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Abstract

"It suddenly struck me that that tiny pea, pretty and blue, was the Earth. I put
up my thumb and shut one eye, and my thumb blotted out the planet Earth. I

didn’t feel like a giant. I felt very, very small."
-Neil Armstrong

All the major Space-Powers are looking back again at the exploration of the Moon,
this time “to stay”. Driven by scientific, geopolitical and economic purposes, the
-still today- totally unexplored Moon South Pole is set as the preferred target
region where to land. Being rich of water-ice (permafrost), this region is the most
attractive for the development of stable human settlements. Through also the
involvement of space private companies, the race is on!
Through the European Space Agency (ESA), Europe wants to play a key role in
such a fascinating and challenging rush. Never been on the Moon, Europe is now
going to put its best efforts on the so-called Argonaut program, representing the
European answer to the new Moon call. The objective is to independently develop
a lunar lander able to carry over the lunar surface a greater amount of mass (> 1.5
tons). Consequently, this thesis has been fit into this operative and competitive
context by aiming to develop a set of tools providing autonomous mission anal-
ysis capabilities, without relying on commercial mission analysis software. The
problems addressed are then two: that of computing the necessary trajectory cor-
rection maneuver and that of optimizing the descent trajectory at Moon arrival.
With the purpose of fulfilling these needs, this thesis is based on the optimization
methods further employed in the creation of the software developed for Thales
Alenia Space Italy (TAS-I), using the MATLAB language.
The descent dynamics have been written in a Celestial Body-Fixed reference frame,
continuing previous development work done at TAS-I with simpler models. The
new insights into the problem allowed to improve the previous dynamical model,
with the new equations given in the Appendix. The Moon targeting was instead
studied using the Circular Restricted Three-Body Problem (CR3BP), and also
a higher precision model, importing ephemeris data from the SPICE Toolkit,
accounting for the presence of the Sun. This method also allows to export the tra-
jectory data in the SPICE Enhanced software COSMOGRAPHIA, to realistically rep-
resent the optimized trajectories profiles. Finally, the B-Plane targeting method
has been investigated too.

ix



Chapter 1

Context of the Study

1.1 Introduction

Before delving into the mathematical aspects of optimization and orbital mechan-
ics, it’s necessary to understand the context of this study, so that we can then
better grasp what the objectives of the thesis are and follow a logical thread in
the discussion. As stated in the Abstract, this thesis fits into the operative con-
text provided by the Argonaut Program, and is devoted to the analysis of one of
the possible case studies. For this reason, the mission strategy that will be out-
lined here is not to be considered the best, but one of the possible choices, even
along with more exotic ones. An example could be that of employing the weak
stability boundary concept to potentially obtain a slightly lower mission cost in
terms of ∆V , but at the cost of a much longer mission duration, requiring then
an appropriate sizing of the on-board systems.

1.2 Mission Overview

The first step is clearly that of launching the spacecraft and putting it into a wait-
ing orbit around Earth, which is supposed to be a circular 250 × 250 km orbit.
At the appropriate time, the launcher provides an impulse that puts the space-
craft into an elliptical transfer orbit, with a fixed apogee height of 400.000 km
(fixed launch program hypothesis) in the Moon orbital plane. The launch vehicle
in question should be the Ariane 64 (Ariane 6 with a 4 booster configuration)
Launch System, or another version derived from further development. Clearly,
the Ariane 6 is a launcher that so far has never flown, so the numbers provided
before, related to the types of waiting and injection orbits, are somewhat rea-
sonable, waiting for more information from Ariane Space, but not exact. After
the conclusion of a commissioning phase, lasting up to 24 hours after injection,

1
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Moon Transfer Orbit Injection. The launcher puts us on a 
400.000 fixed apogee height transfer orbit in the Moon’s 
Orbital Plane.

250 x 250 km Initial 
parking Orbit

Figure 1.1: Moon Transfer Orbit Injection.

a TCM-Trajectory Correction Maneuver must be performed. This is due to the
fact that the launcher released the spacecraft on a fixed apogee height orbit that
is clearly not precise enough to correctly target the real position of the Moon.
The TCM should then correct the Apogee height and target the correct orbital
parameters at Moon arrival, to reduce the cost of the following maneuver, the
LOI-Lunar Orbit Injection. Delaying the TCM further results in higher mission
costs, so this 24h period was chosen as a worst case scenario. A more thorough
study of the problem would also require addressing a trajectory dispersion prob-
lem, accounting for the fact that errors in performing both the injection and TCM
maneuvers imply a dispersion of the trajectory and a variation of the entity of the
corrective maneuvers. In fact, a single TCM might not be sufficient, and at least
another one may prove to be necessary, for example when entering the Moon’s
sphere of influence. However, this discussion can be postponed to more advanced
stages of the mission study, and for now we are going to strictly deal with the
mission baseline proposed by ESA.

As mentioned before, after a certain amount of time after the execution of the TCM
maneuver, an injection maneuver (LOI) must be performed to enter a circular
100 × 100 km circular orbit around the Moon. The LOI maneuver is the first
critical maneuver of the mission: an error in providing the correct ∆V , both in
magnitude and direction, is almost sure to result in a mission loss. The choice of
a 100 × 100 km orbit is not completely arbitrary; from a certain point of view,
this is the path followed by other operative programs that effectively reached the
Moon (such as the Apollo missions in the past century, and the russian Luna-25
more recently), but there’s a more scientific reason too. This circular orbit is in
fact believed to be stable enough to allow us to remain waiting around the Moon
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Figure 1.2: Transfer trajectory overview.

for the maximum amount of time required before initiating the subsequent phase,
represented by lunar descent. This is due to the fact that a landing is not possible
at an arbitrary moment, because:

• the ground track of the waiting orbit must pass over the specified landing
site, to reduce the propellant burned to land;

• the landing site must be in light conditions at the time of Moon landing
(requirement provided by ESA);

These two conditions may require up to one Moon’s orbital period to be both
satisfied, and this translates to a waiting time of up to 28 days. At this point,
the problem with waiting orbits around the Moon is that, due do the irregularity
of the Moon gravitational field, their perilunium height tends to lower with time.
This is a huge issue, because it can cause an impact of the lander on the surface.
In addition, the LOI maneuver may be performed in multiple steps instead of a
single impulse, depending on the amount of thrust at disposal.

Having clarified these aspects, we can now move on to the next maneuver, that is
also the second critical maneuver : lowering the orbit perilunium from 100 km to
30 km, performing a transfer from the 100 × 100 km waiting orbit to a 30 × 100
km one. Again, failing this maneuver could prove fatal: the russian Lunar-25
impacted on the Moon’s surface due to a magnitude error in providing the required
∆V impulse. Finally, upon reaching the perilunium of this 30× 100 km orbit, the
Powered Descent phase, considered the third and last critical maneuver, can begin.



Chapter 1. Context of the Study 4

First boost to inject in a 
30 x 100 km orbit.

PDI-Powered Descent 
Initiation.

Initial 100 x 100 km 
orbit.

Figure 1.3: 30 x 100 km orbit injection and PDI-Powered Descent Initiation.

1.3 Objectives

Having outlined the mission profile, it is now easier to understand what the goals
of this thesis are:

• to compute the magnitude of the TCM maneuver, necessary to target the
correct Moon position with the required orbital parameters at arrival (incli-
nation and perilunium), reducing the cost of the subsequent LOI maneuver
preventing out of plane changes in velocity;

• to compute the optimum descent trajectory for the Powered Descent phase,
minimizing the amount of fuel burned (or, analogously, maximizing the pay-
load at landing) and deriving the associated thrust and attitude profiles.

To achieve these two goals, a set of different dynamic models which will be pre-
sented during the course of the thesis are necessary, along with optimization meth-
ods that are adequate for these purposes. The final output should be a set of tools
capable of handling and linking these two problems, with appropriate parameters
for the various possible configurations (different landing sites, different landers...).
For this reason, a large part of this thesis is devoted to exposing the theoretical as-
pects related to the development of these tools, while the results for some possible
parametric studies are presented only at the end, to validate the software.



Chapter 2

Introduction to Computational
Optimal Control

2.1 Introduction

The purpose of this Chapter is to provide the reader with background informa-
tion on optimal control. Some basic insights into the mathematical setting of the
problem will be provided, along with implementation strategies of NLP Problems
in commercial optimization software through the so called transcription meth-
ods, with particular reference to the MATLAB (Global) Optimization Toolbox. The
reader is welcome to consult the references on which this brief introduction is based
for more detailed information on Computational Optimal Control, although the
basic information here contained should be more than sufficient to successfully
implement the problems presented in the following chapters. [2] [17] [3]

2.2 Formulation of Optimal Control Problems

Optimal Control is the process of finding state and control trajectories for a dy-
namic system in a certain period of time, to optimize system performance in some
specified sense. Different measures of system performance can be adopted, such
as:

• final mass;

• total ∆V⃗ ;

• TOF - time of flight

5
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In general, the performance index represents a measure of the system control effort,
of the employed amount of energy or of the trajectory tracking error with respect
to a certain reference path. Clearly, the definition of the performance index isn’t
always straightforward, so for some problems it is possible that there is a certain
grade of arbitrariness.

From a mathematical standpoint, some ingredients are usually present while for-
mulating an optimal control problem:

• a mathematical model of the system to be controlled;

• the specification of a performance index;

• a statement of which variables are free;

• a specification of all the boundary conditions on controls and system state
variables.

Starting with the mathematical model of the controlled system, it is usually repre-
sented by a set of ordinary differential equations (ODEs), which can be expressed
as follows:

ẋ(t) = f [x(t),u(t),p, t], t ∈ [t0, tf ] (2.2.1)

where:

• x : [t0, tf ] → Rnx is the system state vector;

• u : [t0, tf ] → Rnu is the system control vector;

• p ∈ Rnp is the static parameters vector, i.e. elements not dependent on
t;

• t ∈ [t0, tf ] ∈ R is an independent variable, usually representing time, so we
will refer to it as such from now on;

On the other hand, as for the boundary conditions on system dynamics, they
can be imposed on the system initial or final state (or both), or over the whole
[t0, tf ] interval. They can also occur as both inequalities or equalities (the latter
correspond to the first ones in case the upper boundaries are equal to the lower
boundaries, so in the following writing we are not going to distinguish between
them).

From a formal point of view, terminal or initial boundary conditions can be ex-
pressed as follows:

eL ≤ e[x(t0),u(t0),x(tf ),u(tf ),p, t0, tf ] ≤ eU (2.2.2)
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As previously stated, a system is sometimes also subjected to constraints active
in the whole [t0, tf ] interval. One may for example think about a maximum pitch
rate, or even a maximum/minimum thrust level.

In this instance, we then have two cases: the first one, where the constraints are
time dependent:

hL ≤ h[x(t),u(t), p, t] ≤ hU, t ∈ [t0, tf ] (2.2.3)

and the second one, in which the constraints acting on static, state and control
variables are not time dependent:

uL ≤ u(t) ≤ uU, t ∈ [t0, tf ]

xL ≤ x(t) ≤ xU, t ∈ [t0, tf ]

pL ≤ p ≤ pU

(2.2.4)

In addition, the initial and final times, respectively t0 and tf , are not necessarily
fixed:

t0L ≤ t0 ≤ t0U

tfL ≤ tf ≤ tfU

tf − t0 ≥ 0

(2.2.5)

Lastly, the performance index can be expressed in the following form:

J1 = ϕ1[x(t0), t0,x(tf ), tf ,p] +

∫ tf

t0

L[x(t),u(t),p, t]dt (2.2.6)

where L is often referred to as the running cost function.

2.3 Nonlinear Programming and Transcription Meth-
ods

Nonlinear programming involves finding the solution of an optimization problem
where some of the constraints or the objective function are nonlinear, where opti-
mizing means maximizing or minimizing an objective function while satisfying a
set of constraints. The NLP problem is often referred to as parameter optimiza-
tion, and the solution is composed by a finite number of variables, which make up
a so-called decision vector z ∈ Rnz . In mathematical terms, we can state a NLP
Problem as follows:

min
z
J(z) subject to:

g(z) ≤ 0

h(z) = 0

zl ≤ z ≤ zU

(2.3.1)
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The main difference is that in a NLP Problem, the decision vector is finite di-
mensional (not defined on a continuous time interval), the decision variables are
numbers and the equations are algebraic, while in an optimum control problem
(trajectory optimization problem) we have differential equations and the decision
variables (all the unknowns of the differentiation problem) are continuous func-
tions defined on the [t0, tf ] interval. One could say that the NLP Problem tends
to the corresponding Optimum Control Problem as the dimension of the decision
vector approaches infinity. Various methods to solve NLP problems are available,
such as:

• Gradient-Based Methods: These methods use information about the gradi-
ent of the objective function to guide the search for the optimal solution.
Examples include the steepest descent method and the Newton-Raphson
method.

• Penalty and Barrier Methods: These methods transform nonlinear con-
strained problems into unconstrained problems by introducing penalty or
barrier functions that enforce the constraints.

• Sequential Quadratic Programming (SQP): SQP algorithms solve a sequence
of quadratic approximation problems that approximate the original nonlin-
ear programming problem.

• Evolutionary Algorithms, like genetic algorithms and particle swarm opti-
mization, used to solve both constrained and unconstrained optimization
problems, are based on a natural selection process that mimics biological
evolution.

Their implementation is not part of this thesis, which instead deals only with the
transformation of an optimum control problem in an NLP problem, but how can
this goal be achieved? Transforming a continuous optimum control problem in
a NLP problem can be achieved by transcribing the infinite-dimensional problem
into a finite-dimensional approximation, through a so called transcription method,
which has three fundamental steps:

• convert the dynamic system into a problem with a finite set of variables;

• solve the finite-dimensional problem (NLP Problem) using, for example, an
SQP Algorithm;

• assess the accuracy of the obtained approximation and, if necessary, repeat
the above steps;

Two different transcription methods will be introduced in this thesis, which will
then be applied to the case studies addressed. These are the:
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• Direct Collocation Methods, also called Direct Transcription Methods which
will be applied to the optimization of the Descent Trajectory of a Moon Lan-
der. They are based on "approximation", and are better suited for problems
with complicated controls and/or path constraints.

• Direct Shooting Methods, which will be applied to the optimization of the
impulsive TCM burn during Moon Transfer. They are based on "simula-
tion", and are better suited for problems with simple controls and no path
constraints.

We can now move on to the description and implementation of these algorithms in
a MATLAB environment, using the fmincon function to solve the associated NLP
problems. Of course the reader may choose to implement these methods in other
optimization softwares, such as GPOPS (written in the MATLAB language) or
SNOPT (written in FORTRAN, with interfaces available for MATLAB, C, C++
and Python ), which is in fact available in several trajectory optimization packages,
such as the Astrogator module of Systems Tool Kit - STK and the General Mission
Analysis Tool - GMAT.

2.3.1 Direct Collocation Methods

Direct Collocation Methods involve the discretization of the ODEs that describe
our system through a piecewise polynomial approximation, thus achieving vari-
ous different direct collocation methods such as the Trapezoidal method or the
Hermite-Simpson method. A set of equalities that represent the system dynamics
are then obtained, and they can be implemented as equality constraints in a NLP
Problem. The first step consists in dividing the [t0, tf ] interval in N sub-intervals
using N+1 grid nodes. It’s not necessary for these nodes to be equally spaced,
although it may appear as the most logical choice, at least for a preliminary op-
timization. Adaptive algorithms in which more nodes are automatically placed
where necessary, to satisfy accuracy requirements, do exist, but they are not the
subject of this discussion.

We can then start by assuming that the state of the ODE system is approximated
by a polynomial x̃(t) of degree M over each interval t ∈ [tk, tk+1], k = 0, ..., N−1,
which has the following form:

x̃(t) = a(k)
0 + a(k)

1 (t− tk) + ...+ a(k)
M (t− tk)

M (2.3.2)

The coefficients are chosen such that the approximation x̃(t) matches the x(t)
function at the two extremes of the [tk, tk+1] interval:

x̃(tk) = x(tk)

x̃(tk+1) = x(tk+1)
(2.3.3)
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Figure 2.1: Approximation of system state vector through a piecewise polynomial
function x̃(t) defined on the t0, ..., tN = tf grid

and the first time derivative of the approximation also matches the x(t) function
at tk and tk+1:

˙̃x(tk) = ẋ(tk) = f [x(tk),u(tk),p, tk]

˙̃x(tk+1) = ẋ(tk+1) = f [x(tk+1),u(tk+1),p, tk+1]
(2.3.4)

Only the trapezoidal method will be addressed in this discussion, being the one
that has then be implemented in the optimization of the descent trajectory. The
reader is encouraged to consult the references listed at the beginning of this Chap-
ter to delve further into the subject.

Trapezoidal Method

The trapezoidal method is based on a quadratic interpolating spline (piece-wise
polynomial), written as follows:

x̃(t) = a(k)
0 + a(k)

1 (t− tk) + a(k)
2 (t− tk)

2, t ∈ [tk, tk+1], k = 0, ..., N − 1 (2.3.5)

Before proceeding further it’s also appropriate to introduce the notation used for
this section:

• x(tk) = xk

• x(tk+1) = xk+1



Chapter 2. Introduction to Computational Optimal Control 11

• f [x(tk),u(tk),p, tk] = fk

• f [x(tk+1),u(tk+1),p, tk+1] = fk+1

• u(tk) = uk

We now start by imposing conditions (2.3.3) and (2.3.4) on (2.3.5). Taking the
first time derivative of (2.3.5), we get:

˙̃x(t) = a(k)
1 + 2a(k)

2 (t− tk) (2.3.6)

Evaluating (2.3.5) at node tk, we get:

xk = a(k)
0 = x̃k (2.3.7)

while, evaluating Equation (2.3.6) at nodes tk and tk+1, we obtain:

˙̃xk =a(k)
1 = fk = ẋk

˙̃xk+1 =a(k)
1 + 2a(k)

2 (tk+1 − tk) = fk+1 = ẋk+1 →

→ a(k)
2 =

fk+1 − fk
2(tk+1 − tk)

(2.3.8)

Substituting (2.3.7) and (2.3.8) in Equation (2.3.5), and evaluating at tk+1, we
finally derive that:

x̃k+1 = x̃k +
1

2
(fk+1 + fk)(tk+1 − tk) (2.3.9)

Clearly it wouldn’t be correct to say that x̃k+1 = xk+1, thus the approximation.
We have in this way obtained N · nx equality constraints of the following form:

ck = x̃k+1 − x̃k −
1

2
(fk+1 + fk)(tk+1 − tk), ck ∈ Rnx , k = 0, ..., (N − 1) (2.3.10)

which basically contain information on the dynamics of our system.

Lastly, the decision vector of the NLP Problem can for example be written as
follows:

z =



u0
...

uN

x0
...

xN

p
t0
tf


(2.3.11)
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MATLAB implementation guidelines

A MATLAB implementation of this method shouldn’t now be particularly difficult,
using the fmincon function with the SQP algorithm or other alternatives such as
the ga function, which implements a genetic algorithm that was however found
to be much slower for our cases of interest, so its use is not recommended. The
fmincon function has very convenient ways to input equality and inequality con-
straints, including the non-linear ones. Some guidelines are to:

• use the nonlcon input of the fmincon function to impose the dynamics
constraints stated in Equation (2.3.10);

• use the lower and upper boundaries inputs to impose constraints on the
initial and final states of the optimized trajectory, and in general avoid using
the nonlcon input when not necessary;

• both too narrow and too loose constraints are bad for convergence, as well
as an excessive number of grid nodes. It is instead better to start the opti-
mization with a reduced number of nodes and without difficult constraints,
and to reintroduce them, increasing the number of nodes, only when a basic
idea of how an optimum solution should look like is acquired. This should
allow us to remove the parts of the domain of the decision vector in which an
optimum solution is not expected, enabling convergence even with a higher
number of nodes (obtaining a more precise solution). An interpolation of
previous solutions with a reduced number of nodes on a higher number of
grid nodes, to be used as a first guess and facilitate convergence, can also
be implemented.

The reader may consult the MATLAB documentation of the fmincon function for
further details on how to properly use it. [15]

2.3.2 Direct Single Shooting Method

As stated before, the Direct Single Shooting Method is based on "simulation"
rather than "approximation". This means that our optimal control problem, with
certain boundary conditions (BVP-Boundary Value Problem), is reduced to an
initial conditions problem. We then have to guess the initial conditions that allow
us to satisfy the constraints imposed during propagation in the time interval [t0, tf ],
and possibly some final state boundaries, while at the same time optimizing a
certain performance index. The name of this method comes from the intuitive
idea of aiming a cannon: the aim is adjusted until the projectile hits the target.
In our case, aiming means adjusting the initial conditions and hitting the target
means satisfying the boundary conditions. Obviously, there are better and worse
ways to hit our target; for example one could maximize the range of the projectile
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Figure 2.2: Propagation of system trajectory from different initial conditions, to
hit a certain target value at time tf . This idea is at the base of the Direct Single
Shooting Method.

by tilting the cannon to a 45-degree angle, or could shoot straight at the target,
requiring in this case a much higher initial speed of the projectile. Therefore, the
performance-index function comes into play to account for these factors.

From an implementation standpoint, a Direct Single Shooting Algorithm should
perform the following actions:

• guess the initial conditions z = x(t0);

• propagate the system state trajectory from t0 to tf (i.e shoot the cannon),
using a numerical propagator (if an analytical solution is not available);

• check that the cost (f(z)) is minimized and the boundary conditions, eval-
uating the eventual error in meeting the boundary conditions, to adjust the
initial conditions (i.e solve a NLP problem).

In reality, the decision vector z does not necessarily consist only of the initial
conditions of our system, but could include other parameters such as propagation
time (tf − t0). Erring to account for all the free parameters that could improve
the system performance might lead to sub-optimal solutions, or even to having
no solution at all. Stating which variables should be included in the decision
vector isn’t possible a-priori for each problem, and could require a bit of trial and
error. This method is very simple to implement and understand, but it comes
with some drawbacks; one of them is that a small change in the initial conditions
can cause big changes in the final ones. This is in fact really evident in space
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trajectory optimization problems, where a difference of a couple m/s in the initial
impulse can cause the S/C to completely miss the target, and it’s also the reason
for which, in fact, TCM-Trajectory Correction Maneuvers are necessary, from a
practical standpoint (leaving aside the Direct Shooting Algorithms), to adjust the
S/C Trajectory during transfer. This technique then requires a good initial guess
of the solution (for example a two-body theory transfer could be used to initialize
the problem), and it can be coupled with an uncertainty analysis to compute the
worst case required burn. This matter will be briefly reprised in Chapter 6.

MATLAB implementation guidelines

Even the Direct Single Shooting Algorithm was implemented in MATLAB, using
the fmincon function with the SQP algorithm. Some general guidelines, based on
the experience gained, are to:

• propagate the trajectory in the nonlcon function, using the parameters (e.g
initial speed, Time Of Flight...) included in the decision vector. The final
system state vector can be then further elaborated to impose conditions
reached at the end of the propagation (such as orbit inclination, speed, flight
path angle...);

• start without difficult constraints, and reintroduce them while gradually
narrowing the domain of the decision vector, on the basis of the results
obtained in the previous optimization runs.

Global Optimization

One final important point is that the SQP algorithm implemented in MATLAB
isn’t a Global Optimization Algorithm. In fact, true Global Optimization Algo-
rithms that allow us to always find the absolute-best solution in any case do not
exist. What do exist are globalization strategies, and the one used in this thesis is
the multistart function, part of the MATLAB Global Optimization Toolbox. The
principle is pretty simple: the initial guess is changed for a certain number of
optimization runs, and the best solution found among all of these runs is given
as output. Theoretically, the greater the number of optimization runs (up to a
reasonable point), the better the solution that is found; however, even in this case,
nothing assures us that the found solution is the global optimum, but it will likely
be better than the one found from a single run. In addition, one might be mistak-
enly led to think that if the algorithm always converges to the same solution, then
that solution is the global optimum, but this isn’t always the case. The shape
of the performance function could be such that the algorithm is more likely to
converge to that solution, even if it isn’t the best one in the domain.



Chapter 3

Descent Trajectory Dynamics

3.1 Introduction

In this Chapter, both the derivation of the equations of motion for the descent tra-
jectory and the implementation of the Direct Collocation Transcription Method
will be introduced. These equations are based on a model widely described in
Avanzini’s Entry, Descent, Landing and Ascent SEEDS Course Notes [10], which,
however, have a problem: a singularity occurs at Latitudes of ±90°; but the Moon
South Pole is of interest for the Argonaut Program. A procedure to "move" this
singularity elsewhere, through an appropriate reference frame rotation, is then in-
troduced. The complete equations, useful to describe even an atmospheric reentry
problem in the hypothesis of a spherical body with a body-fixed atmosphere and
an inertially fixed rotation axis, will be obtained, before removing the atmospheric
terms to appropriately model a Moon landing case.

Nomenclature

First, it’s necessary to introduce the notation used in this chapter, to avoid con-
fusion:

FP Celestial Body-Centered Reference Frame (pseudo-inertial, non-
rotating)

FR Celestial Body-Fixed Reference Frame (rotating).

FT LVLH Reference Frame (Local Vertical Local Horizontal).

15
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rP Position Vector in the FP Reference Frame (or, alternatively, in
FR or FT , depending on the subscript).

ṙP FP (or, alternatively, FR or FT ) Reference Frame relative speed
vector. In more general terms, this should be interpreted as a
fixed-axes derivative of a vector (in this case the position one) in
the reference frame specified by the subscript.

r̈P FP (or, alternatively, FR or FT ) Reference Frame relative acceler-
ation vector. In more general terms, this should be interpreted as
a fixed-axes second derivative of a vector (in this case the position
one) in the reference frame specified by the subscript.

T Thrust Magnitude.

ϵ Angle between Thrust and Speed vectors.

σ Bank Angle (angle between local vertical plane and vehicle plane
of symmetry).

v FR Reference Frame relative speed magnitude (v = |ṙR|)

γ Angle Between ṙR and local horizontal direction, measured on a
vertical plane. See Figure (3.1).

ψ Modified Heading Angle (angle between the horizontal projection
of ṙR and the local pseudo-north direction). See Figure (3.1).

r Vehicle Distance from Celestial Body Center.

λ Modified Longitude. See Figure (3.1).

ϕ Modified Latitude. See Figure (3.1).

m Vehicle mass.

L Lift vector.

D Drag vector.

g Gravitational Acceleration vector.

Isp Specific Impulse.



Chapter 3. Descent Trajectory Dynamics 17

{̂iT , ĵT , k̂T} Triad of right-handed axes of the FT reference frame (or alterna-
tively FR, depending on the subscript).

[fi, fj, fk]
T Sum of forces vector in the FT Reference Frame

LTR Rotation matrix from FR to FT (or between other reference frames
depending on the subscript).

ωRT Angular Speed vector of FT with respect to FR (or between other
frames, depending on the subscript).

3.2 Reference Frames

Three reference frames will be used in deriving the dynamics equation for the
optimization of the descent trajectory:

• the FR Reference Frame, which is a rotating reference frame with the
k̂R axis normally aligned with the celestial body angular speed, or rather
this is the approach used in Reference [10]. For the sake of our analysis,
to prevent singularities from appearing at the North and South poles, it’s
instead better to align the ĵR axis with the celestial body angular speed
vector that, as already stated, is supposed to be inertially fixed ;

• the FT Reference Frame, also called LVLH Reference Frame, in which
the îT axis is aligned with the local Vertical direction (tangent to the local
parallel), the ĵT is aligned with the local East direction and k̂T is aligned
with the local North direction (tangent to the local meridian). The triad is
obviously right handed;

• the FP Reference Frame, which is a Celestial-Body Centered Pseudo-
Inertial (non-rotating) Reference Frame. This frame is used to correctly ap-
ply Newton’s second principle of dynamics, but no vector will be expressed in
this reference frame at any stage of the derivation procedure of our dynamics
equations.

The reader is also invited to carefully observe Figure (3.1) to better understand
the rotation matrices that will be introduced in the next sections. Notice the visu-
alization of the ψ and γ angles, and in particular that of the λ and ϕ angles: they
don’t represent latitude and longitude as commonly intended (they are somewhat
inverted; for example λ, which is the longitude, increases by moving in the North
direction). Clearly, this isn’t very practical for a software implementation in which
longitude and latitude of a certain landing site are specified in the classical sense,
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Figure 3.1: Orientation of the FR and FT Reference Frames with respect to the
celestial body of interest.

so a procedure to pass from one coordinate system to the other will be presented
in Section (3.5).

3.3 The Equations of Motion

3.3.1 The kinematics equations

To correctly obtain the final system of ODEs that describe the dynamics of our
vehicle during descent, the first step is to introduce the necessary rotation matrices
and derive the three kinematics equations.

To pass from the FR to the FT reference frame, the LTR rotation matrix is needed,
performing a 2 → 1 rotation; this means that the the FT reference frame is first
rotated by a ϕ angle around the second axis of the right-handed triad (ĵT ), and then
by a −λ angle around the third axis of the right-handed triad of the intermediate
reference frame, obtained from the previous rotation. The plus or minus sign
depends on the direction of rotation; a rotation is considered positive when it is
counterclockwise if observed from the tip of the axis around which the rotation is
happening. Since rotation matrices will be used extensively from now on, in case
a review is needed the reader is invited to consult Appendix B.
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The rotation matrix of interest is then expressed as:

LTR =

 cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

 ·

 cosλ sinλ 0
− sinλ cosλ 0

0 0 1

 =

=

 cosϕ cosλ cosϕ sinλ sinϕ
− sinλ cosλ 0

− sinϕ cosλ − sinϕ sinλ cosϕ


(3.3.1)

In addition, the following relations are valid:

rT = r îT
ωRT = λ̇ k̂R − ϕ̇ ĵT

where the second one stems from the theorem of composition of angular velocities.
[9]

At this point, using the Poisson Theorem, the vehicle speed relative to the FR

frame can be expressed as follows:

ṙR = ṙT + ωRT × rT (3.3.2)

This is an implicit vector relation. To explicit the equation in matrix form, every
vector should be expressed in the same Reference Frame; hence, using the LTR

rotation matrix, we can write ωRT in the FT frame as:

ωRT =

 0

−ϕ̇
0

+ LTR

00
λ̇

 =

λ̇ sinϕ−ϕ̇
λ̇ cosϕ

 (3.3.3)

Expressing now everything in the FT frame, Equation (3.3.2) becomes:

ṙR =

ṙ0
0

+

 0 −λ̇ cosϕ −ϕ̇
λ̇ cosϕ 0 −λ̇ sinϕ
ϕ̇ λ̇ sinϕ 0

 ·

r0
0

 =

 ṙ

rλ̇ cosϕ

rϕ̇

 (3.3.4)

However, by looking at Figure (3.2), we can also state, again in the same reference
system FT , that:

ṙR =

 v sin γ
v cos γ sinψ
v cos γ cosψ

 (3.3.5)
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where we remind that v = |ṙR|. This can be rapidly understood again by observing
Figure (3.1). At this point, equaling Equation (3.3.4) and Equation (3.3.5), we
obtain the three kinematics equations

 ṙ

rλ̇ cosϕ

rϕ̇

 =

 v sin γ
v cos γ sinψ
v cos γ cosψ

→


ṙ = v sin γ

λ̇ =
v

r

cos γ sinψ

cosϕ

ϕ̇ =
v

r
cos γ cosψ

(3.3.6)

Nonetheless, to completely describe our problem, it’s now necessary to introduce
the dynamics.

3.3.2 The dynamics equations

Newton’s second principle of dynamics states that, in an inertial reference frame:

mr̈ = F− ṁṙ (3.3.7)

In our case, the (pseudo)inertial reference frame is represented by FP , so for vectors
expressed in other reference frames, additional terms due to the fact that they are
rotating (non-inertial) appear. The following procedure can then be applied to
correctly use Equation (3.3.7); we start by expressing the inertial speed ṙP as
follows, by applying the Poisson theorem:

ṙP = ṙR + ωPR × rR (3.3.8)

if we now take the first derivative of Equation (3.3.8), we obtain:

r̈P = r̈R + ω̇PR × rR + ωPR × ṙR + ωPR × ṙR + ωPR × (ωPR × rR) =

= r̈R + ω̇PR × rR + 2 ωPR × ṙR + ωPR × (ωPR × rR)
(3.3.9)

We can then define the following vector:

wT = ṙT + ωRT × rT = ṙR (3.3.10)

and, in accordance with what was said in Section 3.1, we can perform an FT

fixed-axes time derivative of Equation (3.3.10) and state that:

ẇT = r̈T + ω̇RT × rT + ωRT × ṙT (3.3.11)
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but we also know, taking the first derivative of Equation (3.3.2) and applying the
Poisson Theorem, that:

r̈R = r̈T + ωRT × ṙT + ω̇RT × rT + ωRT × ṙT + ωRT × (ωRT × rT)

= r̈T + 2 ωRT × ṙT + ω̇RT × rT + ωRT × (ωRT × rT)

= ẇT + ωRT ×wT

(3.3.12)

At this point, using Equations (3.3.8), (3.3.9),(3.3.10),(3.3.11) and (3.3.12), as-
suming that ωPR = cost, we can correctly apply the second principle of dynamics
and state:

ẇT +ωRT ×wT + 2 ωPR ×wT +ωPR × (ωPR × rT) =
F

m
− ṁ

m
(wT +ωPR × rT )

(3.3.13)

This expression implicitly contains the three dynamics equations that we are look-
ing for. The first step in correctly deriving them is to express every term in the
FT frame; therefore, proceeding on this path, we can start by expressing the ωPR

vector in the FT frame. We remember that, as stated in the Introduction, we want
to prevent singularities at poles; to achieve this goal, we consider the FR frame to
be rotating around its ĵR axis with respect to the FP frame. We can then state
that, in the FT frame, the ωPR vector can be expressed as:

ωPR =

 cosϕ cosλ cosϕ sinλ sinϕ
− sinλ cosλ 0

− sinϕ cosλ − sinϕ sinλ cosϕ

0ω
0

 =

 ω cosϕ sinλ
ω cosλ

−ω sinϕ sinλ

 (3.3.14)

Then, considering that:

wT =

 v sin γ
v cos γ sinψ
v cos γ cosψ

 (3.3.15)

we easily obtain that:

ẇT =

 v̇ sin γ + v cos γ γ̇

v̇ cos γ sinψ − v sin γ sinψ γ̇ + v cos γ cosψ ψ̇

v̇ cos γ cosψ − v sin γ cosψ γ̇ − v cos γ sinψ ψ̇

 (3.3.16)

We now have all the necessary pieces, and only a few algebraic calculations remain:
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ωRT ×wT =

 0 − cosϕ λ̇ −ϕ̇
cosϕ λ̇ 0 − sinϕ λ̇

ϕ̇ sinϕλ̇ 0

 v sin γ
v cos γ sinψ
v cos γ cosψ

 =

=

−vλ̇ cosϕ cos γ sinψ − vϕ̇ cos γ cosψ

vλ̇ sin γ cosϕ− vλ̇ cos γ cosψ sinϕ

vϕ̇ sin γ + vλ̇ cos γ sinψ sinϕ


(3.3.17)

In addition, recalling Equations (3.3.6) and plugging them in (3.3.17), we derive:

ωRT ×wT =


−v2

r
cos2 γ sin2 ψ − v2

r
cos2 γ cos2 ψ

v2

r
sin γ cos γ sinψ − v2

r
cos2 γ cosψ tanϕ sinψ

v2

r
cos γ sin γ cosψ + v2

r
cos2 γ sin2 ψ tanϕ

 (3.3.18)

Therefore, computing the remaining terms:

2ωPR ×wT = 2

 0 ω sinϕ sinλ ω cosλ
−ω sinϕ sinλ 0 −ω cosϕ sinλ

−ω cosλ ω cosϕ sinλ 0

 v sin γ
v cos γ sinψ
v cos γ cosψ

 =

=

 2ωv sinϕ sinλ cos γ sinψ + 2ωv cos γ cosλ cosψ
−2ωv sinϕ sinλ sin γ − 2ωv cosϕ sinλ cos γ cosψ

−2ωv sin γ cosλ+ 2ωv cosϕ sinλ cos γ sinψ


(3.3.19)

ωPR × rT =

 0 ω sinϕ sinλ ω cosλ
−ω sinϕ sinλ 0 −ω cosϕ sinλ

−ω cosλ ω cosλ sinλ 0

r0
0

 =

=

 0
−ωr sinϕ sinλ

−ωr cosλ

 (3.3.20)

ωPR × (ωPR × rT) =

 0 ω sinϕ sinλ ω cosλ
−ω sinϕ sinλ 0 −ω cosϕ sinλ

−ω cosλ ω cosλ sinλ 0

 0
−ωr sinϕ sinλ

−ωr cosλ

 =

=

−ω2r sin2 ϕ sin2 λ− ω2r cos2 λ
ω2r cosϕ sinλ cosλ

−ω2r cosϕ sinϕ sin2 λ


(3.3.21)
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Figure 3.2: Orientation of the FS frame with respect to the FR frame and forces
in the FS frame.

This addresses all of the terms in Equation (3.3.13), except for the forces vector
F. Assuming that we are in a symmetrical flight situation, with no slip-angle (i.e.
the speed vector is contained in the vehicle plane of symmetry), we will have to
take into account four forces:

• Thrust T.

• Lift L.

• Drag D.

• Gravitational Force mg.

The sum of these forces must be correctly written in the FT reference frame, so
we can start by expressing Lift, Thrust and Drag in an auxiliary reference frame,
called FS, in which:

• t̂ is the ṙR direction.

• ŝ is defined such that the Πt−n plane is a plane of symmetry of the vehicle.

• n̂ = t̂× ŝ.

while the gravitational component is more easily added directly at the end, because
in the FT frame mg = −(mg)̂iT .
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By looking at Figure (3.2), we can easily obtain the forces vector in the FS frame:


ft = T cos ϵ−D

fs = 0

fn = T sin ϵ+ L

(3.3.22)

while, as for the LTS rotation matrix, it’s possible to adopt the 1 → 2 → 3 rotation
sequence described in Figure (3.3):

• first, we rotate the FS frame around t̂ by an angle σ (bank angle), obtaining
the FS′ frame;

• then we rotate the FS′ frame by a −(π
2
−γ) angle around the ŝ′ axis obtaining

the FS′′ frame;

• finally, we rotate FS′′ around its t̂′′ axis by a −(π − ψ) angle obtaining the
FS′′′ frame, which is aligned with FT .

The rotation matrix is thus written as follows:

LTS =

1 0 0
0 cosσ − sinσ
0 sinσ cosσ

 ·

cos(π2 − γ) 0 − sin(π
2
− γ)

0 1 0
sin(π

2
− γ) 0 cos(π

2
− γ)

 ·

·

 cos(π − ψ) sin(π − ψ) 0
− sin(π − ψ) cos(π − ψ) 0

0 0 1

 =

=

 sγ −sσcγ cσcγ
cγsψ sσsγsψ − cσcψ −cψsσ − cσsγsψ
cγcψ sσsγcψ + cσsψ sσsψ − cσsγcψ


(3.3.23)

We are then able to finally express F in the FT frame:
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F =

=

 sγ −sσcγ cσcγ
cγsψ sσsγsψ − cσcψ −cψsσ − cσsγsψ
cγcψ sσsγcψ + cσsψ sσsψ − cσsγcψ

T cos ϵ−D
0

T sin ϵ+ L

+

+

−mg0
0

 =

=

 (T cos ϵ−D) sin γ + (T sin ϵ+ L) cosσ cos γ −mg
(T cos ϵ−D) cos γ sinψ − (T sin ϵ+ L)(cosψ sinσ + cosσ sin γ sinψ)
(T cos ϵ−D) cos γ cosψ + (T sin ϵ+ L)(sinσ sinψ − cosσ sin γ cosψ)


=

fifj
fk


(3.3.24)

Inserting now everything within Equation (3.3.13), we obtain:

1○ v̇ sin γ + v cos γ̇ − v2

r
cos2 γ sin2 ψ − v2

r
cos2 γ cos2 ψ + 2ωv sinϕ sinλ cos γ sinψ+

+ 2ωv cos γ cosψ cosλ− ω2r sin2 ϕ sin2 λ− ω2r cos2 λ =
fi
m

− ṁ

m
v sin γ

(3.3.25)

2○ v̇ cos γ sinψ − v sin γ sinψ γ̇ + v cos γ cosψ ψ̇ +
v2

r
sin γ cos γ sinψ−

− v2

r
cos2 γ cosψ tanϕ sinψ − 2ωv sinϕ sinλ sin γ − 2ωv cosϕ sinλ cos γ cosψ+

+ ω2r cosϕ sinλ cosλ =
fj
m

− ṁ

m
(v cos γ sinψ − ωr sinϕ sinλ)

(3.3.26)

3○ v̇ cos γ cosψ − v sin γ cosψ γ̇ − v cos γ sinψ ψ̇ +
v2

r
cos γ sin γ cosψ+

+
v2

r
cos2 γ sin2 ψ tanϕ− 2ωv sin γ cosλ+ 2ωv cosϕ sinλ cos γ sinψ−

− ω2r cosϕ sinϕ sin2 λ =
fk
m

− ṁ

m
(v cos γ cosψ − ωr cosλ)

(3.3.27)

These three equations must be properly recombined to obtain the three dynamics
equations in explicit form.
The operations that we have to perform are:
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• 1○ sin γ + 2○ cos γ sinψ + 3○ cos γ cosψ

• 1○ cos γ − 2○ sin γ sinψ − 3○ sin γ cosψ

• 2○ cosψ − 3○ sinψ

In this way, the three dynamics equations are respectively derived:

v̇ =− ω2r(− sin2 ϕ sin2 λ sin γ − cos2 λ sin γ + cosϕ sinλ cosλ cos γ sinψ−

− cosϕ sinϕ sin2 λ cos γ cosψ) +
fi
m

sin γ +
fj
m

cos γ sinψ +
fk
m

cos γ cosψ+

+
ṁ

m
(−v + ωr sinϕ sinλ cos γ sinψ + ωr cosλ cos γ cosψ)

(3.3.28)

γ̇ =
1

v

[
v2

r
cos γ − 2ωv(sinϕ sinλ sinψ + cosλ cosψ)− ω2r(− sin2 ϕ sin2 λ cos γ−

− cos2 λ cos γ − cosϕ sinλ cosλ sin γ sinψ + cosϕ sinϕ sin2 λ sin γ cosψ)+

+
fi
m

cos γ − fj
m

sin γ sinψ − fk
m

sin γ cosψ +
ṁ

m
(−ωr sinϕ sinλ sin γ sinψ−

−ωr cosλ sin γ cosψ)]
(3.3.29)

ψ̇ =
1

v cos γ

[
v2

r
cos2 γ sinψ tanϕ− 2ωv(− sinϕ sinλ sin γ cosψ − cosϕ sinλ cos γ+

+sin γ cosλ sinψ)− ω2r(cosϕ sinλ cosλ cosψ + cosϕ sinϕ sin2 λ sinψ)+

+
fj
m

cosψ − fk
m

sinψ +
ṁ

m
(ωr sinϕ sinλ cosψ − ωr cosλ sinψ)

]
(3.3.30)

The mass equation

To completely describe the dynamics of our system, only the mass equation re-
mains:

ṁ = − T

g0,EARTHIsp
(3.3.31)

where the specific impulse Isp can be dependent on thrust.
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The gravitational acceleration

Finally, to account for the variation in the value of the gravitational acceleration
during descent, we can state that:

g = g0
r20
r2

(3.3.32)

where g0 is a reference value at a given altitude. This is in accordance with
the spherical celestial body hypothesis ans Newton’s gravitational law, through
Gauss’s Theorem. Alternatively, a more accurate gravitational model of the ce-
lestial body in question can be imported.

3.4 Summary of dynamics and kinematics

Summarizing, we have:

• three kinematics equations : ṙ, λ̇ and ϕ̇

• three dynamics equations : v̇, γ̇ and ψ̇

• one mass equation: ṁ

Our model is then described by a system of seven ODEs, which we quote again
here for clarity:

ṙ = v sin γ

λ̇ =
v

r

cos γ sinψ

cosϕ

ϕ̇ =
v

r
cos γ cosψ

v̇ =− ω2r(− sin2 ϕ sin2 λ sin γ − cos2 λ sin γ + cosϕ sinλ cosλ cos γ sinψ−

− cosϕ sinϕ sin2 λ cos γ cosψ) +
fi
m

sin γ +
fj
m

cos γ sinψ +
fk
m

cos γ cosψ+

+
ṁ

m
(−v + ωr sinϕ sinλ cos γ sinψ + ωr cosλ cos γ cosψ)
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γ̇ =
1

v

[
v2

r
cos γ − 2ωv(sinϕ sinλ sinψ + cosλ cosψ)− ω2r(− sin2 ϕ sin2 λ cos γ−

− cos2 λ cos γ − cosϕ sinλ cosλ sin γ sinψ + cosϕ sinϕ sin2 λ sin γ cosψ)+

+
fi
m

cos γ − fj
m

sin γ sinψ − fk
m

sin γ cosψ +
ṁ

m
(−ωr sinϕ sinλ sin γ sinψ−

−ωr cosλ sin γ cosψ)]

ψ̇ =
1

v cos γ

[
v2

r
cos2 γ sinψ tanϕ− 2ωv(− sinϕ sinλ sin γ cosψ − cosϕ sinλ cos γ+

+sin γ cosλ sinψ)− ω2r(cosϕ sinλ cosλ cosψ + cosϕ sinϕ sin2 λ sinψ)+

+
fj
m

cosψ − fk
m

sinψ +
ṁ

m
(ωr sinϕ sinλ cosψ − ωr cosλ sinψ)

]

ṁ = − T

g0,EARTHIsp

with:

fifj
fk

 =

 (T cos ϵ−D) sin γ + (T sin ϵ+ L) cosσ cos γ −mg
(T cos ϵ−D) cos γ sinψ − (T sin ϵ+ L)(cosψ sinσ + cosσ sin γ sinψ)
(T cos ϵ−D) cos γ cosψ + (T sin ϵ+ L)(sinσ sinψ − cosσ sin γ cosψ)


It’s now possible to understand why a singularity was present when passing above
the Poles in the original equations of motion.[10] Indeed, when ϕ = ±90°, a zero
at denominator appears in the λ̇ and ψ̇ equations, but in the new reference frame,
when ϕ = ±90° we are not above the poles. It’s also important to note that
this isn’t the only singularity present in the equations; a similar problem appears
when γ = ±90° and when v = 0 m/s. However, this is easily avoidable by
imposing adequate boundary conditions at the end of the simulation, such as
having reached an "almost vertical descent" condition (γ ≈ −90°) and an "almost
zero" speed. This is also the approach used in other already cited references, and
it can be considered a valid engineering approximation for the accuracy required
for a preliminary optimization. On the contrary, removing the singularity when
passing above the Poles was necessary because it would have completely prevented
the optimization algorithm from converging to a solution. [4] [10] However, to
completely remove all of the singularities, one should resort to using quaternions,
or to express the dynamics equations directly in the perifocal reference frame (but
in this case with 2D confined dynamics). For the latter case, see Appendix C.



Chapter 3. Descent Trajectory Dynamics 30

3.5 Transformation between the original and
modified frames

As stated in Section (3.2), the FR reference frame is defined differently from the
Celestial Body-Fixed ones commonly used. For example the The Mean Earth-
/Polar Axis (ME) reference system defines the z-axis as the mean rotational pole,
with the Prime Meridian (0° Longitude) defined by the mean Earth direction. [1]
In our case the mean rotational pole is represented instead by the y-axis (that
we named ĵR), and, as already stated, this was necessary to avoid singularities
when passing above the poles. Nevertheless, this isn’t very practical for the final
user of our optimization software, who almost certainly has the coordinates of the
final landing site expressed in a traditional frame, so a procedure to pass from a
traditional (original) frame to the modified frame introduced in this thesis is out-
lined in this Section, in such a way that the input and output of the software are
expressed in the original frame, while the computations are done in the modified
frame.

There are three quantities involved in this transformation:

• the λ′ (λ) angle, representing longitude in the original (modified) frame;

• the ϕ′ (ϕ) angle, representing latitude in the original (modified) frame;

• the ψ′ (ψ) angle, representing heading measured from the local north direc-
tion in the original (modified) frame;

A fourth angle, γ, will appear in our equations, but because the celestial body is
modeled as spherical, one could verify a posteriori that in fact γ will not change.

We will also refer to:

• the modified Celestial-Body Fixed Frame as FR;

• the modified LVLH Frame as FT ;

• the original Celestial-Body Fixed Frame as F ′
R;

• the original LVLH Frame as F ′
T .

As already stated, all of the angles measured in the original frames will be marked
by a superscript as well (γ′, ψ′, λ′ and ψ′).
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Figure 3.4: Rotation of the FR′ frame to the FR frame

3.5.1 From the Original to the Modified Frames

We can start by introducing the basic strategy, which is to express the position
vector in cartesian components in the FR frame and the velocity vector in cartesian
components in the FT frame, then to rotate these vectors in the FR and FT frames
respectively and finally to calculate the ψ′, λ′ and ψ′ from the cartesian components
of the rotated position and speed vectors. By looking at Figure (3.4), one can
easily notice that the FR frame is easily obtained from the FR′ frame through a
90° rotation around the îR′ versor. Consequently, the FR → FR′ rotation matrix
is given by:

LR′R =

1 0 0
0 0 −1
0 1 0

 (3.5.1)

while the LTR rotation matrix has already been stated in Equation (3.3.1). Clearly
there is no formal difference between the definition of the LTR and LT ′R′ matrices,
as long as we use the appropriate angles (the ones with the superscript in case of
LT ′R′). We must also remember an important property of rotation matrices: they
are orthogonal; this means that for two generic reference frames Fa and Fb:

Lab = LT
ba (3.5.2)

so all of the remaining rotation matrices can be easily derived from the ones already
expressed.
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The conversion algorithm for λ and ϕ is then the following:

1○

xRyR
zR

 = LRR′

r cosϕ′ cosλ′

r cosϕ′ sinλ′

r sinϕ′



2○ϕ = atan2
(
zR,
√
x2R + y2R

)

3○λ = atan2 (yR, xR)

4○

wtx

wty

wtz

 = LTRLRR′LR′T ′

 v sin γ′

v cos γ′ sinψ′

v cos γ′ cosψ′



5○γ = atan2
(
wtx,

√
w2

ty + w2
tz

)
6○ψ = atan2 (wty, wtz)

The γ equation can be used to verify that the conversion has been performed
correctly (γ = γ′).

3.5.2 From the Modified to the Original Frames

We can simply invert the previous algorithm and obtain the following:

1○

xR′

yR′

zR′

 = LR′R

r cosϕ cosλr cosϕ sinλ
r sinϕ



2○ϕ′ = atan2
(
zR′ ,

√
x2R′ + y2R′

)

3○λ′ = atan2 (yR′ , xR′)



Chapter 3. Descent Trajectory Dynamics 33

4○

wtx′

wty′

wtz′

 = LT ′R′LR′RLRT

 v sin γ
v cos γ sinψ
v cos γ cosψ



5○γ′ = atan2
(
wtx′ ,

√
w2

ty′ + w2
tz′

)
6○ψ′ = atan2 (wty′ , wtz′)

3.6 Computing the Range
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Figure 3.5: Descent Trajectory Range

Assuming a spherical body and an in-plane descent trajectory, it’s easy to compute
the descent trajectory range by deriving the angle θ between the two position
vectors at descent initiation and landing, respectively r1 and r2. This angle is not
dependent on their magnitude, so we can assume that they are both unit-vectors:

r1 =
[
cosϕ1 cosλ1 cosϕ1 sinλ1 sinϕ1

]T
r2 =

[
cosϕ2 cosλ2 cosϕ2 sinλ2 sinϕ2

]T (3.6.1)

Furthermore, this angle doesn’t depend on the orientation of the reference frame,
so we can rotate it around the z-axis of an angle λ1, obtaining that, in the new
frame:

r1 =
[
cosϕ1 0 sinϕ1

]T
r2 =

[
cosϕ2 cos(λ2 − λ1) cosϕ2 sin(λ2 − λ1) sinϕ2

]T (3.6.2)
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We can now compute the dot product of r1 and r2:

r1 · r2 = cosϕ1 cosϕ2 cos(λ2 − λ1) + sinϕ1 sinϕ2 = cos θ (3.6.3)

It’s convenient to avoid computing an arccos to increase precision when the two
points are close together. To achieve this, we remember that:

1− cos θ

2
= sin2

(
θ

2

)
(3.6.4)

Replacing cos θ in the previous expression, it reduces to:

θ = 2arcsin

(√
cosϕ1 cosϕ2 sin

2

(
λ2 − λ1

2

)
+ sin2

(
ϕ2 − ϕ1

2

))
(3.6.5)

and consequently:

d = θr = 2r arcsin

(√
cosϕ1 cosϕ2 sin

2

(
λ2 − λ1

2

)
+ sin2

(
ϕ2 − ϕ1

2

))
(3.6.6)

3.7 Trapezoidal Direct Collocation Method
Implementation in MATLAB

Having concluded the theoretical discussion of the equations of descent dynam-
ics, we can finally move on to their implementation in a MATLAB direct colloca-
tion algorithm. We divide the [t0, tf ] time interval into N+1 nodes, obtaining a
[t0, t1, ..., tN−1, tN ] grid, and we define the decision vector z as follows:

z′ = vec

T0 ϵ0 σ0 v0 γ0 ψ0 r0 λ0 ϕ0 m0
...

...
...

...
...

...
...

...
...

...
TN ϵN σN vN γN ψN rN λN ϕN mN

 =

= vec

u1(t0) u2(t0) u3(t0) x1(t0) x2(t0) x3(t0) x4(t0) x5(t0) x6(t0) x7(t0)
...

...
...

...
...

...
...

...
...

...
u1(tN) u2(tN) u3(tN) x1(tN) x2(tN) x3(tN) x4(tN) x5(tN) x6(tN) x7(tN)



z =

[
z′

∆t

]
∈ R10(N+1)+1

(3.7.1)

where vec is an operator that lines up the columns of a matrix, forming a column
vector. Each time-dependent variable is represented by N + 1 values sampled on
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the grid nodes. It’s also necessary to include the ∆t = tf − t0 variable in the
decision vector, with t0 = 0, because, obviously, we don’t know how much time
will be required to complete the descent maneuver. We can also identify σ, ϵ and
T as the control variables of our problem, while v, γ, ψ, r, λ, ϕ and m are the
state variables.

Being interested in a Moon environment, we can remove all the aerodynamic terms
from the differential equations that describe our system and, using the formalism
already introduced in Chapter 2, we can write the previous system of seven ODEs
as follows:

ẋ = f(x(t),u(t),p, t)

with:

• x = [x1, x2, x3, x4, x5, x6, x7]
T : [t0, tf ] → R7.

• u = [u1, u2, u3]
T : [t0, tf ] → R3.

• p = [ISP , g0, g0−EARTH ]
T : [t0, tf ] → R3.

• t ∈ [t0, tf ].

and, by applying the Trapezoidal Direct Collocation Algorithm, we obtain the
following equality constraints:

ck = xk+1 − xk −
h

2
(fk+1 + fk)(tk+1 − tk) = 0, ck ∈ R7, k = 0, ..., (N − 1)

These basically are N ·7 constraints, that should be concatenated in a single vector
ceq when given as output by the nonlcon function:

ceq =

c1...
cN


The objective function to be minimized is in this case represented by:

J(z) = −z10(N+1) ∈ R

which corresponds to maximizing the final mass of the lander, while the upper
and lower constraints:

zL ≤ z ≤ zU

can be used for example to impose boundaries on the initial and final conditions of
the various state variables, or to impose a minimum/maximum thrust magnitude.
Finally, we can resort to the c output of the nonlcon function to apply constraints
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on the maximum rates of change in the control variables, using for example forward
finite differences of the following form:

cj =
ui(tk+1)− ui(tk)

h
(3.7.2)

Clearly, in applying all of these constrains, it’s important to correctly extrapolate
the various variables at the correct time nodes from the previously defined decision
vector.



Chapter 4

Introduction to Astrodynamics

The reader is probably already familiar with the basics of astrodynamics, which are
necessary to correctly understand the Moon Targeting techniques that will be in-
troduced in Chapter 6. However, in an attempt to make this thesis self-contained,
this chapter aims to provide all the necessary concepts to correctly understand
the following material, by briefly addressing Newton’s Universal Gravitation, the
generic N-Body problem and the Restricted Two-Body Problem. It’s clearly pos-
sible to skip this Chapter in case these notions are already known, or to consult
the listed References, on which this chapter is based, for additional information.

4.1 Newton’s Law of Universal Gravitation

The starting point of Newton’s work can be traced back to the three Kepler’s
Laws:

• First Law: The orbit of each planet is an ellipse, with the sun at a focus;

• Second Law: The line joining the planet to the Sun sweeps out equal areas
in equal times;

• Third Law: The square of the period of a planet is proportional to the
cube of its mean distance from the sun;

However, these three laws were just a description of the motion of planets around
the Sun, and not an explanation; but why do planets revolve in such a way? The
first answer to this question was given by Isaac Newton, who conceived his law of
universal gravitation during the plague epidemic between 1665 and 1666, at the
sole age of 23 years old, but it was not until 1687 that his discoveries, prompted
by Halley, were first published, when Newton issued The Mathematical Principles

37
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Figure 4.1: Newton’s Law of Gravity

of Natural Philosophy, also known as Principia. This work is widely known for
containing his three laws of motion, known as Newton’s Laws, but, in the same
book, Newton also formulated the Universal Law of Gravity by stating that any
two bodies attract one another with a force proportional to the product of their
masses and inversely proportional to the the square of the distance between them.
In mathematical terms:

F12 = −Gm1m2

r312
r12 (4.1.1)

where F12 is the force produced by the body of mass m1 on the body of mass
m2, G = 6, 67 · 10−11N ·m2

kg2
is the universal gravity constant and r12 is the position

vector of mass m2 with respect to m1.

4.2 The N-Body Problem

Obviously, our system can be characterized by the simultaneous presence of mul-
tiple masses, all interacting with each other through gravitational forces. We also
consider these masses to be spherical and uniform, so that through Gauss’s the-
orem, one could prove that the gravitational force produced by each of them is
equivalent to that of a point of equal mass located in the middle of the sphere.
This is a reasonable approximation in many cases. The result is a system of differ-
ential equations of the second order that constitute the so called N-Body Problem.
Let’s start by remembering Newton’s Second Law of Motion, which states that in



Chapter 4. Introduction to Astrodynamics 39

an inertial coordinate frame the rate of change of momentum of a body is given
by the sum of the forces acting on it:

d

dt
(mṙ) =

∑
F (4.2.1)

Where r is the position vector of mass m in the chosen inertial frame (see Figure
4.1). In this case the masses of the various bodies can be considered constant, so
Equation (4.2.1) reduces to:

mr̈ =
∑

F (4.2.2)

For each point mass, considering only the contribution of the gravitational force,
we can then write the following:

r̈i =
N∑

j=1,j ̸=i

−Gmj

r3ji
rji, i = 1, ..., N (4.2.3)

This a system of 3N coupled differential equations of the second order. There is
no analytical solution for this general case, so a numerical one is necessary. Be-
fore implementing this system in the various available ode routines, for example
in the MATLAB environment, one should first transform these equations into a sys-
tem of 6N differential equations of the first order, defining appropriate additional
variables by substitution.

In addition, instead of studying the motion of the various bodies with respect
to the origin of the inertial frame, one could also subtract one of the differential
equations from the others to study a relative motion with respect to that mass,
reducing the system to 3N − 3 differential equations of the second order. This
is also the approach that will be used later on, in Chapter 6, when targeting the
Moon in the J2000 frame, with the aid of SPICE ephemeris data. There is however
a particular case of great interest of the N-Body Problem, which is in many cases a
valid approximation and also presents an analytical solution: the R2BP-Restricted
Two-Body Problem, that we are going to discuss in the next section.

4.3 The Restricted Two-Body Problem - R2BP

Starting from Equation (4.2.3), it’s possible to consider just two masses: m1 and
m2, with m2 >> m1, obtaining:
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
r̈1 = −Gm2

r321
r21

r̈2 = −Gm1

r312
r12

(4.3.1)

Subtracting now the second one from the first, we get:

r̈21 = −Gm1 +m2

r321
r21 (4.3.2)

because obviously r21 = −r12. But m2 >> m1, so:

r̈21 ≈ −Gm2

r321
r21 (4.3.3)

The traditional way to write the previous equation, and to which we will refer
from now on, is, however, the following:

r̈ = − µ

r3
r (4.3.4)

where µ = G(m1+m2) ≈ Gm2 is the standard gravitational parameter and r is the
position vector of the secondary (less massive body) with respect to the primary
(more massive) body. It’s also typical to refer to the mass of the primary body as
M , and to the mass of the secondary body as m. Equation (4.3.4) basically is the
starting point for all the subsequent discussion, which will lead us to prove that,
in this environment, the orbits of celestial bodies as seen from a primary body
(e.g. the planets and the Sun respectively, or a S/C and Earth) are conics, and to
obtain the constants of orbital motion.

4.3.1 The two constants of orbital motion

Let us consider a cartesian coordinate system centered in the primary body of mass
M , shown in Figure (4.2). We anticipate that the trajectory of the secondary body
will always be contained in the same plane, on which the p̂ and q̂ versors lie, but
we will prove it shortly. We know that:

î = p̂ cos ν + q̂ sin ν

ĵ = −p̂ sin ν + q̂ cos ν
(4.3.5)

Consequently, if we take the first derivative, we obtain:
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Figure 4.2: The perifocal frame.

˙̂i = −p̂ sin νν̇ + q̂ cos νν̇ = ν̇ĵ

˙̂j = −p̂ cos νν̇ − q̂ sin νν̇ = −ν̇ î
(4.3.6)

Thus:

r = rî

ṙ = ṙî+ r ˙̂i = ṙî+ rν̇ĵ = vr î+ vtĵ
(4.3.7)

Then, repeating the same process for the acceleration:

r̈ = r̈î+ ṙ ˙̂i+ ṙν̇ĵ + rν̈ĵ + rν̇ ˙̂j =

= r̈î+ ṙν̇ĵ + ṙν̇ĵ + rν̈ĵ − rν̇2î =

= (r̈ − rν̇2)̂i+ (2ṙν̇ + rν̈)ĵ = ar î+ atĵ

(4.3.8)

Specific Mechanical Energy

Given Equation (4.3.4), using the expressions that we just found for ar and at:
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r̈ − rν̇2 = − µ

r2

2ν̇ṙ + ν̈r = 0
(4.3.9)

Now, if we compute vrar + vtat, we obtain:

ṙr̈ − rṙν̇2 + 2rṙν̇2 + r2ν̇ν̈ = − µ

r2
ṙ →

→ ṙr̈ + rṙν̇2 + r2ν̇ν̈ = − µ

r2
ṙ

(4.3.10)

The latter can also be written as follows:

1

2

d

dt
(ṙ2) +

1

2

d

dt
(r2ν̇2) =

d

dt

(µ
r

)
→

→ d

dt
(v2r + v2t ) =

d

dt

(µ
r

) (4.3.11)

and integrating, we finally get:

ξ =
v2

2
− µ

r
= const (4.3.12)

Equation (4.3.12) expresses the conservation of the specific mechanical energy,
given by the sum of cinetic and potential specific energy, which constitutes one of
the two constants of orbital motion, along with specific angular momentum.

Specific Angular Momentum

To prove that the specific angular momentum is constant, we start by taking the
cross product of both members of Equation (4.3.4) by r, obtaining:

r× r̈ = − µ

r3
(r× r) = 0 (4.3.13)

However, r× r̈ = d
dt
(r× ṙ), so:

d

dt
(r× ṙ) = 0 → h = const (4.3.14)
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where h is precisely the specific angular momentum. In particular, h is constant
in both magnitude and direction. Therefore, the orbit of the body of mass m is
confined to a plane, to which we refer as orbital plane.

4.3.2 The Trajectory Equation

Once again starting from Equation (4.3.4), we want to derive r(ν), to prove that
the trajectories traced by bodies moving under the gravitational influence of a
primary body are indeed conics. We then take the cross product of Equation
(4.3.4) by h, which we just proved to be constant, resulting in:

h× r̈ = h×
(
− µ

r3
r
)
→

→ d

dt
(h× ṙ) = − µ

r3
[(r× ṙ)× r] →

→ d

dt
(h× ṙ) = − µ

r3
[(r · r)ṙ− (r · ṙ)r] →

→ d

dt
(h× ṙ) = − µ

r3
[
r2ṙ− rṙr

]
→

→ d

dt
(h× ṙ) = −µ

r
ṙ+

µ

r2
ṙr = − d

dt

(µ
r
r
)

(4.3.15)

where we applied the following algebraic property: (a×b)×c = (a ·c)b− (b ·c)a.
Thus, integrating the latter expression:

h× ṙ = −µ
r
r−B (4.3.16)

where B is an integration constant. Now, if we take the scalar product of both
members of this latter equation by r, we obtain:

r · [ṙ× h] = r ·
[µ
r
r+B

]
→

→ (r× ṙ) · h = µr + rB cos ν

→ h2 = µr + rB cos ν

(4.3.17)

because a · (b × c) = c · (a × b) and with ν being the angle between B and r.
Rearranging this expression, we finally get the desired result:

r =
h2/µ

1 +B/µ cos ν
(4.3.18)

By observing that r is minimized when ν = 0, we also understand that B is a
vector oriented in the direction of the orbit periapsis, which is the point of the
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Figure 4.3: Common geometrical dimensions of all conic sections.

trajectory closest to the center of mass of the primary body, as opposed to the
apoapsis (which exists only for elliptical orbits).

4.3.3 Polar Equation of a Conic Section

Equation (4.3.18) is in fact very similar in form to the Polar Equation of a Conic
Section, that is the following:

r =
p

1 + e cos ν
(4.3.19)

In this equation, p is the semi-latus rectum, while e is the eccentricty.

The different types of conic sections are visible in Figure (4.3), and the eccentricity
allows us to distinguish between one and the other. In particular:

• e = 0 if the conic section is a circle;

• 0 < e < 1 if the conic section is an ellipse;
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• e = 1 if the conic section is a parabola;

• e > 1 if the conic section is a hyperbola;

These geometrical shapes are named conic sections because they can be obtained
through the intersection of a plane and a circular cone, as shown in Figure (4.4).

Mathematically, it’s possible to define the eccentricity as follows:

e =
sin β

sinα
(4.3.20)

and, for every conic section, except for parabolas, it follows from their definition
that:

e =
c

a
(4.3.21)

and

p = a(1− e2) (4.3.22)
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4.3.4 The eccentricity vector

Recalling Equation (4.3.16), we can compute the B vector as follows:

B = ṙ× h− µ

r
r (4.3.23)

Then, comparing Equation (4.3.18) with Equation (4.3.19), we can immediately
observe that:

e =
B

µ
→ e =

B

µ
(4.3.24)

where e is the eccentricity vector, that will come into play later on, when describing
the B-Plane Targeting Procedure in Chapter 6, and also in the orbit determination
procedure presented in Appendix D.

4.3.5 Relating orbit geometry with h and ξ

It follows directly from Equations (4.3.18) and (4.3.19) that:

h =
√
µp (4.3.25)

while deriving the orbit energy ξ as a function of its geometrical properties is a
bit more complex. The final result will be valid for any conic section; however, we
will carry out our calculations considering only ellipses and hyperbolas, and not
parabolas, which constitute a particular case. We observed before that the orbit
energy is constant, so we can compute it at an arbitrary point, the periapsis:

ξ =
v2p
2

− µ

rP

By plugging ν = 0 into Equation (4.3.18), we get:

rP =
p

1 + e
= a(1− e) (4.3.26)

This is the point were, as already stated, we leave parabolas aside, because for
them the relation p = a(1 − e2) isn’t valid. We also know that at periapsis and
apoapsis the speed vector is tangent to the local horizontal direction, due to the
fact that by definition they are the points of the trajectory which are respectively
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closest and furthest from the center of mass of the main body. It follows then
that:

h = rPvt =
√
µp =

√
µa(1− e2) (4.3.27)

and

ξ =
h2

2r2p
− µ

rP
=

=
µa(1− e2)

2a2(1− e)2
− µ

a(1− e)

(4.3.28)

which, after a bit of algebra, reduces to:

ξ =
v2

2
− µ

r
= − µ

2a
(4.3.29)

This last equation will prove to be very useful when calculating the magnitude
of the impulsive maneuvers to be performed to obtain, for example, a transfer
trajectory to reach the Moon from Earth and to circularize the orbit at Moon
arrival.

4.3.6 Period of an Elliptical Orbit

Looking at Figure (4.5), We know from elementary calculus that:

dA =
1

2
r2dν =

1

2
r2ν̇dt =

hdt

2
(4.3.30)

The area of an ellipse is given by:

A = π(ab) (4.3.31)

It can also be proven that for ellipses a2 = b2 + c2; therefore, remembering that
e = c

a
and that h = const, we integrate on the whole swept area A and obtain

that the orbit period is given by:

T =
2A

h
=

2πab√
µa(1− e2)

=
2πa

√
a2(1− e2)√

µa(1− e2)
(4.3.32)
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Figure 4.5: Elementary angle dν, associated to dA, swept by the position vector
during time dt

which reduces to:

T = 2π

√
a3

µ
(4.3.33)

We are now going to apply these concepts to a basic maneuver to perform transfers
between different orbits, the Hohmann Transfer.

Hohmann Transfer

It can be proven that the Hohmann Transfer is the most energy efficient two-
impulse maneuver to perform a transfer between two circular coplanar orbits.
These two circular orbits are connected by an elliptical orbit tangent to them at
its apoapsis and periapsis, as shown in Figure (4.6). Using the energy equation,
we can compute the speed magnitudes corresponding to the two circular orbits of
radius r1 and r2, respectively vc1 and vc2, and those corresponding to the periapsis
and apoapsis of the Hohmann Transfer Trajectory, respectively vH1 and vH2. We
obtain that:

• vc1 =
√

µ
r1

• vc2 =
√

µ
r2
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Figure 4.6: Hohmannn Transfer maneuver between two circular coplanar orbits.

• vH1 =
√

µ
r1

√
2r2

r1+r2

• vH2 =
√

µ
r2

√
2r1

r1+r2

and this allows us to compute the absolute value of the two necessary ∆V s to
perform the maneuver:

• ∆V1 =
√

µ
r1

∣∣∣√ 2r2
r1+r2

− 1
∣∣∣

• ∆V2 =
√

µ
r2

∣∣∣√ 2r1
r1+r2

− 1
∣∣∣

Clearly their sign depends on whether we are going from r1 to r2 or vice versa. In
addition, it’s also possible to compute the travel time ∆tH of a Hohmann Transfer
maneuver by observing that we are traversing only half of the transfer orbit, so
Equation (4.3.33) yields to:

∆tH =
TH
2

= π

√
(r1 + r2)3

8µ
(4.3.34)

This concludes the theoretical discussion of the restricted two body problem, which
allowed us, among other things, to prove Kepler’s Three Laws.[27] One could
argue, however, that the assumptions on which the two body theory is based are
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not always well satisfied, as in the case, for example, of an Earth-Moon transfer
trajectory. In this case, before resorting to a N-Body simulation, the Circular
Restricted Three Body Problem (CR3BP) is a good intermediate step. This topic
will be addressed in Chapter 6, when discussing the various possibilities to study
a Moon targeting Problem.

4.4 Reference Frames

Before proceeding further in our introduction to the fundamental concepts of as-
trodynamics, it’s worthwhile to present the coordinate frames that will be used in
our study, some of which have already appeared before.

The Perifocal Reference Frame

The perifocal coordinate frame is centered at the focus of the orbit and consists of
the {p̂, q̂, ŵ} triad, defined as follows:

• p̂ pointing from the focus of the orbit to the periapsis;

• ŵ pointing in the direction of the orbit angular momentum vector;

• q̂ completes the right-handed triad and is defined such that ŵ = p̂× q̂.

In a restricted Two Body environment, this coordinate Frame is also non-rotating
and non-accelerating (inertial).

The Synodic Reference Frame

The synodic coordinate frame is a specialized coordinate system used in the analy-
sis of the relative motion between two celestial bodies in orbit around their center
of mass. It’s centered in the center of mass of the two bodies and consists of the
{x̂S, ŷS, ẑS} triad, defined as follows:

• x̂S points from the center of mass of one celestial body to that of the other;

• ẑS is oriented perpendicular to the plane defined by the two bodies’ orbits
and is aligned with the angular momentum vector of the two-body system;

• ŷS completes the right-handed triad and is defined such that ẑS = x̂S × ŷS.

This is a non-inertial reference frame.
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The J2000 Reference Frame

The definition given here is in accordance with the one provided in the NAIF
SPICE documentation.[18] As every other inertial reference frame defined in SPICE,
the J2000 frame is centered in the barycenter of the solar system, and its three
axes are defined as follows:

• x̂J2000 is defined by the intersection of the Earth Equatorial Plane with
the Ecliptic Plane (defined by the orbit of the Earth around the Sun) at
epoch J2000 TDB, where J2000 TDB is 2000 JAN 01 12:00:00 TDB. TDB
is the Barycentric Dynamical Time, which basically is a way to count time
accounting for general relativity, and is defined as a linear transformation of
TCB (Barycentric Coordinate Time). TCB itself is then equivalent to the
proper time experienced by a clock at rest in a coordinate frame co-moving
with the barycenter (center of mass) of the Solar System . See references
[13] and [12] for further reading.

• ẑJ2000 is perpendicular to the Earth mean Equator at epoch J2000, and is
approximately Earth spin-axis direction at that epoch. It points towards the
hemisphere containing Polaris.

• ŷJ2000 completes the right-handed triad and is defined such that ẑJ2000 =
x̂J2000 × ŷJ2000.

The Mean Earth/Polar Axis (ME) frame

As stated in the moon_de440_220930.tf text frame-kernel, downloadable on the
NAIF SPICE website: [22]

The Lunar mean Earth/polar axis system is a lunar body-fixed reference system
used in the IAU/IAG Working Group Report [14] to describe the orientation of the
Moon relative to the ICRF frame (equivalent to SPICE J2000). The +Z axis of this
system is aligned with the north mean lunar rotation axis, while the prime meridian
contains the mean Earth direction. The x-axis is defined by the intersection of the
prime Meridian with the Moon Equator, orthogonal to the mean rotation axis.
This system is also sometimes called the "mean Earth/mean rotation axis" system
or "mean Earth" system.

The mean directions used to define the axes of a mean Earth/polar axis reference
frame realizing the lunar ME system are associated with the DE440 planetary
ephemeris version in our case and, of course, this reference frame in non-inertial.
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Figure 4.7: Classic Orbital Elements.

4.5 Classic Orbital Elements

We conclude our introduction to orbital mechanics by discussing orbital param-
eters, i.e. quantities used to specify orbits. There are many different ways to
mathematically describe the same orbit, but certain schemes, each consisting of a
set of six parameters, are commonly used in astronomy and orbital mechanics. A
real orbit and its elements change over time due to gravitational perturbations by
other objects and the effects of general relativity. A Kepler (Restricted Two-Body
Theory) orbit is an idealized, mathematical approximation of the orbit at a par-
ticular time, and the classic orbital elements are also named Keplerian Elements
after Johannes Kepler.
Considering a certain inertial frame centered in the reference body, with axes
(x,y,z), there are two elements associated to the shape and dimension of the orbit:

• eccentricity (e) - describes the shape of the conic section representing the
orbit;

• semi-major axis (a) - associated to the dimension of the orbit. A possible
alternative is the semilatus rectum (p) in case the orbit is parabolic;

and other four associated with its position and orientation with respect to the
main body, and the position of the secondary body along it’s orbit at a certain
time instant:

• longitude of the ascending node (Ω) - the angle measured in the fundamen-
tal (x-y) plane of a certain reference system between the î unit vector (x-
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direction) and the point where the satellite crosses through the fundamental
plane in the northern direction (ascending node), measured counterclockwise
when seen from the north side of the fundamental plane (from the z-axis);

• argument of the periapsis (ω) - the angle, in the plane of the satellite’s
orbit, between the ascending node and the periapsis point, measured in the
direction of the satellite motion;

• true anomaly at epoch t0 (ν) - the angle, in the plane of the satellite’s orbit,
measured between the current position vector at time (t0) and the periapsis
point, measured in the direction of the satellite motion.

• inclination (i) - the angle between the z-direction and the angular momen-
tum vector. If i < 90°, the orbit is prograde, while if i > 90° the orbit is
retrograde. Orbits with a 90-deg inclination are called polar orbits instead.

There are some particular cases in which some of the classical elements presented
above are not defined:

• circular orbits - in this case ω is not defined, and ω and ν are replaced by
argument of latitude at epoch t0, u = ω + ν, which is the angle between the
position vector at time t0 and the ascending node, measured in the direction
of satellite motion;

• equatorial orbits - the ascending node is not defined, so it’s impossible to
compute Ω. Consequently, Ω and ω are replaced by longitude of periapsis,
Π = Ω+ ω , which is the angle between the x-direction and periapsis point,
measured counterclockwise when seen from the north side of the fundamental
plane.

• equatorial circular orbits - neither Ω nor ω are defined, so Ω, ω and ν are
replaced by true longitude at epoch t0, l = Ω + ω + ν, which is the angle
between the position vector at time t0 and x-direction, measured in the
direction of satellite motion.

A procedure to compute the orbital elements given {r, ṙ} and to then propagate
the orbit is presented in Appendix D. It is useful when used together with the
B-Plane algorithm presented in Chapter 5 to plot the orbit, before and after the
trajectory correction maneuver. The alternative would be to simply propagate the
orbit numerically, given the initial position and velocity (which one could observe
to be, again, six parameters).



Chapter 5

B-Plane Targeting

In this chapter, the B-Plane Targeting problem, which was one of the steps that
then led to the choice of the Moon targeting method, is addressed. It was noted
that there isn’t a great deal of material in literature covering this topic so, although
the method will then not actually be applied to compute the TCM maneuver (but
it can be useful to target a north or south injection), it was nevertheless chosen
to keep this discussion within this thesis, as a useful reference for further research
work that may be conducted on this method, perhaps for interplanetary missions.
[5] [25] [16] [8]

5.1 B-Plane Parameters

The B-Plane is an imaginary plane defined as normal to the incoming asymptote of
the hyperbolic orbit and containing the target body center of mass. The concept
of an incoming asymptote of a hyperbolic orbit is associated to the so called
patched conics method, which approximates interplanetary trajectories by patching
two-body theory conics, each with focus on the celestial body to which the SOI-
Sphere of Influence belongs. For example, for an Earth-Mars Hohmann transfer,
according to this theory, the trajectory is composed of an hyperbola (or a parabola)
with focus on Earth while inside Earth’s SOI, an ellipse while inside the Sun’s SOI,
with focus on the Sun and another hyperbola while inside Mars’ SOI, with focus
on Mars.

The SOI is then defined as the region of space inside which the gravity of the
celestial body to which the SOI belongs dominates the dynamics of a satellite.
Using Laplace’s perturbation approach, the radius of the SOI of a celestial body,
considering two massive bodies and a much less massive spacecraft, is:

rSOI,1 = r12

(
m1

m2

) 2
5

(5.1.1)
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𝑚1 𝑚2
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𝜃
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Figure 5.1: Sphere of Influence of a celestial body

where r12 is the distance between the two bodies, m1 and m2 are the masses of
the two bodies and rSOI,1 is the radius of the sphere of influence belonging to the
first body. This result is only valid when m2 >> m1. [11]

In reality the SOI is not exactly a sphere, and a more accurate formula would be
the following:

rSOI,1 = r12

(
m1

m2

) 2
5 1

10
√
1 + 3 cos2 θ

(5.1.2)

Finally, when the masses of the two bodies are quite comparable, as in case of an
Earth-Moon system, a better approximation of the SOI might be necessary:

rSOI,1 =

[(
m1

m3

)− 2
5

10
√
1 + 3 cos2 θ +

2

5
cos θ

1 + 6 cos2 θ

1 + 3 cos2 θ

]−1

(5.1.3)

The initial idea, that didn’t then match the final mission strategy (see Chapter
1) is to use two-body dynamics, when inside the Moon’s SOI, to compute the
TCM ∆V⃗ necessary to achieve the correct B-Plane parameters. The first step is
to mathematically describe the B-Plane, and then we’ll introduce the numerical
procedure that allows us to compute the maneuver. Targeting the B-plane pa-
rameters instead of orbital parameters allows for a linearization of the problem,
because it’s possible to define partial derivatives that have a wide linear regime
as we’ll soon see. In addition, B-Plane parameters can be easily related to other
orbital parameters of interest.

Let’s start by looking at Figure (5.2). We define a {Ŝ, T̂ , R̂} triad, where:
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Figure 5.2: The B-Plane.
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Figure 5.3: The B-Vector in the perifocal reference frame.
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• Ŝ is the incoming V⃗∞ direction;

• K̂ is a reference unit vector that can for example be chosen to be normal
to the equatorial plane and directed towards the north pole of the central
body;

• T̂ = Ŝ × K̂;

• R̂ = Ŝ × T̂

The B-Vector B (not to be confused with the B constant introduced in Chapter
4) is instead defined as the vector that goes from the center of mass of the central
body to the point at which the hyperbolic asymptote intercepts the B-Plane.

Given (r, ṙ), we have to determine Ŝ, T̂ ,R̂ and B. To achieve this, we resort to
the restricted two-body problem.

First of all, we remember the definition of the eccentricity vector :

e =
1

µ

[(
v2 − µ

r

)
r− (r · ṙ)ṙ

]
→ ê =

e

e

The specific angular momentum can instead be computed as:

h = r× ṙ → ĥ =
h

h

while the β angle in Figure (5.3) can be calculated as follows:

e =
1

cos β
→ β = arccos

(
1

e

)
(5.1.4)

It’s now easy to obtain the Ŝ unit versor, again referring to Figure (5.3), as:

Ŝ = ê cos β +

(
h

h
× ê

)
sin β (5.1.5)

Given the reference K̂ unit versor, T̂ and R̂ are then given by:

T̂ = Ŝ × K̂

R̂ = Ŝ × T̂
(5.1.6)

The B-vector direction is computed as:

B̂ = Ŝ × ĥ (5.1.7)
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while the missing distance, which basically is the B-vector modulus, can be ob-
tained from the conservation of angular momentum. First of all we compute the
semi-major axis a and V∞ (called hyperbolic excess velocity, which is the speed at
infinite distance from the main body) using the energy equation:

a = −
µ
2

v2

2
− µ

r

V 2
∞
2

= − µ

2a
→ V∞ = −µ

a

(5.1.8)

We remember that, indeed, a < 0 for a hyperbola. Then, using the angular
momentum conservation:

B2V 2
∞ = h2 = µa(1− e2) →

→B2
(
−µ
a

)
= µa(1− e2) →

→ B = −a
√
e2 − 1

(5.1.9)

where we took the minus (-) solution to get B > 0. It’s finally possible to compute
the B-Vector as:

B = BB̂ = −a
√
e2 − 1(Ŝ × ĥ) (5.1.10)

The B-Plane parameters are now basically the cartesian or polar coordinates of
intercept point of the trajectory with the B-Plane:

• CARTESIAN FORM

– BT = B · T̂
– BR = B · R̂

• POLAR FORM

– b = |B|
– θ = atan2 (BR, BT )
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Figure 5.4: B-Plane Spherical Trigonometry. The θ angle shown in figure is neg-
ative, but this doesn’t affect the final result.

5.2 Relating the B-Plane parameters to
inclination and periapsis

Clearly the missing distance and the θ angle are not equal to inclination and
periapsis, but we can find an analytical relation. The process is very straightfor-
ward for the periapsis; by combining the energy equation and angular momentum
conservation equations, we get:

B =
rP
V∞

(
V 2
∞ +

2µ

rP

)0.5

(5.2.1)

while some spherical trigonometry is necessary for the inclination.

By looking at Figure (5.4) and applying the law of sines, we can easily state that:

sin
(
π
2
− θ
)

sinψ
=

sin π
2

sin π
2

→ cos θ = sinψ

sinψ

sin π
2

=
sin
(
π
2
+ i
)

sin
(
π
2
+ δ∞

) → cos θ =
cos i

cos δ∞

(5.2.2)
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Figure 5.5: Example of B-Plane Parameter numerical partial derivative, evaluated
for a certain (r, ṙ), as δV varies.

5.3 Solving using Newton’s method

Now, given a certain (r, ṙ) = (r,V) state, how do we calculate the ∆V necessary
to achieve the desired B-Plane parameters? A possible method is to implement a
Newton algorithm. Starting from a Taylor-series expansion, we stop at the first
order: [

B∗
T

B∗
R

]
=

[
BT

BR

]
+

[
∂B

∂V

]
(V∗ −V) + o(V∗ −V) (5.3.1)

where the "*" superscript indicates the desired final values and:

[
∂B

∂V

]
=


∂BT

∂Vx

∂BT

∂Vy

∂BT

∂Vz

∂BR

∂Vx

∂BR

∂Vy

∂BR

∂Vz

 ∈ R2x3 (5.3.2)

is the Jacobian Matrix. Neglecting the higher order terms represented by o(V∗ −
V), and defining ∆B = B∗ −B and ∆V = V∗ −V, we get the following system:[

∆BT

∆BR

]
=

[
∂B

∂V

]∆Vx∆Vy
∆Vz

 (5.3.3)

However the problem is undetermined, because
[
∂B
∂V

]
is a 2x3 matrix, meaning

that the number of unknowns is greater than the number of equations. To solve
this problem we can :

• fix one component of the ∆V vector;

• find the minimum norm ∆V. For a generic Ax = b system, the minimum
norm solution is given by x = AT (AAT )−1b;



Chapter 5. B-Plane Targeting 61

• add another unknown variable. A typical choice is the TOF-Time of Flight.

The two latter options are clearly preferable. The next problem is that of comput-
ing the Jacobian Matrix. Some have attempted to provide analytical solutions,
but a numerical one is also possible, although slightly less performing.[6] The pro-
cedure consists in choosing an appropriate perturbation δV , and approximating
the partial derivatives using finite differences. In case a central one is used, an
example formula would be:

∂BR

∂Vy
=
BT (Vx, Vy +

δV
2
, Vz)−BT (Vx, Vy − δV

2
, Vz)

δV
(5.3.4)

and similarly all the other ones can be obtained. Some common sense is required
while choosing the δV perturbation, as shown in Figure (5.5). Both too small and
too large values should be avoided, because of numerical cancellation problems
(when the perturbation is too small) and loss of linearity (when the perturbation
is too large). However, a certain range in which the partials are constant exists, so
we can expect good results when implementing this method. Equation (5.3.3) has
to be solved iteratively, calculating δV, updating V = V +∆V and B = f(r,V)
at each step, until a maximum number of iterations is reached or |∆B| is equal
to less than a certain tolerance.

B-Plane Targeting Pseudocode

For a given initial (r1,V1) state and some desired inclination and periapsis of the
orbit i∗ and r∗P :

1. from the current position and speed (r1,V1), compute the unit vectors
{R̂1, Ŝ1, T̂1} and the current B vector, using the previous formulas;

2. compute the current B-Plane Parameters {BR, BT};

3. compute V∞ =
√
V 2
1 − 2µ

r1
;

4. compute δ∞ = atan2
(
Ŝ1z,

√
Ŝ2
1x + Ŝ2

1y

)
;

5. compute B∗ using r∗P and V∞;

6. compute θ∗ using i∗ and δ∞; if i∗ < 0 (north injection), θ∗ = 2π − θ∗

7. compute B∗
R and B∗

T using B∗ and θ∗;

8. compute ∆B = B∗ − B and the Jacobian matrix (for the current position
and speed (r1,V1);
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Figure 5.6: Moon B-Plane targeting. R2BP hypotheses satisfied.

9. if |∆B| = |B∗ −B| is equal to less than a certain user-defined tolerance, or
a maximum number of iterations has been reached, stop the algorithm (and
print an error in the latter case);

10. compute ∆V using Newton’s Method (iteratively solve Equation (5.3.3));

11. update V1 = V1 +∆V;

12. restart from point 1○.

The final ∆V is obviously the sum of all the ∆Vs obtained during the various
iterations. The main advantage of this procedure, which goes through the B-
Plane parameters rather than performing a direct targeting of inclination and
periastrum, is that it’s possible to remove the ambiguity on the inclination of the
orbit by choosing between north and south injection, taking advantage of the θ
angle, as specified in the pseudo-code. This wouldn’t have been possible without
it, because both a north and south injection are possible with the same inclination,
and cos(i) = cos(−i), so there would have been an ambiguity in the algorithm.

5.4 Accuracy Problems

The previous discussion is based on the assumption that the actual orbital me-
chanics can be approximated using the R2BP (Restricted Two-Body Problem),
but for a Moon mission this may not be the case because of:

• the non-inertiality of a Moon-Centered reference frame;
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Figure 5.7: Moon B-Plane targeting. R2BP hypotheses unsatisfied.

• the fact that the gravitational pull of the Earth, and to a lesser extent the
Sun, is not negligible even when inside the Moon’s SOI (defined according
to Equation (5.1.1));

In fact, to make the maneuver accurate, it would have to be performed so close
to the Moon that it becomes completely unpractical from a ∆V cost standpoint.
This problem is highlighted in Figure (5.6) and Figure (5.7), where an attempt to
target a 90° inclination was made. However, the maneuver was accurate only in
Figure (5.7), where the rotation of the Moon was "forcefully" stopped and Earth’s
gravitational pull was "turned off" after computing the TCM at the SOI.

In conclusion, this method can’t be properly applied to our case of interest, but it
can be interesting to compute TCMs for interplanetary missions, when entering the
SOI of the arrival planet, because in that case a restricted two-body approximation
is surely more appropriate. In addition, the B-Plane BR parameter can be used
in the next targeting methods to select a north or south injection, by imposing
adequate constraints on its value (this idea was successfully implemented in the
CR3BP targeting model).



Chapter 6

Lunar Targeting

As seen in Chapter 5, the R2BP isn’t accurate enough to handle our case of
interest. Therefore, two different dynamic models will be introduced here: the
CR3BP and the SPICE-Enhanced N-Body Problem. We will also briefly look at
how to analytically compute the LOI-Lunar Orbit Injection at Moon arrival and
how to export the trajectory data to COSMOGRAPHIA, to obtain a 3D visualization
of the optimized trajectory.

6.1 The Earth-Moon system geometry

Before proceeding further, it’s necessary to gain awareness of the real Earth-Moon
system geometry. This will enable us to understand why the CR3BP can be
considered a good first approximation, but also why more accurate methodologies
may then be needed. Let’s start by looking at Figure (6.1), where the relative
orientation of the Ecliptic plane, Equatorial plane and Moon’s Orbital plane is
highlighted. When viewed from the center of the Earth, Moon’s orbit can also be
described through six orbital parameters, such as:

• a-semimajor axis;

• e-eccentricity;

• i-inclination;

• Ω-longitude of the ascending node;

• ω-argument of perigee;

• α-right ascension at epoch

64
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Figure 6.1: Earth-Moon System Geometry

where the first five where already described in Chapter 4, while α is the angle
measured east-ward from the direction of the ascending node of the Moon to the
projection of the Moon’s position vector on the equatorial plane. In a classi-
cal R2BP the orbital parameters are constant but, in case of the Moon’s Orbit,
mainly due to the perturbative effect of the Sun, the orbital parameters are con-
stantly changing with time, and their precise value at any particular time has to
be obtained from lunar ephemeris. We can list some of the main perturbations:

• The mean value of the semimajor axis is 384400 km, and the average time
for the Moon to complete one revolution around Earth relative to the stars
is around 27.3h. However, due to solar perturbations, the sidereal period
can vary as much as 7h.

• The mean eccentricity of the Moon’s orbit is 0.0549°, but the evection effect
causes small changes in the orbital eccentricity, with a period of 31.8 days.

• The line of nodes, which is the interseption of the Moon’s orbit with the
ecliptic plane, rotates westward, making one complete revolution in 18.6
years.

• The inclination of the Moon’s Orbit with respect to the ecliptic has a mean
value of 5.15°, but it actually varies between 4.98° and 5.30°.

• The line of apsides (joining perigee and apogee) rotates in the direction of
the Moon’s orbital Motion causing ω to change by 360° in 8.9 years.

In reality, it wouldn’t be completely correct to say that the Moon revolves around
the center of mass of the Earth, because both the Earth and the Moon are orbit-
ing around the center of mass of the Earth-Moon system. The CR3BP assumes
that this orbit is circular for both, while the ER3BP-Elliptical Restricted 3-Body
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Problem assumes that it’s elliptical. Neither of these two interpretations are com-
pletely correct; however, the CR3BP can be used in our case to provide a first
reasonable approximation to study a transfer trajectory, before resorting to a
SPICE-augmented N-Body problem.

6.2 Formulation of the NLP Problem

The mission baseline was addressed in Chapter 1; recalling it briefly, the trajectory
has to be propagated for 24h after the initial burn (commissioning phase) and then
a TCM must be executed to target the correct Moon position and reach it with the
correct orbital parameters, to perform the subsequent LOI maneuver. The landing
sites of interest are located near the South Pole, so a 90° inclination injection orbit
is the obvious choice.

The NLP Problem, applying a Direct Single Shooting Algorithm, can then be
stated in a similar form for the two approaches presented in the previous section
(CR3BP and SPICE N-Body):

min
z
J(z) =

√
∆V 2

x +∆V 2
y +∆V 2

z subject to:

i(tf ) = ides

r(tf ) = rP,des

ϕ(tf ) = 0

with z =
[
∆Vx ∆Vy ∆Vz RTOF

]T
(6.2.1)

where ∆Vx, ∆Vy and ∆Vz are the three TCM-∆V components and RTOF is the
Remaining Time of Flight, i.e. the propagation time required to arrive at the Moon
or, more precisely, at the instant of execution of the LOI maneuver. As already
stated, we also want to inject on a Polar Orbit and with the required periselenium
for the subsequent LOI, so the three constraints are necessary to account for that.
In addition, we could compute the B-PlaneBR parameter and impose an additional
constraint to force a north (BR > 0) or south (BR < 0) injection. One could also
argue that defining the final inclination is somewhat ambiguous, and that is true in
the CR3BP because the components of the unit-vector orthogonal to the Moon’s
Equatorial Plane isn’t exactly known. The problem can be easily solved in the
SPICE approach using the included reference frame rotation routines, while for the
CR3BP a valid engineering approximation is to compute the inclination using the
synodic frame unit-vector [0 0 1], although remembering that the Moon’s Mean
Rotation Axis isn’t really normal to its orbital plane, as shown in Figure (6.1).
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Optimization Strategy

• Compute the initial conditions (position and velocity in the appropriate
reference frame) associated to the spacecraft at lunar transfer orbit injection.

• Propagate the trajectory until the desired time of execution of the TCM.

• Using the current (at TCM) position and speed state of the spacecraft,
compute the optimum ∆V to reach the Moon with the desired boundary
values solving the associated NLP Problem.

• Analytically compute the LOI Maneuver.

• Numerically propagate the whole trajectory to visualize it and verify its
correctness.

With this matter cleared, we can now move on to the two dynamics models pre-
viously mentioned, starting with the CR3BP.

6.3 The Circular Restricted Three-Body Problem

The Circular Restricted Three-Body Problem (CR3BP) is a widely known model in
celestial mechanics that deals with the motion of a smaller, negligible mass (e.g.
a spacecraft) in the gravitational field produced by two larger masses, moving
around their center of mass, which lies between the two objects, on circular orbits.
One could immediately notice that this is a good approximation of the Earth-Moon
system environment, reason why it is definitely worthwhile to at least derive the
equations of motion and apply them to lunar targeting. However, the matter is
certainly worthy of a more extensive discussion, which is beyond the scope of this
thesis. [26] We will then see in Section 6.4 how to possibly improve the precision
of our model by importing Moon ephemeris data from the SPICE Toolkit.

6.3.1 The Equations of Motion

It’s convenient to study the dynamics of this system in the synodic frame, in which
the position of the two main bodies is apparently fixed, as shown in Figure (6.2).

Obviously, it’s necessary to account for the apparent acceleration terms, due to
the rotation of the synodic frame. In this case the second principle of dynamics,
considering the origin non-accelerating, constant angular velocity, constant S/C
mass and accounting only for gravitational forces, becomes:
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Figure 6.2: The Synodic Reference Frame.

r̈s + 2ω × ṙs + ω × (ω × rs) = −GME

r3E,s

rE,s −G
MM

r3M,s

rM,s (6.3.1)

Let us now introduce the mass parameter :

µ =
MM

ME +MM

(6.3.2)

the total mass :

M =ME +MM (6.3.3)

and the distance between the two main bodies :

R = rE + rM (6.3.4)

The distance of the system barycenter from the center of mass of the first body is
given by:

d =
MMR

ME +MM

= µR (6.3.5)

and the coordinates of the two main bodies in the synodic frame are then:
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rE =

−µR0
0

 rM =

(1− µ)R
0
0

 (6.3.6)

From a simple force balance equation we can also compute the angular speed ω,
equating the centripetal force with the gravitational force acting on one of the two
bodies:

MEω
2µR = G

MEMM

R2
→ ω =

√
GM

R3
(6.3.7)

At this point, indicating with rs = [x, y, z]T the coordinates of the spacecraft in
the synodic frame, we can compute the rE,s and rM,s vectors:

rE,s =

x+ µR
y
z

 rM,s =

x− (1− µ)R
y
z

 (6.3.8)

the centrifugal force:

ω × (ω × rs) =

0 −ω 0
ω 0 0
0 0 0

0 −ω 0
ω 0 0
0 0 0

xy
z

 =

−ω2x
−ω2y
0

 (6.3.9)

and the Coriolis acceleration (or, better, its opposite):

2ω × ṙs = 2

0 −ω 0
ω 0 0
0 0 0

ẋẏ
ż

 =

−2ωẏ
2ωẋ
0

 (6.3.10)

By plugging everything into Equation (6.3.1), we finally obtain the desired result:



ẍ− ω2x− 2ωẏ = −GM 1− µ

r3E
(x+ µR)−GM

µ

r3M
(x− (1− µ)R)

ÿ − ω2y + 2ωẋ = −GM 1− µ

r3E
y −GM

µ

r3M
y

z̈ = −GM 1− µ

r3E
z −GM

µ

r3M
z

(6.3.11)

There is no analytical solution for these equations, as opposed to what was seen
for the Two-Body restricted Problem, so a numerical integration is necessary.
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Figure 6.3: Transfer Trajectory in Synodic Frame

State Vector at Injection Point in Synodic Frame

Using Two-Body theory, it’s easy to analytically compute a plausible initial state
vector to propagate the trajectory. Assuming a Hohmann-like transfer trajectory
in the Moon’s orbital plane and an initial circular parking orbit around Earth,
with the help of Figure (6.3), we obtain that in the synodic frame:

r(t0) =

−rE − r0 cosα
−r0 sinα

0

 (6.3.12)

where α = ω · TH and TH = π
√

(rE+rM+r0)3

8GME
. The Earth-Relative Speed is instead

given by:

ṙE,s(t0) =

 VH sinα
−VH cosα

0

 (6.3.13)

where:

VH =

√
GME

r0

√
2(rE + rM)

rE + rM + r0
(6.3.14)
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To simulate a fixed launch program, the value of rE + rM in the VH formula can
be replaced with the fixed apogee distance from Earth. In addition, being in a
rotating frame, this speed has to be corrected as follows:

ṙs(t0) = ṙE,s(t0)− ω × (r(t0)− rE) (6.3.15)

obtaining the initial speed expressed in the synodic frame.

Visualizing the Trajectory in a Non-Rotating Frame

It’s possible to use a time-dependant rotation matrix to plot the trajectory in a
non-rotating pseudo-inertial frame. This non-rotating frame could simply be the
synodic frame "frozen" at the time of departure from Earth. Indicating with t the
time elapsed since Earth departure, the rotation matrix is then given by:

R(t) =

cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1

 (6.3.16)

This non rotating frame can then itself be rotated on more conventional inertial
frames, such as the J2000 frame.

6.4 SPICE-Enhanced N-Body Problem

Using SPICE, we now have the ability to increase the accuracy of the dynamic
model, accounting for the real positions of the various celestial bodies involved.
In particular, it’s not hard to include the gravitational pull of the Sun too, so we
will include it in the dynamics equations. If its effect is deemed negligible, it is
then legitimate to remove the associated terms.

We remember that the J2000 frame is an inertial reference frame (it’s non-rotating
and it’s centered in the center of mass of the solar system, so it’s non-accelerating
too), so it’s possible to apply the second principle of dynamics without any addi-
tional term. By doing so, we get:

r̈s = −GMS

r3S,s
rS,s −G

ME

r3E,s

rE,s −G
MM

r3M,s

rM,s (6.4.1)

However, it’s more practical to describe the motion of the spacecraft as seen from
Earth so, neglecting the mass of the spacecraft, we obtain that for the Earth:



Chapter 6. Lunar Targeting 72

𝒓𝑺

𝒓𝑬

𝒓𝑴

𝒓𝑬,𝒔

𝒓𝑴,𝒔

𝒓𝑺,𝒔

𝑭𝑱𝟐𝟎𝟎𝟎

𝒓𝒔

𝑺

𝑬

𝑴

Figure 6.4: Position vectors in the J2000 Frame.

r̈E = −G MS

|rE − rS|3
(rE − rS)−G

MM

|rE − rM|3
(rE − rM) (6.4.2)

Subtracting Equation (6.4.2) from Equation (6.4.1), we finally get:

r̈E,s =−G
MS

r3S,s
rS,s −G

ME

r3E,s

rE,s −G
MM

r3M,s

rM,s+

+G
MS

|rE − rS|3
(rE − rS) +G

MM

|rE − rM|3
(rE − rM)

(6.4.3)

The last two terms of Equation (6.4.3) are derived from the fact that an Earth-
Centered frame isn’t inertial, due to the gravitational pull of the Sun, the Moon
and all the other celestial bodies in the Solar system. Clearly, for our purposes,
it’s sufficient to account just for the Sun and Moon effect.

In addition, when solving an N-Body Problem it would normally be necessary to
derive the position vectors of every celestial body involved, but this can be avoided
if their position is instead extracted from an external ephemerides data sheet
(provided by SPICE in our case). We then only have to worry about propagating
the spacecraft position.

State Vector at Injection Point in Earth-Centered J2000

The first thing we have to do is positioning the injection point. Always under the
assumption that we are initially on a circular parking orbit of radius r0 and that
the transfer trajectory is a pseudo-Hohmann Transfer:



Chapter 6. Lunar Targeting 73

ሶ𝒓𝑬,𝒔 𝑡0

ሶ𝒓𝑬,𝑴 𝑡𝑓
𝒉𝑴 𝑡𝑓 = 𝒓𝑬,𝑴 𝑡𝑓 × ሶ𝒓𝑬,𝑴 𝑡𝑓

𝒓𝑬,𝑴 𝑡𝑓

𝒓𝑬,𝒔 𝑡0

𝐹𝐽2000

Moon’s Orbital Plane

Injection 
Point

TCM

LOI

Figure 6.5: Lunar Targeting in the J2000 Frame

rE,s(t0) = −rE,M(tf )

rE,M(tf )
r0 (6.4.4)

That is, the starting point is diametrically opposite to the Moon at the time of
arrival tf . It remains to compute the initial speed vector ṙE,s of the spacecraft,
but the process is pretty straightforward even in this case:

hM(tf ) = rE,M(tf )× ṙE,M(tf )

ṙE,s(t0) =
hM(tf )× rE,s(t0)

|hM(tf )× rE,s(t0)|
VH

(6.4.5)

where:

VH =

√
GME

r0

√
2rE,M(tf )

2(r0 + rE,M(tf ))
(6.4.6)

Useful SPICE functions

The SPICE Toolkit provides users with a series of routines that can be easily used
to derive all the variables that we are interested in. In particular, for our case, we
employ:



Chapter 6. Lunar Targeting 74

• the cspice_spkezr function to obtain the position and speed vectors of
the various celestial bodies. It’s possible to specify the reference frame in
which these vectors will be expressed (in our case the J2000 frame) and the
observing body relative to which they are computed (Earth in our case);

• the cspice_pxform routine to rotate the Moon’s Equatorial plane orthog-
onal unit vector (expressed as k̂ = [0 0 1]T in the The Mean Earth/Polar
Axis (ME) frame) in the J2000 frame, to impose the inclination constraint
at arrival;

Their documentation is available on the NAIF SPICE website. [21] [20]

SPICE Kernels

Using SPICE commands is very straightforward after reading their related doc-
umentation. In fact, the main difficulty is more about finding all the required
kernel files for a certain problem, where a kernel is essentially a text or binary file
containing some type of data (ephemeris data, reference frames orientations...),
depending on the type of kernel in question. Again, to better understand how to
correctly use this tool, it’s indeed better to refer directly to the SPICE documen-
tation. In any case, the list of kernels employed is the following:

• naif0012.tls → Generic Leapseconds kernel.

• de440.bsp → Planetary Ephemeris kernel (includes Moon ephemeris).

• moon_pa_de440_200625.cmt.bpc→ Moon Orientation Data kernel.

• moon_de440_220930.tf→ Moon Reference Frames kernel.

6.5 The LOI Maneuver

The execution of the TCM Maneuver involves solving a NLP problem as explained
in the previous section while the computation of the LOI maneuver, in a very
similar fashion to the computation of the initial state vector, can be performed
analytically, with simple geometrical considerations and vector operations, which
can be easily understood by looking at Figure (6.6). The tangential unit-vector
µ̂t is given by:

µ̂t =
(rM,s(tf )× ṙM,s(tf ))× rM,s(tf )

|(rM,s(tf )× ṙM,s(tf ))× rM,s(tf )|
(6.5.1)



Chapter 6. Lunar Targeting 75

ሶ𝒓𝑴,𝒔(𝑡𝑓)

Ƹ𝜇𝑡

Ƹ𝜇𝑅

𝒓𝑴,𝒔(𝑡𝑓)

Figure 6.6: LOI Maneuver Geometry.

while the speed of a circular orbit of radius rM,s(tf ) around the Moon, according
to the R2BP, can be computed as:

vc =

√
GMM

rM,s(tf )
(6.5.2)

so the speed vector after the LOI maneuver (tf = tLOI) is:

ṙM,s(tLOI) = vc µ̂t (6.5.3)

Notice that this is a Moon Relative Speed, which has to be properly converted
to obtain a well propagated circular trajectory. For example, the synodic frame
relative speed would be given by:

ṙs = ṙM,s − ω × rM,s (6.5.4)

while in the Earth centered J2000 frame the relative speed is:

ṙE,s = ṙM,s + ṙE,M (6.5.5)
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6.6 SPICE-Enhanced COSMOGRAPHIA

COSMOGRAPHIA is an open source visualization tool used to produce 3D vi-
sualizations of planet ephemerides, sizes and shapes, spacecraft trajectories and
orientations and instrument fields-of-view and footprints. NAIF offers a SPICE-
Enhanced version of COSMOGRAPHIA, employing SPICE Kernel files to realis-
tically propagate the trajectories of the various celestial bodies in the solar system.
The documentation and templates available on the COSMOGRAPHIA and NAIF
website allow us to visualize our trajectories with moderate effort. [23] [24] There
are various ways to export a trajectory in COSMOGRAPHIA, such as transform-
ing it in a SPICE kernel file, but the method we are going to use is that of recurring
to a ".xyzv" file; it’s essentially a text file made up of seven columns of data, in
which:

• the first column contains a time value expressed in TDB Julian Days (JD),
i.e. days since I Jan 4713 a.C 12:00:00 (TDB);

• the subsequent three columns contain the x,y e z coordinates of a point of
the trajectory associated to the JD in the first column, expressed in a certain
frame and relatively to an observing body, both specified in a catalog .json
file.

• the latest three columns contain the vx, vy and vz speed components ex-
pressed in a certain frame and relatively to an observing body, both specified
in the same previous .json catalog file.

The cspice_timout function can be used to convert ephemeris time ("et", number
of seconds since J2000 i.e. 1 Jan 2000 12:00:00 TDB), used in the cspice_spkpos
and cspice_pxform functions too. It’s then convenient to propagate the trajectory
using ephemeris time in MATLAB to easily visualize it in COSMOGRAPHIA. The
documentation of the cspice_timout function is again available on the NAIF
website, to correctly understand its use. However, it’s important to remember
that the output time must be specified as Julian Day (JD) in TDB, as follows:

• cspice_timout(et,’JULIAND.#####::TDB’)

In addition, the output is in this case a string, so the str2double MATLAB
function can be employed to convert it in a double precision number.

A template of the .json catalogue file is available in Appendix F
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Results

Having concluded the theoretical discussion of all the different notions required
to study the transfer and descent trajectories, it’s finally possible to present some
of the results produced with the tools developed as part of this thesis work at
TAS-I. For the optimization of descent trajectories it’s not possible to present real
data due to a non-disclosure agreement. Some fictitious configurations, that are
anyway representative of the real problem and of the type of results we can expect,
were therefore analyzed instead.

7.1 Descent Trajectory Optimization

The objective of this Section isn’t that of performing trade-off analyses, but to
validate the descent tool. For this reason, tests will be carried out as certain
parameters of interest change, such as maximum thrust and initial mass of the
lander (thus acting on the thrust to mass ratio) , checking how this affects the
final shape of the trajectory and verifying that the results are compatible with the
ones already known in literature. Then, to further validate the descent model and
increase the robustness of the analyses, a comparison with the results obtained
from a slightly modified version of a 2D descent tool, previously developed at
TAS-I, is provided too. This 2D tool makes use of the dynamics equations given
in Appendix C to study the descent trajectory in a perifocal frame.

It is worth specifying that, since we are not interested in diverting maneuvers,
the bank angle is set equal to zero. It was also noted that the solutions quality
improves if throttle is fixed at its maximum value, and computation time is reduced
too. Finally, all of the analyses presented herein were performed with constraints
on the initial and final conditions compatible with the mission strategy outlined
in Chapter 1, such as:
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• initial height and speed compatible with the perilunium of a 30 x 100 km
orbit;

• vertical lander configuration at arrival (ϵ = π and γ ≈ −90 deg);

• reduced speed at arrival (< 2m/s).

7.1.1 Convergence Study

The number of nodes used in the direct collocation algorithm is gradually increased
to verify convergence of the final optimized mass and of the control and state
variables. This allows us to check the numerical stability of the solution and get
an idea of its accuracy. The results are shown in Figures (7.1) and (7.2), for the
following lander configuration:

• T = 5× 4 kN = 20 kN (five engines configuration).

• Initial Mass m0 = 6000 kg.

• Isp = 400 s

It can be noted that the final values of mass and descent time are somewhat
accurate even with an extremely reduced number of nodes (10), and it is clearly
possible to see a convergence of all variables of interest as the number of nodes
increases. In particular, the final value of the optimized mass increases slightly
as the number of nodes increases, thanks to a refinement in system control, but
the variations are extremely marginal. For this reason, the following analyses will
be performed with an intermediate number of nodes, 50, to reduce computational
costs without excessively compromising accuracy.

7.1.2 Effect of Maximum Thrust - TMAX

A total of four configurations, with a different number of engines, and different
maximum levels of thrust, have been tested. The parameters describing these
configurations are given in Table (7.1), and the number of nodes used for the
optimization is 50.

The main features of the optimized trajectories, as shown in Figures (7.3) and
(7.4), are:

• an increase in time required to land as available thrust reduces, as indeed
was to be expected;
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Figure 7.1: Convergence Study of the Direct Collocation Algorithm.
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Figure 7.2: Convergence Study of Final Lander Mass and Final Descent Time

Table 7.1: Lander configurations and results for the maximum thrust test.

Configuration 1 2 3 4
Initial Mass [kg] 6000 6000 6000 6000
Thrust per Engine [kN] 4 4 4 4
N° Engines 5 4 3 2
Isp [s] 400 400 400 400
Thrust to Mass Ratio [N/Kg] 10/3 8/3 2 4/3

Landing Time [s] 526.6 665.9 912.4 1488.8
Final Mass [kg] 3315 3284 3209 2964
Propellant Burned [kg] 2685 2716 2791 3036
Lander Efficiency mf

m0
0.553 0.547 0.535 0.494
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Figure 7.3: Maximum Lander Thrust Tests.
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Figure 7.4: Lander efficiency and descent time for different values of the thrust to
mass ratio.

• an increase in final mass at landing as available thrust increases, due to a
reduction in gravitational losses;

• an initial increase in trajectory height when the available thrust falls under
a certain threshold. This also reflected in values of γ greater than 0 at the
beginning.

These results are in fact compatible with those of other studies available in lit-
erature.[7]. Obviously, to save up on fuel, it’s more convenient to have a higher
amount of trust at disposal or, more precisely, a higher thrust to mass ratio, as
shown in the results provided in the next section.

7.1.3 Effect of Initial Lander Mass - m0

The same behavior shown in Section 7.1.2 can be replicated by changing the initial
value of the lander mass, with a fixed available thrust, as can be seen in Figure
(7.6). In fact, not only have the trajectories of the various landers got the same
shape when their thrust to mass ratio is equal, but their landing time and efficiency
are the same too, as seen in Tables (7.1) and (7.2). It is clear from these analyses
that, all other performance parameters being equal, a higher value of the thrust
to mass ratio is advantageous, at least within certain limits; in fact, as can be
seen in Figure (7.4), the efficiency value tends to grow less and less rapidly as the
thrust to mass ratio increases. In any case, this parameter is therefore of utmost
importance in determining the final performance of the lander.

The fact that the results obtained are identical can be explained analytically in a
very simple way. By looking at the kinematics and dynamics equations in Section
3.4, it’s easy to notice that, all other parameters being equal, if the thrust to mass
ratio is identical then the ODEs are equal too.
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Figure 7.5: Specific Impulse Tests.

7.1.4 Effect of Specific Impulse - Isp

An increase in specific impulse, on the other hand, would undoubtedly correlate
with a reduction in propellant consumed, as shown in Figure (7.5). This is for two
reasons:

• a higher Isp value means less propellant burnt with equal thrust;

• since higher Isp values imply a smaller (in modulus) ṁ, and due to the fact
that mr̈ = F − ṁṙ, the effect of the ṁṙ term, especially relevant at high
speeds and opposing the decelerating action of F, becomes less.

This second effect is very important; it’s common to forget about the ṁ term
when deriving the dynamics equations, but this can, in some cases, lead to a
severe overestimation of the final optimized lander mass.

However, since there is often little flexibility in the choice of engines, perhaps
supplied by outside companies with a certain maximum achievable performance,
it is difficult to be able to go beyond certain values of Isp.
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Figure 7.6: Lander Initial Mass Tests.
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Table 7.2: Lander configurations and results for the initial mass test.

Configuration 1 2 3 4
Initial Mass [kg] 6000 7500 10000 15000
Thrust per Engine [kN] 4 4 4 4
N° Engines 5 5 5 5
Isp [s] 400 400 400 400
Thrust to Mass Ratio [N/Kg] 10/3 8/3 2 4/3

Landing Time [s] 526.6 665.9 912.4 1488.8
Final Mass [kg] 3315 4105 5348 7410
Propellant Burned [kg] 2685 3395 4652 7590
Lander Efficiency mf

m0
0.553 0.547 0.535 0.494

7.1.5 2D and 3D Model Comparison

To further increase the robustness of the analyses, a comparison between the 2D
descent model previously developed at TAS-I and the 3D model developed as
part of this thesis has been performed. The lander configuration and results are
presented in Table (7.3) and Figure (7.7). The final results obtained with both
tools show great accordance between them.

Table 7.3: 2D and 3D descent models comparison.

2D 3D
Initial Mass [kg] 6000
Thrust Per Engine [kN] 4
N°Engines 5
Isp [s] 400
Thrust to Mass Ratio [N/kg] 10/3
Landing Time [s] 528.7 526.6
Final Mass [kg] 3304 3315
Propellant Burned [kg] 2696 2685
Range [km] 506.3 507.4

7.1.6 Constraints on Maximum Pitch Rate

It’s possible to adopt two approaches:

• given Pitch = γ + ϵ (this relation is valid because σ = 0), approximate
its first derivative using finite differences and impose a constraint on this
quantity;
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Figure 7.7: 2D and 3D Model descent comparison

• impose a constraint on γ̇, which is one of the outputs of the f(x,u, t) function,
and verify a posteriori that the Pitch rate constraint is satisfied.

The second approach was the one adopted while performing analyses in presence
of a maximum Pitch Rate constraint, because the quality and regularity of the
solutions was observed to be superior. A comparison of the results obtained with
and without a |γ̇| < 2.5 deg/s constraint is shown in Figure (7.8) and Table (7.4).
The objective was to keep the maximum pitch rate below 5 deg/s. Observe that
the results shown in Table (7.4) for the γ̇ constraint case are very similar to those
of the 2D Model (where no γ̇ constraints where imposed), but this is completely
accidental.

7.1.7 3D Trajectory Example

Finally, a 3D plot of the optimized trajectory obtained for the configuration used
in Section 7.1.5 is provided in Figures (7.9) and (7.10).

The descent trajectory is compatible with a polar waiting orbit, in accordance
with the mission overview given in Chapter 1. The tool is also capable of handling
passages above the poles of the celestial body of interest without incurring in
singularities, thanks to the frame rotation procedure introduced in Chapter 3.
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Figure 7.8: Effect of the γ̇ constraint.
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Figure 7.9: 3D Descent Trajectory Plot

Figure 7.10: 3D Descent Trajectory Plot. View from above the South-Pole
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Table 7.4: Final Results with and without the γ̇ constraint.

γ̇ No γ̇
Initial Mass [kg] 6000
Thrust Per Engine [kN] 4
N°Engines 5
Isp [s] 400
Thrust to Mass Ratio [N/kg] 10/3
Landing Time [s] 528.7 526.6
Final Mass [kg] 3304 3315
Propellant Burned [kg] 2696 2685
Range [km] 505.3 507.4
Max Pitch Rate reached [deg/s] 3.7 5.3

7.2 Transfer Trajectory Optimization

As already stated in the previous chapters, two different dynamic models, the
Spice Enchanced N-Body Problem and the CR3BP, have been used to compute
the optimal TCM, employing in both cases a direct single shooting algorithm.
The results obtained are presented in this section, highlighting and justifying any
differences.

7.2.1 TCM and LOI using the CR3BP

This approach is characterized by a low computational cost, allowing to compute
almost 2000 TCMs in just a couple of hours or less, depending on the processing
power at disposal. The results obtained for all of the arrival dates provided by
TAS-I are given in Figures (7.12) and (7.13). According to the CR3BP, one should
expect a cost of about 815 m/s for the LOI Maneuver and from 20 to 45 m/s, if
performed at the 24h mark. One could notice, by observing Figure (7.11), that
performing the TCM maneuver both too early and too late leads to an increase in
its cost. In addition, there is a certain time interval before the 24 hours mark when
the cost of the maneuver is lower, albeit slightly. These values are in line with
those provided by the European Space Agency so, for a very preliminary analysis,
they could be considered sufficient. It is unlikely, however, that, after introducing
the perturbative effect of the Sun and the real orbit of the Moon, the numbers
will be the same. In addition, the CR3BP doesn’t allow for a correct targeting
of the LLO inclination, because the coordinates of the unit-vector normal to the
equatorial plane aren’t known as already discussed. For all of these reasons, to
increase precision, it’s necessary to recur to a more accurate model, using data
provided by SPICE.
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Figure 7.11: Parametric Study of the TCM Delay vs ∆V cost, for one of the
possible arrival dates.

Figure 7.12: ACM (TCM) Maneuver Cost over 2031 (Departure Dates)
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Figure 7.13: LOI Maneuver Cost over 2031 (Departure Dates)

Figure 7.14: Example of trajectory in the Synodic Frame.
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Figure 7.15: Example of trajectory in a Non-Rotating Frame. (CR3BP)
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Table 7.5: Cost of LOI and TCM Maneuvers for various Departure Dates, using
SPICE.

Departure (UTC) Arrival (UTC) ∆VTCM [km/s] ∆VLOI [km/s]
01 Jan 2031 23:56 07 Jan 2031 03:27 0.019 0.800
17 Jan 2031 00:11 22 Jan 2031 07:17 0.074 0.846
31 Jan 2031 00:11 05 Feb 2031 03:42 0.021 0.801
11 Mar 2031 22:25 17 Mar 2031 04:34 0.056 0.831
25 Mar 2031 16:15 30 Mar 2031 19:23 0.054 0.831
23 Apr 2031 18:26 28 Apr 2031 21:33 0.019 0.799
19 May 2031 14:14 24 May 2031 17:18 0.054 0.829
20 May 2031 16:50 25 May 2031 19:36 0.019 0.800
16 Jun 2031 13:57 21 Jun 2031 17:09 0.019 0.802
29 Jun 2031 07:29 04 Jul 2031 14:43 0.019 0.801
09 Aug 2031 02:35 14 Aug 2031 06:07 0.078 0.849
22 Aug 2031 08:52 27 Aug 2031 15:12 0.019 0.801
07 Sep 2031 01:54 12 Sep 2031 05:16 0.019 0.797
18 Sep 2031 18:11 23 Sep 2031 23:51 0.060 0.832
18 Sep 2031 22:03 24 Sep 2031 03:46 0.019 0.798
19 Sep 2031 17:11 24 Sep 2031 23:08 0.019 0.798
19 Sep 2031 20:58 25 Sep 2031 03:25 0.056 0.831
03 Oct 2031 21:55 09 Oct 2031 01:10 0.064 0.840
12 Nov 2031 17:43 18 Nov 2031 00:01 0.020 0.804
26 Nov 2031 10:56 01 Dec 2031 14:01 0.055 0.830

7.2.2 TCM and LOI using SPICE

The computational cost is in this case much higher, and a workstation is needed
to perform all of the optimizations in a reasonable amount of time. Because of
this, only some reference results will be provided to understand, indicatively, how
far we deviate from the previous model.

Some of the values obtained for the cost of the TCM and LOI Maneuver are given
in Table (7.5), and they can differ by as much as several tens of meters per second
from the ones obtained through the CR3BP, but that was to be expected since the
two models are quite different dynamically. Further investigation, perhaps com-
paring these results with the ones obtained through commercial mission analysis
software (e.g. STK), is needed to ensure their correctness, despite being, however,
still in line with the reference values provided by ESA. Finally, an example of a
trajectory obtained in this environment is visualized in Figures (7.16) and (7.17).
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Figure 7.16: Transfer Trajectory in Earth-Fixed J2000.

Figure 7.17: Arrival Trajectory in Moon-Fixed J2000.



Conclusions

In conclusion, this thesis has successfully tackled the challenging issues related
to Moon Targeting and descent trajectory optimization by employing various dy-
namic models. The primary aim was to develop a comprehensive toolkit capable
of efficiently handling these two critical aspects while establishing a connection
between them, ensuring the compatibility of transfer trajectories with subsequent
descent phases.

The outcomes of this research are aligned with the findings presented by the Euro-
pean Space Agency and existing literature. However, the effort does not end here.
Future developments should encompass a more comprehensive comparison with
commercial mission analysis software, with particular reference to the calculation
of the TCM maneuver, allowing for a more robust validation of the developed
tools.

Moreover, an essential direction for further research lies in strengthening the in-
tegration of Moon targeting and descent trajectory optimization, moving away
from treating them as distinct phases. This future work should involve exploring
methods to determine the optimal initiation time for descent after a specific trans-
fer trajectory, ensuring that all constraints outlined by ESA and other relevant
stakeholders are met seamlessly. Finally, a more accurate model of the Moon grav-
itational field could be implemented too, to better study the descent trajectory
of the lander, and adaptive direct collocation methods could be explored too, to
increase accuracy.
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Appendix A

Spherical Trigonometry

𝐴
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𝑎

𝑏

𝑐

Figure A.1: Angles of a spherical triangle.

Law of Cosines

cos a = cos b cos c+ cosA sin b sin c

cos b = cos a cos c+ cosB sin a sin c

cos c = cos a cos b+ cosC sin a sin b

(A.0.1)

Law of Sines

sin a

sinA
=

sin b

sinB
=

sin c

sinC
(A.0.2)
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Appendix B

Elementary Rotation Matrices

Rotation matrices are widely used in this thesis, so it may be appropriate to briefly
review the topic to better understand the mathematical procedures presented.

A rotation matrix is a matrix that allows to transform the coordinates expressed
in a reference frame in those of another (in case they have the same origin and
they only differ in their orientation, otherwise a translation would be necessary
too). The basic concept is then to project the axes of a reference frame on those
of the other one, using direction cosines. Considering a transformation of coordi-
nates expressed in a generic {Î1, Ĵ1, K̂1} frame in a {Î2, Ĵ2, K̂2} frame, the rotation
matrix would be: x2y2

z2

 =

 Î1 · Î2 Ĵ1 · Î2 K̂1 · Î2
Î1 · Ĵ2 Ĵ1 · Ĵ2 K̂1 · Ĵ2
Î1 · K̂2 Ĵ1 · K̂2 K̂1 · K̂2

x2y2
z2

 (B.0.1)

However computing these dot products isn’t trivial at all in many cases, and it’s
more practical to perform the rotations using a sequence of intermediate reference
frames, through the so-called Euler angles. There are three fundamental rota-
tions, that can be combined to perform any generic frame rotation, with three
corresponding matrices, as shown in Figure (B.1).

𝐹𝑖𝑟𝑠𝑡 𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑒𝑐𝑜𝑛𝑑 𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑇ℎ𝑖𝑟𝑑 𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛

𝛼

𝛽

𝛾
𝑦2

𝑧2

𝑥1 ≡ 𝑥2

𝑦1

𝑧1

𝑦1 ≡ 𝑦2

𝑧1 ≡ 𝑧2𝑥2 𝑥1

𝑧1

𝑧2

𝑥2

𝑥1

𝑦2𝑦1

Figure B.1: Fundamental Rotations.
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These matrices are:

RI =

1 0 0
0 cosα − sinα
0 sinα cosα



RJ =

 cos β 0 sin β
0 1 0

− sin β 0 cos β



RK =

cos γ − sin γ 0
sin γ cos γ 0
0 0 1



(B.0.2)



Appendix C

Descent Dynamics in the Perifocal
Reference Frame

In this Appendix we briefly derive the differential equations that describe the
descent dynamics in the perifocal reference frame {p̂, q̂, ŵ}. The reader could then
choose to implement these in a Direct Collocation Algorithm, and compare the
results with those obtained through the more complex ones derived in Chapter 3.

The perifocal reference frame has already been described in Section 4.4, and for
the present case is shown in Figure (C.1).

Let us start by expressing the position of the satellite in cartesian components:

x = r cos ν

y = r sin ν

z = 0

(C.0.1)

The motion is contained in the p̂− q̂ plane, so from now on we will discard the z
component. By taking the first derivative we then get:

ẋ = ṙ cos ν − r sin νν̇ = vr cos ν − vt sin ν

ẏ = ṙ sin ν + r cos νν̇ = vr sin ν + vt cos ν
(C.0.2)

We then study the second derivative:

ẍ = r̈ cos ν − ṙ sin νν̇ − ṙ sin νν̇ − r cos νν̇2 − r sin νν̈

ÿ = r̈ sin ν + ṙ cos νν̇ + ṙ cos νν̇ − r sin νν̇2 + r cos νν̈
(C.0.3)

We now apply the second principle of dynamics, in a case where the mass is
variable:
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𝒓

Ƹ𝒊

Ƹ𝒋
𝑭

𝝍

𝝂

ෝ𝒑

ෝ𝒒

𝝂

Figure C.1: Descent trajectory in perifocal reference frame.

mẍ+ ṁẋ = Fr cos ν − Ft sin ν

mÿ + ṁẏ = Fr sin ν + Ft cos ν
(C.0.4)

We replace the first and second derivatives that we previously found, obtaining:

r̈ cos ν − ṙ sin νν̇ − ṙ sin νν̇ − r cos νν̇2 − r sin νν̈ +
ṁ

m
(ṙ cos ν − r sin νν̇) =

=
Fr

m
sin ν − Ft

m
sin ν

r̈ sin ν + ṙ cos νν̇ + ṙ cos νν̇ − r sin νν̇2 + r cos νn̈u+
ṁ

m
(ṙ sin ν + r cos νν̇) =

=
Fr

m
sin ν +

Ft

m
cos ν

(C.0.5)
which, by remembering the definitions of vr = ṙ and vt = rν̇, reduce to:

1○ v̇r cos ν − v̇t sin ν − ṙ sin νν̇ − v2t
r
cos ν +

ṁ

m
(vr cos ν − vt sin ν) =

=
Fr

m
cos ν − Ft

m
sin ν

2○ v̇r sin ν + v̇t cos ν −
v2t
r
sin ν + ṙ cos νν̇ +

ṁ

m
(vr sin ν + vt cos ν) =

=
Fr

m
sin ν +

Ft

m
cos ν

(C.0.6)
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At this point it’s possible to rearrange these equations to explicit v̇r and v̇t:

1○ cos ν + 2○ sin ν → v̇r =
v2t
r

− ṁ

m
vr +

Fr

m

− 1○ sin ν + 2○ cos ν → v̇t = −vrvt
r

− ṁ

m
vt +

Ft

m

(C.0.7)

The final system of ODEs to be implemented is then:



ṙ = vr

ν̇ =
vt
r

v̇r =
v2t
r

− ṁ

m
vr +

Fr

m

v̇t = −vrvt
r

− ṁ

m
vt +

Ft

m

ṁ = − T

gIsp

(C.0.8)

with Fr = T sinψ −mg and Ft = T cosψ, considering only the thrust and gravi-
tational forces in our model.



Appendix D

Orbit Determination and
Propagation

We start with the code that allows us to determine the orbit given the position and
velocity of a satellite (r,v). Then, by computing the rotation matrix that allows
for a coordinate transformation from the perifocal reference frame to the reference
{Î , ĵ, K̂} frame, used to calculate the orbital parameters, we can propagate the
orbit. This procedure can be coupled with a B-Plane Targeting Algorithm (see
Chapter 5) to visualize the final corrected trajectory, according to a restricted
two-body theory.

Orbit Determination Pseudo-code

The following pseudo-code accounts for all possible singularities by introducing the
longitude of periapsis, argument of latitude at epoch t0 and true longitude at epoch
t0, already discussed in Section 4.5, in case the orbit is equatorial, circular or both.
However, they are not defined using new names, to make the code more practical
to implement. For example, in case the orbit is equatorial (but not circular), then
the orbital parameter ω corresponds in reality to the longitude of periapsis ω+ ν.

• Î = [1, 0, 0]T

• K̂ = [0, 0, 1]T

• h = r× v → ĥ = h
h

• i = atan2(|ĥ× Î|, ĥ · Î)

• e = 1
µ

[
(v2 − µ

r
)r− (r · v)v

]
– If e ̸= 0 → ê = e

e
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– If e = 1 → a = h2

µ
(semilatus rectum), else a = − µ/2

v2/2−µ/r
(semimajor axis)

If i ̸= 0 and i ̸= π:

• n̂ = ĥ× k̂

• Ω = atan2(|ĥ× Î|, ĥ · Î) → If n(2) < 0 : Ω = 2π − Ω

• If e ̸= 0:

– ω = atan2(|ê× n̂|, ê · n̂) → If e(3) < 0 : ω = 2π − ω

– ν = atan2(|r× e|, r · ê) → If r · v : ν = 2π − ν

• If e = 0:

– ω = 0

– ν = atan2(|r× n̂|, r · n̂) → If r(3) < 0 : ν = 2π − ν

If i = 0 or i = π:

• Ω = 0

• If e ̸= 0

– ω = atan2(|ê× Î|, ê · Î) → If

{
i = 0 and e(2) < 0 → ω = 2π − ω

i = π and e(2) > 0 → ω = 2π − ω

– ν = atan2(|r× ê|, r · ê) → If r · v < 0 : ν = 2π − ν

• If e = 0

– ω = 0

– ν = atan2(|r× Î|, r · Î) → If

{
i = 0 and r(2) < 0 → ν = 2π − ν

i = π and r(2) > 0 → ν = 2π − ν

Orbit Propagation

We rotate transform the cartesian coordinates in the perifocal reference frame into
cartesian coordinates in the (Î , Ĵ , K̂) frame using the following matrix:
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LIJK,pqw =

cosΩ − sinΩ 0
sinΩ cosΩ 0
0 0 1

1 0 0
0 cos i − sin i
0 sin i cos i

cosω − sinω 0
sinω cosω 0
0 0 1

 (D.0.1)

The coordinates vector in the perifocal reference frame is then simply given by:xy
z

 =

r cos νr sin ν
0

 (D.0.2)

One can at this point choose an appropriate interval [ν1, ν2] ∈ [0, 2π], calculate the
corresponding cartesian coordinates and rotate them into the IJK frame, obtaining
a visualization of the satellite trajectory.



Appendix E

Original Descent Equations

The original equations presented in Bett’s book and in the SEEDS Master Entry,
Descent, Landing and Ascent course are reported here for future reference, in case
it’s not necessary to optimize a polar landing trajectory, to be implemented in a
direct collocation algorithm. [10] [4]

ṙ = v sin γ

λ̇ =
v

r

cos γ sinψ

cosϕ

ϕ̇ =
v

r
cos γ cosψ

v̇ =ω2r cosϕ(cosϕ sin γ − cos γ cosψ sinϕ) +
fi
m

sin γ +
fj
m

cos γ sinψ +
fk
m

cos γ cosψ−

− ṁ

m
(v + ωr cos γ cosϕ sinψ)

γ̇ =
1

v

[
v2

r
cos γ + 2ωv cosϕ sinψ + ω2r cosϕ(cosϕ cos γ + cosψ sin γ sinϕ)+

+
fi
m

cos γ − fj
m

sin γ sinψ − fk
m

sin γ cosψ +
ṁ

m
ωr cosϕ sin γ sinψ

]

ψ̇ =
1

v cos γ

[
v2

r
cos2 γ sinψ tanϕ+ 2ωv(sinϕ cos γ − cosϕ cosψ sin γ)

+ω2r(cosϕ sinϕ sinψ) +
fj
m

cosψ − fk
m

sinψ − ṁ

m
ωr cosϕ cosψ

]
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ṁ = − T

gIsp

with:

fifj
fk

 =

 (T cos ϵ−D) sin γ + (T sin ϵ+ L) cosσ cos γ
(T cos ϵ−D) cos γ sinψ − (T sin ϵ+ L)(cosψ sinσ + cosσ sin γ sinψ)
(T cos ϵ−D) cos γ cosψ + (T sin ϵ+ L)(sinσ sinψ − cosσ sin γ cosψ)





Appendix F

Cosmographia Catalog Template

{
"version": "1.0",
"name": "Moon Targeting",
"items": [

{
"class": "spacecraft",
"name": "Spacecraft Name",
"startTime": "YYYY-MM-DD HR:MN:SS UTC",
"endTime": "YYYY-MM-DD HR:MN:SC UTC",
"center": "Earth",

"trajectoryFrame": "ICRF",
"trajectory": {

"type": "InterpolatedStates",
"source": "trajectory.xyzv"

},
"bodyFrame": {

"type": "ICRF"
},
"geometry": {

"type": "Mesh",
"meshRotation": [

1,
0,
0,
0

],
"size": 0.5,
"source": "CAD Model directory, relative to the folder
in which this json file is located. A supported CAD
format is .cmod"
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},
"label": {

"color": [
1,
0,
0

]
},
"trajectoryPlot": {

"color": [
1,
0,
0

],
"lineWidth": 5,

"duration": "10 d",
"lead": "0 d",

"fade": 1,
"sampleCount": 100

}
}

]
}

Replace:

• the startTime argument with the desire start time, expressed as in template,
for example 2031-01-25 12:00:00.00 UTC.

• the endTime argument with the desire stop time, expressed as stated for
startTime.

• the trajectoryFrame argument with the frame in which the trajectory is
expressed. A list of supported frames is available in the documentation of
COSMOGRAPHIA and the ICRF frame is basically the J2000 frame.

• the center argument with the name of the observing body in which the
trajectoryFrame is centered (consult the documentation for a list of sup-
ported bodies).

• the source argument under trajectory with the directory, relative to the
folder where this catalogue file is stored, of the .xyzv file containing the
trajectory data.

• the source argument under geometry with the directory, relative to the
folder where this catalogue file is stored, of the CAD file of the spacecraft.
A supported format is .cmod
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Figure F.1: Earth departure in Cosmographia.

Figure F.2: Moon arrival in Cosmographia.

It’s possible to further customize this file, referring to the COSMOGRAPHIA
documentation. [19]



Bibliography

[1] A Standardized Lunar Coordinate System for the Lunar Reconnaissance Or-
biter and Lunar datasets - LRO Project and LGCWG White Paper Version
5. Tech. rep. NASA Goddard Space Flight Center, 2008.

[2] Victor M. Becerra. “Practical Direct Collocation Methods for Computational
Optimal Control”. In: Modeling and Optimization in Space Engineering. Ed.
by Giorgio Fasano and János D. Pintér. New York, NY: Springer New York,
2013, pp. 33–60. isbn: 978-1-4614-4469-5. doi: 10.1007/978- 1- 4614-
4469-5_2. url: https://doi.org/10.1007/978-1-4614-4469-5_2.

[3] John T. Betts. Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming, Second Edition. Second. Society for Industrial and
Applied Mathematics, 2010, pp. 1, 91–95. doi: 10.1137/1.9780898718577.
eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9780898718577.
url: https://epubs.siam.org/doi/abs/10.1137/1.9780898718577.

[4] John T. Betts. Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming, Second Edition. Second. Society for Industrial and
Applied Mathematics, 2010, pp. 247–248. doi: 10.1137/1.9780898718577.
eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9780898718577.
url: https://epubs.siam.org/doi/abs/10.1137/1.9780898718577.

[5] Collin Bezrouk. The B-Plane Interplanetary Mission Design. 2015. url:
https://slideplayer.com/slide/14571565/ (visited on 09/18/2023).

[6] Dong-Hyun Cho, Youngsuk Chung, and Hyochoong Bang. “Trajectory cor-
rection maneuver design using an improved B-plane targeting method”. In:
Acta Astronautica 72 (2012), pp. 47–61. issn: 0094-5765. doi: https://
doi.org/10.1016/j.actaastro.2011.11.009. url: https://www.
sciencedirect.com/science/article/pii/S0094576511003444.

[7] Dong-Hyun Cho, Donghoon Kim, and Henzeh Leeghim. “Optimal Lunar
Landing Trajectory Design for Hybrid Engine”. In: Mathematical Problems
in Engineering 2015 (June 2015), p. 8. doi: 10.1155/2015/462072.

[8] Andrey B. Sergeyevsky; Gerald C. Snyder; Ross A. Cunniff. “Interplanetary
Mission Design Handbook, Volume I, Part 2 - Earth to Mars Ballistic Mission
Opportunities, 1990-2005”. In: (). url: https://ntrs.nasa.gov/api/
citations/19840010158/downloads/19840010158.pdf.

111



Bibliography 112

[9] Jason Forshaw. “Spacecraft Dynamics and Control: an Introduction A. H. J.
de Ruiter et alJohn Wiley and Sons, The Atrium, Southern Gate, Chichester,
West Sussex, PO19 8SQ, UK. 2013. 569pp. Illustrated. ISBN 978-1-118-
34236-7.” In: The Aeronautical Journal 118.1209 (2014), pp. 37–38. doi:
10.1017/S0001924000010058.

[10] Avanzini Giulio. “Entry, Descent, Landing and Ascent”. PoliTO SEEDS Mas-
ter. Lecture Notes. 2009.

[11] Richard H.Battin. An Introduction to the Mathematics and Methods of As-
trodynamics, Revised Edition. AIAA, Inc., 1999, pp. 395–398.

[12] IAU. IAU 2006 Resolution B3 ). url: https://www.iau.org/static/
resolutions/IAU2006_Resol3.pdf (visited on 09/10/2023).

[13] IAU. IAU(1991) RECOMMENDATION III. url: https://web.archive.
org/web/20070927234636/http://www.iers.org/MainDisp.csl?pid=
98-133 (visited on 09/10/2023).

[14] IAU. Report of the IAU Working Group on Cartographic Coordinates and
Rotational Elements: 2009. url: https://aa.usno.navy.mil/downloads/
reports/Archinaletal2011a.pdf (visited on 09/10/2023).

[15] The MathWorks Inc. fmincon user manual. url: https://it.mathworks.
com/help/optim/ug/fmincon.html (visited on 08/29/2023).

[16] Moriba K. Jah. “DERIVATION OF THE B-PLANE (BODY PLANE) AND
ITS ASSOCIATED PARAMETERS”. In: 2002. url: https://api.semanticscholar.
org/CorpusID:220880539.

[17] Matthew Kelly. “An Introduction to Trajectory Optimization: How to Do
Your Own Direct Collocation”. In: SIAM Review 59.4 (2017), pp. 849–
904. doi: 10.1137/16M1062569. eprint: https://doi.org/10.1137/
16M1062569. url: https://doi.org/10.1137/16M1062569.

[18] NASA’s Navigation and Ancillary Information Facility (NAIF). An Overview
of Reference Frames and Coordinate Systems in the SPICE Context (April
2023). url: https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/
Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.
pdf (visited on 09/10/2023).

[19] NASA’s Navigation and Ancillary Information Facility (NAIF). Cosmo-
graphia spacecraft type catalog. url: https://cosmoguide.org/catalog-
file-defining-a-spacecraft/ (visited on 09/23/2023).

[20] NASA’s Navigation and Ancillary Information Facility (NAIF). cspice_pxform
documentation. url: https://naif.jpl.nasa.gov/pub/naif/toolkit_
docs/IDL/icy/cspice_pxform.html (visited on 09/23/2023).

[21] NASA’s Navigation and Ancillary Information Facility (NAIF). cspice_spkezr
documentation. url: https://naif.jpl.nasa.gov/pub/naif/toolkit_
docs/IDL/icy/cspice_spkezr.html (visited on 09/23/2023).



Bibliography 113

[22] NASA’s Navigation and Ancillary Information Facility (NAIF). Generic
Kernels. url: https://naif.jpl.nasa.gov/pub/naif/generic_kernels/
(visited on 09/10/2023).

[23] NASA’s Navigation and Ancillary Information Facility (NAIF). Spice En-
hanced Cosmographia catalog files. url: https://naif.jpl.nasa.gov/
naif/cosmographia_components.html (visited on 09/23/2023).

[24] NASA’s Navigation and Ancillary Information Facility (NAIF). Spice En-
hanced Cosmographia catalog files. url: https://cosmoguide.org/catalog-
file-overview/ (visited on 09/23/2023).

[25] D. Vallado. Fundamentals of Astrodynamics and Applications. Fourth. Mi-
crocosm Press, 2013, pp. 961–964.

[26] D. Vallado. Fundamentals of Astrodynamics and Applications. Fourth. Mi-
crocosm Press, 2013, pp. 967–986.

[27] Roger R. Bate; Donald D. Mueller; Jerry White. Fundamentals of Astrody-
namics. First. Dover Publications, 1971, pp. 1–49.


