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Abstract

For future space missions, exploiting planet’s moons to escape from its sphere
of influence can significantly improve the performance of the mission itself. In fact,
being able to return to Earth while saving the maximum amount of propellant
possible allows, at the preliminary stage, to design the mission with more mass to
be allocated to the payload, which means being able to carry out more scientific
explorations that will allow us to gain a greater understanding of our planetary
system.
This study focuses on identifying the minimum-propellant mission architectures
for future return missions from planets with moons to Earth. In particular, Mars
and Jupiter are selected as the central bodies, and their moons, including Phobos,
Deimos, and the four most massive moons of Jupiter, are taken into consideration.
The analysis explores various escape strategies, such as direct escape trajectories
from each gravitational body and either gravity assists or powered flybys. The
study considers more than 100 different mission architectures, which include direct
escape trajectories and all the possible permutations with one or two additional
moons. A detailed analysis narrows the search space for the best gravitational body
combinations and identifies the most promising candidate strategies for escape.
Different dynamical models are implemented, including a three-body dynamical
model and a bi-circular four-body problem, respectively for when one or two moons
are considered along with the more massive primary. The heliocentric phase follows
Keplerian motion and is patched to the escape conditions from the primaries at
the sphere of influence. JPL’s DE432s ephemerides are implemented to retrieve the
celestial bodies’ states over time. A Lambert’s problem for the return trajectory
explores launch windows between January 1, 2025, and December 31, 2050. Results
show significant differences between the Mars and Jupiter frameworks, with an
evident cut-off convenience threshold for considering moons to escape when a bigger
primary to smaller primary flyby is implemented. In contrast, solutions that exploit
trajectories from a smaller primary towards the bigger one to take advantage of
its gravitational pull or the Oberth effect are promising regardless of the specific
primary’s mass ratio. Notably, the solutions exhibit periodicity over the years due
to the combined planetary ephemerides.
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Chapter 1

Introduction

The exploration of Mars represents an ambitious goal of humanity in our journey
through a better understanding of the cosmos. This planet has always held an
irresistible attraction for past and present generations. Recent missions, such as
those of the Curiosity and Perseverance rovers, have contributed significantly to
our understanding of the red planet and paved the way for future human missions.
In particular, Curiosity found that early Mars could have supported life. It also
found traces of organic molecules preserved in rock layers 3.5 billion years old and
that the amount of methane in the Martian atmosphere varies with the seasons [1].
Also the key objective for Perseverance’s mission on Mars is astrobiology, including
the search for signs of ancient microbial life. The rover will characterize the planet’s
geology and past climate, pave the way for human exploration of the red planet,
and be the first mission to collect and cache Martian rock and regolith [2].
In the field of human space exploration, one of the most daring and widely de-
bated initiatives of recent years has been the Mars One mission. This visionary
undertaking, first announced in 2012, aimed to establish a permanent colony on
Mars, opening the door to a momentous chapter in the evolution of the human race.
Beginning in 2025, the program plans to land four people on Mars every 26 months
via a series of one-way missions, using exclusively existing technology [3]. Mars
One has been enthusiastically hailed by some as the symbol of a multiplanetary
future, but it has also generated intense debates about its feasibility, sustainability,
and the scientific rigor of its ambitions.
But the Mars One mission is not alone in setting such an ambitious goal: in the
context of space exploration, the Mars Sample Return (MSR) mission emerges as
an outstanding and critically important undertaking. This ambitious mission aims
to take a momentous step in the study of Mars by planning to collect and return
soil and rock samples from this planet. MSR’s primary goal is to refine our scientific
understanding of Mars, but its scope goes far beyond the boundaries of a single
planet. MSR represents the pinnacle of international cooperation between space
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agencies and scientific institutions, bringing together the best in space engineering
and scientific research. In fact, ESA is working with NASA to explore mission
concepts for an international Mars Sample Return campaign between 2020 and
2030 [4, 5].
The return of Martian samples to Earth represents an unprecedented technical and
logistical challenge, requiring sophisticated sampling systems, highly specialized
spacecraft and meticulous planning. However, the expected scientific results and
the promise of laying the groundwork for future human missions to Mars make
MSR a key milestone in the exploration of our solar system. A feasibility study was
conducted of a potentially simple and low cost approach to Mars Sample Return
mission enabled by the use of new commercial capabilities [6, 7].
One of the most significant challenges in this journey is the return from the surface
of Mars. Developing safe and reliable systems for launch and return from Mars
represents a complex technological barrier that will require significant resources and
ingenuity. However, despite the challenges and costs, Mars exploration is vital to
humanity’s future. It is not only about discovering new scientific information, but
also about considering the long-term survival of our species. Mars could become a
future human colony, a resource for Earth’s resource reserves, and a springboard
for further exploration in the solar system.
In conclusion, the possibility of being able to getting to and from Mars in the
near future is becoming more and more concrete especially in recent years. The
difficulties in accomplishing such a mission are not only related to how to get to
the red planet, but, if we want to get human beings there, we also have to pose the
problem of how to get the astronauts safely back to Earth.
This thesis aims to identify the best possible maneuver that will allow a space probe
located on a low orbit of a generic solar system planet to return to Earth while
consuming the least amount of propellant. Therefore, to achieve this, a four-body
planar bicircular model (PBCR4BP) will be used to evaluate whether and how
fruiting, via flyby maneuvers, a planet’s moons can actually be an advantage.
In particular, this implemented four-body model makes it possible to simulate any
ternary system, thus allowing the creation of a system with a generic primary body
while also including in the analysis the perturbative actions of any two moons, so
that possible gravitational assist maneuvers with them can be evaluated.
Within this framework, the ternary system consisting of Mars and its two moons
Phobos and Deimos will be presented and considered as a specific case and the
main topic of this paper.
Therefore, four different types of maneuvers will be presented: a direct escape, an
assisted escape by flyby of Phobos, an assisted escape by flyby of Deimos, and
finally, a combined flyby maneuver with both Mars moons will also be evaluated.
The analyses performed in this paper should not be exclusively applicable only to
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the Mars-Phobos-Deimos tertiary system; rather, a parametric study was conducted
in which as the gravitational parameter of the binary system, the mass of the
tertiary body and the distance between the secondary and tertiary body vary, it is
possible to describe all existing three-body systems.
In fact, since Phobos and Deimos are very small and not very massive moons [8], it
would be possible to conclude, even before results are obtained, that their gravita-
tional aids to the probe are actually negligible; for this reason, the parametric study
consists of simulating, in steps of an order of magnitude each, an increase in the
gravitational parameter of the binary system, so that it is possible to investigate
what the minimum mass ratio between primary and secondary must be in order for
it to make sense to speak of a gain of at least 1 m/s over the ∆V that is needed to
implement a direct escape maneuver without exploiting the gravitational assistance
of a planet’s moons.
Therefore, in the first chapter the aim is to briefly summarize the purpose of this
work so as to provide a general overview and the logical flow followed. In the second
chapter a reminder of the fundamentals of spaceflight mechanics will be given,
with a focus on the differential equations of dynamics that describe spacecraft
behavior in space and the various types of maneuvers that can be implemented.
The third chapter will go into more detail about the mission both from a theoretical
point of view, going into an analysis of the fundamental quantities describing the
Mars-Phobos-Deimos synodic system, and from a practical point of view in terms
of the implementation in the Matlab environment of the code used to simulate in
this particular case the Mars-Phobos-Deimos synodic system but, by appropriately
varying the three parameters described above, it would be possible to simulate any
tertiary system existing in nature.
The core of this code consists of a genetic algorithm, which will be described and
analyzed in detail in the fourth chapter: its purpose is to find the best possible
combination of initial conditions that, integrated over time according to the equa-
tions of motion (EOMs) of the PBCR4BP, allow minimizing the errors defined as
constraints imposed on the final conditions.
The results obtained for the Martiocentric system will be explained and commented
on in the fifth chapter, while the sixth and last chapter will present the final
conclusions.
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Chapter 2

Fundamentals of orbital mechanics

It is intended to present in this chapter a brief overview of the essential theoretical
concepts on which the physics of the problem analyzed in the thesis is based. The
fundamental laws governing motions in space will then be described, moving on
to the key aspects of defining orbits. Then, propulsion-related parameters will
be introduced in order to present the main characteristics of orbital maneuvers,
reference systems and the most common types of maneuvers will be described in
order to provide a general overview of the context in which this thesis work focused,
paying particular attention to the restricted circular three-body model and then
moving on to the more accurate, as well as the model implemented in this work,
bicircular and planar four-body model. For the realization of this chapter, use was
made of reference books [9, 10, 11, 12, 13, 14].

2.1 Gravitational force of attraction
Gravitational force of attraction. Two material points A and B of masses

mA and mB separated by a distance r, exert on each other an attractive force F
directed as the segment AB; the modulus of this force F is directly proportional
to the product of the two masses and inversely proportional to the square of their
mutual distance r = |AB|, that is:

F⃗g = −GmAmB

r2
r⃗

r
(2.1)

where G = 6,673 × 10−11 m3/(kg s2) is the constant of universal gravitation (2.1).
The universal term means that this law is valid both on Earth and in celestial
space. The negative sign present in the equation (2.1) is due to the fact that the
force is of the attractive type so in the opposite direction with respect to the vector
r⃗. Note that the F⃗G is the same for both bodies, however, due to the different mass
possessed, it will cause a different acceleration F

m
for the two bodies.
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2.2 Mention of the N-body problem
The N-body problem means the study of the motion of a set of N masses

m1,m2, . . . ,mN , distributed in a Euclidean space and interacting with each other
only by gravitational forces. It represents in a general way the problem under
consideration, where the satellite is the i-th mass subjected to the gravitational
forces of the other N-1 celestial bodies.

O ŷ

ẑ

x̂

mj

m2

m1

mi

R⃗i

R⃗j

R⃗2

R⃗1

Figure 2.1: N-body problem

The following assumptions are made:

1. Bodies are point masses.

2. Bodies have constant, homogeneous masses.

14



3. Only the contribution of the gravitational force is considered.

Defining an inertial reference system centered at any point O (such as the one in
figure 2.1): it is possible to describe a position vector R⃗i relative to the i-th mass
and consequently the distance vector of body j relative to body i as R⃗ij = R⃗i − R⃗j .
With these definitions, now it is possible to evaluate the force exerted by mass i on
mass j using Newton’s second law of dynamics:

F⃗ = d

dt
(m⃗̇r) (2.2)

where ⃗̇r is the velocity of the body and, in the case where the mass is constant over
time, takes the form:

F⃗ = m⃗̈r (2.3)
In the present case the gravitational force can be expressed as:

F⃗g = −G mimj

||R⃗i − R⃗j||2
R⃗i − R⃗j

||R⃗i − R⃗j||
(2.4)

Using the equation (2.3) in the (2.4) and simplifying the i-th mass is ultimately
obtained:

⃗̈Ri =
∑
i ̸=j

−G mj

||R⃗i − R⃗j||2
R⃗i − R⃗j

||R⃗i − R⃗j||
(2.5)

Thus there will be N vector equations that will have to be solved all at once since
it is a system of equations coupled together. One could decompose R⃗i into the
three components along the principal axes so as to work with scalars and no longer
with vectors however, in this way one would have 3N coupled equations. The main
problem remains, however, that this set of equations does not have an analytic
solution in closed form (except for the N=2 case), so it will be necessary to resort
to numerical methods.
Subtracting from all the equations that of the j-th body, whose relative motion one
want to study, it is possible to obtain N-1 vector equations, and assuming that the
mass of the satellite is mj it is possible to make the following assumption:

mj << m1,m2, . . . ,mN−2 (2.6)

By doing so, is talking about the problem of N bodies restricted.

2.3 Two-body problem
The simplest case of the N-body problem is the one with N=2. The condition

just presented is ideal and in some cases introduces a strong simplification, but
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when two masses are very close to each other relative to each other, the gravitational
disturbances of the other bodies become negligible, and the two-body problem
describes the physics of the system with good approximation.

O ŷ

ẑ

x̂

M m

ρ⃗ = R⃗ + r⃗
R⃗

r⃗

F⃗m F⃗M

Figure 2.2: Two-body system

Defining an inertial reference system centered at any point O (like the one in
the figure 2.2): consider two bodies of masses M and m r⃗ away from each other
and consider the following assumptions to be valid:

1. The two bodies are point masses.

2. The two bodies have masses such that m ≪ M.

3. Only the contribution of the gravitational force is considered.

4. The influence of the generic smaller body is not considered.
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In particular, if one considers, in accordance with Hypothesis 2, one of the two
masses to be much less than the other, the problem is further simplified: the force
that the small body exerts on the large body is irrelevant, and it is possible to
place the origin of the reference system at the center of the large body of mass M,
which will be considered inertial. This is called the restricted two-body problem. It
is possible to define the absolute value of the gravitational forces as follows:

|F⃗m| = |F⃗M | = G
mM

r2 (2.7)

Considering the body m:
m⃗̈ρ = −GmM

r2
r⃗

r
(2.8)

Considering the body M:
M ⃗̈R = +GmM

r2
r⃗

r
(2.9)

Evaluating the relative motion of m with respect to M so from (2.8) - (2.9):

⃗̈ρ− ⃗̈R = −GM +m

r2
r⃗

r
(2.10)

Using hypothesis 2 one can neglect the mass m and write:

⃗̈r ≃ −GM

r2
r⃗

r
(2.11)

This gives the equation of motion in the two-body problem:

⃗̈r + µ

r2
r⃗

r
= 0 (2.12)

Where the planetary gravitational constant µ = GM was introduced. It is valid
for the Earth µ = 398 600 km3/s2, for the Sun µ = 1,327 × 1011 km3/s2 but can be
defined for any planet in the solar system.
Given the great importance of this parameter within this thesis work and, more
specifically, in view of what will be the subsequent considerations, it is to get an
idea from the outset of the orders of magnitude of the gravitational parameter µ
for the various planets of the solar system, which can be visualized by the table 2.1:

SunSunSun MercuryMercuryMercury VenusVenusVenus EarthEarthEarth MarsMarsMars
µ [km3/s2]µ [km3/s2]µ [km3/s2] 1,3271 × 1011 2,2032 × 104 3,2486 × 105 3,986 × 105 4,2828 × 104

JupiterJupiterJupiter SaturnSaturnSaturn NeptuneNeptuneNeptune PlutoPlutoPluto
µ [km3/s2]µ [km3/s2]µ [km3/s2] 1,2669 × 108 3,7931 × 107 5,7940 × 106 6,8366 × 106

Table 2.1: Planetary gravitational constant
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2.4 Sphere of influence
The purpose of this section is to analyze when the restricted two-body model is

sufficiently accurate. Consider the satellite in question (of negligible mass) subject
to the gravitational fields of Earth and Sun. In addition to this, the presence of
a centrifugal force related to the Earth’s rotation around the Sun must be taken
into account; as the probe takes off from the Earth, it too will be subjected to the
centrifugal force and this will change as a function of distance from the Sun, less
as it approaches and more as it moves away. There will exist in space the locus of
the points where the vector sum of the three forces will be zero, and it is shown
that, with good approximation, it is a sphere centered in the lesser body (in this
case Earth) of radius:

rSOI = aES

(
mEarth

mSun

) 2
5

(2.13)

where aES is the average distance between the Earth and the Sun and is worth one
astronomical unit (AU) or about 149.6 million kilometers.
This means that when the satellite is sufficiently outside of this sphere, the Sun’s
gravity will be the predominant force and the two-body model narrow satellite-Sun
becomes valid, while inside it, it will be necessary to use the satellite-Earth model.
At the boundaries of the sphere, all three bodies will need to be analyzed.

Sun

Earth

S/C

r⃗12
r⃗1

r⃗2 ⃗rSOI

Figure 2.3: Earth’s sphere of influence - not to scale

In the problem at hand, typically the probe will move away rather significantly
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from the Earth, effectively making the two-body restricted satellite-Sun model a
sufficiently accurate approximation of the real case.
A graphic representation of the earth’s sphere of influence relative to the sun can
be visualized in figure 2.3.

2.5 Gravitational energy
A gravitational field is a conservative field, in fact, a body moving under the

influence of the gravitational force does not lose or gain energy but there is a
continuous exchange between kinetic energy and potential energy. In order to vary
the angular momentum of a system rotating about its center of rotation, it is
necessary for a force to act on the system that has a tangential component; the
gravitational force has only a radial component so the angular momentum will also
remain constant.
Since the gravitational field is conservative it is permissible to define the gravita-
tional potential energy of a body, which will not depend on the path taken by the
mass m but only on the initial and final position.

M m
2

m
1

r⃗1

r⃗2

F⃗g

i⃗

d⃗s

Figure 2.4: Potential energy in a gravitational field

Calculating the work done to move the body of mass m from position 1 to
position 2 as shown by the figure 2.4, counteracting the force of gravity acting in
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the radial direction î and is attractive:

L =
∫ 2

1

F⃗

m
d⃗s =

∫ 2

1

µ

r2
r⃗

r
d⃗s =

∫ 2

1

µ

r2 d⃗r =
[

− µ

r

]2

1
= − µ

r2
+ µ

r1
= Eg2 − Eg1 (2.14)

Evaluating the potential energy at a generic point in the gravitational field:

EgP = −µ

r
+ C (2.15)

where C is an arbitrary integrative constant, assumed by convention to be zero:
this means that the body will have zero potential energy when it is at an infinite
distance from the main body, while in other cases it will be negative by definition.

2.6 Specific angular momentum
The velocity of a body rotating in a plane has two components, a radial vr and

a tangential vt:
⃗̇r =

{
vr

vr

}
=
{
ṙ
rν̇

}
(2.16)

As for the acceleration α⃗, on the other hand, the one in the two-body problem
has only the radial component î:

⃗̈r + µ

r2
r⃗

r
= 0 � α⃗ = −µ

r
î (2.17)

Specifically, the radial αr and tangential αt components will be:

αr = r̈ − rν̇2 (2.18)

αt = 2ṙν̇ + rν̈ = 0 (2.19)
Looking for the integrand function that derivative makes αt cancel, the equation
(2.19) can also be written in the form:

1
r

d

dt
(r2ν̇) = 0 (2.20)

Using the equation (2.9) we can therefore conclude that:

r · vt = constant (2.21)

that is, at each point in the trajectory the scalar product r · vt, representing the
angular momentum vector, is held constant:

h⃗ = r⃗ × v⃗ = rvcosφ · ŵ = constant (2.22)
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M

m

r⃗

Horizon

V⃗

φ

90◦ − φ

ŵ

Figure 2.5: Potential energy in a gravitational field

φ is the flight path angle, i.e., the angle between the horizon and the velocity
vector, while ŵ is the verse perpendicular to the plane of motion of the body of
mass m. The momentum vector h⃗ is constant in modulus, direction, and direction
at every point of the trajectory, and this means that the trajectory of the body m
around M will be a plane trajectory because h⃗ always remains perpendicular to
the plane of motion of m around M. This property is of fundamental importance
since it leads to the conclusion that all trajectories, under the hypothesis of the
two-body problem, are planar.
Please note that the momentum vector h⃗ is a specific quantity, that is, per unit
mass.

2.7 Mechanical energy
Starting from the equation (2.12), through appropriate algebraic steps the

following relationship can be obtained:
d

dt

(
v2

2 − µ

r

)
= 0 (2.23)

this equation represents the conservation of mechanical energy: inside the brackets
appear specific kinetic and potential energy, respectively, the sum of which must
be constant over time in the absence of other disturbances.

ε = v2

2 − µ

r
= constant (2.24)

N.B. Mechanical energy ε is a specific quantity, that is, per unit mass.
Supposing to give a constant impulse in an infinitesimal time dt, then is it possible
to consider r constant and derive the following formula:

dε = vdv (2.25)
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This equation is of fundamental importance because it shows that, since one pay
in terms of propellant for changes in velocity (the amount of propellant is related
to dv and not to dε), fixed the change in energy one want to achieve through a
certain maneuver, the dv and therefore the amount of propellant that is going to
use will be small if this maneuver is done where the velocity is high; conversely, if
the velocity is low, a large dv will be needed for the same energy jump one want
to achieve. Similarly, if the aim is to vary the energy of the orbit, it is better to
perform the maneuver and push at the low radii where the velocity is high (reason
why the ∆V is better to give it at perigee and not at apogee): this is because the
same dε costs less if it is obtained by pushing at the low radii than at the high
radii.

2.8 Reference system
The previous sections introduced the concept of a reference system, but it is

now appropriate to give a more rigorous definition of it; first of all, a system of
reference means a system with respect to which a given phenomenon is observed.
There are different types of them, with different types of coordinates, but we will
just introduce a simple Cartesian tern defined by:

• an origin O;

• the orientation of the plane x̂ - ŷ;

• the principal direction x̂;

• the direction of the normal to the plane, that is, the direction of ẑ.

Clearly, ŷ is chosen to be perpendicular to x̂ and ẑ and such as to generate a
right-handed triad.
A reference system can then be inertial, that is, not subject to acceleration, or not.
In reality all systems are noninertial, but in most cases the accelerations to which
they are subject are negligible and the system can be considered as inertial.
The reference systems that will be used in the following are now presented.
All the reference systems presented below are characterized by an origin, a funda-
mental plane and a positive z-axis direction: they are all right-handed systems so
these three elements are sufficient to describe them completely.

2.8.1 Geocentric-equatorial system
The origin of the reference system is the Earth’s center of mass while the

fundamental plane is the equatorial plane. The direction of the principal direction
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Î is again chosen directed toward the Sun on the day of the vernal equinox, also
known as the First point of Aries or Vernal point; the axis k̂ is chosen directed
toward the North Pole. Note, therefore, that the system is not rotating with
the Earth, which rotates about the ẑ axis, and is not properly inertial since it is
subject to the motion of revolution, as well as the gravitational disturbances of
other celestial bodies.

Figure 2.6: Geocentric-equatorial system

2.8.2 Heliocentric-ecliptic system
The origin of this system is located in the center of the Sun; the fundamental

plane is the ecliptic, i.e., the imaginary plane containing the Earth’s orbit in its
motion around the Sun (this is indeed a plane since h⃗ = constant).
By definition, the x-axis (also called ĝ1) is defined as the intersection of the Earth’s
equatorial plane and the plane of the ecliptic during the spring equinox (these
two planes are inclined to each other by 23,27◦). It is important to emphasize the
fact that the y-axis (also called ĝ2), which represents the line joining the Earth’s
positions at the two solstices, does not correspond with the line of apses, i.e., the
line joining periapsis and apoapsis; this is because the periapsis does not coincide
with the day of the winter solstice (21/12). Instead, the positive direction of z is
directed toward the hemisphere that contains the pole star.
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Figure 2.7: Heliocentric-ecliptic system

2.8.3 Orbital parameters
The classical orbital parameters are:

1. semi-major axis a, it represents half the maximum distance between the
periapsis and apoapsis of an elliptical orbit. This parameter defines the
physical size of the orbit and determines the orbital period of the celestial
body.

2. eccentricity e, it measures the shape of the orbit. It is a number between 0
and 1, where 0 represents a perfectly circular orbit and 1 indicates a highly
elliptical orbit. Eccentricity determines how far an orbit deviates from the
circular shape and affects the speed with which the celestial body moves
along the orbit.

3. inclination i, it represents the angle between the plane of the orbit and a
conventional reference plane, usually the plane of the ecliptic (the plane in
which the planets of the solar system orbit). The inclination determines the
orientation of the orbit relative to the reference plane and can range from 0°
(equatorial orbit) to 90° (polar orbit).

4. topic of the periapsis ω, it describes the angle between the ascending node
and the periapsis of an orbit. The ascending node is the point at which the
orbit crosses the reference plane in upward motion. The periapsis argument
indicates the direction in which the periapsis lies with respect to the ascending
node.
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5. longitude of the ascending node Ω, it represents the point at which the orbit
crosses the upward-moving reference plane. It is the angular distance between
the inertial I-axis (or g1) and the position of the ascending node.

6. true anomaly ν, it describes the position of a celestial body along its elliptical
orbit with respect to the periapsis. It represents the angle between the
periapsis and the current position of the celestial body measured in the plane
of the orbit.

Figure 2.8: Orbital parameters

Given these orbital parameters, it is possible to derive position and velocity of
the satellite at each time instant and at each point in the orbit and vice versa.
The period of an orbit can be evaluated as:

T = 2π
√
a3

µ
(2.26)

If the semi-major axis increases, the orbital period will increase not only because
we have a greater distance to travel but also because we will be slower. In the
two-body problem the orbital parameters remain constant, apart from ν(t) which
depends on time, unless we introduce perturbative actions e.g. accelerations due
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to propulsive thrusts. In particular, when traveling through an elliptical orbit,
the velocity will be tangent to the trajectory and can be decomposed into the
tangential component in the VT plane, the radial component in the VR plane, and
the component normal to the VN orbital plane; likewise, the acceleration can be
decomposed into its radial component αR, tangential αT , normal to the plane of
the orbit αW , or along the direction of the velocity vector αV , in the plane and
normal to the velocity vector αN and normal to the plane of the orbit αW .
In this context it is also useful to introduce the Gauss equations, which are a set of
equations used to calculate the position and motion of an object in space. They
are based on the Keplerian laws of motion and make it possible to determine the
orbital parameters and the variations of these elements over time:

ȧ = 2α2
√
µp

[(e sin ν)αR +
(
p

r

)
αT ] =

(2α2V

µ

)
αV (2.27a)

ė =
√
p

µ
[sin ναR +

(
r

p

)
(e cos2(ν) + 2 cos ν + e)αT ] =

=
( 1
V

)
[2(e+ cos ν)αV − (α sin ν/r)αN ] (2.27b)

i̇ =
(

r
√
µp

)
[cos(ω + ν)]αW (2.27c)

Ω̇ =
(

r
√
µp

)[sin(ω + ν)
sin(i)

]
αW (2.27d)

ω̇ = −Ω̇ cos(i) −
( p

µ

e

)
[cos ναR − sin ν

(
1 + r

p

)
αT ] =

= −Ω̇ cos(i) +
( 1
eV

)
[2 sin ναV +

(
r

p

)
(2e+ cos ν + e2 cos ν)αN ] (2.27e)

These are Gauss differential equations and show that:

1. To change the semi-major axis α (thus the energy of the orbit) one must push
parallel to the velocity so as to change the modulus of V⃗ as shown by the
equation (2.27a).

2. Applying a force parallel to V⃗ will change both the semi-major axis but also
the eccentricity (perhaps unintended effect).

3. Thrusting in the plane of the orbit, in addition to changing eccentricity, ω will
also change (equation (2.27b) and (2.27e)). Typically, however, the change
in ω and eccentricity are not important and can be neglected with respect to
the change in the semi-major axis.
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4. The normal component αN changes the eccentricity of the orbit but not the
value of energy and thus of its semi-axis α (equations (2.27a) and (2.27b)).

5. In particular, the equation (2.27a) shows that the same acceleration changes
the semi-axis to a greater extent if the velocity is large. Since one pay for
the thrust and thus the acceleration in terms of propellant, if the goal is to
change α it is possible to find that if one push where the velocity is high then
will change the semi-axis to a greater extent.
This implies that as often as one need to change α it is convenient to do so
where the velocity is large, and since the energy ε = V 2

2 − mu
r

is constant, this
implies that it is convenient to make such a maneuver where the radii are
low.

6. To change the direction of the angular momentum h⃗ (i.e., vary the plane of
the orbit), one need to use the out-of-plane acceleration component αW that
goes to change both i and Ω, depending on where one is located in the orbit
(groundtrack). For the same out-of-plane acceleration, the change in i and Ω
is greatest at large radii and thus where the velocity is low (equations (2.27c)
and (2.27d))

2.8.4 Perifocal reference system
It is the most convenient system for studying the motion of a body along its

orbit since it is easy to define the orbital parameters just presented. The origin is
placed at the center of mass of the main celestial body, which occupies one of the
two foci of the orbit. The main direction p̂ is the line of the apsides, from the origin
toward the periapsis. In contrast, the axis ŵ is oriented as the angular momentum
of the body itself.
The usefulness of the perifocal plane is that it greatly simplifies the analysis of
the orbital motions of celestial bodies. Indeed, in this plane, it is easier to deal
with orbital parameters such as orbital inclination and perigee argument. Another
important feature of the perifocal plane is that it reduces the three-dimensional
analysis to a two-dimensional plane. This is useful because many orbits are very close
to two-dimensional planes. For example, a geostationary orbit is almost perfectly
contained in a two-dimensional plane, which greatly simplifies calculations. In
addition, the perifocal plane is often used to define the reference coordinate system
for orbit analysis. This coordinate system includes classical orbital coordinates
such as the semi-major axis, eccentricity and true anomaly, which are fundamental
to fully describing an orbit.

27



Figure 2.9: Perifocal system

It represents the plane containing the trajectory of the satellite, the p̂ direction
points toward the periapsis, the q̂ direction toward the semilatus rectum, and the
ŵ direction according to the direction of the angular momentum vector h⃗. It is
important to note that the perifocal plane is not static, but rotates together with
the orbiting object due to conservation of angular momentum. This means that the
perifocal plane will constantly change its orientation relative to the central object
during the orbit. In this reference system, we can easily calculate the position and
velocity of the satellite as the true anomaly ν changes according to the following
formulas:

r⃗pqw =
{
r cos ν
r sin ν

}
(2.28)

v⃗pqw =
{

−µ
h

sin ν
−µ

h
(e+ cos ν)

}
(2.29)

In particular, the true anomaly ν will be defined as positive when between 0◦

and 180◦ so that, since the flight path angle φ and the true anomaly ν have the
same sign, it is possible to conclude that if φ > 0 then the satellite will be moving
away from the periapsis, conversely if φ < 0 it will be approaching the periapsis.
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2.8.5 Synodic system

Figure 2.10: Synodic system

Particularly important especially for the following discussion is the synodic
system, in this example shown in figure 2.10 the Earth-Moon synodic system is
shown, that is, a dual system in which the center of mass is located at a distance
x from the center of the Earth. To find the position of the center of mass of the
system it is possible to impose null on the sum of the static moments:

µEarth · x = µMoon(R − x) (2.30)

x = µMoon ·R
µEarth + µMoon

= 4671 km (2.31)

Attention must therefore be paid to the fact that it is not true that the Moon
revolves around the Earth; in fact they both revolve around the center of mass of
the system, even though that point falls within the Earth.
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The amount of time it takes the Moon to pass through the same point in its
orbit twice is called the orbital (or draconic) period and is worth about 27.3 days.
However, because of the Earth’s motion along its orbit around the Sun, the Moon’s
relative position to the Sun varies slightly with each lunar revolution.
The synodic period, which is the time required for the Moon to return to the same
relative position with respect to the Sun, is slightly longer than the orbital period.
This is because, in the time it takes the Moon to return to the same position relative
to the fixed stars in the night sky, the Earth has also completed part of its orbit
around the Sun. As a result, it takes about 29.5 days for the Earth-Moon system to
return to the same alignment between Earth, Moon and Sun. The synodic period is
important in determining the duration between Moon phases, such as lunar phases,
lunar and solar eclipses.

2.9 Circular Restricted Three-Body Problem
The following simplifying assumptions are valid in this case:

1. Consider 3 bodies of which 2 are main bodies (m1 and m2), this means we
do not consider the effect of the Sun.

2. Restricted means that m « m1,m2 i.e. the mass of the satellite is much less
than that of the 2 main bodies.

3. Circular means that the 2 main bodies are assumed to follow circular orbits
relative to their center of mass.

Considering that m1 >> m2 >> m and define M = m1 +m2:

µ = m2

M
(2.32)

Beware that in this case µ is not a gravitational parameter but only shows how
massive the second primary body is. As seen above, it is possible to calculate the
distance x of the center of mass of the primary body (Earth) from the center of
mass of the synodic system as follows:

m1 · x = m2 · (R − x) (2.33)

(1 − µ)M · x = µM · (R − x) (2.34)
Mx−���µMx = µMR −���µMx (2.35)

x = µR (2.36)
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Figure 2.11: Earth-Moon Synodic

The period of revolution of the two bodies with respect to the center of mass of
the system is defined by the symbol τ and holds:

τ = 2π
√
R3

GM
= 2π

√
R3

µEarth + µMoon

(2.37)

and consequently the angular velocity of the synodic system will be:

ω = 2π
τ

=
√
µEarth + µMoon

R3 (2.38)

At this point we need to make a clarification: the equations of dynamics a⃗ = F⃗
m

are
valid only when stretched in an inertial reference system, but the synodic system is
a non-inertial rotating system, so one have to include the so-called apparent forces,
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i.e., non-real forces that are introduced when studying the equations of motion in
non-inertial systems precisely to make the accounts add up with respect to the
physical forces being measured.

¨⃗r + ω⃗ × (ω⃗ × r⃗) + 2ω⃗ × ˙⃗r = 1
m

(F⃗1 + F⃗2) (2.39)

where the first term represents inertial relative acceleration, the second and third
terms constitute the apparent forces: centripetal acceleration and Coriolis accelera-
tion, respectively, and the terms to the right of equal represent the accelerations
due to gravitational forces.
Analyzing the various terms individually:

F⃗1 = −G · m1m2

r2
1

r⃗1

|r1|
= −G · (1 − µ)Mm

r3
1

r⃗1 (2.40)

F⃗2 = −G · m1m2

r2
2

r⃗2

|r2|
= −G · (1 − µ)Mm

r3
2

r⃗2 (2.41)

where:
|r1| =

√
[x+ µR]2 + y2 + z2 (2.42)

|r2| =
√

[x− (1 − µ)R]2 + y2 + z2 (2.43)

ω⃗ × r⃗ =

∣∣∣∣∣∣∣
î ĵ k̂
0 0 ω
x y z

∣∣∣∣∣∣∣ =

0 −ω 0
ω 0 0
0 0 0



x
y
z

 =


−ωy
ωx
0

 (2.44)

ω⃗ × (ω⃗ × r⃗) =

0 −ω 0
ω 0 0
0 0 0




−ωy
ωx
0

 =


−ω2x
−ω2y

0

 (2.45)

2ω⃗ × ˙⃗r = 2

0 −ω 0
ω 0 0
0 0 0



ẋ
ẏ
ż

 =


−2ωẏ
2ωẋ

0

 (2.46)

Putting it all together results in:
ẍ− ω2x− 2ωẏ = −GM(1−µ)(x+µR)

r3
1

− GMµ[x(1−µ)R]
r3

2

ÿ − ω2y + 2ωẋ = −GM(1−µ)y
r3

1
− GMµy

r3
2

z̈ = −GM(1−µ)z
r3

1
− GMµz

r3
2

(2.47)

At this point it is convenient to proceed with the following dimensionalizations:

ρ⃗ = r⃗

R⃗
(2.48)
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Dimensionless coordinates will therefore be:

ξ = x

R
η = y

R
ζ = z

R
(2.49)

Similarly, it is possible to dimensionalize time in the following way:

τ = t · ω (2.50)

Substituting these into the equation (2.51) will yield the final dimensionless system
representing the equations of motion in the restricted circular three-body problem:

ξ̈ − ξ − 2η = −(1 − µ) ξ+µ
ρ3

1
− µ [ξ−(1−µ)]

ρ3
2

η̈ − η + 2ξ̇ = −(1 − µ) η
ρ3

1
− µ η

ρ3
2

ζ̈ = −(1 − µ) ζ
ρ3

1
− µ ζ

ρ3
2

(2.51)

where:
ρ1 =

√
[ξ + µ]2 + η2 + ζ2 (2.52)

ρ2 =
√

[ξ − (1 − µ)]2 + η2 + ζ2 (2.53)
These are three second-order differential equations that are nonlinear because of
ρ3

1 and ρ3
2 plus sibi all three are coupled so the only way to solve them is through

numerical integration. The state vector containing the unknowns of the problem
will be defined as:

x =
{
ξ̇ η̇ ζ̇ ξ̈ η̈ ζ̈

}
(2.54)

while the initial condition will be given by the vector:

CI =
{
ξ̇0 η̇0 ζ̇0 ξ̈0 η̈0 ζ̈0

}
(2.55)

which are associated with the speed at the bornout (V⃗BO) that the S/C will be
to arrive in a lunar orbit starting from a LEO orbit around the Earth, so it is
possible to deduce that once the impulse is given and the vector of initial conditions
is defined in this way, the trajectory accomplished by the satellite will be fully
determined.

2.10 Types of maneuvers
In general, there may be two types of maneuvers: impulsive in the case of

chemical propulsion where one give large ∆V pulses for a brief moment of time
(compared to the time of the transfer) or low-thrust maneuvers but continuously and
gradually for long times (comparable to transfer times and therefore not negligible)
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changing the ∆V by little at a time as in the case in electric propulsion.
Particularly, this thesis work is going to focus on chemical propulsion, going to
investigate the most common maneuvers such as the Hohmann, direct escape and
assisted escape, concepts that will come in handy in future discussions present in
the following chapters.

2.10.1 Hohmann transfer
Hohmann transfer is a maneuver between two circular and coplanar (e=0, i=0)

two-pulse orbits. The Hohmann ellipse must intersect or be tangent to the two
orbits and it must hold that: rp = p

1+e
≤ r1

ra = p
1−e

≥ r2
(2.56)

where rp represents the radius of the periapsis, ra the radius of the apoapsis, p
is the semilatus rectum and e is the eccentricity. Among all possible ellipses that
must satisfy these constraints, the Hohmann transfer is the one that arrives exactly
tangent to the two orbits, which means it satisfies the constraints rp = r1 and
ra = r2. Among all two-pulse transfers between two circular, coplanar orbits, the
Hohmann transfer is the one with the minimum ∆V but also the one with the
longest duration.

r⃗1

r⃗2

1

2

V⃗C1∆⃗V1

V⃗H1

V⃗H2 ∆⃗V2

V⃗C2

Figure 2.12: Hohmann transfer
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The circular velocities of the departure and arrival orbits can be easily calculated
through conservation of specific energy:

ε = V 2
C1
2 − µ

r1
= V 2

C2
2 − µ

r2
= − µ

2a (2.57)

VC1 =
√
µ

r1
and VC2 =

√
µ

r2
(2.58)

all velocities are parallel to each other precisely because the Hohmann ellipse is
tangent to both orbits.
Similarly, by estimating the specific energy of the Hohmann maneuver at perigee
and apogee, it is possible to estimate the velocities that will occur at those points:

εH = V 2
H1
2 − µ

r1
= V 2

H2
2 − µ

r2
= − µ

2aH

= − µ

r1 + r2
(2.59)

VH1 =
√

2µ
( 1
r1

− 1
r1 + r2

)
and VH2 =

√
2µ
( 1
r2

− 1
r1 + r2

)
(2.60)

the pulses to be provided will therefore be:

∆V1 = VH1 − VC1 and ∆V2 = VC2 − VH2 (2.61)
Please note that both of ∆V , in this case, are to accelerate!

2.10.2 Biparabolic Transfer
The biparabolic transfer is a three-pulse maneuver formed by a typically large

∆V1P that allows the S/C to enter a parabolic orbit that will cause it to travel
infinitely far with zero velocity (or better said infinitesimal ε). At this point with
a practically zero ∆V∞ (or better said equal to 2ε) it will be possible to change
the direction of the velocity and transform the outgoing parabola into an incoming
parabola that will carry the S/C as far as the radius r2, where we will give a ∆V2P

this time to braking, so as to circularize the orbit.
At an ideal level this maneuver is therefore very convenient because it could allow
a free change of plane to be made if done at the point where the S/C is at the
infinite radius point, but in practice this maneuver cannot be implemented because
it would take an infinite amount of time to reach that point.
Please note that, in this case, the ∆V are one to accelerate and one to brake!
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r⃗1
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Incoming parabola

⃗∆V2P

Figure 2.13: Biparabolic Transfer

Evaluate the pulses to be delivered by analyzing the energy of the parabolic
orbit:

εP = V 2

2 − µ

r
= 0 (2.62)

escape velocities to enter the outgoing and incoming parabola respectively will
be:

VExit1 =
√

2µ
r

=
√

2VC1 and VExit2 =
√

2µ
r

=
√

2VC2 (2.63)

the impulses to be provided will therefore be:

∆V1P = VExit1 − VC1 = (
√

2 − 1)VC1 (2.64)

∆V2P = VExit2 − VC2 = (
√

2 − 1)VC2 (2.65)
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The biparabolic maneuver is classified as a three-pulse maneuver even though
in reality the ∆V one give to r → ∞ (where the S/C will be found to have a
velocity V → 0) to return to the orbit at radius r2 is not paid. For this reason, the
biparabolic maneuver would ideally be perfect for accomplishing any plane change.
The impulse required to perform a simple plane-change maneuver is in fact:

∆V∆i = 2VC1 sin
(∆ψ

2

)
(2.66)

the equation (2.66) basically shows two things:

1. is better to do a plane change maneuver at the nodes because only at those
points of the orbit it will be possible to have ∆ψ = ∆i, while at all other
points of the orbit the ∆ψ will be greater than the ∆i, which means that for
the same useful effect (∆i) one should spend more in terms of ∆V .

2. the faster one is, the more expensive the plane change maneuver is, so it is
better to do it at apogee because it is the farthest and therefore slowest point
of the orbit.

The ideal case in which the change of plane would cost zero would be precisely
if went to r → ∞, that is, if used a biparabolic maneuver only to avoid paying the
∆i, in that case in fact the cost would be only that necessary to enter and exit the
parabolic trajectories but once arrived at r → ∞ it will be possible to obtain a ∆i
as large as one like totally free.
Please note that the biparabolic maneuver always costs more than the hyperbolic
escape maneuver while it is cheaper than the Hohmann maneuver from r2

r1
= 11.94

onwards.

2.10.3 Bielliptical Transfer
Ideally the biparabolic move takes an infinite amount of time because one have

to go to r → ∞ so in practice what is done is to make a bielliptic trajectory
represented in figure 2.14 in which essentially the two parabolas are replaced into
two elliptic Hohmann trajectories.
Compared to the biparabolic the ∆V1 is reduced so the gain in pushing at low
altitudes (it will have more gravity losses) and one have to add the ∆Vi (which in
the biparabolic at r → ∞ became zero) so at the propulsive level it is a bit worse
than the biparabolic but the more one use an orbit of radius ri high, the more
convenient the bielliptical maneuver will be, approaching the performance of the
biparabolic maneuver (which it can be seen in fact as a bielliptical maneuver with
ri → ∞).
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Figure 2.14: Bielliptical Transfer - not to scale

2.10.4 Direct escape
The parabola is the minimum-energy trajectory that allows to make an escape

maneuver. Hyperbolic trajectories, in fact, are characterized by potisive energy
(ε > 0) so that even if for r → ∞ the potential energy contribution cancels out,
there will be a positive kinetic contribution:

εi = V 2

2 −
�
��
µ

r
> 0 (2.67)

V∞ =
√

2εi (2.68)
such velocity is called the hyperbolic excess velocity. From the conservation of
the energy of the hyperbolic orbit we can derive the Vi that is the velocity that
the S/C will have to have in order to enter a hyperbolic orbit that will take it to
r → ∞ with exactly the V∞.

εi = V 2
∞
2 = V 2

i

2 − µ

r1
(2.69)
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Vi =
√
V 2

∞ + 2 µ
r1

=
√
V 2

∞ + 2V 2
C1 =

√
V 2

∞ + V 2
Exit1 (2.70)

r⃗1
1

Hyperbolic orbit

V⃗C1

∆⃗V1

V⃗i

SOI

V⃗∞

Figure 2.15: Direct escape

At this point it is good to make an observation; supposing to get to r → ∞,
theoretically this can be done in two distinct ways:

1. parabolic escape plus a ∆V at r → ∞ so as to go from zero velocity to V∞
through two pulses.
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2. hyperbolic escape so as to obtain the V∞ once arrive at r → ∞ by making a
single impulse.

Well, in order to minimize gravity losses it is convenient to push at low altitudes
so, without doing math, it is possible to say right away that giving an impulse at
r → ∞ where the velocity is practically zero, from the propulsive point of view is
the worst thing that can be done. This implies that it is always better to evade on
a hyperbola than to evade on a parabola!
A final observation is that hyperbolic escaping can have a cost even smaller than
the V∞ one want to achieve, this is because the larger the V∞ is the larger the ∆V1
will be and the less gravity losses one will have; if, on the other hand, the V∞ is
small it is possible to provide a small ∆V1 and, consequently, one will have as many
gravity losses: in fact, the limiting case is that of the parabolic orbit where one
will arrive at r → ∞ with V → 0, so all the ∆V1 provided at the beginning of the
maneuver is lost, and this is due precisely to gravity losses. Therefore, it is possible
to conclude that, although it may seem a counter-intuitive concept, obtaining very
large V∞ can cost much less than obtaining small V∞.

2.10.5 Oberth effect
In this kind of maneuver instead of making an immediate escape on a hyperbola,

since, as mentioned, it is convenient to push at low radii, first one will give a ∆V
to brake (∆VO1) so as to descend in altitude (and begin to accelerate) through a
Hohmann and then, one will give a ∆V to accelerate (∆VO2) that will bring the
S/C onto a hyperbola that will make it arrive at r → ∞ with the V∞.
The cost of this maneuver will therefore be:

∆VT OT = ∆VO1 + ∆VO2 (2.71)

where
∆VO1 = VC1 − VH1 (2.72)

∆VO2 =
√
V 2

∞ + V 2
Exit2 − VH2 (2.73)
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Figure 2.16: Oberth maneuver

In particular, the ∆VO2 will typically be small but, propulsively, very effective
because the radius r2 will be small (it is advisable to get attracted as close as
possible to the main planet to take advantage of this maneuver) while the velocity
will be large. Indeed, it will be the case that when V∞ >

√
2VC1, Oberth’s maneuver

becomes more convenient than direct escape (conversely, it will be more convenient
to escape by direct escape than by Oberth’s maneuver) and it will be the more
convenient the smaller the radius r2 at which one maneuver, i.e., the more one get
accelerated by the main body before giving the ∆VO2.
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2.10.6 Interplanetary maneuvers
Typically, interplanetary maneuvers are studied by the method of Patch-Conics,

which is an approximate method that allows the feasibility of the interplanetary
mission to be evaluated by studying the order of magnitude of the ∆V needed. A
more detailed evaluation will require numerical integration of the momentum ledds,
which, however, need an initial condition to be solved. A possible initial condition
can be, for example, the approximate one derived by this method.
As a first step, the method involves going to identify the sphere of influence of the
various planets: in order to figure out whether the body of mass m (typically the
S/C) is under the influence of the main body or the secondary body of mass m1
and m2, respectively, the aim is to estimate the radius of the sphere of influence of
the various bodies involved, according to the equation (2.13).
For example, the Earth’s SOI radius is worth about one million km, while the
Earth-Sun distance is worth about 150 million km, this means that the Earth’s
sphere of influence in interplanetary missions (which see the Sun as the focus of
trajectories) is 1

150 so for all intents and purposes it can be considered as a point
and not a sphere.
The method of the patch conics predicts that while one is inside a planet’s sphere of
influence it is considered a two-body problem with Keplerian trajectories (planeto-
centric starting phase), as soon as one leave instead it is the Sun that becomes the
focus of the trajectories and no longer the planet under consideration, this phase
is also studied as a two-body problem with Keplerian trajectories (heliocentric
phase), finally, as soon as one enter the sphere of influence of the target planet
(planetocentric arrival phase) a two-body problem will be studied in which the
center of the Keplerian trajectories will be the center of mass of the target planet.
As often as the focus of the Keplerian trajectories changed the energy content
will change because the gravitational parameters G and µ will change accordingly.
This is a very important aspect because it implies that the energy possessed by
a trajectory and expressed by the formula (2.24) will be evaluated by including
a gravitational parameter µ which may be that of the sun if a heliocentric phase
is considered, or that of one of the planets in the solar system if one is within a
planetocentric phase.
Please note that, in general, all planets have a non-zero inclination with respect to
the ecclliptic, but this effect will be neglected in the following discussion. For the
realization of this section, use was made of Refs. [15, 16, 17].
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1. Heliocentric phase

The longest phase is definitely the heliocentric phase so that is the one that
will need to be investigated first. The purpose of the analysis of this phase is to
evaluate three quantities: V1H , V2H and φ.
In this first phase will go to discuss, for example, two cases one in which the aim
is to go to Venus and one in which the aim is to go to Mars, starting from Earth,
represented in figure 2.17 and 2.18.
For a better understanding of the following representations, the symbols used are
summarized in the table 2.2.

Symbol Planet
V♁ Earth
V♀ Venus
V♂ Mars
V☼ Sun

Table 2.2: Symbolic representation

☼ r⃗1

r⃗2

♁ t1

♁ t2

♂ t2

♂ t1

V⃗H1

V⃗H2

φ = 44◦

Figure 2.17: Outer planet
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☼ r⃗1

r⃗2
♀ t2

♀ t1

♁ t1

♁ t2

V⃗H1

V⃗H2

φ = 54◦

Figure 2.18: Inner planet

Table 2.3: Speed characteristics in the case of inner and outer planet

Inner planet Outer planet
V1H < V♁ V1H > V♁
V2H > V1H V2H < V1H

V2H > V♀ V2H < V♂

in both cases one have to phase with the arrival planet and would have to arrive
with an φ ̸= 0 to be intercepted by the sphere of influence of the planet that in the
meantime is moving with its trailing velocity around the Sun.
Please note that in the case of terrestrial orbits one always had φ1 = 0 and φ2 = 0
in the Hohmann shift, here instead one will have a Hohmann shift with φ1 = 0 and
φ2 ̸= 0.
Let’s give a numerical example in the inner planet case:

aT O =
r♁ + r♀

2 (2.74)

ET O = −
µ☼

2aT O

= V 2
1H

2 −
µ☼
r♁

= V 2
2H

2 −
µ☼
r♀

(2.75)
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V1H = V♁

√√√√ 2 · r♀
r♀ · r♁

< V♁ (2.76)

V2H = V♀

√√√√ 2 · r♁
r♀ · r♁

> V♀ (2.77)

furthermore, remembering that h⃗ is a constant of motion, therefore at fixed orbit
it is conserved, so it is possible to say that h⃗ is conserved during Hohmann’s move.
Evaluating h⃗ at perigee and apogee yields:

h = V1H · r♁ = V2H · r♀ · cosφ2 (2.78)

from which:
φ2 = cos−1

(
V1H · r♁
V2H · r♀

)
(2.79)

With this heliocentric phase therefore it is possible to evaluate V1H , V2H and φ.

2. Escape from the planetocentric sphere of influence

Consider, for example, the inner planet Earth-Venus case, the purpose of this
step is to evaluate the ∆V and the initial ϕIN angle.
Earth is inclined about 0◦ relative to the eccliptic but the other planets are not, e.g.
Venus is inclined about 3◦, however, will neglect this effect and consider a planar
maneuver.
To exit Earth’s sphere of influence one must put on at least a parabolic open orbit,
however, if exit with a parabolic orbit one would arrive at the boundary of the
sphere of influence with a V∞ = 0, instead the goal will be to arrive with a V∞ that
meets the following two requirements:

• V⃗∞ must be parallel to V⃗♁

• V⃗♁ - V⃗∞ = V⃗1H
1

to get a more complete idea, one can refer to the schematic shown in figure 2.19
representing the direct escape starting from a LEO orbit in case the purpose is to
reach an inner planet, where ϕIN represents the angle of the phase shift between
the Earth’s direction and the satellite’s position at the time of burnout, as well as
the opening angle of the asymptote of the hyperbolic orbit.

1just the one found previously with the heliocentric phase
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⃗rLEO
S/C

♁

Parabolic orbit

SOI

V⃗♁

V⃗∞ V⃗1H

V⃗♁

ϕIN

⃗VLEO

∆⃗V1

Figure 2.19: Escape inner planet

Let’s give a numerical example in the outer planet case: supposing that at time
t0 the S/C leaves its LEO orbit to enter a parabolic or hyperbolic orbit that will
take it to the boundaries of the Earth’s sphere of influence and according to the
pattern shown in figure 2.20 which this time represents the case of outer planet.

46



⃗rLEO

S/C♁

Parabolic orbit

SOI

V⃗♁

V⃗∞

V⃗1H

V⃗♁

ϕOUT

⃗VLEO

∆⃗V1

Figure 2.20: Escape outer planet

It is possible to say that the velocity at bornout V0 will be:

V0 = VLEO + ∆V1 (2.80)

where:
VLEO =

√
µ♁
rLEO

(2.81)

for the calculation of ∆V1 it is possible to rely on the conservation of energy
by assuming that r → ∞ once the S/C will arrive at V∞ having arrived at the
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boundaries of the sphere of influence:

Eg = V 2
∞
2 −

�
��
µ♁
∞

= V 2
0
2 −

µ♁
rLEO

= −
µ♁
2a (2.82)

from which:
V0 =

√
2V 2

LEO + V 2
∞ (2.83)

∆V1 = V0 − VLEO (2.84)
eccentricity and characteristic angles can also be evaluated:

p = h2

µ♁
= a(1 − e2) = rLEO(1 + e) (2.85)

e = h2

µ♁ · rLEO

− 1 = V 2
0 · rLEO

µ♁
− 1 (2.86)

from which one can easily derive the opening angles of the asymptotes in the case
of hyperbolic trajectory in the inner case and in the outer planet case:

ϕIN = arccos
(1
e

)
and ϕOUT = arccos

(1
e

)
+ π (2.87)

So summarizing, in a case where the aim is going to an inner planet starting
from a LEO orbit, one need to provide a ∆V1 to obtain the V0 which is the velocity
that the satellite will have at the periastral point of a hyperbolic orbit that will
take it out of the Earth’s field of influence with a V∞ representing an velocity
relative to the Earth (the latter moves with a V♁ drag relative to the Sun) so, since
the Earth also revolves around the Sun, the satellite’s velocity relative to the Sun
will be precisely V1H (it is as if once one leave the Earth’s sphere of influence and
inherit its drag velocity).
This velocity V1H will be such that the S/C will not be able to get out of the solar
sphere of influence, so it will enter a closed elliptical orbit (typically a Hohmann
ellipse) that with respect to the Sun does not have enough energy to get out of the
solar sphere of influence.
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3. Arrival on the target planet

r⃗2

2

♀

SOI

V⃗♀

V⃗2

v⃗2 φ2

σ2

β2

θ2

dm

r♀
Hohmann

Figure 2.21: Entry into the sphere of influence: inner planet case of Venus

Consider the inner planet case, shown in figure 2.21, where the satellite arrives
with a V2H > V♀, i.e. physically the S/C will arrive later and be caught by the
planet because, being faster, it will catch up with it.
Special attention should be paid to the parameter dm that is the missing distance
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defined as follows:

dm = r2 cos β (2.88)

in particular, V⃗2 is the velocity with which the satellite enters into the sphere
of influence of Venus with respect to the Sun, but Venus will also have its own
trailing velocity with respect to the Sun V♀, so the velocity of the S/C with respect
to Venus will be:

v⃗2 = V⃗2 − V⃗♀ (2.89)

where v⃗2 is the S/C velocity relative to the planet, V⃗2 is the S/C velocity relative
to the Sun, and V⃗♀ is the velocity of the planet around the Sun.
Let’s consider the outer planet case, shown in figure 2.22, where the satellite arrives
with a V2H < V♂, i.e. physically the S/C will arrive first and the planet capturing
the S/C will arrive later because it will be faster than the S/C itself.
It is important to note that once it enters the planet’s sphere of influence, the S/C
will head toward the center of the planet along the direction of v⃗2 defined by the
angle θ2. Since the goal will be to avoid the crash into the planet one must have
that the missing distance must be greater than the impact parameter β, which
represents that value of missing distance for which the S/C arrives at the periapsis
exactly on the surface of the target planet, that is with rperi = Rtarget.

dm = h

v2
= rperi · vperi

v2
(2.90)

From the conservation of the energy of the trajectory followed by the S/C, it is
possible to derive these two parameters:

v2
2
2 =

�
��
µ♀
∞

=
v2

peri

2 −
µ♀
rperi

(2.91)

From which it follows that:

dm = rperi

v2

√
v2

2 + 2
µ♀
rperi

(2.92)

β =
R♀
v2

√
v2

2 + 2
µ♀
R♀

(2.93)
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r⃗2

2

♂

SOI

V⃗♂

V⃗2

v⃗2 φ2

σ2

β2

θ2

dm

r♂
Hohmann

Figure 2.22: Entry into the sphere of influence: outer planet case of Mars

As said, to be able to complete the mission without crashing into the planet it
is necessary to have dm > β and at this point three things can happen:

1. capture at the periapsis of the arrival orbit with entry on a circular plane-
tocentric orbit, i.e., once S/C arrives at perigee it is necessary to provide a
∆V2 to be captured by the planet and enter a circular orbit useful for closely
exploring the planet of interest.
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2. fly-by behind the planet: this is a maneuver that allows to increase the energy
of the trajectory exiting the planet without having to turn on the engines.

r⃗2

2

♀

SOI

V⃗♀

V⃗2

v⃗2 φ2

σ2

β2

θ2

r♀
Hohmann

Hyperbolic orbit

r⃗3

3

SOI

V⃗♀

V⃗3

v⃗3

φ3
σ3

ϕϕ

θ3

dm
r⃗p

Figure 2.23: Fly-by behind the planet

In the flyby maneuver, in fact, the S/C enters with the v⃗2, travel the hyperbolic
orbit within the planet’s sphere of influence without stopping, and will exit
the sphere of influence with a velocity in modulus exactly equal to that
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with which it started (v⃗2 and v⃗3 are equal in modulus and equal to the
hyperbolic excess velocity) but with a different direction, as can be seen from
the representation in the figure 2.23.

|v⃗2| = |v⃗3| = V∞ −→ v⃗2 ̸= v⃗3 (2.94)
h2 = v2r2 cosφ2 (2.95)
h3 = v3r3 cosφ3 (2.96)

but φ3 < φ2 so it will have that |v3| > |v2|.
That is, without having maneuvered it obtained that h3 > h2, i.e., the
momentum of the angular momentum of the orbit increased without having
had to turn on the engines and expend propellant.

3. fly-by in front of the planet: instead, in this case the satellite will always
have |v⃗3| = |v⃗2| but will have φ3 > φ2 so it have lost energy having h3 < h2.
This type of maneuver, analogous to the figure 2.23 with the only difference
being that this time the satellite will not enter the planet’s sphere of influence
from behind but from the front, that is, in an angular range between −90◦

and 90◦ with respect to the direction of the planet’s drag speed, is in fact
employed if the goal is to brake without the use of engines.
In general with the flyby maneuver one have the possibility of increasing or
decreasing the momentum of the satellite at zero cost to us (because what
actually happens is that this increase or decrease in the angular momentum
vector is achieved at the expense of the planet). In fact, taking into account
the huge difference between the masses involved, it can be said that this effect
of changing angular momentum vector is negligible for the planet while the
satellite can instead gain or lose a certain non-negligible amount of velocity.

2.11 Planar Bicircular Restricted 4-Body
Problem (PBCR4BP)

In order to achieve the purpose of this dissertation, as well as to evaluate as
consistently as possible the possible flyby maneuvers that a generic S/C can perform
by exploiting the gravitational effects of the moons of the individual planets in the
solar system, it is appropriate to introduce a model in which account is taken of
the fact that there are three bodies in question that can significantly influence the
trajectory of a spacecraft, such a model (implemented in this thesis work) is the
Planar Bicircular Restricted 4 Body Problem (PBCR4BP) [18, 19, 20].
The model analyzed in this section is the PBCR4BP which describes the motion
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of an infinite mass (P3) under the influence of three massive bodies: the Earth
(P1), the Moon (P2) and the Sun (P4). Obviously, it will suffice to change the
gravitational parameters of the bodies involved to fit this model on other systems
centered in the various planets of the solar system, so that the interaction that
the two main moons of the single planet analyzed will have on the final trajectory
described by the S/C can be evaluated. In this model, the Earth and Moon move
in circular paths around their mutual barycenters, denoted in the figure 2.24 by B1.
Similarly, the Sun and B1 move in Keplerian circular motion around their mutual
barycenter B2.

Figure 2.24: Rotating Earth-Moon system (left), rotating Sun-B1 system (right)

This model is inconsistent since it is assumed that all primaries move on circular
orbits, this strictly speaking is not true being that the eccentricities of the Earth
and Moon orbits are 0.0167 and 0.0549, respectively, as well as the inclination of
the lunar orbit with respect to the eccliptic is about 5◦, so it is also assumed that
the Earth-Moon orbital plane is the same as the Sun-B1 orbit.
The model is defined with respect to a rotating coordinate system, where the
positive direction of the x-axis is defined from the Earth to the Moon, the positive
direction of the z-axis is defined in the direction of the orbital angular momentum
for the Earth and Moon, and the positive direction of the y-axis completes the
orthonormal triad.
Note that the PBCR4BP is a time-dependent system in which the position of the
Sun in the Earth-Moon rotation frame is defined by a single angle called θS. The
Sun moves clockwise around B1 (i.e., the angle θS is negative), as illustrated in
Figure 2.24(a); this effect is due to the fact that the Earth-Moon system centered
in B1 rotates with a unit angular velocity in accordance with the definition of the
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CR3BP, while the Sun, rotating in turn around this rotating system will have a
smaller angular velocity so that there will be this apparently clockwise circular
motion.
The equations of motion describing the motion of the assumed massless particle
(P3), in the rotating Earth-Moon system, are described below:

ẍ = 2ẏ + ∂Υ
∂x

(2.97)

ÿ = −2ẋ+ ∂Υ
∂y

(2.98)

z̈ = ∂Υ
∂z

(2.99)

where Υ is the pseudo-potential in the rotating Earth-Moon system and is defined
as:

Υ = 1 − µ

r13
+ µ

r23
+ x2 + y2

2 + ε
(
m4

r43
− m4

a3
4

(x4x+ y4y + z4z)
)

(2.100)

where xi, yi and zi are the components of the position of the point Pi with respect to
the barycenter of the rotating Earth-Moon reference system, µ is the gravitational
parameter of the Earth-Moon system, rij is the modulus of the position of Pi with
respect to Pj , m4 is the dimensionless mass of the fourth body P4 defined as M4

M1+M2
,

and a4 is the semi-major axis of the circular orbit traveled by the Sun around
the barycenter B1. The ε term is a scaling parameter for the Sun’s mass: ε = 0
reflects a restricted circular three-body problem CR3BP without solar gravity,
while ε = 1 represents the PBCR4BP. Just as in CR3BP it is advantageous to
study the motion of the satellite in the synodic system, similarly in this case it is
advantageous to study the equations of motion in the rotating Sun-B1 system: in
this reference system the positive direction of the x-axis is directed from the Sun to
the Earth-Moon barycenter B1, the positive direction of the z-axis is defined as the
direction of the angular momentum of the Sun-B1 orbit, and the positive direction
of the y-axis completes the triad. The rotating Sun-B1 system is illustrated in the
figure 2.24(b).
It is useful to know that there are instantaneous equilibrium solutions in the
PBCR4BP; in fact, it can be shown that there is an instantaneous equilibrium
solution for every angle of the Sun. Since the union of the points representing the
equilibrium solutions depends on the angle of the Sun, a particle initialized at these
positions will not remain there all the time, it will immediately move away as the
position of the Sun changes over time having an angular velocity different from
that of the rotating Earth-Moon system. This is a big difference from the CR3BP
since both the equilibrium points and the Jacobi integral vanish.
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Chapter 3

Mars-Phobos-Deimos System

The objective of this work is to quantitatively evaluate how convenient it is, in
terms of ∆V and thus propellant consumed, to exploit a planet’s moons to evaluate
re-entry trajectories back to Earth by exploiting fly-by maneuvers with them, as
opposed to the direct excape maneuver.
For this reason, it was necessary to implement in the Matlab environment a
model containing the Mars-Phobos-Deimos system with the respective gravitational
parameters of the celestial bodies considered, the equations of motion in the planar
bicircular 4-body problem so that the perturbative actions of the two Mars moons
can be simulated and possible flyby maneuvers can be implemented with them,
the initial and final conditions, and the trajectory to be propagated by integrating
the EOMs so as to start with the established initial conditions and arrive at the
target final conditions. Once the model is set up, the next step will be to search for
trajectories that reach as far as the sphere of influence of Mars: the purpose will be
to compare the ∆V spent for the hyperbolic escape maneuver directed to the SOI
of Mars with the ∆V needed to implement an assisted escape by exploiting the
gravitational slingshot effect with Phobos individually, with Deimos individually,
and finally, an assisted escape by a combined flyby of both Mars moons.
Strictly speaking, it is good to emphasize the fact that Mars moons are very
unmassive and tiny in size as can be visualized from the gravitational parameters
listed in table 3.1, so it could be immediately conclude that this gravitational
slingshot effect will be negligible. For this reason, a parametric analysis was
subsequently conducted in which, by varying the binary gravitational parameter µ
within an appropriate range of values, any binary system could be simulated. In
addition, by adding the possibility of also parametrically varying the mass of the
tertiary body and its distance from the barycenter of the binary system, it was also
possible to simulate any existing ternary system.
As explained of Chapter 2, in order to return to Earth starting from Mars (pacth
conics method applied to an outer planet), one must in fact first exit the SOI in
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the starting planet, and it must be done in a very precise way since, once exiting
the SOI of Mars, the V∞ will have to be parallel to the planet’s trailing velocity
and, in modulus, exactly equal to the V1H , so as to begin the heliocentric phase
that will see the S/C travel along a Hohmann that will take it all the way to the
Earth’s SOI. This work, therefore, will focus on the first planetocentric phase of the
conics patch model that will see Mars as the main body, as the second heliocentric
phase will go accordingly. The third planetocentric phase that sees Earth as the
main body, however, will not be detailed.
It is therefore possible to evaluate the V1H so as to uniquely define the constraints,
both in terms of position and velocity once the satellite reaches the boundaries of
the SOI, that the trajectories will have to respect.
By evaluating the energy of the Hohmann ellipse it is indeed possible to write:

εGT O = V 2
1H

2 −
µ☼
rMS

= −
µ☼

2aGT O

(3.1)

where µ☼ is the gravitational parameter of the Sun which is worth 1,3271 ×
1011 km3/s2, rMS is the Mars-Sun distance which is worth 2,2793 × 108 km, and
aGT O is the semi-major axis of the Hohmann ellipse, which can be evaluated as:

aGT O = rES + rMS

2 = 1,8876 × 108 km (3.2)

from which it follows that:

V1H =
√

2
(
εGT O +

µ☼
rMS

)
= 21,48 km/s (3.3)

Thus, the constraints that valid trajectories will have to meet will be:
• final radius equal to the radius of the SOI of Mars (rSOI = 5,76 × 105 km),

• final velocity equal, in modulus, to the V1H .
It is then appropriate to define and keep in mind (as they will be the subject

of later evaluations) what are the gravitational parameters of the bodies in play,
they will be summarized in the table 3.1 with the respective symbology used in the
subsequent discussion.

Table 3.1: Gravitational Parameters

BodyBodyBody Mass [kg]Mass [kg]Mass [kg] µ [km3/s2]µ [km3/s2]µ [km3/s2] Radius [km]Radius [km]Radius [km]
Mars 6.39 · 1023 4.2828 · 104 3389

Phobos 1.08 · 1016 7.112 · 10−4 11.267
Deimos 2 · 1015 9.85 · 10−5 6.2
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Before moving on to the 4-body (which is the actual model implemented), for
greater understanding, it is good to give an overview starting with the restricted
circular 3-body problem (CR3BP) following the logical path analyzed in Refs. [21,
22, 23, 24, 25, 26, 27]. In the Planar Circular Restricted Three-Body Problem
two primary bodies P1, P2 of masses m1 > m2 > 0, respectively, move under
mutual gravity on circular orbits about their common center of mass. The third
body, P, assumed of infinitesimal mass, moves under the gravity of the primaries,
and in the same plane. The motion of the primaries is not affected by P. In the
present case, P represents a spacecraft, and P1, P2 represent the Mars and Phobos,
respectively. In particular, assuming that the S/C starts from a low orbit around
Mars (LMO) of altitude 400 km and study the evolution of the trajectory that
an S/C would have to arrive on Phobos, it is appropriate to study the EOMs in
the Mars-Phobos synodic system, i.e., a rotating reference system that allows to
simplify the equations of motion by making them dimensionless in no small measure.
In this reference system, the distance between Mars and Phobos (DU = 9378 km) is
unitary, and the gravitational parameter of this binary system is defined as follows:

µsyn = µP hobos

µMars + µP hobos

= 1,6606 × 10−8 (3.4)

The two bodies rotate around their common center of mass with a dimensional
angular velocity equal to:

ωsyn =
√
µMars + µP hobos

DU3 = 2,2788 × 10−4 rad/s (3.5)

In the synodic system the center of mass is not coincident with the center of
mass of the main planet but will be somewhat shifted toward the secondary body
by a greater measure the more massive the latter body is. In the case of Phobos,
as it can be seen from the table 3.1, its mass is seven orders of magnitude less than
that of Mars, however, this does not detract from the fact that the center of mass
of Mars NOT is coincident with the center of mass of the synodic system.
However, given the insignificant distance between the center of mass of Mars and
that of the synodic system, it is possible, committing a more than negligible error,
to consider Mars stationary at the center of the synodic system (in fact that distance
from the origin of the synodic system would be −µ) and Phobos revolving around
it on a planar circular orbit of unit radius with a tangential velocity equal to:

V U =
√
µMars + µP hobos

DU
= 2,1370 km/s (3.6)

In the same way as distance and velocity, time must also be scaled in order to
propagate the equations of motion of CR3BP correctly.
The scaled time defined as:
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τ = 2π
ωsyn

(3.7)

In the synodic system, time is in fact measured dimensionless through the use
of radians: for example, a dimensionless period of time equal to 2π is equivalent to
the dimensional time required for the secondary body (in this case Phobos), with
its angular velocity, to make a complete 2π revolution around the primary body
(in this case Mars), which is about 7 hours and 39 minutes.
Once the Mars-Phobos synodic system is properly defined, the perturbative effect
of Deimos can be added by passing PBCR4BP.
The parameters to be provided as input to implement this model, in addition to
those defined above are:

• the mass of the third body dimensionless from the sum of the primary and
secondary body masses:

mDeimos = MDeimos

MMars +MP hobos

= 3,1299 × 10−9 (3.8)

• the distance of the third body from the center of the reference system (which
with good approximation can be estimated as the distance between Mars and
Deimos equal to rMD = 23 459 km) dimensionless with respect to DU:

ρDeimos = rMD

DU
= 2.5015 (3.9)

• the angular velocity of Deimos in its planar circular orbit relative to the
dimensionless Mars-Phobos synodic system. The angular velocity of Deimos
can be evaluated as:

ωDeimos =
√
µMars + µP hobos

r3
MD

= 5,8073 × 10−5 rad/s (3.10)

as mentioned, however, the magnitudes must be dimensionalized so it is
possible to conclude that Phobos will rotate with unit angular velocity while
Deimos with an angular velocity equal to ωDeimos/ωsyn = 0.2528, which is
approximately 1

4 relative to that of Phobos. This means that, being by
convention a positive angular velocity defined counterclockwise, Deimos,
having an angular velocity less than 1, will appear to have an apparent
clockwise circular motion with respect to the angular velocity with which the
entire Mars-Phobos synodic system moves.
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• the angle θDeimos representing the angular position of Deimos. In the synodic
system in fact, Mars and Phobos will ’appear’ to be stationary, while Deimos
having an angular velocity less than 1 will rotate clockwise, so it will be
important to define its angular position in time:

θDeimos = ωDeimos · t (3.11)

3.1 Synodic vs inertial system
For further understanding, it is possible to visualize a 2D graphical represen-

tation of the Mars-Phobos-Deimos system in the synodic system in figure 3.1 in
which it can be seen that the position of Phobos remains fixed in time while Deimos
appears to rotate with negative angular velocity, i.e., clockwise.
In addition, using from [28] a code implemented in Matlab called Syn2ECI it was
possible to convert quantities from the synodic system to the inertial system and
vice versa, so that the trajectory of the S/C can be visualized in both reference
systems thus having a more complete and detailed view.
In the figure 3.2 it is indeed possible how in the inertial system both Mars moons
have a positive angular velocity (i.e., counterclockwise) different from zero and, in
particular, how Phobos rotates faster than Deimos, leaving it behind.
Figures 3.1 and 3.2 also show the position of the center of mass of the respective
reference systems (in both cases this point falls within Mars), the starting orbit of
the S/C with altitude of 400 km from the Martian surface, and the planar circular
orbits followed by Phobos and Deimos1.
Please note that in the figures 3.1 and 3.2 the scale size of Mars is the correct one,
while the sizes of Phobos and Deimos are not the real ones because it was preferred
on purpose to increase the size of the two moons of Mars in order to have a clearer
representation and be able to easily visualize their location at various time instants.

1The angular positions of Phobos and Deimos shown in both figures are representative of the
moment of minimum distance with the space probe.
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Figure 3.1: Mars-Phobos-Deimos synodic system
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By way of example only, a generic elliptical trajectory displayed in the inertial
system 3.3 and the synodic system 3.5 is shown below, with the respective charac-
teristic velocities reported in one and the other system (3.4 and 3.6 respectively): as
can be clearly seen, the trajectory is the same but takes different forms depending
on the reference system used.
Moreover, the trend of velocities is also completely different: viewing the graph in
figure 3.7 it is also possible to notice a nontrivial singularity: the point of minimum
velocity in the inertial system is the point of maximum velocity in the synodic
system. This means that, between the two reference systems, in an elliptical
trajectory the apogee is the same in terms of position but not in terms of velocity
because from the synodic point of view the apogee will be the point at maximum
velocity! This statement is not an absolute truth; it depend on the gravitational
parameters characteristic of the various primary body-secondary body systems
considered.
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At this point it is important to make two points regarding the use of one or the
other reference system:

1. the equations of motion of the PBCR4BP are computed in the synodic system,
while the variable V∞ used as a constraint on the final velocity to be had by
the probe is computed in the inertial system. Therefore, once the integration
with ode113 is done and the vector containing the positions of the S/C at
each time step in the synodic system is obtained, it is possible to proceed in
two ways:

• move from the synodic system to the inertial system, through the use of
a special function called Syn2ECI. In this way it will only be necessary
to impose the constraint that the final velocity must be equal to V∞,

• to remain in the synodic system but at this point one will need to
subtract from V∞ the drag speed of the synodic system, that is, the
tangential velocity with which Phobos moves in its circular orbit. It is
possible to calculate this magnitude by a scalar product between the
ωsyn that has component only along the zi axis and the distance between
Mars and Phobos that has component only along csi, so as to obtain a
resultant vector that has only the component along the eta axis, which
in fact represents the tangential velocity of Phobos.

2. the synodic system, as mentioned, rotates around its center of mass with
angular velocity ωsyn, but it also rotates in the heliocentric system, following
the revolution of Earth and Mars around the Sun. For this reason, in the
following analysis it was assumed an optimal phasing: as will be seen in the
next chapter this optimal phasing assumption will prove more than valid.
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Chapter 4

Genetic Algorithm

At this point it is appropriate to go on to investigate the genetic algorithm
used to carry out the analyses during this thesis work. Once the initial conditions
have been established, they must in fact be propagated over time, following the
EOMs of the PBCR4BP, so as to arrive at the final conditions on which the two
constraints in terms of position and velocity described above must be imposed.
Two possible avenues open up here (both lawful and viable): the first making use
of Matlab’s fmincon function, i.e., a tool that allows solving even very complex
maximum and minimum problems as long as they are well constrained; the second
making use of a genetic algorithm, i.e., a heuristic algorithm inspired by Darwin’s
theory of evolution. Since checking the optimum is not the goal of this paper the
choice fell on the second option.
The genetic algorithm implemented consists of generating a population of 1000
individuals, each of which will be formed by 5 properties that are called genes (or
alleles) and that represent the variables involved, in order they are:

1. the ∆V as the first gene, that is, the impulse that is given at the initial
instant that is to be added vectorially (the ∆V will be given tangentially) to
the circular velocity possessed by the S/C, which, being on an LMO orbit of
altitude h = 400 km will have a tangential velocity equal to:

VC =
√
µMars + µP hobos

RMars + h
= 3,3620 km/s (4.1)

2. the angle in the synodic plane θ as the second, i.e., the angular distance with
respect to the x-axis of the Mars-Phobos synodic system at which the S/C
is located at the time the impulse is given. This parameter can be changed
from 0◦ to 360◦, and in this way it is possible to simulate the start of the
trajectory at any of the positions occupied by the satellite along its circular
orbit in LMO.
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3. the angle outside the synodic plane φ as the third. This angle has been made
to explore freely between 0◦ and 360◦ but, for each trajectory implemented,
the genetic algorithm has converged to the condition φ = 0, which is the one
of interest, since, having implemented a planar model, the aim is precisely to
simulate a trajectory that is as planar as possible, going to minimize the ∆V
with respect to the nonplanar case.

4. the dimensionless time taken by the S/C to go from the starting point to the
ending point, as well as the integration time as the fourth gene.
For example, a dimensionless time equal to 2π means that the trajectory will
have been integrated for a period of time equal to the amount of time it takes
Phobos to make a complete rotation of 360◦ around Mars, that is, about 7
hours and 39 minutes.

5. the ∆θ as the fifth and last gene. This parameter is defined as the difference
between, respectively, the angular position possessed by Deimos θDeimos and
Phobos θP hobos at the initial instant and is of fundamental importance since
the synodic system is a rotating system with angular velocity equal to that
possessed by Phobos, which is why it is defined with θP hobos = 0 at any
instant in time. By setting this variable with values between 0◦ and 360◦ it
will therefore be possible to describe the relative position of Deimos in its
circular orbit around Mars, as well as to go to identify the possible launch
windows that will occur at the value ∆θ = 0, that is, when the two Mars
moons are along the same conjunction.

These variables will thus determine what will be the random initial conditions
that will be propagated by the genetic algorithm and, from this point on, the
trajectory followed by the satellite will be uniquely defined.
To propagate the orbit in time, the ode113 function of Matlab was used, which
allows solving differential equations by giving as input the initial conditions and
integration time. Once the vector containing the probe positions of the various
time steps, output of integration with ode113, has been obtained, it is possible
to impose constraints on the final position and velocity that the S/C will have to
reach the boundaries of the Mars SOI with the right velocity, so as to enter with
exactly V1H on the Hohmann transfer and begin its heliocentric phase that will
bring the probe of back to Earth.
Thus, the difference between the final position reached after integration and the
target radius (rSOI) and between the final velocity possessed by the S/C and the
target velocity (V1H) represent errors: the goal of the genetic algorithm is precisely
to find the best individual that minimizes these errors.
It is also desirable to keep track of these errors so that they can be plotted obtaining
the typical trend of genetic codes in which there is an error that decreases tending
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to zero as generations pass with discontinuity jumps that may be caused by a
crossover of the alleles of the individuals in the population or by a random mutation
of one of the 5 genes in an individual as is shown in figure 4.1.
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Figure 4.1: Error trend at different generations

Specifically, in the genetic algorithm implemented in this thesis work, it was
fixed:

• a 50% probability of having a random mutation of one of the fifth genes in
an individual,

• a probability of 30% of having a mutation by algebraic sum between the genes
of two different individuals, i.e., that offspring are generated by an algebraic
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sum of the parents’ alleles (this solution helps to narrow down the search for
the optimal solution more and more as if it were a true bisection method),

• a 70% probability of having a crossover, that is, that the offspring inherit
one or more random genes from the father and the rest of the genes from the
mother.

In addition, it was also chosen to generate 1
4 of new random population at each

generation both to have a well-distributed population avoiding the presence of
similar individuals, and also because this allows the algorithm to be able to explore
other parts of the universe in terms of combinations of the 5 parameters, so that
it will be able to get out of a local minimum by evolving toward another local
minimum perhaps characterized by a smaller error in absolute value.
In addition to keeping track of the error, the genetic algorithm is structured to
plot, at each generation, the 5 alleles of the best individual according to the order
[∆V, θ, φ, tf ,∆θ] and the various errors that the final conditions (which are obtained
by propagating the initial conditions defined by these 5 parameters) will have with
respect to the target conditions, according to the following order:

• err1: represents the dimensionless difference between the norm of the vector
containing the information about the final radius reached by the S/C and
the norm of the target radius vector defined as rSOI

DU
.

Having an err1 � 0 means that the satellite have arrived at the boundaries
of the SOI of Mars.

• err2: represents the dimensionless difference between the norm of the vector
containing the information about the final velocity reached by the S/C and
the V∞.
To also have an err2 � 0 means that the satellite arrived at the boundaries
of the SOI of Mars with exactly the modulus of the velocity it takes to make
the Hohmann ellipse and return to Earth.

• err3: represents the ∆V relative to the initial conditions, so the genetic
algorithm, given two initial conditions that meet the first two constraints,
will tend to reward the one with the minimum ∆V .

Finally, the variable err will be defined as the sum of these two errors and will
represent the main parameter to be tended to zero by the genetic algorithm.
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4.1 Constraint on minimum distance to moons
during flyby

A very important observation to make at this point is this: the parametric
analysis that has been carried out predicts going to increase the mass of the moons
of Mars up to as much as 7 orders of magnitude over their actual mass. It is obvious
that in addition to simulating an increase in the µ parameter, an increase in the
radii of the moons of Mars should also be simulated at the same time.
Strictly speaking, in fact, the term "moons" would not be correct since the value
of their radii is RP h = 11,267 km and RDe = 6,2 km, respectively; which is why
it would be more appropriate to speak of asteroids. It is obvious, therefore, that
a situation in which, for example, Phobos had a mass increased by 6 orders of
magnitude, while maintaining the same actual radius value of just over 10 km,
would not be realistic at all, since Phobos, under such conditions, would look more
like a black hole than a moon.
It is good to emphasize this aspect because in the simplified model implemented in
this work no assumption is made about how the radius of secondary and tertiary
bodies varies as a function of the gravity parameter µ. However, two additional
constraints have been inserted, which are not part of the definition of the error
that the genetic algorithm will try to minimize1, but which will allow for results
consistent with the simplified model chosen. That is, constraints have been imposed
on the minimum distance at which the probe can arrive in the vicinity of Phobos
and Deimos during their respective flyby maneuvers: this minimum distance is
defined as the respective scaled radius plus a safety coefficient consisting of 10% of
the moon’s radius. Thus the trajectory followed by the S/C will be able to pass
at most a dimensional distance of 12,4 km from the center of mass of Phobos and
6,82 km from the center of mass of Deimos.

4.2 Optimal phasing
There is, however, another important consideration to make: analyzing the

problem in the synodic reference system, one will have to impose that the angle
θP hobos describing the angular position of Phobos along its circular orbit is always
zero (by definition of a synodic system), so, the only variable that one could choose
to vary would be the angle θDeimos describing the angular position of Deimos in its
circular orbit.

1the goal is not to pass as close as possible to the moons of Mars during the flyby maneuvers,
but rather to, once the initial conditions are set, pass at the right distance, such that the S/C
arrives at the SOI of Mars with the right final velocity.
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In reality, however, from the point of view of the synodic system, what matters is
the variable ∆θ defined as θDeimos - θP hobos because when this variable cancels out
(i.e., when Phobos and Deimos are along the same line conjunct) it will mean that
it will be possible to have a launch window.
For this reason, a study was first conducted to measure how many times during the
course of a year the situation ∆θ = 0 occurs: the results are shown in the graph
4.2, which illustrates that, given the angular velocities of Phobos and Deimos, the
optimal phasing condition occurs 855 in a year, i.e., more than twice a day.
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Figure 4.2: Launch windows in the synodic system

In this way, it is possible to justify the assumption, which will be adopted
throughout this paper, of optimal phasing, for the trajectories that will be shown
in the chapter 5, avoiding adding an additional constraint on the direction of the
exit velocity once the S/C has reached the Mars SOI.
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Chapter 5

Mars-Phobos-Deimos Results

This chapter will report the results obtained through the modeling of the Mars-
Phobos-Deimos system in the Matlab environment and the implementation of the
genetic algorithm analyzed in the chapter 4 and the four-body model analyzed in
Refs. [29, 30].
Specifically, the genetic algorithm generates random initial conditions (but always
within each established range of values for individual alleles) that are then integrated
over time, providing the final conditions on which constraints are imposed. The
task of the genetic algorithm will be precisely to find the trajectory, described by
one of many random initial conditions, characterized by an error (defined in detail
in chapter 4) that is the minimum possible value.
Therefore, to help in the convergence of the model, it is appropriate to choose
appropriate initial guesses, that is, to define what are the ranges of values within
which the genetic algorithm is free to generate random values.
In particular, these limits are defined as follows:

• The ∆V can take random values between 0 and 2 km/s, so as to eliminate
all possible solutions characterized by a ∆V > 2 km/s.

• The θ can take on random values between 220◦ and 320◦, this range of values
is due to the fact that the ∆V will be given tangentially, and therefore at 90◦

relative to the angular position at which the impulse occurs, so if one want
to move toward Phobos which is at ξ = 1 it is possible to conclude that the
impulse must be given more or less when the S/C will be in this range of
angular positions.

• the φ can vary only between −5◦ and 5◦, this narrow range is due to the
fact that one actually already know that the minimum ∆V will occur if the
trajectory is planar so it must have φ = 0.
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• regarding the dimensionless time taken by the probe to complete the trajectory,
having initially no idea how long it would actually take, a fairly wide range
was defined between 2π (i.e., the amount of dimensionless time taken by
Phobos to complete a 360◦ turn around Mars) and 40π.

The trajectories that will be analyzed will be classified into four different categories:

1. Direct hyperbolic escape maneuvers,

2. Assisted escape maneuvers through the flyby of Phobos,

3. Assisted escape maneuvers through the flyby of Deimos,

4. Assisted escape maneuvers through the combined flyby of Phobos and Deimos.

The results will be presented both in graphical form through the appropriate plots
(trajectories will be shown in both the synodic and inertial systems so as to compare
not only the trajectory itself but also the positions of the tertiary bodies during
the various flyby maneuvers) and in schematic form through the tables 5.1 and 5.2
that summarize, respectively, the optimal initial conditions that integrated over
time allow for that particular trajectory and the errors in terms of the position
vector (err1) and modulus (err2) of the velocity vector.
The planar trajectories described by the EOMs of the PBCR4BP will be shown in
both the synodic and inertial systems, so as both to get a complete and as detailed
as possible view into the trajectory traversed by the S/C and to make a comparison
between the two reference systems.
In the plots, the dimensions of Mars are those actually possessed by the red planet
(only dimensionalized with respect to DU) while the dimensions of Phobos and
Deimos were voluntarily increased to make their positions visible during trajectory
propagation.
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5.1 Best direct escape
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Figure 5.1: Mars-Phobos-Deimos synodic system direct escape

74



-5 -4 -3 -2 -1 0 1 2 3 4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Mars-Phobos-Deimos 2D Inertial System

Mars

Phobos

Deimos

Mars orbit

Phobos orbit

Deimos orbit

Initial orbit S/C

SOI Mars

CM Inertial

Starting point

Final point

Trajectory

-100 -80 -60 -40 -20 0 20 40 60 80 100

-60

-40

-20

0

20

40

60

Mars-Phobos-Deimos 2D Inertial System

Mars

Phobos

Deimos

Mars orbit

Phobos orbit

Deimos orbit

Initial orbit S/C

SOI Mars

CM Inertial

Starting point

Final point

Trajectory

Figure 5.2: Mars-Phobos-Deimos inertial system direct escape
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As can be visualized of the plots in Figs. 5.1 and 5.2, as well as from the
table 5.1, the optimal direct escape trajectory is obtained by providing a ∆V of
1,2036 km/s in the tangential direction when the S/C is at an angular distance of
231,54◦. The trajectory has a dimensionless duration equal to the time it takes
Phobos to make a rotation of 48.054 radians around Mars; this means that, since
Phobos has an angular velocity of equal to ωsyn, it will take the probe 2,1088×105 s
to arrive at the SOI boundaries of Mars, which is about 58 hours and 48 minutes.
On the other hand, from the table 5.2 it is possible to visualize how well the genetic
algorithm worked, talking about an overall error of the order of 1 × 10−10 so it is
possible to conclude that the trajectory described by the S/C will very accurately
meet all constraints listed in chapter 4, representing a very reliable trajectory.
Moreover, the intent of the next two figures is to show the flyby maneuvers with
Phobos and Deimos, not graphically, as was done above, but this time from a point
of view of both energy and velocity possessed by the space probe.
Thus is presented in the figure 5.3 what will be the reference graph, that is, the
trend of velocities (along x-axis, along y-axis and the absolute value) in the inertial
reference system that the S/C possesses during its trajectory. As a first thing,
however, it must be specified that there is talk about dimensionless velocities; the
horizontal asymptote represents in fact the dimensionless value of V∞, i.e.:

V∞

V U
= 2.6490

2.1370 = 1.2396 (5.1)

The two vertical lines in green, on the other hand, represent the time instants
during which the probe is at its minimum distance from, respectively, Phobos
and Deimos. This is a very useful piece of information, as it is precisely at these
temporal instants that, in cases where flyby maneuvers with the moons of Mars
will be analyzed, the velocity possessed by the space probe will undergo a sudden
change, an unmistakable sign of the interaction between the probe and the moons
of Mars. In the case of Figure 5.3, however, it can be seen that there was no
interaction, as is to be expected from a direct escape maneuver.
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Figure 5.3: Best Direct Escape - Inertial velocities

For a complete understanding of the trajectory, the next figures also show the
energy trend of the trajectory followed by the S/C. In a two-body model, the
energy of a trajectory remains constant; in this case, however, having implemented
a four-body model, a perturbation can be expected, which, as shown by Figure 5.4,
concerns the sixth decimal place (to give an example that is as concrete as possible,
this is the same order of magnitude as the perturbative action that the Sun has
toward a satellite that is at an Earth-Sun distance from the latter), demonstrating
how microscopic Phobos and Deimos are and how their gravitational effects are
insignificant but still measurable.
The gravitational interaction between the satellite and the moons of Mars can also
be appreciated from an energy point of view, as the energy trend graphs will show
in cases where flyby maneuvers with one or both moons of Mars will be analyzed.
Specifically, these graphs refer to the flyby maneuvers previously discussed, energy
is calculated using the equation 2.24, using the norm of the dimensional velocity
evaluated in the inertial system, the norm of the vector radius also dimensional
and evaluated in the inertial system, and using the dimensional value of Mars’
gravitational parameter as the µ parameter. On the other hand, with regard to the
energy trend in the figure 5.4 it can be seen that, apart from small perturbations,
there are no major variations, as can be expected from a direct escape maneuver.
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Figure 5.4: Best Direct Escape - Energy plot

5.2 Best Phobos flyby
Regarding the flyby with Phobos and Deimos, it is important to point out at

the outset that the study conducted has shown how the gravitational assist effect
of both of Mars’ moons is absolutely negligible: Indeed, by modifying only the
θ angle in an appropriate way such that a flyby of one or the other satellite is
implemented, the result in terms of ∆V does not change, and the reason is due to
the fact that, as can already be easily guessed, they are too unmassive to actually
change the trajectory described by the probe in a non-negligible way.
For this reason, it was decided to conduct a parametric analysis by implementing
a flyby maneuver by going from time to time to increase the effective mass of
Phobos and Deimos by an order of magnitude, so that it will be possible to estimate
what the order of magnitude of a planet’s moons should be in order to actually
gravitationally exploit them profitably. Although the mass of Phobos and Deimos
will be increased, no consideration will be given instead to the size of Mars’ moons,
which will be regarded as dots and not as three-dimensional spherical bodies in
flyby maneuvers.
Furthermore, it should be explained that in order to implement the flyby maneuver
it will be necessary to act on two fundamental parameters:

1. Vary appropriately the angle θ that establishes the angular position in the
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plane from which to start the S/C trajectory,

2. Vary appropriately the angle θP hobos and θDeimos representing, respectively,
the angular distance measured counterclockwise with respect to the ε axis
from which to start the two Mars moons so that, defined by their angular
velocity, they meet the probe at the exact moment it passes through their
circular orbit.

Obviously, these two angles will be defined in the inertial system, where both Pho-
bos and Deimos rotate with their respective non-zero angular velocity, while in the
synodic system, which is the reference system in which the EOMs of the PBCR4BP
are solved, θP hobos will always be zero while for Deimos it will be important to
define the difference θP hobos − θDeimos.
At the code level, the case θP hobos ̸= 0, which can be implemented in the inertial
system, may in fact be misleading since it cannot have a mirror counterpart in the
synodic system, since in the latter reference system Phobos will be located at any
time instant at an angle θP hobos = 0.
The optimal phasing hypothesis thus allows not only to simplify the problem by
setting the variable θP hobos to zero in both reference systems but also to eliminate
the parallelism constrain between the final velocity vector possessed by the S/C at
the end of the integration time and the vector V⃗∞: without the optimal phasing
hypothesis, in fact, the direction of the V⃗∞ vector in the heliocentric system would
depend on the day of the year on which the space probe arrives at the Mars SOI,
and consequently further study should be done to identify which launch windows
are possible to meet this parallelism constraint.
As can be easily seen from the summary table 5.1, the flyby maneuver with Phobos
has negligible effects up to the case with 5 orders of magnitude more than the
satellite’s real mass, while the significant cases would result if Phobos had a mass
5 and 6 orders of magnitude more, respectively (trajectories FBPh5 and FBPh6).
This shows conclusively that in a real case a flyby maneuver with Phobos would
be completely useless, due to the fact that its real mass turns out to be too low to
gravitationally accelerate the probe.
In this context, the FBPh6 trajectory will be analyzed in detail, that is, the one that
would occur if Phobos had a mass 6 orders of magnitude greater than it actually
possessed. It is obvious that the more one increase the orders of magnitude the
greater the gravitational assistance effect Phobos can offer to the probe, yet, it is
good to emphasize the fact that the mass of the moons must never be greater than
25% of the mass possessed by the primary body, otherwise the concept of secondary
and tertiary bodies and consequently the concept of the Mars-Phobos-Deimos
system itself would be lost. For this reason, during the parametric analysis it would
not make sense to go beyond the case described by the FBPh6 trajectory: the case
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in which the mass of Phobos was increased by 6 orders of magnitude would in fact
mean having a secondary body with a mass of the same order of magnitude as
the mass of the primary body (1 × 1023 kg) in this case, causing the hypotheses of
PBCR4BP themselves to lapse.
In particular, the FBPh6 maneuver makes it possible to arrive at the boundaries
of the Mars SOI by spending a ∆V of 0,6711 km/s compared to the 1,2036 km/s of
the direct escape, which means a more than significant savings of about 0,53 km/s.
At this point, it would be easy to use the Tsiolkovsky rocket equation to estimate
in a first approximation the amount of propellant consumed in one case and in the
other: the savings in terms of propellant used will, of course, depend on the type
of propellant adopted and the initial mass of the rocket.
It is possible to visualize such a maneuver either in the synodic system (figure 5.6)
or in the inertial system (figure 5.7). In both cases, four subplots representing the
Mars-Phobos-Deimos system "photographed" at different time instants are first
shown: top left at the initial instant when the pulse is provided, top right at the
temporal instant when the S/C has the shortest distance to Phobos, bottom left
at the temporal instant when the S/C has the shortest distance to Deimos, and,
finally, bottom right at the final instant when, that is, the S/C has reached the
SOI of Mars. Next, a zoom of the trajectory is also depicted so that it is possible
to visulize in detail how the trajectory followed by the probe is deflected due to
the gravitational effect of Phobos.
In this ideal case in which Phobos is assumed to have a mass of 1,08 × 1023 kg (i.e.,
6 orders of magnitude more than its actual mass) the S/C will therefore have to
give a tangential impulse of 0,6711 km/s at an angular distance of 287,15◦, so as to
implement a flyby maneuver from behind with Phobos that will see it, at its point
of minimum relative distance, approach Mars’ satellite to a minimum distance of
357 km (as is shown by fig 5.5) from its surface.
Finally, it is possible to see that the time taken for the probe to get to the SOI of
Mars by implementing this flyby maneuver with Phobos is about the same as the
time taken in the direct escape case, a consequence of the fact that the S/C on
the one hand will start its trajectory with a lower ∆V of slightly more than half
that of the direct escape, so it will initially be slower and will have to lengthen
its trajectory so as to pass purposely close enough to Phobos at the right time
instant but on the other hand it will also be accelerated in a free manner having
implemented a flyby from behind the satellite, so it is possible to conclude that
the two effects cancel each other out.
To get as complete a view as possible, it is also good to keep track of the evolution
of various quantities during the propagation of the trajectory, particularly in Figure
5.5 it is possible to keep track of the relative distance between the position of the
space probe that will propagate from the LMO to the SOI of Mars and the position
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of Phobos and Deimos moving instead within their circular orbits around Mars, so
that it is possible to easily identify the time instant at which the point of minimum
distance with the moons of Mars occurs.

Figure 5.5: Relative distance between the probe and Phobos/Deimos

Other quantities to be taken into account are then the trend of the velocity
possessed by the S/C and the trend of its energy: the implementation of the flyby
maneuver in fact, in addition to being visualized in graphic form through the
appropriate graphs, can also be perceived without visualizing the actual trend of
the trajectory. In fact, the interaction between the probe and the moons of Mars
has consequences in terms of both velocity and energy that are manifested in the
form of peaks or strong variations in these quantities near the time instant at which
this interaction occurs.
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Figure 5.6: Synodic FBPh6
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Figure 5.7: Inertial FBPh6
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The next two graphs show the entire trend, respectively of velocity (5.8) and
energy (5.9), related to the trajectory followed by the space probe (left), and a zoom
(right) of the same graph is also shown, so as to have a clearer and more detailed
view of the interaction that occurred during the flyby, which can be visualized
through the presence of peaks in the variables involved.

(a) (b)

Figure 5.8: Best Phobos Flyby FBPh6 - Inertial velocities

(a) (b)

Figure 5.9: Best Phobos Flyby FBPh6 - Energy plot
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5.3 Best Deimos flyby
Concerning the flyby maneuver with Deimos, the trajectory FBDe7 (correspond-

ing to the ideal case in which Deimos had a mass 7 orders of magnitude more than
its actual mass) will be analyzed in more detail. Again, it is possible to visualize
the trajectory both in the synodic system (figure 5.11) and in the inertial system
(figure 5.12). As can be visualized from the table 5.1, the best possible case is
implemented by giving an impulse in the tangential direction equal to 0,8032 km/s
when the S/C is at an angular distance equal to 263,69◦, allowing a savings in
terms of ∆V of about 0,4 km/s compared to the direct escape maneuver.
This propellant savings is achieved at the expense of a slightly longer trajectory
duration of 2,1766 × 105 s, i.e., about 60 hours and 26 minutes.
Specifically, again there will be a flyby of Deimos from behind in which the probe
will arrive at a minimum distance of 503 km from the satellite’s surface as it can be
seen in Figure 5.10 showing the dimensionless relative distance between the S/C
and the moons of Mars.

Figure 5.10: Relative distance between the probe and Phobos/Deimos

This information, as well as in the case of the flyby of Phobos analyzed above,
must however be taken with caution since analyzing a nonreal case in which, in order
to visualize the gravitational effects of the Mars moons, the aim is to intentionally
increase their mass so that the trajectory followed by the probe can actually be
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curved in the vicinity of their presence but no assumption has been made about
the size in terms of radius that Phobos and Deimos should have as a result of
having fictitiously acquired mass. Strictly speaking, in fact, one would have to
specify that the minimum relative distances between the S/C and Phobos/Deimos
(357 km and 503 km, respectively) refer, not so much to their surface, but to their
center of mass, so logically these values should be subtracted from the value in
kilometers in radius that Phobos and Deimos would have if they actually had a
mass of 1,08 × 1022 kg and 2 × 1022 kg.
Since the aspect related to how the radius value of both moons of Mars would
increase as their masses increase as the parametric analysis proceeds in this thesis
work has not been considered, in order to obtain a model consistent with the as-
sumptions that have been made, two additional constraints related to the minimum
allowable distance at which the space probe can arrive in the vicinity of Phobos
and Deimos have been imposed, and this minimum distance has been imposed as
respectively the value of their true radius (i.e. 11,26 km in the case of Phobos and
6,2 km in the case of Deimos) plus a 10% of the value of their radius as a safety
coefficient.
Because of the microscopic value of their radii, in fact, Phobos and Deimos would
be assimilated to two asteroids and the definition of ’moons’ of Mars would not be
so appropriate given their real size. In the various figures presented in this paper,
however, the choice has been made to make their positions in the various time
steps easily visible, consciously increasing their sizes relative to those they actually
possessed; this choice was necessary due to the fact that the trajectory plots show
dimensionless magnitudes so that if the choice of representing Phobos and Deimos
with their real sizes had been carried forward, they would have turned out to be
too small to allow their visualization in terms of position.
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Figure 5.11: Synodic FBDe7
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(a) (b)

Figure 5.13: Best Deimos Flyby FBDe7 - Inertial velocities

(a) (b)

Figure 5.14: Best Deimos Flyby FBDe7 - Energy plot

5.4 Best combined flyby
In this section, the combined flyby maneuver with both of Mars’ moons is

shown and analyzed. In order to implement this maneuver, an initial angle θP hobos

equal to 0◦ and an initial angle θDeimos equal to 61◦ was imposed so that the
trajectory followed by the S/C and curved by the Phobos flyby could also pass in
the vicinity of Deimos. In addition, following the parametric study implemented
for the individual flybys, it was decided to combine the FBPh6 and FBDe7 cases.
As can be visualized from the summary table 5.1 the optimal case is obtained by
generating a tangential pulse equal to 0,6275 km/s when the S/C is at an angular
position of 298,61◦: the first flyby will take place from behind with Phobos greatly
accelerating the probe as the latter will pass, at its point of minimum distance from
the satellite, at a distance equal to 34 km (fig 5.15) from its surface; subsequently,
the second flyby with Deimos will instead occur from in front, so in this case
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Deimos will decelerate the S/C, which, at its point of minimum distance, will be at
a distance equal to 340 km from its surface. The fact that this is a flyby first from
behind to accelerate and then from in front to brake should not be surprising since
the goal of the mission is not only to arrive at the boundaries of the SOI of Mars,
but also to get there with the right velocity in terms of modulus, which is why it is
necessary for Deimos to slow down the S/C to allow it to arrive at the SOI with
exactly the modulus of V∞.
Finally, it is important to remind that for a better understanding of the figure 5.15
to obtain the dimensional distance expressed in kilometers one has to multiply
the corresponding dimensionless value by the DU, while to obtain the dimensional
time expressed in seconds one has to divide the corresponding dimensionless value
by the angular velocity (expressed in radians per second) characteristic of the
Mars-Phobos ωsyn synodic system.

Figure 5.15: Relative distance between the probe and Phobos/Deimos
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Figure 5.16: Synodic BCFB
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Figure 5.17: Inertial BCFB
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The following two graphs clearly clarify what happens during this combined
flyby maneuver: in fact, it can be seen from the figure 5.18b how the velocity trend
undergoes two peaks, the first at the flyby with Phobos causing a marked increase
in the velocity vector norm, and subsequently, a second flyby this time with Deimos
braking, which causes a more slight decrease in the velocity vector norm. A similar
trend can also be seen from the energy behavior depicted in Figure 5.19.

(a) (b)

Figure 5.18: Best Combined Flyby BCFB - Inertial velocities

(a) (b)

Figure 5.19: Best Combined Flyby BCFB - Energy plot
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5.5 Summary of trajectories and final results
The following table summarizes in schematic form the results obtained. Specifi-

cally, a parametric analysis was conducted in which the gravitational parameter
µ (defined as per the equation 3.4) of a generic binary system was varied from a
minimum value of 1,6606 × 10−8, which represents the real case of the Mars-Phobos
binary system, to a maximum value of 1,6606 × 10−1, with the purpose of going to
investigate what the minimum binary gravitational ratio must be in order for it
to make sense to talk about a gain of at least 1 m/s compared to the ∆V that is
needed instead to make a direct escape without any gravitational assistance from
a planet’s moons. Note that, for example, in the case of the Jupiter-Ganymede
binary system (which represents the most massive of Jupiter’s many moons) the
gravitational parameter µ is worth 7,8065 × 10−5, while in the more common case
of the Earth-Moon binary system it is worth 0,0122, which is why, this parametric
analysis should not be seen as descriptive only of the Mars-Phobos binary system,
but on the contrary, the Mars-Phobos system represents only one of the possible
combinations of optimization of the gravitational parameter, which, varying in the
range just described, allows to describe any binary system in the solar system.
The upper limit is due to the fact that it has been shown that it is useless to talk
about a generic binary system if the mass ratios are greater than 1/4, otherwise
the system will not be self-stable. In reality, however, there is no binary system
with a value of µ above the value of 0,0122, which is the characteristic value of the
Earth-Moon system, which is why it was decided to choose 1,6606 × 10−1 as the
upper limit of the parametric analysis, so that our binary system would also be
included.
The code provides the possibility of being able to parametrically set the distance
between the secondary and tertiary as well, so that any ternary system can be
analyzed, since the distance between the primary and secondary will always be
fixed and unity. In particular, the study was conducted by setting a dimensionless
length range between the secondary and tertiary between 1 and 2.5: in this way
it was possible to incorporate within the analysis the real cases of both the Mars-
Phobos-Deimos tertiary system, characterized by a distance of 2,5015 between
Phobos and Deimos, as well as the case of the tertiary Jupiter-Ganymede-Callisto
system characterized by a distance between secondary and tertiary equal to 1,7589.
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LabelLabelLabel Trajectory [kg]Trajectory [kg]Trajectory [kg] µ [/]µ [/]µ [/] ∆V [km/s]∆V [km/s]∆V [km/s] θ [deg]θ [deg]θ [deg] φ [deg]φ [deg]φ [deg] tf [rad]tf [rad]tf [rad]
BDEBDEBDE MP h and MDe 1,6606 × 10−8 1,2036 231,54 0 48,054

FBPh0 M0 = MP h 1,6606 × 10−8 1,2036 299,77 0 48,054
FBPh1 M1 = 101 ·MP h 1,6606 × 10−7 1,2036 300,13 0 48,054
FBPh2 M2 = 102 ·MP h 1,6606 × 10−6 1,2036 299,55 0 48,054
FBPh3 M3 = 103 ·MP h 1,6606 × 10−5 1,2010 299,69 0 48,055
FBPh4 M4 = 104 ·MP h 1,6606 × 10−4 1,1888 299,34 0 48,061
FBPh5 M5 = 105 ·MP h 1,6606 × 10−3 1,0352 299,04 0 48,138
FBPh6FBPh6FBPh6 M6 = 106 ·MP h 1,6606 × 10−2 0,6711 297,15 0 48,314
FBPh7 M7 = 107 ·MP h 1,6606 × 10−1 0,1944 291,56 0 48,268
FBDe0 M0 = MDe 1,6606 × 10−8 1,2036 269,91 0 48,054
FBDe1 M1 = 101 ·MDe 1,6606 × 10−8 1,2036 270,59 0 48,054
FBDe2 M2 = 102 ·MDe 1,6606 × 10−8 1,2036 269,74 0 48,054
FBDe3 M3 = 103 ·MDe 1,6606 × 10−8 1,2036 269,84 0 48,054
FBDe4 M4 = 104 ·MDe 1,6606 × 10−8 1,2029 269,64 0 48,055
FBDe5 M5 = 105 ·MDe 1,6606 × 10−8 1,1928 269,77 0 48,074
FBDe6 M6 = 106 ·MDe 1,6606 × 10−8 1,1452 268,85 0 48,197
FBDe7FBDe7FBDe7 M7 = 107 ·MDe 1,6606 × 10−8 0,8032 263,69 0 49,599
BCFBBCFBBCFB MP h and MDe 1,6606 × 10−2 0,6275 298,61 0 48,518

Table 5.1: Mars-Phobos-Deimos results

In contrast, the table 5.2 shows the errors related to a trajectory. In particular,
the column err refers to the dimensionless sum between err1 (which determines
how accurately the S/C has arrived at the boundaries of Mars’ SOI) and err2
(which determines how accurately the final velocity of the S/C is close to V∞): as
one can easily visualize these are very low errors, even negligible compared to the
magnitudes involved. The second column, on the other hand, allows us to visualize
the error on the final position expressed in a dimensional way, however: as can
be seen there is talk about errors that in the worst case are of the order of 10 m,
while as for the third column, which shows the error on the velocity expressed in a
dimensional that in the worst case is of the order of 10 mm/s.
This accuracy of the results is to be attributed to the robustness of the genetic
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algorithm described in Chapter 4, which allows for errors that are all the lower the
more the number of generations performed is increased. In the specific case, these
results were obtained by setting a number equal to 100 generations, where each
generation consists of a population consisting of 1000 individuals.

LabelLabelLabel err [/]err [/]err [/] err1 [mm]err1 [mm]err1 [mm] err2 [mm/s]err2 [mm/s]err2 [mm/s]
BDEBDEBDE 8,5413 × 10−10 0,0179 0,0012

FBPh0 9,3178 × 10−9 12,3649 0,0171
FBPh1 1,1113 × 10−7 418,4932 0,1421
FBPh2 3,4383 × 10−6 1,0667 × 104 4,9173
FBPh3 6,9397 × 10−6 1,8829 × 103 14,4012
FBPh4 2,5879 × 10−7 219,0044 0,5031
FBPh5 2,0811 × 10−7 1,8926 × 103 0,0135
FBPh6FBPh6FBPh6 9,1285 × 10−8 815,9516 0,0091
FBPh7 6,1177 × 10−8 234,1968 0,0774
FBDe0 2,1488 × 10−9 3,1715 0,0039
FBDe1 2,0766 × 10−8 46,0572 0,0339
FBDe2 1,6945 × 10−7 871,8633 0,1634
FBDe3 1,9950 × 10−7 1,4160 × 103 0,1037
FBDe4 1,2254 × 10−8 114,9180 0,0026
FBDe5 3,3416 × 10−6 2,2982 × 103 6,6173
FBDe6 3,9164 × 10−12 0,0335 7,3169 × 10−7

FBDe7FBDe7FBDe7 1,2346 × 10−12 0,0014 2,3195 × 10−6

BCFBBCFBBCFB 4,0593 × 10−7 737,5047 0,6994
Table 5.2: Mars-Phobos-Deimos errors
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The following plot in Fig. 5.20 compares the binary gravitational parameter µ
with the ∆V required to reach the SOI of Mars by passing in the vicinity of Phobos:
it is possible to see how for low values of µ the ∆V is concentrated around the
range centered in 1,2 km/s, a sign that in practice there would be no convenience in
implementing a flyby maneuver in the case of the real ternary Mars-Phobos-Deimos
system (characterized by a binary parameter of 1,6606 × 10−8).
As mentioned, the figure 5.20 was obtained by sweeping the parameter µ in a range
from 1,6606 × 10−8 to 1,6606 × 10−1, which is why, in order to understand the order
of magnitude of the parameter µ from which one can appreciate nonnegligible ∆V
gains, one must zoom in to the initial part of the graph, which is shown in figure
5.21. From that graph it is therefore possible to conclude that the gain in terms of
∆V begins to be relevant from a value of µ equal to 0,3 × 10−3 onward, since it is
from this value that, sporadically, we can begin to have ∆V that are about half as
large as the 1,2 km/s of direct escape, and that this advantage gradually becomes
more convenient, following a law in with the ∆V decreases hyperbolically as the
parameter µ increases.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

mu [/]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

D
e
lt
a
V

 [
k
m

/s
]

DV vs mu

Figure 5.20: µ vs ∆V comparison
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Figure 5.21: µ vs ∆V comparison (zoom)

5.6 Generic ternary system
This section will present the results of the parametric analysis aimed at simu-

lating any ternary system. The analysis consists of the implementation of a triple
cycle for in which, from time to time, the following are made to vary:

• the gravitation parameter of the binary system µ12, it will be made to vary
from a minimum value of 1,6606 × 10−8, which represents the Mars-Phobos
system as well as the minimum value this parameter can take, up to a maxi-
mum value of 1,6606 × 10−1 so as to also encompass the maximum value this
parameter can reach, i.e., of 0,0122 in the case of the Earth-Moon system,
with steps of one order of magnitude each.

• the mass of the tertiary body m3, it will be made to vary from a minimum
value of 2 × 1015 kg representing the case of the microscopic mass of Deimos,
up to a maximum value of 2 × 1023 kg, so as to also encompass the mass
of Ganymede, which with its mass of 1,4819 × 1023 kg represents the most
massive moon in the solar system, with steps of an order of magnitude each.
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• the dimensionless distance d12−3 between the barycenter of the binary system
and the tertiary body, it will be made to vary from a minimum value of
1 (having a parameter d23=1 will thus mean that the tertiary body is at a
unit distance from the center of the synodic reference system, and rotates
in its circular orbit together with the secondary body) to a maximum value
of 2.5 with steps of 0.25, so as to encompass most of the existing ternary
systems, such as even the Mars-Phobos-Deimos system that sees Deimos at a
dimensionless distance equal to 2,5015 or even the Jupiter-Ganymede-Callisto
system that sees Callisto at a dimensionless distance equal to 1,7589.

To obtain the following results, it was decided to implement a while loop so that
the genetic algorithm could iterate until, for each case considered, i.e., for each
trajectory defined by the triple [µ12,m3,d12−3], the following conditions occurred
simultaneously:

• the error 1 on the final position reached by the probe once it arrived at the
boundaries of Mars’ sphere of influence less than 0.1, which in dimensional
terms means an error at most 937,80 km.

• the error 2 on the final velocity reached by the probe less than 0.1, which in
dimensional terms means an error of plus or minus 0,2137 km/s with respect
to V∞

• for each trajectory is recorded the vector ray followed by the probe and the
one related to the position of Phobos and Deimos within their circular orbit:
the minimum value of the difference between these two vector rays will thus
represent the minimum distance at which the probe will pass in the vicinity
of both moons of Mars.
Two additional constraints were imposed on this parameter so as to exclude
those trajectories that perhaps meet both error 1 relating to final position
and error 2 relating to final velocity but passing too far from Phobos and
Deimos for which, effectively, there would be no gravitational assistance.
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(a) d=1.25 (b) d=1.5

(c) d=1.75 (d) d=2

(e) d=2.25 (f) d=2.5

Figure 5.22: Parametric analysis at fixed distance
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As can be clearly seen, the cases of greatest interest, where a visible and
effective decrease in ∆V can be seen, are those in which the third body has a
dimensionless mass equal to m3 = 0.31299 and the secondary body is characterized
by a gravitational parameter equal to µ12 = 0.0166 and/or µ12 = 0.166.
A more careful analysis of the tables, however, would allow one to see that from
the d=2 case onward the gravitational effect given by the third body becomes
progressively weaker, causing an increase in the ∆V relative to the line characterized
by m3 = 0.31299. This effect should not be surprising since it confirms what could
be regarded as one of the fundamental rules of astrodynamics. In fact, as explained
in detail in Chapter 2 of this paper, it is convenient to thrust at low radii when
the velocity is high, and in this case a similar reasoning applies: the gravitational
effect of the third body, which allows the probe to receive "free" acceleration, is
maximized if the probe is already fast, that is, if the third body is at a relatively
small distance from the initial orbit of the probe. As the third body is moved
away, the probe will arrive in its vicinity with decreasing speed, so the advantage
in implementing the flyby maneuver becomes weaker and weaker.
In conclusion, I would like to mention that, while in the case of the parametric
analysis involving the particular case of the Mars-Phobos-Deimos ternary system
with only the gravitational parameter µ varying and the other two parameters
involved in the parametric analysis remaining fixed, the best possible trajectories
were shown, and therefore the value of ∆V was the minimum possible value; in this
case where the parametric analysis focuses on simultaneously varying in a combined
way all three fundamental parameters involved, the ∆V referred to each individual
trajectory will not necessarily be the minimum, since searching for the point of
minimum of each individual trajectory would have implied a very high cost and
computational time, but it will certainly represent a valid value of the parameter
∆V that allows to obtain a valid escape trajectory respecting the requirements
described above and that, at the same time, allows to visualize the general trend
of ∆V as the parameters involved vary. In this sense, a possible future work could
in fact be to search for the minimum value of ∆V for every single combination of
the triple [µ12,m3,d12−3], so as to build a parametric model that allows to evaluate
the point of optimum in every possible combination of the involved parameters.
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Chapter 6

Conclusion

In summary, in this thesis work, the Mars-Phobos-Deimos system was presented
as a particular case of a parametric analysis to simulate any ternary system. In
order to go into more detail and actually evaluate how convenient it is to exploit
the gravitational effects of the moons of a generic planet, a simplified parametric
analysis was conducted, adapted to the case of Mars and its two moons, whereby
only the gravitational parameter of the Mars-Phobos binary system and the mass
of the ternary body were varied. Under these assumptions, it was possible to
identify the best flyby maneuvers with the individual moons and subsequently with
both, and the effect of the interaction between them and the space probe were
highlighted both in graphical form through visualization of the trajectory itself and
in the form of velocity and energy trends, which allow, although not as directly
as in the case of the trajectories, to be aware of the consequences that such flyby
maneuvers have on the probe itself.
The results showed that it is possible to have significant benefits in terms of ∆V
from a minimum value of the gravitational parameter µ equal to 0,3 × 10−3 onward.
In particular, as shown by the graph 5.21, it is from this value onward that it is
possible to have optimal solutions characterized by a value of ∆V of about 0,5 km/s.
However, even considering only the area of the graph characterized by values of
the gravitational parameter µ greater than 0,3 × 10−3, it can be seen from the
trend of the solutions that the genetic algorithm stabilizes at suboptimal solutions
characterized by a much higher ∆V around 1,2 km/s. For this reason, with a view
to future studies, it might be interesting to be able to train the genetic algorithm
to make the optimal solutions even more elitist, in order to help stabilize around
the optimal solution, once one has been found.
Next, the parametric analysis was extended in its most general case possible by
going to vary all three fundamental parameters involved in the definition of a
ternary system (thus also adding the possibility of varying the relative distance
between secondary and tertiary bodies), and the results in terms of ∆V were shown
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in the form of heatmaps in figure 5.22.
In light of the results obtained and analyzed in the previous chapter, it is possible
to draw some very important conclusions, and more importantly, to justify why
this analysis was conducted.
The construction of an orbiting station around the Moon emerges as a crucial
prospect in the field of space exploration and lunar missions [31, 32], both because
in the first place the Moon is large enough to be able to keep a possible space
station on a stable orbit, and because it offers a significant advantage in terms of
∆V , allowing a significant reduction in the energy requirements for launching and
recovering space missions. Launching a mission from the lunar surface requires a
significant amount of energy to overcome lunar gravity and reach lunar orbit. An
orbiting station could be placed in a stable and relatively low orbit around the
Moon, thus reducing the ∆V needed to reach it from a mission from Earth or the
Moon itself. This means that less energy is required to reach the orbiting station
compared to a direct launch to other deep-space destinations.
Well, by the time mankind succeeds in colonizing Mars, the results obtained show
that it is futile to hope that on Phobos and Deimos it makes sense to do something
similar, both because they are too small (it would be correct to call them asteroids
and not moons, given the size of their radii) and therefore would not be able to
maintain a hypothetical space station on a stable orbit around them, and because
they would not give any advantage in terms of ∆V .
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