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Abstract

The present work is intended as the �nal product of the double master's degree
program between Politecnico di Torino and ISAE-Supaero, result of the �nal in-
ternship at CNES, the French space agency. The objective of this research was �rst
and foremost to provide the CNES AOCS service with a bibliographic reference
tool regarding Neural Networks and all their possible applications by understand-
ing their mathematics and theory. It is then demonstrated how it is possible to
reproduce such networks and their di�erent con�gurations in the Matlab/Simulink
environment through the development of an entire AI library in which each type
of layer is represented with its characteristics, having Python as a reference. Each
layer of neural network studied in depth in the state of the art (MLP, RNN, CNN)
is therefore reproduced in respective Simulink models in which it is possible to
load weights from Python of the corresponding network already trained through
speci�c functions able to read .h5 and .json �les. Once obtained the structure
of the net, the loading of the weights in the Simulink models is done through
con�guration �les coded according the OCEANS simulation environment, that is
the main simulator used in the service for AOCS control. The aim is therefore
to have a structure in Simulink that can reproduce the networks and use them in
feedforward to make predictions useful for AOCS analysis. The training phase is
therefore carried out in Python and is not reproduced in Simulink. In order to
make possible the integration of this library with the AOCS environment all the
models are coded in the OCEANS environment too. Such a library thus gives the
service the ability to use any type of network by knowing its structure via Python
�les. The �nal part lastly focuses on validating these models by comparing the
predictions between Python and Simulink of concrete cases through the use of
networks already validated internally in the CNES service and from previous case
studies. The whole work thus allowed us to fully explore and understand how
neural networks work and their possible applications, how it is possible to repro-
duce their architecture in an environment di�erent from Python by applying their
mathematics and respecting their structure.

Keywords - Neural Networks, AOCS, Python, AI library, Matlab/Simulink
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Introduction

We are witnessing in today's society a real revolution that touches all aspects of our
lives: the advent of arti�cial intelligence. In today's global scienti�c environment,
as well as in all the domains of our culture, arti�cial intelligence is imposing itself
at a rapid pace, radically changing the way we see and perceive things, the way we
learn and work, by setting new paradigms and presenting new tools that until a
few decades ago were only pure science �ction. The application of AI and Machine
Learning algorithms are proving to be highly useful and incredibly more e�cient
than the classical methods used until now in almost all �elds of knowledge: ranging
from medicine, �nance, art, engineering and agriculture. Let us just think of the
ability to recognise a cancer based on image processing, voice recognition, �nancial
predictions, autonomous driving and much more. In the purely aerospace �eld, the
application and mastery of such techniques is increasingly becoming useful and es-
sential, especially when compared to the classical calculation and simulation tools,
which in many cases are slow and expensive, i.e. CFD or �nite model calculations.
Especially when dealing with complex phenomena for which a precise and reliable
mathematical model is not available, the use of Arti�cial Neural Networks turns
out to be of great help as they are able to clearly distinguish non-linearities and
recurring patterns that the classic analytic methods are unable to do. A deep and
important look at the application of arti�cial intelligence in the aerospace �eld is
provided by Stefano Silvestrini and Michèle Lavagna's article, 'Deep Learning and
Arti�cial Neural Networks for Spacecraft Dynamics, Navigation and Control' [1].
In the development of the present work, this article was of fundamental impor-
tance in order to understand the di�erent types of machine learning algorithms,
methodologies and characteristics, but above all their possible and concrete ap-
plications in the AOCS/GNC �eld: for example, the identi�cation of spacecraft
dynamics by means of a fully connected network, the use of convolution networks
for navigation and landing in space ('Vision-Based Navigation'), Reinforcement
Learning and Meta-Reinforcement Learning for Adaptive Guidance and Control.
Other important perspectives are provided in the papers 'Modelling of the dy-
namics of a gyroscope using arti�cial neural networks' [2] and 'Deep learning for
autonomous lunar landing' [3]. The former represents an excellent application of
neural networks, speci�cally a fully connected network, to learn very complex body
dynamics for which a real mathematical model would be too complex to imple-
ment. Important here is also the learning phase that sees the real dynamic system
available and based on the results from the latter, by minimising an appropriate
loss function between the real system and the prediction, sees the network �nally
reproduce the full dynamic model. In 'Deep learning for autonomous lunar land-
ing', instead, a deep insight in using convolutional neural networks is provided.
The goal of the paper is to design a set of deep neural networks, i.e. Convolutional
Neural Networks (CNN) and Recurrent Neural Net-works (RNN) which are able
to predict the fuel-optimal control actions to perform autonomous Moon landing,
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using only raw images taken by on board optimal cameras. Such approach can
be employed to directly select actions without the need of direct �lters for state
estimation. Indeed, the optimal guidance is determined processing the images
only. For this purpose, Supervised Machine Learning algorithms are designed and
tested.Two possible scenarios are considered, i.e. 1) a vertical 1-D Moon landing
and 2) a planar 2-D Moon landing. For both cases, fuel-optimal trajectories are
generated.

Figure 2: Vision-based navigation [4]

Figure 3: Attitude prediction system with Neural Networks compensation [5]

This work is therefore enscribed as part of CNES's program to create a Mat-
lab/Simulink environment that could e�ectively represent an AI interface that can
be used in the AOCS environment, especially for those cases in which the com-
plexity of the system or the dynamics involved do not allow the use of classical
calculation models. This study represents the continuation of a project previously
conducted by the agency and aimed at analysing, by means of neural networks,
the phenomena of propellant sloshing inside satellite tanks during agile manoeu-
vres [6]. The main objective was to use Machine Learning algorithms to predict
torques and forces acting on the satellite structure and caused by the movement of
the propellant, and subsequently compare this method with classical CFD. Once
the torques and forces acting on the satellite are known, it is therefore possible
to synthesise a controller that can alleviate the destabilisations caused by these
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phenomena and reduce the relaxation time, improving pointing performance. The
results coming out of the Machine Learning algorithms appropriately compared
with those of CFD revealed a strong potential in terms of computation time and
accuracy: this gave CNES the opportunity of developing its own AI environment
in Matlab/Simulink that could be integrated into the AOCS simulators. In order
to e�ectively be able to undertake the research work, it was initially necessary to
carry out intensive state-of-the-art analysis in order to actually have a theoretical
basis on which to develop the AI models in Simulink and then be able to compare
their performance with Python results. The work therefore involved the creation
of an entire AI library in Matlab/Simulink, which could be versatile and easy
to use in order to be able to create the main types of neural networks for space
applications using all the basic models.

Figure 4: AOCS Control Loop
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Context

This work was carried out at CNES, Centre National d'Etudes Spatiales, a public
establishment whose role is to propose and develop a space programme for the
French government. The establishment was founded in 1961 by President Charles
de Gaulle in order to more e�ectively coordinate the country's space activities.

The various activities of CNES have led it to establish itself on the following sites:

� The agency's head o�ce, located in Paris les Halles. This is where France's
space policy is formulated and both national and international and inter-
national space programmes are coordinated. The site employs around 185
people.

� The Guiana Space Centre (CSG). The launch site in French Guiana employs
1,700 people to carry out lift-o�s for launchers in the European range (Ariane
range of launchers (Ariane 5, Vega and Ariane 6 in the near future), as well
as the Russian Soyuz launcher.

� The launchers department at Paris Daumesnil, where 285 employees are
responsible for future launchers.

� The Toulouse Space Centre (CST), the agency's largest technical and op-
erational centre, with more than 1,700 CNES employees and 800 industrial
partners. It is here that the design, production and operation of orbital sys-
tems takes place.

In particular, the present study was performed in the framework of the Toulouse
Space Centre of CNES, more precisely in the AOCS Architecture department
(DTN/DV/AS), belonging to the Flight Dynamics sub-directorate (DTN/DV),
which is part of the Technical and Digital Directorate (DTN). Members of the
department are involved in attitude control of orbital systems and atmospheric
balloons during all phases of a space project. Their tasks are therefore very varied
and include developing AOCS algorithms, maintaining and updating internal li-
braries and simulators, designing attitude control systems and, of course, operating
orbital systems.

4



Chapter 1

State of the art

This academic project is centered around a meticulously crafted state of the art
that stands as a forefront in both research and application within the extensive
domain of Machine Learning, Arti�cial Intelligence, and Neural Networks. Its ob-
jective is to comprehensively showcase the key components comprising an Arti�cial
Neural Network, including various existing network types and their practical im-
plementations, alongside the diverse methodologies employed to deal with today's
complex challenges. The project will cover conventional activation functions, fol-
lowed by essential parameters delineating distinct layers and their initialization.
Lastly, it will delve into prominent network types, exploring their attributes and
architectures.

What is a Neural Network ?

Neural networks are computational frameworks that take cues from the structure
and functioning of the human brain. Similar to the brain, they are comprised
of interconnected units called neurons, organized into layers. These layers pro-
cess input data, and each neuron undertakes a weighted calculation. Nevertheless,
distinct di�erences exist. While the brain's neurons can handle diverse informa-
tion concurrently, neural networks primarily excel at numerical data. Furthermore,
brain neurons are intricate, utilizing electrochemical signals, whereas arti�cial neu-
rons employ mathematical functions for computations. Learning within neural
networks occurs through a technique called backpropagation. This involves ad-
justing internal weights based on the comparison between the network's output
and the desired outcome. This mirrors the brain's process of strengthening or
weakening connections between neurons. In essence, neural networks derive in-
spiration from the brain's architecture, yet they are simpli�ed constructs tailored
for e�cient processing of speci�c data types. While backpropagation is based on
the propagation of error from the output to the input of the network in order to
optimise the network's calculation parameters, i.e. the weights, the process that
actually allows predictions to be made is called feedforward. During this process,
the network, already trained and optimised as a result of the backpropagation
process, is thus able to obtain from a speci�c data input, the prediction output
with an accuracy that typically depends on the training parameters. In fact, in the
context of suprvised learning, there are various techniques for training a network
and managing the data through which it is trained, in order to obtain accurate
predictions on the basis of already veri�ed data.A neural network, thus more or
less long or complex, is today able to provide answers where exact mathematical
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models are not available, to learn complex dynamics and to be in some cases even
computationally lighter and easier to interpret.

Figure 1.1: Neurons comparaison [7]

1.1 Activation functions

An activation function in AI is a mathematical function applied to the output of
a neuron in an arti�cial neural network. It determines whether a neuron should
be activated (send a signal) or not, based on the weighted sum of its inputs. Ac-
tivation functions introduce non-linearity to the network, allowing it to learn and
represent complex relationships in data. Activation functions are used accord-
ing to their speci�c characteristics, which can be useful at di�erent stages in the
implementation of a neural network:

� Non-linearity

� Di�erentiable everywhere

� Identity in 0

� Monotonic

� Range

� Monotonic derivative

Each of these features makes it possible to exploit these functions appropriately
to meet di�erent criteria in terms of network's training speed, convergence, and
overall performance.

1.1.1 Sigmoid and Tanh

All logistic functions have the property of representing the whole number line in a
small interval, for example between 0 and 1, or between -1 and 1. One of the uses
of a sigmoid function is therefore to convert a real value into a value that can be
interpreted as a probability. The mathematical expression of a sigmoid function is :
f(x) = 1

1+e−x . Logistic functions are an important elements of a logistic regression
model. This is a modi�cation of linear regression for two-class classi�cation, and
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converts one or more real-valued inputs into a probability, such as the likelihood
of a customer buying a product. The �nal stage of a logistic regression model is
often set to the sigmoid function, enabling the model to produce a probability.

� Logistic regression [8]: logistic regression is a statistical model used to de-
termine whether an independent variable has an e�ect on a binary dependent
variable. This means that there are only two potential outcomes for an input.
Other forms of regression analysis, such as linear regression, require the de�nition
of a threshold to distinguish binary classes. Linear regression allows a probability
to be established, but this must then be applied to a logistic regression to estab-
lish a distinct classi�cation. A commonly used model is a sigmoid function. In a
sigmoid function, the outputs lie between the limits 0 and 1.

Figure 1.2: Logistic regression

� Tanh: the main di�erence between the sigmoid function and the tanh function
is that the tanh function pushes the input values to 1 and -1 instead of 1 and
0. Both functions belong to the S-type functions that limit the input value to a
certain band: this allows the network to keep its weights limited and avoid the
problem of gradient explosion, where the value of the gradients becomes very large.

An important di�erence between the two functions is the behavior of their gra-
dients: we observe that the gradient of the tanh is four times greater than the
gradient of the sigmoid function. This means that using the tanh activation func-
tion leads to higher gradient values during training and larger updates of the
network weights. So, if we want high gradients and large learning steps, we need
to use the tanh activation function. Another di�erence is that the output of tanh
is symmetrical around zero, enabling faster convergence.

Figure 1.3: Sigmoid - Tanh [9]
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1.1.2 Softmax

For multinomial logistic regression, i.e. logistic regression associated with multi-
class problems where more than 2 outputs are possible, the softmax activation
function is certainly more appropriate. The softmax function takes as input a
vector z of K real numbers and normalises it to a probability distribution made
up of K probabilities proportional to the exponentials of the input numbers. After
applying softmax, each component of the input vector will be in the interval (0,1)
so that they can be interpreted as probabilities. The softmax function is de�ned
as follows:

σ(Z)i =
expZi∑K
j=1 exp

Zj

, i = 1, ..., K et z = (z1, ..., zK) ∈ RK (1.1)

In other words, it applies the standard exponential function to each element zi of
the input vector z and normalises these values by dividing them by the sum of all
these exponentials.

Figure 1.4: Softmax [10]

1.1.3 ReLu

It is frequently used as an activation function because it is easy to calculate,
particularly its derivative: f(x)=max(0,x). A disadvantage of the ReLU function
is that its derivative becomes zero when the input is negative, which can impede
gradient back propagation. We can then introduce a version called Leaky ReLU
de�ned by: f(x) = max(ϵx, x) where ϵ ∈]0, 1[. The derivative is then equal to
ϵ when x is strictly negative, which preserves the weight update of a perceptron
using this activation function.

Figure 1.5: ReLu - Leaky ReLu [9]

1.1.4 PReLu

A parametric recti�ed linear unit, or PReLU, is an activation function which gen-
eralises the traditional recti�ed unit with a slope for negative values:
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f(x) =

{
ax, x < 0

x, x >= 0
(1.2)

1.1.5 Elu

The Exponential Linear Unit is a derivative of the ReLU. It uses an exponential
for the negative part instead of a linear function:

f(x) =

{
α(expx−1), x < 0

x, x >= 0
(1.3)

1.1.6 Softplus

SoftPlus is a soft approximation of the ReLU function and can be used to force
the output to always be positive: f(x) = ln(1 + ex)

Summary

The following table summarises all the most frequently used activation functions
in AI and their speci�c properties [11]:

Function Derivative Range Continuity Monotone Smooth Id.in 0

Sigmoid f ′ = f(x)(1− f(x)) [0,1] C∞ Yes No No

Tanh f ′ = 1− f(x)2 [-1,1] C∞ Yes No Yes

ReLU f ′(x) =

{
0, x < 0

1, x ≥ 0
R+ C∞ Yes Yes Yes

PReLU f ′(x) =

{
α, x < 0

1, x ≥ 0
R C0 Yes Yes Yes

ELU f ′(x) =

{
f(x) + α, x < 0

1, x ≥ 0
[−α,+∞[ C1si α = 1 Yes Yes Yes if α ≈ 1

Softplus f ′(x) = 1
1+e−x R+ C∞ Yes Yes No

Table 1.1: Activation funcions properties

The softmax function is di�erent from the previous ones because it has as input
and output a vector, Rn → Rn, so its derivative corresponds to the following
Jacobian matrix [12]:
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1.2 Weights initialisation: Xavier Glorot

Neural network models are con�gured using an optimisation algorithm called
Stochastic Gradient Descent, which progressively changes the weights of the net-
work in order to minimise a Loss Function, in the expectation of obtaining a set of
weights capable of making useful predictions. This optimisation algorithm requires
a starting point in the space of possible weights values from which to begin the op-
timisation process. Weights initialization is a procedure that sets the weights of a
neural network to small random values that de�ne the starting point for optimizing
the neural network model.

� Glorot: the current standard approach for initializing the weights of neural
network layers and nodes that use the Sigmoid or TanH activation function
is called 'glorot' or 'xavier' initialization. The Glorot initialisation method is
calculated as a random number with a uniform probability distribution (U)
between − 1√

n
and 1√

n
, where n is the number of inputs to the node.

� Normalized Glorot: the normalised Xavier initialisation method is cal-
culated as a random number with a uniform probability distribution (U)

between −
√

6
n+m

and
√

6
n+m

, where n is the number of inputs to the node

(for example, the number of nodes in the previous layer) and m is the number
of outputs from the layer (for example, the number of nodes in the current
layer).

1.3 Biases initialisation

It is possible and common to initialise the biases to zero, since the asymmetry
breaking is provided by the small random numbers in the weights. For ReLu non-
linearities, it's liked by some to use a small constant value such as 0.01 for all
biases, as this ensures that all ReLu units trigger at the beginning and therefore
get and propagate a certain gradient. However, it's not clear if this provides a
consistent improvement (in fact, some results seem to indicate that performance
is worse) and it's more common to simply use a bias initialization of 0.
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1.4 Types of Neural Networks

Neural networks have revolutionized the �eld of machine learning by drawing in-
spiration from the human brain's intricate neural connections. Among the diverse
types of neural networks, three prominent architectures stand out:

� Multi-Layer Perceptron (MLP): A foundational architecture, MLP con-
sists of interconnected layers of nodes, each node applying a weighted sum
and an activation function. This type is adept at solving a wide range of
tasks, from simple regression to complex classi�cation problems.

� Recurrent Neural Network (RNN): Designed to capture sequential de-
pendencies, RNNs utilize recurrent connections that allow information to
loop back. They excel in tasks like natural language processing, time series
analysis, and speech recognition, where context and order matter.

� Convolutional Neural Network (CNN): Highly e�ective for image and
spatial data analysis, CNNs employ specialized convolutional layers to auto-
matically detect features and patterns within images. This type has signi�-
cantly advanced object recognition, image generation, and computer vision
applications.

These three types represent a fraction of the neural network landscape, each tai-
lored to speci�c data structures and problem domains. As technology evolves,
neural networks continue to drive innovations across various industries, showcas-
ing their immense potential for creating intelligent systems.

1.4.1 MLP: Multilayer Perceptron

The multilayer perceptron is a type of arti�cial neural network structured in several
dense layers. The dense layer is the basic layer for de�ning the architecture of a
neural network: its role is to apply, using an appropriate activation function, a
transformation to the input quantity, which can be a vector or a tensor. In a dense
layer, all the neurons are connected to those in the previous layer, which is why it
is also called 'Fully Connected' (FC).

Figure 1.6: MLP [13]

From a broadly general point of view, a neural network can be used in two ways:
Feedforward and Backpropagation. Feedforward in neural networks refers to
the �ow of data through the network in a single direction, from the input layer
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to the output layer. In this type of architecture, each layer's output serves as the
input to the next layer, without any loops or cycles. It's the fundamental archi-
tecture used in most neural networks, where information is processed sequentially
through layers of interconnected nodes, with each node applying a set of weights
and biases to the input it receives. This process eventually leads to the generation
of predictions or classi�cations at the output layer based on the learned patterns
in the data.

Backpropagation is a training algorithm used in neural networks to adjust the
weights and biases of the connections between nodes in order to minimize the
error between predicted and actual outputs. It involves two main phases: the
forward pass and the backward pass. During the forward pass that we already
discussed, input data is passed through the network layer by layer, producing pre-
dictions at the output layer. The error between these predictions and the actual
target values is then calculated. In the backward pass, the error is propagated
backward through the network from the output layer to the input layer. The al-
gorithm calculates how much each weight and bias contributed to the error. This
information is used to adjust the weights and biases in a way that reduces the
error in subsequent iterations. This adjustment is typically done using gradi-
ent descent, which involves �nding the direction and magnitude of the steepest
descent in the error space. Backpropagation essentially �ne-tunes the network's
parameters to improve its accuracy over time. It iteratively updates the weights
and biases based on the calculated gradients, gradually improving the network's
ability to make accurate predictions on new data.

The behaviour of a Neural Network is determined by its Hyperparameters:
these are parameters whose values control the learning process and determine
the values of the model parameters that a learning algorithm eventually learns.
Hyperparameters in a neural network can be classi�ed according to the following
criteria:

� Net structure

� Learning and Optimisation

� Regularization e�ect

12



Figure 1.7: Neural Networks Hyperparameters [14]

1.4.1.1 Hyperparameters de�ning the network structure

� Number of hidden layers
This is known as the depth of the network. The number of hidden layers
determines the learning capacity of the network: in order to learn all the
important non-linear patterns in the data, the neural network must have a
su�cient number of hidden layers. A very small number of hidden layers
generates a smaller network that may be under-suited to the training data.
This type of network does not learn the complex patterns in the training
data, nor does it perform well in predicting unknown data. Too many hid-
den layers result in a larger network that risks over�tting the training data.
This type of network attempts to store the training data instead of learning
patterns from the data. As a result, this type of network does not generalise
well to new, unpublished inputs.

Over-�tting is not as bad as under-�tting, as the former can be reduced or
eliminated using an appropriate regularisation method.

� Number of nodes (neurons/units) in each layer
This is also known as the width of the network. The number of hidden units
is another factor that a�ects the learning capacity of the network. Too many
hidden units create very large networks which can cause over�tting of the
training data and a very small number of hidden units create smaller net-
works which can cause under�tting. In most cases, the number of neurons
depends on the size of the input vector and the type of problem we want to
solve. Still on the subject of the structure of the network, while the choice of
the number of neurons and the activation function is arbitrary and depends
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on the accuracy and computation time requirements of the output solution,
the de�nition of the size of the weights and biases matrices requires particular
attention because it depends on the parameters de�ned above. Thus, if we
imagine that we are in the �rst layer of the network [1], the initialization will
be of the type : W [1] = [Ninputs, Noutputs] and B[1] = [Noutputs], where Noutputs

corresponds exactly to the number of neurons in the layer. The operation in
layer [1] will therefore be as follows:

U [1] = W [1] ·X +B[1] =
n∑
i

wixi +B[1] (1.4)

Ex: with Ninputs = 2 and 3 neurons in the layer: (3, 1)← (3, 2) · (2, 1)+(3, 1)
Once the input values have been correctly weighted using the matrices de-
�ned above, the activation function appropriately transforms the output by
normalising it and improving its spatial visualisation: H [1] = factivation(U

[1]).

� Type of activation function

To sum up:

� The number of neurons in the input layer is equal to the number of input
variables in the processed data.

� The number of neurons in the output layer is equal to the number of outputs
associated with each input.

� In arti�cial neural networks, hidden layers are required if and only if the data
must be separated non-linearly.

How many layers and neurons?

A single-layer neural network can only be used to represent linearly separable
functions. This means very simple problems where, for example, the two classes
of a classi�cation problem can be clearly separated by a line. If your problem is
relatively simple, a single-layer network may su�ce. Most of the problems we want
to solve are not linearly separable. It's easy to �nd in the literature how an MLP
is able to overcome this limitation of linearity: in fact, a multi-layer perceptron
can be used to represent convex regions. This means that, in e�ect, they can learn
to draw shapes around examples in a high-dimensional space that can separate
and classify them, overcoming the linear separability limitation. As there are no
precise rules for determining the correct number of layers or units in a network to
solve the problem posed, di�erent methods can be more or less e�ective:

� Experimentation

� Intuition

� Literature on the problem to be solved

� Having several layers is, in general, always better
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1.4.1.2 Hyperparameters de�ning training and optimisation

So far, we've described how the network works in feedforward, so we can now con-
centrate on training and after backpropagation [15] First, let's de�ne the di�erence
between sample, batch and epoch [16].

� A sample is a single line of data: it contains inputs that are fed into the
algorithm and an output that is used to compare with the prediction and
calculate an error. A training dataset is made up of several lines of data, i.e.
several 'samples'.

� The size of the batch is a hyperparameter that de�nes the number of sam-
ples to be processed before updating the parameters of the internal model.
A training dataset can be divided into one or more batches, made up of dif-
ferent samples. When all the training samples are used to create a batch, the
learning algorithm is called batch gradient descent. When the batch is the
size of a sample, the learning algorithm is called stochastic gradient descent.
When the size of the batch is larger than a sample and smaller than the size
of the training dataset, the learning algorithm is called mini-batch gradient
descent.
Batch size is another important hyperparameter: a larger size generally re-
quires a lot of computing resources per epoch, but fewer epochs to converge.
A smaller size does not require many computation resources per epoch, but
does require many epochs to converge.

� The number of epochs is a hyperparameter that de�nes the number of times
the learning algorithm runs through the training data set. An epoch means
that each sample in the training data set has had the opportunity to update
the internal parameters of the model. An epoch is made up of one or more
batches. The number of epochs is traditionally high, often in the hundreds
or thousands, allowing the learning algorithm to run until the model error
has been su�ciently minimised.

For example, if we have 2000 examples of training data and the batch size is
set at 20, it takes 100 iterations to complete 1 epoch.

� Type of optimiser
The optimiser is also known as an optimisation algorithm. The task of the
optimiser is to minimise the loss function by updating the network param-
eters. Gradient descent is one of the most popular optimisation algorithms
and has three variants:batch gradient descent, stochastic gradient descent
and mini-batch gradient descent. All these variants di�er in the size of the
batch we use to calculate the gradient of the loss function. Others are for
example: gradient descent by momentum, Adam etc.

� Learning rate α
This hyperparameter can be found in any optimisation algorithm. During
optimisation, the optimiser takes small steps to move down the error curve.
The learning rate refers to the size of the step. It determines the speed at
which the optimiser moves down the error curve. The direction of the step is
determined by the gradient (derivative). This is one of the most important
hyperparameters in neural network training.
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� Type of loss function
The loss function is used to calculate the loss score (error) between pre-
dicted and actual values. Our aim is to minimise the loss function using
an optimiser. This is what we do during the training course. The type of
loss function to be used during training depends on the type of problem
we have: MSE, MAE, MAPE and Huber Loss are used more for regression
problems, while Log Loss, Categorical Cross-entropy and Sparse Categori-
cal Cross-entropy are useful for binary classi�cation and multi-classi�cation
problems.

1.4.1.3 Hyperparameters de�ning regularization e�ects

� Regularization e�ect
Regularisation techniques reduce the risk of over�tting a neural network by
limiting the range of values that the weights within the network can hold:
more precisely, it modi�es the loss function of the result, which in turn mod-
i�es the weight values produced.
L1 regularization: the e�ect of L1 regularisation on the weight values of
the neural network is that it penalises weight values close to 0 by making
them equal to 0. Negative weight values are also set to 0. Thus, if a weight
value is -2, under the e�ect of L1 regularisation, it becomes 0. The general
intuition of L1 regularisation is that, if a weight value is close to 0 or very
small, it is negligible in terms of the overall performance of the model, so
making it equal to 0 does not a�ect the performance of the model and may
reduce the memory capacity of the model. L1 penalises the sum of the ab-
solute values of the weights: MSE + λ

∑n
j=1 |wi|.

L2 regularization: L2 regularisation also penalises weight values. For small
values of the weights as well as for relatively large values, the L2 regular-
ization transforms the values into a number close to 0, but not quite 0. L2
penalizes the sum of the square of the weights: MSE + λ

∑n
j=1 |w2

i |.

� Dropout
Dropout is a technique that involves ignoring randomly selected neurons
during training. They are randomly 'dropped'. This means that their con-
tribution to the activation of downstream neurons is temporally suppressed
during the forward pass and weight updates are not applied to the neuron
during the reverse pass. As a neural network learns, the weights of the neu-
rons adapt to their context within the network. The weights of neurons are
adapted to speci�c characteristics, giving them a degree of specialisation.
Neighbouring neurons come to rely on this specialisation which, if taken too
far, can result in a fragile model that is too specialised for the training data it
was trained on. This dependence of a neuron on the context during training
is called complex coadaptation. We can imagine that if neurons are randomly
eliminated from the network during training, other neurons will have to step
in and manage the representation needed to make predictions for the missing
neurons. This is thought to result in the network learning multiple indepen-
dent internal representations.The network thus becomes less sensitive to the
speci�c weights of the neurons. The result is a network capable of better
generalisation and less likely to over�t the training data.
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Backpropagation: the backpropagation is a supervised learning method used
by neural networks to update the parameters in order to make the network's
predictions more correct. The parameters optimisation process is carried out using
the gradient descent algorithm. The objective is to minimise the error:

E(θ) =
1

m

m∑
i=1

L(y, ŷ) (1.5)

where m is the number of training examples (samples) and L is the error/loss
incurred when the model predicts ŷ instead of the actual value y. A loss function
must have two characteristics: it must be continuous and di�erentiable at each
point. This is achieved by drifting E with respect to the parameters and adjusting
weights and biases in the opposite direction of the gradient (this is why the op-
timisation algorithm is called 'gradient descent'). The loss function, L, is de�ned
according to the task to be performed. In supervised learning, there are two main
types of loss functions � these correlate to the 2 major types of neural networks:
regression and classi�cation loss functions [17].

� For classi�cation problems, Cross-Entropy (also known as Log Loss) and
Hinge Loss are appropriate loss functions. Speci�cally, in Binary Clas-
si�cation models, where the model takes in an input and has to classify it
into one of two pre-set categories, the Cross-Entropy is used:

CELoss =
1

n

n∑
i=1

−(yi · log(pi)) + (1− yi) · log(1− pi) (1.6)

In binary classi�cation, there are only two possible actual values of y, 0 or 1.
Thus, to accurately determine loss between the actual and predicted values,
it needs to compare the actual value (0 or 1) with the probability that the
input aligns with that category (pi = probability that the category is 1; 1
� pi = probability that the category is 0). In cases where the number of
classes is greater than two, we utilize Categorical Cross-Entropy which this
follows a very similar process to binary cross-entropy.

Categorical CELoss = − 1

n

N∑
i=1

M∑
j=1

yij · log(pij) (1.7)

Hinge Loss, instead, is a commonly used loss function for training in bi-
nary classi�cation tasks. The hinge loss function encourages to maximize
the margin between the decision boundary and the closest data points, while
penalizing points that are misclassi�ed or lie within the margin. The advan-
tages include margin maximization, robustness to outliers, and sparsity of the
resulting model. However, hinge loss is non-smooth and non-di�erentiable,
which can make it di�cult to optimize using some numerical optimization
methods, and the choice of regularization parameter can have a signi�cant
impact on the performance of the model. For an intended output of t = ±1
and a classi�er score y, the hinge loss of the prediction y is de�ned as

L(y) = max(0.1− t · y) (1.8)
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� Regarding regression problems Mean Square Error (MSE) and Mean Abso-
lute Error (MAE) are appropriate loss functions for these tasks. MSE �nds
the average of the squared di�erences between the target and the predicted
outputs:

MSE =
1

n

N∑
i=1

(yi − ŷi)2 (1.9)

This function has numerous properties that make it especially suited for cal-
culating loss. The di�erence is squared, which means it does not matter
whether the predicted value is above or below the target value; however,
values with a large error are penalized. MSE is also a convex function with a
clearly de�ned global minimum � this allows us to more easily utilize gradi-
ent descent optimization to set the weight values. However, one disadvantage
of this loss function is that it is very sensitive to outliers; if a predicted value
is signi�cantly greater than or less than its target value, this will signi�cantly
increase the loss.

MAE �nds the average of the absolute di�erences between the target and
the predicted outputs.

MAE =
1

n

N∑
i=1

|yi − ŷi| (1.10)

This loss function is used as an alternative to MSE in some cases. As men-
tioned previously, MSE is highly sensitive to outliers, which can dramatically
a�ect the loss because the distance is squared. MAE is used in cases when
the training data has a large number of outliers to mitigate this.
To gather the advantages of both MAE and MSE another loss function has
been created: the Huber Loss function

Lδ =

{
1
2
(y − ŷ)2 if |(y − ŷ)| < δ

δ((y − ŷ)− 1
2
δ) otherwise

(1.11)

If the absolute di�erence between the actual and predicted value is less than
or equal to a threshold value, δ, then MSE is applied. Otherwise � if the
error is su�ciently large � MAE is applied.

Moreover, during the backpropagation process the learning rate α is the hyper-
parameter that controls how much the model changes in response to the estimated
error each time the model weights are updated. Choosing the learning rate is
di�cult, as too low a value may result in a long learning process that is likely to
stall, while too high a value may result in learning a sub-optimal set of weights
too quickly or in an unstable learning process.

Having de�ned the learning rate and the loss function, we can see how the param-
eters are updated in the network architecture:

wt+1 = wt − α
∂E(w)

∂w
= wt − α

∂L(w)

∂w
→ ∆wt+1,t = −α

∂E(w)

∂w
(1.12)

bt+1 = bt − α
∂E(b)

∂b
= bt − α

∂L(b)

∂b
→ ∆bt+1,t = −α

∂E(b)

∂b
(1.13)
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where t is the learning step and α is the learning rate. The chain rule is then
applied to calculate the derivative of the loss function with respect to the weights
of the layer whose parameters are to be updated:

∂L(w)

∂w
=

∂L(w)

∂H
∗ ∂H(w)

∂U
∗ ∂U(w)

∂w
(1.14)

Let's better de�ne this last step with a simple exemple. We need to �gure out
a way to change the weights so that the cost function improves. Any given path
from an input neuron to an output neuron is essentially just a composition of
functions; as such, we can use partial derivatives and the chain rule to de�ne the
relationship between any given weight and the cost function. We can use this
knowledge to then leverage gradient descent in updating each of the weights. Let's
de�ne our cost function to simply be the squared error. In order to minimize the
di�erence between our neural network's output and the target output, we need
to know how the model performance changes with respect to each parameter in
our model. In other words, we need to de�ne the relationship (partial derivative)
between our cost function and each weight:

∂J(θ)

∂θ1
− ∂J(θ)

∂θ2
(1.15)

Figure 1.8: Parameters of the network to be updated

By easily applying the chain rule we can trace all intermediate partial derivatives
by reconstructing the learning process from the input:

∂J(θ)

∂θ1
=

∂J(θ)

∂a(3)
∂a(3)

∂z(3)
∂z(3)

∂a(2)
∂a(2)

∂z(2)
∂z(2)

∂θ1
(1.16)

∂J(θ)

∂θ2
=

∂J(θ)

∂a(3)
∂a(3)

∂z

∂z

θ2
(1.17)
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1.4.2 CNN: Convolutional Neural Network

A Convolutional Neural Network (ConvNet/CNN) is a deep learning algorithm
capable of taking an image as input, assigning importance (weights and biases that
can be learned) to various aspects/objects in the image, and di�erentiating between
them. CNNs are based on the fact that the input data consists of images. One
of the main di�erences is that the CNN layers are made up of neurons organised
in three dimensions, the spatial dimension of the input (height and width) and
the depth (channels). Colour images have several channels, generally one for each
colour channel, such as red, green and blue. From a data point of view, this means
that a single image provided as input to the model is actually made up of three
images: if we wanted to use a classic neural network we would have to put all
the pixels that make up each plane into a vector, but the images can even reach
dimensions of 7680x4320. The advantage of convolution networks is that
they reduce images to a form that is easier to process, without losing
the features that are essential for good prediction.

Figure 1.9: RGB image [18]

In their concrete applications Convolutional Neural Networks (CNNs) are widely
used in various practical environments due to their ability to process and analyze
visual data e�ectively. Some practical cases, other than image classi�cation, where
CNNs are commonly used include:

� Object Detection: CNNs can detect and locate multiple objects within an
image, making them valuable in applications like self-driving cars, surveil-
lance, and robotics.

� Facial Recognition: CNNs are employed in facial recognition systems for
tasks like identifying individuals in photos or videos.

� Medical Imaging: CNNs aid in analyzing medical images like X-rays, MRIs,
and CT scans, assisting doctors in diagnosing diseases and detecting anoma-
lies.

� Natural Language Processing (NLP): While primarily used for computer
vision, CNNs can also be combined with recurrent neural networks for pro-
cessing text and sentiment analysis in NLP tasks.
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� Autonomous Vehicles: CNNs play a crucial role in self-driving cars by pro-
cessing visual data from cameras and sensors to understand the vehicle's
surroundings.

� Art Generation: CNNs have been used to create artworks, apply artistic
styles to photos, and generate realistic images from scratch.

� Video Analysis: CNNs are used in video analysis tasks like action recognition,
object tracking, and video summarization.

The basic functionality of this network can be divided into four main parts [19]:

� The Input layer contains the pixel values of the image. E.g. 200x200x3,
i.e. 200 pixels by 200 pixels with 3 colour channels, e.g. red, green and blue.
The Input layer of a CNN expects, thus, a tensor xl with xl ∈ RHl×W l×Dl

where l is the l − th layer. The triplet (il, jl, dl) refers to one element in xl,
which is in the dl − th channel, and at the spatial location (il, jl) (at the
il − th row, and jl − th column).

� The Convolution layer will determine the output of neurons that are con-
nected to local regions of the input by calculating the dot product between
their weights and the region connected to the input volume. The element
involved in the convolution operation in the �rst part of a convolution layer
is called the kernel/�lter, K. The kernel moves over the image each time it
performs an element multiplication operation between K and the portion of
the image over which the kernel is passing. The displacement is performed
with a Stride value that indicates how much the �lter moves over the un-
derlying image after each matrix multiplication. If we choose K as a 3x3x1
matrix equal to:

1 0 1
0 1 0
1 0 1

We'll have:

Figure 1.10: Convolution operation [20]
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Figure 1.11: Kernel stride of 1 [20]

A �lter of size F x F applied to an input containing C channels is a volume
F x F x C that convolves an input of size I x I x C and produces an output
feature map (also called an activation map) of size O x O x 1.
NB: the number of channels in the �lter must be the same as the number of
channels in the input image.

Size of convolution output: given I the length of the input volume, F the
length of the �lter, P the amount of zero padding, S the stride, the output
size O of the feature map along this dimension is given by:

O =
I − F + Pstart + Pend

S
+ 1 (1.18)

NB: in most cases Pstart = Pend = 2P , where Pstart and Pend designate the
number of zeros at the beginning and end of the rows or columns of the
matrix.

The purpose of the convolution operation is to extract high-level features,
such as edges, from the input image. CNNs do not necessarily have to be
limited to a single convolution layer. By convention, the �rst convolution
layer is responsible for capturing low-level features such as edges, colour,
gradient orientation etc. With additional layers, the architecture also adapts
to high-level features, giving us a network that has a global understanding
of the images in the dataset, just as we would. In precise mathematics, the
convolution procedure can be expressed as an equation [21]:

yil+1,jl+1,d =
H∑
i=0

W∑
j=0

Dl∑
dl=0

fi,j,dl,d × xl
il+1+i,jl+1+j,dl (1.19)

Where l is the number of the layer; H,W,Dl are respectively the row, column
and l−th channel and the operation stride is equal to 1. The equation (1.19)
is repeated for all 0 ≤ d ≤ D = Dl+1, and for any spatial location (il+1, jl+1)
satisfying 0 ≤ il+1 ≤ H l−H+1 = H l+1, 0 ≤ jl+1 ≤ W l−W +1 = W l+1. In
the equation xl

il+1+i,jl+1+j,dl
refers to the element of xl indexed by the triplet

(il+1 + i, jl+1 + j, dl). A bias term bd is usually added to yil+1,jl+1,d.

The operation generates two types of result: the dimensionality of the con-
volved feature is reduced relative to that of the input, while the dimension-
ality is increased or remains unchanged. To achieve this, a valid padding is
applied in the �rst case, or an identical padding in the second.
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Zero-padding: the process of adding zeros to each side of the input bound-
aries. Zero padding occurs when we add a border of pixels all having the
value zero around the edges of the input images. This adds a sort of band
of zeros around the outside of the image, hence the name 'zero padding'.

There are two categories of padding:
The �rst is referred to as 'valid'. This simply means that there is no �ll. If
we specify a valid �ll, this means that our convolutional layer will not �ll at
all and our input size will not be maintained.
The other type of �ll is called 'same'. This means that we want to �ll the
original input before convolving it so that the size of the output is the same
as that of the input. The formula used in this case to calculate the number of
layers of zeros to be added to the edges of the image to obtain a convolution
output of the same size as the input is as follows: P = F−1

2
where F is the

�lter size.
NB: this formula guarantees that the input and output have the same size
only if the stride value is S=1.

Figure 1.12: Padding operation

� Pooling layer: the pooling operation therefore consists of reducing the size
of the images, while preserving their important features. As with convo-
lution, a kernel of appropriately de�ned size scans the convolution output
image at a de�ned step (always the stride) and retains the maximum (Max-
Pooling) or average (AvPooling) value for each local window. If we assume
an input xl ∈ RHl×W l×Dl

to the l − th layer, which is now a pooling layer,
and also that H divides H l and W divides W l and the stride equals the
pooling spatial extent, the output of pooling will be an order 3 tensor of size
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H l+1 ×W l+1 ×Dl+1 [21], with:

H l+1 =
H l

H
, W l+1 =

W l

W
, Dl+1 = D (1.20)

A pooling layer operates upon xl channel by channel independently. Within
each channel, the matrix with H l×W l elements are divided into H l+1×W l+1

nonoverlapping subregions, each subregion being H ×W . Each subregion is
then transformed into a number. In precise mathematics,

Max : yil+1,jl+1,d = max
0≤i<H,0≤j<W

xl
il+1×H+i,jl+1+×W+j,d (1.21)

Average : yil+1,jl+1,d =
1

HW

∑
0≤i<H,0≤j<W

xl
il+1×H+i,jl+1+×W+j,d (1.22)

Figure 1.13: Max Pooling operation [22]

NB: there are other pooling methods than those mentioned above.

� The fully connected layers then perform the same tasks as standard
ANNs and attempt to produce class scores from the activations, which will be
used for classi�cation. It is also suggested that ReLu be used between these
layers to improve performance. With this simple transformation method,
CNNs are able to transform the original input layer by layer using convolution
and subsampling techniques to produce class scores for classi�cation and
regression purposes. First, we '�atten' the output of the convolution layers.
For example, if the �nal feature maps have a dimension of 4x4x512, we �atten
them to an array of 8192 elements.

To sum up:

Figure 1.14: CNN network overview [23]
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1.4.3 RNN: Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a type of arti�cial neural network that uses
sequential data or time series. These deep learning algorithms are commonly used
for ordinal or temporal problems, such as language translation, natural language
processing (NLP), speech recognition and image captioning. Like feedforward and
convolutional neural networks (CNNs), recurrent neural networks use training data
and are distinguished by their 'memory', as they use information from previous
inputs to in�uence the current input and output. Whereas traditional deep neural
networks assume that inputs and outputs are independent of each other, the out-
puts of recurrent neural networks depend on previous elements of the sequence.
Recurrent networks are also distinguished by the fact that they share parameters
between each layer of the network. Whereas feedforward networks have di�erent
weights for each node, recurrent neural networks share the same weight parameter
in each layer of the network. That said, these weights are always adjusted by
backpropagation and gradient descent processes to facilitate learning.

RNNs use the backpropagation over time (BPTT) algorithm to determine gra-
dients, which is slightly di�erent from traditional backpropagation because it is
speci�c to sequential data. The principles of BPTT are the same as those of tra-
ditional backpropagation, but it di�ers in that it adds up the errors at each time
step, whereas feedforward networks do not need to add up the errors since they
do not share the parameters across each layer.

During this process, RNNs tend to encounter two problems, known as Gradient
Explosion and Vanishing Gradient. These problems are de�ned by the size of the
gradient, which is the slope of the loss function along the error curve. When the
gradient is too small, it continues to decrease, updating the weight parameters
until they become insigni�cant, i.e. 0. When this happens, the algorithm stops
learning. Gradient explosion occurs when the gradient is too large, creating an un-
stable model. In this case, the model weights become too large and are eventually
represented by NaN.

Figure 1.15: RNN [24]
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Weights extraction for an RNN cell

Obtaining and extracting the weights for a recurrent cell as in the case of LSTMs
and GRUs was not as immediate as in the case of the dense layer of a fully con-
nected network. The python method model.get_weights(), in fact, in the case
of RNNs returns a tensor that is not easy to interpret due to the complexity of
the cell. Knowing in fact that each port behaves as a neural network in its own
right, i.e. as a dense layer, it is necessary to understand which exact values of
the weights correspond to the speci�c port in order to obtain the same prediction
result in output. By analysing the source code of TensorFlow, in particular the
Keras library in which the AI environments of neural networks are developed [25],
it was possible to study the structure of this tensor and thus be able to break down
its values in order to distribute them in the corresponding gates. As it is also men-
tioned in following Kaggle repository [26] the output tensor of the get_weights()
in python is composed by:

[[W:lstm_kernel, U:lstm_recurrent_kernel, B:biases]] (1.23)

One of the two dimensions of these tensors is therefore 4*units, where units is the
number of neurons, i.e. also the size of the cell output, and 4 is the number of
gates in the cell:

� W is calculated as 4*features*LSTMoutputDimension

� U is calculated as 4*features*LSTMoutputDimension*LSTMoutputDimension

� b is calculated as 4*features*LSTMoutputDimension

Each of three tensor contains weights for the four gates in this order:

[[i (input), f (forget), c (cell state) and o (output)]]

W = [[Wi,Wf ,Wc,Wo]]

U = [[Ui, Uf , Uc, Uo]]

B = [[Bi, Bf , Bc, Bo]]

Therefore, in order to extract each single weight the following Python code has
been used:

Figure 1.16: Python code to extract recurrent weights
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By analysing the source code of TensorFlow on GitHub [25], in particular the
Keras library in which the AI environments of neural networks are developed, it
was possible to analyse the structure of this tensor and thus be able to break down
its values in order to distribute them in the corresponding gates.

Stacked RNN cells

The Stacked LSTM is an extension of the single layer model that has multiple
hidden LSTM layers where each layer contains multiple memory cells: stacking
LSTM hidden layers makes the model deeper, more accurately earning the de-
scription as a deep learning technique. By incorporating extra hidden layers into
a Multilayer Perceptron (MLP) neural network, its depth is increased. This em-
powers the network to grasp intricate features and representations from input data
in a hierarchical manner. This progression can be likened to moving from simple
elements like lines to more intricate ones like shapes, and �nally to advanced con-
cepts such as objects. Moreover, a deeper network allows for more e�cient function
approximation compared to a shallower network with a single hidden layer. This
advantage stems from the fact that fewer neurons are required in deeper networks,
leading to quicker training and enhanced optimization of representations [27].

Figure 1.17: Stacked LSTM cells [28]

Given that LSTMs operate on sequence data, it means that the addition of layers
adds levels of abstraction of input observations over time. In e�ect, chunking
observations over time or representing the problem at di�erent time scales. In
the case of stacked cells the layer above provides a sequence output rather than
a single value output to the layer below. Speci�cally, one output per input time
step, rather than one output time step for all input time steps. For this, it is
important to specify the option 'return_sequences=True' for the above layers:
in this case the layer produces the hidden state and cell state for every timestep
in the input data, thus preserving the temporal relationships between the input
timesteps. In the case of 'return_sequences=False' the RNN layer will only
return the last hidden state output ht.
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1.4.3.1 LSTM

LSTM networks were speci�cally developed to solve the long-term dependency
problem faced by recurrent RNNs, in particular the 'vanishing gradient problem'
mentioned earlier, through the intuition of creating an extra module in a neural
network that learns when to remember and when to forget relevant information.
In other words, the network e�ectively learns what information might be needed
later in a sequence and when that information is no longer needed. [29]
Firstly, the output of an LSTM at a given time depends on three elements:

� The network's current long-term memory - known as the 'cell state'.

� The output at the previous point in time - known as the 'previous hidden
state'.

� Input data at the current time step

LSTMs use a series of 'gates' that control how information in a data sequence
enters, is stored and leaves the network. A typical LSTM has three gates: the for-
get gate, the input gate and the new memory gate, the output gate. These
gates can be considered as �lters and each constitutes its own neural network.

� Forget gate
Here, we decide which bits of the cell state (the network's long-term memory)
are useful given the previous hidden state and the new input data. To do
this, the previous hidden state and the new input data are fed into a neural
network. This network generates a vector, each element of which lies in the
interval [0,1] (guaranteed by the use of sigmoid activation). It is trained to
produce outputs close to 0 when an element of the input is deemed irrelevant
and close to 1 when it is relevant. It is useful to think of each element of this
vector as a kind of �lter or sieve that lets more information through as the
value approaches 1.

These output values are then sent upwards and element-wise multiplication
with the previous state of the cell is applied. This one-o� multiplication
means that components of the cell state that have been deemed irrelevant
by the forget gate network will be multiplied by a number close to 0 and will
therefore have less in�uence on subsequent steps. In short, the forget gate
decides which elements of long-term memory should now be forgotten (given
less weight) given the previous hidden state and the new data point in the
sequence.

Figure 1.18: Forget Gate
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� Input gate
The next step concerns the new memory array and the input gate. The
objective of this step is to determine what new information needs to be
added to the network's long-term memory (cell state), given the previous
hidden state and the new inputs. Both the new memory network and the
input gate are neural networks that use the same inputs, namely the previous
hidden state and the new input data. It should be noted that the inputs are
in fact the same as those of the forgetting gate.

The new memory network is a tanh-activated neural network that has learned
to combine the previous hidden state and the new input data to generate a
'new memory update vector'. This tanh activation function constitutes the
so-called candidate gate and the output vector essentially contains infor-
mation from the new input data, given the context of the previous hidden
state. This vector tells us how much to update each long-term memory com-
ponent (cell state) in the network based on the new data. We use a tanh
here because its values lie within [-1,1] and can therefore be negative. The
possibility of negative values is necessary if we want to reduce the impact
of a component on the cell state. However, the new memory vector doesn't
actually check whether the new input data is worth storing. This is where
the front door comes in. The input gate is a sigmoid-activated network that
acts as a �lter, identifying which components of the 'new memory vector' are
worth retaining. This network will produce a vector of values in [0,1] (due
to the sigmoid activation), allowing it to act as a point multiplication �lter.
As with the forgetting gate, an output close to zero tells us that we don't
want to update that element of the cell state.

Finally, the results of the new memory array gate and the input gate are
multiplied in a pointwise way. The resulting combined vector is then added
to the cell state, resulting in the network's long-term memory being updated.

Figure 1.19: Input Gate

� Output gate
Now that the network's long-term memory updates are complete, we can
move on to the �nal stage, the exit gate, by deciding on the new hidden
state. To do this, we'll use three elements: the recently updated cell state,
the previous hidden state and the new input data.

Although cell state captures long-term dependencies and carries information
from memory, it may not be directly suitable as an output in many tasks.
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The reason why hidden state is used as output instead of cell state lies in
the architectural design and objectives of the LSTM model.

The cell state is regulated by the input gate, the forget gate and the output
gate. The input gate determines the amount of new information to be stored
in the cell state, while the forget gate determines the amount of information
from the previous cell state to be discarded. The output gate, as mentioned
earlier, determines which parts of the cell state are to be output. The output
gate controls the �ow of information from the cell state to the hidden state.

The hidden state is a �ltered version of the cell state that is transformed using
the output gate. The output gate selectively allows certain information from
the cell state to in�uence the hidden state, making it more relevant and
appropriate to the task in hand. By using the hidden state as an output,
LSTM can focus on the most important features and remove less relevant or
noisy information, resulting in a more e�cient representation for the given
task.

Figure 1.20: Output Gate

In summary, while the cell state captures long-term dependencies and carries mem-
ory information in an LSTM cell, the hidden state is generally chosen as the output
because of its ability to �lter and summarise relevant information from the cell
state, making it more suitable for the speci�c task it is facing.
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Figure 1.21: Summary of the LSTM cell

LSTM expects the input data to be a 3D tensor such as :

[batch-size, timesteps, feature]

Figure 1.22: Input Size of Recurrent Neural Network [30]

� Batch-size: number of samples in each batch during training and testing.

� Timesteps:corresponds to the number of values present in a sequence or,
more simply, the number of lines in each batch. For example, in [4, 7, 8, 4],
there are 4 timesteps of feature = 1.

� Features:corresponds to the number of values present in a sequence or, more
simply, the number of lines in each batch. For example, in [4, 7, 8, 4], there
are 4 time steps of characteristic = 1.

When de�ning the input layer of the LSTM network, the network assumes that
we have 1 or more samples and asks us to specify the number of time steps and
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the number of features. We can do this by specifying a tuple to the 'input-shape'
argument.
For example, the model below de�nes an input layer that expects 1 or more sam-
ples, 50 time steps and 2 features:

model.add(LSTM(32,input-shape=(50,2)))

In terms of structure, there are 3 di�erent inputs for an LSTM cell:

� ht−1: is the hidden state at the previous time step.

� ct−1: is the cell state at the previous time step.

� xt: is the current input at time t and is a vector whose dimension is the
number of features speci�ed in the input vector.

Four dense layers inside the cell:

� Forget gate

� Input gates = input + candidate

� Output gate

In the case of the �gure above, it is important to note that the number of elements
in the input vector is 3, while that of the hidden state and the cell is 2, for
de�nition:

� The number of elements in the hidden state h and in the cell state c must
be the same.

� The dimensions of h and c at times t1 and t must be the same.

� Each entry in each sequence must have the same dimensions.

The outputs of the 4 di�erent doors can be de�ned as follows:

ft = σg(Wfxt + Ufht−1 + bf ) (1.24)

it = σg(Wixt + Uiht−1 + bi) (1.25)

ot = σg(Woxt + Uoht−1 + bo) (1.26)

c̃t = σh(Wcxt + Ucht−1 + bc) (1.27)

ct = ft · ct−1 + it · c̃t (1.28)

ht = ot · σh(ct) (1.29)

The following variables can be distinguished in these equations:

� xt ∈ Rd: input vector of the LSTM cell.

� ft ∈ Rh: 'forget gate' output vector.

� it ∈ Rh: 'input gate' output vector.

� ot ∈ Rh: 'input gate' output vector.
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� c̃t ∈ Rh: 'candidate gate' output vector.

� ht: 'hidden state' vector.

� ct: 'cell state' vector.

� W ∈ Rh×d, U ∈ Rh×h and b ∈ Rh: weights and biases matrices.

The upper indices d and h indicate respectively the number of input features and
units hidden in the layers. We can now calculate the number of parameters in the
cell. If we focus on the 'forget gate' in the �gure above, we can make the following
calculations:

� W = h× d

� U = h× h

� B = h

Parameters = W + U +B = (h× d) + (h× h) + h = (d+ h)× h+ h (1.30)

And since we have 4 doors de�ned in the same way, as it mentioned in the following
paper [31], we simply have :

Total number of parameters = 4× ((d+ h)× h+ h) (1.31)

1.4.3.2 GRU

GRU stands for Gated Recurrent Unit and is a simpli�ed version of the LSTM. It
has just two gates: a reset gate and an update gate. The reset gate decides how
much of the previous hidden state to keep, and the update gate decides how much
of the new input to incorporate into the hidden state. The hidden state is also the
cell state and the output, so there is no separate output gate. GRU is easier to
implement and requires fewer parameters than LSTM.

The performance of LSTMs and GRUs depends on the task, the data and the hy-
perparameters. In general, LSTM is more powerful and �exible than GRU, but it is
also more complex and subject to over�tting. GRU is faster and more e�cient than
LSTM, but it may not capture long-term dependencies as well as LSTM. Some
empirical studies have shown that LSTM and GRU perform similarly in many
natural language processing tasks, such as sentiment analysis, machine translation
and text generation. However, some tasks can bene�t from the speci�c features
of LSTM or GRU, such as image captioning, speech recognition or video analysis.
Despite their di�erences, LSTM and GRU share some common features that make
them e�ective variants of RNN. They both use gates to control the �ow of informa-
tion and avoid the problem of disappearing or exploding gradients. They can both
learn long-term dependencies and capture sequential patterns in the data. Both
can be arranged in multiple layers to increase the depth and complexity of the
network. Both can be combined with other neural network architectures, such as
convolutional neural networks (CNNs) or attention mechanisms, to improve their
performance.

The main di�erences between LSTM and GRU lie in their architectures and trade-
o�s. LSTM has more gates and more parameters than GRU, which gives it greater
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�exibility and expressiveness, but also higher computational costs and a risk of
over�tting. GRU has fewer gates and fewer parameters than LSTM, which makes
it simpler and faster, but also less powerful and less adaptable. LSTM has a
separate cell state and output, allowing it to store and output di�erent informa-
tion, whereas GRU has a single hidden state that serves both purposes, which
can limit its capacity. LSTMs and GRUs may also have di�erent sensitivities to
hyperparameters, such as learning rate, dropout rate or sequence length.

Figure 1.23: GRU structure

The equations governing the functioning of the cell are the following [32]:

zt = σ(Wzxt + Uzht−1 + bz) (1.32)

rt = σ(Wrxt + Urht−1 + br) (1.33)

h̃t = tanh(Whxt + rt ∗ Uhht−1 + bz) (1.34)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (1.35)

The following variables can be distinguished in these equations:

� xt ∈ Rd: input vector of the GRU cell.

� h̃t ∈ Rh: candidate activation vector.

� ht ∈ Rh: output vector.

� zt ∈ Rh: update gate vector.

� rt ∈ Rh: reset gate vector.

� W ∈ Rh×d, U ∈ Rh×h and b ∈ Rh: weights and biases matrices.

As we saw in the case of the LSTM cell, it is possible to calculate the total number
of parameters in the layer, knowing that in this case the number of gates is 3 [31]:

Total number of parameters = 3(n2 + nm+ 2n) (1.36)

Where n is the dimension of the hidden state and m is the dimension of the input.

34



� Update gate
When xt is inserted into the network unit, it is multiplied by its own weights
W (z). The same applies to ht−1, which contains information about the
previous t − 1 units and is multiplied by its own weights U(z). The two
results are added together and a sigmoid activation function is applied to
overwrite the result between 0 and 1. The update gate helps the model to
determine how much past information (from previous time steps) should be
passed on to the next.

Figure 1.24: Update Gate - GRU Cell

� Reset gate
Essentially, this gate is used by the model to decide how much past informa-
tion to forget.

Figure 1.25: Reset Gate - GRU Cell

� Current memory point
By calculating the product per element between rt and ht−1 we can determine
which elements to eliminate from the previous step.

Figure 1.26: Current memory point - GRU Cell
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� Final memory point
In the last step, the layer calculates the vector ht which contains the infor-
mation for the current unit thanks to the update gate.

Figure 1.27: Final memory point - GRU Cell

The most common practical applications of GRU and LSTM cells could include
the following:

Figure 1.28: Final memory point - GRU Cell

� Natural language processing Natural language processing (NLP) refers to
the AI �eld concerned with comprehending and generating human language,
encompassing both text and speech. LSTM and GRU models are frequently
employed in NLP tasks, including machine translation, text summarization,
sentiment analysis, question answering, and chatbots. These models are
adept at capturing the meaning and structure of language, accommodating
inputs and outputs of varying lengths. For instance, an LSTM or GRU model
can translate text between languages or create concise summaries of lengthy
passages. This is achieved by encoding the input sequence into a concealed
state and subsequently decoding it to produce an output sequence.

� Speech recognition Speech recognition involves the conversion of spoken
language into text, and vice versa. LSTM and GRU models are valuable
for speech recognition tasks due to their ability to understand the tempo-
ral and acoustic characteristics of speech signals, even in the presence of
noise or incomplete input. For instance, an LSTM or GRU model can dis-
cern spoken words from a user or generate speech based on text. This is
achieved through a sequence-to-sequence framework, akin to natural lan-
guage processing. Moreover, these models can be enhanced by incorporating
additional neural network components like convolutional or attention layers,
which further enhance the accuracy and e�ectiveness of speech recognition.
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� Video analysis Video analysis refers to the process of deriving insights
or data from video content, which can encompass objects, actions, events,
and emotions. LSTM and GRU models are also applicable in video analysis
tasks due to their capacity to grasp both spatial and temporal aspects of
video frames, enabling them to comprehend intricate and evolving scenes.
For instance, an LSTM or GRU model can identify activities or emotions
within a video, or produce descriptive captions or summaries by treating the
video frames as a sequential series of images. This involves encoding them
into a concealed state and subsequently decoding them into output labels or
textual content.

� Time series forecasting Time series forecasting involves predicting fu-
ture patterns or trends using previous data points from a time series, like
stock prices, weather conditions, or tra�c. LSTM and GRU models are also
adept at time series forecasting due to their ability to capture time-related
patterns and relationships within data. These models excel at handling com-
plex, non-linear, and changing data. For instance, an LSTM or GRU model
can anticipate forthcoming stock prices or weather situations by leveraging
historical data, learning from the sequential context of the time series, and
generating output values or ranges.
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Chapter 2

Working environment and tools

This small chapter is concerned with the presentation of the technical working
environment and the tools used, as well as the organisation of activities during the
months of training.

2.1 OCEANS

Time-domain simulation of spacecraft has become crucial for studying Attitude
and Orbit Control Systems (AOCS), ensuring the validation of attitude estima-
tion and control algorithms. When these simulations accurately represent attitude
and orbit dynamics, they enable the analysis, preparation, and evaluation of space
mission performance. To address this requirement, the CNES AOCS Architec-
ture department has created and consistently updates the OCEANS tool (known
as "Outil de Création, d'Etude et d'ANalyse SCAO" in French), an environment
within Matlab/Simulink for AOCS de�nition, study, and analysis.
An exportable variant, named LOCEANS (Light OCEANS), has been developed
to allow industry and academic collaborators to leverage its capabilities. The
OCEANS workbench encompasses all essential models to construct a mission sce-
nario for time simulation, encompassing dynamics models, orbit propagators, en-
vironmental models, on-board and ground functions, and more.

This tool o�ers the following functionalities:

� Aiding in the creation of basic models.

� Building and modifying simulators.

� Generating and testing scenarios.

� Analyzing test outcomes.

� Managing technical assets.

The syntax and coding rules of the OCEANS environment were therefore taken
into account in the de�nition of the di�erent network models, particularly with
regard to con�guration �les and their parameterization. In fact, when there are
several parameters within a Simulink model that are subject to change, it is decided
to opt for con�gurable models that make it possible to initialise all the constants
in use in the model at �rst, and then, at a second stage, to obtain the rest of the
variables dependent on these constants. This procedure thus makes it possible to
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distinguish between independent and dependent variables in a simulation and to
ensure time optimisation. Non-con�gurable models, on the other hand, are models
whose parameters are not subject to change (e.g. elementary models of activation
functions), so that no con�guration �le is needed. In both cases, Simulink models,
once created, take the form of 'masked' models so that they cannot be modi�ed,
except with the administrator's consent: this is very useful to avoid accidental
errors in modifying such elements that may prevent simulations from running
correctly. In fact, once a Simulink block has been validated, it is not necessary to
make any changes to it.

2.2 Utilities functions

Utilities functions are scripts created to facilitate the interface between Python and
Matlab, especially with regard to the management of �les in which network models
already validated in Python are saved. In fact, such �les, typically '.json' and '.h5'
are often not easy to access as they necessarily require a Python interface, and
therefore Matlab may be inappropriate for obtaining all the details relating to the
network, such as the size of the weights, the number of units, any initialisations
performed and the number of layers. A .json �le and a .h5 �le serve di�erent
purposes in the context of Keras or deep learning:

� .json �le (JSON format): in Keras, a .json �le is typically used to store
the architecture or con�guration of a neural network model. It contains
information about the layers, their types, parameters, and the model's overall
structure. However, it does not store the trained weights or model training
history.

� .h5 �le (HDF5 format): an .h5 �le, on the other hand, is used to store the
trained weights and biases of a Keras model. It saves the learned param-
eters from the training process, allowing you to load a pre-trained model's
weights and use it for predictions or �ne-tuning. It does not store the model's
architecture.

Typically, when working with Keras, it's common to save and load models in two
parts: the model architecture (as .json or .yaml) and the model weights (as .h5).
This separation allows to reuse or transfer models more �exibly. Importing the
weights, moreover, was certainly one of the biggest challenges of this work as their
storage by Python is never unique and their formats change according to each type
of layer and network. At �rst, i.e. the �rst validation phase, they were obtained
by direct saving as '.txt' from the Keras code of the network model. However, for
more e�cient use of the developed architecture, it was later necessary to develop
a function that could analyse each layer of the network and output the weights for
each layer in a Matlab-accessible format.

� h5tojson.m : this function is responsible for obtaining the structure of the
network in .json format, knowing that the latter is easily retrievable from
the attributes of the .h5 �le.
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Figure 2.1: Saving and Loading of Keras Sequential and Functional Models [33]

� read_struct.m : is able to read the .json �le and create a similar struc-
ture in matlab corresponding to the network. This structure in Matlab will
therefore have several �elds to which all the layers and their dimensions, the
dimensions of the inputs and outputs, and all the other main characteristics
will correspond in order to have an accurate description of the model from
Python.

� extractH5_weights.m : the purpose of this function is instead that of cre-
ating a structure that could contain as many �elds as there are layers in the
network and in each of these have the di�erent weight matrices correspond-
ing to each layer with the correct dimensions. In this way all the weights
corresponding to each layer are separately saved as Matlab variables and
then easily loaded into the Simulink environment through the appropriate
con�guration �les.

2.3 Internship Roadmap

In the second part, all models that were the subject of initial research were repro-
duced in Simulink with particular attention to the OCEANS simulation environ-
ment. The AI library was thus created with strong reference to the Python codes
of the Keras library in which all the structures of the networks necessary for the
implementations of this work are well documented.
The last period has been focused on the analysis for the validation of these mod-
eling schemes and comparing the results with Python, checking for equivalence
and thus applicability. Small concrete application cases were then studied, and at-
tempts were made to interface the networks with in-service simulators for AOCS
applications.
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Figure 2.2: Internship Roadmap
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Chapter 3

Matlab|Simulink implementation

This section is dedicated to the description of the Matlab/Simulink models of
the implemented networks. It is important to note that these implementations
were conceived for a feedforward use of the networks, starting from the principle
of having already optimised weights obtainable from .h5 �les from Python. The
reasons for this choice lie in the fact that most of the industry and academia
develops its AI tools in Phyton, and it is therefore not readily possible to interface
the latter with the AOCS simulation environments which are fully developed in
Matlab/Simulink. The aim was thus to create an AI environment that could be
directly used to make predictions without proceeding through the training phase,
having the weights of the optimised network already available and making the
collaboration with industry and academy easier and more productive.

3.1 AI Folder

In the library, we can �nd all the Simulink models and associated con�guration �les
for generating the architecture of the network. We then distinguish between the
activation functions, initialising them as non-con�gurable models, and the various
elementary layers that make up the neural network to be created. Each layer, on
the other hand, is initialised as a con�gurable model in which the con�guration
�le is used to initialise its parameters for simulation purposes.

Figure 3.1: Library architecture

The goal of creating versatile, elementary, interchangeable Simulink models lies
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in the ability to create, following individual validations, any network models by
simply moving elementary blocks from the library to the Simulink of the network.
Thus, this allows for a strong ability to create custom models that can satisfy all
kinds of needs by taking advantage, above all, of Simulink's graphical interface
that allows, compared to Python, a better overall understanding of the network
structure.

3.1.1 Activation functions

In the following are the simple Simulink models of the main activation functions
used. The models concerning the activation functions have been chosen as non-
con�gurable as the parameters that compose them are mostly simple constants
involved in as many simple operations.

� ELU

Figure 3.2: ELU activation function

� Exponential

Figure 3.3: Exponential activation function

� PReLu

Figure 3.4: PReLu activation function

� ReLu
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Figure 3.5: ReLu activation function

� Sigmoid

Figure 3.6: Sigmoid activation function

� Softmax

Figure 3.7: Softmax activation function

� Softplus

Figure 3.8: Softplus activation function

� Tanh

Figure 3.9: Tanh activation function
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3.1.2 Layers

The Layers folder contains thus all the network models implemented according
to the OCEANS language. Each of these will therefore contain a con�gurable
Simulink model corresponding to the architecture of the layer and a con�guration
�le in which the two phases of model calibration will be clearly distinguished:
�rst the independent parameters are de�ned, then the dependent parameters are
computed from them.

3.1.2.1 Dense

The library's 'Dense' folder contains the masked Simulink model representing the
layer and the associated con�guration �le in OCEANS format. The model performs
the simple operation of matrix multiplication and adding the bias to the input
vector X:

U [1] = W [1] ·X +B[1] =
n∑
i

wixi +B[1]

In the �rst step of the con�guration the main parameters independent of the
layer are initialized:

� Number of layer inputs

� Number of neurons

� The value 1 or 0 indicating whether or not to use the biases

� The names of the layer, the activation function and the weights and biases
�les

Then, step two of the con�g �le allows us to retrieve the weights and biases of
a network already trained in Matlab format and which can be loaded into the
Simulink model.

Figure 3.10: Simulink model of the dense layer
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Figure 3.11: Output of the con�guration �le cDense.m

3.1.2.2 LSTM

Regarding the LSTM layer, we tried to reproduce its structure in Simulink by
having all the weights of the di�erent gates obtained previously in the python
network. Since the structure of an LSTM consists of a single cell that repeats a
number of times equal to the time steps speci�ed in the input, only this cell has
been modeled, which will then be repeated according to the data speci�cation of
entry.

Figure 3.12: Simulink model of the LSTM layer

Entering each of the subsystems that make up each gate, the following structures
can be observed:
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Figure 3.13: Forget gate of the LSTM layer

ft = σg(Wfxt + Ufht−1 + bf )

Figure 3.14: Input gate of the LSTM layer

it = σg(Wixt + Uiht−1 + bi)

c̃t = σh(Wcxt + Ucht−1 + bc)

ct = ft · ct−1 + it · c̃t
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Figure 3.15: Output gate of the LSTM layer

ot = σg(Woxt + Uoht−1 + bo)

ht = ot · σh(ct)

As far as the network entry is concerned, in the �rst part of the con�guration �le
it is possible to specify the number of units, the time steps and the number of
batches available. If we imagine each batch as a matrix of dimensions time step x
characteristics our input can be represented as a 3D vector. The elementary cell
will be repeated a number of times equal to the time step de�ned in the inputs and
each cell will have as input a batch line with the speci�ed number of characteristics.

Figure 3.16: Output of cLSTM.m �le
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3.1.2.3 GRU

Similar to the LSTM scheme, an attempt was made to reproduce the well-described
state-of-the-art architecture in the case of the GRU by considering it possible to
load weights via the con�guration �le. As in the previous cases, the �rst step in the
con�guration is therefore to de�ne the general characteristics of the cell in terms
of units, activation functions, and input dimensions. In the second part, however,
the actual weights are loaded into the model.

Figure 3.17: Simulink model of the GRU layer

Figure 3.18: Update gate of the GRU layer

zt = σ(Wzxt + Uzht−1 + bz)
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Figure 3.19: Reset gate of the GRU layer

rt = σ(Wrxt + Urht−1 + br)

Figure 3.20: Final memory at time T

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

Figure 3.21: Current memory content

h̃t = tanh(Whxt + rt ∗ Uhht−1 + bz)
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Figure 3.22: Output of cGRU.m �le

3.1.2.4 Convolution 2D

The library's Convolution folder contains the masked Simulink model represent-
ing the layer and the associated con�guration �le in OCEANS format. The model
performs the two-dimensional convolution operation through a Matlab Function
which calculates the result from the input matrix and the parameters speci�ed in
the con�guration �le. It is good to point out that there are also other types of
convolution, one-dimensional and three-dimensional, which are not addressed in
this work.

Figure 3.23: Simulink model of the Convolution 2D layer

The operation

yil+1,jl+1,d =
H∑
i=0

W∑
j=0

Dl∑
dl=0

fi,j,dl,d × xl
il+1+i,jl+1+j,dl

is realised in Matlab through the following algorithm:
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Figure 3.24: Convolution 2D operation in Matlab

The con�guration �le in the �rst step allows us to initialize all the parameters
necessary to perform the convolution operation:

� The dimensions of the kernel that is applied to the input matrix in terms of
number of rows, columns, channels.

� The step of movement of the same window during the operation (the 'stride')
that in this case has two dimensions: the vertical one and horizontal one.

� The padding option

In the second step of the con�guration �le, all dependent parameters entering the
Simulink model are calculated:

� The dimensions of the pooling output matrix are then calculated according
to the following formula that we have already seen in the state of the art:
O = I−F+Pstart+Pend

S
+ 1

� We initialize the entry conf.poolSize which contains the dimensions of the
pooling window.

� We initialize the entry conf.�lters and conf.dimFilters which contains the
dimensions of the �lters.

� The �nal values of the displacement step conf.Stride in the vertical and
horizontal direction.
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3.1.2.5 Pooling

The library's Pooling folder contains the hidden Simulink model representing
the layer and the associated con�guration �le in OCEANS format. The model
performs theMax or Average pooling operation on the outgoing element of the
convolution layer: this operation is performed in Simulink using a Matlab Function
which calculates the result of the pooling operation at from the input matrix and
the parameters speci�ed in the con�guration �le.

Figure 3.25: Simulink model of the Pooling layer

The operations

Max : yil+1,jl+1,d = max
0≤i<H,0≤j<W

xl
il+1×H+i,jl+1+×W+j,d

Average : yil+1,jl+1,d =
1

HW

∑
0≤i<H,0≤j<W

xl
il+1×H+i,jl+1+×W+j,d

are realised in Matlab through the following algorithm:

Figure 3.26: Pooling operation in Matlab

The con�guration �le in the �rst step allows us to initialize all the parameters
necessary to perform the pooling operation on the convolution output matrix:

� The dimensions of the pooling window that will be applied to the input
matrix

� The step of movement of the same window during the operation (the 'stride')

� The padding option
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� The choice of the type of pooling (Max or Average)

In the second step of the con�guration �le, all dependent parameters entering the
Simulink model are calculated:

� The dimensions of the pooling output matrix are then calculated according
to the following formula that we have already seen in the state of the art:
O = I−F+Pstart+Pend

S
+ 1

� We initialize the entry conf.poolSize which contains the dimensions of the
pooling window.

� The �nal values of the displacement step conf.Stride

54



Chapter 4

AI models validation

The validation of the models has been done individually on each layer created,
comparing Python and Simulink results each time. For each of the con�gurable
models created in the AI folder, then, a network was created in Python from
which all the weights were appropriately extracted separately, at �rst saved as a
.txt �le and then loaded into Matlab via the load function, later extracted from
the network h5 models via the extractH5_weights function in the Utilities
folder. Moreover, to make this process o�cially acceptable within the CNES AOCS
service, we used neural networks previously created within the department in which
all the layers we individually de�ned would appear. These models were loaded
into Python through their .h5 �les by then extracting their weights, verifying that
Simulink would give the same results.
Regarding the convolution layers, these were validated individually 'by hand' as
we had no previous models to implement and verify the equality of the results.

4.1 Single layers validation

This section is dedicated to the validation of the individual network layers imple-
mented in Simulink: in a very basic way, we will check that Python and Simulink
predictions match against the same input. The network will therefore consist of
the individual layer/cell that we wish to validate.

4.1.1 Dense layer validation

Once it had been veri�ed that the simple dense layer worked in the same way as
on Python, the �rst elementary network models were implemented relating to two
basic problems of Machine Learning, namely binary classi�cation and multiclassi-
�cation. Binary Classi�cation is where each data sample is assigned one and only
one label from two mutually exclusive classes. Multiclass Classi�cation is where
each data sample is assigned one and only one label from more than two classes.
As is well known, depending on the problem to be solved, the structure of the
network must be designed and adapted. Consequently, for a binary classi�cation
problem, it is necessary to have a network with a dense layer composed of only
one neuron at the end, as the prediction is made on only one value, to which the
Sigmoid activation function must be applied in order to extract a probability. On
the other hand, if there are more classes to which the input data can be traced
back, it is necessary to have in the last layer of the network a number of neurons
equal to that of the classes in total, this because it is necessary to be able to ex-
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tract from each output a probability via the Softmax function and then assign the
highest probability output to the corresponding class.

Binary classi�cation

The objective of the classi�cation in this case is to predict whether the patient,
based on the speci�cations in the database, is more likely to have diabetes or
not. Each row of the database represents a patient with his speci�cations and
the classi�cation, thus, takes place between two distinct elements to which we
associate two di�erent probabilities, 0 in the case of no problem and 1 in the case
of a positive one. Therefore, a simple Python model was �rst constructed and the
accuracy of the prediction checked, after which the weights were extracted and the
structure reproduced in Simulink, verifying that the same confusion matrix was
obtained.

Figure 4.1: Simple binary classi�cation in Python

Figure 4.2: Binary classi�caion

The Python model and Simulink have the same level of accuracy and therefore the
same confusion matrix. We can actually see that the model is not very accurate
as it is very basic but can easily be improved by increasing the training time or
the size of the network.
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Predicted

Positive Negative

Positive 9 13
Expected

Negative 2 16

Table 4.1: Confusion matrix for binary classi�cation

Multiclassi�cation

In the case of multiclassi�cation, we followed the same procedure as in the previous
case by making minor changes to the Python code and using a di�erent database
that had 3 di�erent classes to distinguish, speci�cally three species of �owers,
indicated in the following confusion matrix as 0, 1 and 2. As also mentioned
earlier, it is necessary in this case to adapt the �nal activation function, as the
probability for each output element must be calculated.

Figure 4.3: Multiclassi�cation net

4.1.2 LSTM layer validation

The procedure for LSTM layer validation involves several steps: �rst, single cell
validation, then a single layer with multiple time steps, and �nally a double layer
of LSTM cells with multiple time steps. Complementing this process is the valida-
tion of the CNES internal network, found in the 'Validation' �le under the name
'lstm_model.h5', used for a previous case study through the models created in
the library.

Figure 4.4: Single LSTM cell validation
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Feature Python output Simulink output Abs error (e-07) Rel error (e-06)
1 -0.01554293 -0.01554293 0.07075011 -0.45519162
2 -0.01791598 -0.017915980 0.0018479 -0.01031436
3 -0.53773195 -0.53773195 0.0935482 -0.01739680
4 0.34675896 0.346758960 0.3203675 0.09238910
5 -0.11371579 -0.113715790 0.0368490 -0.03240448

Table 4.2: Single LSTM cell accuracy

By evaluating the cell over several time steps, it is necessary to replicate its struc-
ture, which will therefore have the same weights, by a number equal to that of
the steps, and to transmit the calculated hidden state and the cell state between
one cell and the next. The hidden state in fact represents the speci�c output to
be obtained, while the cell state corresponds to a long-term memory in which the
main information to be �ltered is stored.

Figure 4.5: LSTM cell validation with 3 timesteps

Feature Python output Simulink output Abs error (e-07) Rel error (e-06)
1 -8.60686228e-02 -0.086068642 0.197504548 -0.229473345
2 1.18189655e-05 0.00001181 0.00005581 0.47224728
3 1.27405690e-06 0.00000127 0.000000998 0.078347898
4 -8.78330842e-02 -0.087833120 0.36717212 -0.418033962
5 8.22952688e-02 0.082295281 0.130186392 0.158194261

Table 4.3: LSTM cell with 3 timesteps accuracy

58



4.1.3 GRU layer validation

The validation of the GRU layer also took place in this case in two phases. We
�rst veri�ed that the single cell respected the Python output and then we applied
other time steps to ensure that it works on di�erent inputs.

Figure 4.6: Simple Python code for GRU cell implementation

Figure 4.7: GRU single cell validation

Feature Python output Simulink output Abs error (e-07) Rel error (e-06)
1 -0.118742082 -0.11874209 0.07775790 -0.0654847
2 0.59500497 0.595005 0.25177177 0.042314227
3 -0.0338271 -0.03382717 0.05651234 -0.16706200
4 0.24623746 0.24623741 0.51057482 0.20735063
5 -0.14533847 -0.14533848 0.040251415 -0.027694947

Table 4.4: Single GRU cell accuracy

In the case of multiple time steps, the previous hidden state of a cell corresponds
to the output of the previous cell. In contrast to the LSTM, in this case there is
no cell state to be propagated to all cells for all time steps.
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Figure 4.8: GRU cell validation with 3 timesteps

Feature Python output Simulink output Abs error (e-03) Rel error (e-04)
1 0.9954368 0.99543320 0.00359261 0.03609079
2 -0.01692256 -0.01692256 0.00000525 -0.00310337
3 0.40168986 0.40168984 0.00001166 0.00029045
4 0.12935196 0.12955516 0.20320233 15.70925825
5 0.3348373 0.33483716 0.00013194 0.00394070

Table 4.5: GRU network accuracy (last timestep)

Inevitably, as time steps increase, we see error propagation between Simulink and
Python output as the initial error is not very small. In fact, the iteration of the
calculations will certainly amplify the distance between the outputs of the two
predictions.

4.1.4 Convolution & Pooling validation

The convolution and pooling operations were both validated 'by hand' with a
matrix of input numbers, similar to an image in which each number represents a
pixel. The following simple kernel was then considered for convolution:

0 0 0
0 1 0
0 0 0

applied to the input matrix in the picture below. Regarding the pooling operation,
this was applied on the same input image while preserving a kernel of 3x3 size.
The outputs of the algorithms shown in the previous chapter are therefore depicted
below.
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Figure 4.9: Convolution operation

Figure 4.10: Result of the convolution operation in Matlab (sx); pooling
operation with a kernel of 3x3 (dx)

4.2 Nets validation

Di�erently from the previous section in this part, the aim is to use networks
that have already been trained and validated internally at CNES and verify that,
by extracting the optimised weights and using the structures in Simulink, the
predictions match. The nets were used in a previous study to predict torques
and forces acting on the satellite due to propellant sloshing in the tank following
speci�c AOCS manoeuvres. PAPIERRRR

4.2.1 Multilayer perceptron

This is a simple network called 'mlp_lag1_best.h5' consisting of two dense
layers between which there is an activating ReLu. According to its use within
the study, at the input we have the 3 velocities and angular accelerations, at the
output the forces and torques acting on the satellite. In order to test the simple
correct operation in prediction, a vector of zeros was given as input. Obviously
a non-zero output is to be attributed to the presence of the biases, clearly not
optimised to have a null input.

Figure 4.11: Python code of the the 'mlp_lag1.h5'
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Figure 4.12: Simulink net of the 'mlp_lag1.h5'

As can be easily seen from the table below, the comparison of the prediction
results in the two environments in terms of absolute and relative error gives us a
very clear picture of the actual coincidence of the two output values: the orders
of magnitude of these errors, in fact, are certainly negligible and probably due to
machine accuracies.

Feature Python output Simulink output Abs error (e-08) Rel error (e-05)
1 -8.6961e-03 -0.0086961 0.1522 -0.0175
2 5.07480e-02 0.05074805 0.0916 0.0018
3 3.11066e-01 0.31106647 0.1211 0.0004
4 7.74247e-02 0.07742473 0.0107 0.0001
5 -1.4511e-02 -0.0145117 0.0951 -0.0066
6 -1.21510e-03 -0.0012150 0.5519 -0.4542

Table 4.6: Dense network accuracy

In order to use more data to improve prediction performance, the 'mlp_lag30_best.h5'
network was also used. The di�erence lies in the size of the input batch: in fact,
in the latter case, not a single vector of 6 elements is input to the network, but
rather a 30x6 matrix; i.e. data from 30 time steps are to be used in order to make
the prediction. However, a dense layer is not able to process a matrix as input
because it only accepts one vector, so a �atten operation must be performed, i.e.
transforming the 30x6 matrix into a vector of 180 elements. Obviously, the weight
matrices of each individual layer will also have di�erent dimensions than in the
previous case. This speci�c layer whose objective is to transform a matrix into a
vector is called '�atten layer':

Figure 4.13: Flattening

This operation is already directly present in Simulink and can be done through
the speci�c block 'Reshape'. The Reshape block changes the dimensionality of
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the input signal to a dimensionality that has been speci�ed, using the Output
dimensionality parameter.

Figure 4.14: Dense network with an input batch of [30,6]

4.2.2 LSTM networks

As in previous cases, we will here validate models in which one or more layers
of LSTM appear. The two networks in question are 'lstmmodel.h5 and 'lstm-
model_2022.h5' in which respectively we see one layer and two layers of LSTM
appear, followed by a dense layer.

Figure 4.15: Python code for 'lstmmodel.h5'

Figure 4.16: Simulink model of 'lstmmodel.h5'
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Feature Python output Simulink output Abs error (e-07) Rel error (e-06)
1 -0.06646547 -0.06646548 0.169468840 -0.25497275
2 0.13060682 0.130606855 0.354301764 0.27127355
3 0.05079425 0.050794232 0.1730207428 0.340630569
4 -0.06552438 -0.065524383 0.032032161 -0.048885867
5 -0.13683178 -0.136831782 0.02108713 -0.015410992
6 0.03701548 0.037015487 0.071306080 0.19263854195

Table 4.7: LSTM network accuracy

In the case of stacked LSTM cells, it is necessary that the hidden state of the
current layer is the input of the next one and that the latter and the cell state are
correctly provided for each time step. As already pointed out, the actual prediction
output turns out to be the hidden state and not the state of the cell, the latter
being a kind of long-term memory to be �ltered for current information.

Figure 4.17: LSTM cell validation with 3 timesteps

Feature Python output Simulink output Abs error (e-07) Rel error (e-05)
1 0.11504051 0.115040518 0.0801536826 0.0069674310
2 0.04372127 0.04372127 0.018557389 0.004244476
3 0.10359959 0.10359961 0.253486206 0.024467877
4 -0.01406942 -0.01406943 0.146432380 -0.104078476

Table 4.8: LSTM cell with 3 timesteps accuracy
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Chapter 5

Models integration

This chapter aims to investigate the use of the network models created to repro-
duce the machine learning models used in the prediction of forces and torques
acting on the satellite as a result of propellant sloshing in the tank, i.e. the models
trained internally in a previous study to learn CFD and illustrated in the paper
presented by Airbus Defence and Space at the ESA GNC Conference 2023: 'Pro-
pellant sloshing e�ect modelling of spacecraft with Machine Learning'
(Oscar Ortiz Casanova et al.) [6].

The goal of the work exposed in the paper was to model the sloshing of propellant
in a tank during manoeuvres in the context of agile missions (which are the most
a�ected by this type of disturbance). During these missions, in fact, especially
when the tank �ll rate is around 50 %, propellant movement is the main cause of
instability in the pointing of speci�c tagets leading to sub-optimal image quality.
Thanks to recent major developments in the development of increasingly accurate
CFD codes [34], especially with data from experiments in microgravity (FLUIDICS
on the ISS [35]) that have enabled their correct implementation, modelling the phe-
nomenon of sloshing during manoeuvres is now relatively e�cient and quite close
to reality. However, such computational models, although e�ective in representing
the phenomenon, are still computationally too heavy and therefore their real-time
implementation is not yet possible.

Figure 5.1: Astronaut Thomas Pesquet with FLUIDICS tanks on the ISS [36]

It is therefore in this case that Machine Learning methods are likely to be more
easily applicable, capable of maintaining the same prediction accuracy with lower
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computational costs. In particular, there are three main reasons why these meth-
ods are more e�ective:

� The problem solution does not lie in an e�ective and accurate analytical
method that can reproduce reliable results in di�erent application contexts

� Presence of common features and regularities that can be easily learnt and
reproduced

� Possibility of generating training data using CFD calculation

Having accurate models of the forces and torques caused by these �uctuations of
propellant on the entire satellite is therefore crucial for creating controllers capable
of reducing relaxation times and performing e�ective closed-loop simulations. The
developed networks whose weights were extracted for the Simulink con�guration
were trained with 600 CFD simulations of which 60% were dedicated to the actual
training of the network, 30% for validation and �nally 10% for �nal performance
testing. We will therefore see that the models re�ect the same predictions given
by Python especially for the simplest network model, i.e. the MLP.

Figure 5.2: Simple MLP net in Simulink

Figure 5.3: Example of input values for angular speed and acceleration
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Taking into account the large amplitude di�erences in the force and torque pro�les
on the Y and X axes compared to the others, a normalisation of the input and
output data of the ML predictions was applied to prevent these di�erences from
generating error propagation and falsifying the results. The scaling operation was
performed by calculating the mean m and standard deviation σ on the training
data:

Znorm =
Z −m

σ
(5.1)

5.1 Open-loop predictions

The following results are obtained in open loop, i.e. considering only the predic-
tions of the simple MLP neural network model. On the bottom left we can see the
comparison between the Deep Learning prediction and the CFD data: although
we manage to learn the dynamics of the output system well, there are still cases
of inaccuracy due to the fact that we are not yet applying the best performing
model, i.e. the one with lag.

(a) Comparaison between CFD

prediction and MLP prediction

in Simulink

(b) Comparaison between ML

predictions in Python and Simulink

of the MLP model

For each simulation, the 40-second input pro�les of velocities and angular accel-
erations are then loaded from which the force and momentum pro�les acting on
the satellite can be predicted. A comparison of the open-loop prediction in the
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ML case in Pyhton and in Simulink was therefore made in order to verify that
the same output predictions were made between the two programming languages.
In the following, the model with lag = 30 is shown and also applied to open-loop
predictions. As we have seen above, the simple MLP model fails to reproduce
certain phenomena that are instead well represented in the graphs below by the
model with lag. The dynamics between the two cases are therefore very similar, in
some areas of the temporal simulation completely coinciding but nevertheless quite
di�erent in the representation of the forces and torques acting on the satellite.

Figure 5.5: MLP with lag

In the following graphs the results obtained with our Simulink models are showed:

Figure 5.6: Comparison of the predictions of the simple MLP model and the
model with lag for the same manoeuvre
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5.2 Closed-loop predictions

The following closed-loop simulations were obtained through the model with lag.
The latter di�ers from the former in that it needs the previous 30 time steps
to make a prediction, instead of only the previous one. The accuracy therefore
is much better and makes it the favored model for learning CFD dynamics and
obtaining the output forces and torques, especially having in mind that it is a very
simple model to reproduce and train.

Figure 5.7: Original model accuracy in closed-loop [6]

In the following graphs the results obtained with our Simulink models are showed:

Figure 5.8: Closed-loop time simulations of Fy and Cx
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Figure 5.9: Fourier transforms of the quantities Fy and Cx

The �rst two graphs show by means of time simulations the comparison between
CFD and model predictions with lag. At �rst one can easily see the coincidence
of the Simulink models with the original ones reproduced in the article. We can
then see that although the model with lag is the most accurate, there are still
areas where this accuracy decreases. Helping to visualise the comparison between
these two predictions are the last two graphs showing the Fourier transforms of
the model dynamics, highlighting the frequency content of the two cases studied.
There is here a slight divergence between the CFD and the ML Simulink prediction,
especially at high frequencies, a symptom of a model that should still be improved.
However, it is worth reiterating that the training times of such a simple MLP
network are of the order of a minute for an accuracy that is not far removed from
sophisticated CFD models.
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Chapter 6

Perspectives

This long research work led us to discover the most important types of neural net-
works and their important applications. Each of these was then studied in depth
and analysed in the theory of the mathematics that composes them in order to
be able to reproduce them correctly in Simulink. In the second-to-last chapter,
we then realised how the predictions given by the models are almost identical,
and how it is indeed possible to reproduce Python's functioning in Simulink, while
guaranteeing a versatile structure and a graphical interface that makes it possible
to understand how all layers are connected. Equally simple is the management of
the weights and con�guration elements of the networks, which are easily handled
between the two programming languages via the con�guration �les. Certainly,
however, there are still many improvements to be made to the library in order to
ensure its simple and e�ective use while maintaining the same prediction capa-
bilities and accuracy. First of all, the convolution and pooling processes must be
made more automatic by facilitating the integration of the Simulink model with
the matrix inputs consisting of the images on which the operations are performed.
Furthermore, the operations that the shown codes are capable of performing will
certainly have to be supplemented with more advanced options that guarantee bet-
ter analysis performance. Improvements must certainly be made to the utilities
function in order to allow a more automatic interpretation of the neural networks
imported via .json and .h5 �les. In a future perspective, it would indeed be desir-
able to be able to extract from these not only the structure and main dimensions
of each layer and the weight matrices, but also all the weight values. It would
therefore be preferable to have a large and unique function in Matlab that is able
to extract from the saved �les all the elements relating to the architecture of the
network and the weight values of the matrices, storing them in a suitable struc-
ture in Matlab with di�erent �elds. Finally, the part where major improvements
should de�nitely be made is the interface with AOCS simulators. In fact, de-
spite the satisfactory results obtained in terms of prediction between Simulink and
Python, it is still very di�cult to integrate these networks into simulators due to
the di�erences in code origin. In the context of this work, the networks used in the
validation, once the Simulink models have been inserted into the simulators, are
found to retain the same qualitative trends with regard to the forces and torques
predicted. It is therefore still necessary to investigate the reasons for these dif-
ferences between the two trends and above all to think about better formatting
of the input and output data for better interpretation. The objective is therefore
to have ready and e�cient network models that can be used in prediction once
the optimised weights have been extracted. The use in this case can in fact be
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multiple: such networks can in fact constitute a controller that is able to learn the
dynamics of a system and synthesise the optimal control law or be used, as in the
case of the validated networks, instead of complex models for environments and
dynamics. It will certainly be necessary to implement and provide for a better
handling of the prediction input and output data for their e�cient utilisation and
interpretation. In fact, these data will necessarily have to be adapted to the closed
cloop AOCS simulations, and the feedforward prediction �ows will have to respect
the due sampling times and simulation frequencies.
In conclusion, it will be necessary in the future to provide better Python - Matlab
data handling and processing interfaces by improving the existing ones created
with this work in order to e�ectively implement neural network models within
simulation environments. The challenge of the study in fact lays in the extreme
di�culty in retrieving the data fundamental to the use of the networks in the
simulator and, above all, in understanding how the source code in Python was
connected to it. In this, in fact, physical/dynamic phenomena are more evident
that are not perceptible in the pure code and therefore do not make it easy to
interpret.
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Conclusions

In the global scope of this work, we have had the opportunity to understand how
much AI is impacting our society and what aerospace applications its implemen-
tation may have the most space in. The study of each type of network has allowed
us to understand the mathematics and theory behind these complex mechanisms
that appear from the outside as black boxes within which it is very complex to dis-
tinguish their elements and architecture. We have therefore had the opportunity
to see how in-depth study can lead to the correct reproduction of these complex
mathematical models even in a programming language that is not the one for which
they were conceived, namely Matlab/Simulink. The development of the models
and of the entire library, which was not without di�culty, made it possible to
develop a versatile and easy-to-use AI environment, also and above all thanks to
Simulink's clear graphical interface, which clearly allows one to see which all the
constituent elements of these models are. De�nitely helping the Matlab - Python
interface were the purposely created functions for reading the network saved �les,
which allowed a quick reading of the con�gurations to be tested as well as a simple
extraction of the corresponding weights. We have thus been able to demonstrate
how the reproduction of the networks is very e�ective in Simulink without losing
any precision compared to Python and thus guaranteeing very good feedforward
performance. It is certainly still a long way from having the same versatility and
calculation capacity as Python, but in view of exclusive use in prediction of already
optimised networks, it is certainly a very good result. One of the main di�culties
in processing this research were certainly the correct reproduction, in mathemati-
cal and architectural terms, of each network layer so that there was no di�erence
between Python and Matlab prediction. Being black boxes enough in themselves,
it was not easy to extrapolate from the source codes of the networks the fun-
damental elements for their reproduction in a programming language other than
the one for which they were conceived. Another major di�culty was in the �nal
part of this internship the integration of these models with the AOCS simulators,
which was by no means straightforward and simple and certainly requires more
attention. The points that certainly need to be worked on in the future are the
optimisation of the networks and the process of uploading weights, but above all
the interface with the AOCS simulators and their coding modes. We can therefore
say that the objective of creating an AI environment useful to the CNES AOCS
service in order to integrate its neural network models and to be able to exploit
them in feedforward by using the predictions made has been achieved: each saved
�le, as we have seen typically .json or .h5, of these networks can in fact be used
easily and from these the elements necessary for con�guring the models can then
be extracted. Uploading the weights makes it possible to have a network ready
to make the appropriate predictions, and above all, the networks can ful�l mul-
tiple functions, as the models are versatile and dependent on Python output. In
mathematical and theoretical terms, in fact, a network retains the same structure

73



whether it is the prediction of forces and torques or the parameters of a controller
after learning the dynamics of a complex system. As this structure is ready and
con�gurable via the library created for this purpose, one only needs the appropri-
ately trained network to be able to reproduce it correctly in Matlab/Simulink and
place it in the context of an AOCS simulator.

However, it is worth pointing out the profound di�culties encountered in the inte-
gration and management of data from Python. In fact, since Python is a calcula-
tion model in its purest form and cannot be physically interpreted, the extraction
of data and its use does not integrate well with Simulink, which represents an
environment in which physical quantities are of great importance, especially in a
simulation environment such as OCEANS. It is therefore important to understand
how data is structured and how often it is handled at the execution stage. This
is in fact the main reason for the di�culties that did not allow us to e�ectively
reproduce the outputs of the propellant sloshing study. Hence, it is important to
bear in mind the great di�erence between these two totally di�erent environments
in the management of data in which the frequency content of the predictions, man-
agement and utilisation of the data are also very di�erent. Despite the fact that
it was therefore not totally possible to reproduce Python predictions in functional
terms in our simulation environment, we still managed to reproduce a mature and
valid AI environment. The next steps will certainly concern better management
of the data used and a more optimal understanding of the starting Python model,
improving the interface with Simulink at the frequency and time level, and adapt-
ing the simulation environment to receive input of a format not usual to classic
AOCS simulations. This work therefore constitutes the starting point to better
investigate how neural network environments obtained with Python can be made
more physically interpretable in the Simulink environment, up to their possible
and complete integration in simulation tools. In fact, having a clear and visual
idea of the mathematics involved in such models, as Matlab/Simulink guarantees,
certainly makes it possible to open that black box that Python represents and also
to better understand how a data set is treated.
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