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Abstract

Rotor’s unbalance is a synchronous dynamic load which is source of vibra-
tions, especially on Aircraft engines. These vibrations could lead to hardware
failure because of High Cycle Fatigue and it could impact the overall per-
formance of the machine, with even the possibility of a catastrophic event
in case the rotor operates at one of its critical speeds. The main goal of
rotordynamic analysis is to study the effects of rotor unbalance, predicting
and optimizing the modal response of the machine and verifying it through
measurements of the resulting vibrations. Residual unbalance is intrinsic of
any rotor assembly process and cannot be completely removed. In order to
reduce the vibration response, the residual unbalance should be minimized
through a dedicated balancing process.

This thesis work, done in association with Avio Aero, is focused on the
study of the balancing process, with the final goal of developing a tool that
is able to perform all the necessary steps. Starting from available field test
performed on a turboprop engine, measured vibrations from different trial
configurations are analyzed and processed to find how the engine react to a
certain weight change. These data are then elaborated by the tool in order
to find the best balance solution for the propeller, which is one of the main
sources of unbalance in the turboprop engine applications.
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Chapter 1

Introduction

Rotors are one of the most commonly used components of machines and
mechanisms. A rotor is defined as a body that rotates freely about an axis,
usually with a significant angular momentum. If the spin axis is not in a
fixed position in space, the body can be defined as a free rotor. In a machine,
however, the rotor is suspended by bearings or hinges in a way that locks
the axis position in space. This type of rotor is called fixed rotor. The
non-rotating parts of the machine are usually defined as stator.

Rotors are a fundamental part of the most used aeronautical engine ar-
chitectures. Compressors, turbines and propellers are all defined as rotors.
Because of this and their operating speed, rotors are the main source of
perturbations in an aeronautical engine. The rotational motion is used to
convert kinds of energy, like the thermal energy from the combustion, into
kinetic energy. This energy cannot be fully converted in the intended way,
part of it is dissipated, for example, as thermal energy.
In rotors other kinds of energy leak occurs, converting rotational energy in
other forms of mechanical energy. These side effects can cause vibrations in
the rotors, that are transferred to the stator parts of the machine through
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Introduction

the supporting bearing and the fluid around the rotor. Given the high rota-
tional speeds involved, these vibrations can be more and more pronounced,
becoming particularly dangerous for the integrity of the structure. Rotor
vibrations have three main modes: lateral, torsional and axial mode. The
one that brings more concern between the three is the lateral mode.
One of the principal causes of these perturbations is the inevitable unbalance
present in a practical rotor, which produces a rotating force vector and a
consequent rotating displacement vector, resulting in vibrations of the ma-
chinery in the aforementioned lateral mode, which can be called synchronous
vibrations.[8, 4]

One goal of rotodynamic analysis is to study the effects of rotor unbalance,
predicting critical speeds and natural frequencies, in order to optimize the
modal response of the system. This optimization is done through a balancing
process that aims to reduce as much as possible the residual unbalance.
The main focus of the present paper will be the development of a tool based
on an already existing working tool, GE’s Multibal, that allows to perform
the entire balancing process. The new tool developed takes the balance
solution calculation from the previous one, and adds the preliminary analysis
and processing of raw field data test, necessary to find the responses to
unbalance of the rotor. These responses are measured for the same rotor
under different unbalance configuration and are compared to find how a
certain mass change acts on the vibration and to end with an optimized
balance solution. This solution is given in the form of a balancing mass and
its ideal position.
The objective is then to improve the already existing tool, allowing to
further automatize the entire process and adding a more user friendly visual
interface.
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Chapter 2

Fundamentals of
Rotordynamics

2.1 Linear model

The equations that describe even the simplest rotor are fairly complex and do
not allow the direct use of a linear model. Therefore, a number of assumptions
are made in order to obtain a linearized model which can describe correctly
the behavior of a rotating system, both qualitatively and quantitatively.
These assumptions are those of small displacements and velocities, with the
unbalance considered as a small perturbation.
The rotation about the spin axis, which cannot be considered small, is instead
considered as constant or as imposed by the driving system. Under these
conditions the rotor is axially symmetrical, with a rotation axis corresponding
to one of the barycentric principal axes of inertia.
These assumptions allow to obtain the linearized equation of motion in the
general form:
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Mq̈(t) + (C + G)q̇(t) + (K + H)q(t) = f(t) (2.1)

• q(t) = generalized coordinates vector.

• M = symmetric mass matrix.

• C = symmetric damping matrix.

• G = skew-symmetric gyroscopic matrix.

• K = symmetric stiffness matrix.

• H = skew-symmetric circulatory matrix.

• f(t) = time dependent vector of forcing functions.

As seen before, one of the main forcing functions is the rotor unbalance.
These forces are harmonic functions with frequency equal to the rotational
speed Ω and amplitude proportional to Ω2.
The matrix G contains inertial terms that are linked to the gyroscopic
moments acting on the rotating components. In case of reference to a
non-inertial frame, there are also terms associated to Coriolis acceleration
included. Matrix H includes terms given by the internal damping of the
rotor, and in case of a linearized model for fluid bearings, also by the damping
of the fluid film around it. These two matrices are proportional to the speed
Ω and reduce the equation to that of a still structure when this value tends
to zero.
Matrices C and K can also be dependent on the spin speed, usually on its
square Ω2. [4]
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2.2 Complex coordinates

When stator and rotor are both isotropic with respect to the rotation axis,
it is possible to simplify the equation of motion by introducing complex
coordinates.[4]
Considering a rotor with spin axis coincident with the z-axis of an inertial
frame, the lateral displacement can be described in terms of a displacement
vector in the xy-plane in the form of a complex number

r(t) = x(t) + iy(t), (2.2)

with i =
√

−1 imaginary unit. This is in a way equivalent to define the
displacement vector as

r(t) =
x(t)

y(t)

 . (2.3)

When using complex coordinates, the equation of motion can be written as

M′q̈′(t) + (C′ + iG′)q̇′(t) + (K′ + iH′)q′(t) = f′(t), (2.4)

that, substituting the expression of q′(t) and separating the real and
imaginary components

q(t) =
Re(q′(t))

Im(q′(t))

 , (2.5)

becomes
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M′ 0
0 M′

 q̈(t) +
C′ 0

0 C′

 +
 0 −G′

G′ 0

 q̇(t)+

+
K′ 0

0 K′

 +
 0 −H′

H′ 0

q(t) = f(t).
(2.6)

When written in this form, the matrices that where previously symmetric
are now real, while the ones that were skew-symmetric become symmetric,
imaginary terms. This way all relevant matrices are then symmetric.
In this paper, the complex coordinates are treated as phasors, allowing
different ways to represent the same information. A phasor is a complex
number that describes a sinusoidal function with amplitude ad initial phase
that are constant with time.
Writing the displacements and unbalance vectors as complex numbers can
be seen as using cartesian coordinates, as seen in equation 2.3. This will be
useful in this work when performing the calculations needed to balance the
rotors. When given with the purpose of displaying them as output data to be
interpreted by the reader, however, these vectors will instead be written in
polar coordinates as amplitude and phase, which is a more intuitive format
to visualize. The use of phasors also allows an easy conversion of harmonic
responses measured in a rotor into complex coordinates.

2.3 Free vibration and Campbell diagrams

The free behavior of the system can be found by introducing the complex
frequency s = σ + iω, allowing the solution to be written in the form

q(t) = q0e
st. (2.7)
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Figure 2.1: Example of phasor in vector and sinusoidal form [10]

The imaginary part ω of s is called whirl frequency and represents the
natural frequency of the free motion, while the real part σ is the decay rate
changed in sign. A negative value σ indicates a stable motion that decays
in time, while a positive value represents an unstable motion, which grows
exponentially in time.

Since both the natural frequencies and the frequencies of the exciting
forces in a system can depend on the spin speed, its behavior is usually
summarized through the Campbell diagram, which is a plot of said natural
frequencies ω as functions of Ω. The diagram is symmetrical with respect
to both axis, as the direction of rotation has no influence on the natural
frequencies. This allows to consider only one of its quadrants, which presents
all needed information.

The intersection of the diagram with the ω are the natural frequencies
at standstill. From each of these points usually can stem two branches that
diverge with the increasing spin speed. These can be seen as the frequencies
of two different circular whirling motions, one in the same direction of the
spin called forward whirling and one in the opposite direction called backward

7
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Figure 2.2: Campbell diagram represented on the first quadrant [4]

whirling. It is then possible to plot the diagram in a more clear way, using
two quadrants to differentiate the two whirling motions, with positive values
of ω for forward whirling and negative values for backward whirling.

External forces effecting a rotor are often variable in time, and if their
time history is periodic they can always be represented as harmonics or a
sum of harmonics. When this occurs, the frequency of the forcing function is
often linked to the spin speed and can be plotted on the Campbell diagram.
The relationship linking them is often of simple proportionality, so the forcing
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function can be represented as a straight line through the origin. The forcing
function given by unbalance can be seen as a vector rotating at the same
speed of the rotor, resulting in the line corresponding to ω = Ω, which is the
bisector of the first quadrant.
The intersection of the forcing function curves with the natural frequency
curves identifies the spin speeds at which the frequency of one of the forcing
coincides with one of the natural frequencies. These spin speeds are called
critical speeds. Not all these speed are equally dangerous. In case of an
intersection between the curves relating to a forcing function and a mode
that are completely uncoupled form each other no resonance actually occurs.

A particularly dangerous case are the flexural critical speeds, that are given
by the coincidence of a flexural natural frequency with the spin speed. This
case correspond to the intersection of the natural frequency with the straight
line ω = Ω, which happens in the presence of a synchronous excitation such
as the rotor unbalance.
When an axi-symmetrical system is operating at a flexural critical speed,
a circular synchronous whirling occurs. With the whirl speed equal to the
spin speed the rotor is rotating in a bent configuration, with a portion of the
cross section that is under a constant tensile stress and the other portion
under a constant compression.
In this configuration the rotor is not vibrating, but it is a source of strong
vibrations in the non rotating parts of the system, with amplitude that grows
linearly in time. Since the rotor is not vibrating, the internal damping of
its material is not effective in dissipating the energy, leaving only the the
dumping of the stator and the supports to prevent the failure of the machine.
An appropriate balancing of the rotor is then necessary to make sure that
these dangerous critical speeds are not present in the operational range of
the machine.

9
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Figure 2.3: Campbell diagram with separated forward and backward
whirling and synchronous forcing function [4]

It is important to note that the definition of critical speed seen above is
valid only in case of a linear system. A more general definition can be used
with nonlinear rotors, considering the critical speeds as the spin speeds at
which the maximum amplitude of vibration is reached. With this definition
the critical speeds depend also on the strength of the forcing function, while
the critical speeds of linear systems are characteristic of the system and do
not depend from the exciting force.
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2.4 Forced response

The analysis of vibrations generated as a response to the forcing functions
allows to obtain useful information on the working conditions of the machine
and to predict possible problems in order to prevent them. Generally speak-
ing, vibrations in an aeronautical engine are an unwanted side effect, so that
the goal of the analysis is to minimize them as much as possible, or at least
make sure that the vibration peaks do not fall into the operational speed
range.

The work in this paper will focus on the effects of unbalance on rotors,
but that is not the only forcing function acting on a rotating system. The
synchronous component is always present, and often the most relevant one,
but it is usually followed by other components. This makes the measured
response not an harmonic vibration, but more a polyharmonic one that
is the sum of the different harmonic responses combined together. The
synchronous component is often called the 1/rev component, while those
that have frequencies multiples of the spin speed are the 2/rev, 3/rev, 4/rev,
etc. components, also called engine orders. In order to study the response
to unbalance it is then necessary to isolate the 1/rev component of the
vibration.

As already seen before, in an axial symmetric system the response to
unbalance is a circular whirl at the same speed Ω of the rotor. Under
these conditions the rotor is spinning in a deflected configuration without
vibrations, nullifying the effects of the internal damping of the material. In
un undamped system this phenomenon causes vibrations on the static parts
of the machine, whose amplitude goes to infinity in correspondence of the
critical speed. In real machines is not possible to have an infinite value of
amplitude, since they are always inherently damped, so a vibration peak is
obtained at the critical speed instead. To reduce these peaks its necessary
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Figure 2.4: Campbell diagram with different engine orders responses [12]

an appropriate level of non rotating damping, and it is crucial to have the
best possible balanced rotor.

12



Chapter 3

Rotordynamics modeling
and analysis

Performing rotordynamics analysis can be quite useful during the design
stage of a rotor system. While the study of an approximated model cannot
totally replace the testing stage of the actual machine, it helps to find and fix
possible design problems. The main objectives of this kind of analysis are:

• Predict critical speeds and define design modifications in order to change
them in a way that they don’t fall into the operational seed range.

• Predict natural frequencies of torsional vibrations.

• Predict threshold speeds and vibration frequencies for dynamic instability
and determine design modifications to remove those instabilities.

• Predict amplitudes of synchronous vibrations generated by unbalance.

• Calculate balance correction masses and positions starting from measured
vibration data.

13
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3.1 Spring-mass model

3.1.1 Undamped system

The simplest model that can be used to perform vibration analysis is the
single-degree-of-freedom spring-mass model, which is composed of a rigid
mass mounted on a linear spring. The mass can only move in one direction,
for example along the x-axis. In a freely vibrating system without external
forces, being m the mass and k the stiffness of the spring, the equation that
describes the motion of this system granting the dynamic balance of the
mass is

mẌ + kX = 0 (3.1)

This equation has two main possible solutions: the trivial solution X(t) = 0
describes the system at rest, while the solution of interest for the analysis is

X(t) = X0 cos(ωt + φ) (3.2)

This solution tells that the mass is subjected to an harmonic oscillatory
motion, which is characterized by the three parameters:

• X0 = amplitude,

• ω = pulse,

• φ = phase.

Pulse ω depends on the mass and stiffness of the system, while amplitude
and phase depend on the initial conditions X(0) and ˙X(0).

14
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Figure 3.1: Single degree of freedom spring-mass model [13]

3.2 Jeffcott rotor

The spring-mass model can be used to approximate and understand the
natural frequencies of the first mode of a rotor-bearing systems, but is very
limited when it comes to more advanced analysis. First limitation is that,
with one degree of freedom, this model can only execute a translational
motion in a single direction, while the rotor-bearing system can perform
whirl orbits with complex shapes. This limit can be partially solved by
taking a system with two degrees of freedom, which is able to vibrate in two
directions producing several different types of motion of the mass.
Another limit of the model, still present on the two degrees of freedom spring-
mass model, is that it does not represent realistically the unbalance of the
rotor. Since rotor unbalance is always present in real machines and since it is
the cause of the most common type of vibration, it follows that unbalance is
a necessary part of the basic model used for the analysis of rotating systems.
This means that the center of mass of the disk does not coincide with its
geometric center. The model obtained with these considerations is called
Jeffcott rotor model, and consists of a rigid, unbalanced disk mounted on a
uniform, massless, flexible shaft supported by rigid bearings.

Figure 3.3 shows a view of a whirling Jeffcott rotor, with the axis origin
O at the shaft center, showing the shaft bending deflection given by the

15
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(a)

(b)

Figure 3.2: Jeffcott rotor at rest (a) and in displaced configuration (b)

dynamic loads (OC). Being C the geometric center of the disk and G its
center of mass, the static unbalance is u = CM . θ is the angle between OC X
axis, and its time rate is the whirl speed of the rotor (θ̇ = ω). φ is the phase
angle, which is constant in case of synchronous whirl. The characteristics of
the rotor are:

• k: bending stiffness of the shaft.

16
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Figure 3.3: End view of a whirling rotor in displaced position

• m: mass of the disk.

• c: viscous damping given by the air drag on the disk and the shaft.

The system would have three degrees of freedom, but one is removed by
assuming a constant speed. The solutions can be found in two different
coordinates systems, polar or cartesian coordinates.

Polar coordinates

Polar coordinates (r, φ, θ) have the advantage of giving the solutions in term
of amplitude and phase, which are of easier interpretation, but generate
nonlinear equations of motion that are not well suited to study rotordynamics
instability. These equations are:

17
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r̈ + c

m
ṙ +

A
k

m
− θ̇2

B
r = Ω2u cos(Ωt − θ) (3.3)

rθ̈ +
3

2 ˙r +
m

r
4

θ̇ = Ω2u sin(Ωt − θ) (3.4)

The solutions for synchronous whirling are:

r = Ω2uñ
(k/m − Ω2)2 + (cΩ/m)2

(3.5)

φ = arctan
A

cΩ
m(k/m − Ω2)

B
(3.6)

Cartesian coordinates

Cartesian coordinates X,Y and φ give way to linear equations and the dis-
placements in term of X and Y are more similar to the way that those values
are usually measured by the vibration probes. The differential equations of
motion are:

mẌ + cẊ + kX = mΩ2u cos(Ωt) (3.7)
mŸ + cẎ + ky = mΩ2u sin(Ωt) (3.8)

Which gives as solution

X = Ω2uñ
(k/m − Ω2)2 + (cΩ/m)2

cos(Ωt − φ) (3.9)

Y = Ω2uñ
(k/m − Ω2)2 + (cΩ/m)2

sin(Ωt − φ) (3.10)

18
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φ = arctan
A

cΩ
m(k/m − Ω2)

B
(3.11)

It can be noted that it is possible to convert form cartesian to polar
coordinates by observing that r =

√
X2 + Y 2.

(a)

(b)

Figure 3.4: Imbalance response: amplitude (a) and phase (b) [5]
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In figure 3.4 are shown the results of the Jeffcott rotor analysis. There can
be seen an amplitude peak that correspond to the critical speed, as seen in
chapter 2. Higher is the value of damping an lower will be the vibration peak.
Also at the critical speed, phase angle passes through 90° and later reaches
180°. This indicates that the center of mass G, which was first rotating
around the geometric center C, at higher speeds passes to the inside of the
whirl orbit, thus having C whirling around G. This phenomenon is called
critical speed inversion or mass center inversion. [5]

3.3 Beam model and 2D analysis

More complex models can be considered when dealing with rotordynamics
analysis thanks to computer simulation. A common model, which is also
the one used as an analytical aid during the work here presented, is the
beam model. It can be seen as a 2D model, where the engine structure is
represented by a network of beam type structural elements retaining the
material and mechanical properties of the components they represent. This
model has three main types of elements:

• Beam elements, these are the main elements of the model, each one
of them representing a continuous structure with its stiffness, mass,
inertia and also the eventual damping. The distribution of stiffness and
mass can be defined in different locations, called stations, along a beam
element.

• Springs, are used to represent short or geometrically complex struc-
tural components, such as bearings, engine mounts or damper elements.
Springs depict the stiffness or the damping of these components, but,
unlike beams, do not retain any information of mass or inertia.

• Joints, are elements used to link beams and springs together and to hold
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the model in place. Usually every beam and spring must present a joint
at each end.

Mass, stiffness and damping properties are given as matrices, in a similar
way to what seen for the equation of motion in chapter 2. Such equation
can be written in a simplified form (without the gyroscopic and circulatory
matrices) as:

[M ]q̈(t) + [C]q̇(t) + [K]q(t) = f(t). (3.12)

This is solved by the analytical program using different solving methods,
depending on the kind of analysis requested. The mathematical details of
the solution process will not be further elaborate, since they are complex
and not relevant to the work at hand.

Different types of analysis can be performed using this 2D model. These
can be dynamic analysis, such as critical speed, natural frequencies and forced
response analysis, or static analysis like maneuver and static forces loads.
The analysis are often linear, but nonlinear analysis can also be performed.
The degrees of freedom considered are the translational and rotational ones.
The axial and torsional degrees of freedom can be neglected for the purposes
of unbalance response analysis.
This is true when working with simple rotors. It becomes less accurate
when dealing with more complex systems characterized by three dimensional
couplings between different rotors. Figure 3.5 shows a model of a simple
rotor, with the spring elements that represent the supports onto which the
rotor is mounted.

For the purposes of this particular study, the most used one has been
of course the synchronous forced response analysis. This analysis allows to
predict the behavior of the rotor at different rotational speeds, estimating,
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Figure 3.5: Example of a simple rotor seen as a beam model

for example, the resulting vibrations or the load on the mounting supports
of the rotor. It is also possible to simulate a change in the unbalance of the
rotor in order to study the effects.
Not having access to a enough actual test data during the development of
the code, these kind of analysis have been particularly useful in the tool
validation stage of the present work, allowing to simulate the balancing
process on a rotor model to study the effectiveness of the solution obtained
through the procedure.
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Chapter 4

Test data analysis

4.1 Signal analysis

In this chapter are described the initial steps performed by the tool, starting
from reading the raw test data given in input to obtain the unbalance re-
sponse vectors. The tool has been developed using the Matlab environment
and the graphic interface was generated through its built-in App Designer
feature. It is able to read test data files with various extensions, like .mat
and .datx files and Dewesoft’s .dxd and .d7d files.

The first step of the balancing process performed by the tool consists in
reading and analyzing raw data obtained through measurements taken on
the running engine during field tests. These data are signals detected from
sensors mounted in specific positions on the engine. There are different kinds
of transducers that can be used to measure vibrations. In the specific cases
studied during the development of the tool only two kinds of sensors were
considered: accelerometers and the keyphasor transducer.
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Figure 4.1: Piezoelectric accelerometer [8]

4.1.1 Accelerometers

Accelerometers are transducers that measure mechanical vibrations in terms
of acceleration. They are the most common type of transducer used for
mechanical vibrations measurements. [8]
Accelerometers can usually measure vibrations on a single axis. Depending
on their orientation they can be used to detect radial or axial movements.
Since rotor unbalance has mainly influence on the lateral mode, this paper
will consider radial accelerometers, but the analysis and the considerations
made should be the same for any other kind of vibration measured.

The accelerometers utilized in the tests analyzed are the ENDEVCO
2221F piezoelectric accelerometers. This kind of accelerometer is composed
of inertial mass that exerts a force on the piezoelectric crystal proportional to
the acceleration of the component on which it is mounted. The piezoelectric
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Figure 4.2: ENDEVCO 2221F piezoelectric accelerometer [11]

crystal translates the applied force into an electric output analyzable by the
acquisition system.
To get a better vibration measurement from the accelerometers they are
usually used together with high impedance cables, which are coaxial low
noise cables that grant better signal acquisition. Charge amplifiers are also
typically needed, to amplify the accelerometer’s response making it more
easily readable.

Figure 4.3 shows the circumferential position, on the engine frame, of the
three sensors utilized in the analysis of the test data available during the
writing and testing of the balancing tool.

Raw data from the accelerometers contains all the measurable vibrations
along the sensor’s axis. They need to be processed in order to isolate the
synchronous component which is the one given by rotor unbalance.
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Figure 4.3: Circumferential position of the accelerometers with reference
AFT Looking Forward

Figure 4.4: Example of vibrations measured by the accelerometers
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Figure 4.5: Keyphasor giving a once per turn signal to measure the blade
speed and position

4.1.2 Keyphasor

The keyphasor transducer is a sensor that provides a once-per-turn signal
by detecting a particular mark placed on the rotor. A common type of
keyphasor consists in a proximity transducer that senses a discontinuity on
the rotor, like a notch on the surface. In the presented case, were the rotor
studied is the propeller, the keyphasor is a light sensor that detects a segment
of reflective tape placed on the reference blade.
The signal generated is an on/off type of wave, with a positive impulse
corresponding to every passage of the marked blade. This transducer plays
two significant roles. It allows to measure the rotor’s spin speed and to know
the vibration signal phase, which is the relative position of the reference
blade with respect to the vibration peaks.
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Figure 4.6: Keyphasor signal

4.2 Response vector calculation

The first step in the processing of the test data is measuring the rotor speed
from the keyphasor, which is given as the frequency of the signal. To measure
this frequency, the tool scans the signal in search of each impulse, storing
the corresponding time values. The difference between each impulse time
and the previous one is the duration T of that period. The frequency will
then be equal to f = 1

Tm
, where Tm is the average of all the periods of the

signal. The speed in RPM can also be found by multiplying f by 60.

Signal impulses are identified as the moment at which the keyphasor value
passes over a certain threshold, defined by the user. A preview of the signal
is available to evaluate the appropriate threshold to select. The tool analyzes
the signal and proposes a threshold equal to the 75% of the maximum signal
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Figure 4.7: Keyphasor signal preview box

value. The user can then keep that suggested value or chose a more suitable
one.

4.2.1 Filtered signal

Raw response data from the accelerators, as seen in figure 4.4, represent the
actual vibrations of the system. It is a poly-harmonic signal composed by
contributes given by the different forcing functions. In order to study the
effects of unbalance it is necessary to isolate the synchronous component,
which will be also called 1/rev, from the other components. This operation
is done through a band pass filter with the passing band centered on the
rotor spin frequency previously measured. The band pass is a filter that cuts
out all the harmonic components of a signal which frequencies are outside
of a defined range, leaving only the components with the desired frequency.
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Figure 4.8: Band pass filter Bode plot

The bandwidth of the filter is given as an input by the user, as well as the
filter order.

The filter order is the polynomial degree of the filter’s transfer function.
This parameter defines the steepness of the transition between the passband
and the stopbands, thus effecting the attenuation of the frequency ranges
adjacent to the passband. An higher-order filter results in a sharper and
more effective filter. The downside, however, is that an high filter order
can cause an high phase distortion, which is negative for the fidelity of the
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resulting filtered signal. [9] A compromise between clean filtering and low
phase distortion is needed, avoiding filter orders that are unnecessarily high.

The filter bandwidth defines the frequency range of the desired signal
components. Everything outside that range has to be cut out by the filter.
Since rotor’s speed is never perfectly constant, choosing a bandwidth that is
too narrow may results in missing parts of the 1/rev signal. On the other
hand, a too large bandwidth would cause an undesired noise in the filtered
signal.
The optimal bandwidth varies from one case to another, but the tests per-
formed during the development of the tool suggest that it is usually quite
narrow. In the examined cases a bandwidth in the order of less than 10 Hz
was needed to obtain a good enough result without noticeable noise, and
even 1 Hz could make the difference between an acceptable filtered signal
and an unacceptable one.

The filter used by the tool is a Butterworth infinite impulse response
(IIR) bandpass filter created with the command designfilt, which creates
a digital filter using the given parameters such as the filter order, initial and
ending frequency of the pass band (defined by the tool given the bandwidth
and the rotational frequency) and the sample rate, which is usually read
from the test data file.
The Butterworth filter is one of the simplest filter, which can maintain the
same response inside the pass band at the growth of the filter order. Figure
4.8 shows an example of a bode plot of the filter utilized.

4.2.2 Phase calculation

With the 1/rev available, the next step is to measure its phase. This
information tells the angular position of the vibration peak on the rotor,
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Figure 4.9: 1/rev filtered response signal

Figure 4.10: Analysis parameters selection window
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Figure 4.11: Visualization of phase lag convention

with respect to the reference blade. In this tool the phase is measured using
the convention called phase lag, which means that it is given as the angle
between the keyphasor impulse and the first occurring positive vibration
peak, as visible in figure 4.11.

Using more analytical terms, the 1/rev phase for each period of the signal
can be written in equation form as

φ =
t1/rev − tkey

T
· 360 (4.1)

Where:

• t1/rev = time at which 1/rev peak occurs,
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• tkey = time at which keyphasor impulse occurs,

• T = period duration.

The tool scans both the keyphasor and 1/rev signal, searching the re-
spective peaks and storing the corresponding time into two vectors. The
storing of these times begins after a number of initial periods has passed,
since usually the starting transitory can introduce some errors. The number
of periods to ignore is given by the user under the voice bypass periods, in
the input parameters.
Since the phase lag convention starts from the keyphasor impulse, all the
eventual 1/rev positive peaks found before that are ignored. Once all the
peak times are stored, equation 4.1 is applied to find the phase value for
each period.

It should be noted that, like rotor speed, the frequency of the 1/rev is not
perfectly constant, which means that also the phase may slightly vary from
one period to another. When the 1/rev phase is close to either 0° or 360°,
the phase variation can result in the presence of two response peaks in the
same keyphasor period, or the absence of a peak inside of a period. This
condition can be approached in two different ways. The first solution consists
in ignoring the irregular period, limiting the phase to the 0-360 degrees range
and resulting in a phase jump from one endpoint to the other, as seen in
figure 4.12a.

The second solution is to store every peak time for both signals, starting
from the first keyphasor one, and compare each 1/rev peak with the corre-
sponding keyphasor impulse. This way the resulting phase has a continuous
evolution and it can assume values outside the range defined previously. The
result is shown in figure 4.13. This solution allows an easier visualization
and measurement of the average phase, which is the reason why it is the
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(a)

(b)

Figure 4.12: Phase discontinuity (a) and corresponding signal (b)

method applied for the purpose of this tool.
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Figure 4.13: Same phase from figure 4.12a shown in continuous form

4.2.3 Amplitude calculation

The last step of signal analysis is to calculate the amplitude of the 1/rev
response. It is computed by the tool as the root mean square of the signal
(usually noted as RMS), which is defined as the square root of the mean
square:

RMS =
öõõô 1

N

NØ
n=1

|xn|2 (4.2)

were x is the considered signal vector.

The output needed from the analysis for the following steps of the bal-
ancing process is a single value of amplitude and phase of the response for
each selected sensor, so the most immediate way to compute the amplitude
would be to find the RMS of the entire signal. The tool, however, performs
a block-based RMS calculation. It means that, instead of measuring the
RMS of the entire 1/rev, it divides the signal in blocks of defined constant
duration and finds the amplitude for each block. Using this more articulated
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method allows to better study the evolution of response amplitude through
time.

(a)

(b)

Figure 4.14: Block division (a) with corresponding RMS (b)
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4.2.4 Output of the analysis

At the end of the signal analysis, the tool prints a plot that shows the
evolution of amplitude and phase of the response, for each sensor, through
time. An example of these plots is shown in figure 4.15. By looking at this
output, the user is able to qualitatively evaluate the results in order to decide
if the chosen input parameters are acceptable and if the selected sensors give
a reliable and useful reading of the response.

Finally, a single value of amplitude and phase for each sensor, computed as
the average value of the plotted results, is stored to be used in the following
steps of the balancing process.
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(a)

(b)

Figure 4.15: Response amplitude (a) and phase (b) plotted as output
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Figure 4.16: Sensitivity factor calculation window with buttons to interact
with response files

4.2.5 Other response analysis features

At its current state, the tool has been mainly tested with test data with
response signals measured at a constant rotor speed. Since the balancing
process can be performed using measurements taken at different speeds for a
better solution, a feature as been included that allows to combine different
vibration response files. The code takes the selected available response files,
scans them to find the sensors that are present in all of them and create a
single file with only the response of said accelerometers at different speeds.

The tool was designed to operate not only with raw test data but also with
already available response values given in polar coordinates as amplitude
and phase. These data can be obtained by test data already processed using
other tools or can be the result of an analysis performed on a model like the
2D analysis seen in chapter 3.
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Figure 4.17: Response file creation panel

To easily input these data in a format that the tool can read and process
a create file feature is available, which guides the user through the input
process and gives a response file as an ouput.
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Chapter 5

Balancing through
sensitivity coefficient

Having measured the amplitude and phase of the 1/rev response is possible
to further proceed with the balancing process. This tool uses the influence
coefficient method. It is a balancing procedure that starts from considering
the measured vibrations as a direct effect of concentrated unbalances placed
on arbitrarily defined planes along the rotor’s axis. This method comes from
the assumption that the rotor’s response to unbalance has a linear behavior.
The unbalance vector was defined in chapter 3 as the vector u that connects
the geometrical center of the rotor to its center of mass. The vector defined
this way will now be referred as the unknown unbalance vector. A new
vector W can be defined as the applied balancing weight, with its mass as
vector magnitude and its circumferential position as phase. This vector W
will be referred to as known unbalance vector or just unbalance vector when
considered as an input data, while it will be called balancing weight when
given as solution of the process.
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Figure 5.1: Unbalance vector Wt

To prevent confusion during mathematical passages, a further distinction
can be made, by indicating with Wt the known unbalance vector applied
and with W the balancing weight solution.

5.1 Sensitivity factor

The next step is to find the influence coefficient, also called sensitivity factor.
It is the coefficient that allows to know the linear correlation between a
certain unbalance vector and the 1/rev response.
In order to find the sensitivity factor for a determined rotor, performing a
single test run is not enough. Having to define how the unbalance vector
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affects the vibrational response, at least two runs are needed. The first run
is usually called baseline and a simple test run of the rotor or engine that
needs to be balanced.
The second run needed is called a trial run and consists on operating the
same rotor of the first run under the same conditions, but with a trial bal-
ancing weight applied at a determined angle φ that represents the known
unbalance vector. The trial run is the reason why the known unbalance
vector as been previously defined as different from the balance weight solution.

In figure 5.2, vector V0 is the initial vibration vector given by the baseline
run and V1 the response vector of the trial run, both represented as phasors
in polar coordinates as seen in chapter 2.
The initial vibration V0 represents the effect of the intrinsic unknown un-
balance present on the rotor, while vector A represents the effect of the
unbalance weight installed in the trial run.
The sum of these effects gives the response of the trial run V1. Ideally, if A

is equal to -V0, the resulting response would be zero. With this method, bal-
ancing means finding the mass to add to the rotor in order to have A = −V0.
[6]

Figure 5.2: Graphical representation of a balancing vector solution [6]
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5.1.1 Single plane

Single plane balancing is the simplest application of the influence coefficient
method. It requires two test runs: the baseline and one trial run.

(a)

(b)

Figure 5.3: Baseline (a) and trial (b) rotor configurations

Note that, as shown in figure 5.3b, using the phase lag convention to
measure the 1/rev response vector means that the phase angle φ is defined
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as positive in the opposite direction of the rotor spin speed Ω.

The sensitivity factor for the single plane balancing is defined as

s = ∆Wt

∆V
= Wt1 − Wt0

V1 − V0
(5.1)

where:

• Wt1 = known unbalance vector applied to trial run,

• Wt0 = known unbalance vector applied to baseline rotor,

• V1 = measured response of trial run,

• V0 = measured response of baseline run.

The baseline run usually has an unbalance vector Wt0 equal to zero, but
by considering the vector difference ∆Wt this is not strictly necessary. The
sensitivity factor can also be measured between two runs both performed
with weights applied, as long as the two unbalance vectors are different.
As seen in chapter 4, response analysis usually considers data from multiple
sensors.
In addition, the same configuration can be run at different rotor speeds and
the response vector from the same sensor has to be measured separately for
each speed. Equation 5.1 gives the coefficient referring to a single speed-
sensor combination. The balancing of the rotor can be made at the speeds
for which there is a known sensitivity coefficient. A sensitivity vector defined
at more rotational speeds allows an easier balancing at the varying of these
speeds.

Until this point the vectors have all been considered in polar coordinates
as amplitude and phase, but from equation 5.1 going forward they will be
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converted in complex numbers for the purpose of performing calculations,
since this allows an easier computing of the equations. The output values,
however, will still be visualized in polar coordinates, which is far more intu-
itive for the end user to read.

The sensitivity factor is a coefficient that has to be applicable on every
rotor that belongs to the same family. Which means that every rotor that is
designed in the same way should ideally give the same sensitivity factor, no
matter what kind of unbalance is applied.
This is the strength of the sensitivity coefficient method, because, once the
sensitivity factor for a determined kind of rotor is available, all the following
similar rotors can be balanced by using the same coefficient, without having
to repeat the entire process. With a sensitivity factor already available, the
only thing needed is a test run of the baseline rotor that needs to be balanced.

5.1.2 Two-planes balancing

The case previously considered refers to a single plane balance condition,
which means that the balancing weight is placed only on one plane perpen-
dicular to the rotor axis.
Generally, the balancing of a rotor can be made using multiple balancing
planes, each one at a different axial position and each one with a different
balancing mass applied. The tool developed has been limited to a maximum
of two balancing planes, placed one at the front end, noted as FWD, and
one at the rear end of the rotor, noted as AFT.

In order to generate the sensitivity factor for a two planes balancing, data
from a second trial run are necessary, for a total of three test runs. Both
planes must have a weight change with respect to the baseline in the two
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trial runs, each trial introducing at least one weight change on a different
plane that the other. This means that if the first trial run has a weight
change on one plane, the second trial has to have a weight change on the
other plane.
If one of the trials has weight changes on both planes the other trial must
have at least one plane with an unbalance vector that is different from both
the baseline and the first trial run.
With two balance planes and three weight configurations, there are a number
of different possible combinations. These combinations can be divided into
two main cases: an ideal case and a general case.

The sensitivity factor for a two-planes balancing consist of two coefficients
for each speed-sensor combination: one that describes the effect of the FWD
plane on the response and one for the AFT plane. The solutions for the two
cases defined are described as follows.

Ideal case

The ideal case, represented in figure 5.4, is the one that presents the most
immediate solution for the sensitivity factor. It includes a baseline run with
no weights applied on any of the two planes, one trial run with weight applied
on just the FWD plane and the other trial run with weight applied only on
the AFT plane. This can be denoted as the ideal solution because it is the
most intuitive way to perform the three test runs needed for the balancing
process.

Under these conditions, the sensitivity factor for the FWD plane can be
found using equation 5.1 with data from the baseline and the first trial, in
the same way seen for the single plane solution. Similarly the sensitivity
coefficient for the AFT plane is obtained using the data from baseline and
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the second trial.

(a)

(b) (c)

Figure 5.4: Baseline (a), trial 1 (b) and trial 2 (c) rotor configurations for
the ideal case
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General case

There could be situations, for example when dedicated engine test can not
be made and the balancing has to be performed with available data, where
the solution seen above is not valid. This happens when one or both the
trial test runs have a weight change, with respect to the baseline, on both
the balancing planes. When this happens, the rotor presents two unbalance

(a)

(b) (c)

Figure 5.5: Baseline (a), trial 1 (b) and trial 2 (c) rotor configurations for
the general case
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vectors that produce a single response vector, which is a combination of the
effects given by both planes. To find the sensitivity factor, however, it is
necessary to know the component of vibration caused by each plane.

The following solution is denoted as a general solution, since it can be
applied to any weight combination on the three configurations, with the only
exception of the case in which two of the three test runs are performed under
the exact same weight configuration. This solution applies also on the ideal
case, which is the reason why it is the only method used in the tool for the
two-planes case.

The sensitivity factor for a generic two-planes balancing case can be found
by imposing the following system



V u1F = Wt1A − Wt0A

−sAF T
+ V1 = (Wt1A − Wt0A)

A
− V u2A − V0

Wt2A − Wt0A

B

sAF T = Wt1A − Wt0A

V u1A − V0
= Wt2A − Wt0A

V u2A − V0

sF W D = Wt1F − Wt0F

V u1F − V0
= Wt2F − Wt0F

V u2F − V0

V u2F = Wt2A − Wt0A

−sAF T
+ V2 = (Wt2A − Wt0A)

A
− V u1A − V0

Wt1A − Wt0A

B
(5.2)

Where:

• A and AFT refer to the AFT plane,

• F and FWD refer to the FWD plane,

• Indices 0, 1 and 2 refer respectively to baseline, trial 1 and trial 2,

51



Balancing through sensitivity coefficient

• Vu represents the part of the response given by the correspondent unbal-
ance vector.

The first and last equations are used to find the portion of response caused
by the unbalance on the front plane, respectively for trial 1 and trial 2. They
are found by considering that, knowing the corresponding sensitivity factor,
the response component generated by a given unbalance vector is

V u = ∆Wt

s
(5.3)

and being the total response V the sum effect of the two planes the
vibrations caused by the front plane can be written as

V uF = V − V uA = V − ∆WtA

sAF T
(5.4)

As previously said, the sensitivity factor has to be valid for rotors with
the same design, no matter what the unbalance is. This implies that, for
each plane, both trials have to generate the same result. This equivalence of
sensitivity factor between the two rotors is imposed by the central equations
of the system.

By solving the system of equations the tool is able to find the sensitivity
factor for a case with two balancing planes.

5.2 Best balance solution

The last step of the process at study is to find the weight solution that best
balances the rotor. This solution is given as the weight W that results in
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the lowest residual vibrations, which are the response to unbalance of the
rotor after a certain weight is applied. These are given by the equation

Vr = 1
s

W + V0 (5.5)

Where Vr is the residual vibration and V0 is the initial response vibration
of the baseline, which is the rotor to balance. Having multiple response
measurements from different sensors and at different speeds, possibly with
influence from multiple planes, this equation is converted in matrix form

{Vr} = [S]{W} + {V0} (5.6)

Being m the number of sensors times the number of speeds and n equal
to the number of planes:

• Vectors {Vr} and {V0} have dimension m,

• Vectors {W} has dimension n,

• Matrix [S] has components equal to 1
s , with s that has dimensions m×n.

The solution W of equation 5.6 that minimizes Vr is found by the tool as
the least square solution of the system obtained by imposing the residual
vibration vector {Vr} = 0

[S]{W} + {V0} = 0 (5.7)

The least square solution of this linear system is

{W} = ([S∗]T [S])−1(−[S∗]T ){V0} (5.8)
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Where [S∗]T is the conjugate transpose matrix of [S]. This is a first
weight solution that can be applied to balance the rotor. A prediction of the
resulting residual vibration is made using equation 5.6.

A better balance solution can be obtained using an iterative process.
The resulting solution obtained at the end of the iterations should be the
optimized one that best reduces the residual vibrations on all the considered
sensors. The ultimate solution is displayed by the tool with two values:

• the first solution is the weight to add to the rotor balanced in case the
rotor has already a trial balancing weight,

• the second solution is the weight to apply if the weights previously
present on the rotor are removed.

In case the balanced rotor did not have weights previously applied the two
solution are intuitively equals. The tool also prints a report file containing
information on the initial vibrations, the sensitivity factor used and the result
of every iteration performed, included the residual vibrations predicted.
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Figure 5.6: Tool interface with solution displayed
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Testing and validation of
the tool

The tool was tested and validated by using it to perform three different types
of balancing. The first two were balancing of 2D modeled rotors, while the
last one was performed using available test data.

6.1 Two planes balancing

The analytical tests where made using the simple rotor model shown in figure
6.1. To this model are applied three different internal unbalances, each one

Figure 6.1: Rotor model used for 2D analysis
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(a)

(b)

(c)

Figure 6.2: Displaced rotor corresponding to mode 1 (a) mode 2 (b) and
mode 3 (c)

exciting a different mode at three different critical speeds: low frequency,
middle frequency and high frequency.

The first test is a balancing made on two planes. Three different unbal-
ances have been applied to the rotor, each one exciting one of the first three
modes of the rotor. An attempt at balancing the three modes at a single
operative speed (2000 RPM) has then been made. Each mode is balanced
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(a) (b)

(c) (d)

Figure 6.3: Baseline response of mode 1 rotor (a) with the responses
resulting from balancing respectively with s1 (b), s2 (c) and s3 (d)

three times, first using the correspondent sensitivity factor and then using
the factors obtained for the other two modes, and the results are compared
to define if a sensitivity coefficient calculated on a rotor can be effectively
used to balance other similar machines.
The reason why the balancing is done at 2000 RPM and not at the critical
speed is because it is a simulation of a test in which the rotor is tested
isolated on a testing machine, which cannot reach the operational spinning
speeds of the final engine. In this analysis, instead of the vibrations, the
response measured is the load on the supports through which the rotor is
mounted on the machine.

58



Testing and validation of the tool

(a) (b)

(c) (d)

Figure 6.4: Baseline response of mode 2 rotor (a) with the responses
resulting from balancing respectively with s1 (b), s2 (c) and s3 (d)

Defining s1 the sensitivity factor obtained using the rotor in which mode
1 (LF) is excited, s2 the one for the rotor corresponding to mode 2 (MD)
and s3 the one corresponding to mode 3 (HF), the results of the analysis are
shown in the following pages.
The results in figures 6.3, 6.4 and 6.5 show that, as predicted, the balanced
responses are similar enough regardless of which sensitivity factor is used.
Figures 6.3 and 6.4 also show that, for both the low frequency and the middle
frequency modes, the balancing allows to highly reduce the response at the
critical speed considered. The attenuation of the interested mode, however,
causes an amplification of the high frequency mode on both cases.
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(a) (b)

(c) (d)

Figure 6.5: Baseline response of mode 3 rotor (a) with the responses
resulting from balancing respectively with s1 (b), s2 (c) and s3 (d)

By looking at figure 6.5, it can be noted that the balancing applied on
mode 3 is not quite effective as it was on the two other cases, no matter
what sensitivity factor is applied. The amplitude of the peak is reduced, but
the mode is still significant. To analyze the reason of this issue, another test
was made, by balancing the third mode using a sensitivity factor calculated
using the response at its critical speed.

From the results obtained with this last analysis, shown in figure 6.6, it
appears that balancing the high frequency mode at the critical speed has
the desired effect, even though the response at lower frequencies is amplified,
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Figure 6.6: Response of mode 3 rotor after balancing at its critical speed

inversely to what happened with the other modes.
The conclusion that can be drawn from this result is that the failed balancing
of figure 6.5 was not due to a failure of the tool, but more probably caused
by the fact that the initial response at low speeds was too contained to allow
an effective balancing of the high frequency mode using the sensitivity factor
obtained at 2000 RPM.

6.2 Trim balancing

The second 2D analysis takes the same three initial rotors, with the three dif-
ferent modes excited. The objective, this time, is to balance each mode with
the sensitivity factor obtained at its corresponding critical speed, considering
the vibrations predicted by the model in three locations representing three
different sensors mounted on the rotor. This is a simulation of a balancing
performed using test data from the rotor mounted on the entire engine and
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only one balancing plane is considered, since the second could be difficult to
reach in this conditions.

The results of this second analysis, pictured in figures 6.7, 6.8 and 6.9,
show that the single plane balancing at the critical speeds as a similar effect
to the one seen in the previous case. Once again, figures 6.7 and 6.8 show a
significant reduction of the interested modes, with the drawback of a strong
amplification of the high frequency mode.
Figure 6.9 depicts the balancing of mode 3. Even though its curve is not
flatten out at high frequencies, unlike what happened for the two planes
balancing, the response presents a good reduction of the vibration.

(a) (b)

Figure 6.7: Baseline response of mode 1 rotor (a) with the responses
resulting from balancing (b)

Additionally, the amplification of the lower modes caused by the balanc-
ing is considerably more contained than the one obtained in the previous test.
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(a) (b)

Figure 6.8: Baseline response of mode 2 rotor (a) with the responses
resulting from balancing (b)

(a) (b)

Figure 6.9: Baseline response of mode 3 rotor (a) with the responses
resulting from balancing (b)

6.3 Validation through test data

The third test performed to validate the tool is a balancing of the propeller
of an existing turboprop engine of which there were test data available. The
weights applied to each run are reported in table 6.1. There is only one
weight applied for each run and they are all on the same plane, so the analysis
is a single plane balancing. This mean that the three data file are not used
together during the process but only two at a time.
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Table 6.1: Weights applied on the different test runs

Test run Mass Angle
gr DEG

Baseline 0 0
Trial 1 10 252
Trial 2 8.6 162

Since there was not a test run of the balanced rotor available, it was
not possible to compare the results from the tool with an already tested
solution. The validation was then made by finding the balance solution of
three possible combinations of these runs and comparing the results to see if
they are at least similar to each other. The three combinations studied are:

1. sensitivity factor from baseline and trial 1 and balancing of baseline,

2. sensitivity factor from baseline and trial 2 and balancing of baseline,

3. sensitivity factor from trial 1 and trial 2 and balancing of trial 1.

The results from these tests are presented in figure 6.10. The solution of
interest is the one highlighted, representing the weight to add when all other
eventual weights are removed, since the last test was made by balancing a
trial run with a weight installed. There can be seen that the solutions for
the three data combinations are similar but not perfectly identical.
This is justified by the fact that in a actual test run there are some factors
that cannot be controlled and that cause slight changes on the responses even
in two runs performed with the same identical configuration. Considering
this, the differences between a solution and the other ones is small enough
to be acceptable. The tool can then be considered as correctly working.
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(a)

(b)

(c)

Figure 6.10: Balance solutions from tool for combination 1 (a), 2 (b) and
3 (c)

6.4 Effect of the bandwidth on the 1/rev re-
sponse

One last study was made to analyze how a parameter change impacts on the
1/rev response vector obtained in chapter 4. In particular, it was observed
the effect of the filter bandwidth variation, which appeared, during the
developing stage, to be the most impactful among the input parameters.
First thing to note is that with a too wide of a pass band the response
obtained starts to include unwanted harmonics, resulting in portions of the
response with an higher frequency and therefore more periods than the ones
in the keyphasor signal. When this happens, the phase calculation cannot be
performed accurately, so an error is displayed to suggest the user to change
parameters.
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Figure 6.11: Error message displayed in case of 1/rev with wrong frequency

During the study, different bandwidth values have been considered, in
the range between 7% and 21% of rotor frequency. Bandwidth above that
range resulted in the aforementioned error. This limit is an empirical value
that changes from a run to another depending on the composition of the raw
signal, and can also change between two different sensor in the same run.

Figure 6.12 shows the various 1/rev responses obtained using different filter
bandwidths in the considered range, given in terms of amplitude and phase.
There can be seen that an higher bandwidth results in a growing amplitude
and a slightly growing phase. The change in amplitude is due to the use of
RMS to find the average value. The results, however, are still quite simi-
lar so that the variation does not really impact on the final balancing solution.

The three responses at higher bandwidth, the points on the right of the
plot, present an abnormally higher phase than the previous one. This is a
consequence of some unwanted noise which, while it is not caused by the
chosen bandwidth per se, can be remove by reducing the pass band, as seen
in the study.
The effect of the noise can be seen in figure 6.13. It causes a variation in the
1/rev frequency in one point, introducing an error in the phase measurement
that propagates to all the subsequent periods.
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Figure 6.12: 1/rev responses obtained with different filter bandwidths

The cause of the noise can be better visualized by looking at the response
signal in the frequency domain through an FFT (Fast Fourier Transform)
analysis. In figure 6.14 is shown the FFT of the response taken in a point of
the signal in which the noise is not significant. There can be seen that in
the frequency range that passes through the filter there is one main response
contribution that is the 1/rev component.
Figure 6.15 shows the response in the frequency domain analyzed where
the detected noise has a significant impact. This time there can be seen
how the contribution of the 1/rev response is not predominant on the other
components that fall in the considered frequency range, which results in an
impact of the noise on the response that is not negligible.
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Figure 6.13: 1/rev response signal with and without noise

The influence of the noise that compromises the accuracy of the response
vector calculated is, as already said, a particular case of the practical test,
which cannot really be predicted. The physical cause, in this case, could
probably be found in the fact that the rotor considered is a propeller. The
blades of the propeller have a variable pitch, that is constantly adjusted by
the system in order to maintain a constant speed. This continuous adjust-
ments affect the 1/rev, causing an higher variation than the one expected
and possibly introducing the disturbing noise.

Since it is difficult to accurately predict the presence of noise on the 1/rev,
there is not a absolute way to define the best filter bandwidth to process
the data. The ideal pass band can then be found with some experience and
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Figure 6.14: Frequency domain response in a point without noise on the
1/rev

eventually through a trial and error process, using the response output plots
seen in chapter 4 to make sure that an error like the one here observed does
not appear.
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Figure 6.15: Frequency domain response in a point with noise on the 1/rev
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Chapter 7

Conclusion

The objective of the work here presented was to develop a tool that would
be able to read raw test data, process them and find a balance solution for
the rotor. The tool has been designed to work with both analytical data,
obtained from a modelized rotor, and actual raw test data. It has been
validated using both kinds of data, with two tests for analytical data and
one using test data.

The two analytical tests performed using a 2D model of a simple rotor
show that the tool is extremely useful to reduce the system response by
balancing out the rotors. The first analysis allowed to see that, in case of a
rotor with an high modal response at lower frequencies, is possible to perform
the balancing using data obtained by running the rotor at speeds lower
than the critical speed, thus preventing possible dangerous events during the
testing phase. When acting on modes at higher frequencies, however, using
response data taken at speeds that are too low is much less effective.

Another thing that can be gathered by the analytical tests is that acting
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on a mode at low frequency to reduce its response results in an increase of
response at higher frequencies. Conversely, reducing the response at high
frequencies causes an amplification on the modes at lower frequency. This
means that a modal response cannot be fully removed, but only moved to
different frequencies. This is the reason why we talk about modal placement.
When balancing a rotor, then, there is not a perfect solution but only a
compromise between the possible solutions. The best balance solution is the
one whose side effects are not dangerous for the normal operation of the sys-
tem and that possibly allows the lowest energy leaks caused by the vibrations.

The last test allows to check how the tool behaves when reading raw test
data. Despite not having a balanced test run to which compare the solution
with, the similarities between the solutions given by the three different com-
binations studied suggest that the tool is accurate. The balance solutions
have also been verified using the previously available tool on which it was
based, giving the same results and further confirming that the developed
tool is able to accurately reproduce the balancing process of its predecessor.

At the end of the validations, the tool proved to be able to autonomously
analyze the given test data with minimum help from the user. It is able to
automatically generate the sensitivity coefficients, for both single and double
balancing planes, and store them to be later used for future balancing of the
same rotor family. The balancing can then be performed starting from data
test both by finding new sensitivity factor, both by using already available
coefficients.
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