
POLITECNICO DI TORINO
Master’s Degree in Biomedical Engineering

Master’s Degree Thesis

Development of Human Pose Estimation
and Machine Learning-based algorithms for

assessing physical exercise proficiency

Supervisors

Prof. Danilo DEMARCHI

Prof. Paolo BONATO

Dr. Giulia CORNIANI

Candidate

Livia COLUCCI

OCTOBER 2023





Abstract

The aim of this Thesis is to create a framework that employs Machine-Learning
algorithms to automatically assess proficiency in the practice of Tai Chi Chuan
by analyzing video recordings and extracting information through Human Pose
Estimation. Tai Chi is a form of low-impact mind-body exercise characterized by
slow and fluid movements and whose positive impacts on health, particularly in
relation to balance, have been analyzed by numerous studies.

The data employed to achieve the goal of this Thesis was collected from thirty-
two older adults aged between 65 and 85 years who were asked to perform six
different Tai Chi exercises chosen in collaboration with Tai Chi experts. Study
participants were enrolled regardless of their prior Tai Chi experience to acquire
data across various proficiency levels. Tai Chi experts scored each exercise through
visual examination. After preprocessing, Human Pose Estimation was performed
through MediaPipe, an open-source library developed by Google. For each exercise,
the (x,y) coordinates of joints trajectories obtained as output of the skeleton
tracking were utilized to normalize the skeleton dimensions and automatically
segment videos into single repetitions of the Tai Chi exercise. Subsequently, specific
data features, designed in collaboration with the Tai Chi experts to effectively
capture movement characteristics relevant to proficiency, were extracted and then
selected using the minimum Redundancy Maximum Relevance method. To predict
proficiency levels (low, medium, high), the selected data features were fed into a
balanced 3-class Random Forest classifier, whose performance was evaluated using
a Leave-One-Group-Out Cross Validation. Predictions on the single repetition were
finally merged to estimate a single score per subject. This process was followed
separately for each Tai Chi exercise in the dataset, leading to the development of
exercise-specific models. Overall, the trained models consistently achieved an F1
score exceeding 80% in accurately predicting proficiency levels from video recordings
of subjects performing a single Tai Chi exercise.

The results of this thesis showcase the viability of employing Human Pose
Estimation and Machine Learning algorithms to automatically assess individuals’
competence in performing physical exercises. Additionally, it introduces a com-
prehensive framework for evaluating Tai Chi proficiency through video recordings.
Given the evidence of the benefits of the practice of Tai Chi on balance, the
framework will enable further investigations of how a practitioner’s proficiency level
influences the clinical advantages, hence discerning whether there exists a relation
between proficiency and the enhancement of balance. Additional applications might
concern the analysis of movement abilities of patients or the assessment of the
proficiency of subjects performing other kinds of physical exercise.
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The Motion Analysis Lab

This Thesis was carried out in Harvard Medical School’s Motion Analysis Lab at
Spaulding Rehabilitation Hospital in Boston, MA (USA). The Motion Analysis
Lab focuses on analysing the biomechanics of human movement through robotics
and wearable technology with the goal of studying and treating mobility-limiting
conditions, including cerebral palsy, stroke, and Parkinson’s Disease.

During this time, I was encouraged to explore several projects that are being
pursued in the lab.

Muscle synergy projects
I participated in the feasibility studies, experimental design, and preliminary dry
runs of three projects related to muscle synergies. A muscle synergy can be defined
as a cluster of muscles that activate simultaneously with consistent proportional
increases, thereby representing a muscle activation pattern with stable spatial and
temporal features [1].

Motor Adaptation with Exoskeleton
Motor adaptation is the ability of humans to modify their gait motor patterns
following a change in the environment, and it can be studied by analyzing the
change in muscle synergies during perturbations [2]. Since the modification of gait
patterns is an important goal of physical therapy, the study of motor adaptation
has significant potential for assessing the ability of patients to modify their motor
patterns when walking [3].

Cajigas et al. (2017) [3] conducted a study on the effects of mechanical perturba-
tions produced using an exoskeleton system for treadmill-based gait rehabilitation
(Lokomat by Hocoma AG, Zurich, Switzerland [4]), that allows the control of the
subject’s hip and knee flexion and extension. This study focused on the characteri-
zation of motor adaptation of healthy subjects whose gait cycle was perturbated
during the swing phase. The perturbation was produced by generating torques
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The Motion Analysis Lab

using the actuators at the hip and knee joints of the robotic leg. Despite the
hypothesis that motor adaptation would have been observed for all the orientations
of the perturbation force vector, results of the study revealed instead a selective
process of generation of motor adaptation. More specifically, the study participants
failed to adapt to step-height perturbations but strongly adapted to step-length
perturbations .

Since the Lokomat system does not allow the displacement of the center of
mass by constraining the movement of the pelvis, the motor adaptation project I
contributed to aims at verifying if, with a different system that does not impose
vertical constraints, vertical perturbations of the subject’s stride induce a phe-
nomenon of motor adaptation. To this goal, the lab developed its own Exoskeleton.
My contributions to this project was mainly the provision of assistance during the
dry runs together with my participation in the Exoskeleton’s maintenance.

Balance Project
Falls are the second most frequent cause of injury and among the most frequent
causes of disability in the elderly, which makes the study of mechanisms of main-
taining balance critical [5]. A study by Wojtara et al. (2014) [6] highlighted the
possibility of using muscle synergies to assess the balance of subjects. In fact, they
showed an association between the lack of consistency in the muscle synergies of
participants when their balance was perturbated and the increase in the fall risk .
These results were further supported in a study review by Rubega et al. (2021) [5],
who pointed out how muscle synergies of the elderly are altered, especially when
they are “frequent fallers”.

The goal of the balance project is, hence, to study muscle synergies in the
condition of weak balance perturbation. To do so, study participants are perturbed
through pulls of variable intensity while EMG, motion capture, and force data are
collected to record - respectively - the muscle activations, the 3D position of the
subject, the Center of Pressure, and the intensity of the pull.

The preliminary study I participated in does not involve the presence of the
aforementioned Exoskeleton, but the future plan involves analyzing how the ex-
oskeleton could be employed to help the subject maintain balance. For this project,
I played a role in the experimental design and in the preliminary dry runs with
and without the Exoskeleton system.

Scaling Stroke
Muscle synergies can be employed to assess the severity of the functional impairment
after a stroke [7], which is important to allow the physical therapist to make accurate
decisions during the rehabilitation treatment and thus increase the benefit for the
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patient. Detecting muscle synergies, though, is time-consuming and expensive as it
requires the placement of several EMG electrodes over the examined limb. Hence,
the aim of Scaling Stroke is to find an alternative way of assessing the severity
of impairment after cortical damage by looking at the kinematics of movement
elements. In fact, a study by Miranda et al. (2018) [8] showed how complex
upper-limb movement patterns can be modeled through movement elements whose
theoretical velocity profile is bell-shaped. The aim of the Scaling Stroke project
is thus to verify whether a relation exists between the correlation of the actual
velocity profile of movements with the theoretical profile and the muscle synergies
patterns during upper limb movements. This would make the measurement of
movement kinematics a proxy for muscle synergy analysis in the context of assessing
functional impairment after a stroke episode. To this goal, biomechanic and EMG
data are collected from stroke survivors who are asked to draw figures (e.g., circles,
spirals, ellipses, ...) and perform several tasks with both the affected and the
unaffected arm. Motion capture with the Vicon system (Vicon Industries Inc. [9])
provides the kinematic data, while the EMG signal of 16 upper-limb muscles allows
the detection and analysis of the muscle activation. For this project, I provided
assistance during the preliminary dry runs.

RehabPAL

RehabPAL aims at assessing the increase of the engagement of children with
Cerebral Palsy performing physical exercise when playing with the NAO robot
(SoftBank Robotics Group [10]).

Cerebral Palsy is a collection of conditions characterized by limitations in move-
ment and posture development due to disturbances that occur in the fetal or infant
brain during development. Conditions common to people suffering from Cerebral
Palsy include issues related to sensation, cognition, communication, perception,
and behavior, as well as bronchopulmonary dysplasia, spasticity, decreased weight
bearing, and reduction of coordination secondary to motor-cortex involvement
[11]. These conditions affect the subject’s ability to participate in physical activity,
which is important to decrease the risk for metabolic and cardiovascular diseases,
especially in the case of Cerebral Palsy patients, who have lower levels of muscle
strength and cardiorespiratory endurance than healthy subjects [12].

To increase the engagement of children suffering from Cerebral Palsy when
performing physical exercise, the RehabPAL project exploits the context of a
challenge between the kid and the NAO robot. A range of exercises can be selected
by the physical therapist and proposed to the child through a Graphical User
Interface (GUI). Human Pose Estimation is employed to assess the performance of
the child when performing the exercise, and a score is assigned to both the kid and
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NAO to determine the winner of the challenge. To verify if this solution leads to
an increase in the child’s engagement, the data collection is performed when the
kid plays with NAO, with a virtual version of NAO that appears on the GUI and
without any physical or virtual companion, and a questionnaire is presented to the
kid at the end of each study phase.

My contributions to this project lie both in the setup of the study and in the
data collection carried out with the kids.

Dephy
The aim of the Dephy project is to enhance rehabilitation therapy by using an
orthosis that can adapt to stroke survivors’ needs. Such a device is the Dephy
Exoboot (Dephy, Inc. [13]), which exists either in a passive or in an active version.

To adapt to the patient’s needs, the system allows to set the resistance to
dorsiflexion and plantarflexion and the neutral angle. To verify the enhancement
of the gait of the subject, we collected motion capture data with the Vicon system
(Vicon Industries, Inc. [9]), ground reaction force data with the AMTI force
plates (Advanced Mechanical Technology Inc. [14]), accelerometer, gyroscope and
magnetometer data with the XSens system (Xsens Technologies BV, now part of
Movella Holdings Inc. [15]) and video data with GoPros in different conditions:

1. Habitual condition: the subject wears his/her own orthosis;

2. Simulated condition: the passive Exoboot orthosis parameters are set to mimic
those of the subject’s orthosis. These parameters are quantified through a rig
that allows the mechanical characterization of the study participant’s device
in terms of stiffness in dorsiflexion and plantarflexion and through visual
inspection for the neutral angle;

3. Optimal condition: the parameters of the passive Exoboot orthosis are set to
be the ones that mostly enhance the gait of the subject. These parameters
are set following the physical therapist’s observations;

4. Active condition: the subject wears the active Exoboot, that is able to exert
an active force during the study participant’s gait.

The kinematic and kinetic data is finally analyzed to assess the quality of gait
of the subject in different conditions.

My role in the Dephy project has been involvement during the data collection
with stroke survivors.
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SwanBio
SwanBio focuses on the balance of patients suffering from Adrenomyeloneuropa-
thy, which is the most prevalent phenotype of X-linked Adrenoleukodystrophy.
Adrenomyeloneuropathy is a neurogenetic disorder of the spinal cord that primarily
impacts the corticospinal tract and the dorsal columns. The majority of individuals
with Adrenomyeloneuropathy exhibit noticeable spasticity, ataxia, and muscle
weakness, resulting in challenges related to walking and balance. These difficulties
can significantly impact the patients’ overall quality of life [16].

To characterize balance, the data of interest to the SwanBio project are the
average swing of the center of pressure in the vertical and horizontal directions and
the total path of the Center Of Pressure. Measurements were taken in different
facilities with two different force plates: the AMTI (Advanced Mechanical Technol-
ogy Inc. [14]) and the Kistler (Kistler Instrumente AG, Winterthur, Switzerland
[17]). My contribution to the project was building a common pipeline to process
the data acquired by the two systems.

Other contributions
To conclude, I offered minor contributions to other projects run in the Motion
Analysis Lab.

Firstly, I was involved in the test of a sensorized insole provided by an external
company. The insole was composed of 18 sensors that measure the kinetics of gait,
acting as a portable force plate. The system allows monitoring the gait of the
subject through an app and storing both the raw and the processed data.

Finally, I had the chance to learn how to use the Solidworks 3D CAD Design
Software to design and print objects required for different studies in the lab. I
was asked to design and print a case to store and ship size samples of ring sensors
needed by subjects enrolled in a lab’s study and a "wand" that could hold reflective
markers on the heel of kids performing gait evaluations.
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Introduction

Healthy ageing is defined by the World Health Organization as "the process of
developing and maintaining the functional ability that enables wellbeing in older
age" [18]. As the global population is rapidly ageing, the concept of healthy ageing
is getting more and more important to ensure dignity and equality for all people. To
achieve this purpose, the World Health Organization has determined ten objectives
for the Decade of Healthy Ageing (2020-2030), one of which is the promotion of
research that tackles the current and future needs of the elderly population [18].

In the elderly, falls are dangerous events that can lead to fractures, residual
disability, chronic pain, and loss of independence. It is estimated that, for older
individuals, falls account for 40% of all injury-related deaths, and nearly one out of
three elderly individuals experience a fall annually [19, 20]. Inactivity is recognized
as a contributing factor to a progressive physical impairment in the elderly that can
increase the risk of falls. Indeed, a systematic review and meta-analysis by Papalia
et al. (2020) [19] emphasized the idea that physical exercise can significantly
reduce the risk of falls among the elderly, helping to preserve muscle mass and
enhance balance control. At the same time, physical exercise helps prevent various
age-related health issues, including metabolic disorders, cardiovascular diseases,
cancer, and diminished bone quality.

In this context, several studies have pointed out the positive impact of the
practice of Tai Chi Chuan on balance [20, 21]. In this context, this Thesis deals
with the development of Machine-Learning algorithms that automatically assess
the proficiency score of older adults performing Tai Chi exercises from video
data, whose information is extracted by means of Human Pose Estimation. The
developed models will enable further investigation of the relationship between Tai
Chi proficiency and increase in balance.

The present manuscript is organized as follows. The first Chapter provides a
brief overview of the Tai Chi literature and its beneficial effects on health and of
the state of the art methods for Human Pose Estimation. In the second Chapter
the Materials and Methods employed in this work are presented. This Chapter is
divided into three sections:
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1. A presentation of the procedure employed to collect the data, together with a
description of the selected Tai Chi exercises and the scores assigned to the
subjects;

2. The data processing pipeline, that includes the skeleton tracking with Medi-
aPipe, the normalization of the skeletal dimensions of the study participants,
the automatic segmentation, and the procedures to construct and extract the
features;

3. The steps followed to develop each classification model including the feature
selection, the data projections, the training of the model, and the estimation
of the final proficiency level.

The third Chapter presents the results for each of the analyzed exercises. Finally,
the fourth and the fifth Chapters respectively focus on the Discussion of the results
obtained, including limitations and possible future work, and on the Conclusions
of the study.

It is worth mentioning that the results of this Thesis have been showcased at
the IEEE-EMBS Body Sensor Networks International Conference held in Boston
in October 2023 in a poster presentation.

1.1 State of the art
This section explores the studies and technologies that set the ground for this
Thesis. The three main areas that will be covered are Tai Chi and its beneficial
effects on health, Human Pose Estimation and an overview of the available skeleton
tracking solutions.

1.1.1 Health benefits of Tai Chi Chuan
Tai Chi Chuan is a form of mind-body exercise that originated in the 17th century
and that is rooted in the Taoist philosophy, the holistic vision of Chinese medicine,
and in the Yin-Yang principle expression [22, 23]. The low-impact exercises of Tai
Chi are characterized by slow, continuous, and smooth movements that aim at
inducing a state of mind tranquillity similar to what one could experience through
meditation [20, 21].

A study from Wayne et al. (2013) [22] deconstructed the multiple potentially
therapeutic components of Tai Chi. These components, which can work synergisti-
cally or independently, are:

• Awareness, mindfulness, and focused attention: the slow, deliberate movements
of Tai Chi and its emphasis on mindfulness of breath, body posture, and
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sensory experiences cultivate heightened self-awareness, increase mindfulness
and enhance concentration.

• Intention, belief, and expectation: the use of imagery, visualization, and
similar cognitive techniques can change one’s intent, beliefs, and expectations,
potentially playing a substantial role in the therapeutic and physiological
benefits of Tai Chi.

• Structural integration, dynamic form, and function: improved coordination
and interaction among various structural and physiological systems together
with Tai Chi’s biomechanically efficient forms and movement patterns are
significant elements that could explain its therapeutic impact.

• Active relaxation: the continuous, graceful movements of Tai Chi promote a
profound state of relaxation for both the body and the mind, often regarded
as a form of "meditation in motion".

• Strengthening and flexibility: Tai Chi offers a moderate level of aerobic
conditioning. The coordinated movements of Tai Chi reduce strain, improve
strength and balance, and enable greater power with less effort. The deliberate
slowness of Tai Chi movements, combined with slightly bent stances and
sustained single-leg weight-bearing, effectively provides significant strength
training for the lower extremities. Furthermore, the slow, continuous and
relaxed motions of Tai Chi incorporate dynamic stretching, which enhances
overall flexibility.

• Natural, freer breathing: enhanced and more effective breathing aids in
regulating the nervous system, uplifts mood, and is thought to promote the
harmonious flow of energy both within the body and between the body and
its surroundings.

• Social support, interaction, and community: participating in a group setting
holds therapeutic benefits for a range of physical and psychological medical
conditions.

• Embodied spirituality, philosophy, and ritual: Tai Chi offers a tangible frame-
work for embracing a holistic Eastern philosophy that harmonizes the body,
mind, and spirit in daily life.

According to a bibliometric analysis of published clinical studies between 2010
and 2020 conducted by Yang et al. (2021) [24], the top 10 conditions or diseases
analyzed by clinical studies that exploit the practice of Tai Chi are: hypertension,
chronic obstructive pulmonary disease, diabetes, knee osteoarthritis, heart failure,
depression, osteoporosis and osteopenia, breast cancer, coronary heart disease, and

9



Introduction

insomnia. Tai Chi practice can also benefit cardiorespiratory function, pulmonary
function, strength and flexibility, balance and motor control, endothelial function
and peripheral circulation, body mass index and blood lipid profile, thyroid and
immune function, and psychosocial function [23, 25].

A summary of the conditions that benefit from the practice of Tai Chi together
with the relative quality of the evidence supporting its positive effect, as reported
in the analysis conducted by Houston et al. [26], is presented in Table 1.1.

Quality of evidence Beneficial effect
Excellent Preventing falls and improving balance, osteoarthritis,

Parkinson disease, rehabilitation for chronic obstruc-
tive pulmonary disease, improving cognitive capacity
in older adults and increasing aerobic capacity in those
with poor fitness.

Good Depression, cardiac and stroke rehabilitation, demen-
tia and increasing of strength in the lower limbs.

Fair Improving quality of life for cancer patients, fibromyal-
gia, hypertension, and osteoporosis, enhancing well-
being and improving sleep.

Table 1.1: Evidence of the benefit of the conditions analyzed by Tai Chi clinical
studies [26].

Tai Chi and balance

Several studies have analyzed the positive effect of Tai Chi on balance and have
found several reasons that explain such benefit [20, 21, 27]:

• Tai Chi training increases trunk control, movements important for gait, flexi-
bility, core stability and muscle strength, especially in the lower extremities,
as it requires maintaining a semi-squat position;

• The practice of Tai Chi increases somatic sensation, and coordination of the
internal and external space, enhancing the organization of the proprioceptive,
visual and vestibular systems;

• Tai Chi requires shifting the weight, swaying the ankles, and stepping forward
and backward, hence leading to a positive effect on the ranges of dorsiflexion
and plantarflexion of the practitioner;

• Tai Chi exercises strengthen the sensory-motor system and the knee extensor
strength;
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• Tai Chi can mitigate the balance dysfunction resulting from different conditions,
including Parkinson’s disease and stroke.

All these factors point to the idea that the discipline of Tai Chi holds several
beneficial effects on health. Practicing this martial art is hence recommendable,
especially for the elderly population, to promote healthy ageing.

1.1.2 Human Pose Estimation
Human Pose Estimation is defined as the process of extracting body configurations
in images or videos by predicting the locations of the articulated joints of a human
body, allowing for a markerless reconstruction of a human skeletal representation
either in 2D or in 3D [28]. To do so, state-of-the-art Human Pose Estimation
algorithms are trained on large image and/or video datasets where the joints of
the individuals have been manually annotated, which makes them able to track
unlabeled images or videos. Examples of such datasets are the COCO [29], the
MPII Human Pose dataset [30], the Human3.6M [31] and the HumanEva [32].
Given its broad spectrum of possible applications, Human Pose Estimation is today
a pivotal and continually advancing field within the domain of Computer Vision
[28, 33, 34, 35].

Human Pose Estimation methods can exploit two different approaches: the top-
down and the bottom-up. On one hand, the top-down approach begins by detecting
each person in the frame and subsequently locates the joints for each individual.
On the other, the bottom-up locates all joints first, and then it associates them
to the respective subject in the frame [28]. Top-down methods have some major
downfalls: firstly, if they do not find the individual in the frame they will not
estimate its pose; secondly, their accuracy is at risk when multiple people are
present in the frame, and lastly, their computational cost increases as the number
of individuals in the frame increases as a single pose estimation is run for every
subject detected. Bottom-ups overcome these limitations, but they can encounter
difficulties in effectively grouping body parts when there is significant overlap
among individuals [34].

As reported in the review by Desmarais et al. (2021) [33]. There are several
learning approaches that train Human Pose Estimation algorithms to predict the
pose of the subjects in the frame:

• Convolutional Neural Networks (CNN): CNNs are widely used for 3D Human
Pose Estimation with various approaches that depend on the representation
of the data. Usually, methods that rely on a single-view (monocular methods)
use classic convolutions, while methods that take as input multiple views
can exploit 3D convolution networks. In the case of video data, better pose
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characterization can be achieved through temporal convolutions that use the
information given by the past and future frames.

• Recurrent Neural Networks (RNN): RNN and, more specifically, Long Short-
Term Memory (LSTM) architectures can extract 2D joint trajectories. LSTM
networks are sequence-to-sequence models, i.e. they are able to output one
sequence from another by passing successively the information stored from
the previous inputs.

• Graph Neural Networks (GNN): GNN can compute spatial-temporal graphs
that encode the pose location and the trajectory in time.

• Attention mechanism: the attention mechanism trains the models to detect
the information that is most relevant to pose estimation.

• Adversarial Networks (adversarial learning): in Adversarial Networks, a dis-
criminator network enhances pose consistency by learning to distinguish
between generated poses and those extracted directly from ground-truth data.
An adversarial loss component is subsequently incorporated into the generator
network, which is responsible for estimating 3D human poses from visual or
2D pose information. As a result, any poses that deviate from established
configurations are subject to a penalty.

These training layers part of full backbone architectures that set the basis for
pre-trained networks. The characteristics of a selection of such architectures are
presented in Table 1.2 [33].

1.1.3 Pre-trained Human Pose Estimation platforms
Several networks have been pre-trained and made available for use. This section
presents a non-exhaustive overview of a selection of pre-trained models.

DeepPose (2014)

DeepPose is a Human Pose Estimation framework developed in 2014 by Google
researchers [36], whose work introduced the use of Deep Neural Networks for
Human Pose Estimation. The DeepPose approach involves framing the problem
as a regression task aimed at predicting joint coordinates by utilizing the entire
image as input and passing it through a seven-layer generic Convolutional Neural
Network. This approach offered two distinct advantages. Firstly, the Deep Neural
Network has the capability to encompass the complete context surrounding each
body joint. In other words, each joint regressor leverages the entire image as
a signal, providing a comprehensive understanding of the joint’s surroundings.
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Architecture Characteristics
Hourglass networks Hourglass networks consist of a stacked hourglass module

interspersed with intermediate supervision. The goal of
hourglass networks is to encompass both global and local
discriminative features by computing image features at
different resolution levels. Hence, each module firstly
decreases the resolution through convolutional layers and
subsequently up-samples the features while adding them
to the corresponding ones of the same dimensions from
the preceding stage.

Cascaded pyramid
networks

Similarly to hourglass networks, cascaded pyramid net-
works aim at encompassing both global and local dis-
criminative features by computing image features at
different resolution levels. Cascaded pyramid networks
follow a two-step architecture for pose prediction. Firstly,
poses are predicted using a feature pyramid network, and
secondly, results are refined, specifically for keypoints
deemed hard to predict by the loss computed in the
pyramid network.

High resolution net-
works

Once again, high resolution networks work with the
same image at different resolutions, that are processed
simultaneously through convolutional layers that share
weights by means of exchange blocks.

Part affinity fields Part affinity fields serve as a non-parametric represen-
tation of the relationships between various body parts.
Leveraging these features alongside confidence maps for
joint localization, this method accurately predicts human
poses while ensuring proper associations among multiple
subjects. Additionally, a notable advantage of this ap-
proach is its ability to operate in real-time.

Residual networks Residual networks employ deconvolution layers to gener-
ate heatmaps from deep image features, without employ-
ing a dedicated procedure for handling hard-to-predict
keypoints. Despite its simplicity, this model delivers
competitive results while remaining computationally effi-
cient.

Table 1.2: Backbone architectures for Human Pose Estimation models. [33].
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Secondly, this methodology is considerably simpler to formulate in comparison
to techniques that rely on graphical models. There is no need for explicit design
of feature representations and detectors for individual body parts, nor is there a
requirement to explicitly engineer a model’s structure and the interactions between
different joints as a Convolutional Neural Network is trained for this specific task.
Furthermore, to enhance the precision of joint localization, a cascade of Deep
Neural Network-based pose predictors was employed as a refinement step: starting
with an initial pose estimation derived from the full image, Deep Neural Network-
based regressors further refine the joint predictions by utilizing higher-resolution
sub-images [36].

The cascade of regression models offered a distinct advantage by enabling the
comprehensive incorporation of context and reasoning in the pose estimation process.
Consequently, DeepPose achieved superior performance on numerous demanding
academic datasets with respect to the previous Human Pose Estimation methods
(average Percentage of Correct Parts on the Leeds Sports Dataset [37]: 69%) [36].

Deepercut (2016)

Deepercut [38] marked a significant milestone as the first bottom-up model to
truly compete with top-down models successfully. It introduced image-conditioned
pairwise terms, enabling the generation of multiple body part configurations and
employed an incremental optimization strategy, which efficiently explored the
search space, leading to improved accuracy and speed. DeeperCut represented
an enhancement of the previous state-of-the-art method, Deepcut [39], in three
key aspects: firstly, it incorporated deeper neural networks, taking advantage of
advances in Deep Learning from 2016; secondly, it exhibited increased strength
through the utilization of novel image-conditioned pairwise terms for body parts;
lastly, it achieved higher speed through the combination of these innovations [38].
During its time, DeeperCut delivered the best accuracy, surpassing the previously
leading results in multi-person pose estimation. Nevertheless, it did encounter
challenges, particularly in cases involving the simultaneous estimation of body
articulations for multiple individuals [40].

DeeperCut has been employed over the years to develop systems with a broad
range of applications. For example, Saint et al. (2017) [41] used DeeperCut to build
an approach for autonomously reconstructing a lifelike and precise representation
of an individual’s body shape while clothed, using a 3D scan. One year later, Wei
et al. (2018) [42] employed DeeperCut in the context of public security for person
and vehicle re-identification. As a last example, Liang et al. (2020) [43] exploited
the ability of DeeperCut to estimate individuals’ pose to design a robot that would
follow elderly adults to promptly send alerts to family or hospitals in case of fall.
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Regional Multi-Person Pose Estimation (AlphaPose, 2016)

Fang et al. (2016) [44] introduced AlphaPose, a method known for enhancing pose
estimation, even when faced with imprecise human bounding boxes, through a
Regional Multi-person Pose Estimation (RMPE) framework. AlphaPose has three
main components:

1. A Symmetric Spatial Transformer Network (SSTN) is attached to a parallel
Single Person Pose Estimator (SPPE) that allows the extraction of a high-
quality single-person bounding box even starting from an inaccurate.

2. A Parametric Pose Non-Maximum-Suppression (NMS) eliminates redundant
poses by comparing pose similarity through a pose distance metric and allows
the optimization of the pose distance parameters.

3. A Pose-Guided Proposals Generator (PGPG) that is able to simulate human
bounding boxes generation and hence allows for augmentation of the training
samples.

This framework has been validated on the MPII dataset [30] and results showed
that it outperformed the state-of-the-art methods of its time by achieving a 76.7
mean average precision. However, it’s important to note that, in exchange for its
superior accuracy, this approach tends to be slower compared to other methods
with a frame rate of 5 frames per second [40].

AlphaPose has been employed for the development of several fall detection
systems, such as the ones developed by Ramirez et al. (2021) [45], by Zheng et al.
(2022) [46], by Ma et al. (2022) [47], by Zhao et al. (2022) [48] and by Inturi et
al. (2023) [49]. Other contexts in which AlphaPose was applied include: behavior
detection (Tian et al. 2021 [50]), close proximity human-robot interaction (Docekal
et al. 2022 [51]) and analysis of gait for patients suffering from knee arthritis (Lv
et al. 2022 [52]).

OpenPose (2017)

OpenPose, developed by Cao et al. (2017) [53] is an open-source model using a
bottom-up approach and it represents the first real-time attempt at estimating
multi-person poses. OpenPose also pioneered the incorporation of association scores
through Part Affinity Fields (PAFs), that convey the positions and orientations
of limbs across the image space. The concurrent estimation of these bottom-up
representations, encompassing both detection and association, effectively captures
the global context. This allows a straightforward parsing approach to deliver high-
quality outcomes, all while significantly reducing computational costs. OpenPose
utilizes a feed-forward network to predict simultaneously both 2D confidence maps
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for body part locations and 2D vector fields for part affinities. The association
of each body part with a person is achieved through Non-Maximum Suppression,
making use of the 2D vector fields that encode the location and orientation of limbs
in the image. This innovative approach results in improved overall quality and
robustness, especially when dealing with occluded body parts.

OpenPose was exploited for a very broad range of applications, including: gait
analysis (Viswakumar et al. 2019 [54] and D’Antonio et al. 2020 [55]), fall detection
(Chen et al. 2020 [56] and Lin et al. 2020 [57]), activity recognition (Noori et al.
2019 [58]), ergonomic postural assessment (Kim et al. 2021 [59]), sitting posture
recognition (Chen 2019 [60]) and balance assessment (Li et al. 2021 [61]). OpenPose
has also been employed in the context of sports, such as to measure the vertical
height of jumps (Webering et al. 2021 [62]) or to estimate the pose of athletes
performing a baseball swing (Li et al. 2021 [63]).

MediaPipe Pose (2019)

Mediapipe, developed by Google in 2019, is a framework that tackles several
Computer Vision tasks, including Human Pose Estimation. MediaPipe comprises
three primary components: a framework designed for drawing inferences from
sensory data, a suite of tools for assessing performance, and a repository of reusable
inference and processing modules [64, 65].

In the context of Human Pose Estimation, MediaPipe Pose, based on the
Blazepose pipeline and the ML Kit Pose Detection Application Programming
Interface [66], allows to predict the pose of a single individual per frame with a 30
frames per second frame rate, which allows real-time skeleton tracking. To do so,
MediaPipe’s pipeline comprises a lightweight body pose detection system, which is
subsequently followed by a pose tracking network. The tracker forecasts keypoint
coordinates, as well as the person’s presence within the current frame through a
face detector, and refines the region of interest accordingly. The pose estimation
module of the framework employs an encoder-decoder network architecture that
involves heatmaps, offset losses and regression techniques. Skip connections are
employed throughout all network stages to maintain a balance between high-level
and low-level features, ensuring that gradients from the regression encoder do not
propagate back to the heatmap-trained features. This approach has proven to
not only enhance heatmap predictions but also significantly improve the accuracy
of coordinate regression [67]. Designed primarily for fitness-related applications,
Mediapipe has been optimized for multi-platform use, including mobile phones and
laptops [66]. However, one limitation is that the estimation process requires the
person’s head to always remain visible for accurate results.

In the landscape of fitness-related applications, MediaPipe enabled the develop-
ment of systems for both general fitness training and tracking (Nath et al. 2023

16



1.1 – State of the art

[68]) and more specific disciplines. For example, this framework has been exploited
in the context of Yoga practice, for which MediaPipe was employed in training
(Agarwal et al. 2022 [69]), monitoring (Anilkumar et al. 2021 [70]) and pose
classification (Garg et al. 2022 [71]) systems. MediaPipe has also been used for
applications that are not related to fitness, such as: fall-detection systems (Bugarin
et al. 2022 [72]) biomechanical assessment (Lafayette et al. 2022 [73]), gait analysis
(Uchida et al. 2023 [74]) and human telerehabilitation (Latreche et al. 2023 [75]).

High-Resolution Net (2020)

In 2020, Wang et al. [76] proposed a pioneering architectural concept known as
High-Resolution Net, which maintains high-resolution representations throughout
the entire network. This work was driven by the demand for high-resolution
representations for position-sensitive information, as in the case of Human Pose
Estimation. Nevertheless, many of the latest classification networks decrease the
resolution of the representation prior to classification by progressively reducing
the spatial dimensions of feature maps and connecting convolutional layers from
high-resolution to low-resolution sequentially.

The High-Resolution Net approach commences with a high-resolution convo-
lutional stream followed by a systematical integration of additional high-to-low
resolution convolutional streams, all while connecting these multi-resolution streams
in parallel. The resulting network comprises four stages, with each stage containing
a variable number of streams corresponding to its stage number. Iterative multi-
resolution fusions are acheived by consistently exchanging information among these
parallel streams.

The high-resolution representations acquired through the High-Resolution Net
exhibit both semantic robustness and spatial precision, owing to two key factors.
Firstly, this approach connects high-to-low resolution convolutional streams in
parallel, as opposed to a sequential series. Consequently, it preserves high resolution
throughout the process rather than attempting to recover it from a lower resolution,
resulting in potentially more spatially precise learned representations. Secondly,
unlike many existing fusion methods that aggregate high-resolution low-level and
high-level representations through upsampling low-resolution counterparts, multi-
resolution fusions are continually performed. This iterative process enhances
high-resolution representations with the assistance of low-resolution counterparts,
and vice versa. Consequently, all multi-resolution representations, from high to low
resolution, exhibit strong semantic characteristics [76].

MoveNet (2021)

Released in 2021, MoveNet is a real-time pose detection model designed by Google
[77, 78] to detect 17 keypoints on a single person through heatmaps. MoveNet
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comes in two variants: Lightning and Thunder. While Lightning sacrifices some
accuracy compared to Thunder, it offers faster inference times. The architecture of
MoveNet consists of a feature extractor and a set of prediction heads, that consist
of four parts: the person center heatmap, keypoint regression field, person keypoint
heatmap, and 2D per-keypoint offset field. These components work together to
predict human keypoints using heatmaps [79].

MoveNet has been used in the context of fitness-related applications, such as for
the development of a system that verifies the correctness of posture in the Yoga’s
Sun Salutation routine (Girase et al. 2022 [80]) and of an app that performs real-
time assessment of physical exercise (Cai, 2022 [81]). At the same time, MoveNet
has been applied to other domains such as the detection of violent behaviours or
physical bullying (Kozhamkulova et al. 2023 [82]).

OpenPifPaf (2021)

In 2021, Kreiss et al. [83] developed OpenPifPaf, an open-source library for multi-
person Human Pose Estimation that aims at detecting, associating, and tracking
semantic keypoints within video data even in challenging scenes. The bottom-up
approach presented stands out for its efficiency, stable field representation, and
impressive accuracy and performance that even surpasses top-down methods.

The OpenPifPaf model architecture comprises a shared base network, either
ResNet or ShuffleNetV2, without max-pooling. The core networks of the frame-
work are the Composite Intensity Field, which represents joint intensity, and the
Composite Associations Field, which forms associations that allow to track poses.
In addition to the Composite Fields, further networks can be incorporated; for
example, pose tracking is facilitated by an additional head network that predicts
the Temporal Composite Association Field.

OpenPifPaf has been employed in systems that concern pedestrians in public
roads with several applications: presence and crossing detection in the context of
autonomous driving cars (Belkada et al. 2021 [84] and Proll, 2022 [85]), behaviour
prediction (Moseva et al. 2023 [86]) and social distancing (Abdulrahman et al.
2023 [87]).
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This chapter describes the material and methods that brought to the results
presented in this Thesis. Firstly, the data collection setup will be presented
together with the Tai Chi exercises that were proposed to the participants and the
scores that they were assigned, then the data analysis pipeline will be explored.
This pipeline comprises the extraction of the joint trajectories by means of skeleton
tracking, the normalization and segmentation of the trajectories, the extraction of
the features of interest and their ranking and selection, and the development of the
classification model. A summary of the whole pipeline is provided in Figure 2.1.

Figure 2.1: The data analysis pipeline
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2.1 Data collection
Data were collected from 32 healthy older adults. No constraint was imposed on
their previous Tai Chi experience with the goal of acquiring data for a range of
proficiency levels.

The inclusion criteria for the study were:

• Subject aged from 60 to 80 years of age;

• Subject capable of ambulating without breaks for 15 minutes without an
assistive device.

The exclusion criteria for the study were:

• Chronic neuromuscular conditions (e.g. Parkinson’s disease, multiple sclerosis,
peripheral neuropathy, stroke) that would prevent the subject from safely
participating in the study;

• Acute medical conditions requiring hospitalization in within the 6 months
previous to the study;

• Active cancer;

• Self-reported inability to walk unassisted for 15 minutes;

• Musculoskeletal conditions requiring chronic use of pain medications;

• Cognitive impairment (as measured by a Mini-Mental State Examination score
< 24).

The recruited subjects were 20 females and 12 males, with a mean age of 70.2
years of age and a standard deviation of 4.88 years of age. In addition to the
data of the study participants, video data of two Tai Chi experts was employed to
augment the size of the dataset.

A total of six exercises were proposed to the subjects: Raising the power, Golden
rooster, Withdraw and push, Grasp the sparrow’s tail, Wave the hands like clouds,
and Brush knee twist step. After watching a video of a Tai Chi expert performing
the exercise, participants were asked to replicate the movements. The tutorial video
could be played as many times as the subject desired before being asked to repeat
the exercise. More specifically, subjects were asked to perform the movements
for a total of 6 to 9 times depending on the exercise, as some of them were more
challenging than others. Furthermore, with the exception of the Raising the power
exercise, all the others were performed in more than one version: with the left
or with the right leg forward. Three variations were performed for the Wave the
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hands like clouds exercise: with the left hand moving, the right hand moving, and
with both hands moving at the same time.

Video recordings were acquired through two GoPro cameras placed frontally and
laterally to the subject. Accelerometer, gyroscope, magnetometer, and altimeter
signals were acquired through third-generation Shimmer wearable sensors. Video
data and sensor data were collected at the same time.

2.1.1 Tai Chi exercises
The movements of the six Tai Chi exercises chosen together with the Tai Chi
Experts and proposed to the participants are described in this section [88, 89]. For
what concerns those exercises that have more than one version (Goolden rooster,
Grasp the sparrow tail, Brush knee twist step and Withdraw and Push), the left
side only is described.

Grasp the sparrow’s tail

In the Grasp the sparrow’s tail exercise, emphasis is placed on the central role
of the waist in coordinated movements. Rotating the waist while maintaining a
fixed stance is beneficial for enhancing flexibility in the hips and lower spine, as
well as promoting internal organ massage and integration of leg, torso, and arm
movements. The exercise also involves performing large, circular arm movements
to improve the range of motion, enhance circulation to the upper body, develop
dynamic balance, and provide a moderate level of aerobic and strength training.

The exercise starts with a forward-weighted stance, with the left knee stable
over the left foot and the torso facing forward (aligned with the front toes). The
right foot is pointed 30 degrees to the right. Both palms are held in front of the
chest, facing each other, resembling the act of grasping a small ball or bird, often
referred to as "grasping a sparrow’s tail."

The first step of the exercise is to shift the weight forward while the navel and
the torso turn slightly to the left. While still facing to the left, the weight is shifted
entirely onto the right leg, and then the waist is rotated to the right. While still
facing to the right, the weight is transferred back to the left leg, returning to the
forward bow stance, while the torso turns back to its original starting position with
the navel pointing forward. For what concerns the arm movement, the starting
position for the right arm is centered in front of the chest in a pushing motion. It
should be coordinated with the turning of the torso to the left, avoiding any arm
extension or changes in elbow angle. The right arm is then released downward as
the weight shifts backward, creating a large circular motion. As the waist turns to
the right, the right arm is circled back up to shoulder height, ensuring that the
palm faces the same direction as the navel. Finally, the shoulders and wrist are
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relaxed, returning the palm to the initial push gesture as the torso returns to the
starting stance. The starting position of the left arm is a round shape at chest
height, similar to cradling a large balloon or sphere against the chest. This gesture
has to be maintained as hips turn to the left. As the weight is shifted back, the left
arm relaxes downward in a circular motion, sweeping across the groin area. Then,
the left arm swings back up to the same starting gesture, which remains consistent
throughout the movement. [89]

The movements of the exercise in its left side version are shown in Figure 2.2.

Figure 2.2: The Grasp the sparrow’s tail exercise.

Wave the hands like clouds

Wave the hands like clouds is a fundamental Tai Chi exercise that combines leg
and waist movements with arm motions in a seamless flow. It employs circular
movements to enhance blood circulation to the extremities while balancing both
sides of the body.

The starting position of the exercise is with the feet parallel and shoulder-width
apart. Weight shifts to the right leg, turning the waist slightly to the right, with
attention to the knee, which should be stable and aligned with the foot without
twisting. While maintaining a slight rightward orientation with the waist and the
head, weight shifts to the left leg, aligning it with the left foot. The waist then
turns slightly to the left without twisting the knee or torso. For what concerns
the arms movements, hands should be envisioned as soft calligraphy paintbrushes.
The right hand paints an oval that starts with a smooth brush stroke from right
to left at navel height as the weight shifts from the right leg to the left leg. The
arm movement is completed by a turn of the waist slightly to the left and the
raise of the right hand to chest height without raising the right shoulder. As the
weight shifts back to the right, a second brush stroke is created with the back of
the right hand. The oval is finished by lowering the right hand to navel height on
the right side. The same movement, but in the opposite direction, is performed
with the left hand. To conclude the movement, hands are paused in front of the
shoulder, turned to face downward, and allowed to gently float down. Throughout
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the exercise, breathing should be deep, continuous, and relaxed.
The movements of the Wave the hands like clouds exercise are continuous,

without abrupt starts or stops. Someone observing the practitioner should perceive
a fluid, uninterrupted flow. [89] During the execution of this exercise, principles of
balance and yin and yang become evident. The movements of the limbs are always
synchronized but consistently opposite in terms of position and direction of the
upper limbs, symbolizing balance and harmony throughout the performance [88].

This exercise was performed by the study participants with both hands simulta-
neously (Figure 2.3) and with one hand at a time (Figure 2.4). To allow for a more
consistent analysis, these versions of the exercise have been analyzed separately.

Figure 2.3: The Wave the hands like clouds exercise performed with both hands.

Figure 2.4: The Wave the hands like clouds exercise performed with one hand.

Withdraw and push

The Withdraw and push exercise introduces the challenge of relying on one leg, the
rear one, for support and balance while smoothly transferring weight from front to
back. It coordinates simple leg and torso movements with continuous changes in
arm positions, promoting dynamic balance, enhancing strength and flexibility in
both the legs and arms, and providing a moderate level of aerobic activity.

The exercise starts with the feet aligned, shoulder-width apart, with the left
foot in front. The left knee moves over the center of the left foot, ensuring it
doesn’t extend past the base of the toes, and about 60-70 percent of the weight
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is distributed forward. The belly button, nose, and toes of the left foot should
all point in the same direction. Hands raise to approximately chest height in a
pushing-like gesture with an angle at the elbow joint not exceeding 90 degrees.
Shoulders and arms are relaxed. Subsequently, a circular motion pattern involving
the upper and lower body is initiated. 100 percent of the weight is shifted back onto
the right leg while the arms relax forward and downward in a circular movement.
The angle at the elbow joint will become more pronounced. Then, following the
circular and descending movement of the arms, they are raised in front of the body
as weight shifts forward until the arms reach the original pushing position. The
exercise ends by letting the arms fall to the sides while the weight shifts backward
and the front foot slides back to be parallel to the back foot at shoulder width [89].
The movements of the exercise in its left side version are presented in Figure 2.5.

Throughout the exercise, breathing should be kept deep, slow, and comfortable
without imposing any particular rhythm or pattern [89]. From a choreographic
perspective, participants generally did not find this exercise to be overly challenging
despite the requirement of a high degree of fluidity in movements and attention to
maintaining the alignment of the torso over the lower limbs throughout the weight
transfer [88].

Figure 2.5: The Withdraw and push exercise.

Brush knee twist step

The Brush knee twist step exercise aims to develop the ability to take slow and
deliberate forward steps while managing the challenging balance demands created
by constantly changing arm positions. This exercise involves coordinating both leg
and arm movements, facilitating the integration of the upper and lower body.

The performance starts with the right leg in the back and the left leg bearing the
weight in the front. The left hand is placed close to the left thigh, while the right
hand is positioned in front of the right shoulder with the fingers pointing upward,
creating a pushing gesture. Now, the whole body moves forward, balancing on
the left leg by bringing the right knee alongside the left knee while slightly lifting
the toes of the right foot off the ground. Subsequently, the right foot returns to
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its original position, and as all of the weight is shifted back to the right leg, the
waist is turned to the right. The left toes move alongside the right ones, arms are
released, and the right arm moves in a circular motion [89]. The movements of the
exercise in its left side version are presented in Figure 2.6.

It’s worth noting that participants and the Tai Chi experts identified this exercise
as the most challenging within the protocol due to its intricate choreography, the
requirement for synchronized movements, balance, and the fluid transition between
successive actions [88].

Figure 2.6: The Brush knee twist step exercise.

Golden rooster

The Golden rooster exercise starts with the subject standing with the feet close
together and the arms relaxed alongside the body. The left leg moves forward, and
the whole body follows until the right leg moves forward as well. As soon as the two
feet come close gain, the right leg and right hand are raised simultaneously while
the left hand descends, with the palm facing backward. The practitioner briefly
stands on one leg only before lowering the raised knee. As the limb lowers, the
right hand sweeps in a circular motion and moves towards the right thigh. During
this motion, the right elbow should not move. As the hands are both lowered, the
weight is shifted backward. The exercise ends by moving the left leg backward so
that the feet are once again next to each other. The movements of the exercise in
its left side version are presented in Figure 2.7.

In the execution of this exercise, the concept of maintaining proper body
alignment is of utmost importance to preserve balance when lifting the leg [88].

Raising the power

The Raising the power exercise harmonizes the movements of the upper and lower
body by coordinating simple motions of the arms and legs. It also enhances the
strength and flexibility of the ankles, knees, hips, and back. Moreover, it presents
a balance challenge by continually changing the position of the arms relative to the
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Figure 2.7: The Golden rooster exercise.

torso while also drawing attention to the energy differences between the left and
right sides of the body.

The exercise starts with the feet shoulder-width apart. Knees are bent slowly and
gently, not exceeding a 10 percent bend, simultaneously allowing the hands to rise
in front of the body. Wrists are bent and relaxed, with the hands approximately
shoulder-width apart and the fingers hanging downward. As the wrists reach
shoulder height, the palms and then the fingers are gradually opened. Subsequently,
elbows descend, permitting the relaxed wrists to float down the front of the body
as they lower. Simultaneously, legs are slowly straightened [89]. The movements of
the exercise are presented in Figure 2.8.

An essential aspect of this exercise involves maintaining proper alignment,
ensuring that the head remains centered over the torso and the torso stays aligned
with the lower limbs during both the descent and ascent phases [88].

Figure 2.8: The Raising the power exercise.

2.1.2 Scores
Five different metrics were used to evaluate the performance of the participants.
Tai Chi experts assigned Low, Medium, or High scores for each of the five metrics
to each subject for each exercise. Notably, a single value for each metric was
assigned concurrently to all repetitions and variations of the same exercise, taking
into account the overall performance and the improvement over repetitions. The
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five metrics are:

• Gross competency: the gross competency score assesses the subject’s capability
to accurately execute the choreography of the proposed exercise.

• Expression of the Yin-Yang principle: the Yin-Yang philosophy is at the core
of the Tai Chi art; hence, effectively embodying this principle within the
dynamics of execution is crucial to proficiency. Expression of the Yin-Yang
can be detected through actions like shifting body weight or synchronizing
breath with movement.

• Alignment and posture: this score aims at evaluating proper body segment
alignment throughout the movement, with a particular focus on verticality.
The Tai Chi practitioner should aim at keeping the head centered over the
torso, balancing the torso over the hips, aligning the hips over the base of
support and positioning each knee joint over the central axis of the respective
foot.

• Flow and dynamic integration: this criterion the three important factors of
slowness, coordination, and the capacity to transition seamlessly from one
position to the next. Ideally, the sequence of movements should convey a sense
of unity and simultaneity, aiming to maintain balance to the greatest extent
possible.

• Range of motion: this score assesses the extent of movement in the waist and
limbs, as well as the flexibility of the body.

Previous analyses [88, 90] pointed out how the Yin Yang, Alignment and posture,
Flow and dynamic integration, and Range of motion scores all correlate positively
with the Gross competency score. Hence, the presented analysis only focuses on
the estimation of the Gross competency score as a proxy of the proficiency level in
Tai Chi of the study participant.

2.2 Data processing
This section illustrates the steps that allowed to extract features that embody
biomechanical characteristics of movement that relate to Tai Chi proficiency from
the raw video data. After preprocessing, joint trajectories will be tracked with
MediaPipe [64], normalized and segmented into single exercise repetitions to allow
the extraction of the constructed features.
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2.2.1 Skeleton tracking with MediaPipe
The first step for enabling good-quality skeleton tracking was to preprocess recorded
videos to crop additional people present in the frame, if any. Indeed, whenever the
study participant did not seem sufficiently stable, physical therapists would get
closer to provide assistance. Since the chosen pre-trained Human Pose Estimation
method, MediaPipe [64], has been developed to track the skeleton of only one
individual in the frame, its performances decrease greatly whenever more than one
person is present in the video frame. Hence, any additional individual in the frame
had to be covered before being able to launch the skeleton tracking. Examples of
how MediaPipe’s performances decrease when there are multiple individuals in the
frame can be observed in Figure 2.9.

Figure 2.9: Examples of wrong person detected (A, B) or poor skeleton tracking
quality (C, D) when multiple people are present in the frame.

Secondly, a subset of the videos was mirrored. This step was needed for different
reasons depending on the exercise:

• For Grasp the sparrow’s tail, Wave hands like clouds (performed with one
hand only), Brush knee twist step and Golden Rooster, mirroring was needed
as these exercises had two mirrored versions (referred to as the "right" and the
"left" version in Section 2.1.1). Thus, "right" version videos were mirrored prior
to skeleton tracking to allow for a more consistent extraction of the features
(Figure 2.10.A, 2.10.B, 2.10.C);

• For Wave the hands like clouds (performed with both hands) and Raising
the power, mirroring was performed to augment the size of the dataset. In
fact, these exercises did not have a mirrored version, hence the amount of
data available for their analysis was smaller compared to the other exercises
(Figure 2.10.D, 2.10.E, 2.10.F).
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The only exercise that was not mirrored at all was the Withdraw and Push exercise
(more details in Section 2.1.1), which was analyzed by means of the lateral view. In
this case, mirroring was not possible since, as described more in detail later in the
Discussion (Chapter 4), cameras recording from the lateral view were not moved
when the subject performed the two versions of the exercise. Hence, mirroring the
right side video would have provided even more inconsistency to the analysis than
not mirroring it, as shown in Figure 2.11.

Figure 2.10: Examples of mirroring for one subject performing the Grasp the
sparrow’s tail exercise. (A) shows the performance on the left side, (B) shows
the performance on the right side, (C) shows the performance on the right side,
mirrored to look like the left side. (D, E) show the unmirrored performance in
different moments of the Wave the hands like clouds exercise, while (F) shows the
mirrored movements at the same time as (E), demonstrating how mirroring this
exercise does not impact the joint trajectories.

Figure 2.11: Examples of mirroring for one subject performing the Withdraw and
Push. (A) shows the performance on the left side, (B) shows the performance on
the right side, (C) shows the performance on the right side mirrored, demonstrating
how for this exercise mirroring does not make sense.

The pose of the subject was estimated through MediaPipe [64]. This method
has several characteristics that make it suitable to use in this work:
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• As shown in Figure 2.12, MediaPipe allows tracking the joints of up to 33
keypoints of the human skeleton, which is more than sufficient for the purpose
of the current analysis. The output of the skeleton tracking is the (x,y,z)
coordinates of the joints, together with a visibility score. The (x,y) coordinates
range between 0 and 1, as they are normalized with respect to the image
dimensions, with the origin of the reference system located in the upper-left
corner of the image. The z coordinate provides information on the depth of
the joints relative to the midpoint of the hips, where a smaller value indicates
that the landmark is closer to the camera. Nevertheless, the z coordinate
was discarded from the analysis after assessing its low reliability. Lastly,
the visibility score tells the user if the joint is present in the frame and not
occluded; it ranges between 0 and 1, where a score of 1 means that the limb
is perfectly visible [91].

• The videos analyzed in this Thesis were collected through GoPros, whose
sampling frequency is 29.97 frames per second. MediaPipe’s sampling frequency
of 30 frames per second [67] is thus a crucial feature as it allows to track the
coordinates of the joints for each frame of the videos.

• MediaPipe allows to set confidence scores for the pose detection and the pose
tracking: the min_detection_confidence and the min_tracking_confidence
[92]. These parameters range between 0 and 1 with a default value of 0.5; as
their value increases, the velocity of the pose estimation decreases, but there’s
a gain in the confidence of the tracking. In this work, these parameters were
both set to 0.9.

• As mentioned in Section 1.1.3, MediaPipe was designed primarily for fitness-
related applications, and it has already been employed with success both in
this context and in the domain of rehabilitation. Hence, this platform matches
the requirements of the current study.

• MediaPipe is exceptionally user-friendly, as it only requires the installation of
the library and meets straightforward software and hardware prerequisites,
making it easily accessible for operation.

To conclude, MediaPipe’s features match the requirements of the current work
while being easy to install and run. At the same time, MediaPipe’s sampling
frequency of 30 frames per second [67] allows for tracking the joint trajectories of
the subject in real time. This feature has not been exploited in this Thesis work
but, together with MediaPipe’s easiness of use and few hardware requirements,
might be of interest for future applications of the study.
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Figure 2.12: Human keypoints tracked by MediaPipe [91].

Assessment

After extracting the joint trajectories, circular markers have been juxtaposed to
each frame of the video to allow for a visual assessment of the skeleton tracking
quality. This assessment was particularly important for those videos that had been
pre-processed by covering the presence of physical therapists in the frames (as
discussed previously in this Chapter and shown in Figure 2.9) and for the videos
recorded from a lateral view. In fact, the position of the camera led to an inevitable
occlusion of part of the subject’s body. For this reason, the majority of the joints
on the right side of the body recorded from the lateral view were excluded from the
analysis. Examples of poor skeleton tracking quality due to the view are provided
in Figure 2.13.

2.2.2 Skeleton dimensions normalization
To avoid the influence of the anthropometric measurements of the subjects on the
analysis, skeletal dimensions were normalized with respect to the length of the
trunk.

Literature search and conversations with the Motion Analysis Lab’s clinicians
revealed that anthropometric scaling is usually performed by dividing the dimensions
of the skeleton by the length of a limb or the dimensions of the head [93]. Due
to the positioning of the cameras and the variable start of the recording, which
did not provide a consistent view of the subject’s limbs at the beginning of the
video, and the location of the keypoints extracted by MediaPipe, that would not
allow to extract the length of the head, the choice of normalizing by the length of
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Figure 2.13: Examples of poor skeleton tracking from the lateral view videos. (A,
B) show one subject performing Grasp the sparrow’s tail on the left side, (C, D)
show one subject performing Grasp the sparrow’s tail on the right side. In both
cases, there are instances of poor skeleton tracking quality.

the trunk was made. Furthermore, for every subject, the origin of the reference
system was shifted to be the position of the left hip so that each subject would
be placed at the center of the frame and all joint trajectories would be relative
to the same point. Lastly, to ensure that the skeleton tracking was stable enough
when extracting the trunk length, the coordinates of the joints that were employed
in the normalization step were extracted at the two-hundredth frame (around 6.7
seconds after the start of the video).

2.2.3 Automatic segmentation
In a single video recording, the exercise was repeated several times by the subject.
Despite having a single proficiency score per exercise per subject, it was chosen to
segment each exercise execution in its repetitions to augment the dimensions of
the dataset. Furthermore, for each exercise, moments of interest for the extraction
of features were selected. The moments of interest to be detected for each exercise,
in addition to the start and the stop of the repetitions, are:

• Grasp the sparrow’s tail: the start and the stop of the swing;

• Wave the hands like clouds: the peak of the raise of the arms:

• Push: the start and the stop of the push;

• Raising the power: the peak of the raise of the arms;

• Brush knee twist step: the peak of the wrists when the legs come together;

• Golden rooster: the peak of the rise of the knee.
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All these moments were detected by analyzing the trajectories of the joints.
Specific detection strategies were designed for each exercise to accommodate their
different characteristics. A summary of these strategies is presented in Table 2.1.
As the exercise repetitions were performed continuously by the study participants,
the start of a new repetition was considered to be the end of the previous one.

Because the recordings began before the exercise started and ended after the
exercise finished, cross-correlation was employed to ensure that the frames identified
as the start of the repetitions actually captured the exercise execution rather than
random movements. More in detail, the assumption was made that among the
identified intervals, the one in the middle contained a complete exercise repetition.
The cross-correlation was thus calculated between this repetition and all the others
to eliminate those with a cross-correlation below a threshold. To maintain a
consistent threshold across all subjects, the choice was made to normalize the
cross-correlation. This normalization ensured that when comparing two identical
repetitions (resulting in auto-correlation), the maximum correlation value would
be equal to 1. The function defined for this goal follows Equation (2.1), based on
Matlab’s xcorr function with the normalization option set to be normalized [94].

âRxy,norm(m) = 1ñ âRxx(0) âRyy(0)
âRxy(m) (2.1)

Where âRxy,norm(m) is the normalized cross-correlation, âRxx(0) is the value of
the auto-correlation of the first signal at a delay equal to 0, âRyy(0) is the value of
the auto-correlation of the second signal at a delay equal to 0 and âRxy(m) is the
non-normalized cross-correlation between the two signals.

Automatic segmentation also revealed a lack of synchronicity between the
frontal and the lateral recordings for several subjects, which led to the decision of
considering only one of the views for the extraction of features. With the exception
of the Withdraw and Push exercise (more details in Section 2.1.1), all the others
have been analyzed by means of videos recorded from a front view exclusively.
On the other hand, as most features of the Withdraw and Push exercise were
extracted from the lateral view, this exercise was analyzed through the lateral view
recordings.

Validation

Automatic segmentation was validated for the Grasp the Sparrow tail exercise.
To validate the algorithm, frames of interest have been detected manually to

provide a ground truth for the analysis. Such ground truth was employed in two
ways. Firstly, to assess the rough difference in time between the frames detected
automatically and those detected manually, and secondly, to analyze the impact of
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these time differences on the values of the features and thus on the classification
model performances.

Before being able to compare the time differences between the automatic and
the manual segmentation, these two had to be aligned in case a different number
of repetitions was detected with the two methods. In particular, these differences
might occur at the beginning or at the end of the exercise, when the automatic
segmentation needs to discriminate if the detected interval contains the exercise
performance or random movements. As mentioned earlier in this Section, the
metric employed to decide whether to include or not a repetition was the maximum
of a normalized cross-correlation between the analyzed repetition and the one in
the middle, which was compared to a threshold. To guarantee that the detected
interval was indeed an exercise repetition, the threshold was set to be high so that
dubious intervals would be automatically discarded. This choice might lead to the
mistaken exclusion of repetitions that are detected manually instead. To ensure
that this error does not impact the validation results, the repetitions detected with
one method only will be discarded from the analysis.

To examine the impact of errors in the segmentation on the values of the features,
features have been extracted both with the manually detected frames and with the
automatically detected ones, and the relative error was computed for each feature
for every repetition. Features from the automatic segmentation whose difference
with respect to the ones from the manual segmentation was higher than +-10%
were considered to be wrong. The impact of this error was further analyzed by
training a classifier on the features extracted from the manually segmented trials
to observe how the model performances would be affected.

2.2.4 Feature Construction
Features have been designed with the goal of extracting the biomechanical charac-
teristics of movement that were relevant to Tai Chi proficiency. To this aim, the
collaboration with the Tai Chi experts was crucial as they were able to point out
which aspects of movement were of interest for the purpose of scoring the exercise.
This collaboration led to the construction of look-up tables where the movement
characteristics were associated with a feature that could be extracted from the (x,y)
coordinates of the joint trajectories obtained from MediaPipe. The constructed
features were grouped into two main categories:

1. Static features: features to extract in a single frame of interest, namely one of
those detected in the segmentation step;

2. Dynamic features: features to extract from the trajectory of the joints in a
specific time interval of the movement. In this case, only statistical measures
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(mean, median, standard deviation, variance, and range) or single-value quan-
tities (Pearson correlation coefficient, distances) were extracted from the time
series.

All exercises have their own look-up table and, hence, their own set of features,
but they share common ones as well. Furthermore, we extracted the mean, the
median, the standard deviation, the variance, and the range of the displacement
as well as the mean velocity, the mean acceleration, and the mean jerk of every
keypoint. The Look-up tables for each exercise (Tables A.2 - A.1) can be found in
Appendix A.

2.3 Model development
This section presents the steps followed to analyze the data. Data feature vectors
extracted in the data processing phase were first ranked and selected through the
minimum Redundancy Maximum Relevance method [95, 96]. Results of the feature
selection were visually assessed through Sammons mapping [97, 98] before being
fed into a 3-class balanced Random Forest classifier [99] from the Imbalanced-learn
library [100]. All exercises were analyzed separately, and the developed models
estimate a proficiency level for a single repetition of each exercise. Hence, the
final step of the analysis is that of merging the scores of the single repetitions to
estimate a single score per subject.

2.3.1 Feature selection and data projections
Due to the way that features were constructed, feature selection was a crucial step
in this analysis for several reasons:

• The number of datapoints was too small with respect to the number of features,
so feature selection was needed to mitigate the curse of dimensionality;

• The same biomechanical aspect of movement was characterized in more than
one way, hence feature selection was needed to deal with redundancy;

• Reducing the number of features would help maintain the interpretability of
the model;

• As the dataset was small, feature selection aided in preventing overfitting.

Feature selection was performed via the minimum Redundancy Maximum
Relevance (mRMR) algorithm, designed in 2005 by Peng et al. [95] and coded
in Python by Smazzanti et al. [96]. This choice was made after testing different
feature selection algorithms, including the Random Forest intrinsic feature selection
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method, the wrapper-based Recursive Feature Elimination method, and the mRMR,
which is a filter-based approach. Out of these methods, the mRMR stood out not
only for its computational efficiency but also because it offered the flexibility to fine-
tune the number of features. In contrast, both the Recursive Feature Elimination
and the Random Forest intrinsic feature selection method did not provide a feature
ranking, preventing the selection of a subset of the chosen features.

To evaluate the optimal number of features from the ranked list outputted by
the mRMR method, several models were trained and validated with the Leave-One-
Group-Out Cross-Validation technique from the Scikit-Learn library [101]. Each
model was trained on an increasing number of features, and performances were
evaluated in terms of F1 micro score and F1 weighted score. This procedure allowed
us to find the optimal number of features as the one after which the performances
of the model were not positively influenced anymore by the addition of new features.
An example of this procedure is shown in Figure 2.14, which shows the evolution of
the F1 weighted and F1 micro scores as the number of features increases both in the
case of the classification of the single repetition and in the case of the estimation
of the final score (more details in Paragraph 2.3.3).

Figure 2.14: Example of the evaluation of the optimal number of features for the
Grasp the sparrow’s tail exercise. In this case, 14 features have been selected.

Due to the small dimensions of the Dataset, feature selection was performed on
the whole set of data without creating a Training and a Test set.

Results of the Feature Selection were analyzed via Sammons mapping, conceived
by Sammon in 1969 [97] and coded in Python by Pollard et al. in 2014 [98].
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2.3.2 Model Training
The chosen classification model was the Balanced Random Forest classifier, proposed
by Chen et al. (2004) [99] and implemented in the Imbalanced-learn library [100].
This choice was due to the high imbalance of the dataset, which requires to be
addressed to prevent the model from becoming unreliable. Dataset imbalance
is addressed in the bootstrap phase of the model training: instead of randomly
sampling elements of the training set to build the decision trees, the Balanced
Random Forest Classifier follows different strategies that allow the representation
of all classes by an equal number of samples in the training set [99]. In the
Imbalanced-learn library implementation [100], these strategies, which represent a
tunable parameter of the algorithm, are:

• "majority": only the majority class is resampled;

• "not minority": all classes are resampled but the minority class;

• "not majority": all classes are resampled but the majority class;

• "all": all classes are resampled.

Due to the small dimensions of the dataset, cross-validation was employed to tune
the parameters of the model. To prevent the same subject’s different repetitions
from being split between the training and test sets, which could lead to overfitting
and unreliable model performance evaluations, we used Leave-One-Group-Out
cross-validation on each individual repetition.[101]. This method is similar to a
K-fold Cross-Validation, but it ensures that the folds are composed of repetitions
coming from the same subject. Thus, there were as many folds as the number
of subjects who performed the exercise. From the creation of the folds moving
forward the cross-validation procedure goes on as usual, so each group is employed
once as test set while all the others are employed as training set.

The Leave-One-Group-Out Cross-Validation procedure was exploited in the
context of the Grid Search [101], which automatizes the selection of the model
hyperparameters to find those that maximize a metric of choice of the user. Due
to the imbalance of the dataset, it was chosen to maximize the F1 weighted score.
In fact, this metric accounts for the dataset imbalance by weighting the F1 score
per each class by its number of elements. Among the parameters of the Balanced
Random Forest classifier [100], those that were tuned with the Grid Search were:

• "n_estimators": number of decision trees;

• "criterion": function that measures the quality of the split, either the Gini
impurity or the information gain;
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• "max_depth": the trees’ maximum depth;

• "max_features": the maximum number of features analyzed when searching
the best split, either the square root of the number of features or its logarithm
in base 2.

• "sampling_strategy": the strategy employed to resample the classes and ensure
that they’ll be represented in an equal number in the training set, as mentioned
earlier in this Section;

• "class_weight": whether weights are associated with the classes; the possibilities
are those of associating no weight, associating a weight computed on the
frequency of the elements of a class within all the input data or within each
tree’s bootstrap sample.

Once the best hyperparameters were found with the Grid Search procedure,
the classifier performances were evaluated by training and testing the model with
the Leave-One-Group-Out Cross-Validation. This procedure was iterated 10 times
to then average the results and get mean cross-validated scores that mitigate the
variability of a single iteration’s results. The performances of the classifier were
evaluated both in terms of the F1 weighted score, which takes into account the
dataset imbalance, and in terms of F1 micro score, which refers to the overall
performances of the model.

2.3.3 Estimation of the final proficiency level
When assigning the score, the Tai Chi experts considered all the repetitions and
provided only one score per exercise per subject. Hence, to mimic this procedure,
the last step of the analysis was to merge the scores estimated for the single
repetitions into a single score per subject.

This was done by looking at the score that was estimated most frequently. In
case two different scores were both selected as frequently and as often, the final
score was estimated to be the one whose probability in the tree prediction was the
highest.

The performances of the model were also evaluated with respect to its ability
to estimate a single score per subject. Again, the metrics employed were the F1
weighted score and the F1 micro score.
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Exercise Moment of interest Detection strategy

Grasp the sparrow’s tail

Start of the repetition
Zero-crossing of the difference in x co-
ordinate between the left wrist and the
nose.

Start of the swing
Start of the increase of the y coordinate
of the left wrist, detected by looking at
the change in slope.

Stop of the swing
Stop of the decrease of the y coordinate
of the left wrist, detected by looking at
the change in slope.

Wave the hands like clouds
Start of the repetition Intersection of the x and y trajectories

(minus the mean) of the left wrist.

Peak of the hands before de-
scent

Intersection of the x and y trajectories
(minus the mean) of the right wrist.

Withdraw and push

Start of the repetition Peaks of the y trajectory of the most
visible wrist.

Start of the push
First intersection of the x and y trajecto-
ries (minus the mean) of the most visible
wrist.

Stop of the push
Second intersection of the x and y tra-
jectories (minus the mean) of the most
visible wrist.

Brush knee twist step
Start of the repetition

Start of the increase in x coordinate of
the back foot, detected by looking at
the change in slope.

Peak of the hands Peaks of the y trajectory of the front
hand.

Golden rooster
Start of the repetition

Start of the increase in x coordinate of
the back foot, detected by looking at
the change in slope.

Peak of the knee Peaks of the y trajectory of the back
knee.

Raising the power
Start of the repetition

Start of the increase in y coordinate
of the middle point between the hands,
detected by looking at the change in
slope.

Peak of the hands Peaks of the y trajectory of the middle
points between the hands.

Table 2.1: Automatic segmentation for all exercises; moments of interest and
detection strategy.
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This Chapter presents the Results of the classification models developed for each
exercise. The results include:

• The number of features selected;

• The features selected;

• The Sammon projection of the dataset after Feature Selection:

• The hyperparameters optimized by the Grid Search;

• The mean Cross-Validated F1 weighted and F1 micro scores, both for the
classification of the single repetitions and for the estimation of a single score
per subject;

• The final Confusion Matrices, both for the classification of the single repetitions
and for the estimation of a single score per subject;

For what concerns the Grasp the sparrow’s tail exercise, additional results regard-
ing the validation of the automatic segmentation are reported. These results are
not available for the other exercises as the segmentation was performed exclusively
automatically, hence there was no ground truth to perform the analysis. These
results include both analyses performed: the first one on the raw time difference
between the frames detected manually and those detected automatically and the
second one on the impact of these differences on the value of the features and hence
on the classifier results. To this goal, a second classification model was trained for
the Grasp the sparrow’s tail exercise with the features extracted with the manual
segmentation. All analyses performed on the other models will be presented for this
one as well to further validate the performances of the automatic segmentation.

Regarding the Wave the hands like clouds exercise, two models were developed
as well to analyze separately the instances in which the subject was performing the
exercise with one hand only or with both hands.
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Lastly, not all exercises have been performed by the same number of subjects.
For example, the Brush knee twist step and the Golden rooster exercises were
sometimes too challenging for the study participants as they respectively required to
move the feet close together lift the knee, and stay on one leg only. Another example
concerns the Withdraw and push exercise, for which the video data of the Tai Chi
experts is missing as there was no recording of the lateral view. Furthermore, for
those exercises that had more than one version, some subjects only performed one,
decreasing the amount of data available. Table 3.1 summarizes the number of video
data available and hence the number of subjects analyzed for each exercise.

Exercise Study
participants

Tai Chi
experts

Total
number of
subjects

Total
number of
repetitions

Grasp the sparrow’s tail 32 2 34 528

Wave hands like clouds
(both hands) 32 2 34 390

Wave hands like clouds
(single hand) 32 2 34 391

Withdraw and push 31 0 31 469

Brush knee twist step 28 2 30 427

Golden rooster 27 2 29 308

Raising the power 32 2 34 546

Table 3.1: Number of subjects whose video data was available for each exercise.

3.1 Grasp the sparrow’s tail
This Section presents the results obtained in the analysis of the Grasp the sparrow’s
tail exercise. Before moving to the results of the classifier, the validation of the
automatic segmentation will be presented.

3.1.1 Validation of the automatic segmentation
As mentioned before, the automatic segmentation was validated in two ways: by
looking at the raw differences in time between the frames detected manually and
those detected automatically and by looking at the impact of those differences on
the features and hence on the classifier’s performances.
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3.1 – Grasp the sparrow’s tail

As foreseen in Paragraph 2.2.3, before being able to start the analysis the
repetitions segmented with the two methods had to be aligned. In fact, the total
amount of automatically detected repetitions was equal to 528 while the total
amount of manually detected repetitions was 540. Considering that 3 automatically
detected repetitions were not detected manually, 15 repetitions were missed by the
automatic segmentation. These 15 repetitions, together with the 3 ones that were
not detected manually, were discarded from both the raw time difference analysis
and from the analysis on the impact of the features but they will surely have an
effect on the performances of the trained models.

Time differences

The results of the time difference calculations are presented in Figure 3.1. 95% of
the time differences are smaller than 1.5 seconds, which can be considered to be
a good result as one of the key features of Tai Chi movements is their slowness.
Nevertheless, there are five instances of time differences greater than 2.5 seconds,
namely for one start of the repetition, one start of the swing, and three stops of
the swing, on four different subjects. These errors should be addressed as such
a big time difference could have a strongly negative impact on the value of the
extracted features that rely on these moments of interest.

Figure 3.1: Bar plot of the time differences between the automatic and the manual
segmentation. The time differences have been calculated by taking the absolute
value of the difference between the automatically detected time frame and the
manually detected one. Results for the time differences relative to the start of the
repetition (green), the start of the swing (orange) and the stop of the swing (red)
were computed separately and then merged on a single graph to provide an overall
evaluation of the automatic segmentation performance.
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Impact on the features

16.48% of the features extracted from the automatically segmented data have an
error higher than ±10% of the respective feature extracted from the manually
segmented data. The majority of these features were static ones, hence the ones
that were extracted in the single frame detected. To further assess the impact of
this error on the classifier performances, a model was trained with the features
extracted from the manually segmented joint trajectories. This classifier reached
an F1 micro score of 68.16% when classifying the single repetitions and an F1
micro score of 81.47% on the estimation of the final score per subject. Compared
to the results obtained from the classifier trained on the features extracted from
the automatically detected trials, presented in Section 3.1.2, a decrease in F1 micro
score on the classification of the repetitions of 1.92%, that translates into a decrease
in F1 micro score on the subjects’ proficiency level estimation of 6.18%.

3.1.2 Classification results
As shown in Figure 3.2, for the Grasp the sparrow’s tail exercise, 14 features were
selected. Those features, together with a brief explanation, are presented in Table
3.2. Further details on the features can be found in Table A.2. The list of optimized
hyperparameters is presented in Table 3.3; further information on the meaning
of those parameters can be found in Section 2.3.2. The projection of the features
after Feature Selection is presented in Figure 3.3. Lastly, the performances of the
model, in terms of mean cross-validated F1 micro and F1 weighted scores, both
for the classification of the repetitions and for the estimation of the final score are
presented in Table 3.4, while Figure 3.4 shows the Confusion Matrices for both
cases.

Figure 3.2: Optimization of the number of features parameter for the Grasp the
Sparrow’s tail exercise.
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3.1 – Grasp the sparrow’s tail

Selected Features

Range of x displacement of the left hip

Mean of y displacement of the right ankle

Position of the right finger at the end of swing

Range of y displacement of the left shoulder

Median of the angle of the right elbow from the stop of swing to the end of the repetition

Range of x displacement of the right hip

Mean of the angle of the right elbow from the stop of swing to the end of the repetition

Range of x displacement of the right wrist

Median of the curvature of the left wrist during the swing

Variance of the angle of the right elbow from the stop of swing to the end of the repetition

Range of x displacement of the right knee

Correlation between the wrist and the hips movement

Range of y displacement of the head

Synchronicity of the hips and shoulders movement (x trajectory)

Table 3.2: Features selected for the Grasp the sparrow’s tail exercise.

Figure 3.3: Sammon projection of the data after Feature Selection for the Grasp
the sparrow’s tail exercise.
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Hyperparameter Optimized value

n_estimators 100

criterion ’gini’

max_depth None

max_features ’sqrt’

sampling_strategy ’not majority’

class_weight None

Table 3.3: Optimized hyperparameters for the Grasp the sparrow’s tail exercise.

Figure 3.4: Confusion Matrices presenting the classification results for the Grasp
the Sparrow’s tail exercise.

Metric Target Result (mean ± std)

F1 micro score
Single repetition 67.17% ± 1.35%

Subject 75.59% ± 2.96%

F1 weighted score
Single repetition 65.84% ± 1.3%

Subject 74.66% ± 2.94%

Table 3.4: Classification model performances in terms of F1 micro and F1 weighted
scores for the Grasp the Sparrow’s tail exercise.
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3.2 – Wave the hands like clouds

3.2 Wave the hands like clouds
This Section presents the results obtained in the analysis of the Wave the hands
like clouds exercise. As mentioned earlier in this Chapter, the instances in which
the movement was performed with both hands were analyzed separately than the
instances in which the movement was performed with one hand only, leading to
the development of two different models.

3.2.1 Performance with both hands
As shown in Figure 3.5, for the Wave the hands like clouds exercise performed
with both hands, 4 features were selected. Those features, together with a brief
explanation, are presented in Table 3.5. Further details on the features can be
found in Table A.3. The list of optimized hyperparameters is presented in Table 3.6;
further information on the meaning of those parameters can be found in Section
2.3.2. The projection of the features after Feature Selection is presented in Figure
3.6. Lastly, the performances of the model, in terms of mean cross-validated F1
micro and F1 weighted scores, both for the classification of the repetitions and for
the estimation of the final score are presented in Table 3.7, while Figure 3.7 shows
the Confusion Matrices for both cases.

Figure 3.5: Optimization of the number of features parameter for the Wave the
hands like clouds exercise performed with both hands.

Selected Features

Similarity of the trajectories of the right and left wrists

Mean of x displacement of the right wrist

Range of x displacement of the right hip

Range of y displacement of the left elbow

Table 3.5: Features selected for the Wave the hands like clouds exercise performed
with both hands.

47



Results

Figure 3.6: Sammon projection of the data after Feature Selection for the Wave
the hands like clouds exercise performed with both hands.

Hyperparameter Optimized value

n_estimators 50

criterion ’gini’

max_depth 10

max_features ’sqrt’

sampling_strategy ’all’

class_weight ’balanced’

Table 3.6: Optimized hyperparameters for the Wave the hands like clouds exercise
performed with both hands.

Figure 3.7: Confusion Matrices presenting the classification results for the Wave
the hands like clouds exercise performed with both hands.
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3.2 – Wave the hands like clouds

Metric Target Result (mean ± std)

F1 micro score
Single repetition 83.77% ± 0.87%

Subject 89.41% ± 1.95%

F1 weighted score
Single repetition 84.42% ± 0.83%

Subject 89.49% ± 2.0%

Table 3.7: Classification model performances in terms of F1 micro and F1 weighted
scores for the Wave the hands like clouds exercise performed with both hands.
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3.2.2 Performance with a single hand
As shown in Figure 3.8, for the Wave the hands like clouds exercise performed
with one hand only, 8 features were selected. Those features, together with a brief
explanation, are presented in Table 3.8. Further details on the features can be
found in Table A.3. The list of optimized hyperparameters is presented in Table 3.9;
further information on the meaning of those parameters can be found in Section
2.3.2. The projection of the features after Feature Selection is presented in Figure
3.9. Lastly, the performances of the model, in terms of mean cross-validated F1
micro and F1 weighted scores, both for the classification of the repetitions and
for the estimation of the final score are presented in Table 3.10, while Figure 3.10
shows the Confusion Matrices for both cases.

Figure 3.8: Optimization of the number of features parameter for the Wave the
hands like clouds exercise performed with one hand.

Selected Features

Range of x displacement of the right hip

Variance in difference in height of the elbows

Range of x displacement of the right knee

Range of y displacement of the head

Range of x displacement of the left hip

Synchronicity in movement of the left hip and the left shoulder (x trajectory)

Mean of the distance between knees

Range of x displacement of the left knee

Table 3.8: Features selected for the Wave the hands like clouds exercise performed
with one hand.
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3.2 – Wave the hands like clouds

Figure 3.9: Sammon projection of the data after Feature Selection for the Wave
the hands like clouds exercise performed with one hand.

Hyperparameter Optimized value

n_estimators 200

criterion ’gini’

max_depth 40

max_features ’log2’

sampling_strategy ’all’

class_weight ’balanced’

Table 3.9: Optimized hyperparameters for the Wave the hands like clouds exercise
performed with one hand.

Figure 3.10: Confusion Matrices presenting the classification results for the Wave
the hands like clouds exercise performed with one hand.
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Metric Target Result (mean ± std)

F1 micro score
Single repetition 75.47% ± 0.6%

Subject 80.29% ± 2.3%

F1 weighted score
Single repetition 75.27% ± 0.65%

Subject 78.22% ± 2.64%

Table 3.10: Classification model performances in terms of F1 micro and F1
weighted scores for the Wave the hands like clouds exercise performed with one
hand.
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3.3 – Withdraw and push

3.3 Withdraw and push
This Section presents the results obtained in the analysis of the Withdraw and
push exercise.

As shown in Figure 3.11, for the Withdraw and push exercise, 4 features were
selected. Those features, together with a brief explanation, are presented in Table
3.11. Further details on the features can be found in Table A.4. The list of optimized
hyperparameters is presented in Table 3.12; further information on the meaning
of those parameters can be found in Section 2.3.2. The projection of the features
after Feature Selection is presented in Figure 3.12. Lastly, the performances of the
model, in terms of mean cross-validated F1 micro and F1 weighted scores, both
for the classification of the repetitions and for the estimation of the final score are
presented in Table 3.13, while Figure 3.13 shows the Confusion Matrices for both
cases.

Figure 3.11: Optimization of the number of features parameter for the Withdraw
and push exercise.

Selected Features

Median of the angle of the front ankle

Variance of the weight in the back leg (difference in x coordinate of toe, knee and ankle)

Standard deviation of the weight in the front leg (difference in x coordinate of knee and
ankle)

Mean of the weight in the front leg (difference in x coordinate of knee and ankle)

Mean of the head alignment

Height of the left wrist at the start of the push

Table 3.11: Features selected for the Withdraw and push exercise.
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Figure 3.12: Sammon projection of the data after Feature Selection for the
Withdraw and push exercise.

Hyperparameter Optimized value

n_estimators 50

criterion ’gini’

max_depth None

max_features ’log2’

sampling_strategy ’not majority’

class_weight None

Table 3.12: Optimized hyperparameters for the Withdraw and push exercise.

Metric Target Result (mean ± std)

F1 micro score
Single repetition 79.25% ± 1.63%

Subject 81.29% ± 4.03%

F1 weighted score
Single repetition 77.54% ± 1.9%

Subject 79.36% ± 4.64%

Table 3.13: Classification model performances in terms of F1 micro and F1
weighted scores for the Withdraw and push exercise.
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3.3 – Withdraw and push

Figure 3.13: Confusion Matrices presenting the classification results for the
Withdraw and push exercise.
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3.4 Brush knee twist step
This Section presents the results obtained in the analysis of the Brush knee twist
step exercise.

As shown in Figure 3.14, for the Brush knee twist step exercise, 4 features
were selected. Those features, together with a brief explanation, are presented in
Table 3.14. Further details on the features can be found in Table A.5. The list
of optimized hyperparameters is presented in Table 3.15; further information on
the meaning of those parameters can be found in Section 2.3.2. The projection
of the features after Feature Selection is presented in Figure 3.15. Lastly, the
performances of the model, in terms of mean cross-validated F1 micro and F1
weighted scores, both for the classification of the repetitions and for the estimation
of the final score are presented in Table 3.16, while Figure 3.16 shows the Confusion
Matrices for both cases.

Figure 3.14: Optimization of the number of features parameter for the Brush
knee twist step exercise.

56



3.4 – Brush knee twist step

Selected Features

Range of x displacement of the left elbow

Median of the pelvis displacement from the beginning to the middle of the repetition

Height of the front wrist at the end of the repetition

Median of the angle of the right knee during the repetition

Range of x displacement of the right ankle

Range of y displacement of the right knee

Range of y displacement of the right wrist

Height of the back wrist at the end of the repetition

Standard deviation of the distance between knees

Height of the front wrist at the beginning of the repetition

Mean velocity of the head (y trajectory)

Range of x displacement of the left wrist

Table 3.14: Features selected for the Brush knee twist step exercise.

Figure 3.15: Sammon projection of the data after Feature Selection for the Brush
knee twist step exercise.
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Hyperparameter Optimized value

n_estimators 50

criterion ’gini’

max_depth 20

max_features ’sqrt’

sampling_strategy ’all’

class_weight ’balanced_subsample’

Table 3.15: Optimized hyperparameters for the Brush knee twist step exercise.

Figure 3.16: Confusion Matrices presenting the classification results for the Brush
knee twist step exercise.

Metric Target Result (mean ± std)

F1 micro score
Single repetition 64.31% ± 1.59%

Subject 64.0% ± 2.91%

F1 weighted score
Single repetition 64.45% ± 1.55%

Subject 63.96% ± 2.96%

Table 3.16: Classification model performances in terms of F1 micro and F1
weighted scores for the Brush knee twist step exercise.
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3.5 – Golden rooster

3.5 Golden rooster
This Section presents the results obtained in the analysis of the Golden rooster
exercise.

As shown in Figure 3.17, for the Golden rooster exercise, 4 features were selected.
Those features, together with a brief explanation, are presented in Table 3.17.
Further details on the features can be found in Table A.6. The list of optimized
hyperparameters is presented in Table 3.18; further information on the meaning
of those parameters can be found in Section 2.3.2. The projection of the features
after Feature Selection is presented in Figure 3.18. Lastly, the performances of the
model, in terms of mean cross-validated F1 micro and F1 weighted scores, both
for the classification of the repetitions and for the estimation of the final score are
presented in Table 3.19, while Figure 3.19 shows the Confusion Matrices for both
cases.

Figure 3.17: Optimization of the number of features parameter for the Golden
rooster exercise.
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Selected Features

Mean of the velocity of the raised arm relative to the knee

Mean of the y displacement of the right ankle

Variance of the alignment of the head with respect to the midpoint of the shoulders

Median of the distance between the knees during the repetition

Alignment of the right knee to the right ankle at the knee peak

Separation between the raised arm and the knee at knee peak

Height of the left wrist at knee peak

Standard deviation of the distance between the knees during the repetition

Mean of the acceleration of the raised arm relative to the knee

Standard deviation of the alignment of the head with respect to the midpoint of the shoulders

Alignment of the right wrist to the elbow at knee peak

Mean of y displacement of the right elbow

Table 3.17: Features selected for the Golden rooster exercise.

Figure 3.18: Sammon projection of the data after Feature Selection for the Golden
rooster exercise.
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3.5 – Golden rooster

Hyperparameter Optimized value

n_estimators 50

criterion ’gini’

max_depth 40

max_features ’sqrt’

sampling_strategy ’not majority’

class_weight None

Table 3.18: Optimized hyperparameters for the Golden rooster exercise.

Figure 3.19: Confusion Matrices presenting the classification results for the
Golden rooster exercise.

Metric Target Result (mean ± std)

F1 micro score
Single repetition 61.88% ± 0.57%

Subject 63.79% ± 3.18%

F1 weighted score
Single repetition 54.46% ± 1.22%

Subject 54.15% ± 3.52%

Table 3.19: Classification model performances in terms of F1 micro and F1
weighted scores for the Golden rooster exercise.
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3.6 Raising the power
This Section presents the results obtained in the analysis of the Raising the power
exercise.

As shown in Figure 3.20, for the Raising the power exercise, 4 features were
selected. Those features, together with a brief explanation, are presented in Table
3.20. Further details on the features can be found in Table A.7. The list of
optimized hyperparameters is presented in Table 3.21; further information on the
meaning of those parameters can be found in Section 2.3.2. The projection of the
features after Feature Selection is presented in Figure ??. Lastly, the performances
of the model, in terms of mean cross-validated F1 micro and F1 weighted scores,
both for the classification of the repetitions and for the estimation of the final score
are presented in Table 3.22, while Figure 3.21 shows the Confusion Matrices for
both cases.

Figure 3.20: Optimization of the number of features parameter for the Raising
the power exercise.

Selected Features

Synchronicity of movement of the between right wrist and right hip

Mean of the distance between the knees

Range of y displacement of the right hip

Standard deviation of the neck angle

Synchronicity of movement of the midpoint between wrists and hips

Height of the left wrist relative to the left shoulder at the peak of hands

Synchronicity of movement of the between left wrist and left hip

Range of y displacement of the left hip

Table 3.20: Features selected for the Raising the power exercise.
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3.6 – Raising the power

Hyperparameter Optimized value

n_estimators 50

criterion ’gini’

max_depth 10

max_features ’log2’

sampling_strategy ’not minority’

class_weight ’balanced_subsample’

Table 3.21: Optimized hyperparameters for the Raising the power exercise.

Figure 3.21: Confusion Matrices presenting the classification results for the
Raising the power exercise.

Metric Target Result (mean ± std)

F1 micro score
Single repetition 77.23% ± 1.21%

Subject 83.24% ± 2.3%

F1 weighted score
Single repetition 77.93% ± 1.17%

Subject 83.66% ± 2.2%

Table 3.22: Classification model performances in terms of F1 micro and F1
weighted scores for the Raising the power exercise.
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3.7 Summary of the results
In summary, all of the developed models, except for those concerning the Brush
Knee Twist Step and the Golden Rooster exercises, consistently achieve an F1 micro
score of over 75% when estimating the proficiency level of Tai Chi practitioners. In
contrast, the Brush Knee Twist Step and the Golden Rooster exercises exhibit an
F1 micro score just above 60%.

An overview of these results, which will be discussed in Chapter 4, is provided
in Figure 3.22.

Figure 3.22: Overview of the classifiers’ performance in assessing the proficiency
level of Tai Chi practitioners measured with the F1 micro score.
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Discussion

In this Chapter, the results obtained and presented in Chapter 3 will be analyzed.
The validation of the automatic segmentation for Grasp the sparrow’s tail

showed that the quality of the segmentation step has an impact on the classification
performances. Nevertheless, it’s worth pointing out that there is a remaining
degree of incertitude on the ground truth due to the possibility of human errors.
In fact, having multiple annotators provides a better estimate and allows to be
robust against human error, but in this work each video was manually segmented
by a single person. However, the classifier trained on the features extracted from
the manually segmented trajectories demonstrated how performances over 80%
could be reached for the Grasp the sparrow’s tail exercise. Hence, working on a
more robust segmentation for this exercise should increase the performance of the
classifier.

The performance of the developed models, as measured by the F1 micro score
for estimating subject scores, generally exceeds 75-80%. However, there are two
exercises, namely Brush knee twist step and Golden rooster, for which the model
performance is comparatively lower. This decline in model performance can be
attributed to the greater complexity of these two exercises in comparison to the
others. The intricacy of these exercises poses a challenge for the extracted features
to adequately characterize the biomechanical aspects of movement, resulting in a
decrease in model performance. This observation is reinforced by the fact that,
for the classification of these two exercises, a higher number of features is deemed
optimal compared to all other exercises except for Grasp the sparrow’s tail.

Furthermore, due to the heightened complexity of these exercises, the execu-
tion by study participants exhibits greater variability. This increased variability
adversely affects the classifier’s ability to accurately group subjects with similar
scores. Additionally, as discussed in more detail in Section 4.1, the scoring method
does not provide a single score per repetition and thus doesn’t properly reflect
the variability observed in the exercise execution. Particularly in the case of more
complex exercises like Brush knee twist step and Golden rooster, there is a higher
likelihood of mislabeled repetitions, leading to a decrease in the classification
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performance of the models.
Regarding the Golden rooster exercise, it appears that dataset imbalance nega-

tively affected the classification performance despite the utilization of the Balanced
Random Forest classifier. Specifically, most misclassified subjects have low or
medium proficiency scores and are frequently misclassified as having high profi-
ciency, the class with the highest number of instances, showing that the model is
probably overfitting.

4.1 Limitations of the study
This study presented several limitations. Most of these limitations concern the way
that video data were collected, but also have to do with the dimension and the
lack of balance of the dataset and the way that scores were assigned.

During different sessions of data collection, there was a lack of consistency
in the placement of the cameras with respect to the subject, both in terms of
distance between and alignment of the subject and the cameras. The fact that the
distance between the front camera and the subject was variable was compensated
by the normalization of the skeletal dimensions. On the other hand, the fact that
sometimes there was an angle between the field of view of the camera and the
subject could not be compensated for. This introduced an avoidable increase in
variability within the dataset.

Furthermore, laterally recorded videos were recorded from the same side of the
subject regardless of the version of the exercise being performed. In other words,
if the study participant was executing the exercise in one version on its mirrored
one the camera would still be in the same position. This limitation concerns the
Withdraw and push exercise exclusively, as for the others, the lateral view was
discarded, but the result was that for this exercise, it made no sense to mirror one
of the two versions of the exercise. Hence, a lack of consistency was introduced in
the analysis.

An additional limitation of the study concerns the way the scores were assigned.
Firstly, scores were assigned by different Tai Chi experts, producing a possible
small variability in the scores. Secondly, the provided scores were one per subject
only, while the developed models classified each repetition. On one hand, this
choice was made to augment the size of the dataset but on the other, it has the
downfall of assuming that all repetitions of one subject have the same score, namely
the subject’s. Unfortunately, this is not always true: if the study participant’s
performance was increasing during the trial, the Tai Chi experts would assign the
best score reached. Hence, the first repetition, with a lower proficiency level, would
still receive a high score. This procedure adds a good amount of noise to the data,
making it harder for the classifier to create boundaries between the classes. In the
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4.2 – Future perspectives

future, dubious repetitions might be flagged to be re-labeled by the Tai Chi experts
to try to decrease this noise component.

Lastly, the small dimensions of the dataset make it harder to generalize the
results obtained in this Thesis. This limitation can be minimized by collecting
more data or including data coming from different studies in this analysis.

4.2 Future perspectives
There are several future perspectives for this work. Firstly, it would be of great
interest to include the 3rd dimension in the analysis and get information on depth.
This can be achieved by collecting data with a depth camera or by employing
skeleton reconstruction techniques. Using skeleton tracking methods different than
MediaPipe might be of interest as well as multiperson Human Pose Estimation
platforms could minimize the tracking errors due to the presence of multiple
individuals in the frame.

Furthermore, the results of the validation of the automatic segmentation suggest
that it could be appropriate to validate the segmentation strategies for the other
exercises as well. The downfall of this choice is that manual labeling would be
needed to provide the ground truth for the analysis. However, the results of this
analysis might once again encourage to work on making the segmentation more
robust to increase the model performances.

In addition, future analyses could include the data coming from the lateral view
recordings after synchronization with the frontal ones. In fact, using the lateral
data would provide a gain in information that could increase the performance of the
classifiers. This is especially true for the analysis of Tai Chi exercises, as one key
aspect in the practice of the discipline is the shift of weight, and features designed
to characterize this aspect of movement often rely on the lateral view. Nevertheless,
videos capturing the lateral side of the subject are not always recorded. Developing
a pipeline that only relies on the frontal view is hence more general and applicable
to other cases of study.

Lastly, the pipeline developed in this study can be applied to a longitudinal
study of the Motion Analysis Lab, whose data collection was recently concluded.
This project followed the progress of Tai Chi naive study participants who were
trained for 12 weeks and evaluated 4 times during the study, with the goal of
understanding whether proficiency matters in terms of motor gains. Hence, in the
context of assessing whether there’s a relation between the increase in balance and
the increase in Tai Chi proficiency, the pipeline developed in this study can play a
crucial role by being able to estimate the latter automatically.
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Conclusions

In the context of investigating the beneficial effect of Tai Chi on health, and
specifically on balance, the goal of this Thesis was to develop Machine Learning
algorithms to automatically assess Tai Chi proficiency from video data analyzed
with Human Pose Estimation.

To reach this aim, previously collected data from 32 older adults with a wide
range of proficiency levels was analyzed. After extracting the joint trajectories
with MediaPipe, normalizing the skeleton dimensions, and segmenting the trials,
specifically designed features were extracted. These features were ranked, selected,
and used to train a Balanced Random Forest classifier to classify the individual
exercise repetition into 3 levels of proficiency. From this information, a final score
per subject was estimated by picking the score that was assigned most frequently
and with the highest confidence.

The overall performances of the developed models in terms of F1 micro score
exceeds 80% with the exception of the two most complex exercises. In these cases,
the extracted features were unable to capture the exercise complexity and hence
allowed the models to estimate the proficiency level of the study participants
correctly.

Despite the small dimension of the dataset, this study serves as proof of concept
that Human Pose Estimation and Machine Learning can be employed to assess
Tai Chi proficiency. The pipeline developed in this work will be employed in a
longitudinal study on Tai Chi that investigates whether exercise proficiency matters
in terms of motor gains.
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Look-up Tables

This Appendix contains the full Look-up tables for all Exercises (Tables A.1 -
A.7). These tables associate the aspect of movement of interest to a measurement
strategy and the respective extracted features. These look-up tables are the result
of a collaboration with the Tai Chi experts, who provided the aspect of movement
they were looking at when assigning the proficiency scores to the exercises, and the
engineering team, who converted these observations into quantifiable features that
could be extracted from the (x,y) trajectories of the joints.

These tables include only the features that have been considered in this Thesis
work. Further features were designed but not extracted as they would have required
to exploit the second view (namely the lateral view for all exercises but the
Withdraw and push), which was discarded in this work as explained in Paragraph
2.2.3.

Aspect of movement Measurement Extracted values

Whether the ankles are shoulder
width-apart in the bow stance

Ratio of the distance between the
ankles and the distance between
the shoulders

Mean, median, standard devia-
tion and variance of the time se-
ries

Whether the left or right knee is
excessively bent from side to side Observation of the knee angle

Mean, median, standard devia-
tion, variance and range of the
time series

Assessment of the separation of the
legs in the frontal plane

Observation of the distance be-
tween the knees

Mean, median, standard devia-
tion, variance and range of the
time series

Table A.1: Look-up table for the features common to all exercises.
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Look-up Tables

Aspect of movement Measurement Extracted values

Whether the left or right wrist is
at collarbone height at the begin-
ning of repetition, the beginning of
swing and the end of swing

Difference in y coordinate be-
tween the analyzed wrist and the
respective shoulder

Feature value in the moment of
interest

Whether the hands are centered
with the body at the beginning of
repetition

Difference in x coordinate be-
tween the left or right wrist and
the midpoint between the shoul-
ders

Feature value in the moment of
interest

Whether one of the hands barely
peeking out behind the other at the
beginning of repetition

Difference in visibility between
the wrists

Feature value in the moment of
interest

Whether the body midline is moved
towards one side of the body, indi-
cating a weight shift at the begin-
ning of repetition

Difference in x coordinate be-
tween the midpoint of the ankles
and the midpoint of the shoulders

Feature value in the moment of
interest

Whether the fingers of the left or
right hand are curved with the re-
spective wrist or splayed at the end
of swing

Difference in x coordinate be-
tween the wrist and the index
knuckle

Feature value in the moment of
interest

Whether the subject is moving in
a figure 8 pattern, shifting then
turning the body throughout the
movement

Dynamic time warping between
the figure 8 pattern of the subject
and an 8 curve

Distance measure

Whether the subject is shifting the
weight forward as the arms move,
and shifting back when the arms
are still throughout the movement

Evaluation of the pelvis shift in
the saggittal plane

Pearson Correlation Coefficient
between the left hip x trajectory
and wrist x trajectory

Whether the hips and the shoulders
are turning synchronously during
the swing

Evaluation of the synchronicity
of hips and shoulder movements

Pearson Correlation Coefficient
between the hips x and y trajec-
tories and the shoulders x and y
trajectories

Whether the elbow bends to return
the wrist to the body center be-
tween the end of the swing and the
end of the repetition

Observation of the elbow angle
time series

Mean, median, standard devia-
tion and variance of the time se-
ries

Whether the elbow sinks to return
the wrist to the body center be-
tween the end of the swing and the
end of the repetition

Observation of the elbow y-
trajectory time series

Mean, median, standard devia-
tion and variance of the time se-
ries

Whether the head is centered with
respect to the trunk throughout the
movement

Observation of the difference be-
tween the x-trajectory of the head
and the x-trajectory of the mid-
point between the shoulders

Mean, median, standard devia-
tion and variance of the time se-
ries

Table A.2: Look-up table for the Grasp the sparrow’s tail exercise.
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Look-up Tables

Aspect of movement Measurement Extracted values

Whether the left or right wrist is at
collarbone height at its peak height

Difference in y coordinate be-
tween the analyzed wrist and the
respective shoulder

Feature value in the moment of
interest

Whether the head is centered with
respect to the trunk throughout the
movement

Observation of the difference be-
tween the x-trajectory of the head
and the x-trajectory of the mid-
point between the shoulders

Mean, median, standard devia-
tion and variance of the time se-
ries

Whether the hips and the shoulders
are aligned

Evaluation of the ratio between
the slope of the shoulders markers
and the slope of the hips markers

Mean, median, standard devia-
tion and variance of the time se-
ries

Whether the subject is moving in
a figure 8 pattern, shifting then
turning the body throughout the
movement

Dynamic time warping between
the figure 8 pattern of the subject
and an 8 curve

Distance measure

Whether the subject is shifting the
weight forward as the arms move,
and shifting back when the arms
are still throughout the movement

Evaluation of the pelvis shift in
the sagittal plane

Pearson Correlation Coefficient
between the left and right hip
x trajectory and the respective
wrist and elbow x trajectories

Whether the left or right foot is
parallel in the foot stance

Ratio of the difference in y coordi-
nate of the left or right ankle and
the respective toe and the differ-
ence in x coordinate of the left or
right ankle and the respective toe

Mean, median, standard devia-
tion and variance of the time se-
ries

Whether the circular pattern of the
wrists is smooth and symmetrical

Estimation of the curvature of the
left and right wrist trajectory

Mean, median, standard devia-
tion, variance, minimum, maxi-
mum and range of the time series

Whether the hand movement on
the left side of the body matches
the movement on the right side

Evaluation of the wrists trajecto-
ries during the repetition

Pearson Correlation Coefficient
between the wrists x trajectories

Whether the elbows are at the same
height

Observation of the difference in y
coordinate of the elbows

Mean, median, standard devia-
tion and variance of the time se-
ries

Table A.3: Look-up table for the Wave the hands like clouds exercise.
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Look-up Tables

Aspect of movement Measurement Extracted values

Whether the left or right wrist is
at collarbone height at the start of
the push

Difference in y coordinate be-
tween the analyzed wrist and the
respective shoulder

Feature value in the moment of
interest

Whether the left or right wrist is
at collarbone height at the end of
the push

Difference in y coordinate be-
tween the analyzed wrist and the
respective shoulder

Feature value in the moment of
interest

Whether the left or right wrist
move towards the hips in the mid-
dle of the push

Difference in y coordinate be-
tween the analyzed wrist and the
respective shoulder

Feature value in the moment of
interest

Whether the subject shifts the
body forwards for the first half of
the exercise

Evaluation of the most visible hip
x displacement during the push
phase

Mean, median, standard devia-
tion and variance of the time se-
ries

Whether the subject shifts the
body backwards for the second half
of the exercise

Evaluation of the most visible hip
x displacement from the end of
the push to the end of the repeti-
tion

Mean, median, standard devia-
tion and variance of the time se-
ries

Whether the arm extension move-
ment is synchronous with the leg
shift movement

Observation of the wrist and the
hip x trajectory

Pearson Correlation Coefficient
between the hip x trajectory and
wrist x trajectory

Whether the head is unnecessar-
ily bent forwards or backwards
throughout the movement

Observation of the difference be-
tween the x-trajectory of the head
and the x-trajectory of the mid-
point between the shoulders

Mean, median, standard devia-
tion and variance of the time se-
ries

Assessment of the weight in the
front leg during the push by looking
at whether the knee is in front of
the ankle, but no further than the
base of the toes

Difference in x coordinate be-
tween the front leg’s toe, knee
and ankle and knee and ankle
only during the push portion of
the movement

Mean, median, standard devia-
tion and variance of the time se-
ries

Assessment of the weight in the
back leg during the push by looking
at whether the knee is in behind
the ankle and the toes

Difference in x coordinate be-
tween the back leg’s toe, knee and
ankle and knee and ankle only
during the push portion of the
movement

Mean, median, standard devia-
tion and variance of the time se-
ries

Whether the subject is leaning back
throughout the movement

Evaluation of the ratio between
the slope of the shoulders markers
and the slope of the hips markers

Mean, median, standard devia-
tion and variance of the time se-
ries

Table A.4: Look-up table for the Withdraw and push exercise.
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Look-up Tables

Aspect of movement Measurement Extracted values

Whether the front wrist is at col-
larbone height at the beginning of
the repetition

Difference in y coordinate be-
tween the analyzed wrist and the
respective shoulder

Feature value in the moment of
interest

Whether the back wrist is at pelvis
height at the beginning of the rep-
etition

Difference in y coordinate be-
tween the analyzed wrist and the
respective hip

Feature value in the moment of
interest

Whether the left or right wrist is
at collarbone height in the middle
of the repetition

Difference in y coordinate be-
tween the analyzed wrist and the
respective shoulder

Feature value in the moment of
interest

Whether the front wrist is at pelvis
height at the end of the repetition

Difference in y coordinate be-
tween the analyzed wrist and the
respective hip

Feature value in the moment of
interest

Whether the left or right wrist is
at collarbone height at the end of
the push

Difference in y coordinate be-
tween the analyzed wrist and the
respective shoulder

Feature value in the moment of
interest

Whether the back wrist is at col-
larbone height at the end of the
repetition

Difference in y coordinate be-
tween the analyzed wrist and the
respective shoulder

Feature value in the moment of
interest

Whether the head is unnecessarily
bent from side to side

Observation of the neck angle
time series throughout the rep-
etition

Mean, median, standard devia-
tion and variance of the time se-
ries

Whether the head is centered with
respect to the trunk throughout the
movement

Observation of the difference be-
tween the x-trajectory of the head
and the x-trajectory of the mid-
point between the shoulders

Mean, median, standard devia-
tion and variance of the time se-
ries

Whether the hips and the shoulders
are aligned

Evaluation of the ratio between
the slope of the shoulders markers
and the slope of the hips markers

Mean, median, standard devia-
tion and variance of the time se-
ries

Whether the weight shifts laterally
from one leg to the other from the
beginning of the repetition to its
middle and from the middle of teh
repetition to its end

Observation of the x displacement
of the pelvis

Mean, median, standard devia-
tion and variance of the time se-
ries

Table A.5: Look-up table for the Brush knee twist step exercise.
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Look-up Tables

Aspect of movement Measurement Extracted values

Whether the raised elbow is cen-
tered over the knee at the peak of
the knee

Difference in x coordinate be-
tween the analyzed elbow and the
respective knee

Feature value in the moment of
interest

How far apart the raised elbow is
from the raised knee at the peak of
the knee

Difference in y coordinate be-
tween the analyzed elbow and the
respective knee

Feature value in the moment of
interest

Whether the raised wrist is at col-
larbone height at the peak of the
knee

Difference in y coordinate be-
tween the analyzed wrist and the
respective shoulder

Feature value in the moment of
interest

Whether the raised ankle is aligned
to the respective knee at the peak
of the knee

Difference in x coordinate be-
tween the analyzed ankle and the
respective knee

Feature value in the moment of
interest

Whether the raised wrist is aligned
to the respective elbow at the peak
of the knee

Difference in x coordinate be-
tween the analyzed wrist and the
respective elbow

Feature value in the moment of
interest

Whether the subject is stable when
raising the knee

Evaluation of the navel trajectory
from the beginning of the repeti-
tion to the peak of the knee

Mean, median, standard devia-
tion, variance and range of the
navel displacement, mean of the
velocity, mean of the acceleration,
mean of the jerk both for the x
and in the y trajectories.

Whether the arm being raised
moves in a medial trajectory when
raising the knee

Observation of the trajectory of
the wrist being raised from the
beginning of the repetition to the
peak of the knee

Mean, median, standard devia-
tion, variance and range of the
time series

Whether the head is unnecessarily
bent from side to side

Observation of the neck angle
time series throughout the rep-
etition

Mean, median, standard devia-
tion and variance of the time se-
ries

Whether the head is centered with
respect to the trunk throughout the
movement

Observation of the difference be-
tween the x-trajectory of the head
and the x-trajectory of the mid-
point between the shoulders

Mean, median, standard devia-
tion and variance of the time se-
ries

Whether the hips and the shoulders
are aligned

Evaluation of the ratio between
the slope of the shoulders markers
and the slope of the hips markers

Mean, median, standard devia-
tion and variance of the time se-
ries

Table A.6: Look-up table for the Golden rooster exercise.
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Look-up Tables

Aspect of movement Measurement Extracted values

Whether the left or right is at col-
larbone height at the peak of the
wrists

Difference in y coordinate be-
tween the analyzed wrist and the
respective shoulder

Feature value in the moment of
interest

Whether the left or right is at
pelvis height at the beginning of
the repetition

Difference in y coordinate be-
tween the analyzed wrist and the
respective hip

Feature value in the moment of
interest

Whether the knees are excessively
bent at the peak of the wrists Evaluation of the knee angle Feature value in the moment of

interest

Whether the overall movement is
smooth and synchronised

Observation of the hips and
wrists trajectories

Pearson Correlation Coefficient
between the x trajectory of the
hip and of the respective wrist

Whether the head is unnecessarily
bent from side to side

Observation of the neck angle
time series throughout the rep-
etition

Mean, median, standard devia-
tion and variance of the time se-
ries

Whether the hips are consistently
aligned throughout the movement

Observation of the slope of the
hips

Mean, median, standard devia-
tion, variance and range of the
time series

Whether the hips and the shoulders
are aligned

Evaluation of the ratio between
the slope of the shoulders markers
and the slope of the hips markers

Mean, median, standard devia-
tion and variance of the time se-
ries

Whether the hips and the knees are
aligned

Evaluation of the ratio between
the slope of the knees markers
and the slope of the hips markers

Mean, median, standard devia-
tion and variance of the time se-
ries

Whether the hands trajectories are
symmetric throughout the move-
ment

Observation of the distance of the
wrists from the body midline

Mean, median, standard devia-
tion and variance of the time se-
ries

Whether the head is centered with
respect to the trunk throughout the
movement

Observation of the difference be-
tween the x-trajectory of the head
and the x-trajectory of the mid-
point between the shoulders

Mean, median, standard devia-
tion and variance of the time se-
ries

Table A.7: Look-up table for the Raising the power exercise.
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