

 

 

 

 

 

   
(2-15) 

Where E represents the expectation and using the time averaging technique, it has the integral form 

of: 

0

0

0

1( ) ( ) ( )

1( ) ( ) ( )

1( ) ( ) ( )

T

x

T

y

T

xy

R x t x t dt
T

R y t y t dt
T

R x t y t dt
T

 

 

 

 

 

 





  

(2-16) 

In the Eq. (2-16), the parameter T is the time interval. Since it is assumed that the signal is 

stationary, the shift in the integral’s time bounds is allowed. This leads to the derivation of the 

convolution integral presented in Eq. (2-17). 
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 

 

   

(2-17) 

In Eq. (2-17), the integral variable is changed. At this point, it is proven that the correlation function 

is the convolution of the two signals. In addition, the autocorrelation represents the free decay of 

motion for an SDOF system.  

To investigate the power distribution in the frequency domain, the Fourier transform of the 

correlation function is often performed. As a result, the PSD matrix will consist of diagonal and 

non-diagonal elements which are calculated by the Fourier transform of auto and cross-correlations 

respectively. Thus, the PSD matrix elements have the form of: 

*

*

*

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

xx

yy

yx

G X X X X

G Y Y Y Y

G Y X Y X

    

    

    

  

  

    
(2-18) 

It is worthwhile to state that in the derivation process, the reversal property of Fourier 

transform is used in which the ( )X   becomes *( )X   (complex conjugate). Referring to the 

classical structural dynamics, the Fourier transform of the response is equal to the Fourier 

transform of input acceleration multiplied by the Frequency Response Function (FRF). This is 

indicated in Eq. (2-19) where H represents FRF. Thus, by replacing the Fourier transform of the 

response in Eq. (2-18), the PSD of output would be:  

( ) ( ) ( )Y X H i    
* * * * 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) | ( ) |yy xx xxG Y Y X X H i H i G H i H i G H i                

(2-19) 

In addition, by recalling the integral form of the convolutions, the same relation can be established 

for the PSD of the output. The above relation is the fundamental theorem for stationary signals 

where the PSD of output is a function of the input counterpart. 
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The problem formulation is approximated based on the following assumptions: the input of the 

ambient vibration is accepted as white noise; the modal coordinates are uncorrelated. In theory, 

the FRF can be written as the summation of: 

*

*
1

( )
( ) ( )

n
k k

k k k

R RH i
i i


   

 
  

  


 
(2-20) 

In which n, k , Rk and *
kR  are the numbers of modes, pole, residue, and its complex conjugate 

respectively. As stated, the simplification is made by assuming the input as a white noise signal. 

This assumption results in considering the correlation of the input signal (Rxx) as Dirac’s delta 

while its Fourier transform (Gxx) would be a scalar value (C). Therefore, Eq. (2-19) becomes:  

* *

* *
1 1

( )
( ) ( ) ( ) ( )

n n
k k s s

yy
k s k k s s

R R R RG i C
i i i i


        

   
     

      


 
(2-21) 

Conducting a detailed mathematical manipulation explicitly written in the reference 

(Brincker n.d.) while assuming that the kth residue of the output PSD is proportional to the mode 

shape vector in the lightly damped systems, the PSD of the output will be written as:  

* *

*
( )

( ) ( )
T

k k k k
H

k k
yy

k sub k k

d dG i
i i

   


   

 
 


 

(2-22) 

 Where d is the scalar constant,   is the mode shape vector, and H
k  is the complex conjugate of 

its transpose. The above relation is the approximate solution for the PSD of the output.  

In the power spectral density of the outputs, each peak represents the dominance of a mode 

or its combination with close ones. If only one mode dominates, the summation indicated in 

Eq.(2-22) has only one term (Brincker et al. n.d.), (Brincker n.d.). To obtain the modal properties 

from that term near the peak, it is suggested to use the SVD technique to decompose the PSD. 

SVD can be considered a powerful technique in comparison with Eigen Value Decomposition 

(EVD). For instance, to obtain orthogonal mode shapes of matrix A using EVD, several 
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mathematical properties such as being symmetrical and rectangular must be satisfied which is not 

necessary for the SVD. To elaborate the method, the decomposition involves finding the best fitting 

subspace for a set of data scattered in the k dimension. In other words, assuming a set of data in 2 

dimensions, the best fitting line with the least vertical distance from the data can be obtained by 

maximizing the projection length or minimizing the square distance. Then, the algorithm of this 

best-fitting line with the least square distance is further developed for the k lines to build the 

subspace fitting the data in the k dimension. Assuming  as the power spectral density at 

discrete frequencies, its SVD decomposition has the form of: 

 (2-23) 

Where S is the ordered first singular values and U, and V are the corresponding first singular 

vectors. After determination of singular values, the SV spectrum is formed. At this stage, the expert 

select the peaks in the SV spectrum representing modes with prominent vibration. The 

corresponding singular vectors are considered as the mode shapes. 

2.4. Automated Frequency Domain Decomposition 

In the traditional FDD, after the derivation of the SV spectrum, there is a need for manual 

selection of peaks representing physical modes of vibration. Therefore, automating the peak-

picking mechanism is necessary to address this limitation of the traditional FDD procedure. This 

challenge becomes even more pronounced when dealing with closely spaced modes of vibration 

and spurious peaks in the SV spectrum. The following algorithm for AFDD is introduced, drawing 

inspiration from previous work by Brincker: 

1. Set the AFDD hyper-parameters 

a. Number of desired modes to be identified. 

b. Frequency range of interest. 
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c. The  threshold distinguishing between different modes of vibration. 

d. The number of points to be considered over the modal domain assessment. 

e. Mean MAC value for modal domain assessment and validation of physical 

mode. 

2. Identify the first peak in the SV spectrum. 

3. Calculate the MAC between the singular vector of the selected peak and the vectors 

corresponding to other SV values. 

4. Remove the SV points with the calculated MAC above the  threshold, as they 

correspond to the identified mode. 

5. Perform the modal domain assessment to validate the presence of a physical mode. 

6. Select the next peak in the SV spectrum until reaching the predefined number of desired 

modes. 

The above algorithm is illustrated in the flowchart of Fig. 2-1.  

In summary, the first step in implementing the AFDD consists of defining the frequency 

range of interest and the number of desired modes within that range. Then, the presented algorithm 

selects a peak in the SV spectrum, and the points with a similar vibrational mode are filtered out 

from the peak-picking process to handle spurious peaks. In this regard, the MAC between the 

selected peak mode shape and vectors associated with other SVs is determined. Other SV peaks 

having the MAC below the predefined threshold are included in the peak-picking process to 

identify a proceeding one. At this stage, the evaluation of the modal domain initiates, in which the 

SVs with a MAC above the predefined threshold are analyzed. Domain assessment involves 

verifying the gradual variation of MAC from the predefined threshold ( ) to 1 around a peak in 

the spectrum and ensures the presence of a physical mode shape.  
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Fig. 2-1. The flowchart of the AFDD algorithm. 

In this study, a script is developed based on the above formulation. The extracted modal properties 

are limited to the natural frequencies and mode shapes since, similar to the manual EFDD, its 

automated version results in inaccurate estimation of damping ratios (Qu et al. 2023). 
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3. OPTIMIZATION OF AUTOMATED FREQUENCY DOMAIN DECOMPOSITION 

Since several factors affect the accuracy of the frequencies estimated by the AFDD 

methodology, a sensitivity analysis is performed using the experimental data from the Yonghe 

cable-stayed bridge to acquire AFDD’s optimal performance. It result in introducing universal 

hyper-parameters and subside the need for further tuning of them for each case study. The 

considered input data is the ambient vibration response recorded on January 17, 2008, from 9:00 

pm to 12:00 am.  

3.1. Description of SHM benchmark 

The Yonghe cable-stayed bridge was built in 1983 and is located in the port of Tianjin, 

Hebei province, China. The SHM benchmark is constructed with a length and width of 510 and 11 

m. It consists of a 210-meter main span and two 125-meter secondary spans. The bridge deck is 

connected to the north and south towers by 88 pairs of 5 mm cables. An advanced monitoring 

system at the HIT infrastructure center was designed for monitoring while being retrofitted in 

2005-2007. The SHM system includes more than 150 sensors from which 14 uniaxial 

accelerometers are mounted on the deck (Li et al. 2014), as illustrated in Fig. 3-2.  

  

Fig. 3-1. The Yonghe cable stayed bridge in China. 
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Fig. 3-2. The SHM configuration proposed for the Yonghe cable-stayed bridge. 

In the sensitivity analysis to define the optimal MAC threshold, the calibrated 3D Finite Element 

(FE) model of the bridge was used to identify the target frequencies. The FE model was developed 

in ANSYS Mechanical APDL. The main girders and towers were modeled using the three-

dimensional beam element (BEAM 44), while the mass elements and linear elastic links (LINK 

10) were assigned to the transverse beams and cables, respectively. All boundary conditions were 

defined accordingly, including the rubber supports, which are displayed in Fig. 3-3. 

 

Fig. 3-3. FE model of the Yonghe cable-stayed. 
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3.2. Preprocessing of input 

The raw acceleration time histories were preprocessed with Hunning window filtering to 

remove spikes and irregular trends. Additionally, the records were filtered through a six-order 

Butterworth bandpass with low and high-frequency cuts of 0.1 and 30 Hz (García-Macías and 

Ubertini 2021). A baseline correction was then performed using OpenSeismosignal 

(Papazafeiropoulos and Plevris 2018).  

Two approaches based on the discrete wavelet transform and SVD exist to filter the contaminated 

records in the field of signal processing. The latter performs better in noise filtering from ambient 

vibration response, while the former exhibits better denoising capacity for recorded seismic 

signals. In the denoising process based on the SVD, a matrix of rank r comprised of the 

contaminated signals is truncated, assuming the presence of singular values equal to zero, as 

written below: 

-

0
,

0 0

T
r Tr

r m r r r rT
n r

S V
Y U U U S V

U  
(3-1) 

In which Ur and Vr are orthogonal matrices related to singular vectors, and Sr is its corresponding 

matrix with singular values as the diagonal elements. The methodology consists of the following 

steps: 

Step 1. Generating a Hankel matrix Y with dimensions (m, n) from the signal y: 

1 2

2 3 1
,

1

Y

n

n
m n

m m N

y y y
y y y

y y y  

3-2) 

Step 2. Dividing the Hankel matrix into a healthy ,( )m nX  and a noisy subspace ,( )m nN : 
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, , ,m n m n m nY X N  3-3) 

Step 3. Denoising the signal by decomposing the structured Hankel matrix Y using the SVD 

combined with subsequence truncation of small SVs: 

, , ,
1 1 1

Y u v u v u v X N
m l m

T T T
m n i i i i i i i i i m n m n

i i i l

s s s
 

1 2 1 2 0l l l ms s s s s s  

(3-4) 

In which ,  ,  T
i i is u v  are the singular values and corresponding singular vectors, respectively. In 

addition, l and m are parameters that affect the process and are determined for optimal denoising. 

Step 4. Construction of corresponding denoised signal vector with ix  elements from the non-

Hankel noise-free matrix using arithmetic averaging of anti-diagonal elements (Sanliturk and 

Cakar 2005): 
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(3-5) 

As indicated, there are two main parameters affecting the SVD filter accuracy. For the ambient 

vibration signals, it was considered m=300 and l=5% of the first singular value for optimal 

denoising performance, according to (Ravizza et al. 2021).  

3.3. Sensitivity analysis 

The proposed procedure must offer an effective hyperparameter without requiring further 

tuning to estimate modal properties accurately under different conditions affecting structural 

behavior. Furthermore, an effective MAC threshold ( ) should be defined to distinguish between 

different modes present in a system and establish optimal performance for the AFDD. There are 
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additional factors that can significantly affect the extracted natural frequencies obtained from the 

AFDD algorithm, including:  

 The acceleration length.  

 The noise level affecting the input signal.  

 The spatial resolution formed by sensors in a monitoring system.  

 The desired number of modes within the prescribed frequency range. 

In this regard, values in the range of 0 to 1 are assigned to the MAC threshold, investigating its 

impact on the extracted modal properties through several sensitivity analyses. Stabilization 

diagrams are constructed throughout the sensitivity analyses, in which the modal frequencies 

obtained from the AFDD method are compared with the reference values taken from the FE model.  

Proper ranges associated with the  threshold are obtained through the stabilization diagrams, 

resulting in optimal AFDD performance. Additionally, three distinct regions are identified based 

on the number of misidentified modes: unstable, sub-optimal, and optimal regions within the 

diagram. In this regards, the GMM algorithm is utilized to define a core and an outlier cluster in 

each stabilization diagram. The algorithm considers the difference between the AFDD estimate 

and its FE counterpart. It classifies the frequencies into the core cluster if the difference is below 

the defined margin. The margin is set as 0.1 Hz and points exceeding this margin are included in 

the outlier one. Consequently, over the sensitivity analysis, the number of frequencies present in 

each cluster is determined for each MAC threshold . If all of the AFDD estimates fall inside the 

core cluster, the optimal region is assigned to its corresponing  value. In the case of one estimated 

frequency in the outlier cluster, the corresponding value falls into the suboptimal region. The 

unstable region includes all values which result in the more than one AFDD estimates inside the 

outlier cluster. 
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Before initiating the analysis, the frequency range of interest and number of desired modes are 

specified. According to the outputs from the FE model, there are seven modes in the frequency 

range of 0-1.5 Hz that should be identified, except for a sensitivity case where the number of 

desired modes is variable.  

It is worth noting that during the sensitivity analysis, the assessment of the modal domain, 

which prevents the selection of non-physical modes, is deactivated. Due to the direct influence of 

the optimal  in modal domain assessment, this decision is made to comprehensively evaluate the 

effect of each influential factor and  variation on extracted properties and determine the MAC 

optimal threshold primarily. 

In the first sensitivity analysis, the MAC threshold varies from 0 to 1 in the increments 

of 0.02. Thus, the AFDD analysis was repeated 50 times by fixing value. The identified 

frequencies are compared with the FE results in the stabilization diagram of Fig. 3-4. In the graph, 

the AFDD frequency estimates are reported on the x-axis, while the y-axis represents the selected 

MAC’s thresholds. The FE model target frequencies are 0.42 Hz, 0.6 Hz, 0.88 Hz, 1.04 Hz, 1.09 

Hz, 1.21 Hz, and 1.44 Hz, indicated by vertical solid lines.  
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Fig. 3-4. The effect of  variation on the AFDD's outcomes. 

As it is seen, the target frequencies at 0.42 Hz, 0.88 Hz, and 1.44 Hz could be identified 

for almost any  Value. Conversely, 1.04 Hz and 1.09 Hz frequencies were affected by the MAC 

threshold variation as other frequencies with different values were picked by the algorithm, 

particularly for  above 0.6. In this sensitivity analysis, the optimal area, where almost all 

frequencies are estimated accurately, falls within the range of  from 0.10 to 0.34. Remarkably, 

the suggested value of 0.4  by (Magalhães et al. 2008a), highlighted in the graph with a 

horizontal solid line, falls within the suboptimal region and would have led to neglecting the 0.6 

Hz frequency. 

In the second sensitivity analysis, the effect of different noise levels was investigated. 

Increasing the hyper-parameter l in the denoising mechanism leads to higher noise levels in the 

output signal. Five cases were considered, setting the l hyper-parameter to 0.05, 0.20, 0.35, 0.50, 

and 0.75. 
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(a) (b) 

 

(c) (d) 
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(e)  

Fig. 3-5. The effect of  variation with the noise level: (a) SVD denoising parameter l=0.05, (b) 
l=0.20, (c) l=0.35, (d) l=0.50, (e) l=0.75. 

  Fig. 3-5 reveals that the regions of optimal and sub-optimal shrink as the noise level 

increases. In fact, when l=0.50 and l=0.75, it is no longer possible to define an optimal region 

where all modes are detected. Modes with target frequencies of 0.88 Hz and 1.04 Hz were the 

modes highly affected by noise and  variation. When l=0.05, optimal denoising is achieved, and 

the optimal region is delimited by a MAC threshold ranging from 0.18 to 0.22. 

The third sensitivity analysis investigates the effect of the acceleration records’ length. The 

first natural period of the Yonghe cable-stayed bridge is about 2.40 s. It is recommended to consider 

a signal length exceeding 1000-2000 times the first natural period of the system (Cantieni 2004). 

Moreover, the 15 to 60 minutes signals exhibited accurate results in the dynamic characterizations 

(Pereira et al. 2021). The proper signal length is proportional to damping, noise-to-signal ratio, and 

the characterization method. Consequently, the effect of  variation is analyzed for signals with 

the following lengths: 5 minutes, 1, 4, 12, and 24 hours (Fig. 3-6). 
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(a) (b) 

 

(c) (d) 
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(e)  

Fig. 3-6. The effect of  variation and signal length: Input duration of (a) 5 minutes, (b) 1 hour, 
(c) 4 hours, (d) 12 hours, (e) 24 hours. 

Commonly, longer signal durations offer a more comprehensive dataset to capture the 

dynamic characteristics of a structure, leading to more reliable frequency estimations. Indeed, as 

demonstrated in Fig. 3-6, the optimal region widens as the signal length increases, and the most 

inaccurate results correspond to a 5-minute duration. As indicated in Fig. 3-6.b and Fig. 3-6.c, 

although the optimal region widens, the precision of estimating the target frequency of 0.59 Hz 

decreases. The reason attributes to the ambient vibration characteristics and the excitation level 

during that period. Nonetheless, the analysis shows that by selecting an appropriate value, it is 

possible to obtain accurate results with 1-hour records. This approach could be helpful in designing 

monitoring campaigns, potentially reducing their cost by determining a proper duration.  

In a monitoring campaign, the sensor layout is of paramount importance due to its direct 

impact on mode shape estimations. Thus, the fourth sensitivity analysis evaluates the effect of 

reducing the number of sensors and changing their location. To this end, four different sensor 

configurations were considered besides the original layout. As shown in Fig. 3-7.f, only the sensors 
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located on alignment A were placed in layouts 1 and 4, while other arrangements were formed by 

omitting different sensors on both alignments. For the first layout, the obtained results didn't 

comply with the expected optimal and suboptimal regions. Two factors might have contributed to 

this issue: 1) this layout was parallel to the mid-span axis considered during the FE modal analysis. 

2) the presence of malfunctioning sensors. Further discussion is made in the following section 

about sensor health. Since the AFDD relied on modal geometry, the optimal MAC threshold 

depended on the sensor's spatial resolution. This fact was noticeable when analyzing the scenario 

with only three sensors on alignment A, as depicted in Fig. 3-7.f. In this case, any MAC threshold 

led to inaccurate results (Fig. 3-7 e). Nonetheless, it is worth noting that across all layouts, the 

modes with target frequencies of 0.42 Hz and 1.44 Hz are less sensitive to the system spatial 

resolution and can always be detected. This observation is mainly due to the higher mass 

participation factors of these modes.  

 

(a) (b) 
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(c) (d) 

 

(e) (f) 

Fig. 3-7. The effect of  variation with the number of sensors, and their configuration: (a) 
original layout, (b) layout 1, (c) layout 2, (d) layout 3, (e) layout 4, (f) sensors layout. 

The number of existing modes within a frequency range is often unknown in the modal 

identification tasks. Besides, the sampling frequency varies among case studies based on the data 

acquisition systems. In this regard, the sampling frequency and the number of desired output 
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frequencies are additional influential factors in the sensitivity analysis. As illustrated in Fig. 3-8, 

It was found that the optimal region is barely affected by the sampling frequency change.  

 

(a) (b) 

 

(c) (d) 
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(e)  

Fig. 3-8. The effect of MAC variation with sampling frequency on the AFDD outcomes: 
Sampling frequencies of (a) Fs=100 Hz, (a) Fs=100 Hz, (b) Fs=20 Hz, (c) Fs=150 Hz, (d) Fs=300 

Hz, (e) Fs=400 Hz. 

Regarding the number of desired output frequencies, the sensitivity analysis considered 2, 4, 7, 

and 9 output values. The results presented in Fig. 3-9 disclose that when the desired output 

frequencies are fixed less than the present ones within a frequency range, the optimal region 

widens, and the algorithm identifies modes with higher mass participation factors. Furthermore, 

for the case of 9 desired modes, modes with zero-valued natural frequency are observed for the  

value below 0.2.  
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(a) (b) 

 

(c) (d) 

Fig. 3-9. The effect of MAC variation and number of required peaks on the AFDD outcomes: (a) 
No. peak is 3, (b) No. peak is 5, (c) No. peak is 7, (d) No. peak is 9. 

A qualitative plot illustrating the accuracy of AFDD estimates across all analyses is 

presented in Fig. 3-10. For each value of  in the horizontal axis, the AFDD outcomes are 

compared to the target frequencies and deemed correct if the difference is less than 0.1 Hz. Then, 
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the number of correct estimations is divided by the total AFDD analyses to derive a ratio between 

0-1. This ratio is denoted as the ratio of correct estimation on the y-axis while the x-axis indicates 

the corresponding value.  

 

Fig. 3-10. Qualitative correct estimation for each  value. 

 Fig. 3-11. summarizes the optimal and suboptimal regions for different scenarios in the 

sensitivity analyses. The analysis revealed that the AFDD reaches optimal performance by 

assuming the MAC’s threshold in the range of 0.18-0.24. Accordingly, in the following sections, 

the proposed AFDD methodology is applied to three case studies considering a MAC threshold of 

= 0.2. This value differs from the previous findings of (Magalhães et al. 2008b), where the 

suggested MAC threshold was set at 0.4. Therefore, based on the sensitivity analysis results, the 

obtained optimal  should be considered, and values from the literature are not confirmed for the 

adapted algorithm. 
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Fig. 3-11. The sub-optimal/optimal ranges derived from sensitivity analysis for each case. 

Furthermore, in the rest of this study, the modal domain assessment is activated to verify that 

the selected peak in the SV spectrum is associated with a physical mode. The verification is 

made by considering 7 points in the spectrum with a mean MAC of 0.6 or higher. It will ensure 

gradual MAC variation observed when detecting physical mode shapes. 
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4. METHODOLOGY VALIDATION 

4.1. Case study 1: Yonghe cable stayed bridge 

The acceleration records plotted in Fig. 4-1 in the vertical direction, collected from 03:00 

AM to 04:00 AM on January 17, 2008, were used to test and validate the AFDD procedure.  

 

Fig. 4-1. The acceleration recorded by sensor 14 on the cable stayed bridge. 

Considering the frequency range of 0-1.3 Hz, the number of desired frequencies was set to 6, as 

the number of frequencies resulting from the FE modal analysis. Fig. 4-2.a shows the peaks 

automatically selected in the SV spectrum and the corresponding identified modal frequencies 

resulting from AFDD analysis.  
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(a) (b) 

Fig. 4-2. AFDD analysis of the cable-stayed bridge for 1-hour signal: (a) selected peaks in the 
SV spectrum, and (b) MAC evaluation for the first selected peak and modal domain assessment. 

The MAC variation is depicted for the first identified peak with the frequency of 0.41 Hz in Fig. 

4-2.b to provide an insight into the modal domain assessment around each peak. It is evident that 

the MAC mean in this modal domain is much larger than the prescribed threshold. In addition, a 

wider modal domain could be considered to verify the presence of physical modes. However, this 

behavior is only limited in detecting vertical modes since their geometry highly differ. The 3D 

vertical mode shapes obtained from the AFDD are illustrated in Fig. 4-3. The mode shapes were 

drawn by spline interpolation between the sensor locations.  
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Fig. 4-3. 3D deformed configuration of the Yonghe cable-stayed bridge. 

Subsequently, the cov-SSI analysis was performed, interpreting its stabilization diagram to avoid 

unstable mode identification. Over the task, based on the referenced criteria in the introduction, 

the time lag was set at 366, and the model order to 120. 

 

Fig. 4-4. Stabilization diagram for the cov-SSI analysis of the Yonghe cable-stayed bridge for 1-
hour record. 
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Fig. 4-4. presents a stabilization diagram containing spurious and physical poles in which the x-

axis and y-axis are frequencies and model order, respectively. A physical mode emerges from an 

almost vertically aligned set of stable physical poles, and thus, six modes are identified with natural 

frequencies: f1=0.39 Hz, f2=0.56 Hz, f3=0.90 Hz, f4=1.03 Hz, f5=1.08 Hz, f6=1.28 Hz. 

The analysis was repeated for an additional signal recorded from 01:00 am to 12:00 pm on 

January 17, 2008, using the same parameters described for the 1-hour record. The automatically 

selected peaks and identified frequencies are presented in Fig. 4-5 and Fig. 4-6.  

 

Fig. 4-5. AFDD analysis of the cable-stayed bridge for 12-hour signal 
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Fig. 4-6. Stabilization diagram for the cov-SSI analysis of the Yonghe cable-stayed bridge for 
12-hour record. 

Here, since the record length increases, the windows segmentation and the number of 

points used for the Fast Fourier Transform (FFT) of the input signal to derive PSD is increased 

proportionally, leading to a high-density SV spectrum. Despite the denser spectrum with higher 

risks in selecting the spurious peaks, the AFDD performs accurately. Additionally, as indicated in 

Fig. 4-6, the cov-SSI analysis led to identifying five physical modes with the following 

frequencies: f1=0.39 Hz, f2=0.58 Hz, f3=0.90 Hz, f6=1.08 Hz, f7=1.26 Hz. However, a vague 

condition rises within the frequency range of 0.95-1.05 Hz, splitting the vertical line formed by 

physical poles into two branches from the model order of 107. As a result, the mode with 1.02 Hz 

is selected as the stable one between the two branches since it aligns with the previous physical 

poles better.  

Finally, the traditional FDD was performed.  
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The comparison of extracted frequencies of vertical mode shapes between the traditional 

FDD, the cov-SSI, the optimized AFDD, and the FE modal analysis is presented in Table 1.  

Table 1. Comparison of the Yonghe cable-stayed bridge frequencies. 

Method 
FE 

model 

FDD, Li et al. 

(2014) 

Cov-SSI 

(1h) 

AFDD 

(1 h) 

Cov-SSI 

(12 h) 

AFDD 

(12 h) 

Identified 

Frequencies 

(Hz) 

0.42 0.42 0.39 0.41 0.39 0.41 

0.59 0.59 0.56 0.59 0.58 0.59 

0.88 0.89 0.90 0.90 0.90 0.89 

1.04 1.04 1.03 1.04 1.02 1.05 

1.09 1.10 1.08 1.08 1.03a 1.09 

1.21 1.27 1.28 1.25 1.08 1.26 

- - - - 1.26 - 

aFrequency incorrectly identified. 

Within the frequency range of 0-1.3 Hz, all methodologies were able to identify at least six 

frequencies. Regarding the 1-hour record, the AFDD results exhibited greater proximity to the FE 

model frequencies in comparison with the results obtained from the cov-SSI approach. In the case 

of the 12-hour signal, the AFDD also performed better, and the time domain analysis identified an 

extra mode with a 1.03 Hz frequency.   

To evaluate the consistency of the mode shapes extracted by the different methods, they 

were plotted in Fig. 4-7, separating the results for sensor alignments A and B.  
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(a) (b) 

 

(c) (d) 
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(e) (f) 

Fig. 4-7. Comparison of derived mode shapes for Yonghe cable-stayed bridges (1 h duration), (a) 
first mode, (b) second mode, (c) third mode, (d) 4th mode, (e) 5th mode, (f) 6th mode. 

The horizontal axis indicates the sensor locations in each plot while the presented modal values 

have been normalized by their maximum magnitudes. Additionally, the MAC values are computed 

for each sensor alignment and processing technique, serving as a measure of consistency between 

the derived modes and their FE counterparts. Notably, larger MAC values characterize the mode 

shapes from AFDD analysis juxtaposed with cov-SSI estimates, particularly pronounced for the 

fourth mode at 1.04 Hz frequency. The distortions seen around sensor No.10, located at 350 m, are 

due to a malfunction visible from the raw data both in the time and frequency domains. On the 

other hand, differences could be mainly due to the fact that the FE model considers the longitudinal 

middle axis of the bridge, whereas the sensors are placed on the sides of the deck.  

Similar comparison is made for the case of 12-hour input signal. 
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(a) (b) 

 

(c) (d) 
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(e) (f) 

Fig. 4-8. Comparison of derived mode shapes for Yonghe cable-stayed bridges (12 h duration), 
(a) first mode, (b) second mode, (c) third mode, (d) 4th mode, (e) 5th mode, (f) 6th mode. 

 Fig. 4-8.d highlight the limitation exist in the cov-SSI in which a spurious mode is selected as 

stable one. In overall, increasing the length of input signal result in higher accuracy in the 

estimated mode shapes by AFDD. 

This application demonstrates the effectiveness of the optimized AFDD method, yielding 

highly accurate outcomes. Moreover, the utilization of this method mitigated selecting spurious 

peaks when identifying vertical modes of vibration, in stark contrast to the cov-SSI approach.  

4.2. Case study 2: PolyU footbridge 

The PolyU footbridge is an irregular structure with butterfly-shaped steel tube arches 

located at Hong Kong Polytechnic University. It consists of primary and two-side concrete spans 
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with a length of 84.24 m and 64.26 m, respectively, supported by hangers connected to two inclined 

arches. 

 

Fig. 4-9. PolyU footbridge located in the Hong Kong Polytechnic University. 

Throughout the construction phase, an inventive SHM system was incorporated into the 

footbridge's framework and commenced data acquisition on September 28, 2019. The system 

includes a combination of three-axial and uniaxial accelerometers, spatially distributed optical 

sensors, FBG sensors, and a global navigation system. The accelerometers, with a sampling 

frequency of 50 Hz, are mounted on the sides of the deck along two alignments, as illustrated in 

Fig. 4-10. The sensors placed along alignment B are three-axial, whereas those on alignment A can 

record only vertical accelerations. 
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Fig. 4-10. The SHM layout mounted on the PolyU footbridge. 

A 3D Finite Element model of 8,785 elements was developed to simulate the dynamics of the 

bridge and calibrated according to the modal properties acquired from the SSI method. The FE 

analysis revealed the presence of combined vertical and torsional mode shapes (Xia et al. 2021). 

The modal properties obtained through the FE modal analysis and SSI were used to compare the 

results of the current study.  

 

Fig. 4-11. Vertical acceleration recorded by sensor B2 on the PolyU footbridge. 
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The vibration recorded from 00:00 AM to 01:00 AM, November 1, 2019, is used to extract the 

modal properties as illustrated in Fig. 4-11.  

For the AFDD analysis, the frequency range of interest was fixed to 0-3.2 Hz and the 

number of desired frequencies to 6. Fig. 4-12 presents six peaks automatically detected by the 

AFDD procedure and their corresponding frequency. An intriguing observation is the identification 

of modes with frequencies of 1.67 Hz and 1.8 Hz, a distinctive capability not conventionally made 

using traditional FDD techniques.  

 

Fig. 4-12. The automatically selected peaks in the SV spectrum by AFDD analysis for PolyU. 

The resultant mode shapes are illustrated in Fig. 4-13. 
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Fig. 4-13. 3D deformed configuration of the PolyU footbridge. 

In the cov-SSI analysis, the system order was set equal to 100 following the work done by 

Xia (Xia et al. 2021). Moreover, the time lag is set equal to 65 since the fundamental frequency is 

1.16 Hz. The stabilization diagram is plotted in Fig. 4-14, which shows the presence of 5 stable 

modes with the following natural frequencies: f1=1.5 Hz, f2=1.75 Hz, f3=1.78 Hz, f4=1.91 Hz, 

f5=2.75 Hz. In addition, an unstable mode at 1.85 Hz can be observed, vanishing from model order 

89. 
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Fig. 4-14. The resultant stabilization diagram for the PolyU footbridge. 

Table 2 highlights the extracted frequencies obtained from AFDD and cov-SSI, addressing new 

findings compared to the study of 2019.  

The symmetry and orientation of each mode shape are also clarified based on the 3D 

deformed geometry. The initial study conducted in 2019 unveiled the presence of four dynamic 

modes within the frequency range of 1.8 to 3.10 Hz. However, the current analysis increases the 

number of identified modes to 5 by performing the cov-SSI analysis, discarding the unstable ones. 

Nevertheless, the cov-SSI encountered limitations in capturing two modes: 1) The torsional mode 

with the frequency of 3.1 obtained from SSI (2020) and AFDD. 2) The torsional mode at the 

frequency of 1.67 Hz, taken from AFDD analysis. Furthermore, the optimized AFDD detects six 

modes, and the deck torsional one with a frequency of 1.94 Hz (from SSI analysis) is missing. The 

geometrical similarity between the torsional mode and the vertical one with a frequency of 1.8 Hz 
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prevents the identification of the torsional one. Indeed, the MAC calculated between them is 0.74. 

In general, a low spatial resolution of instrumented sensors can arise this issue, and a compromise 

between the cost of a monitoring campaign and outcome accuracy is inevitable.  

 

Table 2. Comparison of the Poly-U footbridge frequencies. 

Method FE 
SSI 

(2020) 
Description AFDD 

Description Cov-

SSI 

Identified 

Frequencies 

(Hz) 

1.80 1.88 
Deck 

vertical 
1.54 

Combination of vertical and 

lateral on the half of the bridge 
1.50 

2.04 1.94 
Deck 

Torsional 
1.67 

Deck Torsional, symmetrical is x-

dir, skew sym. In y-dir 
_ 

2.81 2.63 

In-plane 

bending 

lateral 

1.75 

Combination of vertical and 

lateral and torsional 1.75 

2.97 3.10 
Deck 

Torsion 
1.80 

Vertical, skew symmetrical 
1.78 

_ 
_ Deck Torsional 1.91 

2.76 Transversal and torsional 2.75 

 3.10 Torsional _ 

 

The AFDD analysis revealed the presence of three new modes below 1.8 Hz, which was 

the first frequency according to the study in 2020. It was also confirmed through the cov-SSI 

analysis, which identified two frequencies below 1.8 Hz. Since the acceleration records used here 
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differ from those in the previous work, the newly identified modes might be associated with an 

additional vibration source. However, this would require further investigation, which is beyond 

the scope of the current study. 

The mode shapes obtained through the AFDD and cov-SSI methods, sharing similar natural 

frequencies, for alignments A and B are plotted in Fig. 4-15. In the figure, the x-axis corresponds 

to sensor locations, and the y-axis presents the modal values normalized by the highest magnitude. 

In this case, it was impossible to compare the results to the FE model for confidentiality reasons.  

 

(a) (b) 
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(c) (d) 

Fig. 4-15. Comparison of extracted mode shapes from PolyU footbridge, (a) first mode, (b) 
second mode, (c) third mode, (d) fourth mode. 

 

Therefore, the MAC was calculated only between the modal vectors obtained via AFDD and 

cov-SSI. The high consistency observed for the modes with a natural frequency below 1.8 Hz 

further indicates they are not associated with noise contamination in the input signal. Overall, the 

highest consistency is observed for the mode with a natural frequency of 2.76 Hz. The plots 

highlight the complexity of the modal geometries, making the modal identification task 

challenging. 

It holds significant importance to mention identifying torsional modes using the optimized 

AFDD involves two primary aspects. First, the modal domain, where a gradual change of MAC 

occurs, is narrower for torsional modes. In other words, in the automated peak piking algorithm, 

there is a rapid transition in MAC from 0.2 to 1 around a peak associated with a torsional mode in 
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contrast with a vertical one seen in Fig. 4-2 b. Therefore, the method demands flexibility in setting 

the threshold regarding the number of SV points and MAC mean in the modal domain assessment. 

This flexibility is pertinent when confronting case studies with torsional and akin dynamic modes. 

To this end, a narrow modal domain with seven SV points and MAC mean of 0.6 was prescribed 

in the methodology to prevent misidentifying a torsional mode as non-physical one. Secondly, 

identifying combined mode shapes might be intricate because of the similarity between their 

geometries. It requires optimal sensing strategies and spatial resolution to ensure capturing them. 
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4.3. Case study 3: Moletta tower in Circo Massimo 

In order to assess the performance of the AFDD procedure across diverse structural 

contexts, the Moletta Tower is selected as the third case study. It is a medieval tower and part of 

the Circus Maximus archaeological site in Rome, Italy.  

 

Fig. 4-16. (a) The general view of Maximus circus, (b) Moletta tower, (c) spiral stair case. 

The Circus Maximus was built in the first half of the sixth century BC and hosted ancient Roman 

chariot-racing tournaments. The original track level is buried under 9 m of soil, creating a complex 

soil-structure interaction.  

 

Fig. 4-17. (a) Moletta tower (b) side view of tower. (c) Section C-C. (d) Section A-A. 
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Nowadays, the venue hosts concerts and entertaining events. For instance, the Rolling Stones 

concert in 2014 had an estimated attendance of over 70,000 people. Therefore, it is essential to 

monitor the site and evaluate the impact of anthropic vibrations on the ancient structures. The 

Moletta Tower is located on the southeast side of the Circus Maximus, as shown in aerial shot of 

Fig. 4-16.a. In this figure, the Circus’s primary axis is denoted as the y-direction, whereas the x-

direction aligns orthogonal to it. The structure underwent retrofitting through steel rings and rods, 

spiral stairs connected to the external walls, and reinforcing its foundations in 2013. Fig. 4-17. 

displays its irregular plan with non-symmetrical dimensions which induce a complicated dynamic 

behavior. The tower was monitored by instrumenting Wi-Fi tri-axial accelerometers at various 

elevations, as shown in Fig. 4-18.  

 

Fig. 4-18. Sensor placement on the Moletta tower. 
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(a) 

 

(b) 

Fig. 4-19. SV spectra and automatically selected frequencies by the AFDD algorithm in (a) x-
direction and (b) y-direction. 
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The acceleration records acquired on October 21, 2022, from 9:15 AM to 10:45 AM UTC 

were used as input. For the AFDD analysis, the frequency range is fixed between 0 and 6 Hz, and 

the desired number of mode shapes is set to 3 for all directions. 

Fig. 4-19. presents the automatically selected peaks and their corresponding frequencies in 

the SVD spectrum. Three dynamic modes are identified for both axes. Notably, the AFDD analysis 

uncovers a mode with a frequency of 3.01 Hz in the y-direction, which is unattainable using the 

traditional FDD. However, the algorithm doesn't accurately pinpoint the third peak with a 

frequency of 5.55 Hz. On the x-axis, the third recognized mode is at 5.23 Hz. Further analysis 

reveals that the SV point at 5.55 Hz is filtered out when selecting the second mode with a frequency 

of 3.13 Hz since the MAC between the two is equal to 0.57. In the y-direction, an analogous 

situation occurs. The third selected mode has a frequency equal to 5.86 Hz. The mode at 5.55 Hz 

is discarded because its MAC with the second identified mode (f=3.01 Hz) is 0.71.  

Fig. 4-20. illustrates the 3D mode shapes from AFDD analysis. The top view highlights the 

rotation of the tower in the modes with frequencies 2.95 Hz and 3.01 Hz, which could be due to 

the spiral stairs added in the 2013 renovation. 
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Fig. 4-20. Mode shapes of the Moletta Tower. 

 

For the cov-SSI analysis, a model order of 60 is calculated, and the time lag is 125. The 

resulting stabilization diagrams for the x and y directions are presented in Fig. 4-21. As depicted 

in Fig. 4-21. a, three identified peaks with frequencies of 2.97 Hz, 3.02 Hz, and 3.11 Hz, from 

which the first one is denoted unstable. Similarly, Fig. 4-21.b delineates three identified modes at 

2.95Hz, 3Hz, and 3.06 Hz, whereas the third one is unstable. Thus, only two modes exhibit stability 

for each direction, with no stable pole found beyond 3.3 Hz. It highlights the limitation encountered 

in using cov-SSI since it doesn't identify the mode resonating at the frequency of 5.55 Hz. 
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(a) 

 

(b) 

Fig. 4-21. Obtained stabilization diagrams for Moletta tower. (a) x-direction, (b) y-direction. 
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The extracted modal properties are summarized in Table 3 and compared to the study 

carried on by Puzzilli (Puzzilli et al. 2021). A reduction in frequency estimates can be noticed, 

which might indicate the dynamics of the structure have changed and stiffness reduced. 

Table 3. Comparison of the Moletta Tower frequencies. 

Method 
FDD, Puzzilli et al. 

(2021) 

Manual FDD 

(2023) 

AFDD 

(2023) 

Cov-SSI 

(2023) 

Direction x y x y x y x y 

Identified 

Frequencies 

(Hz) 

3.25 3.00 2.95 2.95 2.95 2.95 3.02 2.95 

5.80 5.80 3.13 3.13 3.14 3.01 3.11 3 

- 5.55 5.55 5.23 5.86 - 

 

Despite the AFDD performing better than the cov-SSI, both methodologies provided inaccurate 

results for third mode. Given the torsional behavior of the structure, a denser sensor layout with 

two or more sensors on the same level could exhibit better results. 
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5. DEVELOPMENT OF SOFTWARE INTERFACE 

In collaboration with Lunitek, an user-friendly software has been developed for OMA analysis of 

various infrastructures. The primary objectives in designing the interface were: 

1. Intuitiveness: Ensuring that users, even those without any expertise in the OMA field, can 

easily navigate and use the application, particularly the Advanced Frequency Domain 

Decomposition (AFDD) methodology. 

2. Functionality: Displaying results in a clear and informative manner, including graphical 

representations of AFDD analysis and its outcomes. 

3. Customizability: Allowing users to customize the algorithm's settings and parameters to 

their specific needs. 

The interface was developed in the Python environment, a versatile and widely adopted 

programming language for scientific and engineering applications. PyQt6, a set of Python bindings 

for the Qt application framework, was chosen for creating the graphical user interface due to its 

rich set of features and cross-platform compatibility. The software is planned for release on both 

Mac and Windows operating systems. 

The user interface comprises several key elements, including: 

 Sensor setup 

 Real-time sensor monitoring 

 Signal preprocessing 

 General analysis 

 OMA Covariance-SSI 

 OMA Frequency Domain Decomposition (FDD) 

 OMA Advanced Frequency Domain Decomposition (AFDD) 
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Fig. 5-1. A view of the developed software. 

The interface is designed to perform a wide range of tasks, including: 

 Data acquisition from instrumented sensors through a dedicated online console, live 

streaming via Wi-Fi, data streaming using the embedded FTP protocol, and cable transfer 

hub. 

 Real-time monitoring of the data acquisition system, alongside plotting accelerations, 

velocities, and displacements in different domains. 

 Preprocessing of acceleration records using Hanning window filtering, Butterworth 

filtering, and Singular Value Decomposition (SVD)-based algorithms. Coordinate system 

conversion is also included in this section. 

 OMA analysis, including FDD, AFDD, SSI, and the extraction of modal properties from 

them. 

The software is in its final stages of development and will be released soon by Lunitek. The 

collaborative effort with Lunitek has not only resulted in a convenient tool for OMA analysis 

but also represents a significant step towards making this technology more accessible and user-

friendly for experts and newcomers. 

.  
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6. CONCLUDING REMARKS 

This study aimed to develop an automated FDD technique based on the MAC criterion to extract 

dynamic properties from ambient vibration responses. To incorporate a robust method, a 

comprehensive sensitivity analysis was conducted that assessed the impact of various factors, 

including MAC variation, noise levels, acceleration duration, and the number and placement of 

sensors. Stabilization diagrams were created by comparing AFDD results with the corresponding 

Finite Element (FE) counterparts using experimental data from the Yonghe cable-stayed. In the 

diagrams, unstable, sub-optimal, and optimal regions for MAC variation were defined based on 

the accuracy of estimated natural frequencies. Additionally, based on the analysis, the optimal 

range of hyperparameters present in the AFDD was derived, eliminating the need for further 

parameter tuning in each case study. 

In the second part, the analysis involves three case studies with dissimilar mode shapes, structural 

systems, materials, and excitation sources. In each case study, the output-only modal identification 

was performed by employing traditional FDD, the optimized AFDD, and cov-SSI using field 

acceleration records. Based on the acquired properties, a direct comparison was made while 

evaluating their viability. In analyzing the Yonghe cable-stayed bridge, the AFDD had a superior 

performance in detecting accurate frequencies and tackling spurious modes with respect to cov-

SSI. Conversely, the AFDD didn't identify a combined torsional mode despite accurately 

estimating frequencies for the PolyU footbridge. In the last case, the analysis of Massimo built 

heritage disclosed the better performance of AFDD in identifying torsional modes and weakly 

excited ones against cov-SSI. The following concluding remarks are made based on the outcomes: 

 The AFDD optimal performance is observed with a MAC threshold of 0.2 when 

considering various factors influencing modal property estimations; 
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 AFDD outperforms cov-SSI in accurately estimating vertical and transversal modes, 

reducing ambiguity in interpreting stabilization diagrams, and minimizing user 

interference, while spurious mode identification is subsided; 

 There is a high risk of not identifying torsional mode shapes where their geometry 

resembles the primary modes identified by AFDD, particularly with a low number of 

instrumented sensors. This limitation was observed in the second case study, where the 

torsional mode was not identified by AFDD but was estimated by cov-SSI;  

 The previous study on the Molleta tower needs to be further extended by instrumenting 

new sensors in the system since a weakly excited mode of vibration was identified by 

AFDD analysis. Furthermore, the study observed a reduction in natural frequencies, 

indicating damage and stiffness loss. 

 In the analysis of Moletta tower, the torsional movement of structure was captured in 

identified modes. Therefore, there is a need for further monitoring and in-depth studies to 

propose an intervention plan that prevent the twisting of the structure. 
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God’s praise be on Prophet, his Household, and his advocates. 


