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1 – Introduction

1 Introduction

1.1 Why wind energy?

The big environmental crisis, that has been affecting the World, has highlighted the need of looking around for
new sustainable energy sources. Greenhouse gas emissions have had an important role for this crisis [1] and
for this reason the society is trying to move towards renewable energy and in particular to wind energy [2].
According to the European Green Deal, the main target of the Global Wind Energy Council is:

• to provide the 20% of the electricity demand around the world for the 2030 thanks to wind energy systems

• to provide a completely decarbonised electricity supply where wind energy will be the leading renewable
source before the 2050

The focus on the wind energy is related to its advantages. As reported in [3] and [4], the wind energy benefits
are :

- It is an inexhaustible renewable resource.
Wind energy is readily available

- The provision for a clean and sustainable source of energy.
Wind energy systems allow to deliver electricity without producing C02 and particulates and there is
only a small amount of Green House Gas emission associated to the manufacture and the transport of
turbines and blades.

- The Location.
The wind energy system can be placed almost everywhere (obviously good windy sites are preferred)
with a little disturbance to the animal and the general farming activities

- It helps to diversify the national energy portfolio.
In this way, countries can rely on more than one type of energy

- Wind energy systems have low operating costs.
This because there aren’t fuel costs associated

- Reduction of costly transport costs of electricity from far-away power stations.

On the other hand, the disadvantages are [4]:

- The intermittency of wind (the wind is unpredictable)

- Noise pollution

- Initial cost

According to the Global Wind Energy Council (GWEC), globally, 77.6 GW of new wind power capacity was
introduced in 2022, having, in this way, a total installed wind capacity of 906 GW, which means a growth of
9%. From the projections, GWEC expects 680 GW of wind capacity to be added between 2023 and 2027. In
particular, 2023 should be the very first year to exceed 100 GW [5].
In the recent years, the wind power industry has spread all around the world given the serious environmental
issues created by the extensive use of petroleum as source of energy.
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1.1 Why wind energy?

Figure 1: Top ten countries with the highest cumulative capacity [6]

Figure 1 highlights how China is the leader in the current wind energy market.
The projection for the new installation of Regional onshore and offshore wind energy, according to GWEC, is
reported in Figure 2.

Figure 2: Regional onshore and offshore wind outlook for new installations [5]

In total, 60 GW of onshore wind capacity is expected to be added in the next five years in North America, of
which 92% will be built in the US and the rest in Canada [5]. In Europe in 2023, it is expected a decreasing of
the onshore wind capacity equals to 13%, due to a slowdown in the Nordic countries [5]. In Africa and Middle
East, in total, from the 2023 to 2027, it is expected an addition of 17 GW to the current wind capacity. In
more detail, 5.3 GW will come from South Africa, 3.6 GW from Egypt, 2.4 GW from Saudi Arabia and 2.2
GW from Morocco [5]. In the end, in Latin America, GWEC Market Intelligence expects 26.5 GW of onshore
wind capacity to be added in this region in the next five years with Brazil, Chile and Colombia contributing
78% of the additions [5].
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1.2 Physics beyond wind energy and wind power

1.2 Physics beyond wind energy and wind power

Wind energy depends on three different parameters [4]:

• volume of air

• mass of air

• speed of air

It can be defined as the energy content of the air flow due to its motion and this kind of energy is also called
kinematic energy:

KE =
1

2
mU2 (1.2.1)

where m is the mass of air, U is the airspeed [4].
Wind power is defined as the rate of kinetic energy flow:

P =
1

2
ρAU3 (1.2.2)

where A is the cross section area and ρ is the air density. From Eq. 1.2.2, it can be seen a linear relationship
between the Wind Power, the air density, a linear relationship between the Wind Power and the cross section
area and a non linear cubic relationship between the Wind Power and the airspeed.
The amount of wind energy that can be transferred to the wind turbine blades, in order to generate mechanical
energy, is lead by the power coefficient. So, in this sense, it can be said that the power coefficient Cp is a
measurement of the efficiency in wind power extraction. The Cp definition is given by

Cp =
PT

Pwind
(1.2.3)

where PT is given by Eq.1.2.2; while Pwind is the total power of the wind resource [4].
Strictly related to the Cp is the Beth’s Law which states that it is possible to convert a maximum of 59% of
the kinetic energy to mechanical energy by using a wind turbine. This is because the wind on the back side
of the rotor must reach such high velocity in order to move away and to allow more wind through the rotor
plane.

Figure 3: Wind energy scheme [7]

The maximum Cp possible, according to Beth’s Law, is Cp =
16

17
with v2=

1

3
v1 [8]. As it can be possible to

see in Fig. 3, the v1, that is the air speed before the wind turbine, is higher than the airspeed downstream,
because the mass flow must be continuous and for the same reason area A2 after the wind turbine must be
bigger than the area A1 before [7].
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1.3 Wind Turbine

1.3 Wind Turbine

The main goal of Wind Turbine is to convert the kinematic energy of wind into mechanical energy and then,
this mechanical energy is transformed into the electrical one [9]. Wind Turbines can be classified into:

• Horizontal axis (HAWT)
This type of Wind Turbine is the most common and it is characterised by the blades rotating axis parallel
to the wind stream. It has the main rotor shaft and the electrical generator at the top of a tower. For
this reason, it must be pointed in the wind direction in order to provide high turbine efficiency, high
power density, low cut in wind speed and low cost per unit power output [10].

• Vertical axis (VAWT)
The blades rotating axis is perpendicular to the ground. This kind of WT can accept wind from any
direction and there is no need for a yaw control system. The cost is lower than HAWT because all the
components (generator, gearbox etc..) can be set up on the ground using a direct drive from the rotor
assembly to the ground-based gearbox. The VAWT uses an external energy source to allow the rotation
of the blades during the inizialization and consequently it can be pointed independently from the wind
direction [10].

Figure 4: HAWT and VAWT [11]

• Upwind WT
The wind rotor faces the wind and this allows to avoid the distortion of the flow stream. The majority
of the HAWTs are upwind [10].

• Downwind WT
Wind passes before through the nacelle and the tower and then through the rotor blades. This con-
figuration allows the rotor blades to be more flexible and to reduce the wind resistance. There are
great fluctuations in the flow stream and this means that an unstable flow field is generated (causing
aerodynamics losses and more fatigue loads on the Wind Turbine that could be damaged) [10].

• Geared Drive
WT uses a multistage gearbox to increase the generator rotor rotating speed in order to have higher
power in output and this gearbox takes the rotational speed from the low speed shaft of the blade rotor
and converts it into the fast rotation on the high speed shaft of the generator rotor. This allows to have
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WT with smaller size and less weight but, on the other hand, the introduction of the gearbox increases
the turbine noise and mechanical losses [10].

• Direct Drive
The generator shaft is directly connected to the blade rotor and this allows to be more efficient in terms
of energy and reliability [10].

According to [12], when the wind speed is high enough to overcome friction in the wind turbine drivetrain, the
control systems allow the rotor to rotate in order to generate a very small amount of power. The output power
increases rapidly as the wind speed rises [12]. When the output reaches the maximum power the Wind Turbine
is designed for, control systems govern the output to the rated power. The wind speed at which the rated
power is reached is called Rated Wind Speed and it is usually a strong wind of about 15 m/s[12]. Eventually,
if the wind speed increases further, the control system shuts the wind turbine down to prevent damage to the
machinery [12].

1.4 Horizontal axis Wind Turbine

The typology of Wind Turbine object of this work is the Horizontal Axis Wind Turbine. More in detail, the
HAWT with gearbox is the one most common configuration and for this reason it provides more data in order
to develop a data-driven model for prognostics application.
The architecture of this configuration is characterised by a split shaft system, where the main shaft (low-speed
shaft) turns slowly with the rotor blades and the torque is transmitted, through the gearbox, to the secondary
shaft (high speed shaft) which drives the few pole pair generator [13], as shown in Fig. 5.

Figure 5: Scheme of HAWT [14]

The gearbox acts as a rotational speed increaser [4] and it is typically lubricated with oil. Due to mechanical
losses, the oil could be heated and in this case the cooling becomes mandatory for the Wind Turbine correct
functioning.
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1.4 Horizontal axis Wind Turbine

Figure 6: Sub-assemblies of HAWT [4]

The gearbox converts the slow high torque rotation of the aerodynamic rotor (with blades) into the much faster
rotation of the secondary shaft (that is the generator shaft) [4]. There are different kind of gearboxes:

• spur and helical
Spur gearbox has gear teeth parallel to the gear axis and they load bearings radially. Typically, Spur
gears are noisier than helical gears because fewer teeth are in contact but the dynamic loads imposed on
the gear teeth are greater than helical configuration [15].
The helical gearbox can be divided into single or doubled helical. In particular, Single helical gears impose
both radial and thrust loads on bearings and typically they are quieter than spur gearboxes because there
are more teeth in contact. In this sense, helical gear teeth are inclined to the gear axis like a helical screw
[15]. In the end, Double helical gears are characterised by all the advantages of single helical gears, and
they additionally balance internally generating thrust loads [15].

• Planetary
Planetary gearboxes allow to have higher power density than parallel axis gears systems, and are able to
offer a multitude of gearing options, and a large change in rpm within a small volume. On the contrary,
the planetary gearing systems are very complex, vital components are basically inaccessible, and high
loads are imposed on the shaft bearings [16].

Wind Turbines are also governed by brake system which controls the power generation. In particular, thanks
to the brake large disk on the main shaft, Wind Turbines have the capacity to interrupt the transmission of
the torque to the generator [12]. The group of components made by main shaft, mechanical brake and gearbox
is called Transmission system.
Another key component for the correct Wind Turbine functioning is the rotor. It is constituted by a hub with
blades and typically the most common configuration has 3 blades. The hub is strictly linked to blade control
and it is responsible for the connection of the rotor mechanism with the rotor shaft (and consequently with
the electrical generator) [17]. The rotor has the function of capturing the power from the wind and to convert
it into kinetic mechanical power [4]. The nacelle contains all mechanical organs of the system (gearbox, rotor
brake, bearings, the main shaft, the secondary shaft) as well as the generator and control systems [17]. A
control system, the pitch mechanism, that is guided by an hydraulic system or by an electrical system, allows
to optimize the angle of attack of the blades in order to have higher efficiency for the wind energy conversion
and for the power generation stability and it guarantees safe condition in case of high wind speed and/or in
case of emergencies [9]. Typically, WTs are also equipped with Yaw system, which uses electric motors and
gearboxes, to force the HAWT in the wind direction [17].
One of the most important Wind Turbine component is the generator. In particular, the generator is an
electro-mechanical component, which converts the mechanical power into electrical power [4].
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Figure 7: Stator and rotor of a generator [4]

As it can be seen in Fig. 7, the generator is made by a stator, that is a stationary part (it has coils of wire
mounted in a certain pattern) and by a rotor that is the rotating part and it is responsible for the generation
of the magnetic field of the rotor [4]. The magnetic field passes through the stator windings and a voltage is
created in the terminal of the stator [4]. In more detail, if the magnetic field of the stator follows the magnetic
field of the rotor, the generator is called synchronous [4].
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2 – Literature review

2 Literature review

In general, the maintenance strategies employed for WT are [18]:

- Corrective, where there is not a condition monitoring approach. As reported in [19], there is a maintenance
task only after that a fault has been detected and a refurbishment or replacement of parts could be needed.
This would bring to unscheduled downtime of the WT.

- Preventive, which has been considered as scheduled maintenance activities. In fact, repair or replace
activities before failures are adopted. Reducing failures implies more frequent maintenance tasks [19].

An evolution of these two previous strategies is the Condition based Maintenance, which is a robust approach
where maintenance tasks are performed only in case of a pre-estabilished alarm [18]. It is characterized by
continuous monitoring and inspection techniques in order to detect incipient faults and to define the optimum
maintenance task before the fault [19], with the aim of avoiding any unscheduled downtime of systems.

Figure 8: Flow chart PHM of WT [20]

This approach is based on the acquisition, processing, analysis and interpretation of data gathered [19]. When
we speak of WTs, we speak of complex machines, assembled thanks to the combination of multiple technologies
(Rezamand et al.[20]). Horizontal Axis Wind Turbine is the most promising wind energy technology worldwide,
as reported by Astolfi et al.[21]. In general, performances of whatever system degrade with age [21], but being
Wind Turbines located in sites with highly variable and harsh meteorological conditions, their degradation rate
is much higher. Being exposed to constant changing loads (so highly variable operational conditions) means
that WTs are subjected to intense mechanical stress [22]. The most of times, WTs are located in remote sites
and for this reason it is not always possible to have access to these places. In this sense, it becomes really
important to make predictions and to plan the maintenance activities [23],[24]. The expected life for WT is
typically of about 25 years and condition monitoring and maintenance can extend this duration according to
the increasing demand of wind energy. The lifetime extension must be applied without compromising safety
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2 – Literature review

standards (in this way it is also possible to increase the return of the initial investment) [1]. It has been
esteemed that the operational unavailability of WTs is about 3% of their lifetime. Operation and Maintenance
costs can be 10%-20% of the total cost of energy for a wind project and this percentage can also reach 35%
for a WT at the end of life, as reported by Tchakoua et al. [22]. For this reason, a predictive maintenance
strategy is more suggested in order to reduce systems’ unavailability and to reduce maintenance costs. In fact,
as reported in [20], the unexpected failure of WT and of its sub-assemblies causes important economic losses.
In this sense, a Prognostic and Health Monitoring (PHM) approach becomes fundamental.

Figure 9: Condition based maintenance [18]

Moving towards predictive maintenance has been possible thanks to the introduction of condition monitoring
systems (CMSs) and of Standard Supervisory Control and Data Acquisition (SCADA) system [23]. CMSs
allow to monitor several key parameters related to WTs operations (e.g vibration analysis) but they are
characterized by high costs. These systems are capable of capturing high frequency dynamics (in contrast with
SCADA systems which can’t meet the CMSs wide bandwidth) [24],[20]. All large WTs have a SCADA system
[23]. As reported in [25], this monitoring system bases its functioning on wireless sensors which communicate
with an embedded microprocessor mounted on the devices and the SCADA data are represented on a PC in
the form of a database, as showed in Fig.10.

Figure 10: SCADA system scheme [24]

SCADA data are operational data mainly used to monitor WTs performances [24],[23],[25]. They provide a
wealth of data, typically, at 10 minute resolution. These data are used for both diagnostics and/or prognostics
applications, allowing to always monitor the overall health status of WT and its components [25], without
requiring additional sensors [23]. The type of data, representing normal operation and faulty conditions,
registered by SCADA system are represented in Table 1.
Using SCADA data, for condition monitoring, allows to inform the operator about the WT conditions, but
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2.1 Feature extraction and Data Preprocessing

Environmental Electrical characteristic Part Temperature Control variables
wind speed active power output gearbox bearing pitch angle

wind direction power factor gearbox lubricant oil yaw angle
ambient temperature reactive power generator winding rotor shaft speed
nacelle temperature generator voltages generator bearing generator speed

generator phase current main bearing fan speed/status
voltage frequency rotor shaft cooling pump status

generator shaft number of yaw movements
generator slip ring set pitch angle/deviation
inverter phase number of starts/stops

converter cooling water operational status code
transformer phase
hub controller
top controller

converter controller
grid busbar

Table 1: SCADA data [23]

as reported by Tavner et al. [24], they can’t guarantee a full WT condition monitoring (incapacity of fault
isolation and identification) as it is guaranteed by wind turbine condition monitoring systems.
In addition, another downside of the SCADA systems is that could report false alarms led by the wide variety
of loads applied.

2.1 Feature extraction and Data Preprocessing

According to [18], SCADA data can contain errors due to malfunctions in the data collection system and to
sensor faults. In this sense, the pre-processing phase becomes very important for treating the data which will
be used to feed a Machine Learning (ML) model. Pre-processing steps involve data exploration and filtering out
errors, using criteria based on the operator’s experience [18]. Zhao et al. [26] proposed a data pre-processing
procedure for SCADA data made by 4 steps: data cleaning, features selection, features reduction and data
balancing. According to [27], in the initial phase (data cleaning), before building a ML model, it is necessary
to define the outliers. Puig et al. [28] investigated some techniques in order to identify and to remove outliers.
Each SCADA dataset considered in the analysis has been divided into a training dataset and a testing dataset.
Puig’s analysis took into account also WTs failures events. The techniques investigated have been: Extreme
Studentized Deviate (EDS) Filter, Quantile Filter, Hampel Identifier. They showed that the outliers filtering
methods can decrease the error on the training dataset but increase the error in the testing data. Yang et al.
[29] applied the Chebyshev inequality method in order to remove the outliers in raw SCADA data, because this
method does not make any assumptions about the type of distribution of data. Udo et al. [30], considering
the ”La Haute Wind born” Wind Farm took some key parameters such as the active power, the wind speed,
ambient Temperature, generator bearing. Then, for the phase of the cleaning data affected by errors, Udo et
al. adopted 4 different criteria depending on the type of error. According to Stetco et al. [27], feature selection
is the process of selecting variables related to the output that we want to study and they defined 3 approaches:
wrapper methods, embedded methods, Filter methods. The use of these different approaches for selecting
variables can depend on the particular case and on the object of the study. In this sense, the feature reduction
consists of transforming high-dimensional data into a meaningful representation of reduced dimensionality and
there are many techniques that can be implemented, but the most used is the Principal Component Analysis
(PCA).

2.2 Fault Detection and Diagnosis

As reported in [31], one of the most important step in Condition monitoring approach, in order to detect and
isolate the type of failures, is the Fault Detection and Diagnosis (FDD). We have to make a first distinction
between Onshore Wind Farm (WF) and Offshore Wind Farm. Being under different environmental conditions,
as we can see in Fig. 11, implies that same components have different failure rates depending on the WT
environmental conditions.
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2.2 Fault Detection and Diagnosis

Figure 11: Failure rate of Onshore and Offshore WT [32]

For the onshore WF, the components that have the highest faults rate are: towers, gearboxes, and rotor blades;
while for the offshore wind farm gearboxes, rotor blades, generators, and towers are those most affected by
anomalies [20]. In this sense, it has been observed, in general, that the most critical components in the WT
are: gearbox, main bearing and blades.

Figure 12: Percentage of failure of WT subsystems [22]

Yang et al. [33] investigated, through the analysis of the SCADA data, observing the correlation between
SCADA variables, the possible causes that can bring to failure the main components of the WT, as reported
in Fig. 13.
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2.2 Fault Detection and Diagnosis

Figure 13: Correlation between SCADA parameters and possible causes of faults [33]

For this reason, with the aim of reducing the failure rate inevitably associated with systems’ downtime, it
becomes really important speaking of diagnosis, prognostics and RUL prediction. According to Gao et al. [34],
the approaches to the faults diagnosis can be divided into 4 macro areas: model-based methods, signal-based
methods, data driven methods, and hybrid methods. The hybrid methods are combination of the previous
approaches and for this reason they are not considered in this literature review.
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2.2.1 Model Based Diagnosis

This approach requires to build a Wind Turbine model which takes as input the same inputs of the real time
wind turbine. Then, the goal is to monitor and verify the differences in the outputs of the two wind turbine
models [34]. To be able to consider healthy conditions, the residual must ideally be zero or less than a threshold
that has been imposed according to a particular criteria considered. The basic concept of the model based
approach can be seen in Fig. 14 .

Figure 14: Model based Approach to Diagnosis [34]

An example of model based approach is provided by Garlick et al. [35] who assumed a least squares (LS)
method and an Autoregressive with eXogenous input (ARX) model structure, as system identification method
applied to raw SCADA data, in order to develop a discrete time dynamic model for the early indication of
bearing and gearbox faults. Zhang et al. [36] based their diagnosis of rotor winding failure on a dynamic model
sensor method which reported the relationship between the generator temperature, wind speed and ambient
Temperature. According to [37], an abductive diagnosis can be considered for WTs and this approach strongly
depends on the formalization of the relationship between specific failures and their effects. One of the model
based approach most used for fault diagnosis is the observer based [34]. Cross et al. [38] employed the simplified
refined instrumental variable (SRIV) algorithm for discrete-time transfer function model identification. This
algorithm is based on an iterative procedure in which each step allows a linear-like computation of recursive
estimates. This method provided some alerts related to the system even if its Temperature was within the
range and in phase of check a blade of a fan was discovered broken. Shao et al. [39] proposed a parameter-
varying model, which is a real time updating non linear model, in order to provide fault reconstruction on a
4.8MW wind turbine system. The model is designed offline and performed and regulated automatically online.
Sanchez et al. [40] introduced a model based fault detection method which combines the use of analytical
redundancy relations (ARRs) and interval observers.
Another model based approach is based on Kalman filter. Dey et al. [41] used a Cascade Kalman filter
based technique in order to detect and isolate several faults in components like rotor, converter actuator,
drivetrain. Wei et al. [42] introduced a Kalman filter based diagnosis algorithm in order to detect additive and
multiplicative sensor faults. In particular, they focused on the detection of blade root moment sensor faults
for a three bladed horizontal axis wind turbine. The approach developed by the authors has been also applied
in order to detect additive and multiplicative faults using the residual of the Kalman filters. Cho et al. [43]
focused on a Kalman filter approach based on residual generation to detect faults generated in blade pitch
sensors and actuator in a floating wind turbine.
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2.2.2 Signals based Diagnosis

Signal based methods are based on data like electrical signals, vibration, sound signals gathered by sensors
installed in wind turbines [34]. This kind of approach needs of processing techniques that allow to extract the
critical information from signals. In order to understand the flow chart of signals based diagnosis approach,
we can see Fig. 15 .

Figure 15: Signals based Approach to Diagnosis [34]

Tamilsevan et al.[44] presented a vibration based two stage fault detection which integrated both analytical
diagnosis and graphical diagnosis of a NREL wind Turbine gearbox. Zappalà et al. [45], starting from vibration
data of a NREL wind turbine Gearbox Condition Monitoring Round Robin project, developed a gear condition
indicator, the sidebands power factor algorithm (SBPF), to detect and diagnose damages on the high speed
shift (HSS). The SBPF algorithm allowed to assess the gear fault severity by tracking a progressive tooth
damage. Yang et al. [46] investigated the condition monitoring and the faults diagnosis for a wind turbine
subjected to varying torque from the wind resource. In this study, the discrete wavelet transforms (DWT)
and the continuous wavelet transforms (CWT) have been employed. In particular, the DWT has been used
for noise cancellation, while the CWT has been used for the features extraction. Watson et al. [47] proposed
a wavelet analysis applied to two doubly fed induction generators (DFIGs) to detect the rotor eccentricity
analysing the generator shaft misalignment. Rotor eccentricity is often the result of increased bearing wear
and an indication of potential failure.
According to Gao et al. [34], Signal-based monitoring methods don’t need to define an explicit mathematical
model for wind turbine system. In general, it is implied to monitor and to do diagnosis of rotating components
of wind turbines, such as wheels and bearings of gearbox, bearings of generator and main bearing.
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2.2.3 Data driven Diagnosis

One approach to anomalies detection, proposed by Weinert et. al [23], is trending. This approach can be
considered as a static analysis based and it is really useful in the anomaly detection but it can bring to false
alarms [1] because, considering also the high variability in the operational conditions of WT, a change in the
value of a SCADA parameter is not an evidence of a fault [23]. For example, as reported in [23], [48], it
was applied a PCA trending approach with an auto-associative neural networks. The PCA approach allows
to extract the useful and non redundant information registered by the sensors, but it allows only a linear
data analysis. For this reason it has been combined with AANN in order to obtain a non linear PCA[48].
Using this approach, as indicated by Weinert et al. [23], it has been possible to detect a failure also when
no advance signals alarms were detected. Feng et al.[49], analysing the physical procedure of kinetic energy
transmission and dissipation, developed a monitoring algorithm that connected the transmission efficiency
with the temperature rise and the rotational speed in order to detect failures related to the gearbox of a 2MW
variable speed turbine. They showed that the gearbox efficiency decreased with the rise of temperature of the
gearbox. Yang et al. [33], reported that the value of WT SCADA data would have been predictable only once
the operational condition is known. Any deviation of the measured value from its predicted value would have
indicated a fault. For this reason, it has been developed a trending method that uses bin averaging by wind
speed, generator speed or output power to make those predictions [23],[33].
According to [50], data-driven WT fault diagnosis methods are based on data mining technology to obtain
useful information to define the normal conditions of WT and to detect the fault. Widely used for WT diagnosis
are ML model. We can have different ML Diagnosis approaches:

- Supervised Learning Diagnosis approach
Firstly, we have raw SCADA data gathered by Wind Turbine sensors. Then, we have to divide these
data into training, validation and testing set. The pre-processing is performed on the dataset and the
normalization is needed after the processing of the missing values to avoid gradient-explosion problems.
Secondly, a ML algorithm is chosen in order to train the training set which is used for modeling [50]. The
testing set is used to evaluate the model quality and as the final output an accurate fault classification
is obtained. Artificial Neural Network (ANN), according to [50], is one of the most popular and widely
used supervised learning model. Zhang et al. [51] developed an ANN which can be used to detect the
corresponding fault of rear bearing by comparing estimated and actual temperature. For example. Zaher
et al. [52] introduced a multilayer neural networks in order to detect anomalies analysing the gearbox
temperature of a Scottish wind farm. They presented as the best architecture an ANN with 3 neurons
in the hidden layer. Zhang et al. [53] made a comparison between an ANN model and a mathematical
model in order to define which was able to detect a faults of rear bearing by comparing estimated and
actual temperature. The ANN provided results more accurate than the mathematical model. Brandao et
al. [54] proposed a NN approach to detect failures of the gearbox thanks to the deviation of the real Oil
Temperature of the component from the Temperature esteemed by the neural network. Wang et. al [55]
investigated a deep neural network (DNN) approach in order to monitor and identify WT gearbox failures
using SCADA data. In addition they made a comparative analysis between 6 data mining algorithms: k-
nearest Neighbors (kNN), Lasso, Ridge, SVM, shallow neural network and DNN. The result was that the
DNN algorithm was the most accurate. Bangalore et al. [56] investigated, analysing SCADA data, the
performance, in faults detection for a WT gearbox, of a NARX-ANN algorithm which provided accurate
results.
Another Supervised Learning ML methods is Support Vector Machine (SVM). It is a non parametric
statistical approach which can be easily used to detect faulty response of WT[34]. Laouti et al. [57] used
a SVM approach in order to detect fault in a variable speed horizontal-axis wind turbine composed of
three blades and a full converter. The Kernel used for learning all the faults is Gaussian (with different
values of variance). This approach was able to detect and isolate faults related to different systems such
as sensors of pitch position, sensors of generator, sensors of rotor speed and convertor actuator. Santos
et al. [58] studied the performance, to detect mechanical faults (like imbalance and misalignment) in a
wind turbine, of two different methods: SVM and ANN. These two approaches were applied at the same
vibrations dataset. In their work, the authors used 4 kernels: linear, Gaussian, stump and perceptron.
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At the end, the linear SVM showed the highest accuracy. Liu et al. [59] applied a single “1-a-1” support
vector machine (SVM) classifier for fault identification, and a multi-SVM, with radial basis function
(RBF) as the kernel function, in order to identify the location and fault type of renewable energy power
grid. Castellani et al. [60] focused on the diagnosis of electrical faults of generators using SCADA
data. In particular, they developed a data driven normal behaviour models, built considering a support
vector regression with a Gaussian kernel, that describes the relationship between electrical parameters
and operation variables. According to [50], the SVM approach uses inner product kernel function to turn
the raw data gathered from the wind turbine to linear data through mapping the raw data to a high
dimensional space. Yang et al. [29] proposed a Support Vector Regression (SVR) approach. This machine
learning algorithm showed excellent performance in pattern recognition and regression analysis. Using
SCADA data, the object of interest of their work was the Wind turbine high Temperature anomalies.
As supervised Learning approach for WT diagnosis, we also consider the Decision Tree (DT) method.
Abdallah et al. [61] applied a DT algorithm in order to detect wind turbine faults using telemetry data.
The authors trained an esemble Bagged DT classifier on a dataset from an offshore wind farms made by
48 WTs. The DT algorithm has been used to link excessive vibration faults to their possible causes. DT
approach is easy to implement but it has limitations in dealing with missing values [50].
Another Supervised Learning approach is the Esemble Learning. This method relies on the concept
to adjust and train base learners as esemble members into a strong Learner that should have greater
performance [50] in detecting faults. Bootstrap aggregating (also called bagging) algorithm helps to
reduce variance and to prevent overfitting [50]. Mansouri et al. [62] applied a Gaussian Process Regression
Multi-Class Random Forest GPR-MCRF. The authors extracted the effective features through a Gaussian
process and then they applied a multi class random forest classifier in order to diagnosis different type of
faults for a Wind turbine. They compared the performance of different approaches like Naive Bayes, kernel
PCA-based MCRF, Support Vector Machines, PCA-based MCRF, Decision Tree, K-Nearest Neighbors,
and Discriminant Analysis approach. It resulted that the GPR-MCRF was the most accurate in detecting
faults. Li et al. [63] used a deep random forest fusion (DRFF) technique in order to improve fault
diagnosis performance for gearboxes by using measurements of an acoustic emission (AE) sensor and an
accelerometer that are used for monitoring the gearbox condition simultaneously. The RF is introduced
to fuse simultaneously acoustic and vibratory features into an integrated aspect. It resulted that the
DRFF can improve fault diagnosis capabilities for gearboxes compared with conventional RF. Boosting
methods can be applied in order to improve the performance classification. Examples of boosting methods
are XGBoost and LightGBM. Zhang et al. [64] applied a random forest (RF) approach in combination
with extreme gradient boosting (XGBoost). The RF model is used in order to evaluate and sort the
importance of features for all the faults. Then the fault classifier is trained based on XGBoost model
with three top ranking features selected in the previous step.
The last Supervised Learning approach that has been considered is the Deep Learning (DL). Zhao et
al. [65] proposed a deep learning method based on a deep auto-encoder (DAE) network using Wind
Turbines SCADA data. The DAE network model is more accurate in modelling wind turbine component
dynamic behaviour by working on a closer level of mimicking the working process of a natural brain.
This method can provide the early warning of the faulty component and derive the physical location of
the faulty WT component through the residual of the deep autoencoder network mode [50],[65]. Xiao et
al. [66] presented convolutional neural network models to wind turbine converter fault detection using
convolutional neural network by using wind turbine SCADA system data.

- Unsupervised Learning Diagnosis Approach
The unsupervised learning is based on the concept of learning unlabelled data in order to reveal the hidden
structure and to define the key features of data, allowing to divide the data into several categories[50]. The
representative technique is clustering. Clustering is an evolution of the trending and cluster algorithm
are used to make the separation between normal and faulty observations. As the trending method also
the clustering approach can provide false alarms and for this reason it is important having a large number
of failures data [23]. For example, Kim et al. [48] developed an unsupervised clustering algorithm: a
self organizing feature map (SOFM) which forms neurons located on a regular grid, generally in one ore
two dimensions. This algorithm can detect regularities and correlations in its input and it will adapt the
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responses to the input [48]. The SOFM has an isolation capability that it is able to generate a number
of clusters according to the number of the failure modes detected. According to Kim et al.[48], with
appropriate algorithms, performance monitoring, thanks to SCADA data, can be employed in order to
detect individual component fault, because a reduced efficiency in the performance means that something
is not working well and it needs an investigation. Kim et al. [48] proposed a diagnostics technique based
on SCADA data using anomaly detection algorithms and clustering techniques. Luo et al. [67] introduced
a combination of Ensemble Local Means Decomposition (ELMD) and Fuzzy C-Means clustering (FCM)
methods for fault diagnosis of a gearbox of a wind turbine. The FCM algorithm is a clustering algorithm
in which each data point can belong to more than one cluster [50]. Lapira et al. [68] investigated
3 methods, using SCADA data gathered from a large scale on shore wind turbine for 27 months. In
particular they compared Neural Networks based on residual analysis with two unsupervised methods
Self-Organizing Maps (SOMs) and Gaussian Mixture Models (GMMs). GMM resulted more suitable
for showing degradation trend. Zhao et al. [69] investigated the application of a SOM neural network
in order to detect the faults of a WT using the status data gathered. The authors showed the good
robustness and validity of the approach in detecting wind turbine malfunctions.

2.3 Prognostics and RUL prediction

Prognostics is defined as predictive diagnostics, which includes determining the Remaining Useful Life (RUL)
or time span of proper operation of the component [70]. The methods for RUL estimation, according to [18],
can be divided into 4 groups, as reported in Fig. 16: Knowledge based models, Life Expectancy models,
Artificial Neural Network, Physical models

Figure 16: RUL [71]

But these 4 kind of model can be divided into 3 categories: physics-model based, data-driven model and hybrid
model. A summary of the advantages and disadvantages of different prognostics approaches is reported in Fig.
17.
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Figure 17: Advantages and Disadvantages of Prognostics Approaches[72]

2.3.1 Physics based Prognostics

Physics-based prognostic methods are based on the concept to build mathematical model in order to describe
failure modes physics [20]. Breteler et al. [73] introduced a general physics of failure based methodology
considering both SCADA and CMS data from operating wind turbines. This method relied on the concept
to relate the design load and additional load generator to the consumption and RUL for two cases. In this
work, the prognostics phase analysed the degradation pattern and it aimed to define if the pattern found could
be representative for future degradation for WTs gearbox. Zhu et al. [74] derived a physical based model in
order to define the mathematical relationship between lubrication oil degradation and particle contamination
level for a wind turbine. Wang et al. [75] developed a new model based approach of integrated fault diagnosis
and prognosis for wind turbine remaining useful life estimation, especially the cases with limited degradation
data. Wang et al. [76] introduced probabilistic damage growth model to characterize individual wind turbine
performance degradation and failure prognostics. Saidi et al. [77] introduced an integrated prognostic method
for WT high speed shaft bearing, which integrated physical degradation model and data driven models. They
built a model based on Paris’s law and used a Kalman smoother to estimate the RUL. The physics based
approach has been applied mainly for the prognostics of WTs structural damages, considering fatigue life
models, progressive damage models, deterministic physical law or a stochastic process. The physical based
approaches, according to [72], are more accurate than data-driven and/or hybrid methods, but they are very
limited because physical based models are built under ideal conditions with numerous assumptions.

2.3.2 Data Driven Prognostics methods

The focus of this literature review is on the data driven approach using SCADA data. SCADA data provides
a rich source of continuous time observations that can be used for the monitoring of the whole WT [48].
Performance degradation can highlight problems related to different components. In order to do prognostics,
different methods have been developed, using SCADA data. A data driven approach to WT prognosis is
AI-Based Prognostic Method such as ANNs, DL, and ANFIS. Artificial Neural Network are mainly employed
in case of non linear relationship between observations, using training data. There is one input layer, a
variable number of hidden layers and one output layer and each layer is made by a different number of
neurons which consist in a non linear transfer function to combine the inputs and an activation function
[23]. A key feature of the ANN is the high processing speeds and it is possible to provide correct responses
from noisy or partially incomplete data [25]. Matthews et al. [78][79] investigated different AI techniques,
including Fuzzy Inference System (FIS), k-means clustering, Self-organizing Map, Artificial Neural Network
(ANN), Näıve Bayes, Bayesian Network, Support Vector Machine and Adaptive Neuro-Fuzzy Inference System
(ANFIS) considering SCADA data in order to detect the incipient WT pitch system faults. They proved
the feasibility of a prognosis based on a-priori knowledge-based ANFIS applied to Wind turbine pitch faults
prognosis considering SCADA data. Kusiak et al. [80], in order to study bearing faults, made a comparison
between 5 ANN models with different number of neurons and activation functions considered. The best model
was ANFIS with 18 neurons and logistic hidden activation. Carrol et al. [81] investigated as machine learning
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algorithms: artificial neural network, a support vector machine (SVM) and a logistic regression approach in
order to predict the failure and remaining useful life of wind turbine gearboxes. Between the three methods,
the artificial neural network provided 72.5% of failures being correctly predicted and least missed failures.
Schlechtingen et al. [82] introduced two neural network models: FSRC, Autoregressive. Both models have
been implemented in order to predict the generator bearing temperature. The FSRC NN was capable of
predicting the temperature analysing the stator and nacelle temperature, shaft speed and the output power.
On the other hand, the Autoregressive NN gave more accurate results due to the large heat capacity. Kusiak
et al. [83] studied the accuracy in predicting faults and turbine states of five data-mining algorithms: neural
network (NN), support vector machine (SVM), random forest algorithm (RFA), boosting tree algorithm (BTA),
and general chi-square automatic interaction detector (CHAID) algorithm. In the phase 1 of predicting the
best two algorithms were BTA and CHAID. Zhao et al. [26] used an unsupervised learning to cluster the
operational state of the generators in order to determine the RUL of the generator. Firstly, a DBSCAN
method has been applied for a density-based spatial clustering of applications with the noise and then, in
order to measure a wind turbine’s performance, it has been proposed the anomaly operation index. Wang et
al. [25] characterized ANFIS model defining the advantages of this approach and some application. Hsu et
al.[84] analyzed and predicted maintenance needs of wind turbines by using the wind turbine historical data
collected in the ChangHua Coastal Industrial Park, Taiwan. The authors, after the phase of identifying four
different types of faults thanks to a statistical approach, used two machine learning algorithms, decision tree
and random forest classifications, in order to predict wind turbine abnormalities with accuracy rates higher
than 92%.
To predict failures related to WTs components, supervised learning approach can be implemented: regression
and classification. In particular, with regression models, it is possible to predict a numerical variable (dependent
variable like power); while for the classification a categorical variable is predicted [21]. Guo et al. [85] proposed
a temperature trend analysis method based on the Nonlinear State Estimate Technique (NSET). NSET is
applied in order to define the normal operating model for the wind turbine generator temperature and then at
each time step the model is used to predict the generator temperature, using SCADA data.
According to Stetco et al. [27], classification finds a relationship between independent variables typically
grouped in vectors and one of several predefined categories identified by labels. Leahy et al. [86], using
SCADA data, applied classification techniques in order to make predictions. After under/oversampling, a
SVM classifier approach has been used. In particular, the training data fed the SVM algorithm. In addition
to this, they used ensemble meta-learners in order to reduce bias and variance in the results. Herp et al. [87]
developed a model in order to define a high prediction horizon and to be able to predict the remaining lifetime
until the failure, where the T of the main bearing component is modelling applying an ANN.

2.3.3 Life expectancy Prognostics models

These models can be divided into two categories: Stochastic and Statistical.
The first stochastic prognostics based techniques, that have been considered are Bayesian networks which are
a type of probabilistic open chain graphical model for estimating probabilities [20]. According to Rezamand
et al. [20], Bayesian networks can be applied in order to assess, for different scenarios, the root causes of an
event or, in the case of time-series modeling, to determine probabilities associated with a particular future
event. The most common Bayesian techniques includes the Markov models, Kalman Filters (KPs) and Particle
Filters (PFs). The Markov models allow to estimate probabilities of future failure by determining probabilities
associated with each state and probabilities associated with transitioning from one state to another [20]. Lau
et al. [88] proposed an estimation of the RUL considering an Hidden Markov Model (HMM) which is a sta-
tistical Markov model. Lau et al.[88] developed a Particle filter approach in order to do WT prognostics. The
method aims to approximate the relevant distributions with articles and their associated weights. The state
of Probability Density Function (PDF) is estimated and it is used to predict the evolution in time of the fault
indicator. According to [89], the PF method is suitable for predicting a nonlinear stochastic process with noisy
measurements. Cheng et al. [89] developed a new particle filtering (PF) method applied in order to predict the
RUL of a bearing in the drivetrain gearbox of a 2.5 MW wind turbine. Fan et al. [90] applied a PF method in
order to predict the RUL of a wind turbine gearbox based on information from SCADA system. Some hybrid
approaches for the RUL prediction have been introduced using SCADA data. Hsu et al.[84] defined, thanks
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to statistical approaches (e.g. Pareto chart and the cause and effect diagram), the frequency of faults that
interested the Wind Turbines, after having applied two machine learning algorithms (decision tree and random
forest classifications).

It is possible to observe in Fig. 18, a summary of the advantages and disadvantages of the different approaches
introduced in the previous sections.

Figure 18: Summary of Prognostics Techniques [20]
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3 Open Source Datasets

In this section, we report 15 Open Source datasets. These datasets have been found online on the web and
they are related to SCADA data of real world WTs. As reported by [31], data gathered by WT fall under the
concept of ’Big Data’. There are several aspects to consider, according to [31], linked to the following datasets,
and they are mainly: Volume (a WT generated 60-100 SCADA data and this accounts for 0.2 GB of raw data),
Velocity (the frequency at which data is produced and transmitted), Variety (providing a mix of information
that can be for example images, videos), Veracity (data should not have missing values and inconsistencies).
The quality of data can depend on different factors such as the purpose of the research, the organization that
gathers all these data etc. We consider the following datasets: Energias de Portugal (EDP) Dataset [91], Le
Haute Wind Born Dataset (LHWB) [92], Vestas V52 Dataset (VV52) [93], Yalova Dataset [94], Sotavento
Dataset [95], Eolos Dataset [96], Inland Wind Farm Dataset 1 (IWFD1) [97], Offshore Wind Farm Dataset 1
(OWFD1) [97], Inland Wind Farm Dataset 2 (IWFD2) [98], Offshore Wind Farm Dataset 2 (OWFD2) [98],
Beberibe Dataset [99], GRC Dataset[100], GRC2 Dataset [101] Penmanshiel Dataset [102], Kelmarsh Dataset
[103]. The characteristics of these 15 Datasets are reported in the following tables. Table 2 gives a general
overview of each dataset.
The Wind Farms considered are located in different countries and made by operational Wind Turbines (except
for [97], [98] for which this information is not available). It is very important to observe the type of information
reported, in order to evaluate the best dataset for PHM application. In this sense, it can be seen as all the
datasets report SCADA (like Temperature of components, RPM, Active Power) and meteorological measure-
ments (like wind speed, wind direction, pressure), but only the EDP dataset [91] contains an historical failures
logbook. Furthermore, Table 2 also contains additional information for [91], [92], [102] and [103] like technical
data (such as hub height, rotor diameter) and like the status (logs) of Wind Turbines for [91], [102], [103].

Datasets Format Access Provider Information reported Country Operative

EDP [91] .csv Open EDP Inovaçao
SCADA, metmast, historical

failures logbook, logs
West African
Gulf of Guinea

Yes

LHWB [92] .csv Open Engie France Static, SCADA France Yes
VV52 [93] .xlsx Open Dundalk Institute of Technology SCADA Ireland Yes
Yalova [94] .csv Open - SCADA Turkey Yes

Sotavento [95]
graphic
data

Open Sotavento Galicia Foundation SCADA Spain Yes

Eolos [96] .xlsx Open Eolos Wind Research Group SCADA, metmast USA Yes
IWFD1 [97] .csv Open Data Science for Wind Energy book SCADA, metmast - -
IWFD2 [98] .csv Open Data Science for Wind Energy book SCADA, metmast - -
OWFD1 [97] .csv Open Data Science for Wind Energy book SCADA, metmast - -
OWFD2 [98] .csv Open Data Science for Wind Energy book SCADA, metmast - -
Beberibe [99] .nc Open Brazilian Electricity Regulatory Agency SCADA Brazil Yes
GRC [100] .tdsm Open NREL-GRC SCADA, Mechanical USA -
GRC2 [101] .tdsm Open NREL-GRC SCADA, Mechanical USA -

Penmanshiel [102] .csv Open Cubico Sustainable Investments Ltd Static, SCADA, metmast, logs UK Yes
Kelmarsh [103] .csv Open Cubico Sustainable Investments Ltd Static, SCADA, metmast, logs UK Yes

SCADA data: Temperature; RPM Active Power, Reactive Power, Control Variables, etc. Metmast: Wind Speed, Wind Direction, Ambient Temperature, Ambient
Pressure, Ambient Humidity, etc. Logs: Status Remarks like external power, Yaw speed, Hub fan, generator, nacelle Temperature, components activeted (in/off)
Mechanical: stress, strain, displacement, bending, torsion moment Static: Hub Height, Rated Power, Rotor diameter, Manufacturer

Table 2: General Information of Open Source datasets for Wind Turbines

The detailed analysis of each dataset, which can support the choice of the most appropriate one, is conducted
in Table 3. It can be seen how the number of Wind Turbines varies widely from 1 for [93], [94], [96], [100] and
[101] to a maximum of 34 for [95]. The Wind Turbines considered are all Horizontal Axis, which is the most
common configuration in the industry, and onshore except for [91], [97], [98]. Important aspects to consider,
in order to find the best dataset for PHM application, are: the time span, the sampling rate and the number
of parameters. In particular, having larger time span, smaller sampling rate and higher number of parameters
means having more data that can be exploited. In this sense, we can see as the time span varies from 1 hour
for [96] to 14 years for [92] and the typical sampling rate is 10 min for all except for [96], which presents a
sampling rate of 1 min and except for GRC [100] and GRC2 [101] for which this information is not available.
In addition, the number of parameters varies from 7 for [97] to a maximum of 303 for [102] and [103].
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Datasets Number of
WT

Type of WT Capacity
(MW)

Time Span Sampling rate
(min)

Number of
parameters

EDP [91] 5 Offshore 10 01/2017-12/2017 10 133
LHWB [92] 4 Onshore 17.30 01/2013-12/2016 01/2017-12/2020 10 138
VV52 [93] 1 Onshore 8.5 01/2006-03/2020 10 22
Yalova [94] 1 Onshore 53 01/01/2018-13/12/2018 10 5

Sotavento [95] 34 Onshore 18 10/2022 10 3
Eolos [96] 1 Onshore 2.5 19/08/2012 24/08/2012, 29/12/2013, 08/01/2014 1 40
IWFD1 [97] 4 Onshore - 08/2010-08/2011 04/2010-04/2011 10 7
IWFD2 [98] 2 Onshore 42 01/2008-10/2011 10 8
OWFD1 [97] 2 Offshore - 01/2009-12/2009 10 9
OWFD2 [98] 2 Offshore - 01/2007-12/2010 10 8
Beberibe [99] 32 Onshore - 09/2013-08/2014 10 43
GRC [100] 1 - 0.75 12/2013-01/2015 - 165
GRC2 [101] 1 - 0.75 09/2016-12/2016 - 190

Penmanshiel [102] 14 Onshore 28.7 07/2016-07/2021 10 303
Kelmarsh [103] 6 Onshore 12 07/2016-07/2021 10 303

Table 3: Detailed Information of Open Source datasets for Wind Turbines

The analysis about which are the components and the parameters for each dataset is reported in Table 6.
[91],[92],[93],[102],[103] consider measurements associated to a wide range of components, but the most moni-
tored are gearbox, generator with their sub-assemblies (like bearing, stator) and rotor because are those most
critical for Wind Turbines. [94],[95],[96],[97],[98] contain only power production variables, and for this reason
they are not useful for the aim of this work.
The parameters shown in Table 4 have been divided into 4 categories: meteo, production, signals and additional.

Datasets Components Type of Data Main parameters

EDP [91]

Meteo WS(*), WD(*),Ta(∗), Pa(∗), Ha(∗), P rcp(∗)
Production ActP(4), Q(4)

Gearbox

Monitoring Signals

ToilAV G

Gearbox bearing TAVG

Generator RPM(*), ActP(4),Q(4),Tringchamber

Generator Bearing TAVG

Generator stator TiAV G

Transformer TiAV G

Grid TAVG(4),P, Cosphi, f, Tbusbar, ActP(*), Q(*)
Rotor RPM(*)
Blades PA(*)
Nacelle TAVG, Dir

Controller TnacelleAV G, ThubAV G,TvcpboardAV G,TvcssectionAV G

Spinner TAVG

Hydraulic group ToilAV G

Additional Nu,Nc,PLAP,PGAP,PGIR,GCRP,RD,AF,AO,ACO,ACG, DAP,PAF

LHWB [92]

Meteo WS, WD,Ta

Production ActP, Q
Gearbox

Monitoring Signals

Toil, Tinlet

Gearbox bearing T
Generator RPM

Generator converter RPM
Generator bearing T
Generator stator T

Converter Tq
Nacelle Dir, T, A
Grid f
Rotor RPM

Rotor Bearing T
Hub T

Blades PA
Additional Cosphi, Nu, Tq, S, Va

Yalova [94]

Meteo WS, WD
Production ActP

- Monitoring Signals -
Additional PC

Sotavento [95]

Meteo WS, WD
Production En

- Monitoring Signals -
Additional -

Eolos [96]

Meteo WS(11), WD(11), , Ta(6), H(6),Pa

Production -
- Monitoring Signals -

Additional RP

Table 4: Components and Main Parameters

25



3 – Open Source Datasets

Datasets Components Type of Data Main parameters

IWFD1-OWFD1[97]

Meteo WS, WD, D
Production y

- Monitoring Signals -
Additional TI, WSh

IWFD2-OWFD2[98]

Meteo WS, WD, D
Production Y

- Monitoring Signals -
Additional TI, WSh

Beberibe [99]

Meteo WS(6*), WD(2), Ta, H, Pa, D
Production ActP(*),

Rotor Monitoring Signals RPM(*)
Additional Tlogger, O(16)

GRC [100]

Meteo -
Production P(2), Q(2)

Gearbox Monitoring Signals Tq(5), T(19), RPM(5), poil
Additional ϵ(72), F(3), Spt(24), Mb(16), O(17)

GRC2 [101]

Meteo -
Production P(2), Q(2)

Gearbox Monitoring Signals Tq(6), T(25), RPM(7), poil
Additional ϵ(87), F(3), Spt(23), Mb(16), O(18)

VV52 [93]

Meteo WS(2), WD(2), , Ta

Production P(*), Qoil

Gearbox

Monitoring Signals

Toil

Gearbox Bearings T
Generator RPM, T

Generator Bearing T
Generator Winding Ti

Nacelle T
Blades PA

Additional -

Penmanshiel [102]

Meteo WS(*), WD(*),Ta(∗), Pa(∗), Ha(∗), P rcp(∗)
Production P(*), ActP(*), Q(*)

Gearbox

Monitoring Signals

ToilAV G,RPM(*)
Gearbox Bearing TAVG

Front Bearing T(*)
Rear Bearing T(*)

Stator T(*)
Generator RPM(*)

Generator Bearing Trear(∗), Tfront(∗)
Transformer T(*)

Gear ToilInlet, Toil(∗), PoilInlet(∗),PoilPump(∗)
Rotor RPM(*)

Rotor Bearing T(*)
Yaw Bearing YA(*)

Blades PA(3*)
Nacelle T, Pos(*)

Motor axis T(*)
Grid F(*)
CPU T(*)
Hub T(*)

Top Box T(*)
Additional Va,EE,EI,LP(20),EB,ET,VP,PPD(11),TPS,ACP(2),Cosphi(*),V(4*),C(7*),CF,DA,

TBI(9),PB(5),REI,REE,S(*),EFLH(2),PF,PI, DTA(*),CWCP(*),TA(*),MPC(2)

Kelmarsh [103]

Meteo WS(*), WD(*),Ta(∗), Pa(∗), Ha(∗), P rcp(∗)
Production P(*), ActP(*), Q(*)

Gearbox

Monitoring Signals

ToilAV G,RPM(*)
Gearbox Bearing TAVG

Front Bearing T(*)
Rear Bearing T(*)

Stator T(*)
Generator RPM(*)

Generator Bearing Trear(∗), Tfront(∗)
Transformer T(*)

Gear ToilInlet, Toil(∗), PoilInlet(∗),PoilPump(∗)
Rotor RPM(*)

Rotor Bearing T(*)
Yaw Bearing YA(*)

Blades PA(3*)
Nacelle T, Position(*)

Motor axis T(*)
Grid F(*)
CPU T(*)
Hub T(*)

Top Box T(*)
Additional Va,EE,EI,LP(20),EB,ET,VP,PPD(11),TPS,ACP(2),Cosphi(*),V(4*),C(7*),CF,DA,

TBI(9),PB(5),REI,REE,S(*),EFLH(2),PF,PI, DTA(*),CWCP(*),TA(*),MPC(2)

The number reported into the round brackets () represents the number of parameters related to the considered quantity.
T= Temperature (◦C), ActP= Active Power (kW), Q = Reactive Power(kVAr), Va=Vane Position (◦), S=Apparent Power (kVA), WS= Wind speed(m/s), WD=
Wind direction (◦), P = Power (kW), F=frequency (Hz), Cosphi= Actual phase displacement, C=Current (A), i=phase1, phase2, phase3, (*)=min,max,AVG,
Pa=pressure of air (Pa), Ta= ambient temperature (◦C), H = humidity (%), V=Voltage (V), EE= Energy Export (kWh), EI=Energy Import (kWh), LP =Lost
Production (kWh), EB=Energy Budget (kWh), PF= Production Factor, TPS= Turbine Power Setpoint (kW), ACP= Available Capacity for Production (kWh)
, PA= Pitch Angle (◦), ET= Energy Theoretical (kWh), VP= Virtual Production (kW), PPD= Potential Power Default (kW), CF= Capacity Factor, DA=
Data Availability, TBI= Time Based Information, PBI= Production Based Information, REI= Reactive Energy Import (kVarh), REE= Reactive Energy Export
(kVarh), EFLH= Equivalent Full Load Hours (s), PI= Performance Index, DFA= Drive Train Acceleration (mm/ss), CWCP= Cable Windings from Calibration
Point, TA= Tower Acceleration (mm/ss), MPC= Metal Particle Count, Nu= Grid Voltage (V), Tq= Torque (Nm), A= Angle (◦), Dir= Direction (◦), Nc=Grig
Current (A), PLAP= Power Latest Average Period (kW), En= Energy (kWh), PGIR= Possible Grid inductive ReactPwr (kVAr), GCRP= Grid Capacitive
React Power (kVAr), AO=Anemometer offset (m/s), RD= Rain Detection, ACO= Anemometer correct offset, ACG= Anemometer CorrGain, PAF=Pressure air
frequency (Hz), DAP= distance air pressure, PC= Power Curve, RP=Real Power (kW), TI= Turbulance Intensity, D= density, Y=% relative to rated power,
YA= Yaw Angles (◦), Prcp= Precipitation (mm), AF=Anemometer frequency (Hz), PGAP= Possible Grid Active Power (kW), Pos= Position (◦), O= Others

Table 4: Components and Main Parameters (Continued)

26



3.1 Research on Open Source Datasets

Each dataset, except for [100] and [101], which contains benchmark measurements, reports meteorological
information, and in particular, the focus is on the wind speed because strictly connected to the power generation.
The production related information are mainly Reactive Power and Active Power which, correlated to the wind
speed, allows to plot the power curve of the Wind Turbine to monitor its correct behaviour. As SCADA signals
associated to different components, the most reported variables, which can be considered important systems
health indicators are: Temperature, Speed of the rotational components (like generator), Control Variables like
pitch angle. In Table 4, some additional parameters, which vary according to the provider, have been reported
in order to give a complete overview of what each dataset contains.

3.1 Research on Open Source Datasets

In this section, we focus on the research that has been done for the datasets considered in the previous section.
In particular, research only related to [91] and [92] has been found and for this reason two tables have been
built, each one for each dataset. In Table 5, 9 research papers about EDP dataset [91] are reported. In
particular, in this table we have investigated data driven approaches. The components on which the research
has focused are almost all the same, mainly gearbox and generator (with their sub-assemblies) because, as
explained in the previous section, are those with the highest failure rate. For this reason, they are object of
many research in order to develop approaches to improve their reliability. In Table 5, a brief description of what
is done in research is reported with a focus on the main aspect of models for faults detection and diagnosis.
The range of methods considered in this literature review is quite wide, but we can see that the most employed
are supervised learning models. The last column of the table reports the performance evaluation of the model
introduced, but not for all the research has been possible to find the evaluation metrics. Many of them, to
evaluate the model, consider a graphical representation of the models’ output compared with the actual value
and any significant deviation testifies an abnormal behaviour that must be investigated in more detail. Table
6 reports 3 research papers related to [92]. The Table structure is the same of Table 5. In fact, we can see
the component object of research, a brief description of the work with the models developed and, lastly, a
performance evaluation. The performance metrics, introduced in both tables, to evaluate the capability in
faults detection of these models, are listed below:

• RMSE= Root Mean Squared Error =

√
1

n

∑n
i=1(y

i
p − yitrue)

2 where yp= forecasting values, ytrue=true

values

• MAPE= Mean Absolute Percentage Error(%)=
1

n

∑n
i=1

∣∣∣∣∣yip − yitrue
yitrue

∣∣∣∣∣ ∗ 100%
• R2= Coefficient of Determination =1−

∑n
i=1(y

i
p − yitrue)

2∑n
i=1(y

i
mean − yitrue)

2
where ymean= mean of all true values

• MIR= Missed Isolation Rate=
FNor

FNor + TIso
where FNor= number of faulty variables regarded as nor-

mal, TIso= number of faulty variables isolated as faulty

• MSE=Mean Square error=
1

n

∑n
i=1(y

i
p − yia)

2 where yp= predicted values, ya= actual value

• MAE= Mean Absolute Error =
1

n

∑n
i=1

∣∣yip − yitrue
∣∣;

• SDAPE= Standard Deviation of APE=

√
1

ni − 1

∑ni
i=1(APE −MAPE)

• Acc= Accuracy=
TP + TN

TP + FP + TN + FN
, where TP= True Positive, FP= False Positive, TN= True

Negative, FN= False Negative

• Rec= Recall=
TP

TP + FN
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3.1 Research on Open Source Datasets

• Prec= Precision=
TP

TP + FP

3.1.1 EDP Dataset

In this section, the focus is on the EDP dataset [91], that is the most used and counts 9 research papers.
In particular, Data Driven approaches have been investigated in order to perform faults identification (FDI),
diagnosis, root causes analysis and RUL prediction.

Paper Application Objective Method Performance Evaluation

[104]
Transformer, Genera-
tor,HG

Constructing a Health Indicator(HI), based on the Temperature (T),
and using a predefined threshold (Th) to establish whether the sta-
tus is healthy (HI≤Th) or faulty (HI>Th)

Hotelling’s T 2 -

TEMI MAR=0.05,MIR=0.12,FIR=0.02,FAR≤0.01
PCA-CP MAR=0.57,MIR=0.71,FIR=0.03,FAR=0.06
MRBD MAR=0.78,MIR=0.86,FIR≤0.02,FAR≤0.01

[105]
Transformer

Using ML approach to classify whether a component is faulty or not. Soft SVM,
NSGA-II

Pr=1, Rec=0.83
Gearbox Pr=0.75, Rec=0.75
Generator Pr=0.86, Rec=0.75

[106]

Wind Turbine
Constructing a Health Indicator (HI), based on a RE, and using a
pre-defined threshold (0.5<Th<0.6) to establish whether the status
of WT is healthy (HI≤Th) or faulty (HI>Th)

DAE
Graphical representation of the RE normalised

Generator bearing

Constructing a Health Indicator(HI) based on Temperature (T).
Predict the future values (yp) of HI and compare with actual value
(ytrue)

RAM-CNN RMSE=2.345◦C,MAPE=2.519%,R2=0.961
CNN RMSE=4.025◦C,MAPE=6.893%,R2=0.822

Seq2Seq RMSE=2.971◦C,MAPE=2.841%,R2=0.956
LSTM RMSE=3.706◦C,MAPE=6.428%,R2=0.876
WFSM RMSE=6.747 ,MAPE=12.400%,R2=0.679

HVT

RAM-CNN RMSE=1.390 ◦C,MAPE=1.767%,R2=0.964
CNN RMSE=3.094◦C,MAPE=5.874%,R2=0.889

Seq2Seq RMSE=0.956◦C,MAPE=1.482%,R2=0.971
LSTM RMSE=2.532 ◦C,MAPE=3.472 %,R2=0.927
WFSM RMSE=4.312 ◦C,MAPE=6.809 %,R2=0.655

[107] Wind Turbine Constructing a Health Indicator (HI) based on a RE, interpreted in
order to perform a RCA

AE+ARCANA AE Train: MSE=0.097, AE Val: MSE=0.010, ARCANA impor-
tance= 80%

[108]

Gearbox

Comparison of 6 approaches’ capability to detect faults. Construct-
ing a Health Indicator(HI) for each model. Predict the future values
(yp) of HI and compare with actual value (ytrue)

NBM

Graph. visualization of prediction error and anomaly detection
period

Generator
LoMST-
CUSUM

Generator bearing WHC-LOF
HG NBM-LI

Transformer CCA
KCPD -

[109]
Generator bearing

Constructing predictors combined to detect anomalies and failures
in advance

CPPS+ MLP Graph. visualization of anomalous period

[110] Wind Turbine Constructing 2 HIs based on Temperature (T), and using these HIs
the PP degradation over time is estimated

Distance Index
Graphical evaluation of power productionRegression

Model

[111] Gearbox
Constructing a Health Indicator(HI), based on the Cumulative
Score, and using a predefined threshold (Th) to establish whether
the status is healthy (HI≤Th) or faulty (HI>Th)

CUSUM
Graph. representation of anomaly score and cumulative

anomaly score

[112] Wind Speed Sensor
Using ML algorithms to detect failures and to improve RUL
prediction

DT Acc=96.77%

HVT= High Voltage Transformer, HG=Hydraulic Group, NSGA-II= Non-dominated Sorting Genetic Algorithm II, RAM-CNN= residual attention module
convolution neural network, DAE= Denoising Autoencoder, XGB= Extreme Gradient Boost, CNN= Convolution Neural Network, WFSM= Without features
selection models, NN= Neural network, LSTM=Long short-term memory, Seq2Seq=sequence to sequence, MAR= missed alarm rate, NBM=Normal Behaviour
Models, LoMST-CUSUM= Combined Local Minimum Spanning Tree and Cumulative Sum of Multivariate Time Series Data, WHC-LOF=Combined Ward Hierar-
chical Clustering and Novelty Detection with Local Outlier Factor, NBM-LI= Normal Behaviour Model with Lagged Inputs, CCA= Canonical Correlation Analysis,
KCPD= Kernel Change-Point Detection, CUSUM= Cumulative Sum of Multivariate Time Series Data, MLP= Multilayer Perceptron, TEMI=Temperature-
based Monitoring and Isolation,PCA-CP= principal Component analysis and contribution plot, MRBD= minimum risk Bayesian decision. CPPS= Combined
Power Predictive Scores, RE= Reconstruction Error, PP= Power Production, AE= Autoencoder

Table 5: EDP related work

In Table 5, a brief description of the main goal of each study is reported with a focus on the principal aspects of
models introduced for the FDI and the diagnosis. Most of the research aims to construct an appropriate health
indicator, which is able to well represent the behavior of the system (mainly Temperature or Reconstruction
error), that is compared with a threshold in order to diagnose when the faulty condition occurs.
It can be seen in Table 5, how the EDP dataset [91] has been object of different publications where the range of
methods considered is really wide. The most monitored components are those most critical for failures which
means gearbox, generator and transformer. The last column of the table reports the performance evaluation
of the algorithms, but not for all has been possible to find the evaluation metrics.
Many of these works propose a graphical representation to evaluate model performance, where the model
output is compared with the actual value to observe possible deviations which testify a faulty behaviour that
must be investigated in further detail.
We can see in Table 5, if we want to evaluate the algorithms performance in terms of accuracy for systems
behaviour forecasting, as the CNN-RAM and Seq2Seq show the best performances [106]. In terms of Total
Savings Prediction, [108] shows that higher cost savings are provided by LoMST-CUSUM and WHC-LOF.
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3.1 Research on Open Source Datasets

In the end, [104] introduces a novel TEMI approach which has, in terms of alarms and isolation rate, better
performance than traditional techniques like PCA-CP and MRBD.
Given the availability for the EDP dataset [91] of information related to the faulty events that affected the
Wind Farms, the tasks of Root Cause analysis and RUL prediction have been tackled. For each of these topics,
only 1 research publication has been found, i.e. [107] and [112]. For the Root Causes Analysis, [107] introduces
a novel approach that relies on an optimization algorithm that aims to find which input features contributed
to the anomalies detected by an Autoencoder model. Such model is able to associate the importance of each
feature considered for the Root Causes Analysis. In this sense, the feature related to the wind speed sensor,
which is the faulty components, has an importance of 80% (much higher than all the other features, which
reach the 10% of importance regarding the fault).
Ref. [112] shows how a data-centric approach overperforms, in terms of RUL prediction, a model-centric
approach.

3.1.2 LHWB Dataset

Table 6 reports 3 research papers related to the second Open Source dataset LHWB [92].

Paper Application Objective Method Performance Evaluation

[30]

Generator
bearing
R80736

Constructing a Health Indicator (HI), represented by the de-
viations of the forecast values from the real values, and using
a pre-defined threshold (Th=+3σ) to establish whether the
status of WT is healthy (HI≤Th) or faulty (HI>Th)

XGB R2=0.877,RMSE=1.419,MAE=1.000,MAPE=0.025
LSTM R2=0.880,RMSE=1.446,MAE=1.034,MAPE=0.026
MLR R2=0.850,RMSE=1.616,MAE=1.180,MAPE=0.305

Generator
bearing
R80790

XGB R2=0.815,RMSE=1.713,MAE=1.105,MAPE=0.027
LSTM R2=0.816,RMSE=1.708,MAE=1.051,MAPE=0.026
MLR R2=0.793,RMSE=1.813,MAE=1.248,MAPE=0.031

Generator
bearing
R80721

XGB R2=0.936,RMSE=1.060,MAE=0.801,MAPE=0.020
LSTM R2=0.921,RMSE=1.172,MAE=0.938,MAPE=0.024
MLR R2=0.897,RMSE=1.357,MAE=1.052,MAPE=0.027

Generator
bearing
R80711

XGB R2=0.926,RMSE=1.094,MAE=0.797,MAPE=0.020
LSTM R2=0.928,RMSE=1.074,MAE=0.782,MAPE=0.020
MLR R2=0.879,RMSE=1.396,MAE=1.092,MAPE=0.028

Gearbox
bearing
R80736

XGB R2=0.967,RMSE=0.975,MAE=0.707,MAPE=0.011
LSTM R2=0.950,RMSE=1.204,MAE=0.951,MAPE=0.016
MLR R2=0.954,RMSE=1.163,MAE=0.845,MAPE=0.014

Gearbox
bearing
R80790

XGB R2=0.956,RMSE=1.086,MAE=0.848,MAPE=0.014
LSTM R2=0.954,RMSE=1.110,MAE=0.833,MAPE=0.014
MLR R2=0.934,RMSE=1.329,MAE=1.012,MAPE=0.017

Gearbox
bearing
R80721

XGB R2=0.949,RMSE=1.125,MAE=0.775,MAPE=0.013
LSTM R2=0.941,RMSE=1.207,MAE=0.847,MAPE=0.014
MLR R2=0.929,RMSE=1.324,MAE=0.904,MAPE=0.015

Gearbox
bearing
R80711

XGB R2=0.9569,RMSE=1.092,MAE=0.809,MAPE=0.014
LSTM R2=0.9567,RMSE=1.094,MAE=0.804,MAPE=0.014
MLR R2=0.938,RMSE=1.305,MAE=0.944,MAPE=0.016

[113] Gearbox

Comparison of 6 different ML models evaluated constructing
a Health Indicator yp, based on the Temperature (T), com-
pared with the actual value ytrue of T, in order to evaluate
the deviations of the forecast T from the real values to un-
derstand when an overheating fault occurs

RF Train:R2=99.6%, MSE=0.39,MAE=0.44
Val:R2=99.1%, MSE=0.42,MAE=0.45

kNN Train:R2=82.05%, MSE=22.54,MAE=2.92
Val: R2=84.14%, MSE=19.54,MAE=3.12

ADA Train:R2=98.2%, MSE=2.25,MAE=1.12
Val:R2=94.22%, MSE=5.25,MAE=2.12

MLP Train:R2=73.31%, MSE=41.1,MAE=4.96
Val:R2=86.42%, MSE=39.23,MAE=7.63

BA Train:R2=98.5%, MSE=0.33,MAE=0.44
Val:R2=99.4%, MSE=0.36,MAE=0.47

ETR Train:R2=43.01%, MSE=0.86,MAE=0.79
Val:R2=48.2%, MSE=0.93,MAE=0.91

[114] Wind Turbine
Constructing Health Indicators to define the status and to
identify the attributes contributing the abnormal status

GMM, IF NOA detected: 306

XGB= Extreme Gradient Boost, LSTM= Long Short term Memory, MLR= Multiple Linear Regression, σ= deviation stardard, NOA=
Number of Anomalies, Train= Training, Val= Validation, WT= Wind Turbine, RF=Random Forest, IF= Isolate Forest, GMM= Gaussian
Mixture Model, kNN=k-Nearest Neighbors, ADA=Adaboost regressor, MLP=Multi Layer Perceptron, BA= Bagging regressor, ETR=
Extra tree regressor

Table 6: La Haute Wind Born Datset [92]

The table structure is the same as Table 5, where it can be seen the component object of research, a brief
description of the work with the models developed and a performance evaluation. The approaches developed
to detect failures are quite wide. Typically, the goal is to create an health indicator, mainly for generator and
gearbox, and comparing it against a threshold value.
Within the ML algorithms introduced, the generator behaviour is very well described considering a LSTM
approach; while gearbox is well described considering a bagging model with a MSE=0.33.
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3.2 Research on Diagnosis and Prognostics for Not Open Source Datasets

The research considering the LHWB [92] is quite limited and it has been object only of diagnosis because
it lacks the information related to the faults and for this reason, the root causes analysis and the prognosis
haven’t been performed.

3.2 Research on Diagnosis and Prognostics for Not Open Source Datasets

In this section, we review research publications for diagnosis and prognosis application, considering Not Open
Source Datasets, and discussing the objective, methods and performance. We make a distinction between
Faults Detection, Diagnosis and Prognostics and RUL prediction. Firstly, considering the fault detection and
the diagnosis, 3 Tables have been considered divided into: Signals Based, Model Based and Data Driven. In
each table, it is reported the type of data considered. In this sense, we can see as the most used data for
almost all the research are SCADA data, Vibrations and CM data. The components object of the analysis
are mainly gearbox and generator. All the works are briefly described in order to understand the flowchart
followed by the authors for the aim of their research. Lastly, the method developed and its performance is
reported. In Table 7, 4 papers related to the Signals Based Diagnosis are considered and each one, in order to
detect an anomaly, analyses the frequency spectrum of the signals gathered by sensors. In Table 8, 9 papers
related to the Model Based Diagnosis are reported. The modelling approaches of the system considered are
very different and at the end these works focused, mainly, on the prediction of a given quantity that is then
compared with a threshold value. The performance metrics, in this table, are quite various and the indices not
already explained in the previous section, are reported at the bottom of the table. Table 9 is focused on Data
Driven works and in detail, it counts 25 papers. The approaches considered are supervised and unsupervised
learning models and for each work it is reported the performance evaluation. For the Prognosis and RUL
prediction Table 10, Table 11 and Table 12 are considered in order to report 26 research papers related to:
Physics Based (7), Life expectancy(4) and Data Driven Prognostics Approach(15). To evaluate the confidence
level of the prognosis, some metrics are introduced: prognosis horizon, α− λ performance, relatively accuracy.
Many of these approaches rely their capability in predicting RUL or faults on the definition of health indices
which are compared with a threshold in order to identify the healthy or faulty condition.

3.2.1 Signals Based Diagnosis

This section shows some works related to the Signal based diagnosis of Wind Turbine.

Paper Type of Data Application Objective Method Performance Evaluation

[44] Vibrations Gearbox Using the frequency spectrum anal-
ysis to detect faults

Analytical+
Graphical Analysis

Analysis of severity factors,
defect matrix and evaluation

of graphical trends

[45] Vibrations HSS
Constructing a Health indicator
(HI) to evaluate the damages

SBPF
for early stages of tooth wear
Average SBPF=100%, for
missing tooth SBPF=320%

[46] ESs
Generator,

DrTr
Using a novel technique based on
the signals analysis to detect faults

DWT + CWT Graph. evaluation

[47]
Vibrations +

SCADA
Generator

Using characteristic frequencies to
detect faults

WA
Graph. evaluation of the

faulty conditions

VB2SFD= Vibration based two stage fault detection, SBPF= Side-Band Power Factor Algorithm HSS= high speed shaft, DWT=
Discrete Wavelet Transforms , CWT= Continuous Wavelet Transforms , WA= Wave Analysis, DrTr= Drive Train, ES= Electrical Signals,

SBPF=side band power factor=
SBPFf − SBPFh

SBPfh
, WA= Wave Analysis

Table 7: Signals Based Fault Detection and Diagnosis

The type data used in the different approaches developed are mainly vibrations and all the techniques are
based on signal processing to extract the main information needed. As we can see in Table 7, the evaluation
of the performance of the different methods is made by graphs interpretation.
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3.2.2 Model Based Diagnosis

In this section, our attention is focused on all those research related to model based diagnosis. In particular,
9 papers have been found.

Paper
Type of
Data

Application Objective Method
Performance
Evaluation

[35]
Real

SCADA
Gen. Bear.

Constructing a Health Indicator yp based on the Tem-
perature (T) compared with the actual value ytrue of T.

LS+ARX
with 3 param

R2=0.8018, AIC=-0.6971,
Graph. distribution anal-
ysis of the model error

[36]
Real

SCADA
Gen. Using faults sensitive features for faults detection

DM +
NOFRF

For FD Graph. analy-
sis of indices I1010 , I1020 ,
I1011 and I1021 ; for prog-
nosis AUC=0.9982,
TPR=0.8501,
FPR=0.0104

[37]
Real

SCADA
TS, CV, IV, RT

Using health variables and extensive expert knowledge
on specific components failures enables to determine
faults root causes

ADM N.A.

[38]
Real

SCADA
Gb Bear, Gen.

Wind.
Investigating different techniques for CM systems.
Constructing a Health Indicator (HI) and using an
adaptive threshold (Th) to establish whether the
status of WT is healthy (H≤ Th) or faulty (HI>Th).

LM
Gear: R2=0.710, Gen:

R2=0.833

MSDP
Gear: R2=0.997, Gen:

R2=0.983

ANN
Gear: R2=0.992, Gen:

R2=0.977

[39]
Bench.
SCADA

Gen., Blades,
Act.

Using a parameter varying modelling for state estima-
tion and fault reconstruction.

PVM
Graph. analysis of

Temperature and viscous
friction parameter

[40]
Bench. CM

Data
DrTr, PS,

Generator, Tower

Constructing a Health Indicator (HI) and using a
threshold (Th) to establish whether the status of WT
is healthy (HI≤Th) or faulty (HI>Th).

ARR+IO
Min. Faults: f1=0.997,
f2=-0.145, f3=0.9999,
f5=1.00035, f9=25

[41]
Simul. CM

data
Generator, CV

Comparison of 3 approaches, Constructing a Health
Indicator (HI) and using a threshold (Th) to establish
whether the status of WT is healthy (HI≤Th) or faulty
(HI>Th).

cKalman,
DObs,H∞

Graph. evaluation of the
error

[42]
Simul. CM

Data
Blades sensor

Constructing a Health Indicator (HI) and significant
deviations of the HI predicted from the actual value are
used to establish whether the status of WT is healthy
or faulty.

KF

Evaluation of the sen-
sitivity of the method
considering 0 or 1. 1=
test sensitive to the fault,
0= test not sensitive,
Graph. visualization of
the prediction error

[43]
Real CM
data

Blades sensor,
Actuator

Constructing a Health Indicator (HI) and using a
threshold (Th) to establish whether the status of WT
is healthy (HI≤Th) or faulty (HI>Th).

KF+IM
Isolation capacity 99%,
if the generated residual
exceeds the threshold false
alarm is set to 1

DTDM= Discrete Time Dynamic Model, LS= Least Square, AIC=Akaike’s Information Criterion, ARX=AutoRegressive with eXogenous
input model,AUC= Area Under the Receiver operating characteristic curve, I1010 =

∣∣G103
0

∣∣ − ∣∣G101
0

∣∣, I1020 =
∣∣G103

0

∣∣ − ∣∣G102
0

∣∣, I1010 (jωc) =∣∣G103
0 (jωc)

∣∣ − ∣∣G101
0 (jωc)

∣∣, I1020 (jωc) =
∣∣G103

0 (jωc)
∣∣ − ∣∣G102

0 (jωc)
∣∣ , f1= blade root bending moment sensor fault, f2= accelerometer faults,

f3= generator speed sensor faults, f5= generator power sensor faults, f9= torque offset fault, FI= Fuzzy inference, CV= Converter, TS=
Transformer, IV= Inverter, RT=Rectifler, DrTr=Drive Train, PS= Pitch System, Gen. Wind.= Generator Windings, Gb= Gearbox,
Bear= Bearing, Gen= Generator, CM= Condition Monitoring, Bench= Benchmark, Simul= Simulation DMS=Dynamic Model Sensor,
T= Temperature,WS= Wind Speed, Ta= Ambient Temperature, SFA= System Frequency Analysis, DM= Dynamic model, NOFRF=
nonlinear output frequency response functions, ADM= Abductive diagnosis model, LM= Linear Model, MSDP= Multi State dependent
parameter models, PVM= Parameter-varying model, ARR=analytical redundancy, relations, IO= internal observer, KF= kalman Filter,
NL= Non Linear, cKF= Cascade Kalman Filter, DObs= Dedicated Observer-Based Approach, IM= Inference Method

Table 8: Model Based Fault Detection and Diagnosis related work

The most of research builds an Health indicator, which is compared with a threshold, to perform the WT
diagnosis. The data gathered by sensors are mainly SCADA data and the several approaches introduced are
mainly evaluated graphically. In this sense, it is possible to visually define when a possible fault has occurred.
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3.2 Research on Diagnosis and Prognostics for Not Open Source Datasets

3.2.3 Data Driven Diagnosis

The current research, considering Data-Driven approaches for Fault Detection (FDI) and diagnosis for Not
Open Datasets about Wind Turbines, are presented in Table 9. This Table reports 25 papers briefly described
in terms of type of data, components, study goal, method and its performance.

Paper
Type of
Data

Application Objective Method Performance Evaluation

[62]
Real CM
data

IGBT
Using ML approach to classify different types of faults

GPR + MCRF Train: Acc=F1=99.98%

Test: Acc=F1=99.94%
[58] Vibrations MTC Using ML approach to classify whether the component state is faulty

or not
SVM linear kernel Acc=98.26%

ANN Acc=97.47%

[66]
Real

SCADA
CV

Constructing Health indicators (HIs) based on fault indicators to
generate radar charts whose analysis allows to detect faults

AOC-ResNet50 Acc=98.04%, Pr=98.41%, Rec=97.66%

[86]
Real

SCADA
Generator Using CL approach to predict heating and excitation faults CW Pr=0.24, Rec=0.98, F1=0.38

[53]
Real

SCADA
Rear Bearing

Constructing a Health Indicator (HI) and significant deviations of the
HI predicted (yp) from the actual value (ytrue) are used to establish
whether the status is healthy or faulty

ANN RMSE=0.29

[52]
Real

SCADA
Gearbox

Constructing a Health Indicator (HI) based on the Temperature (T)
and significant deviations of the HI predicted (yp) from the actual value
(ytrue) are used to establish whether the status is healthy or faulty

MNN RMSE=1.18

[115]
Real

SCADA
Bearing

Constructing a Health Indicator (HI) and significant deviations of the
HI predicted (yp) from the actual value (ytrue) are used to establish
whether the status is healthy or faulty

ANN RMSE=0.2

[55]
Real

SCADA
Gearbox

Constructing a Health Indicator (HI) and using a predefined threshold
(Th) to establish whether the status is healthy (Th≤HI) or faulty
(Th>HI)

DNN MAPE=6.01, SDAPE=4.47

[56]
Real

SCADA
Gearbox

Constructing a Health Indicator (HI) based on thermal equilibrium
and significant deviations of the HI predicted (yp) from the actual value
(ytrue)are used to establish whether the status is healthy or faulty

NARX-ANN + MHD MAE=0.44, RMSE=0.77

[60] SCADA Generator
Constructing a Health Indicator (HI) and significant deviations of the
HI predicted (yp) from the actual value (ytrue)are used to establish
whether the status is healthy or faulty

PCA + SVM
P:NMAE=2±0.1, NRMSE=3.1± 0.1,

MAPE=5.5± 1.2
V:NMAE=0.63±0.01, NRMSE=0.8±0.01,

MAPE=0.04±0.02
I:NMAE=1.9±0.1, NRMSE=2.9±0.2,

MAPE=6.3±1

[80]
Real

SCADA
Bearing Constructing a Health Indicator (HI) based on the Temperature (T)

and using a pre-defined threshold (Th) to establish whether the status
is healthy (HI≤Th) or faulty(HI>Th)

NN
Train: MAE=0.659, MRE=1.39,

R2=0.9926
Test: MAE=0.663, MRE=1.379,

R2=0.9905

[48]
Real

SCADA
HSS

Constructing 2 Health Indicators (HIs) and using a threshold (Th)
to establish whether the status of WT is healthy (HI≤Th) or faulty
(HI>Th). Investigating classification technique for capturing fault
signatures

PCA, AANN, SOFM Graph. evaluation of Q statistic and
Hotelling T 2 statistics

[49]
SCADA +

CM
Gearbox

Analysing the physical procedure of kinetic energy transmission and
dissipation to detect failures

-

[63]
AE,

Vibrations
Gearbox Using ML approach to classify the faults pattern DRFF CL rate= 97.68%

[67] Vibrations Gearbox Using ML approach to classify faults samples ELMD+ FCM -

[54]
Real

SCADA
Gearbox

Constructing a Health Indicator (HI) based on Temperature (T) and
significant deviations of the HI predicted (yp) from the actual value
(ytrue)are used to establish whether the status is healthy or faulty

NN Graph. evaluation of deviation

[59]
Sim. CM

data
DrTr Using ML approach to classify whether the component state is faulty

or not
SBS/SFS-SVM Acc=97.27%

[57]
Real CM
data

Sensors, CVA
Constructing a Health Indicator (HI) based on the residuals between
the predicted (yp) and the actual values (ytrue) and using a pre-defined
threshold (Th) to establish whether the status is healthy (HI≤Th) or
faulty(HI>Th)

SVM -

[61] SCADA Generator

Combining engineering knowledge, failure modes and domain knowl-
edge to define faults root causes using a ML approach DT -

[64]
Bench.
data

Sensors,
Actuator

Constructing a Health Indicator (HI) and using a pre-defined Thresh-
old (Th) to establish whether the status is healthy (HI≤Th) or
faulty(HI>Th)

RF+XGB
hit rate=0.9999, Graph. evaluation of the
deviation

[65]
Real

SCADA

Gearbox,
Generator
bearing

Constructing a Health Indicator (HI) based on RE and using an adap-
tive Threshold (Th) to establish whether the status is healthy (HI≤Th)
or faulty(HI>Th)

DAE
Graph. evaluation of the difference

between HI and the threshold

[68]
Real

SCADA
Gearbox

Constructing a Health Indicator (HI) and significant deviations of
the predicted (yp) from the actual values (ytrue)are used to establish
whether status is healthy (HI≤Th) or faulty(HI>Th)

SOM, GMM, NN Graph. evaluation of deviation

[69] Vibrations Bearing
Using the position of the neurons in the output layer, it’s possible to
detect a fault.

SOM
Graph. trend analysis of faulty and

healthy signals

[82]
Real

SCADA

Gearboxbearing,
Generator
stator

Constructing a Health Indicator (HI) based on the Temperature (T)
and significant deviations of the predicted (yp) from the actual val-
ues (ytrue)are used to establish whether status is healthy (HI≤Th) or
faulty(HI>Th)

FSRC-NN,
AUTONN, RM

AUTONN: ALV=50, Graph. of the
prediction error

Table 9: Data Driven Fault Detection and Diagnosis work
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3.2 Research on Diagnosis and Prognostics for Not Open Source Datasets

[83]
Real

SCADA
Wind Turbine

Faults Prediction

NN Acc=97.6%

SVM Acc=95.8%
RF Acc=99.4%
BTA Acc=98.8%

CHAID Acc=96%

HSS= High Speed Shaft, AANN=auto-associative neural network, SOFM= self-organizing feature map, CM= Condtion Monitoring,
NARX= Non linear Auto-Regressive with exogenous input, DT= Decision Tree, SBS=sequential backward selection,SFS=sequential forward
selection, P= Power, I= Current, V= Voltage, CVA= Converter Actuator, AE= Acoustic Emissions, MNN= Multilayer neural network,
MHD= Mahalanobis Distance, DNN= Deep Neural Network, CL= Classification, MTC= Mechanical Transmission Chain, DrTr= Drive
Train, FSRC-NN= Full Signals Reconstruction Neural Network, AUTONN= Autoregressive neural network, ALV= alarm limit violation,
GPR= Gaussian process regression-based, MCRF= Multiclasse Random Forest, DRFF= Deep Random Forest Fusion, RE= Reconstruction
Error, RF= Random Forest, CW= Addition of Class Weight, DAE= Deep Auto-encoder network, AOC=Attention Octave Convolution,
XGB= Extreme Gradient Boost, ELMD= Ensemble Local Means Decomposition, FCM= Fuzzy C-means Clustering GMM= Gaussian
Mixture Model, CV= Converter,BTA=boosting tree algorithm , CHAID=chi-square automatic interaction detector, RF= Random Forest,
RM= Regression model, SOM= Self Organizing Map

Table 9: Data Driven Fault Detection and Diagnosis work (Continued)

To perform a diagnosis, most of the techniques are based on the construction of a health indicator, which is
then compared with a threshold value. Table 9 reports the techniques used in order to detect failures. For the
most part, supervised learning models are used.
It is evident how different Neural Network models, which differ in terms of performance, are widely adopted
for Wind Turbines diagnosis. Such ANN models have similar performances for fault detection, while the best
results are provided by the Artificial Neural Network in Ref. [115] with a RMSE=0.2. These models are fed
by SCADA, Vibrations and CM data gathered by the sensors inside the Wind Turbines.
Observing the second column of Table 9, it can be seen as the most monitored components are gearbox and
generator.
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3.2 Research on Diagnosis and Prognostics for Not Open Source Datasets

3.2.4 Physics based Prognostics

The physics based prognostics related works are showed in Table 10. The main purpose of each work is to
predict RUL.

Paper Type of Data Application Objective Method Performance Evaluation

[73] SCADA, CM Wind Turbine RUL prediction DP RUL values tabled.

[74] CM Gearbox RUL Prediction PF
N=1000: RMSE=2.38,

σ=0.12

[75] CM signals Bearing
RUL prediction with uncertainty

quantification
WT+PF

Graph. trend analysis
considering α-λ accuracy

[76] Real CM data Wind Turbine
RUL prediction with a stochastic

decision making framework
SDGM + SBI

Evaluation in terms of total
costs savings

[77] Vibrations Gen. bearing RUL Prediction PL+KF
HI and a threshold are

compared

[72] Vibrations HSSB, IBGT RUL Prediction
PL+KF, MMLE,

GPR
Graph. Eval. of HI

[116] Vibrations Bearing
RUL Prediction with a robust

model
IUPF Graph. RMS, MAD=3.77

DP=Degradation Pattern,SDGM=Stochastic Damage Growth model,PL=Paris’Law,PF=Particle filter,HSSB=High Speed Shaft Bear-
ing,SBI=Similarity based interpolation,WT=Wavelet transforms,HI=Health Index,GPR=Gaussian Process Regression,MMLE=Modified
Maximum Likelihood Estimator,σ=standard deviation, IUPF= Improved Unscented Particle Filter, MAD=mean absolute

deviation=
∑N

i=1

∣∣∣∣Predicted(RUL)−Actual(Rul)

k

∣∣∣∣ where k= number of prognosis step

Table 10: Physics Based Prognostics Related work

We can see how the range of data used for developing the different methods is quite wide and in particular,
the authors, for their models, exploited SCADA, Condition monitoring and Vibrations data.

3.2.5 Life Expectancy Prognostics

The current research, considering Life expectancy prognostics approaches, is reported in Table 11.

Paper Type of Data Application Objective Method Performance Evaluation

[88] Wind Turbine
Comparison of prognostics

approaches
HMM, NN, PF N.A.

[89] Vibrations Gearb. bearing RUL Prediction EPF+NFI e1=0.3645,e2=0.6472, Graph.
evaluation of fault predictor

[90] Real SCADA Gearbox RUL prediction PF N.A.

[117] Bench. data Gearbox RUL prediction.
Generalized
Cauchy

RMSE=1.0274, MAPE=0.0532

HMM=Hidden Markov Model,EPF=Enhanced Particle Filter,BI=Bayesian Inference, GP=Gaussian Process,NFI=Neuro Fuzzy

Inference,DSTM=Dependent State Transition Model,SDGM=Stochastic Damage-Growth Model,ACC=
∣∣∣tEn

k
− tn

∣∣∣ where tEn
k
=real

time,tn=predicted time, e1=
1

NsTm

∑Ns
u=1

∑Tm
k=1

∣∣zk−u
k

∣∣, e2=
1

NsTp

∑Ns
u=1

∑Tm+Tp

Tm+1

∣∣zk−u
k

∣∣ where Tm=monitoring period, Ns=Number of

experiments,Tp=prediction period,xu
k=state predicted at the time instant k for the uth experiments;

Table 11: Life Expectancy Prognostics related work

3.2.6 Data-Driven Prognostics

For the Prognosis and RUL prediction, 15 Data-Driven Prognostics papers are considered.
We can see in Table 12, how most of the research about the prognosis for Wind Turbines relies on Data-driven
models fed by condition monitoring measurements and in particular by vibrations. The target of each study
for the prognosis is to compute the RUL of the most critical components. In this sense, we can see particular
attention towards components like gearbox, generator, and bearing. The method developed to predict the RUL
are really wide, but the current research considers mainly supervised ML algorithms and the most performed
are different Neural Networks models (NN [126], ANN [87] [81], MANN [118], DNN [122], ENN [125]). If we
want to evaluate the performance in terms of RMSE, we can see how [125] provides the lowest errors.
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Paper
Type of
Data

Application Objective Method Performance Evaluation

[78] [79] SCADA Pitch System Using a ML methods to perform a fault prognosis achiev-
ing a high prediction horizon

APK-ANFIS PH=21 days

[118] Vibration Gearbox RUL Prediction Regression+ MANN SSE=661.98

[119] Vibration Wind Turbine RUL Prediction
CDM+ triggering

algorithm
Case Study 1: PEP=100%

Case Study 2: PEP=85%
[120] Vibration HSS bearing RUL Prediction OCSVM+GLM RMSE=16.484, MAPE=42.908%

[121] Vibration bearing RUL Prediction
FDMPD+KELM

+WAFT
4.68% <E<458.14%

[122] SCADA bearing
Prediction performance of WT’s risk condition with
respect to RFL

NN+DNN average accuracy>0.8, average sensitivity>0.85%

[123] Vibration bearing RUL prediction SOM+UKF E=47.47%%
[124] SCADA generator RUL prediction ARIMA MRE=0.27
[125] Vibration HSS bearing RUL prediction SSF+ENN Train: RMSE=1.65e−5, T est : RMSE = 0.0025
[126] Vibration generator RUL prediction NN RUL=26.6 days, prognostics accuracy=12.78%

[87]
SCADA+
status

Bearing
Achieving a high prediction horizon and the time of
failure within a specified model accuracy

BI, GP, DSTM, ANN Defining of a Prediction horizon where ACC=106 hours

[127] Vibration Gearbox RUL prediction FOA-ELM RMSE=0.91h, MAE=0.734h, Acc=95.4%
[81] Real SCADA Gear bearing

RUL and Faults Predictions

ANN CorrPred:72.5%
SVM CorrPred:60%
LR CorrPred:59%

[128] Vibration HSS bearing RUL prediction ENN MSE=0.0023

APK-ANFIS= A priori knowledge Adaptive Neuro-Fuzzy Inference System, ANN= Artificial Neural Network, LR= Linear Regression,
CorrPred= Correct predictions, MANN= Multilayer Artificial Neural Network,BI=Bayesian Inference, GP=Gaussian Process,NFI=Neuro
Fuzzy Inference,DSTM=Dependent State Transition Model, CDM= Cumulative degradation model, PEP=Percentage of Effective Predic-
tions, OCSVM=One Class Support Vector Machine , GLM= Generalized Linear Model, FDMPD=Fitting Curve Derivative Method of
Maximum Power Spectrum Density, KELM= Kernel Extreme Learning Machine, WAFT=weight application to failure times, RFL= Re-
maining Functional Life, ELM= Extreme Learning Machine, FOA= Fruit Fly of Algorithm, ENN= Elman Neural Network, SOM= Self
Organizing Map, UKF= Unscented Kalman Filter, ARIMA= Autoregressive Integrated Moving Average, SSF=Spectral Shape Factor

Table 12: Data Driven Prognosis Related Work

3.3 Application of Open Source Datasets for PHM and Predictive Maintenance Planning

The type of studies that can be conducted considering the 15 Open source datasets, presented in the previous
sections, are reported in Table 13. Their suitability is divided into: Diagnosis, Prognostics, Root Causes
Analysis (RCA).

Datasets Suitability for PHM and predictive maintenance planning Research done
EDP [91] Diagnosis, Prognostics and RUL prediction, Root Causes Analysis Diagnosis ([108] [109] [110] [111][104] [105] [106]), Root

Causes Analysis ([107]), RUL ([112])
LHWB [92] Diagnosis Diagnosis ([30] [114] [113])
VV52 [93] Diagnosis -

Penmanshiel [102] Diagnosis -
Kelmarsh [103] Diagnosis -
Yalova [94] - -

Sotavento [95] - -
Eolos [96] Diagnosis -
IWFD1 [97] - -
IWFD2 [98] - -
OWFD1 [97] - -
OWFD2 [98] - -
Beberibe [99] Diagnosis -
GRC [100] Diagnosis -
GRC2 [101] Diagnosis -

Table 13: Possible application of Open Source Datasets for Wind Turbines

Table 13 is built looking inside each dataset, using the information provided by the previous sections. Most of
the Open Source datasets available are suitable for health monitoring and diagnosis ([91],[92],[93],[102],[103],
[96], [99]), because they provide all the SCADA measurements for the Wind Turbines components. In addition
to those information, only the EDP dataset [91] allows to perform prognosis and RUL prediction, given the
availability of information about failures/anomalies like date, components interested, Wind Turbine affected,
and type of damage. The remaining datasets ([94],[95],[97],[98]) only provide data related to power production
and meteorological parameters and given the lack of quantities gathered by components sensor, it is not pos-
sible to perform neither a fault detection and/or a diagnosis analysis.

Observing Table 13, as the only open dataset suitable for all kinds of investigation for PHM and predic-
tive maintenance planning is the EDP [91].
The focus of the research done has been monitoring the normal behaviour of the Wind Farms and diagnosing
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the anomalies using a threshold. The most of authors used a pre-defined threshold, in general establishing an
upper control limit (UCL). In this sense, the definition of a Health Index and of a threshold is very important
for an accurate diagnosis with a low margin of error. Then, it can be seen as the challenge for the diagnosis is
defining an appropriate threshold that allows having, in output, an accurate evaluation of the normal behaviour
and of any significant deviations from it it is caused by faults.
Given the fact that the prognosis for the EDP [91] has not been widely faced by the current research, another
challenge is performing the prognosis (computing the RUL of components most affected by failures) to improve
the performance of the entire Wind Farm.
In the end, the possibility to also perform a Root Causes Analysis for the EDP [91] introduces another challenge
which is to develop a consistent approach able to provide a good understanding of the causes of a defined
anomaly.
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3.4 EDP preliminary data analysis

3.4 EDP preliminary data analysis

The dataset analysed is EDP Dataset [91]. All the data considered for this section have been gathered between
01/01/2017 and 31/12/2017 with a sampling rate of 10 min (Table 3). It has been verified that for the quantities
of interest, linked to the correct behaviour of components, like Temperature, RPM, are not present Missing
Values. In order to understand the relationship between all the parameters and to understand which variables
are strictly connected to each other (to avoid multicollinearity problems for future prognostics applications),
the correlation matrix for the EDP dataset [91] has been represented in Fig. 19.

Figure 19: Correlation matrix for EDP Dataset [91]

Fig. 19 shows a strict relationship between the parameters reported on the y axis and the active power
production. The same quantities on the y-axis are reported in Fig. 20, in order to visualize how the Temperature
of different components increases increasing the power production. In this sense, it is possible to see a sort of
linear relationship between the T and the active power.

37



3.4 EDP preliminary data analysis

Figure 20: Raw Data for EDP Dataset [91]

A basic analysis of the outliers computed considering the interquartile approach using a box plot representation
is reported in Fig. 21. We can see as the number of outliers is quite limited with respect to the number of
observations considered which is equal to 209236.

Figure 21: Outliers for EDP Dataset [91]

The attention has been focused on the relationship of various parameters with Active Power Production. Active
power is the first basic health indicator for the Wind Turbine, because through the study of the performance
and in particular comparing the real power generation with the expected power generation, provided by the
manufacturer, it is possible, doing a preliminary analysis on the power curve, to understand if any anomalies
occur. On the other hand, the analysis of the wind power curve doesn’t help to detect the root of the faults
and to understand which are the components involved that show an abnormal behaviour and for this reason it
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3.4 EDP preliminary data analysis

needs more detailed analysis. The performance of the EDP can be seen in Fig. 22.

Figure 22: Power Curve for EDP Dataset [91]

From Fig. 22, it can be seen as the power generated varies from 0 MW (when the wind speed is not sufficient
to allow power generation) to a maximum value of about 350 MW. The curve is affected by some outliers
that should be properly processed for further analysis. Indeed, these outliers in the power generation could
significantly affect the accuracy of the result. In this sense, exceeding the wind speed of cut in (vcutin=4 m/s)
that indicates the activation of the Wind turbine, we can see many points where the power generated is 0
MW. Still, these points are under power points representing an abnormal wind turbine behavior. The power
generated takes a constant value at the cut-out wind speed (vcutoff=25m/s).
In order to complete the preliminary analysis of [91], the information related to the faults, that have affected
the correct behaviour of the wind turbines of the wind farms, are shown in Fig. 23, which reports 3 histograms
with respectively the number of faults for component, for Wind Turbine and for month.

Figure 23: Number of faults
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4 EDP Dataset Prognostic

4.1 Theoretical Background

4.1.1 Recurrent Neural Network RNN

A recurrent neural network (RNN), according to [129], is a particular neural network characterised by an
internal loop which allows to keep states of earlier input in order to optimize the output. The state of the
RNN is reset between processing two different, independent sequences, in order to be able to consider only
one sequence a single data point [129]. According to [130], the RNN operates both on an input and internal
state space. This state space enables the representation of temporally/sequentially extended dependencies
over unspecified (and potentially infinite) intervals. RNNs and their variants have been used in many contexts
where the temporal dependency in the data is an important implicit feature in the model design [131].

Figure 24: RNN Architecture [131]

Fig. 24 depicts the general RNN architecture. As reported in [131], the circles represent input x, hidden
h, and output nodes y, respectively. The solid squares W h

i , W
h
h and W h

o are the matrices which represent
input, hidden and output weights respectively. Their values are commonly tuned in the training phase through
gradient descent. The polygon represents the non-linear transformation performed by neurons and Z−1 is the
unit delay operator [131]. In particular, the most general form as a RNN can be seen is as a weighted, directed
and cyclic graph that contains three different kinds of nodes, namely input, hidden and output nodes [131].
Input nodes do not have incoming connections, output nodes do not have outgoing connections, hidden nodes
have both. An edge can connect two different nodes which are at the same or at different time instants.
Bodén [130] introduced the math for a simple RNN model made by 2 layers ( one ’hidden’ or ’state’ layer, and
one ’output’ layer) nodes excluding the input layer (see Fig. 25).

Figure 25: RNN [130]
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Studies of RNN model used for prognostic and RUL predictions has been already introduced in the previous
sections.

4.1.2 Long-short term memory LSTM

The Long Short-Term Memory (LSTM) architecture was originally proposed by Hochreiter and Schmidhuber
[132] and it is widely used because it is able to accurately model both short and long term dependencies in data
[131]. LSTM is a idiosyncratic kind of recurrent neural network [133]. LSTM works very well for time series
data and it can solve the problem of long-term dependence of the series, avoiding the problems of gradient
disappearance and gradient explosion, so it can be used for the analysis of long-term data [134].
The LSTM consists of L LSTM layers which allow to carry information across many timesteps. Each layer,
basically, saves information for later, thus preventing older signals from gradually vanishing during processing,
according to [129]. The LSTM takes in input data, properly shaped, in order to have shape=[nsamples,
timesteps, nfeatures].

Figure 26: LSTM cell [135]

The LSTM, as showed in Fig. 26, has three gates which are non linear summation units that collect from
inside and outside the block, and control the activation of the cell via multiplications [136]. The input and
output gates multiply the input and output of the cell while the forget gate multiplies the cell’s previous state
[136]. According to [137], the LSTM network is based on the idea to generate a constant error path between
subsequent time steps. In more detail, the forget gate allows to define which information has to be removed
from the cell state, the input gate allows to regulates which new information has to be stored in the cell state,
and the output gate controls the output of the LSTM unit defined as the hidden state h(t) [138]. Below the
equations for a Vanilla LSTM are reported. Being xt the input vector at time t [137], we can write:

gt = tanh(Wgxxt +Wghht−1 + bg) (4.1.1)

it = σ(Wixxt +Wixht−1 + bi) (4.1.2)

ft = σ(Wfxxt +Wfxht−1 + bf ) (4.1.3)

ct = ft ⊙ ct−1 + it ⊙ gt (4.1.4)

ot = σ(Woxxt +Woxht−1 + bo) (4.1.5)

ht = ot ⊙ tanh(ct) (4.1.6)

where W, b are respectively the weight and the bias, σ represents the sigmoid function, g is the block input, i,
f and o are the input, forget and output gates, c represents the memory cell value and h is the block output.
In these equation ⊙ denotes element-wise Hadamard product [137].
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4.1.3 Activation Function

There are several activation function, but in our research we have focused on: Rectified Linear Unit (ReLU)
and Leaky Rectified Linear Unit (Leaky-ReLu).
The ReLu, according to [139], is a simple function which is the identity function for positive input and zero
for negative input and as indicated below:

ReLu(x) = max(0, x) =

{
0 if x ≤ 0

x if x > 0
(4.1.7)

The ReLu activation function, according to [140], allows to solve the problem of ”expansion and disappearance”
in the sigmoid and tanh functions. The downside of ReLU is the vanishing gradient problem for the negative
inputs [139].

The Leaky-ReLu was first proposed by Andrew L. Maas. from the Department of Computer Science at
Stanford University and it is an improved version of the ReLu activation function. The way it works has been
reported in the following equations:

LeakyReLu(x) =

{
ax if x ≤ 0

x if x > 0
(4.1.8)

where a is the slope value that can be chosen arbitrarily. In particular, when this activation layer takes a
negative input, it returns a smaller linear component of the input.
Leaky ReLU can also avoid the dead ReLU problem because it allows a smaller gradient when calculating the
derivative, but as for the ReLu also with the LeakyReLu activation function it’s not possible to the problem
of gradient explosion [141].
In Fig. 27 , we can notice the difference between the 2 activation functions introduced before.

Figure 27: ReLu and LeakyReLu activation function [142]

4.1.4 Dropout Regularization

Large Neural Networks are slow to use, making it difficult to deal with overfitting by combining the predictions
of many different large neural nets at test time [143]. As indicated in [144], the overfitting is a problem
which occurs when the model performs very well with training data and fails to perform well on test data. In
particular, the model learns the noise patterns present in the training data and this means that a large gap
between the training and test error is generated [144]. In order to avoid this problem, the dropout regularization
has been introduced. In this sense, the dropout is a technique which allows to randomly delete units (along
with their connections) from the neural network during training, as showed in Fig. 29.
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Figure 28: Dropout Regularization [143]

According to [145], in a LSTM-Dropout architecture, the hidden state and the output can be computed as:

h<t> = Θf · (Whh ⊙ h <t−1> +Wzh ⊙ z<t> + bh) (4.1.9)

H<t> = Θf · (WhH ⊙ h<t> + bH) (4.1.10)

where, as reported in [145], we have h<t> is the hidden layer, h<t−1> is the previous hidden layer, Θf is the
activation function and H<t> is the output. Whh, Wzh and WhH are, respectively, weights for the connection
of the input layer to the hidden layer, the hidden layer to the hidden layer and the hidden layer to the output
layer. In the end, the symbol <> indicates a vector and the symbol ⊙ represents a matrix product.

Figure 29: Dropout layer [145]
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4.1.5 Monte Carlo dropout

The neural networks are affected by a certain uncertainty and when a model is developed, it is important to
evaluate how certain is the output. In this sense, following the categorization of uncertainty indicated by Der
Kiureghian & Ditlevsen [146], we can define two different kind of uncertainty:

• Epistemic uncertainty or model uncertainty, correlated to the fact that we do not know which could be
the best model for the data

• Aleatoric uncertainty or data uncertainty, where the data does not fully contain the information they
should have captured [147]

While the first type of uncertainty is defined as a reducible uncertainty because we can developed the best
model implementing hyperparameters tuning techniques; the aleatoric is defined as an irreducible uncertainty
because the information that is not contained in the dataset considered can’t be recovered
According to [148], despite the fact the Bayesian networks work well in terms of uncertainty quantification,
they are characterised by high computation costs. For this reason, we introduce Monte Carlo dropout which
is an alternative to the Bayesian inference but more computationally efficient.
Labach et al. [149] explained how to implement Monte Carlo dropout. In particular, firstly a neural network is
trained using standard dropout regularization. Then, to perform inference on an input sample, the network is
run T times (the number of iterations depends on the dataset) with regular dropout layers, all with the same
input but with different randomly generated dropout masks each time [149].

Figure 30: Monte Carlo Dropout [148]

Typically, Monte Carlo dropout is used only during training to prevent overfitting. In this work, we use Monte
Carlo dropout during training to prevent overfitting of the model, and during testing to obtain the probability
distribution of the RUL, as it will be explained in the next sections.
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4.2 Experimental Set-up

4.2.1 Data Description

We consider the EDP Wind Farm dataset available at [91]. The considered Open Source dataset, object of
our analysis for prognostics application, has been created for the challenge ”Hack the Wind” and it contains
all the monitoring parameters of real Wind Turbines. In particular, the EDP datasets contains the monitoring
parameters related to a Wind Farm made of 5 Wind Turbines of the same model with a time span of 1 years
(from January 2017 to December 2017). In more detail, the data contained in the EDP dataset is reported in
Table 16.

Variables

Generator RPM max rpm Latest Production Active P Generator0 avg Wh Grid Rotor Inverter Phase1 T avg °C
Generator RPM min rpm Latest Production Active P Generator1 avg Wh Grid Rotor Inverter Phase2 T avg °C
Generator RPM avg rpm Latest Production Active P Generator2 avg Wh Grid Rotor Inverter Phase3 T avg °C
Generator RPM std rpm Latest Production Total Active P avg Wh Controller Cooling water T avg °C

Generator Bearing T avg °C Latest Production Reactive P Generator0 avg Wh Grid Power avg kW
Generator Phase1 T avg °C Latest Production Reactive P Generator1 avg Wh Grid Power cosphi
Generator Phase2 T avg °C Latest Production Reactive P Generator2 avg Wh Grid Frequency avg Hz
Generator Phase3 T avg °C Latest Production Total Reactive P avg Wh Grid Voltage Phase1 avg V
Hydraulic Group oil T avg °C High volt Transformer phase 1 T avg °C Grid Voltage Phase2 avg V

Gearbox oil T avg °C High volt Transformer phase 2 T avg °C Grid Voltage Phase3 avg V
Gearbox Bearing T avg °C High volt Transformer phase 3 T avg °C Grid Current Phase1 avg A

Nacelle T avg °C Grid Inverter Phase1 T avg °C Grid Current Phase2 avg A
Rotor RPM max rpm Controller Top T avg °C Grid Current Phase3 avg A
Rotor RPM min rpm Controller Hub T avg °C Grid Max Power kW
Rotor RPM avg rpm Controller VCP T avg °C Nacelle Direction avg °

Ambient Windspeed max m/s Generator Slip ring T avg °C Grid Min Power kW
Ambient Windspeed min m/s Spinner T avg °C Grid Busbar T avg °C
Ambient Windspeed std m/s Blades Pitch Angle Min ° Rotor RPM std rpm
Ambient Windspeed avg m/s Blades Pitch Angle Max ° Ambient Windspeed est avg m/s

Ambient Wind Direction relative avg ° Blades Pitch Angle avg ° Grid Production Power std kW
Ambient Wind Direction absolute avg ° Blades Pitch Angle std ° Grid Production Reactive Power avg kVAr

Ambient T avg °C Controller VCP Chokcoil T avg °C Grid Production Reactive Power max kVAr
Grid Production Reactive Power min kVAr Grid Production Reactive Power std kVAr Grid Production Possible Power avg kW
Grid Production Possible Power max kW Grid Production Possible Power min kW Grid Production Possible Power std kW

Grid Production Possible Inductive Reactive Power avg kVAr Grid Production Possible Inductive Reactive Power max kVAr Grid Production Possible Inductive Reactive Power min kVAr
Grid Production Possible Inductive Reactive Power std kVAr Grid Production Possible Capacitive Reactive Power avg kVAr Grid Production Possible Capacitive Reactive Power max kVAr
Grid Production Possible Capacitive Reactive Power min kVAr Grid Production Possible Capacitive Reactive Power std kVAr Generator Bearing2 T avg °C

Table 16: EDP Data description

We have 81 features related to all the aspects of the functioning of the most important components of the Wind
Turbines, production information, environmental condition and turbine condition variables. With a 10-min
time of resolution, the 81 features are not all independent because, for some of them the dataset, also contains
statistics, such as the average, minimum, maximum and standard in the 10 min period. To discuss method
and algorithm implemented in this research, we extract from the 81 parameters, some features that will feed
the LSTM model.

4.2.2 Features extraction

In this work, the Wind Turbines have been considered as if they would be single systems and not focusing only
on some sub-components. From the 81 initial monitoring data, contained in the dataset, we have selected 31
features which are those directly related to the whole Wind Turbines and to their subsystems.
The parameters chosen for implementing the LSTM model of this work have been reported in Table 17.
As it is reported in Table 17, we have considered all those variables which are strictly correlated to the behaviour
of the Wind Turbine and its components. In fact, in this sense, we can observe as the most used feature for
almost all the component is the Temperature, because often anomalies in the temperature trend testifies the
occurrence of problems or faults. The average, minimum, maximum and standard deviation is always computed
each 10 minutes.
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Variables
Hydraulic Oil T avg °C

Generator RPM max rpm
Generator RPM min rpm
Generator RPM avg rpm
Generator RPM std rpm

Generator Bearing T avg °C
Generator Bearing2 T avg °C
Generator Phase1 T avg °C
Generator Phase2 T avg °C
Generator Phase3 T avg °C

Gearbox Oil T avg °C
Gearbox Bearing T avg °C

Nacelle T avg °C
Rotor RPM avg °C
Rotor RPM min °C
Rotor RPM max °C

High Volt Transformer Phase1 T avg °C
High Volt Transformer Phase2 T avg °C
High Volt Transformer Phase3 T avg °C

Grid Inverter Phase1 T avg °C
Controller Top T avg °C
Controller Hub T avg °C
Controller VCP T avg °C

Controller VCP Chokcoil T avg °C
Controller VCP Cooling Water T avg °C

Spinner T avg °C
Generator Slip Ring T avg °C

Grid Rotor Inverter Phase1 T avg °C
Grid Rotor Inverter Phase2 T avg °C
Grid Rotor Inverter Phase3 T avg °C

Latest Production Total Active Power Wh

Table 17: Features extracted

4.2.3 Cases of study

For the aim of this work, we have considered 4 different cases of study to test the algorithm implemented. In
particular, the different cases have been defined: CASE 1, CASE 2, CASE 3, CASE 4.
Each case consists of a training, validation and testing set. For each Wind Turbine in the training, vali-
dation and testing set, the measurements considered are all those directly related to the components and
sub-components of a Wind Turbine as explained in the previous section. The goal is to predict the RUL at
the moment of failure, i.e, the number of days until the Wind Turbine fails.
Table 18 shows the characteristics of each case.

CASE 1 CASE 2 CASE 3 CASE 4
training set WT01,WT07 WT01,WT06 WT06,WT07 WT06,WT07
validation set WT11 WT11 WT01 WT11
testing set WT06 WT07 WT11 WT01
length training set 390 453 399 399
length validation set 116 116 222 116
length testing set 231 168 116 222
First Faults Hydraulic Group Hydraulic Group Hydraulic Group Transformer
Date of first fault 2017-08-19 2017-06-17 2017-04-26 2017-08-11
Lifetime 8 months 6 months 4 months 8 months

Table 18: EDP Cases description
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4.2.4 Data pre-processing

Before injecting the features in the LSTM model, several steps of data preparation have been made. As
anticipated in the previous section, from the original dataset with 81 features, we have kept only those features
which are meaningful for the monitoring of the correct behaviour of Wind Turbines. For this reason, we have
extracted 31 variables which will be used as input for our model. For each Wind Turbine, indicated with the
nomenclature WT01, WT06, WT07, WT11, we have a record of 1 year with a time sampling of 10 min. The
measurements considered, in our model, have been stopped when the very first fault occurs for a given Wind
Turbine. Then, in order to avoid any overfitting problems, a time sampling of 24 hours has been adopted.
After this preliminary features engineering phase, the next step has been to normalize our data, in order to
eliminate any gradient-exploding problem that could occur in case we directly use the raw data. For each case,
the method used for the normalization has been the Min Max normalization [150]:

x′i =
xi − ximin

ximax − ximax

where x′i is the normalised i-th feature, xi is the raw i-th feature, ximin minimum of the i-th feature, ximax

maximum of the i-th feature.
It has been adopted the MinMax method because it allows to maintain the exact scale, despite the fact that it
is quite sensitive to the outliers (this is not a problem because we have showed as our dataset is quite robust
towards to ourliers).
Then, we have applied a sliding window in order to segment the data as indicated in [150].

Figure 31: Sliding window processing [151]

In particular, indicating the lifetime of the Wind Turbine until the failure with Ts, the length of the window
is indicated as w and the stepsize of the stride is indicated as s, the real RUL has a length of Ts-w-(s-1) [150].
In this work, we have considered w=3 and s=1.
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4.2.5 Proposed Methodology

At time k of a Wind Turbine i, we consider the normalised data xik as input:

xik = {x′i1,k, x′i2,k, xi3,k′ , x′i4,k, ......, x′im,k} (4.2.1)

where m is the total number of the considered features and x′m,k is the normalised sensor measurements of day
k of Wind Turbine i from feature m.
Considering i Wind Turbines, the real RUL, at the time k, can be indicated as:

RULa(WTi) = min{tci1 − k, tci2 − k, tci3 − k, tci4 − k, ....., tcin − k} (4.2.2)

where ci = {ci1, ci2, ci3, ci4, ....., cin} is the set of components for WTi and {tci1, tci2, tci3, tci4, ....., tcin} is the set of
the failures times of these the components ci. In our research, we have considered a piece-wise linear RUL
target function and in this sense, we have assumed a linear degradation path of Wind Turbines.
The Long Short term memory model consists of L LSTM layers. Each layer contains N neurons and between
them, to get better prediction of the Point-RUL has been added LeakyReLu activation layers, because they
improve the performance of the model given the high non-linearity of the input data. The last layer of the
architecture is a Dense layer which is a simple layer of neurons which takes as input all the inputs of the
neurons of the previous layer. For the Dense layer, a ReLu activation function has been selected because it
takes the negative input of the previous layers and it returns zero. This has been very useful in order to make
predictions when we are close to the fault. After the point-RUL prediction, our attention has been focused
on finding which are the most significant measurements implementing a game theoretic approach in order to
understand which component, for our case study, has more impact of the RUL of the entire Wind Turbine.
In the end, after the phase of features evaluation, all the features have been used to feed an LSTM model
characterised by Monte Carlo dropout layers in order to predict the possible RUL distribution each timestep
to understand when could be more efficient performing a maintenance task.

4.2.6 Features Importance - SHAP Method

After having implemented a LSTM model which is able to well predict the true RUL, we have investigated
which are the features, considered in the training set, that have the highest impact on the output of the
model. In this sense, in order to analyse the features interactions and effect on the model’s prediction we have
determined Shapley additive explanations (SHAP) value of a feature i, which we denote as ϕi as follows [152]:

ϕi =
∑

S⊆F{i}

|S|!(|F | − |S| − 1)!

|F |!
|f(S ∪ {i})− f(S)| (4.2.3)

where F is the set of all features considered for the LSTM model, S ⊆ F is a subset of features obtained from
the set F except feature i, and f(S) is the expected prediction output given by the set S of features. The SHAP
values show which features have a significant impact on the point-RUL prediction.
We have considered SHAP summary plot, because it allows to analyse and evaluate all these aspects of a
feature’s importance. Features are sorted for their global impact:

N∑
j=1

∣∣∣ϕ(j)
i

∣∣∣
where the ϕ

(j)
i is the SHAP value of the j-th feature.

4.2.7 Monte Carlo dropout

Let consider X as the samples with sensor measurements in the training set of the LSTM, and let Y be the
corresponding RUL values, as indicated in [153]. The objective is to predict the distribution of RUL given the
training samples X and Y. For a Bayesian Neural Network, we have:

p(y|x,X, Y ) =

∫
p(y|x, ω)p(ω|X,Y )dω (4.2.4)
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where ω represents all the weights in the neural network. As in [153], p(y|x, ω) is the probability that the RUL
equals y, given test sample x and the weights of the neural network ω. p(ω|X,Y ) is the posterior distribution
of the weights, and represents the probability that the weights are ω, given the training samples X and Y.
But as anticipated before, the Bayesian Neural Network has high computational costs. According to [154], the
posterior distribution p(y|X,Y ), in the variational inference, is approximated with a distribution q(ω)∗. This
approximation is needed because we can’t evaluate p(y|X,Y ) analytically [154]. Firstly, we define a family Q of
possible posterior distribution q(ω)∗, as done in [153]. The aim is to find an approximate distribution q(ω)∗∈
Q, which minimises the Kullback–Leibler (KL) divergence, in order to have a distribution which is as close as
possible to the posterior distribution obtained from the full Gaussian process [154]. According to [155], we can
express:

q(ω)∗ = argminq(ω)∈Q{KL(q(ω|p(ω|X,Y )))} (4.2.5)

Using q(ω)∗, we approximate the posterior distribution of the RUL of a test sample by:

q(y|x) =
∫

p(y|x, ω)q(ω)∗dω (4.2.6)

where q(y|x) is the approximation of p(y|x,X, Y ).
The authors of [154] show how we can approximate the expected value ŷ of the RUL of a test sample as:

ŷ = Eq(y|x)(y) =
1

M

M∑
1

ŷj(x, ω
j) (4.2.7)

where M is the number of forward passes through the neural network, ωj are the weights of the neural network
belonging to the j-th forward pass (i.e., where some neurons are dropped out), and ŷj(x, ω

j) is the RUL
prediction obtained from the j-th forward pass through the neural network, as indicated in [153].

4.2.8 Hyperparameter tuning

The considered hyperparameters are reported in Table 19. After having implemented different methods for
hyperparameter tuning like Grid Search, Random Search and Bayesian Optimization, it has been possible to
extract the number of layers which allows to have good performance for all cases study. Then, defined the
number L of layers, the other hyperparameters reported in Table 19, has been found, iteratively, considering
values within ranges provided by the different hyperparameters methods implemented in the preliminary phase.

Hypeparameters
Number of layers 4
Neurons layer 1 128
Neurons layer 2 64
Neurons layer 3 64
Neurons layer 4 64
Number of Dropout layers 3
Dropout rate 0.5
Optimizer Adam
Activation Function ReLu, LeakyRelu
epochs 40
batch size 32
window length 3

Table 19: Hyperparameters for point-RUL prediction

Then, the LSTM architecture implemented for the Probabilistic RUL is the same of the point-RUL prediction
with the only one exception represented by the Monte Carlo Dropout layers and the optimizer (only for CASE
1 the Adam optimizer has been kept). Table 20 reports the hyperparameters considered for the Probabilistic
RUL.

49



4.2 Experimental Set-up

Hypeparameters
Number of layers 4
Neurons layer 1 128
Neurons layer 2 64
Neurons layer 3 64
Neurons layer 4 64
Number of MC Dropout layers 3
Dropout rate 0.5
Optimizer Adamax
Activation Function ReLu, LeakyRelu
epochs 40
batch size 32
window length 3

Table 20: Hyperparameters for Probabilistic RUL

4.2.9 Performance metrics

To evaluate the performance of the LSTMmodel implemented for the Point-RUL prediction, we have considered
the Mean Absolute error and the Root Mean Square error.

MSE =
N∑

n=1

|RULa −RULp|
N

(4.2.8)

RMSE =

√√√√ N∑
n=1

(RULa −RULp)2

N
(4.2.9)

where N is the number of days, RULa is the true RUL and RULp is the predicted RUL.
To evaluate the reliability and the goodness of our model for the probabilistic RUL, we have considered the
reliability curve and the Continuous Ranked Probability Score (CRPS) [156] [157].
According to [157], the CRPS allows to evaluate whether the estimated RUL distribution is centered around
the actual RUL of a component and the sharpness of the RUL prognostic (evaluates if the variance is low),
even if it is not very used to evaluate the probabilistic RUL prognostic.

CRPS =
1

N

N∑
i=1

CRPSi (4.2.10)

CRPSi =

∫ ∞

−∞
(Fŷi(x)− I{yi ≤ x})2dx (4.2.11)

with I{yi ≤ x} =

{
1 if yi ≤ x

0 if yi x

According to [157], the CRPS can be considered as a probabilistic generalization of the absolute error. Smaller
the CRPS metric is, closer the RUL prediction is to the actual RUL and in an ideal case when a perfect
RUL prediction without uncertainty (i.e., a point RUL prediction) is obtained, CRPS equals zero [157]. To
conduct a generic, parameter-free reliability analysis of the estimated RUL distribution, the Reliability Score
(RS) has been computed [157]. As in [157], we have defined a reliability curve C(α) based on the αCoverage
for probabilistic RUL prognostics.

Here, C(α)i={α− Coverage, α ∈ 0.00, 0.05, ..., 1.00}, where α− Coverage =
1

N

∑N
1 I(α)i

with I(α)i =

{
1 if yi ∈ [ŷi

0.5−0.5α, ŷi
0.5+0.5α]

0 if yi x
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Then, the reliability score (RS) can be defined as following:

RSover =

∫ 1

0
I{C(α) ≤ α}(α− C(α))dα (4.2.12)

RSunder =

∫ 1

0
(1− I{C(α) ≤ α})(C(α)− α))dα (4.2.13)

RStotal = RSunder +RSover (4.2.14)

with I{C(α) ≤ α} =

{
1 if C(α) ≤ α

0 otherwise

The RSunder quantifies the underestimation and the RSunder quantifies the overestimation.
In general, the reliability curve shows visually whether the uncertainty associated with the RUL predictions is
overestimated or underestimated.
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4.3 Results - Point RUL prediction

In this section, we have reported the results obtained implementing a LSTM model for the point-RUL predic-
tion. The following figures show a representation of the RUL prediction depicted along with the actual target
RUL and they allow to understand how good is the RUL prediction. This shows the predictability of the model
over the complete life span of the Wind Turbine considered. We can observe how the prediction follows the
general direction of the true RUL and it is quite close to the target curve.

Figure 32: Point-RUL prediction
Case 1

Figure 33: Point-RUL prediction
Case 2

Figure 34: Point-RUL prediction
Case 3

Figure 35: Point-RUL prediction
Case 4

The predicted RUL is almost always below the target RUL for the most of the life time considered. This
means that we are more conservative for the prediction. Observing the graphs, when we are close, for CASE
1, CASE 2 AND CASE 3, to the fault, we can see that the prediction goes above the target overestimating
the RUL. In this sense, it could be more interesting performing an inspection or a maintenance task in the
moment of intersection between the predicted curve and the target one to stay safe and not to risk to schedule
an inspection when the fault has already occurred. On the other hand, Fig. 35, for CASE 4, shows how the
model, differently from the previous cases, is able to predict the RUL when it is close to the fault. In this case,
we could have the advantage to have more time to perform a task. However, in order to better understand when
it could be more efficient to perform a maintenance task we have to also evaluate the probability distribution
function of the RUL that will be introduced in the next section.
Table 21 shows the RUL prediction with the True RUL for each case.
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Usage Case 1 Case 2 Case 3 Case 4

RULa RULp RULa RULp RULa RULap RULa RULp

1 228 212.86 165 146.25 113 95.96 219 201.99
25 204 186.13 141 132.03 89 78.4 195 169.24
50 179 167.42 116 104.75 64 58.43 170 142.68
75 154 133.37 91 82.95 39 33.72 145 109.22
100 129 96.79 66 60.59 14 17.74 120 76.55
125 104 89.62 41 35.4 - - 95 77.99
150 79 75.75 16 19.9 - - 70 37.73
175 54 37.16 - - - - 45 18.76
200 29 34.45 - - - - 20 17.78
225 4 19.85 - - - - - -
227 1 18.79 - - - - - -

Table 21: Point-RUL prediction

The following Table shows the errors for all the case study considered.

Point-RUL prediction Errors
MAE (days) RMSE (days)

Case 1 12.27 15.49
Case 2 7.97 9.58
Case 3 7.19 8.7
Case 4 21.73 24.28

We can observe how the LSTM model, with the Dropout layers, implemented has quite very good performance
for each case investigated. The best result, in terms of MAE and RMSE, is provided by the Case Study 3
(testing=WT11). The Case 4 is the one with the highest errors but it is the one which allows to better predict
the RUL when we are close to the fault.

53



4.3 Results - Point RUL prediction

4.3.1 Features Importance - SHAP Method

The following Figures are the SHAP summary plot, one for each of the case study investigated.

Figure 36: Shap Values Case 1 Figure 37: Shap Values Case 2

Figure 38: Shap Values Case 3 Figure 39: Shap Values Case 4

The features are sorted by the sum of the SHAP values. In this sense, the feature at the top of the graph has
the highest impact on the RUL prediction, while the feature at the bottom of the graph has the lowest impact.
We can observe, for all the case study, as the driving parameter for the RUL prediction, is the Generator RPM.
These results confirm, according to what introduced in the literature review, that the generator is one of the
most important component for the correct behaviour of a Wind Turbine.
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4.4 Results - Probabilistic RUL prediction

In this section, we present the probabilistic RUL prognostics for Wind Turbines. In order to visualize the trend
of our probabilistic RUL prediction, we represent the mean of the probabilistic RUL for each day. In this sense,
we can see how the mean of the RUL distribution follows the target RUL. The ideal case would have been that
the mean of the prediction would have overlapped the target RUL.

Figure 40: Mean Distribution Case 1 Figure 41: Mean Distribution Case 2

Figure 42: Mean Distribution Case 3 Figure 43: Mean Distribution Case 4

For Case 1 and Case 4, it can be seen as the mean is below the target RUL until we are close to the fault
when the mean tends to be slightly above the true RUL value. The mean of the RUL distribution for Case 2 is
almost for all the time span considered above the True RUL and this means that we shouldn’t be too close to
the fault to do a maintenance task because we could risk to already have a malfunction. In this sense, to stay
the most conservative we can perform a task between 55-70 days of usage. In the end, Case 3 is characterised
by a small testing set and this is the main reason because the mean of the distribution doesn’t follow very well
the dashed curve. In this case, given the fact that close to the fault the mean of the distribution is above, to
be safe we could think to perform an inspection between 65-75 days of Wind Turbine usage. The following
table shows the error between the mean of the probabilistic RUL and the target RUL.
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Probabilistic RUL Error
MAE (days) RMSE (days)

Case 1 11.65 14.48
Case 2 10.03 12.17
Case 3 8.2 10.32
Case 4 19.56 22.95

Instead of predicting only one number for the RUL, however, we predict the PDF of the RUL for all the cases
study. The following Figures show the evolution of the estimated RUL distribution over time for the 4 Cases
study analysed.

Figure 44: RUL=228 Case 1 Figure 45: RUL=203 days Case 1

Figure 46: RUL=178 days Case 1 Figure 47: RUL=153 days Case 1

Figure 48: RUL=128 days Case 1 Figure 49: RUL=103 days Case 1
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Figure 50: RUL=78 days Case 1 Figure 51: RUL=53 days Case 1

Figure 52: RUL=28 days Case 1 Figure 53: RUL=3 days Case 1

Figure 54: RUL=1 days Case 1

The probabilistic RUL for the second case study, where WT07 is testing, is reported.

Figure 55: RUL=165 Case 2 Figure 56: RUL=140 days Case 2
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Figure 57: RUL=115 days Case 2 Figure 58: RUL=90 days Case 2

Figure 59: RUL=65 days Case 2 Figure 60: RUL=40 days Case 2

Figure 61: RUL=20 days Case 2 Figure 62: RUL=15 days Case 2

Figure 63: RUL=10 days Case 2 Figure 64: RUL=1 days Case 2
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The probabilistic RUL for CASE 3 is represented by the following Figures.

Figure 65: RUL=113 Case 3 Figure 66: RUL=88 days Case 3

Figure 67: RUL=63 days Case 3 Figure 68: RUL=40 days Case 3

Figure 69: RUL=30 days Case 3 Figure 70: RUL=20 days Case 3
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Figure 71: RUL=15 days Case 3 Figure 72: RUL=10 days Case 3

Figure 73: RUL=5 days Case 3 Figure 74: RUL=1 days Case 3

The probabilistic RUL for CASE 4 is represented by the following Figures.

Figure 75: RUL=219 Case 4 Figure 76: RUL=194 days Case 4

Figure 77: RUL=169 days Case 4 Figure 78: RUL=144 days Case 4
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Figure 79: RUL=119 days Case 4 Figure 80: RUL=94 days Case 4

Figure 81: RUL=69 days Case 4 Figure 82: RUL=44 days Case 4

Figure 83: RUL=19 days Case 4 Figure 84: RUL=10 days Case 4

Figure 85: RUL=5 days Case 4 Figure 86: RUL=1 days Case 4

4.4.1 PDF RUL performance

Fig. 87 depicts the reliability curve for all the case study considered. We can observe how the reliability of the
prediction made by our model is quite good for all the cases and more in detail we can see how the reliability
of the RUL distribution related to the case study interested by an hydraulic group fault (CASE 1, CASE 2,
CASE 3) is very similar and close to the ideal curve (red dashed line).
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Figure 87: Reliability Curve

In the following Table, there is a summary of the performance for the PDF RUL prediction with a LSTM
model.

Probabilistic RUL metrics

CRPS RStotal RSunder RSover

Case 1 9.11 0.041 0.0409 0.00049

Case 2 7.08 0.034 0.02 0.014

Case 3 6.26 0.076 0.0725 0.00355

Case 4 15.05 0.22 0.22 1.04e−5

From the Table, we can observe how the reliability of our model is very good and in particular this architecture
tends to slightly underestimate the uncertainties.

5 Conclusion

Fifteen Open Source Datasets for Wind Turbines have been investigated in terms of features like type of
information, number and type of parameters, time span, time sampling and type of components. These char-
acteristics have to be evaluated in order to find the best dataset with enough and appropriate information that
can be exploited for PHM and predictive maintenance planning.

The research publications reviewed, for some of the Open Source Datasets and for some Not Open Source
Datasets, are divided into Diagnosis and Prognosis related work. The most common aim for the Diagnosis is
to construct an appropriate Health Indicator which well represents the system’s behavior to compare it with a
predefined or adaptive threshold or to evaluate significant deviations from the standard conditions. The models
developed, within the ML algorithm, vary in terms of performances evaluated through indices or graphically. In
this sense, the choice of an appropriate algorithm depends on the objective of the study and on its performance.
These algorithms are fed by condition monitoring measurements, mainly SCADA data, which are easier and
cheaper to retrieve because they don’t need special sensors, of mechanical, electrical and hydraulic parts. The
most monitored components are gearbox, generator and hydraulic group because are those most prone to the
failures. This report has also highlighted that the prognosis related work for Wind Turbines are quite limited
and are focused on the RUL prediction considering ML algorithms.

Observing the content of each Open Source Dataset, it has been possible to understand the potential ap-
plication of each of them for PHM and predictive maintenance purposes. All the Open Source Datasets
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contain SCADA signals which allow to extract appropriate health indicator for the monitoring of the status of
systems; but only the EDP dataset [91] reports the historical failures, which have affected the Wind Turbines.
For this reason, only for the EDP [91] it is possible to perform a prognosis investigation, RUL prediction and
a Root Causes analysis.

On the other hand, from this report, it can be seen as the availability of Open Source Datasets for Wind
Turbines is quite limited and the most of them are not suitable for the prognosis and RUL Prediction.

The LSTM model introduced, in this work, has good performance for each case study considered. Begin-
ning from the point-RUL prediction, we can give a first assessment on when it could be more convenient to
perform a maintenance task or inspection.

Considering the SHAP method has been possible to identify which is the component that is the most sig-
nificant for the Wind Turbines object of this research. In fact, according to the results obtained by the
algorithm implemented, the most important component is the generator. In more detail, the driving feature
for the RUL prediction has been the Generator RPM Avg.

In the end, implementing the same LSTM architecture with the Monte Carlo dropout, it has been possi-
ble to observe the evolution of the RUL prediction and also to evaluate the uncertainty linked to the model in
order to take the best decisions on when it is the best period to perform a task.
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