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Summary

In this thesis, small-scale rotors will be analyzed using the CFD solver embedded
in Star-CCM+. We will create a protocol that allows us to generate, from some
input data, different geometries that will later be analyzed in a hovering condition
and compared with a target geometry. The goal of the study is to validate the
entire analysis process, from geometry creation to numerical analysis, setting the
basis for the creation of a larger numerical database.

Chapter 1 is an introductory section to the thesis, highlighting the advantages
of having a robust computational model under the given conditions. Chapter 2
includes a comprehensive discussion of the reduced-order models commonly used
for simplified propeller analysis, introducing the main parameters that we will
study in the simulations.

Chapter 3 illustrates the code used for generating various geometries, accom-
panied by a list of specific geometries that will be analyzed with Star CCM+.
Chapter 4 discusses the methodology adopted in order to solve the rotating flow
around the blade, while the next chapter, Chapter 5, outlines the complete proce-
dure undertaken to develop the CFD model, which is going to be used, and the
results obtained for the target geometry.

In Chapter 6, we will analyze the different geometries studied throughout the
thesis.
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Chapter 1

Introduction

Propeller-based propulsion systems have a rich history of use in both the maritime
and aeronautical domains. Initially, these systems were primarily employed in
large-scale applications. However, in recent decades, there has been a substantial
proliferation in the utilization of smaller devices, such as Unmanned Aerial Vehicles
(UAVs) and drones, across various industries.

Just take, for instance, the burgeoning drone market, where these aerial devices
have witnessed widespread adoption across a diverse range of sectors. Nowadays,
drones play crucial roles in fields such as safety, land surveillance, emergency
response, agriculture and even for recreational enthusiasts. This recent surge can
be attributed to the significant reduction in material costs, a factor that has further
fueled the popularity of these versatile machines.

Figure 1.1: Example of application [1]
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Introduction

The rapid expansion of the drone market has consequently led to the demand
for effective techniques to accurately predict rotor performance. One of the most
efficient means of assessing the performance of small-scale propellers is undoubt-
edly based on experimental testing within controlled wind tunnels. However, this
method becomes impractical in terms of both cost and possibly results, particularly
during the early stages of a project, due to the necessity of replicating specific
environmental conditions and producing multiple blade prototypes.

A viable alternative for evaluating the flow field around a rotating blade is the
utilization of Computational Fluid Dynamics (CFD) simulations. This approach
offers numerous advantages, with the primary one being simplified and less resource-
intensive geometric modeling. This, in turn, allows the reduction of the number of
physical prototypes needed for testing in the wind tunnel.

Throughout my thesis work, I concentrated my efforts on designing a standardized
protocol that enables the testing of different geometric rotor configurations with
a remarkable level of accuracy, all within a relatively brief timeframe and with
minimal direct intervention from an operator.

This procedure will be employed to construct a comprehensive numerical database
that will facilitate the assessment of how alterations of geometric parameters impact
both the performance and the intricate vortex patterns generated through the
interplay between the flow and the blade.

In order to attain this outcome, the following components have been developed:

1. A code that enables the generation of different rotor geometries based on input
data furnished by the operator.

2. A robust simulation setup that ensures a convergence with an adequate spatial
resolution.

2



Chapter 2

Rotary-wing Aerodynamics

In recent years, Computational Fluid Dynamics (CFD) analyses have made sig-
nificant advancements, resulting in improved solutions by either fully or partially
resolving the Navier-Stokes equations while considering many more aspects of the
problem.

Nevertheless, simplified techniques have not been entirely discarded. This happens
because sophisticated analysis tools are not always readily available. In addition,
there is often a preference for obtaining approximate data in order to avoid excessive
computational expenses, particularly during the initial stages of the design process.

Analyzing the aerodynamic performance of a rotor blade is complex due to different
factors:

1. the rotational motion of the blade

2. the change of rotor’s geometry along the sections

3. the reduced Reynolds number that varies along the radial coordinates

In order of complexity, the most common reduced-order models are the Actuator
Disc Model, Simple impulsive theory, Extended Momentum Theory, and the Blade
Element Momentum Theory [2] [3].

The difference between them is related to the "approximations" that are made in
the model.

3
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2.1 Actuator Disc Model
The disk model allows us to greatly simplify the problem if we give up on knowing
exactly the momentum field near the propeller.

The theory rests upon the following assumptions:

• the rotor is substituted by a permeable disc, with the same diameter as the
blade, which lets the external rotational forces generate the motion.

• the fluid is inviscid, stationary, irrotational with an asymptotic velocity equal
to V∞

• pressure jump throughout the disc

Moreover, due to the different energy of the flow between the downstream of the
disc and the external flow, the growth of a contact discontinuity, known as the
wake of the blade, is possible.

Figure 2.1: Model of the blade

We define the mean pressures upstream and downstream of the disk with p′ and
p′ +∆p, respectively, and we apply the Momentum Balance Equation to the volume
enclosed between the surface S∞ and A where A is the area of the actuating disk
while S∞ is the surface enclosing the entire field of the motion.Ú

S∞
(pI + ρ V V) · n dS − ∆p A k = 0 (2.1)

The thrust exerted on the disc is equal to:

T = ∆pA (2.2)

4
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Applying the Continuity equation to the stream tube we can express the flow rate
as follows:

ṁ = ρV∞Am = ρVjAj (2.3)

where Am is the section upstream while Aj is the section downstream.

Finally, if we combine the equation 2.2 and 2.3 and decompose the outer sur-
face in S∞ = S∞ext + Aj + Am, the thrust can be express as:

T = k̄ ∗
Ú

S∞,ext

è
(p − p∞) n̄ + ρV̄ V̄ n̄

é
dS + ṁ (Vj − V∞) + (pj − p∞) Aj (2.4)

In the equation 2.4 we identify three contributions: the first one is the flow through
the lateral surface while the other two are the components concerning the upstream
and downstream of the control volume.

The integral term can be eliminated since it is possible to consider the lateral
surface as a surface of current, for which the momentum flux is zero. The pressure
term is also null since the integral at infinity is of order 1

r2 . With these assumptions
the equation 2.4 becomes:

T = ṁ (Vj − V∞) + (pj − p∞) Aj (2.5)

5
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2.2 Simple impulsive theory

The first theory based on the actuator disk model was developed by Rankine.

Figure 2.2: Model of the simple impulsive theory

In this theory, we will assume that the physical properties within the flow channel
are exclusively dependent on the coordinate z. Moreover we will neglect variations
in the radial and tangential directions. As a consequence, the disk remains unaf-
fected by rotational forces, leading to the condition where pj=p∞, resulting in the
cancellation of the pressure term in equation 2.5.

By indicating the velocity of the disk and the infinitely downstream ones with
V∞ + w and V∞ + wj , if the irrotationality conditions are valid, Bernoulli’s theorem
can be applied to the two portions of the flow tube separated by the disk.

6
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p∞ + ρV 2
∞

2 = p′ + ρ(V∞ + w)2

2 (2.6)

p′ + ∆p + ρ(V∞ + w)2

2 = p∞ + ρ(V∞ + wj)2

2 (2.7)

Adding up the equations 2.6 and 2.7, the pressure jump induced by the rotor can
be expressed as follows:

∆p = ρwj

3
V∞ + 1

2wj

4
(2.8)

By referring to equations 2.2 and 2.5, we obtain:

∆p = ρwj (V∞ + w) (2.9)

Comparing the two previous equations, we derive the fundamental result of this
theory: the axial velocity generated downstream of the propeller doubles
the one generated on the disk.

wj = 2w (2.10)

Hence, the Thrust, as a function of the velocity at the disk, can be expressed as
follows:

T = 2ρA(V∞ + w)w (2.11)

Consequently, the depiction of the model in Figure 2.2 remains coherent for a
propeller in propulsion. In fact, when the thrust T is positive, the axial velocity
will exhibit growth, leading to a streamlining contraction.

Applying the change in kinetic energy between upstream and downstream, the
Power at the drive shaft can be estimated in the following way:

P = ṁ
51
2 (V∞ + wj)2 − 1

2V 2
∞

6
= T (V∞ + w) (2.12)

Having derived the Thrust and rotor Power equations, we can now proceed to
assess the performance of the propeller:

η = TV∞

P
= 1

1 + a
(2.13)

where a = w
v∞

is the axial inductor factor.

7
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The 2.13 equation allows us to notice that the efficiency of the propeller de-
pends only on the axial induction parameter. As a result, assigned the Thrust,
increasing the size of the blade will reduce the induction of the disk and
increase the efficiency. However, structural limitations should always be taken
into account.

Lastly, if we discard the assumption of uniform axial induction along the helix (w
= w(r)) and instead consider that each circular section operates independently
without interaction with the others, we can directly employ the outcomes of simple
impulsive theory to the individual circular sections:

dT = 4πrρV 2
∞(1 + a)adr; T = 4πrρV 2

∞

Ú R

0
(1 + a)ardr (2.14)

dP = 4πrρV 3
∞(1 + a)2adr; P = 4πrρV 3

∞

Ú R

0
(1 + a)2ardr (2.15)

2.3 Extended Momentum Theory
The simple impulsive theory was obtained by considering exclusively the axial
velocity’s effect while neglecting the variations of radial and rotational velocity.
This extended theory introduced the blade rotation’s effects with an additional
component (v) which allows the theory to represent considerably better the fluid
flow in the vicinity of the propeller.

Figure 2.3: Model of the extended momentum theory [2]

8



Rotary-wing Aerodynamics

As radial variations in velocity are present now the adequate volume of control to
apply conservation laws would be an annular differential control volume enclosed
by two stream tubes placed at r and r+dr and two normal planes to the rotation
axis placed at z and z+dz.

Figure 2.4: Annular differential control volume for EMT [2]

The steady-state angular momentum conservation equation can be written as:Ú
S

ρ(r⃗ × V⃗ )V⃗ · n⃗dS +
Ú

S
r⃗ × pn⃗dS = 0 (2.16)

Since the pressure field is symmetrical for the axial axis of the blade, the pressure
integral is zero and the only "non-zero" term is the convective flux of the two
perpendicular surfaces to the axis.

By applying the conservation of the mass to the model, we obtain that:

∂

∂z
(vr) = 0 (2.17)

which integrated becomes:
vr = w2r = costant (2.18)

The change in angular velocity from 0 to w across the disk consequently implies
the action of a torque dQ, which is equal to:

dQ = wr2ρV dA (2.19)

9
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Knowing that:
dA = 2πrdr (2.20)

and introducing the rotational influence factor:

a′ = w

2Ω (2.21)

which represents the kinetic energy lost due to the rotation of the fluid particles
around the blade.

The torque can be expressed as:

dQ = 4πr3ρV Ωa′dr (2.22)

Lastly, it is possible to define the power of the blade:

P =
Ú R

0
ΩdQ =

Ú R

0
4πr3ρV Ω2a′dr = a′Ω2ρV πR4 = ṁa′Ω2R2 (2.23)

and efficiency:
η = TV∞

P
= 1 − a′

1 + a
(2.24)

Relations 2.11, 2.22 and 2.24 are the fundamental equations of general impulsive
theory.
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2.4 Blade Element Theory
Even though the Extended Momentum theory can provide reliable preliminary
data, it seems evident that, in order to design propeller blades, geometry has to be
included. The blade element theory divides each blade into parts perpendicularly
to the radial axis with the thickness dr, while the flow can be considered 2D in
each element.

Let’s consider one element dr at radial position r:

Figure 2.5: Model of the Blade Element Theory [4]

The pitch angle β can be evaluated as follows:

β = α + Φ (2.25)

where α is the angle of attack, while Φ is the angle formed by the velocity triangle
and is equal to:

Φ = arctan Vi

Ωr
(2.26)

The relative velocity can be estimated from the triangle of velocity as follows:

|V⃗e| = Vie⃗z + Ωre⃗θ =
ñ

V 2
i + (Ωr)2 (2.27)

where Vi is the axial velocity.
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Having defined the following parameters, we can now evaluate the aerodynamic
forces acting on each radial element:

δL(r) = 1
2ρVe(r)2cδrCL(r) (2.28)

δD(r) = 1
2ρVe(r)2cδrCD(r) (2.29)

Looking at the figure, we can understand how to bind the expression of the
aerodynamic forces with the Thrust, which is normal at the rotor plane:

δT (r) = δL cos(Φ(r)) + δD sin(Φ(r)) (2.30)

δQ(r) = (δD cos(Φ(r)) + δL sin(Φ(r)))r (2.31)

By integrating the expression 2.30 and 2.31 along the entire extension of the blade
we obtain the value of Thrust and Power for each propeller blade:

T = N
Ú R

0
δT (r)dr (2.32)

P = Nw
Ú R

0
δQ(r)dr (2.33)
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2.5 Blade Element Momentum Theory (BEMT)
As was previously pointed out, the main advantage of BET was the fact that it
took into account the propeller geometry, however, it has the weakness of not being
able to calculate the velocity induced at the disc. This issue can be overcome if we
combine the "Blade Element Theory" with the "General Impulsive Theory" and set
up an iterative solution. We also introduce the effects of the tangential velocity
component through the tangential induction factor a’.

Figure 2.6: Model of the Blade Element Momentum Theory [4]

Let’s recall the expression of the Lift and Drag of the wing profile:

L = 1
2ρV 2

RELClc (2.34)

D = 1
2ρV 2

RELCdc (2.35)

The relationships between the aerodynamic parameters and the Thrust and
Power are:

CP = Cl sin (ϕ + αi) + Cd cos (ϕ + αi) (2.36)

CT = Cd cos (ϕ + αi) − Cl sin (ϕ + αi) (2.37)
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By integrating along the entire extension of the propeller and multiplying for the
number of blades, such as 2.32 and 2.5, we obtain:

T = N
Ú R

0

51
2ρV 2

EcCl cos (ϕ + αi) − 1
2ρV 2

EcCd sin (ϕ + αi)
6

dr (2.38)

P = Nω
Ú R

0

51
2ρV 2

EcCl sin (ϕ + αi) + 1
2ρV 2

EcCd cos (ϕ + αi)
6

rdr (2.39)

By taking into account the following relationships:

V 2
R = V 2

∞ + (ωr)2 (2.40)

V 2
E = V 2

R cos (αi)2 =
1
V 2

∞ + (ωr)2
2

cos (αi)2 (2.41)

VE cos (ϕ + αi) = V∞(1 + a) (2.42)

VE sin (ϕ + αi) = ωr (1 − a′) (2.43)

the equations 2.38 and 2.39 can be written in their non-dimensional form:

CT = π
8
s R

r0

3
J2 + π2

1
r
R

22
4 1

Nc
πR

2
cos (αi)2 [CL cos (ϕ + αi) − CD sin (ϕ + αi)]dr

(2.44)

CP = π
8
s R

r0

3
J2 + π2

1
r
R

22
4 1

Nc
πR

2
cos (αi)2 [CL sin (ϕ + αi) + CD cos (ϕ + αi)] r

R
dr

(2.45)

The angle αi represents the first link between the two theories. The second one is
derived by equalizing, in the iterative process, the Thrust and Power coefficients
derived separately from the two different theories.
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Figure 2.7: Iterative process [2]

The iterative starts with the values of a and a’ in order to derive the values of αi.
By noting this parameter, it is possible to calculate the aerodynamic performances
(Thrust and Momentum), which are used to evaluate, with the Momentum Theory,
the two assumed parameters and check if they coincide with the initial guest.
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2.6 Propeller Performance
The propeller performance is dependent, apart from the geometry of the propeller,
on the following parameters:

• Propeller diameter (D)
• Inflow velocity (V)
• Fluid density (ρ)
• Fluid dynamic viscosity (µ)
• Rotation rate (n)
• Speed of sound (a)

Carrying out a dimensional analysis, the performance dependents only on three
non-dimensional parameters:

• Advance ratio
J = V∞

nD
(2.46)

• Reynolds
Re = ρnD2

µ
(2.47)

• Mach
M = nD

a
(2.48)

With this parameter, we can introduce the following non-dimensional coefficients:

• Thrust coefficient
CT = T

ρΩ2πR4 (2.49)

• Torque coefficient
CQ = Q

ρΩ2πR5 (2.50)

• Power coefficient
CP = 2πCQ (2.51)

• Efficiency
η = JCT

CP

(2.52)

where Ω =[rad/s]

The general performance of a propeller is usually defined by the functional curves
CT =CT (J, Re, M) and CQ = CQ(J, Re, M).
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Chapter 3

Geometry Generation

3.1 Code Explanation
The primary goal was to create a code capable of generating various geometry
models. In order to achieve this result, a macro was utilized. The macro uses an
Excel file that contains the profile positions section-by-section and automatically
constructs the rotor blade within Solidworks. The code for generating the Excel
file was developed in previous studies [4] and requires, as input data, a table
containing the geometric information of the blade and Airfoil chosen.

Table 3.1: Example of geometry matrix [4]
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Geometry Generation

where:

• r
R

is the radial position for each section of the blade;

• c
R

is the cord distribution;

• β is the pitch angle;

• position of the quarter chord line.

Since we want to generate geometries without utilizing scans of existing blades,
we need to find a method that allows us to determine the required parameters of
the matrix for all the sections. Considering the data required, we decided to use
parameters that are commonly used for commercial blade classification.

The data inputs utilized are the following:

Figure 3.1: Example of Data input

The first two parameters are used for the identification of the size of a propeller
-e.g. ”15 X 10”- and they indicate respectively the pitch and diameter of the rotor.

18
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Figure 3.2: Pitch of the rotor

The diameter of the propeller is that of the outer disk, which is generated
during rotation, while the pitch is the distance the propeller travels in one complete
revolution. The pitch value is not constant due to the twisting of the blades near
the hub so the value reported corresponds to 75% of the disk radius, referred to as
conventional pitch.

The third and fourth parameters are used for the evaluation of the chord distri-
bution.

The solidity is defined as the fraction of the annular area in the control vol-
ume, which is covered by blades. For a rotor with N blades, R radius and c chor,
the rotor solidity is equal to:

σ = Srot

Sdisc

= Nctip0.85
πR

(3.1)

The last data input is used to determine the number of sections in which we divide
the blade.

In detail, two codes were created: one that generates geometries with fixed chords
and the other with variable chords.
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3.2 Constant chord blades
• The radial position of each section was determined by dividing a unit vector

into the desired number of sections.

• The chord distribution was determined with the definition of solidity:

ctip = σRπ

Npale0.85 (3.2)

where the value of 0.85 is due to the fact that the rotor section is not complete,
considering that the first 15% of the blade is occupied by the hub.
Since the chord remains constant, the value that was estimated with 3.2 is the
chord at the tip of the blade and it was subsequently assigned to each section
along the blade’s length.

• the pitch angle was calculated through the definition of the pitch:

β = arctan ( p

2πr0.75) (3.3)

Certainly, as the value of "r" decreases, the angle ”β” tends to increase, poten-
tially approaching infinity. In order to correct this problem, I approximated
the value of β at the leading edge and then conducted an interpolation between
this value and the others which were determined using equation 3.3.

Figure 3.3: Example of pitch corrections

20



Geometry Generation

3.3 Variable chord blades
For these blade types, the radial position and pitch angle were determined in the
same way discussed in 3.2.

For our initial study of the parameters, it was decided to examine two specific
geometries. The first geometry aims for a relatively uniform chord distribution
with a peak around half the radius to approximate an elliptical blade shape. The
second geometry, on the other hand, aims to obtain a characteristic distribution
with a peak near 25%.

First of all, we calculated the chord at the tip using the following equations:

σ = Npale

s R
0.15R c(r)dr

πR2 = ctipNpale

πR
[ln 1/r]R0.15R (3.4)

Once the value to the tip has been determined, in order to obtain these two
geometries, different formulations of c(r) were employed:

• one involving the square root to relax the value of the distribution (
ñ

c/R)

• the other without it (c/R)

After establishing the two chord distributions, a correction was required, similar
to the one carried out for the pitch angle. We assigned to the root of the blade
the value of the chord of the tip and then performed an interpolation between this
value and the two distributions, which were truncated at 50% and 25% of the blade
length respectively.
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An example of the correction is shown in the following picture:

Figure 3.4: Example of chord distribution with a peak at 25%

After discussing the two codes, an example of both blades obtained is shown in
the figures 3.5 and 3.6.

Figure 3.5: Example of constant chord blade
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Figure 3.6: Example of variable chord blades

The following table shows the geometries that were created and tested with the
analysis procedure. These blades will constitute our initial numerical database.

Blade Pitch Diameter Solidity N_section V.Chord Dist.
P5_D15_S0.1 5 15 0.1 20 NO
P7_D15_S0.1 7 15 0.1 20 NO
P10_D15_S0.1 10 15 0.1 20 NO
P5_D15_S0.05 5 15 0.05 20 NO
P5_D15_S0.15 5 15 0.15 20 NO
P5_D15_S0.1_peak 50% 5 15 0.1 20 YES
P5_D15_S0.1_peak 25% 5 15 0.1 20 YES

Table 3.2: List of geometries tested during the research
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Chapter 4

Mathematical Model

The main goal of this chapter is to give an overview of the method used to model
rotating flows in Star CCM+. After that will present the turbulent model used in
our analysis.

4.1 Moving Reference frame Approach
Among the available procedures that have been tested and validated, our decision
ended up using a stationary approach, because it is optimal in the case of axisym-
metric bodies and requires significantly less computational cost compared to the
unsteady one [4],[5].

Constant rigid body motion can be solved using steady-state approaches, even
though the flow field will be unsteady if we use a moving reference system, which can
be either rotational or translational. If the moving elements are placed in a control
volume associated with this non-stationary reference system, the time-averaged
characteristics of the flow can be computed.Even more, in order to have reasonable
results, the volume surrounding the rotating region must be axially symmetrical
and the free-flow velocity should be parallel to the axis of rotation.

A change of reference system was hence adopted for the inner region so that
the calculated quantities would be based on a rotating reference system centered
on the propeller axis [6].

24



Mathematical Model

Figure 4.1: Coordinate system in static and rotating frames of reference
[6]

In this system, the fluid velocity can be expressed as:

v⃗ = v⃗r + (ω⃗ × r⃗) (4.1)

where v⃗ is the absolute velocity (velocity viewed from the stationary frame), v⃗r

is the relative velocity (velocity viewed from the rotating frame) and (ω⃗ × r⃗) is
"whirl" velocity (the velocity due to the moving frame).

The steady-state incompressible Navier-Stokes in conservative form can be ex-
pressed as:

∇ · (ρv⃗) = 0 (4.2)

∇ · (ρv⃗v⃗) = −∇p + µ∇ · ∇(v⃗) (4.3)

For the absolute velocity, the equations of Navier Stokes are:

∇ · (ρv⃗) = 0 (4.4)

∇ · (ρv⃗rv⃗) + ρ(ω⃗ × V⃗ ) = −∇p + µ∇ · ∇(v⃗) (4.5)

Ultimately, the governing equations for fluid flow within a consistently rotating
frame, accounting for relative velocity, can be expressed as:

∇ · (ρv⃗r) = 0 (4.6)

∇ · (ρv⃗rv⃗r) = −∇p + µ∇ · ∇(v⃗r) − ρ(2⃗ω × v⃗r) − (ω⃗ × ω⃗ × r⃗) (4.7)
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The last two terms in the equation 4.7 are the Coriolis and Centripetal accelera-
tions due to the non-inertial reference frame. It is important to point out that if
the rotating domain is too small, the interfaces will be too close to the helix, and
as a result, unphysical velocity distributions will be generated near the interfaces
separating the two regions [6].

4.2 Turbulence modelling
While the boundary layer may exhibit laminar behavior, the Reynolds numbers
present in our problem could generate a turbulent wake, which means that the tur-
bulent scales must be solved to guarantee accurate results. STAR CCM+ provides
3 approaches: Reynolds-Averaged Navier-Stokes (RANS), Unsteady Reynolds-
Averaged Navier-Stokes (URANS), and Large Eddy Simulation (LES) [7].

All three methods have their merits and demerits but we opted for the RANS
approach to minimize computational costs. Additionally, it allowed us to use a
steady-state approach while still achieving good accuracy in the results.

4.2.1 Reynolds Average Navier-Stokes (RANS)
RANS modeling originates from the Navier-Stokes equations. The average quan-
tities of the variables are substituted into these equations and the resulting is
averaged over time [4],[8].

In order to obtain these equations, Reynolds decomposition is performed:

u⃗ = ⃗̄U + u⃗′ (4.8)

p = ⃗̄P + p′ (4.9)
T = Φ + T ′ (4.10)

In the stationary case, average magnitudes can be evaluated with a time average
as follows:

Ū(x⃗, t) = 1
2T0

Ú t+T0

t−T0
U (x⃗, t′) dt′ (4.11)

In the process of time averaging, by definition, the time average of a fluctuat-
ing quantity is zero, so the obtained result is greatly simplified.

U ′ ≡ 1
∆t

Ú t0+∆t

t0
U ′dt = 0 (4.12)
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The result equations are:
∇ · V⃗ = 0 (4.13)

ρ∇ · (V̄ V̄ ) = −∇p + ∇ ·
1
τ ′

U − ρu′u′
2

(4.14)

ρCP V⃗ ∇h = ∇ ·
3

K∇V⃗ − ρCP T ′
−→
V ′
4

(4.15)

where:
τ ′

U = µ
è
∇V⃗ + (∇V⃗ )T

é
(4.16)

The effect of compressibility, field forces, and viscous dissipation terms have been
neglected, as have the time-dependent terms since the simulation is steady.

The term −ρu′u′, known as the Reynolds stress tensor, is the mean flux of momen-
tum due to turbulent fluctuations and its divergence appears as volumetric forcing
of the mean flow. This term, which appears as unknown in the Reynolds equations,
is determined by a turbulence model (closure problem), either via:

• the turbulent viscosity hypothesis

• the modeled Reynolds-stress transport equations.

Among the two approaches, the first is preferred for computational use because it
is easier to apply and the computational cost required is lower compared to RST.
The turbulent viscosity hypothesis is based on the analogy between the molecular
diffusion process and turbulent motion.

We introduce the parameters µt, known as turbulent eddy viscosity, which al-
lows us to express the stress tensor as a function of average quantities.

For the determination of the µt there are different approach:

• Spalart-Allmaras (1 equation)

• k − ϵ (2 equations)

• k − ω (2 equations)

The choice of the model was made by consulting the STAR CCM+ user’s guide,
which suggested the SST k-ω model, which is suitable for aerospace applications
and advantageous in case of a mesh refinement process, which is essential for our
application [7].
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4.2.2 k-ω Models
The model attempts to predict turbulence by two partial differential equations for
two variables, k, and ω, with the first variable being the turbulence kinetic energy
(k) while the second (ω = k

ϵ
) is the specific rate of dissipation.

The two additional balance equations that solve the two quantities are:

∂k

∂t
+ Uj

∂k

∂xj

= τij
∂Ui

∂xj

− β∗kω + ∂

∂xj

CA
v + σ∗ k

ω

B
∂k

∂xj

D
(4.17)

∂ω

∂t
+ Uj

∂ω

∂xj

= α
ω

k
τij

∂Ui

∂xj

− βω2 + σd

ω

∂k

∂xk

∂ω

∂xj

+ ∂

∂xj

CA
v + σ

k

ω

B
∂ω

∂xj

D
(4.18)

With these two quantities, the turbulent eddy viscosity can be derived by:

µt = 0.009ρ
k

ω
(4.19)

One of the advantages of this model concerns the possibility of being used on
the entire boundary layer, but the disadvantage, on the other hand, is related to
the fact that it is very sensitive to the variation of ω outside the boundary layer,
which results in greater sensitivity to the boundary conditions of internal flows.

The k-w model was subsequently improved and these problems were solved in
the SST k-ω turbulence model [9], which exploits the wall advantage of the k-ω
model and the insensitivity to boundary conditions of the k-ϵ model. A function is
used to weigh the contributions of the two models as the distance from the wall
changes.

Obviously, the computational cost increases slightly as it employs both meth-
ods but the SST k-ω model shows good behavior in adverse pressure gradients and
separating flow [9].
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Chapter 5

Test Case:Blade P5-D15-S0.1

This chapter will outline the simulation setup and the optimization procedure
employed to attain a convergent configuration. Following the description of the
experimental setup, we will present the results obtained for the P5-D15-S0.1 blade
and analyze the impact of mesh variations on the outcomes.

5.1 Fluid Domain
During the first months of testing, a single-region configuration was tested. How-
ever, the main issue encountered was a highly unstable flow in the front area of
the blade, significantly delaying the full development of the physical phenomenon
and compromising solution convergence. For this reason, we decided to revert our
approach to the two-region one.

Figure 5.1: Fluid Domain
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Test Case:Blade P5-D15-S0.1

The outer region will be solved in a steady reference frame. The choice to use a
steady-state approach, as explained in 4, implies that the computational domain
must also be axisymmetric. For the shape, a conical one was chosen in order to
limit possible flow reversals.

Figure 5.2: Outer region

For the inner region, we change reference systems and solve on a rotating
reference frame that moves with the helix. This allows, as seen in 4.1, to use a
stationary solver while maintaining unstable phenomena within the rotating.

Figure 5.3: Inner region
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Test Case:Blade P5-D15-S0.1

5.2 Boundary Condition and Interface
A system of direct interfaces, underlined with the blu color, was used to connect
the two reference systems, allowing quantities to be transmitted from the rotating
system outward. This obviously requires that the rotating domain be large enough
in order for the internal flow to develop.

An additional advantage of this method, which is also favorable for our purpose,
is related to the possibility of using a periodic interface. This allows everything
coming out from one region to be replicated in the input of another. This interface
feature enabled us to cut the computational domain in half, leading to a significant
reduction in simulation time. As for the results, we will simulate them for the
motion of a single-bladed propeller, and then they will be adjusted according to
the number of blades it consists of.

Figure 5.4: External region Boundary conditions

Regarding the boundary conditions, both an inlet and outlet condition were
applied to the external domain.

At the inlet, a predefined velocity value was assigned. This decision was made due
to the occurrence of counter-rotating vortices at the blade tip when simulating a
propeller in a hovering state. This vortex, once detached from the blade, does not
become entrained by the downstream external flow but it persists in its original

31



Test Case:Blade P5-D15-S0.1

position and progressively expands. The assigned velocity has an axial component
and is set to a low value of 0.1 m/s aims to accelerate the convergence. At the
outlet, a pressure condition was applied, keeping the default conditions assigned by
STAR-CCM+.

For the inner region, we assigned to rotational reference a rotation of 3000 RPM.

Figure 5.5: Inner region Boundary conditions

5.3 Grid Generation
In order to capture the flow that interacts with our blade, it was necessary to create
a mesh optimization process, carried out in the following stages:

1. Baseline mesh generation

2. Two iterations of adaptive mesh refinement plus slight mesh refinement

3. Massive refinement in the area within the rotating domain

5.3.1 Baseline mesh
Simcenter STAR-CCM+ contains different types of meshing models that can be
used to generate a volume mesh, starting from a suitably prepared surface.
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Test Case:Blade P5-D15-S0.1

The five types of meshing models are:
• Tetrahedral: tetrahedral cell shape-based core mesh
• Polyhedral: arbitrary polyhedral cell shape-based core mesh
• Trimmed: trimmed hexahedral cell shape-based core mesh
• Advancing Layer Mesh: polyhedral core mesh, with in-built prismatic layers
that advance inward from a polygonal surface mesh.

Among all these methods, the polyhedral grid was chosen because it gives the
possibility of performing adaptive refinement by choosing cell sizes, which was
found to be crucial to vortex complete development [7].

Polyhedral Mesh

In the following section, the surface parameters assigned to each element belonging
to the fluid domain will be presented for the baseline grid case:

Base size 4 m

Custom control: External Domain Target Surface Size: 4%,0.16 m
Minimum Surface Size: 2%,0.08 m

Custom control: Internal Domain Target Surface Size: 2%, 0.08 m
Minimum Surface Size: 1%,0.04 m

Custom control: Blade’s Hub Target Surface Size: 0.5%, 0.02 m
Minimum Surface Size: 0.05%, 2 e-3 m

Custom control: Blade’s Tip Target Surface Size: 0.0075%, 3e − 4 m
Minimum Surface Size: 0.005%,2e-4 m

Custom control: Blade Target Surface Size: 0.1%, 4e − 3 m
Minimum Surface Size: 0.01%,4e-4 m

Table 5.1: Surface Controls
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Test Case:Blade P5-D15-S0.1

Figure 5.6: Detail of the mesh result after controls

Prism Layer Mesher

In order to solve appropriately the boundary layer of the blade, it is necessary to
include a prism layer in the near wall region. STAR CCM+ allows three kinds of
wall treatments [7]:

• "Low y+ treatment", is equivalent to the traditional low Reynolds number
approach. This method tries to resolve the viscous sublayer and requires a
sufficiently fine mesh with near-wall cells located at y+ of around unity.

• "High y+ treatment", which models with wall functions up to the buffer
layer and attempts to solve the logarithmic layer

• "All y+ treatment" uses blended wall functions that emulate the low y+ wall
treatment for fine meshes, and the high y+ wall treatment for coarse meshes.

In this case, the choice fell on the last one since it is assigned as the default by the
STAR CCM+ chosen turbulence model. In order to achieve this, it is essential
to determine the "prism layer near wall thickness" to ensure that the normalized
height of the first cell is below y+ = 1.
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The following equations were used for estimating this parameter:

Re = ρ · Ω · Lboundary layer

µ
(5.1)

Cf = [2 log10 (Rex) − 0.65]−2.3 for Rex < 109 (5.2)

τw = Cf · 1
2ρU2

freestream u∗ =
ó

τw

ρ
(5.3)

y = y+µ

ρu∗
(5.4)

Freestream Velocity 60 m/s
Density 1.225 kg/m^3
Dynamic Viscosity 1.82 e-5 kg/ms
Boundary layer length 0.1905 m
Desired Y+ value 1

Through the following formulas, the obtained value for the height of the first
cell at the wall was equal to:

∆s = 6e−6 m (5.5)

Figure 5.7: Detail of the prism layer
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The prism layer settings are shown in Table 5.2, while the prism layer controls
applied to the parts of the propeller are shown in Table 5.3.

Stretching function Hyperbolic Tangent
Stretching Mode Wall Thickness
Minimum Thickness Percentage 0.01
Layer percentage Reduction 0.0

Table 5.2: Prism Layer settings

Base size 4 m

Custom control: Blade’s Hub
Number of prism layer: 10
Prism layer Near wall thickness: 6.2 e-6 m
Prism layer total thickness: 0.01%,4 e-4 m

Custom control: Blade’s Tip
Number of prism layer: 12
Prism layer Near wall thickness: 6 e-6 m
Prism layer total thickness: 0.01%,4 e-4 m

Custom control: Blade
Number of prism layer: 15
Prism layer Near wall thickness: 6 e-6 m
Prism layer total thickness: 0.01%,4 e-4 m

Table 5.3: Prism Layer Mesher controls

5.4 Adaptive mesh refinement (AMR)
Once the baseline mesh was defined, an additional mesh refinement step was needed
to capture in detail the flow around the blade.

The AMR was used because it refines the computational mesh dynamically only in
areas where needed to capture the relevant flow features while recovering coarser
cells elsewhere. In order to carry out the refinement, the parameter known as
"Q-criterion" was used to identify the vortices coming off the blade [7], [10].
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5.4.1 Q-Criterion
According to the study conducted by [11], three different vortices detach and,
depending on the operating regime, interact with each other and distort downstream
of the propeller. These vortices are called tip vortex, root vortex and hub vortex,
named after the point on the propeller where they form.
The Q-criterion is defined as [10]:

Q = 1
2 (ΩijΩij − SijSij) = 1

4
1
ω2 − 2SijSij

2
(5.6)

where Ω and S are respectively the antisymmetric and symmetric parts of the
velocity gradient tensor.

Ωij = 1
2

A
∂ui

∂xj

− ∂uj

∂xj

B
(5.7)

Sij = 1
2

A
∂ui

∂xj

+ ∂uj

∂xi

B
(5.8)

The Q-Criterion represents the balance between the vorticity increase Ω2 and the
particle deformation ratio S2. In the center of the vortices, the vorticity increases
greatly so Q becomes positive.

Assuming incompressibility, we have the following expression:

Q = 1
2

∇2p

ρ

5.4.2 Field Functions Definitions
Having explained the physical meaning of the Q-Criterion, we define a Field
Function used for the refinement of the rotating domain and identify the vortex
around the blade:

(($WallDistance > 0.0005)&&($Qcriterion > 1000))?0.0025 :
(($$Position[0] > −0.02)&&($WallDistance > 0.0005)&&

((pow($$Position[1],2) + pow($$Position[2],2)) < 0.048))?0.004 : 0
(5.9)
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Test Case:Blade P5-D15-S0.1

Figure 5.8: Field functions Applications

Figure 5.8 shows how the Q-Criterion can identify vortices and perform a refine-
ment in those regions to resolve them more accurately (yellow region). Through
the field function, we also performed a slight refinement of the wake. (brown region).

An example of mesh refinement is shown in the figure below:

Figure 5.9: Adaptive mesh effect
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Test Case:Blade P5-D15-S0.1

5.4.3 Refine mesh options
The refinement procedure has been automated and is divided into 3 steps:

• 5000 iterations of baseline mesh to allow the flow to fully develop

• Two adaptive refinement of 2500 iterations plus slight mesh refinement to
gradually more accurately capture the three vortices generated by the blade
interaction.

• A volumetric refinement in the area contained within the rotating domain will
conclude the procedure to convergence

All the parameters assigned to both the mesh during the procedure are given in
the following tables:

Table 5.4: Surface refinement

Table 5.5: Prism Layer refinement
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Test Case:Blade P5-D15-S0.1

5.5 Blade P5-D15-S0.1
The analysis procedure, described in the previous sections, was tested on the
following geometry. We will use the P5-D15-S0.1 as reference geometry for the
comparisons that will be discussed in the next chapter.

It should be mentioned that all the values that will be reported are for a sin-
gle blade. As we explained in paragraph 5.2, is possible to double them to obtain
the values for the complete rotor.

Figure 5.10: Blade P5-D15-S0.1
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Test Case:Blade P5-D15-S0.1

5.6 Solver Convergence
Three essential conditions must be satisfied to confirm the convergence of the
simulation:

• A reduction of the globally scaled residuals by at least 10−3 for all equations.

• Stabilization of the residuals quantities for several iterations before stopping
the simulations.

• Convergence of integral quantities such as Thrust and Torque

As evident from the figure 5.11, the three phases of mesh refinement can be seen,
ending at the 10000 iterations. Additionally, starting from the 19000th iteration,
all parameters have exhibited stability, satisfying the initial convergence criterion.

Figure 5.11: Residuals convergence

The same assessment was carried out for the aerodynamic parameters under
study as introduced in Chapter 2.
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Test Case:Blade P5-D15-S0.1

Figure 5.12: Thrust convergence

Figure 5.13: Torque convergence
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Test Case:Blade P5-D15-S0.1

5.7 Performance Analysis
The obtained aerodynamic parameter values, in 5.6, will be used to evaluate the
impact of the geometric changes.

Table 5.6: Performance value of P5-D15-S0.1

Given that in the hovering condition, the definitions of efficiency and feed ratio are
meaningless due to zero velocity, we evaluated the efficiency (figure of merit) using
the following equation [2]:

FM = 1√
2ρ

T

P

ó
T

A
(5.10)

According to [2], a rotor with good performance in hovering is characterized by
FM ≈ 0.7/0.8.

In addition, the distribution of these quantities along the blade geometry was
also evaluated. These graphs will provide valuable insights into how performance
varies locally with changes in geometry.

Figure 5.14: Thrust distribution per unit length
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Test Case:Blade P5-D15-S0.1

Figure 5.15: Torque distribution per unit length

The trends obtained are quite accurate, comparing them with the one reported
in [12], especially up to 80-90%. Towards the blade’s end, the curves exhibit a
slightly modified pattern, particularly evident in the torque graph which could be
caused by the effect of the tip vortex.

Figure 5.16: Tip vortex visualization

As depicted in Figure 5.16, the tip vortex is formed when high-pressure air under the
wing flows outward and meets with low-pressure air above the wing. This pressure
differential gives rise to a force encircling the wingtip, consequently shaping the
vortex. The existence of the vortex tip at the blade’s end leads to an augmentation
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Test Case:Blade P5-D15-S0.1

of the local velocity at the tip, subsequently causing a decrease in pressure, as
illustrated in figure 5.16.

Figure 5.17: Low-pressure zone at the tip of the blade

The decrease in pressure induced by the vortex at the tip leads to a suction peak.
In order to see this peak we assessed the pressure distribution in the two areas
highlighted in figure 5.17.

Figure 5.18: Comparison of pressure distribution in two blade sections
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Test Case:Blade P5-D15-S0.1

Through the figure 5.18, we can clearly see the suction peak which is not present in
the other section. Furthermore, owing to this suction peak, the pressure distribution
covers a larger area compared to one of the other sections, resulting in an increase
in the generated Lift. However, this marginal Lift increase is offset by a substantial
rise in induced Drag, primarily responsible for the spike highlighted in graph 5.15.

Figure 5.19: T/Q distribution per unit length

Furthermore, figure 5.19 shows the disadvantage of this vortex structure with
the need to introduce a tip correction to mitigate the tip vortex effect.
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Test Case:Blade P5-D15-S0.1

5.8 Qualitative data
Since these vortex structures influence the blade’s performance, it is interesting
to evaluate potential shape, position, and size alterations with variations in the
key geometric parameters. As reported in [11], three wake vortices develop in a
helix: a hub vortex, a root vortex, and the one starting from the ends of the blade,
known as a tip vortex.

Figure 5.20: Isosurface Q-Criterion 5000/s2

In order to notice possible changes during the geometry comparison some analysis
of different Q-Criterion sections will be performed:

Figure 5.21: Q-criterion Y-section at 0.00 m and 0.04 m
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Test Case:Blade P5-D15-S0.1

Figure 5.22: Q-criterion Y-section

Through this section, all three vortex structures can be identified. Near the
end of the blade, we can see the tip vortex which has already made a half rotation
around the blade and passed underneath it. Slightly further down it is possible
to notice the same vortex, which accomplished another rotation, reduced its size
and it is less intense. These details are a symptom of the dissipation of the vortex.
Near the hub of the blade, an important vortex is clearly visible, which is generated
downstream of the blade. Lastly, we can identify the root vortex that has a very
thin structure with two zones of peak Q-criterion.

The section at y=0.04 m provides a detailed view of the vortex forming at the wing
tip and its complete evolution. The vortex, visible in the upper right corner, is
gaining energy, leading to an increase in its size in the first rotation. After that, it
gradually decreases his peak of the Q-criterion, indicating a reduction in vorticity.
Furthermore, this image showcases the fully developed vortex at the wing’s root,
displaying its distinctive characteristic shape.
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Test Case:Blade P5-D15-S0.1

To conclude the qualitative study made on our geometry, the "Wall Shear Stress"
parameter was evaluated. With this quantity, it is possible to identify the areas of
main flow separation leading to the formation of the previously analyzed vortices.
In fact, negative values of this quantity denote flow separations.

Figure 5.23: Wall Shear Stress

In figure 5.23, several areas where the Wall Shear Stress is negative are highlighted.
The first one, the red circle, highlights a little separation point at the tip of the
blade. The orange one highlights a huge separation zone on the upper surface of the
blade. We can identify both the "line of separation" and the "line of reattachment".
Its extension is comparable to the root vortex dimensions visible in figure 5.22.
Lastly, the green one highlights the separation area on the blade’s hub.

Figure 5.24: Cell Relative Velocity streamlines on the blade with separation
detail
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Test Case:Blade P5-D15-S0.1

Figure 5.24, shows the relative velocity of the cells between the blades. The flow
in the positive "Wall Shear Stress" zone remains attached to the blade and follows
its shape. In contrast, in the separation zone, the flow tends to move radially
toward the blade tip under the influence of centrifugal force and subsequently aligns
with the blade’s shape at the reattachment line.

Lastly, with figure 5.25, we can observe a region characterized by negative ve-
locity near the wingtip, where the counter-rotating vortices are located.

Figure 5.25: Detail of the downstream wake
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Test Case:Blade P5-D15-S0.1

5.9 Mesh independence study
To conclude the study of blade p5-d15-s0.1, an analysis of the effect of mesh was
carried out. The following configurations were obtained by modifying the base size
from the baseline.

The cases analyzed are reported below:

Cells [Millions] Base size Thrust [N] Torque [N*m]
1 Baseline Mesh 2.34 0.054
3 6m 2.3828 0.0522
6 4m 2.412 0.052
9 3m 2.404 0.0521
20 2m 2.43 0.0523

Figure 5.26: Effect of mesh variations on the Thrust
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Test Case:Blade P5-D15-S0.1

Figure 5.27: Effect of mesh variations on the Torque

For both the aerodynamic parameters, the effect of variation from one mesh
to another after 6 million doesn’t even reach one percent. This result shows the
crucial role of adaptive refinement since, once the vortical structures have been
solved, an increase in the mesh has a low impact on the solution.

Subsequently, we evaluated local variations by plotting the distribution of Thrust
and Torque as the mesh was modified.

Figure 5.28: Effect of mesh on Thrust distribution
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Test Case:Blade P5-D15-S0.1

Figure 5.29: Effect of mesh on Torque distribution

In the following graphs, it is evident that local variations are noticeable only in
the case with 1 million cells, where the mesh remains relatively coarse. Conversely,
in the other cases, there is minimal variation observed across the various simulations.

Figure 5.30: Effect of mesh on T/Q distribution
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Chapter 6

Effects of geometric
variations on blade
performance

After concluding the validation of the analysis procedure and the description of
the target geometry, in this chapter, we will investigate the effects of geometric
variations on blade performance and possible changes in the vortical structures.

The simulations that were carried out are:

• 2 analyses to evaluate the effect of solidity variation

• 2 analyses to evaluate the effect of pitch variation

• 2 analysis to evaluate the effect of the variation of the chord distribution

6.1 Effect of the solidity
The geometries tested to study the effect of this parameter are:

• Blade p5-d15-Solidity 0.05

• Blade p5-d15-Solidity 0.1

• Blade p5-d15-Solidity 0.15
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Effects of geometric variations on blade performance

The selection of these solidity values stems from the common rotor solidity ratios
observed in helicopters, which generally fall within the range of 0.05 to 0.12. For
these tests, the pitch and diameter were fixed to 5 and 15 respectively.

Figure 6.1: Blade-solidity 0.05

Figure 6.2: Blade-solidity 0.15
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Effects of geometric variations on blade performance

6.1.1 Comparison of aerodynamic parameters
The average results obtained for the three blades under analysis are reported in
the table below:

Table 6.1: Performance change with solidity (baseline in yellow)

First of all, we can see that the growth of solidity translates into an increase in the
two parameters. Moreover, the percentage variation in Torque is approximately
linear, while Thrust variations are more irregular.

The non-linear variation of the Thrust can be explained using the following equation:

T = N
Ú R

0
[12ρV 2

EcCl cos (ϕ + αi)]dr

In fact, considering the equations 3.1 and 3.2, it can be seen that a change in
solidity results in a change in chord length which means that Thrust will change.
The growth of Thrust implies that induced speed will also increase with a conse-
quent reduction in αi. This reduction subsequently dampens the growth of Thrust,
causing the observed non-linearity.

In order to evaluate the Efficiency of the geometry, we determined the Power
required by each geometric configuration to generate the same Thrust of the target,
as follows:

• Calculation of rotational speed for the same Thrust

Ωn = Ωt

ó
Tt

Tn

• Calculation of Torque for the same Thrust

Qt = Qn

ó
Tt

Tn
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Effects of geometric variations on blade performance

• Calculation of the Power required

Pt = QtΩt

Table 6.2: Change in Power required with solidity

From the result obtained, we can say that there will be a configuration of
optimum between 0.1 and 0.15.

In addition, a study of local variations in aerodynamic forces was carried out
to see where the effect of solidity predominates.

Figure 6.3: Change of Thrust distribution with solidity
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Effects of geometric variations on blade performance

Figure 6.4: Change of Torque distribution with solidity

It is noticeable that the trend of the Thrust and Torque distribution curves
maintains the typical behavior observed in [12].In the first 25% of the blade, the
distributions are almost identical, with minimal variations. The effect of solidity
variation gradually becomes visible as we move toward the tip, which is likely due
to the tip vortex effect.

Figure 6.5: Change in T/Q distribution with solidity
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Effects of geometric variations on blade performance

6.1.2 Qualitative Data
To conclude the study of this parameter, it is also interesting to evaluate how the
vortical structures changed through a Q-Criterion isosurface scene:

Figure 6.6: Comparison vortex structure Isosurface Q=5000/s2

In the figure 6.6, we can notice a difference in the size of the hub vortex. This
growth is primarily caused by the augmented blade chord size. Furthermore, it is
evident that the vortex structure’s shape at the hub is different from the one of the
target. This disparity is likely attributed to an interaction with the root vortex.
Lastly, the tip vortex seems to enlarge as solidity increases, but quantifying the
exact growth is challenging in this scene.

In order to have a more accurate view of changes in the vortex structures, the
Q-Criterion parameter was evaluated at different Y-sections.
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Effects of geometric variations on blade performance

Figure 6.7: Comparison vortex structure Y=0.0 m

Near the blade tip, we can observe a vortex after completing a half rotation
around the blade. The increasing solidity leads to a larger vortex, reaching up to
4 cm in extreme cases. The zone of high vorticity also tends to expand with the
growth of the chord. The proximity to the blade’s lower surface causes a change
in the vortex shape which assumes a conical form instead of the one that can be
observed in the left figure. Lastly, at the blade root, the increase in solidity resulted
in a vortex shift along with the formation of a vorticity peak.
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Effects of geometric variations on blade performance

The next figure, instead, is presented to analyze the vortices immediately after
they have formed.

Figure 6.8: Comparison vortex structure Y=0.04 m

The tip vortex on the the left figure gains energy more rapidly, resulting in a
faster increase in size compared to the other configurations, but it tends to dissipate
quicker as we have seen in 6.7.

Moreover, this section allows us to see some changes in the root vortex struc-
ture. The blade, with a solidity equal to 0.15, exhibits a narrower and more
extensive vortex probably caused by a slightly larger separation zone compared to
the target geometry.
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Effects of geometric variations on blade performance

6.2 Effect of the pitch
The geometries tested to study the effect of this parameter are:

• Blade pitch5-d15-s0.1

• Blade pitch7-d15-s0.1

• Blade pitch10-d15-s0.1

The choice of these configurations was made to gradually evaluate the change in
the pitch parameter. In these cases, the solidity and diameter were fixed.

Figure 6.9: Blade-pitch 7

Figure 6.10: Blade-pitch 10
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Effects of geometric variations on blade performance

6.2.1 Comparison of aerodynamic parameters
The average results obtained for the three blades under analysis are reported in
the table below:

Table 6.3: Performance change with pitch angle (baseline in yellow)

The data underlines a notable influence of pitch variation on the rotor blade’s
Thrust and Torque. The Thrust demonstrated an almost linear increase with the
parameter while the Torque showed a sharper growth, reaching an impressive 265%
increase compared to the target one.

The growth in aerodynamic parameters is obviously evident since, considering
the equations 3.3 and 2.25, a change in pitch results in the growth of the angle of
attack on each section of the airfoil. As a result, there will be an increase in Lift,
subsequently leading to an increase in Thrust and Torque.

Figure 6.11: CL vs alpha
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Although the variation of pitch guaranteed a significant rise in the Thrust, the
sharp spike in Torque growth underscores the necessity of conducting a study on
the required Power. This analysis aims to find out if there will be an improvement
compared to the target configuration.

Table 6.4: Change in Power required with pitch

The high Power required for the high-pitch configuration suggests that the blade
is probably near stall and is disadvantageous to be used compared to the baseline
configuration.

Figure 6.12: Change of thrust distribution with pitch

In terms of local distribution, the Blade pitch7-d15-s0.1 maintains a similar trend
to the baseline one, with a slight local increase as we approach the blade end.
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Effects of geometric variations on blade performance

Figure 6.13: Change of torque distribution with pitch

The high-pitch blade has an altered Thrust and Torque distribution compared
to the baseline. In detail, it can be seen that the Thrust and Torque tend to
increase in the first half of the blade reaching a peak. Afterward, there is a plateau
in growth, followed by an increase in the last section of the blade with a varying
slope.

Figure 6.14: Change in T/Q distribution with pitch
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Observing the graph below, the plateau observed near the blade’s tip in the
high-pitch configuration indicates a likely separation zone. Based on the previous
observation, it has been decided to also evaluate the "Wall Shear Stress" parameter
to assess any potential changes in the central separation zone identified in the
target configuration.

Figure 6.15: Difference region of separation

The figure shows the separation region on our blade. In the intermediate one,
the region is still small and does not extend throughout the entire length of the
blade. On the other hand, the Blade pitch10-d15-s0.1 shows a region that is almost
extended for the entire upper surface. This extended separation zone is the cause
of the high power required shown in table 6.4.

6.2.2 Qualitative Data
Since the significant increase in aerodynamic parameters and the change in the
separation zone, it is also interesting to evaluate how the vortex structures have
changed.

Figure 6.16: Comparison vortex structure Q=5000/s2
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The visualization of the iso-surfaces of Q-Criterion allows us to make a first
comparison between the vortex structures. The geometry, with an intermediate
pitch value, has visible differences in the dimensions of both the vortex that de-
taches from the hub and the tip. The root vortex seems also more extended and
probably interacts with the hub vortex.

As for the geometry with the greatest variation in pitch, it showcases intricate
and disorderly vortex structures that diverge from the baseline one. Although
the RANS method cannot predict with high accuracy the separation zone for the
high-pitch blade, potentially leading to disparities between the depicted vortex
structures and actual phenomena, we decided to analyze the acquired geometry to
elucidate the observed differences in Power required.

Figure 6.17: Comparison vortex structure Y=0.0 m

Comparing the first two geometries, it is noticeable how the pitch increase leads
to an overall expansion of the areas of all three vortex structures.
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The high-pitch geometry, instead, shows evident changes. First of all, a more
extended and rounded tip vortex is observed. This vortex, after completing the
second revolution around the structure, interacts with the separation flow modifying
its shape.

The root vortex also exhibits significant differences and appears considerably
stretched out. It also interacts with the hub vortex after completing the second
revolution, modifying the shape of the hub one.

6.3 Effect of the cord distribution change
The geometries tested to study the effect of this parameter are:

• Blade p5-d15-s0.1 with fixed chord

• Blade p5-d15-s0.1 with chord peak at 50%

• Blade p5-d15-s0.1 with chord peak at 25%

The choice of these two configurations was explained in 3.3:

Figure 6.18: Blade p5-d15-s0.1 with chord peak near the 25%
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Figure 6.19: Blade p5-d15-s0.1 with chord peak near the 50%

6.3.1 Comparison of aerodynamic parameters
The average results obtained for the three blades are shown in the table below:

Table 6.5: Performance change with changing in the chord distribution

The results show that the chord variation has a significantly lower effect on the
parameters compared to the others examined. In the two configurations, there
is a decrease in both Thrust and Torque less than 20% compared to the baseline
configuration. This result is due to the displacement of the chord to the root of
the blade which is a less efficient area in generating Thrust and Torque.

As these configurations are primarily focused on improving Efficiency, we cal-
culated the required Power to assess whether there was any improvement compared
to the target geometry.
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Table 6.6: Power variation with the chord distribution

The obtained results indicate that the second configuration is an improvement
compared to the baseline configuration, as it requires less Power to generate the
same Thrust.

Figure 6.20: Change of thrust distribution with chord distribution

The differences in distribution are minimal in comparison to the baseline one and
the change in the local Thrust is primarily concentrated in the final 25% of the
blade.
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The blade designed with an "elliptical" shape showcases a consistent reduction
of Thrust along the blade while the other one exhibits a more uniform distribution.
In particular, the first 50% of the blade overlaps the result of the baseline and then
aligns with the second configuration in the remaining section.

Figure 6.21: Change of torque distribution with chord distribution

Figure 6.22: Change in T/Q distribution with chord
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The result depicted in 6.22 demonstrates that the second configuration mitigates
the Drag induced by the tip vortices better than the other configuration.

6.3.2 Qualitative Data
Lastly, in order to identify changes in the tip vortex, a qualitative analysis using
the Q-Criterion parameter was carried out:

Figure 6.23: Comparison vortex structure Isosurface Q=5000/s2

Through a complete visualization of the vortices, it can be observed that the
geometry with a peak at 50% of the structure has a root vortex more extended
along the blade but probably less intense.

72



Effects of geometric variations on blade performance

Figure 6.24: Comparison vortex structure Y=0.0 m

We can see that the tip vortex belonging to the baseline blade is bigger and has
a more extended core compared to the other configurations. Moreover, we can see
that the root vortex of the blade with a peak at 25 % has a behavior similar to
the baseline blade while the right one shows some differences in both shape and
position.
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Chapter 7

Conclusion

The objective set by this work thesis has been achieved as the procedure for creat-
ing the numerical database is functional and meets the requirements of accuracy,
simplicity, and reduced time that we had set for ourselves. The procedure is
semi-automatic as it requires some user interactions both in the geometry creation
phase and in the run phase, depending on the geometry.

From the initial analyses conducted, we have seen that at least one of the con-
figurations for each geometric modification guarantees an increase in Thrust and
Torque without significantly increasing the required Power. In addition, we saw
that the P5-D15-S0.1 geometry with a 25% peak has a better "efficiency"
than the baseline configuration.

After identifying an optimal development range for each geometric parameter,
it is now possible to create new geometric configurations while simultaneously
changing all geometric parameters.

The next phase of this project will be an expansion of the numerical database and
the possibility of introducing a transition model into the procedure, which may be
necessary in some configurations.
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Appendix A

Constant Chord Code

1 c l c
2 c l e a r a l l
3 c l o s e a l l
4 prompt = { ’ Passo ( p o l l i c i ) : ’ , ’ Diametro ( p o l l i c i ) : ’ , ’ Numero d i pa le : ’ , ’

s o l i d i t y : ’ , ’ Numero s e z i o n i pala : ’ } ;
5 d l g t i t l e = ’ Dati e l i c a ’ ;
6 dims = [ 1 4 0 ] ;
7 de f input = { ’ 1 0 ’ , ’ 1 5 ’ , ’ 2 ’ , ’ 0 . 1 ’ , ’ 4 0 ’ } ;
8 data = inputd lg ( prompt , d l g t i t l e , dims , de f input ) ;
9 p o l l i c i=str2num ( ce l l 2mat ( data (1 ) ) ) / 3 9 . 3 7 ;

10 Diametro=str2num ( ce l l 2mat ( data (2 ) ) ) / 3 9 . 3 7 ;
11 Numero_pale=str2num ( ce l l 2mat ( data (3 ) ) ) ;
12 s o l i d i t y=str2num ( ce l l 2mat ( data (4 ) ) ) ;
13 Numero_sezioni_pala=str2num ( ce l l 2mat ( data (5 ) ) ) ;
14 ragg i o=Diametro /2 ;
15 % creaz i one imput_el ica
16 x=ze ro s ( Numero_sezioni_pala , 5 ) ;
17 % p o s i z i o n e r a d i a l e
18 dis_corda=l i n s p a c e ( 0 . 5 , 1 , Numero_sezioni_pala ) ’ ;
19 x ( 1 : end , 1 )=dis_corda ;
20 r=ragg io . ∗ x ( : , 1 ) ;
21 % d i s t r i b u z i o n e corda
22 corda=s o l i d i t y ∗ ragg i o ∗ pi /( Numero_pale ∗0 . 85 ) ;
23 x ( : , 2 )=corda . / ragg i o ;
24 %pitch ang le
25 beta=rad2deg ( atan ( p o l l i c i . / ( 2∗ pi ∗ r ∗0 . 75 ) ) ) ;
26 % pitch ang le cambio curva non ot t ima l e
27 x ( : , 3 )=beta ;
28 x (1 , 1 ) =0;
29 x (1 , 3 ) =10;
30 t=l i n s p a c e (0 , 1 , Numero_sezioni_pala ) ;
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Constant Chord Code

31 y_p=s p l i n e ( x ( : , 1 ) , x ( : , 3 ) , t ) ;
32 p lo t ( t , y_p) ;
33 x ( : , 1 )=t ;
34 x ( : , 3 )=y_p ;
35 Imput_elica=m a t f i l e ( " Imput_elica_cordaf_prova . mat " , " Writable " , t rue ) ;
36 save ( " Imput_el ica_cordaf issa_prova . mat " , " x " ) ;
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Appendix B

Variable Chord Code

1 c l c
2 c l e a r a l l
3 c l o s e a l l
4

5 prompt = { ’ Passo ( p o l l i c i ) : ’ , ’ Diametro ( p o l l i c i ) : ’ , ’ Numero d i pa le : ’ , ’
s o l i d i t y : ’ , ’ Numero s e z i o n i pala : ’ } ;

6 d l g t i t l e = ’ Dati e l i c a ’ ;
7 dims = [ 1 4 0 ] ;
8 de f input = { ’ 5 ’ , ’ 1 5 ’ , ’ 2 ’ , ’ 0 . 1 ’ , ’ 3 0 ’ } ;
9 data = inputd lg ( prompt , d l g t i t l e , dims , de f input ) ;

10 p o l l i c i=str2num ( ce l l 2mat ( data (1 ) ) ) / 3 9 . 3 7 ;
11 Diametro=str2num ( ce l l 2mat ( data (2 ) ) ) / 3 9 . 3 7 ;
12 Numero_pale=str2num ( ce l l 2mat ( data (3 ) ) ) ;
13 s o l i d i t y=str2num ( ce l l 2mat ( data (4 ) ) ) ;
14 Numero_sezioni_pala=str2num ( ce l l 2mat ( data (5 ) ) ) ;
15 ragg i o=Diametro /2 ;
16 % creaz i one imput_el ica
17 X=ze ro s ( Numero_sezioni_pala , 5 ) ;
18 % p o s i z i o n e r a d i a l e
19 dis_rad=l i n s p a c e ( 0 . 9 , 1 , Numero_sezioni_pala ) ’ ;
20 X( : , 1 )=dis_rad ;
21 r=ragg io . ∗X( : , 1 ) ;
22 % d i s t r i b u z i o n e corda
23 f=@( x ) 1 ./ sq r t ( x ) ;
24 i n t=i n t e g r a l ( f , 0 . 1 5 , 1 ) ;
25 c t i p =( s o l i d i t y ∗ pi ∗ ragg i o /Numero_pale ) ∗(1/ i n t )
26 corda=c t i p . / ( (X( : , 1 ) ) ) ;
27 X( : , 2 )=corda . / r ;
28 X(1 ,1 ) =0;
29 X(1 ,2 )=c t i p . / ragg i o ;
30 vet t=l i n s p a c e (0 , 1 , Numero_sezioni_pala ) ;
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Variable Chord Code

31 c_p=s p l i n e (X( : , 1 ) ,X( : , 2 ) , ve t t ) ;
32 p lo t ( vett , c_p) ;
33 X( : , 2 )=c_p ;
34 %pitch ang le
35 beta=rad2deg ( atan ( p o l l i c i . / ( 2∗ pi ∗ r ∗0 . 75 ) ) ) ;
36 %pitch ang le cambio curva non ot t ima l e
37 X( : , 3 )=beta ;
38 X(1 ,3 ) =10;
39 y_p=s p l i n e (X( : , 1 ) ,X( : , 3 ) , ve t t ) ;
40 p lo t ( vett , y_p) ;
41 X( : , 3 )=y_p ;
42 X( : , 1 )=vet t ;
43 Imput_elica2=m a t f i l e ( " Imput_elica_cordav_prova . mat " , " Writable " , t rue )

;
44 save ( " Imput_elica_VARIABILE_PROVA . mat " , "X" ) ;
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