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Abstract

As the world strives in the pursuit of carbon neutrality, Hybrid Electric Vehicles
(HEVs) raised as one of the most promising solutions to reduce greenhouse gas
emissions. In this context, an effective and reliable Energy Management System
(EMS) becomes essential to fully exploit the hybrid potential since the presence
of two energy sources (i.e., the fuel tank and the chemical battery) introduces
an additional degree of freedom which has to be properly handled. To address
this control problem, in the wide portfolio of available techniques, Artificial
Intelligence (AI) represents nowadays the cutting-edge solution. Reinforcement
Learning (RL) seems to be one of the most promising thanks to its peculiar
structure, where an agent interacts directly with an environment, making decisions
and receiving feedback in the form of rewards. In this study, a new Soft Actor-
Critic (SAC) agent, which exploits a stochastic policy, was implemented and
trained on a digital twin of a state-of-the-art diesel Plug-in Hybrid Electric Vehicle
(PHEV) available on the European market. The training procedure was performed
over the Worldwide harmonized Light-duty vehicles Test Cycle (WLTC) in order
to consider driving conditions representative of real vehicle usage. Finally, a
sensitivity analysis was performed on different rewards by testing multiple penalty
functions aimed at enhancing the fuel economy while guaranteeing the battery
charge sustainability. The simulation platform was built in the Python environment
thanks to its flexibility and robust support for implementing and assessing the SAC
agent performance compared to the benchmark set by Dynamic Programming
(DP). The SAC was able to achieve energy consumption levels close to the DP
results, with differences lower than 10% but with the great additional benefit of
being suitable for online applications.
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Chapter 1

Introduction

In recent decades, the world has witnessed a growing awareness of the upcoming
challenges posed by climate change and the accelerating depletion of natural
resources. This heightened consciousness has been propelled by the harsh realities
of our changing environment. As a response to these challenges, there has been a
remarkable surge in public interest and concern regarding environmental issues.
Policymakers across the globe have been engaged in extensive deliberations
to establish comprehensive frameworks and international agreements aimed at
reversing the alarming trend of increasing Greenhouse Gas (GHG) emissions and
mitigating the effects of global warming.

In the European context, the European Commission (EC) has made a strong
and unwavering dedication to address these critical issues through the adoption of
the European Green Deal. This proposal seeks to maintain the European status of
a competitive economy while efficiently handling the available resources in the
pursuit of achieving zero net emissions of GHGs by the year 2050 [10]. Within
this framework, the European Commission unveiled the ’Fit for 55’ regulatory
proposals on July 14, 2021, designed to ensure an EU economy-wide reduction
of at least 55% in GHG emissions by 2030, compared to 1990 levels. Being the
transport sector accountable for a substantial 35% of worldwide energy consump-
tion [11], these proposals include significant measures about vehicle emissions.
Among them, the regulatory framework intends to lower the CO2 emission targets
for new passenger cars from -37.5% to an even more ambitious -55%, and for new
vans, from -31% to -50% by 2030, again relative to 1990 levels. Furthermore, an
exceptional and controversial goal is set for new cars and vans from 2035 onward:
a remarkable 100% reduction in CO2 emissions.



2 Introduction

Within the light-duty vehicle sector, electrified mobility solutions featuring
Lithium-ion (Li-ion) batteries have emerged as one of the most promising path-
ways for automakers to align with the evolving legislation. The synergy of an
expanding market offering, coupled with incentives and benefits for the purchase
of an Electrified Vehicle (xEV) [12], has led to an unprecedented peak in xEV
sales across the European market. Remarkably, the number of new xEV registra-
tions witnessed a gradual but steady rise from 2010 to 2020, comprising at the
end of that decade 11% of all new registrations. This momentum intensified in
2021, surging to an impressive 18% of newly registered passenger cars [13], and
the trend has persevered into 2022 [14]. Similar trends are observable in the two
other major global automotive markets, the United States and China. In these
regions, the number of new xEV registrations has more than doubled and nearly
tripled in 2021, respectively [14].

Even if, among the xEVs, a trendy wave has involved Battery Electric Vehicles
(BEVs) whose sales are always rising, there’s still plenty of room for improve-
ments in terms of reliability, performance, and cost to be fairly comparable with
conventional ICE-based vehicles. The limited range of BEVs, an issue worsened
by the long recharging times and by the poor infrastructure, currently makes
Hybrid Electric Vehicles (HEVs) and plug-in Hybrid Electric Vehicles (pHEVs)
the most suitable solution in the upcoming scenario [15]. Their greatest advantage
comes from the on-board combination of an electric and a conventional power-
train. The additional degree of freedom introduced by the presence of two energy
sources increases the complexity of energy management and makes the fuel
economy highly dependent on the cooperation between the Internal Combustion
Engine (ICE) and the Electric Machines (EMs) installed on board. Responsi-
ble for skillful control of power actuators and the optimization of their power
distribution [16], the Energy Management System (EMS) plays a pivotal role
in the exploitation of the high-efficiency potential characterizing HEVs. To this
end, simulating the powertrain’s behavior thanks to computer-assisted software
is largely embraced, and, in these terms, extensive research has been conducted
on EMS in recent decades [17]. Several approaches have been investigated, and
significant advancements have been made. However, there are still various aspect
to be improved and in particular, the current emphasis is directed toward the
development of real-time implementable and optimal strategies [8].

Amidst the so-called “Intelligence Revolution” that is reshaping our society
[18], Artificial Intelligence (AI) has been proven to be a game changer also in the
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HEV’s field [8]. The substantial growth in Central Processing Unit (CPU) process-
ing capabilities, coupled with the capacity to leverage cloud-based computing, has
fueled a growing interest in harnessing Machine Learning (ML) techniques to for-
mulate energy management strategies for HEVs. Among the main ML branches,
the one denoted as Reinforcement Learning (RL) seems to represent a promising
solution to address high-complexity tasks such as the energy management of a
HEV.

The motivation for this thesis project arises in the framework just described
to model a computationally inexpensive virtual test rig and implement a new RL
agent as the algorithm in charge of controlling the power allocation. Of particular
interest will be the assessment of the performance of the selected agent both
in terms of training and testing. The proposed methodology does not claim to
provide a ready-to-go solution for the EMS of a vehicle but rather to carry out an
analysis of the effectiveness of a new cutting-edge tool with a simple but reliable
simulation platform.

The remainder of the thesis is structured as follows:

• Chapter 2 provides a glance at the most spread HEV layouts and technolo-
gies, pointing out their main features which characterize advantages and
disadvantages;

• Chapter 3 provides a comprehensive overview of the theoretical background,
intended to clarify the main concepts of RL through equations and examples,
to gain insights about the algorithm selected as the EMS core;

• Chapter 4 introduces the role and main features of energy management in
HEVs. It formalizes the problem and presents an overview of the main
classifications and their operating principles. Finally, the current and future
trends are described;

• Chapter 5 examines the modeling techniques of a HEV in a simulation envi-
ronment and presents the case study, listing the main vehicle specifications
and the mission profiles involved in the project. Finally, two paragraphs are
devoted to the explanation of the functioning of the used simulation tool
and the validation of the virtual model;

• Chapter 6 goes through the selection, implementation, and training of the
RL agent from both the theoretical and technical points of view. Relevant
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focus is spent on the calibration of some RL features and the manual tuning
of the algorithm hyperparameters;

• Chapter 7 presents the results of the tests performed with the trained RL
agent and a performance assessment of the proposed controller against the
benchmark set by a global optimization method known in literature;

• Finally, Chapter 8 summarizes the conclusions and future work.



Chapter 2

HEVs at a glance

2.1 Introduction

With growing concerns over environmental pollution and finite fossil fuel re-
sources, several alternatives to comply with the current transportation needs have
been explored by the global automotive industry. One of the solutions that gained
more popularity thanks to their promising features aimed at improving fuel econ-
omy are Hybrid Electric Vehicles (HEVs). Combining a conventional thermal
energy source with an electrical one, they can achieve higher efficiency values
due to the increased number of degrees of freedom of operating conditions [1]
[9]. This kind of vehicle is able to exploit the high energy density of a petroleum
fuel through the well-known Internal Combustion Engine (ICE), which usually
guarantees a long-range, with the high performance of one or more electric ma-
chines relying on a battery which is meant to shift the engine operating points
toward higher efficiency regions. This goal is achieved in two different ways:
the engine working conditions can be moved by either making the electric motor
provide a motor or a brake torque or downsizing the engine, i.e. decreasing the
displacement, to make it run at higher loads covering the peak power with the
electrical motor. Furthermore, a key advantage of an HEV lies in the capability of
recovering the kinetic energy dissipated during braking simply making the electric
motor work like a generator converting the mechanical energy into electrical one
and storing it in the battery.
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2.2 HEVs architecture

A HEV can be realized through different connections between thermal and elec-
trical sources. The chosen layout defines the HEV architecture and so its peculiar
operating conditions [9].

• Series architecture:
This layout is characterized by an indirect connection between the ICE
and the wheels. It has two electric motors, one is used as a generator and
it is meant to transform the mechanical energy produced by the ICE into
electrical energy to be stored in the battery, while the second one is designed
to satisfy the peak power requested by the car and it is directly linked to the
wheels. The advantage of such a type is the complete decoupling between
the load required by the road and the one at which we make the ICE run
achieving so much higher efficiency because the engine can operate in high-
efficiency region in an almost stationary condition. Even if the propulsion
is still the product of two different energy sources, the vehicle is in fact
electrically driven, making the need for a gearbox less relevant if not even
useless.

Fig. 2.1 HEV series architecture [1].

On the contrary, this solution suffers from lower overall efficiency due
to the double energy conversion and it needs two electrical machines,
thus increasing the complexity of the powertrain. Due to these reasons,
the most common application of this configuration is in the so-called
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range extender con f iguration, which is a sort of Battery Electric Vehi-
cle (BEV) where the range guaranteed by the electrochemical battery is
extended by burning fuel and using the ICE to recharge the battery when
needed. The degree of electrification of these vehicles is defined by the
so-called hybridization ratio [1] [9] reported in the following.

Rh,series =
PEL,GEN

PEM
(2.1)

For a series architecture HEV, this ratio ranges from 0, which represents a
pure electric vehicle, to 1 which stands for the so-called electric transmis-
sion meaning that there’s no onboard energy-power source, aside from the
fuel, and so the engine directly feeds the electric motor for traction.

Fig. 2.2 Series hybridization ratio [2].

• Parallel architecture:
The main difference between this configuration and the previous one relies
on the capability of a parallel powertrain to employ both the ICE and the EM
to power the wheels simultaneously in the so-called Seamless Power Transition.
This feature usually allows the downsizing of the two propulsion systems
because they can add up their power to satisfy the peak road demand and
work individually when lower energy is required.

The poor efficiency typical of a series hybrid due to the double energy
conversion is avoided and one electric motor is enough to work both as a
motor and as a generator reducing the complexity of the architecture.
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Fig. 2.3 HEV parallel architecture [1].

Even the performance and acceleration are positively affected by this ar-
chitecture where the two power sources combine their best working condi-
tions to create a very efficient vehicle. On the other hand, a sophisticated
control system is required to enable different operating conditions. A
hybridization ratio [1] [9] can be defined also for a parallel architecture
with a slightly different meaning with respect to the one defined for a series
architecture.

Rh,parallel =
PEM

PICE +PEM
(2.2)

Fig. 2.4 Parallel hybridization ratio [2].
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For a parallel configuration, the meaning of the hybridization ratio is rather
intuitive since a 0 value represents a conventional ICE-based vehicle while
a value equal to 1 is a full electric vehicle. All the intermediate values that
the ratio can assume are related to a certain hybridization level, each of
which enables different modes and functionalities from the simplest start
and stop, to a pure electric range where the vehicle is able to cover a certain
distance relying solely on the Electric Motor and the battery.

IC
E

 S
iz

e

EM and Battery Sizes

Conventional Vehicle
(ICE only)

Micro Hybrid
(start/stop)

Mild Hybrid
(start/stop + reg. braking + torque assist)

Full Hybrid
(mild hybrid + electric-only mode)

Plug-in Hybrid
(full hybrid + electric range)

Electric Vehicle
(battery or fuel cell)

Fig. 2.5 Spectrum of vehicle electrification levels [3].

• Complex architecture:
This category represents the attempt to combine the elements of both series
and parallel hybrid systems through an advanced powertrain architecture
which allows to enhance the exploitation of all the energy sources and
actuators available. The way through which the several machines are linked
identifies the complex architecture to be a series/parallel architecture if a
system of clutches is used or to be a power− split architecture if a plane-
tary gearbox is employed. As it is possible to easily notice, the mechanical
complexity increases a lot as well as the control system complexity.

Thorugh a proper design of the powertrain control system, it is possible to
efficiently exploit all the components enabling different modes which could
not be possible with a simple series or parallel configuration. The number
of degrees of freedom characterizing this configuration is the key feature of
a very efficient energy management system. Nonetheless, the weight and
the cost of such a powertrain are heavily affected.
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Fig. 2.6 HEV complex architecture [4].

2.2.1 EM position in parallel configuration

In a parallel configuration, a further classification is introduced to specify the
electric motor position along the powertrain. The following configurations can be
identified:

• P0 (or P1f):
The electric machine is connected to the engine on the Front-End Accessory
Drive (FEAD) through a belt, realizing the so-called Belt Starter Generator
(BSG). The role of the electric motor is limited due to its allocation and
dimension that only allows to guarantee the start and stop functionality and
a little energy recovery during braking.

• P1 (or P1r):
The electric motor/generator is directly connected to the crankshaft so
that the same functionalities of a P0 configuration are achieved while
avoiding the losses related to the belt connection. The capabilities of this
configuration are again limited, and the pure electric mode is still not as
feasible as in the previous case.

• P2:
The electric machine is positioned between the engine and the transmission
and, thanks to the interposition of a clutch in between the two elements, the
pure electric mode is enabled: disconnecting the ICE from the EM, and so
from the transmission, eliminates all the drag resistance due to the engine
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inertia. If, on the other hand, the clutch is engaged, the engine and the
motor have the same speed. For these reasons, the size of the electric motor
is larger than the above-mentioned configurations making possible more
hybrid functionalities.

• P3:
The electric machine is integrated into the transmission shaft and, being
positioned downstream of the gearbox, it does not benefit from the gear
reduction which usually means a higher exploitation of the electric power
available which results in a faster battery aging. However, thanks to this
positioning, the electric motor can work at higher speed with respect to the
ICE leading to a reduction in the torque provided by the EM for the same
power output, allowing in this way a size reduction.

• P4:
This is the only parallel configuration where the two machines are not
mechanically connected, in fact, the electric motor is located on the opposite
axle realizing the so-called Through-The-Road (TTR) connection. In this
way, it is possible to design a four-wheel driving vehicle without the need
for a central differential. Easy to be implemented in pre-existing Front
Wheel Drive (FWD) vehicles, it suffers from poor regenerative braking.

Fig. 2.7 Electric Motor positions in a HEV [5].



12 HEVs at a glance

2.3 Current market trends

It is now in the public domain the relevance of the environmental issues the world
is facing, that’s why HEVs have gained a substantial growth of interest in the
latest years representing for the customer the perfect balance between the need
for a greener vehicle with respect to the traditional ICE vehicles and the need of a
vehicle as close as possible to the conventional one in terms of performance, range
and usage [15]. The governments and the Original Equipment Manufacturers
(OEMs) themselves have also been incentivizing the purchase of HEVs delivering
tax incentives, subsidies, and tightening the emission regulations [12]. Another
key factor that led, and is still leading, to the diffusion of HEVs is the huge
amount of investment of the OEMs in favor of the research towards always more
efficient and functional vehicles. All the features and modes enabled by the
above-mentioned architecture represent a growing appeal for these vehicles which
are experiencing an increasing share of the market. Initially limited to small and
medium-sized passenger cars, the electrification of traditional thermal engine cars
is expanding towards various vehicle segments like Sport Utility Vehicles (SUVs),
crossovers, pick-up trucks and even luxury vehicles where the hybridization is
promoted as a high-performance feature, no more only related to efficiency and
fuel savings. This broadening of hybrid technology has affected also the sector
of commercial vehicles such as buses and delivery trucks, contributing to the
spreading of environmentally friendly vehicles. One special mention has to be
made with regard to the Plug-In HEVs (pHEVs). Unlike conventional hybrids,
they feature a larger battery pack that can be charged using an external power
source. This characteristic allows an extended pure electric range without getting
rid of the fuel-based ICE as a backup propulsion system in case the vehicle
runs out of charge. These kinds of vehicles are the closest type of hybrid to the
traditional vehicle in terms of potentialities and so they represent the missing
link between simple hybrids and fully electric vehicles. Of course, with the
advantages also come a bunch of disadvantages like the need for more structured
and branched charging infrastructure to charge these kinds of vehicles. In fact,
if not recharged, a pHEV is still able to move relying mainly on the ICE that
is downsized because it is supposed to work seamlessly with the electric motor.
Only thanks to regenerative braking, the vehicle is not able to recharge the battery
and sometimes using the ICE to recharge it is not feasible. For this reason, a
pHEV can become even worse than a conventional vehicle in terms of pollutant
emissions. The last challenge hybrid vehicles are asked to solve if they want to
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have a higher share of the market is the higher price of the car, usually moving the
car to a high-hand or premium section of the market. The purchase price makes a
great difference to the average customer who is not able to take into account the
long-term benefits.





Chapter 3

Reinforcement Learning
fundamentals

3.1 Introduction

Any kind of ML has been applied to solve the energy management problem, from
Supervised Learning, Unsupervised Learning and Reinforcement Learning. The
first category can predict numerical values relying on a huge amount of data
properly used to train and test the Neural Network (NN) which is the core of the
AI model. It is called Supervised because to train the model a pair of inputs and
outputs is submitted to the NN so it can tune its parameters to create a function
that relates input and output [19]. More simply, the learner has access to labeled
examples giving the correct answer. The second category is typically used to
identify patterns among the input data that a human being cannot see, that’s why
they are particularly promising in building effective prediction models. It is called
Unsupervised because the algorithm is provided with just input data and it is then
its role to create the output, not as a numerical value but as a classification result
[19]. Unsupervised learning is about extracting underlying structure in data. The
third and last category is based on how animals and humans learn that is through
a trial-and-error process. The great benefit of this approach is that it does not
require any dataset for the training procedure because it has an agent that learns
by acting in an environment and receiving a reward for each action. The reward is
a score given to every action to evaluate how good that action was based on its
effect on the environment[6].



16 Reinforcement Learning fundamentals

Reinforcement Learning (RL) is quite a recent research topic, in fact, in the
mid-2000s, only a few labs around the world were focusing on this machine
learning class. At the time it was only partially considered successful and it was
not used in the industry at all. The idea that an agent could improve its behavior
in the world just by trying things and seeing what happens was the bravest among
all the AI algorithms. After all, that’s a concept very familiar to everyone since it
is the way human beings and animals use to learn. One of the greatest benefits
of RL is that the agent is not supposed to only find a good behavior and then
apply it in an open loop but the learning and the acting are both bound to a close
loop behavior, where the reward is the judge of the action effectiveness. Learning
online becomes a defining feature for RL. For this reason, nowadays, universities,
companies, and manufacturers are pushing research in this field to ease their daily
work, increase their income or efficiency, and so on and so forth [20] [21].

In RL, the agent generates its own training data by interacting with the world,
it does not require to be told what the correct actions are. This means that the
agent must face the so-called “decision-making problem” where it is asked to
choose among different options to interact with the environment. In this context,
it is possible to introduce the “K-armed bandit problem” [22] where there is a
decision-maker or agent who chooses between k different actions, receiving a
reward based on that action. Therefore, how does the agent pick one action rather
than another? It chooses according to the “Action-Values” that is related to the
reward obtained by taking that action. This concept is formalized by the following
formula:

q∗(a) =̇ E[Rt |At = a] ∀a ∈ {1, . . . ,k} (3.1)

= ∑
r

p(r|a)r (3.2)

The Action-Value q of an action a is, using probability and stochastic concepts,
the expected reward of selecting a certain action. With a discrete space of the
actions is the sum over all the possible rewards multiplied by the probability of
taking the action which outputs the same reward. Be aware that the goal of the
agent is to maximize the total cumulative reward and so the following:

argmax
a

q∗(a) (3.3)
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The agent will be prone to choose the action which maximizes the reward and
so take the maximum of the argument of the Action-Value. But q∗ is not known
to the agent, that is why we need to estimate it. The simplest way to do it is called
Sample−Average and it consists of the ratio between the sum of the rewards
obtained by taking a certain action and the number of times that action has been
taken before time t:

Qt(a) =
∑

t−1
i=1 Ri

t−1
(3.4)

At each time instant, the agent will select the action with the highest Action-
Value to maximize the long-term reward, acting following the so-called greedy
behavior. Alternatively, the agent could choose not to pick the greedy action, and
so exploit its current knowledge of the world, in order to explore the state-action
space and make more accurate estimates of the current Action-Values. The trade-
off between exploration and exploitation is one of the biggest dilemmas of RL
[6].

To keep the value estimates of the actions up-to-date, an incremental update
rule should be defined. Starting from the sample-average method, it can be
rewritten in a recurrent form and rearranged as follows:

Qn+1 = Qn +
1
n
(Rn−Qn) (3.5)

where the new estimate is equal to the old estimate plus the difference between
the new target, here the new reward, and the old estimate multiplied by the so-
called step size parameter αn [6]. This formula can be generalized as follows:

Qn+1 = Qn +αn (Rn−Qn) (3.6)

where the step-size parameter is usually a function of n.

One key aspect to point out about this formulation is that the most recent
reward affects the estimate more than the older ones. This means that the weight
of a previously collected reward decreases more and more with the passing of
time.

It has been mentioned the exploration-exploitation dilemma. Exploration is
what the agent should go for to improve its current knowledge about each action,
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making its estimates more accurate. Hopefully, this approach allows the agent
to make more conscious decisions in the future, leading to long-term benefits.
On the other hand, Exploitation takes advantage of the current estimates value
of each action choosing the “greedy” action and maximizing the reward it can
get in that instant. In this case, it is preferred to maximize the short-term benefit
rather than trying to increase the reward in the long run. One very simple method
developed to solve this tricky trade-off is called ε−greedy. It simply consists
of picking the greedy action all the time apart from ε percent of the time where
exploration is pursued by taking a random action.

At ←

argmaxa Qt(a) with probability 1− ε

a∼Uni f orm(a1 . . .ak) with probability ε

(3.7)

Another way to encourage exploration is using OptimisticInitialValues which
means overestimating the Action-Values on purpose. In this way, once the first
action is selected, the observed reward from taking that action will likely be
smaller than the optimistic estimate making other actions more appealing. It can
be shown how this method really increases exploration from the beginning of the
interactions of the agent with the world. Anyway, some limitations belong to this
method:

• Optimistic initial Values only encourage early exploration: at some point,
the agent will have defined an estimate for each action and will behave
always in a greedy manner;

• In non-stationary problems, the actual Action-Value might change while
the agent can be already settled around a value and so prone not to take
that action anymore even if it has changed and the estimate is no longer up
to date. This limitation derives from the previous one, if exploration is in
some way encouraged throughout the learning process, this issue would not
arise;

• Especially in real-world problems, knowing what an optimistic initial value
for the case could be a not trivial problem
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3.2 Markov Decision Process

All the definitions and principles shown up to now were thought to be related to a
world where our agent is asked to act always in the same situation or where the
best action is always the same. In order to translate these concepts toward cases
closer to reality, the Markov Decision Process (MDP) formalism is introduced.
This concept is based on the understanding that various situations require distinct
actions. Current actions should not only aim to maximize immediate rewards
but also take into account the future outcomes that may emerge as a result of the
action, thus impacting future rewards. It is necessary now to explain better the
concept of state and how it fits in this field.

Fig. 3.1 The agent–environment interaction in a Markov decision process [6].

The figure 3.1 shows a framework where the agent and the environment
interact at discrete time steps. At each instant t, the agent reads the state that
describes the environment at that stage (St), and based on that state, it takes an
action At from a set of valid action at state St . When an action is taken, it will
affect the reward as well as the following state as shown by the following diagram.

The dynamics involved in this iterative process can be described by using some
stochastic concepts where the density function p represents the joint probability
of obtaining a reward R and future state s′ if a precise action a is taken in a certain
state s. The formula is here reported:

p(s′,r|s,a) (3.8)
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It is worth noting that the future state and reward only depend on the current
state and action. This important relation is called Markovproperty and it means
that the present state is sufficient to represent the environment and allow the agent
to act consequently, so any kind of memory about past states would not improve
the accuracy of the probability distribution as a prediction of the future.

Thanks to this simple and complete formulation, MDP formalism can be
adopted to formalize a wide variety of sequential decision-making problems.

The goal of RL is to maximize the long-term reward and so at each instant,
an action must be taken considering also the possible affection of that on the
environment and so on the future rewards. It is now useful to introduce a new
definition: the Return at timestep t is the sum of rewards obtained after time step t.
It is usually denoted through the letter G. Due to the randomness involved in the
possible reward obtained by the agent and the state transitions of the environment,
it is usually more meaningful to consider the expected reward that can be defined
as follows:

E[Gt ] = E[Rt+1 +Rt+2 +Rt+3 + . . .] (3.9)

To give a proper definition of the return and of the expected return it is
necessary to consider a finite sum which means that there will be a final step.

Gt =̇ Rt+1 +Rt+2 +Rt+3 + . . .+RT (3.10)

At that time step, the interaction between the agent and the environment ends
and this is also called the end of an E pisode. Each episode starts at the same
initial condition and it is not affected by the Terminalstate which is how the
previous episode ended. When the mission that the agent is required to carry out
can be split into episodes, it is called E pisodic−Task.

What if the task cannot be broken up into independent episodes? In that
case, there are no terminal states and the agent environment interaction continues
without end. This is the case of a so-called ContinuingTask. For this task, the
previous definition of return is no longer suitable because it would mean obtaining
an infinite sum. For this reason, the introduction of a DiscountFactor is necessary
in order to let the return be finite. This factor is well known in the literature with
the symbol γ and it ranges from 0 to 1, including the lower bound but excluding
one as a legit value otherwise it will lead to the infinite sum issue discussed above.
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Gt =̇ Rt+1 + γRt+2 + γ
2Rt+3 + . . .+ γ

k−1Rt+k + . . . (3.11)

The effect of discounting on the return formulation is striking: it makes more
accountable the immediate reward while decreasing the contribution of rewards
far in the future. It can be proven that this sum is finite. Now, to better understand
how the discount factor affects the decision of the agent at each instant let’s
consider the two extreme cases:

• When gamma equals zero, the agent is said short− sighted because, being
the return just equal to the very next reward, it only cares about immediate
reward;

• When gamma approaches one, the weight of the immediate and future
reward is almost the same and in this case, the agent is defined as f ar−
sighted.

Last but not least, let’s rewrite the return formula in a recursive way: it turns
out that the return simply is the immediate reward plus the discounted future
return.

Gt = Rt+1 + γ Gt+1 (3.12)

Having understood that the action selected by the agent affects the immediate
reward as well as the following state, the reader may wonder how an action
is selected from all the feasible ones in a certain state. It has been mentioned
the concept of ε−greedy approach where the agent selects an action aiming to
maximize the reward 1-ε percent of the time and a random action the remaining ε

percent of the time. But how are the actions and the states related? How does the
agent actually pick an action? The answer is through a function called policy that
can be deterministic or stochastic. In the first case the policy links to each possible
state one and one action only while, in the second case, it assigns a non-zero
probability to each action. For a stochastic policy is possible and meaningful to
define a policy π in the following way:

π(a|s) (3.13)
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where π is the probability of taking action a when in state s and being the
policy a probability over a set of actions it must fulfill the conditions reported in
[6] and below:

∑a∈A (s)π(a|s) = 1

π(a|s)≥ 0
(3.14)

As a defining feature of a policy, it is important that it does not depend on
anything but the current state. The probability of picking an action in a certain
state must not be affected in any way by previous actions or states. This should
not be seen as a boundary on the agent but as a requirement on the state instead.
Remember that we are dealing with MDP where the state is supposed to hold all
the required information for decision-making.

Keeping in mind that the goal of RL is to maximize the long-term reward,
it is now possible to introduce two new parameters used by the agent to orient
itself throughout its attempt to define an optimal policy, avoiding waiting for
the end of the episode or for the next reward in the case of a continuing task.
The State− value f unction is the expectation of a certain return at timestep t,
starting from state s and following policy π . Here it is now reported the analytical
formula:

vπ(s) =̇ Eπ [Gt |St = s] (3.15)

Right after the definition of state-value, it is worth describing the Action−
value f unction that is, as exemplified by equation 3.16, the expected return for
an agent that selects action a in state s and follows policy π:

qπ(s,a) =̇ Eπ [Gt |St = s,At = a] (3.16)

These two functions turn out to be very effective in enhancing agent learning
because they summarize all the possible future paths by averaging over returns.
Even in those tasks where the reward is unlikely to be obtained if not at the end
of a successful episode, value functions are able to give the agent a hint about
the quality of its behavior and condition based also on predictions about possible
upcoming rewards and system dynamics.
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Being the value function of a state or an action at a timestep t so important
for the agent, it becomes much more relevant also relating the current value of a
state (or an action) to the value of future states (or actions). In this way, it could
be possible for the agent to predict possible bad or good actions without actually
experiencing them. To formalize the relation between values and their possible
successors the theory proposes the Bellman equation for both actions and states.

Starting with the state-value function, first, the definition of return is recalled:

Gt =
∞

∑
k=0

γ
kRt+k+1 (3.17)

The return definition is substituted in the equation 3.16 of the state-value
function. It is now possible to expand the expected return over possible actions,
possible rewards, and next states.

vπ(s) = ∑
a

π(a|s)∑
s′

∑
r

p(s′,r|s,a)
[
r+ γEπ [Gt+1|St+1 = s′]

]
(3.18)

It could now be possible to recursively expand equation 3.18 but it makes
more sense to notice that the expected return is the definition of value function
for the next state and so the following equation is obtained:

vπ(s) = ∑
a

π(a|s)∑
s′

∑
r

p(s′,r|s,a)[r+ γvπ(s′)] (3.19)

Similarly, the Bellman equation for action-value can be derived. Its formula-
tion is here reported:

qπ(s,a) =̇ Eπ [Gt |St = s,At = a] (3.20)

Equation 3.20 can be rewritten considering the expectation as a summation
over possible next states and rewards. Furthermore the return formulation is made
explicit using the action value of the next state and action under policy π . The
result is reported in equation 3.21.

qπ(s,a) =̇ ∑
s′

∑
r

p(s′,r|s,a)

[
r+ γ ∑

a′
π(a′|s′)qπ(s′,a′)

]
(3.21)
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3.2.1 Optimal policy evaluation

It has now been repeated several times that the ultimate goal of reinforcement
learning is maximizing the reward in the long run and the agent aims to that by
searching for the optimal policy. Let’s explain what it means optimal policy and
how to find it. First of all, a policy is said to be better, or as good as, than another
policy if and only if the value under it is greater than or equal to the value under
the other policy for each possible state. At this point, an optimal policy is simply
a policy in which state values are always greater or equal to every other policy. In
other words, an optimal policy will always have the highest possible value in each
state. Even if the definition of optimality is itself relatively simple, computing
it could be quite long and complex: also limiting the search to discrete policies,
the number of possible policies is the number of possible actions to the power
of the number of states. Manually evaluating all the policies could cause the
computational cost to explode, that is why the solution to this issue comes again
with another set of Bellman equations.

As just stated, the value of the state of an optimal policy, defined with π∗, is
always the highest among all the possible policies, thus it is possible to write:

vπ∗(s) =̇ Eπ∗[Gt |St = s] = max
π

vπ(s) ∀s ∈S (3.22)

And the same can be done for optimal action-values:

qπ∗(s,a) = max
π

qπ(s,a) ∀s ∈S and a ∈A (3.23)

Recalling the equation of the state-value function, its optimal value can be
defined by using an optimal policy in its definition as follows:

v∗(s) = ∑
a

π∗(a|s)∑
s′

∑
r

p(s′,r|s,a)[r+ γvπ∗(s
′)] (3.24)

since there is always at least one optimal policy that selects an optimal action
in each state. Such a deterministic optimal policy will assign Probability 1, for an
action that achieves the highest value and Probability 0, for all other actions. We
can express this another way by replacing the sum over π∗ with a max over a:
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v∗(s) = max
a ∑

s′
∑
r

p(s′,r|s,a)[r+ γvπ∗(s
′)] (3.25)

The same can be done for the action-value function, obtaining the following
as the final result:

q∗(s,a) = ∑
s′

∑
r

p(s′,r|s,a)[r+ γ max
a′

qπ∗(s
′,a′)] (3.26)

This set of equations, called Bellman’s optimality equations, cannot be solved
linearly as it was possible to do for the Bellman equations related to the value
functions because the maximum is not a linear operation.

By solving the Bellman’s equations for v∗ (state-value) or q∗ (action-value)
it will be possible to find π∗, so the optimal policy. This is in fact fairly easy,
especially if dealing with a discrete policy where an action taken in a state leads
to only one state (and its relative reward). Once the state-value function is known,
recalling equation 3.25, it is sufficient to look one step ahead between the available
actions to choose in order to identify the one that gives the highest return value.

π∗(s) = argmax
a ∑

s′
∑
r

p(s′,r|s,a)[r+ γvπ∗(s
′)] (3.27)

Using action-value functions instead (equation 3.26) it is even easier because
it is not necessary to look forward since the value function itself considers the
value of taking a certain action and the expected reward from that.

π∗(s) = argmax
a

qπ∗(s,a) (3.28)

It has been explained how Bellman’s equations can be solved through lin-
ear algebra systems but this often turns out to be not feasible. One effective
tool developed to carry out policy evaluation, that is evaluating the state-value
function for a certain policy, and policy control, that is the task of improving
a policy until the optimal policy is obtained, is Dynamic Programming (DP).
DP uses Bellman’s equations along with the knowledge of the dynamics of the
environment, described by the probability function p, to do policy evaluation and
control without interacting with the environment. Exploiting Bellman’s equations
with a recursive approach is how Dynamic Programming solves the state-value
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function estimation [23]. Using those equations as an update rule, rather than
as an equation, gives as a result the exact state-value. Applying this procedure,
it is possible to iteratively refine the value function estimation, obtaining better
and better approximation until the difference between two subsequent updates is
lower than a preset threshold.

vπ(s) = ∑
a

π(a|s)∑
s′

∑
r

p(s′,r|s,a)[r+ γvπ(s′)] (3.29)

Equation 3.29 turns into equation 3.30 in an iterative update procedure.

vk+1(s) ← ∑
a

π(a|s)∑
s′

∑
r

p(s′,r|s,a)[r+ γvk(s′)] (3.30)

The policy improvement theorem, that exploits the just-described evaluation
of a policy to find a better one, is now analyzed.

qπ

(
s,π ′(s)

)
≥ qπ (s,π(s)) ∀s ∈S (3.31)

If in each state the value of the action according to π ′ is higher or at least equal
to the one selected by π , then it is possible to say that π ′ is at least as good as
π . More practically, this can be done by acting greedily knowing the state-value
function. In this way, it is sure that the new policy is an improvement with respect
to the previous one. The value function should then be updated according to
the new policy and then iteratively repeat the process. This process alternates
between policy evaluation and improvement unless convergence is reached when
a further policy improvement leaves unchanged the policy.

The term Generalized Policy Iteration is used to identify all the ways policy
evaluation and improvement can be combined. One of these approaches called
Value Iteration still sweeps among all the states to evaluate them and then greed-
ify the policy, while the policy evaluation step is not carried out to completion.
There’s no reference to any policy, it is simply the state evaluation using the action
that maximizes the current value. Then the optimal policy can be identified by
computing the argmax. A threshold is used to understand when the change in the
value is low enough to terminate the iteration. Carrying out a systematic sweep
over states like this is called synchronous method. Asynchronous methods sweep
among states in any order, usually promoting the update of the states closer to
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Fig. 3.2 The "dance" of policy and value is visualized as bouncing back and forth between
one line, where the value function is accurate, and another where the policy is greedy [6].

the states where the value changes the most or that changed recently. Anyway, to
guarantee convergence, the update must be run in every state.

3.2.2 Sample-based models: Monte Carlo

So far, it has been explained how useful and efficient Dynamic Programming is
to approach Reinforcement Learning problems. Unfortunately, very rarely the
dynamics of the environment are known to the agent as DP requires, especially
when dealing with real environment problems that are too complex to be described
through probability functions. To solve this issue, sample-based models are the
solution to make the agent able to learn just from its experience, without prior
knowledge of the environment. One of these methods is called Monte Carlo and
it estimates values by averaging over many random samples [24]. For instance, it
can observe multiple returns from the same state, then it averages those samples
to estimate the expected return. The returns can be observed only at the end of an
episode. Learning from experience allows to avoid keeping a large model of the
environment. The biggest advantage of Monte Carlo with respect to DP is that
while the last one computes the value of a state relying on other state-values, in
Monte Carlo each state estimate is independent. Furthermore, the computation
does not depend on the dimension of the MDP problem but rather on the length
of the episode. The same thing holds for state-action values where returns from
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a state-action pair are collected, by following a policy, and averaged. Thanks
to this approach it is possible to learn a policy since different action values are
known for the same state and so it is possible to pick up the highest one. The
most attentive reader may have noticed an issue in applying this approach to a
deterministic policy: in some states, the agent will avoid taking some actions
and so the Monte Carlo sample-average will not be able to properly estimate
the value of unexplored state-action pairs. All the available actions at each state
must be tried to fairly compare them and choose the best one. For this reason,
exploration should be promoted and maintained throughout the training. In this
context ExploringStarts represents a solution: they can be used to force the agent
to take a random action at the beginning of the episode and then follow the given
policy.

The pseudo-code reported in figure 3.3 explains the procedure to apply Monte
Carlo to Generalized Policy Iteration.

Fig. 3.3 Monte Carlo pseudo code [6]

As mentioned before, to enhance exploration, a random state-action pair is
selected at the beginning of the episode, and then the selected policy is followed,
storing state, actions, and rewards throughout the episode. Once the episode is
completed, starting from the last one, all the returns are computed, stored, and
averaged. Thanks to the computation of the average, all the action values are
updated, completing this way the evaluation step. Then it is possible to carry out
the policy improvement by choosing the greedy action for each state.

When dealing with real world problems, choosing a random state-action pair
for the beginning of the episode might not be feasible. Adopting the so-called
“ε-soft policies” makes it possible to force the agent to continuously explore by
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assigning a non-zero probability to each available action. ε-greedy policy is a
stochastic policy belonging to the ε-soft policies. Being stochastic means that the
agent continues to visit all possible state-action pairs indefinitely because each
action can be selected with a probability equal to ε over the number of actions.
Even when the optimal policy is reached, these stochastic policies perform worse
than deterministic optimal policy because they continue to explore introducing
so a sub-optimality, but they anyway turn out to be efficient, improving over and
over the policy adopting an ε-greedy approach at the end of each episode.

3.2.3 Off-policy algorithms

So far, only On− policy algorithms have been presented where the agent behaves
and learns following the same policy. In O f f − policy algorithms, the agent
generates data following a certain policy which is different from the off-policy
that is the one the agent is learning, meant to become the optimal policy. The
policy that is learned is called Target Policy. The policy used by the agent to act
is called Behavioral Policy (or Behavior Policy) and it is usually a great source
of randomness to make the agent explore as much as possible during learning.
A very important aspect of the behavior policy is that it must contain the target
policy otherwise it wouldn’t be possible for the agent to properly estimate the
value of a state-action pair because it would never experience the action suggested
by the target policy. An on-policy is just a special case of off-policy where the
target policy is equal to the behavior policy.

In order to do off-policy learning it must be possible to learn with one pol-
icy while following another. This is in fact possible thanks to the concept of
Importance Sampling. As explained before, in off-policy algorithms the data,
like the state, the action, the rewards and so the returns, are generated by the
behavioral policy because it is the one through which the agent interacts with
the environment, but it is required to perform the learning based on the target
policy that is different from the behavioral. First of all, two policies are available,
and sampling a random variable x is done from distribution b while learning
according to distribution π of x. It is necessary to introduce a parameter called
Importance sampling ratio, indicated with the letter ρ , that is simply the distri-
bution of drawing a certain variable x from π over the probability according to
b.
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Eπ [X ] = ∑
x∈X

xρ(x)b(x) (3.32)

= Eb[Xρ(X)] (3.33)

In equation 3.33, the product between the random variable x and the Impor-
tance sampling ratio has been treated as a new variable and so the summation has
been rewritten as an expectation over the distribution b, the one from which data
are actually sampled. Recalling that an expectation over a value can be computed
with a sample average:

E[x]≈ 1
n

n

∑
i=1

xi (3.34)

Now, it is just necessary to compute a weighted sample average where the
ratios are the weighting factors.

Eπ [X ] = ∑
x∈X

xρ(x)b(x) (3.35)

≈ 1
n

n

∑
i=1

xiρ(xi) (3.36)

Thanks to this immediate procedure it is possible to estimate expected values
according to one distribution when data are sampled from another one. At this
point, it might be asked how it is possible to compute the distribution π or b and
so the trajectory followed by the agent during an episode. This can be computed
as follows:

P(trajectory under b) =
T−1

∏
k=t

b(Ak|Sk)p(Sk+1|Sk,Ak) (3.37)

where p stands for the probability of the environment to evolve into state Sk+1

if action Ak is taken in state Sk. Substituting this formula in the definition of the
Importance Sampling Ratio, it is obtained:
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ρt:T−1 =̇
P(trajectory under π)

P(trajectory under b)
(3.38)

=̇
T−1

∏
k=t

π(Ak|Sk)p(Sk+1|Sk,Ak)

b(Ak|Sk)p(Sk+1|Sk,Ak)
(3.39)

the dynamic response of the environment cancels out for each time step,
making the equation look like:

ρt:T−1 =̇
T−1

∏
k=t

π(Ak|Sk)

b(Ak|Sk)
(3.40)

When computing the returns at the end of the episode, starting from the last
step, the ratio is also computed and then used to correct the return. The value is
then stored and used in a recursive manner as it is done for the returns.

ρt:T−1 =̇
T−1

∏
k=t

π(Ak|Sk)

b(Ak|Sk)
(3.41)

= ρtρt+1ρt+2 . . .ρT−2ρT−1 (3.42)

Wt+1 ← Wtρt (3.43)

Where w is the weight used to correct the return in the following way

G ← γWG+Rt+1 (3.44)

3.2.4 Temporal Difference algorithm

In RL, one of the aims is to define a value function able to estimate the return
from a given state. Starting from the following formula:

V (St) ← V (St)+α[Gt−V (St)] (3.45)
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It is possible to update the estimate, step after step. With this equation,
becomes striking the limitation of Monte Carlo where it is required to wait for the
end of the episode to sample data about all the trajectories to compute the return.
It would be much more effective to be able to learn during the episode so in the
following is explained how to obtain that. Recalling the definition of discounted
return:

Gt = Rt+1 + γGt+1 (3.46)

Now, starting from the formula of the value of a state at time t, it is possible
to write the return in a recursive way and turn the value function into a recursive
expression as well:

vπ(s) =̇ Eπ [Gt |St = s] (3.47)

= Eπ [Rt+1 + γGt+1|St = s] (3.48)

= Rt+1 + γvπ(St+1) (3.49)

Going back to equation 3.45, it is possible to rewrite the return at time t as the
reward in the following time-step plus the estimate of the next state-value:

V (St) ← V (St)+α[Rt+1 + γV (St+1)−V (St)] (3.50)

Considering the value of the next state as it was the return until the end of the
episode it is reached, in this way, it is not necessary to wait until the end of the
episode to estimate the states but it is enough waiting for the next step. This is one
of the core concepts of RL and it is called Temporal Difference (TD) algorithm
[22]. The term in square brackets is called the TD error and is usually referred
to as δt . The TD target is the sum between the future reward and the discounted
value of the next state. TD updates the value of the state at time t to improve its
own estimate of the next state. This concept is like what Dynamic Programming
does in its update rule in fact, in that case, the value of the state was updated
according to the value of all possible next states which requires the knowledge of
the environment dynamics. In TD it is sufficient just the next state that is taken
from the environment. Simply considering the current time step as t +1 and the
previous time step as t, it is enough to store the state from the previous time step
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to compute the TD update [25]. At time t there is a state S and an action A is
taken, obtaining a reward R and a new state S. Only when the data of the next
state are available, it is possible to update the previous state value. The flow
followed by TD(0) algorithm is very simple: a policy to follow is defined, the
state is initialized and then at each time step an action is taken according to the
policy, and the value of the state is updated through to the TD update rule. The
only variable this algorithm requires to store is the value of the previous state. It
is clear that TD introduces some great advantages:

• Unlike Dynamic Programming, it does not require a model of the environ-
ment, it learns directly from experience as MC;

• Unlike Monte Carlo, it can update the state at each time step using other
estimates instead of waiting for the end of the episode;

• TD converges to the correct prediction usually faster than Monte Carlo
thanks to the capability of updating the states at each time-step and just
comparing each step to the following one, instead of waiting for the end
and so updating all the encountered states with respect to the final set of
rewards.

Now it is discussed how Temporal Difference can be implemented to do Policy
Evaluation in a General Policy Iteration (GPI) algorithm. Remember that when it
was shown how to implement Monte Carlo as an update rule in GPI, the algorithm
did not perform a full policy evaluation step before improving the policy itself. To
implement TD in GPI, it is necessary to slightly change the update rule explained
above: instead of observing the stream of states and learning the value of each of
them, the object of the update will be a state-action pair. This algorithm is called
SARSA because in a state St the agent takes an action At obtaining a reward Rt+1

and, since it is being used TD, the algorithm needs to know not only the next state
St+1 but also the next action At+1 to update the previous state-action pair value.
That is where the acronym comes from. Here is reported the new update equation:

Q(St ,At) ← Q(St ,At)+α ((Rt+1 + γQ(St+1,At+1)−Q(St ,At)) (3.51)

This algorithm has been explained considering just a fixed policy to focus
on policy evaluation but, thanks to GPI framework, it is possible to turn it into a
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control algorithm that improves the policy at each timestep instead of waiting for
the end of the episode. SARSA will perform much better than MC, especially in
those tasks where the terminal state is required to end the episode. In fact, unlike
Monte Carlo which could get stuck in the same episode forever, SARSA would
recognize a bad policy, improve it and so reach the terminal state.

3.3 Q-learning algorithms

One of the first major online Reinforcement Learning algorithms is Q-learning.
Very similar to SARSA, let’s see its formula to point where it differs.

Q(St ,At) ← Q(St ,At)+α

(
(Rt+1 + γ max

a′
Q(St+1,a′)−Q(St ,At)

)
(3.52)

Sarsa seems to take several features from the action value Bellman’s equa-
tion, while Q-learning comes from the Bellman’s optimality equation for action
values. Thanks to this, Q-learning has the advantage of directly obtaining the
optimal action value q∗ instead of switching between policy evaluation and policy
improvement as in Sarsa. The latter in fact, is the sample-based version of pol-
icy iteration where Bellman’s equation is used for action values according to a
fixed policy. On the other hand, Q-learning is the sample-based version of value
iteration where the Bellman optimality equation is iteratively applied to improve
value function.

One main difference between the two algorithms is that Q-learning updates
the action-value only when it finds a better action while Sarsa updates the value
every time it takes an exploratory action, this is because Sarsa’s update is based
on the next state estimate and not on its maximum.

As it has been discussed previously, the so-called off-policy algorithms exploit
important sampling to estimate values according to the target policy while acting
following the behavior policy. Q-learning does not use this approach. While in
Sarsa the agent bootstraps off on the value of the action is going to choose, taken
from its policy, Q-learning bootstraps off on the highest action value of the next
state. This could be seen as sampling actions from an estimate of the optimal
policy rather than on the behavioral policy which means that the agent is learning
from the best possible action but then acts with another one and so can be defined
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as off-policy. Thanks to this operating mode, Q-learning is able to learn always
greedy while making its behavioral policy free to explore all state-action pairs.
Furthermore, the reason for that there isn’t any sampling ratio is because the agent
is estimating action values following an unknown policy.

In literature is also present a variation of Sarsa called Expected Sarsa. The
novelty consists in taking a weighted sum of the values of all possible next actions
where the weights are the probability of taking that action in that state according
to the policy. It is an expectation over next actions, that’s from where comes the
name. The update rule is nearly identical with respect to the one seen with Sarsa,
with the only difference that TD error uses an estimate of the expectation of the
next action value instead of sampling the next action value. That means that at
every time step, the agent must average the next state’s action values according to
how likely they are under the policy. In this way the update of Expected Sarsa
is much more stable because averaging the possible next action values, it relies
on correct updates implying a much lower variance. A downside in terms of
computations, especially with a huge number of possible next actions must be
certainly taken into account. Finally, how can be Expected Sarsa be related to
Q-learning? Since the estimate of the action value is computed considering the
expectation over possible next action, the action the agent actually takes can
belong to a different policy and so making Expected Sarsa an off-policy algorithm
as much as Q-learning where both of them don’t rely on importance sampling.
Furthermore, if the target policy is greedy with respect to its expected action
value estimates, only the highest value action is considered in the expectation and
so it becomes like searching for the maximum among possible next actions as
for Q-learning. It is now possible to conclude affirming that Expected Sarsa is a
generalization of Q-learning.

3.3.1 Overview on models

As it has been depicted so far, there are methods like Temporal Difference which
directly sample from the environment to gain experience about the world and
choose accordingly how to act; but there are also methods like Dynamic Program-
ming that use the complete knowledge of the environment to find the best control
strategy for the agent. There’s a third way which tries to pick just the benefits
from the two extremes and it consists of building, and then relying, on a model
of the world. A model is a representation of the environment, giving as output
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the possible next state and reward if provided with a certain state and action. It is
meant to plan and so to evaluate how good is a policy and then improve it. Models
can be of sample type and they produce an outcome based on some probabilities
underlying the true world. Alternatively, there are distribution models which
specify the likelihood of every outcome. They take into account also joint prob-
ability and they can compute the exact expected outcome by summing over all
outcomes weighted by their probability. All of this comes with the shortcoming
of a larger computational memory needed while sample models are much more
compact. As already mentioned, one of the main scopes of having a model of the
environment relies upon planning that is improving a policy. Sampling experience
from the environment allows one to update the action values and then behave
greedily with respect to that. One practical approach to do that is Q-planning
which follows the same procedure as Q-learning but instead of sampling from the
world to update the value, it samples from the model. The huge potential of these
kinds of planning updates is that they can be carried out in parallel with respect
to the interaction of the agent with the real environment, speeding up the learning
process and improving the target policy.

3.3.2 Function approximators

Up to now only tabular methods have been described where learned values are
stored in tables for each possible state. Clearly, this approach is not suitable for
real problems with a much larger amount of data. For this reason, it is now useful
to take a step further. So far, the proposed value approximators always had the
same form, for each state a value was stored and updated when needed. Here
comes the idea of parametrized functions to approximate values thanks to a set
of weights incorporated in the function that can be modified to tune its outcome.
The following simple expression is considered:

v̂(s,W ) =̇ w1X +w2Y (3.53)

With two simple weights to be stored, it is possible to represent the state
values of several states in a form much more compact than it would be with
tabular methods. In equation 3.53, X and Y are the vector constituting the feature
describing the state of the environment. Note that the state-value approximation
is denoted with v̂. With this representation, the algorithm will no longer update
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the value itself but the weight instead. The equation 3.53 reported above, it is a
special case called Linear Function Approximation that can be defined in a more
generalized way as:

v̂(s,W ) =̇ ∑wixi(s) (3.54)

=< w,x(s)> (3.55)

Where the vector x contains the so-called feature. Constructing the feature
vector becomes a real challenge because it heavily impacts how the function
can approximate values. But what should an approximation function guarantee
to properly estimate values? Two keywords can be introduced to describe a
good approximation function: generalization and discrimination. More broadly,
generalization is the ability to use the knowledge related to specific situations
to draw conclusions about a wider variety of situations. In the context of policy
evaluation, it means that updates to the value estimates of one state affect the value
of other states. In other words, visiting some states can be avoided if they are
like some states that have already been visited. On the other hand, discrimination
means making the values of two states to be different to consider them differently.
It should be quite evident how both generalization and discrimination aim for
opposite objectives, that’s why a trade-off between the two is at the base of
approximation function design.

Recalling that in RL an agent interacts with an environment obtaining data in
the so-called online setting, it is not possible to treat data as it would be done with
a fixed batch of data as in the case of Supervised Learning (SL), respectively called
offline setting. This implies that the same methods used to obtain approximation
functions in SL cannot be directly applied to RL, especially because they should
deal with online generated data, that sometimes can also be correlated with each
other as for TD, where the next value estimate is based on other estimate that are
changing during the training.

Having pointed out what is function approximation and why it is useful to get
rid of tabular methods, it is time to define what is the target to be optimized and
that can be used as an indicator of the approximation accuracy. A well-known
and widely used example of this indicator is Mean Squared Value Error (MSVE)
defined as follows:



38 Reinforcement Learning fundamentals

¯V E = ∑
s

µ(s)[vπ(s)− v̂(s,W )]2 (3.56)

Where the equation between brackets is the squared error that is the square
of the difference between the value and its approximation, µ(s) is a probability
distribution giving weight about how much error of a state should be considered
and it is usually computed as the amount of time spent in that state by the agent
when following the given policy (policy π in equation 3.56). Changing the weights
is how the Value Error (VE) can be decreased or unfortunately increased.

3.4 Policy gradient methods

To frame value function estimation as a Supervised Learning problem, the Mean
Squared Value Error has been introduced as a target to be minimized. According
to equation 3.56, the variable to be minimized depends on a set of weights used
to parametrize the function that tries to approximate the value of each state. It
has been underlined the relevance of these weights and their role in achieving
the lowest value possible of value error. An obvious question may now arise:
how is it possible to change them in a way that minimizes the target? It will now
be presented a method to solve this issue called Gradient Descent [6]. Before
going through the working principle of this approach, it is essential to recall some
concepts from calculus.

∂ f
∂w

(3.57)

The expression 3.57 describes the derivative of a function f with respect to the
variable w. The sign of the derivative of f at a particular w, indicates the direction
towards the weight w should be changed to increase f while the magnitude of the
derivative indicates the slope of the function f at point w. The function f to be
minimized is usually parametrized by multiple variables which means that w is
a vector. Here’s where the concept of gradient is introduced to describe how f
changes according to vector w.
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w =̇


w1

w2

. . .

wd

 ∇ f =̇


∂ f

∂w1
∂ f

∂w2

. . .
∂ f

∂wd

 (3.58)

The gradient is a vector of partial derivatives indicating how a local change of
each component of the vector w affects the function f . The higher the magnitude,
the steepest the function in that point w, but regardless of the slope, the gradient
is mainly useful to get the direction towards which w should be changed. In the
specific case considered, the function to be minimized could be the MSVE which
is in fact a function of the weights because it contains the estimate of the state
that is realized thanks to an approximation function that uses weights. To sum
up, the idea behind the definition of Gradient Descent is that the weight should
be moved in the direction of the negative of the gradient to reduce the objective.
This concept is summarized by the following formula:

Wt+1 =̇ Wt−α∇J(Wt) (3.59)

The formula expresses the concept of making small changes toward the
direction of the gradient where the magnitude of the change is set by the step size
parameter to avoid stepping too far. This update rule, in fact, guarantees only a
decrease locally the function, reaching in this way a local minimum. Gradient
Descent is guaranteed to converge at least to a local minimum.

Recalling equation 3.57 of the Mean Squared Value Error, it is time to compute
the gradient of that since it will be used as target function to be minimized:

∇ ∑
s∈S

µ(s)[vπ(s)− v̂(s,W )]2 (3.60)

According to the rules of calculus, the gradient can be pulled inside the sum
and computed for each term of the VE, where only v̂ is a function of w. At this
point expression 3.60 will look like:

∑
s∈S

µ(s)2[vπ(s)− v̂(s,W )]∇v̂(s,W ) (3.61)
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3.4.1 Stochastic gradient descent

Computing the gradient for the mean squared value error requires summing
over all states which is generally not possible and it’s also very likely that the
distribution µ is unknown. It is so necessary to approximate the gradient. Also,
without explicitly have µ , it is possible to sample state just following the policy
π . That sample can be used to do an update to reduce the Value Error. Here’s an
example with the state s1:

w2 =̇ w1 +α[vπ(s1)− v̂(S1,W1)]∇v̂(s1,W1) (3.62)

This updating approach is called stochastic gradient descent because it only
uses a stochastic estimate of the gradient. It can be seen as a noisy approximation
to the gradient that is much cheaper to compute but can nonetheless converge
to a minimum. This sampling procedure is a very effective way to estimate the
gradient but there’s still a problem to be issued: the policy π from which the
state is sampled is unknown. One possible solution is adopting the so-called
Gradient Monte Carlo Algorithm where the value of the state under policy π is
estimated through samples of the returns for each visited state. In this way, the
expectation of the gradient is still equal to the gradient because the expectation of
the return is the state value.

w ← w+α[Gt− v̂(St ,W )]∇v̂(St ,W ) (3.63)

When dealing with large state space, learning the value of each of them could
become computationally not convenient, that’s where makes sense to use the
strategy called State Aggregation where some states are considered equal. This
method is an example of linear function approximation because there is one
feature for each group of states. That being said, the gradient is equal to the
feature vector. So, during the update, only the weight related to the active group
of states will be modified.

In Gradient Monte Carlo, the return was used instead of the state value under
π but any estimate of the value can be used. To generalize, equation 3.63 is
rewritten with the variable Ut as estimate:

w ← w+α[Ut− v̂(St ,W )]∇v̂(St ,W ) (3.64)
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Ut can be an unbiased estimate of the true state value, as in the case of Gradient
Monte Carlo where the return is used. In this way the converge to a local optimum
is secured. Otherwise, Ut can be replaced with a bootstrap target such as the
one-step TD target. This estimate of the return is defined biased because the TD
target uses the current value estimate that is not the true value function and can be
not accurate, so the convergence to a local minimum is not guaranteed.

Ut =̇ Rt+1 + γ v̂(St+1,w) (3.65)

In this case, the approach is called Semi-Gradient because computing the
gradient of the Value Error using the TD target as value estimate it is not possible
to pull inside the VE the gradient because Ut depends itself on the weights and so
the final expression would be different with respect to the TD update. Even if this
strategy cannot be called Stochastic Gradient Descent, it shows convergence in
many cases relevant to RL. Here’s the update rule of the weight at each time step:

w ← w+α
[
R+ γ v̂(S′,w)− v̂(S,w)

]
∇v̂(S,w) (3.66)

In conclusion, TD semi-gradient descent is not guaranteed to converge but
if it does, it is much faster than Monte Carlo because it does not have to wait
for the end of the episode and furthermore it has lower variance updates. These
characteristics make TD very valuable because it performs well in early learning
which usually is the most desired feature because there is never the chance to run
for asymptotic performance.

Linear function approximation is a special case when talking about function
approximation because it is a simple but effective way to estimate values. Re-
calling the definition of linear TD update just saw where the TD Error has been
highlighted:

w ← w+αδt∇v̂(St ,w) (3.67)

δt =̇ Rt+1 + γ v̂(St+1,w)− v̂(St ,w) (3.68)

In the linear case, the estimated state value is just the inner product between
the feature vector and the weight vector:
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v̂(St ,w) =̇ wT x(St) (3.69)

And so the gradient will be just the feature vector:

∇v̂(St ,w) = x(St) (3.70)

Make the update rule to look like this:

w ← w+αδtx(St) (3.71)

So the weight is updated in the direction of the feature vector times the TD
error. The larger the feature, the larger the impact on the update. In the extended
form, the update rule would be:

wt+1 =̇ wt +α [Rt+1 + γ v̂(St+1,wt)− v̂(St ,wt)]xt (3.72)

It is worth noticing that tabular TD is just a special case where the feature
vector has only one component different from zero and so the update becomes
a scalar computation. But why so much care on such trivial methods? Even if
this approach seems far from reality because too simple mathematically speaking,
if matched with the knowledge of some experts in the field of application who
help in designing the features, can become a very powerful tool [6]. With some
mathematical rearrangements, equation 3.72 can be rewritten as:

wt+1 = wt +α
[
Rt+1xt− xt(xt− γxt+1)

T wt
]

(3.73)

From this equation, two new parameters can be defined:

b =̇ E[Rt+1xt ] (3.74)

A =̇ E[xt(Xt− γxt+1)
T ] (3.75)

The TD update can be rewritten again as the expected return plus a noise
term which means that it can be well approximated by the expectation itself. The
equation then looks like:
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E[∆wt ] = α(b−Awt) (3.76)

The weights are said to converge when this expectation is equal to zero and
that values if the weights are defined as:

wT D = A−1b (3.77)

This solution is called T D Fixed Point and it can be proven that this is the
point where TD converges. It is now reported the inequality that relates the
minimum VE solution and the point found by TD.

¯V E(wT D) ≤
1

1− γ
min

w
¯V E(w) (3.78)

To conclude, the two values are not equal because of bootstrapping under
function approximation. If the estimate of the next state is persistently inaccurate,
then the update is always done towards an inaccurate target.

3.5 Deep Reinforcement Learning

In the previous paragraphs, it has been explained how function approximation is a
key step in Reinforcement Learning but only the simplest way of approximation,
i.e. linear approximation, has been presented. On the contrary, one of the
most used methods nowadays is Neural Networks (NN). In the following a brief
overview of NNs will be presented and how they work before seeing the several
ways to apply them in a RL algorithm.

Figure 3.4 shows the overall structure of a NN. Every circle represents a
node and the black solid lines are the connections between nodes. The nodes
are organized into layers, in particular, the first one on the left where the input
data enters the network is called the Input Layer, while the last layer on the right,
which is usually made by just one node where the value to be approximated is
delivered, is called Output Layer. All the layers in between these two are named
Hidden Layers. The one in the figure is denoted as a Feed-forward NN because
the stream of data always moves on through several layers, otherwise, it would
be called a Recurrent Neural Network (RNN). When data is passed through a
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Fig. 3.4 Neural Network layout [6].

connection, a weight is applied so that the node can sum each of the weighted
inputs and apply some activation function to that sum. The activation function is
usually non-linear such as:

• Sigmoidal function f (x) = tanh(x)

• Rectified Linear units or ReLu f (x) = x i f x > 0; 0 otherwise

• Threshold function f (x) = 1 i f x > 0; 0 otherwise

A NN is a parametrized function made of a collection of interconnected nodes
where the output of a layer is the input of the following one if that is not the
output layer.

To build a NN, some prior knowledge is useful to define some usually fixed
parameters such as the number of layers, the number of nodes in each layer, and
the activation functions. Furthermore, the weights of the nodes must be initialized
and their initial value has a great relevance. In fact, every node will have different
weights and so will pass to a non-linear function a different input, and the output
of each node will represent a f eature of the network. The weights become the
indicator of the activation of each feature. Coming back to the architecture, when
talking about NN with the term depth it means how many hidden layers compose
the network. However, according to the universal approximation property, it is
not necessary for NN to have several hidden layers, one is enough to approximate
any continuous function given that it is sufficiently wide. Anyway, increasing
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the depth allows the composition of features, for instance, starting with low-level
features in the input layer and going to more and more combined features in order
to accurately approximate complex functions. The depth can also be exploited by
introducing the concept of a bottleneck layer where each successive layer contains
fewer nodes than the previous one. The output layer will have the lowest amount
of nodes and will contain the key details of the function needed for the prediction.
Having defined the overall structure and functioning of a NN, it is time to talk
about the so-called training of the network which is finding the parameters which
minimize the loss function. Figure 3.5 proposes some notation:

Fig. 3.5 Neural Network notation[6].

Where si are the inputs, x j the features, ŷk the output and Ai j and B jk two
sets of weights. The mathematical explanation of how gradient descent can be
applied to back-propagate the error from the output layer to the hidden ones, and
so update the weights, is present in the literature but will not be reported here
because too complex and out of the scope of this thesis. The authors’ aim is to
provide an overall understanding of the basic concepts of RL to better understand
how it works and so choose with consciousness the best tools.

After going through some basic concepts of Neural Networks and having
mentioned the relevance of features, it is time to move on and leave behind
TD and value prediction with a fixed policy to talk about control with function
approximation with Sarsa. Switching from state to action values will look like:

qπ(s,a) ≈ q̂(s,a,w) =̇ wT x(s,a) (3.79)



46 Reinforcement Learning fundamentals

From equation 3.79 it is clear how features are now supposed to represent
action as well. This can be accomplished by stacking features which means
repeating the same set of state features for each action. At each update, only the
features related to a certain action will be active. This stacking procedure is not
only possible with linear approximators but also with NN where this is usually
done generating multiple outputs, one for each action value as figure 3.6 shows.
Just like in stacking, the weights for each action do not interfere with the others.

Fig. 3.6 Neural Network stacking[6].

Alternatively, if the goal is to generalize over action in the same way it is
done over states, there would be as input both the states and the actions with one
only node at the output with the approximate action value. This approach can be
visualized in figure 3.7.

Fig. 3.7 Neural Network action generalization[6].
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The update rule for Sarsa with function approximation will look like:

w ← w+α (Rt+1 + γ q̂(St+1,At+1,w)− q̂(St ,At ,w))∇q̂(St ,At ,w) (3.80)

If instead Expected Sarsa is preferred, the equation becomes:

w ← w+α

(
Rt+1 + γ ∑

a′
π(a′|St+1)q̂(St+1,a′,w)− q̂(St ,At ,w)

)
∇q̂(St ,At ,w)

(3.81)

Finally, it is easy to obtain from Expected Sarsa the update rule for Q-learning
with function approximation:

w ← w+α

(
Rt+1 + γ max

a′
q̂(St+1,a′,w)− q̂(St ,At ,w)

)
∇q̂(St ,At ,w) (3.82)

Action value estimates are also very useful when it is matter of promoting
exploration.

Fig. 3.8 Exploration with action values[6].

However, the ε Greedy policy is not a direct exploration method because it
relies on randomness to discover better actions near states followed by the current
policy which means that is not as systematic as exploration methods that rely on
optimism.
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So far, all the methods analyzed aimed to estimate state or action values in
order to learn a good policy. However, a policy can be parametrized directly
which means choosing an action based on the state of the environment without
computing its value or an action value before picking the best action. Figure 3.9
is quite explicative in comparing the parametrized policy with a parametrized
approximation function.

Fig. 3.9 Parametrized policy and function approximation[6].

The state and action are the inputs and, as w was used to indicate the weights
added to the input of an approximation function, the letter θ is used to indicate the
parameters of the parametrized policy that will output the probability of taking
that action in that state. The policy π must be a legit probability distribution
which means it has to satisfy the two following requirements:

• The probability of selecting an action has to be greater than or equal to
zero;

• For each state, the sum of the probabilities over all actions must be equal to
one.

The Soft-max Policy is an effective way to satisfy these statements:

π(a|s,θ) =̇ eh(s,a,θ)

∑b∈A eh(s,b,θ)
(3.83)

The function h is called the action preference and it should not be confused
with the action value, it is just an indicator of how much the agent is prone to
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select a certain action. The action preference is a parametrized function that can
assume whatever kind of approximation (linear, NN, ...) because the constraints
are respected by how π is built. In fact, the exponential function at the numerator
guarantees the positivity of the probability for each action, while the sum at the
denominator is meant to normalize the output of each action to make all the
probabilities sum up to one.

The reader may wonder why it wasn’t enough to estimate the action values
and then search for the optimal policy, so now all the advantages and downsides
of learning directly a policy will be evaluated. First of all, the agent can make its
policy more greedy over time to allow higher exploration at the beginning when
the estimates are not accurate. Then, as the learning progresses, the policy can
converge to a greedy deterministic policy. Starting stochastically also allows to
get out from possible situations where the agent is stuck in a state due to a poor
function approximation. Acting randomly helps the agent to complete the task.
Finally, directly learning a policy sometimes can turn out to be much easier than
evaluating all the state-action pair values of a complex environment.

Now, as previously done for action-value-based methods, it is necessary to
specify an objective and estimate its gradient. When directly learning a policy,
choosing an objective is more straightforward than it was with value-based meth-
ods since the reward itself is the objective, to be maximized in the long-term in
this case. Undiscounted or discounted rewards can both be used as objectives
depending if the task is episodic or continuing. In the following is reported
the formula of the averagereward, another type of reward not mentioned before
because out of the interest for the author, but now useful to understand how to set
the objective.

r(π) = ∑
s

µ(s)∑
a

π(a|s,θ)∑
s′,r

p(s′,r|s,a)r (3.84)

Now the goal is to define a policy that maximizes the reward. The idea is to
estimate the gradient of the objective with respect to the policy parameters and ad-
just them based on the estimates. This approach is called Policy Gradient Method.
Computing the gradient is not that easy, unfortunately, this is because by changing
the policy the distribution µ changes too. To solve this issue is suggested to
apply the Policy Gradient T heorem that turns the gradient of equation 3.84 into
equation 3.85:
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∇r(π) = ∑
s

µ(s)∑
a

∇π(a|s,θ)qπ(s,a) (3.85)

Where the gradient of the policy π tells how to adjust the parameters to
increase the probability of a certain action in that state. On the other hand, the
associated action value gives a sort of weight in the sum over the action probability
gradient. Again, computing the sum over states is impractical so the gradient is
going to be approximated thanks to a stochastic sample of it. The updates are
done from the states observed while following policy π . The stochastic gradient
descent update will look like this:

θt+1 =̇ θt +α ∑
a

∇π(a|St ,θt)qπ(St ,a) (3.86)

Where St is the sampled state under policy π . With some mathematical
computations it is possible to get rid of the sum over actions and turn it into an
expectation over policy π , transforming equation 3.86 into:

θt+1 =̇ θt +α
∇π(At |St ,θt)

π(At |St ,θt)
qπ(St ,a) (3.87)

Or even better:
θt+1 =̇ θt +α∇lnπ(At |St ,θt)qπ(St ,a) (3.88)

Equation 3.88 should now look familiar to the reader because it is very close to
many of the learning equations seen up to now. The policy is known and so is its
parametrization therefore computing the stochastic gradient of the objective to
proportionally adjust the parameter θ is now easy. Then, a step size parameter α

is used to control the magnitude of the step in the direction of the gradient. To
complete the update equation, it is finally necessary to compute the action value.
Unfortunately, qπ is unknown and so must be approximated in a variety of ways,
for instance in the following expression is adopted a TD algorithm.

θt+1 =̇ θt +α∇lnπ(At |St ,θt) [Rt+1− R̄+ v̂(St+1,w)] (3.89)

In equation 3.89 it is hidden the role of the well-known Reinforcement Learn-
ing algorithm named Actor−Critic. The parametrized function v̂ is a learned
estimate of the value function and it represents the critic part of the Actor-Critic
algorithm. To train the critic, any state-value learning algorithm can be adopted.
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Fig. 3.10 Actor and critic.

On the other side, there’s the parametrized policy which constitutes the actor
part that uses the policy gradient updates shown in the equation above. Making
a little step forward in the update formulation, it’s possible to subtract from the
next state value estimate the current value estimate. In this way, it is obtained the
TD error inside the square brackets.

θt+1 =̇ θt +α∇lnπ(At |St ,θt) [Rt+1− R̄+ v̂(St+1,w)− v̂(St ,w)] (3.90)

It might be a little confusing but with a simple theoretical demonstration it
can be proven that adding the estimate of the current state, which behaves as a
kind of baseline, to the update rule does not change the value of the expectation
of the update. This step is useful because it is now possible to rewrite the two
update rules present on an Actor-Critic algorithm as a function of the TD error in
order to highlight how this approach works.

w ← w+α
w

δ∇v̂(S,w) (3.91)

θ ← θ +α
θ

δ∇lnπ(A|S,θ) (3.92)

In Figure 3.11 it is possible to see a visual representation of the functioning
of an Actor-Critic algorithm. At each time-step, an action is taken according
to the policy, and the next state and reward are obtained from the environment.
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With this data, the TD error is computed and the estimate of the return is updated.
In the same way, the weights of the value functions and the parameters of the
policy are updated using the policy gradient update. The TD error is used as an
indicator of how good the action taken by the actor was. If the value is higher
than what is expected by the critic, the policy parameters are changed in a way
that increases the probability of taking that action in that state. On the other hand,
if the critic is disappointed by the reward obtained from a certain state-action pair,
then its probability is reduced. The actor and the critic are constantly learning
by interaction: the actor is always changing the policy to exceed the critic’s
expectation while the critic is constantly updating the value function to evaluate
the changing policy. This loop continues forever if not externally interrupted,
that’s why this approach is particularly suitable for continuing tasks.

Fig. 3.11 Actor and critic loop[6].

3.6 DDPG, TD3 and SAC

All the RL fundamentals have been covered so far but, as the reader could
guess, there are plenty of different algorithms living under the same Machine
Learning branch. Dealing with episodic or continuing tasks, working with discrete
rather than continuous spaces for action or even states, learning policy directly
or estimating state-action value and then greedify, and much more different
approaches have pushed during the last decade to the development of several
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types of agents. In the following, some of the most promising, performant, and
cutting-edge agents, suitable for the study case, are illustrated.

The first agent proposed is called DDPG, where the acronym stands for
Deep Deterministic Policy Gradient. It is an actor-critic learning agent where
the actor and critic networks are implemented using deep NN to better handle
high dimensional state and action spaces. It searches for an optimal policy
that maximizes the expected cumulative long-term reward. One feature worth
remarking on is the type of the spaces: the state space can be both continuous
and discrete but the action one must be continuous. This type of action space
represents an additional complexity to the algorithm and how it handles data but
it’s necessary if it is wanted to improve the quality of the action-taking capability
of the agent. DDPG is called a model-free agent because it interacts directly
with the environment and does not rely on some simulated dynamics of the
environment in a structure called model. When dealing with complex scenarios,
trying to build an internal representation of how the environment works is almost
unfeasible, that is why rather than planning through a model, the agent learns by
trial and error. Obviously, as a key feature of every RL method, it is an online
algorithm that learns while interacting, gaining a proper experience as a human
being would do. Furthermore, it is an off-policy algorithm. The theory behind this
concept has already been explained but, for the sake of completeness, it consists
of behaving following a certain policy but estimating state values according to
another policy called target. In particular, DDPG works with four networks as
function approximators: an actor, a target actor, a critic, and a target critic. This
configuration allows to update the parameters of the parametrized target policy
and the weights of the target critic increasing the stability of optimization. The
learning process of this agent is characterized by a kind of experience replay
technique: the stream of data coming from the interaction of the agent with
the world (state, action, reward, next state) is stored in a replay buffer. Then a
mini-batch is sampled randomly from the buffer during training to increase the
learning stability.

The direct evolution of DDPG is the agent named Twin−Delayed Deep
Deterministic (T D3) Policy Gradient. Most of the underlying structure is com-
mon between TD3 and its predecessor because they are both model-free, online,
off-policy reinforcement learning agents that search for an optimal policy that
maximizes the expected cumulative long-term reward. Also, for this method,
the state space can be both continuous and discrete while the action space is
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only continuous. As an improvement of the DDPG, the TD3 brings mainly three
modifications to the algorithm:

• It learns two Q-value functions (i.e. the critics) and uses the minimum value
function estimate during policy updates;

• It updates the policy and targets less frequently than the Q functions;

• It adds noise to the target action.

To limit a possible overestimation of the value function, TD3 uses four net-
works for the critic part of the agent, two for the behavioral critic, and two for the
target critic. Then, at each timestep, each critic computes its estimate of the state
value but the agent only takes the minimum between the two behavioral critics
and the minimum among the two target critics. This is an attempt to decrease a
bit the critics’ expectations on the value function. Both the couples of critics can
have critics with different structures of the networks but they work better if the
same architecture is shared. If this last case holds, the weights must be initialized
in a different way and, as a mathematical rule, the number of target critics must
always match the number of critics. The learning process of the agent is quite
the same between the DDPG and the TD3 which still relies on a replay buffer
and on a sample of it to compute the stochastic gradient and update the network
parameters, both for the value function and the policy. The only additional step
introduced by TD3 is the perturbation of the chosen action using a stochastic
noise model to make the actor less likely to exploit actions with a high Q-value
estimate, especially because this agent as DDPG adopts a deterministic policy.

The third and last agent presented is the latest evolution of DDPG and TD3
called So f t Actor−Critic (SAC). Even if the core structure is shared with the
two agents presented, this algorithm hides some huge novelties. Starting from
what it has in common, it is an actor-critic agent working online with an off-policy
approach in a model-free environment. Again, the state and action spaces are
the same as before, but the first relevant difference is that now the actor adopts a
stochastic policy to pick an action. Previously, with a deterministic policy, the
agent related to each state one and one only action. With stochastic policy, things
are quite different. The action generation starts as always with the reception of
a state as input to the NN whose role this time is not approximating the most
suitable action but the mean value and the standard deviation of a Gaussian
distribution. If earlier the policy parameters update were meant to improve the
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agent performance in action selection, this time the updates have the role to shape
a Gaussian distribution that step after step becomes always narrower around its
mean that usually is the action with the highest value. This approach implies
that, during the training of the agent, the actor will never choose greedily with
respect to his action. Of course, when testing the agent, the actor’s policy can be
switched to deterministic to let it exploit what it has learned during training at its
best. Using a probability distribution for action selection provides the algorithm
an intrinsic randomness because the action is sampled from the distribution.
Being a Gaussian distribution unbounded it could lead, even if with very low
likelihood, to the selection of some very poor actions, that’s why once the action
has been sampled from the curve, the tangent function and then a scaling function
is applied to bound and re-scale the action. Figure 3.12 shows a diagram visually
representing what has just been covered.

Fig. 3.12 How the stochastic policy is created [7].

Moving to the core of the agent, it still relies on two sets of two critics each for
the behavioral and target part of the critic side. Concerning the actor, the duality
between behavioral and target actor is abandoned in favor of a configuration
that sees only one actor since the agent selection procedure contains implicit
stochasticity. Anyway, the main novelty introduced by SAC has not already
been mentioned. This RL agent is looking for an optimal policy that not only
maximizes the expected cumulative long-term reward but also the entropy of the
policy. In a more general way, entropy can be defined as “. . . the measurement of
uncertainty over the value a random variable can assume” [26]. In this context,
entropy is the measure of selecting an action in a certain state according to a
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policy. It should be clear how this concept perfectly fits with a stochastic policy
because there’s no uncertainty around a deterministic policy. The search for
a policy that maximizes both the reward and the entropy is formalized by the
so-called “Max-ent formulation” reported here below:

max
π

E

[
H

∑
t=0

rt +βH (π(·|st))

]
(3.93)

Equation 3.93 aims to maximize, under policy π , the expectation of the
cumulative long-term reward and the entropy function H of the action to be
selected in state St under policy π . The entropy is weighted by a trade-off factor
β that will be updated during learning based on the obtained returns. Adding
this term to the expected value to be maximized introduces, without doubt, a
sub-optimal behavior in the short-term period because it enhances the randomness
around the action, but this formulation should be seen as a long-sighted approach.
In fact, this entropy not only makes the policy more robust in the case of change in
the environment but also improves learning by promoting an exploratory behavior
that permits the collection of way more data about the world in the long run.



Chapter 4

Energy Management System

4.1 Introduction

As has been shown so far, with the great potentialities of Hybrid Electric Vehicles
also comes a much higher complexity than a conventional vehicle. This is the
product of having two different propulsion systems, with two completely different
energy sources, that propel the car. The primary energy source is generally the
chemical energy stored in the fuel used by the Internal Combustion Engine. As
previously explained, providing an ICE vehicle with an Electric motor always adds
some more Degrees of Freedom (DoF) in terms of operating modes independent
of the architecture or the position of the EM. These additional DoFs create the
potential of a very efficient vehicle with the additional cost for a sophisticated
high-level controller rather than just a low-level one, as it was for a conventional
ICE vehicle [27]. This additional controller is called Energy Management System
(EMS) and it is composed of two parts, as shown in figure 4.1[1][28]:

• Supervisory controller: decides the best operating mode considering the
operating conditions of the vehicle and the powertrain;

• Energy Management System: decides the power split among the actuators
based on the vehicle’s operating conditions, the powertrain’s ones, and the
information coming from the supervisory controller.

The EMS represents the cutting-edge technology that administers the mutual
interaction between the electric motor, the internal combustion engine and the
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Fig. 4.1 The role of energy management system in a hybrid electric vehicle [1].

energy storage system. It decides when and how to enable certain modes to opti-
mize energy consumption, enhance vehicle performance and reduce the pollutant
emissions from the ICE and its after-treatment devices. How to satisfy the road
request while optimizing the energy path along the driveline is the role of the
EMS. Thanks to several sensors that measure various vehicle parameters while
the vehicle is running, the EMS is able to compute the best working mode at each
time instant through complicated algorithms. Exploiting the optimal operating
area for the ICE, taking advantage of the strengths of an electric motor while
considering the battery State of Charge (SoC), maximizing energy recovery and
regenerative braking while ensuring driving performance and pleasure for the
driver are all the objectives of the EMS.

Fig. 4.2 Control loop on board[2].
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The EMS output, and so the parameter it uses to control the powertrain
behavior, is the instantaneous torque delivered and the torque split among the
available resources.

It should be now clear that the optimization problem has a very large number
of design variables (like powertrain architectures and components) and control
parameters (like operating modes, transmission control policy, braking policy. . . )
and so developing EMS algorithms necessary means facing a large-scale numeri-
cal problem. Mathematically speaking optimization is the process of minimizing
(or maximizing) an objective function J subject to some constraints on the design
variables or control parameters. Within this thesis, the focus will be on finding the
best control strategies and so the authors will try to optimize the vehicle operation
instant by instant with given architecture and powertrain elements specifications,
so with fixed design variables.

4.2 Conventional strategies

4.2.1 Rule-based strategies

This category is the only solution for an EMS to handle the energy path without an
explicit optimization of a sort of objective function (or cost function). These strate-
gies only imply a set of heuristic methods based on engineering considerations on
the best operating mode for the vehicle in certain particular conditions[29]. It is
worth noting that this solution is quite far from being optimal and it is also very
sensitive to the vehicle parameters but they represent a good solution because
they are easy to implement and computationally light with respect to formal opti-
mization problems[30][31]. Anyway, these methods are very commonly applied
on marketed vehicles.
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SOC > 0.5
AND

Vveh < 55km/h

accveh > 0.1m/s2

AND
Pdmd < 7.5kW

Pdmd < 15kW

Parallel Mode

EV Mode

NO

NO

NO

YES

YES

YES

Fig. 4.3 An example of rule-based control[3]

In figure 4.3 it is represented an example of the logic behind the EMS based
on heuristic methods. Rule-based strategies rely on a set of logical rules, usually
“if-then” statements, that an algorithm exploits to properly split the power among
the energy sources according to the current driving conditions. Based on some
relevant parameters such as the battery SoC, the vehicle speed, the load required
by the driver at the accelerator pedal and others. During the vehicle operation,
the EMS gathers information from several sensors about the relevant parameters
needed and then, following the pre-set rules, it determines the working mode
for the powertrain and so the power allocation. The greatest advantage of this
approach is its simplicity: straightforward to implement and based on engineers’
know-how about vehicle functioning. On top of that, this control method is
applicable in real-time since the computation effort needed to make a decision is
almost negligible and so the system can easily and quickly react to any change in
the driving scenario. Being computationally cheap, this approach was applied and
still is, to cost-effective HEV models because it does not need costly and extensive
computational resources. However, the limitations of this solution are not of minor
relevance, that is why a better solution has been deeply investigated and much
effort has been put to apply it on vehicles with more sophisticated and performant
algorithms. Among all, the lack of adaptability is probably the most striking. The



4.2 Conventional strategies 61

rules are simple and cover the majority of the common driving operations of a
vehicle but they struggle to adapt to complex scenarios and transient conditions,
providing as a result, poor exploitation of the energy sources. This is one of the
first reasons that causes the algorithm to be sub-optimal, but also not being able
to properly read the driving scenario or to predict the upcoming driver behavior
is another one. They lack optimality if compared to other solutions where the
energy management at each instant is based also on the prediction of the current
driving conditions. Furthermore, tuning these empirical rules for a certain vehicle,
and for certain scenarios, can be very demanding and even without a real optimal
solution. In conclusion, these methods are certainly a way to handle energy on
board a HEV but different, and hopefully better, ways must be found.

4.2.2 Optimization-Based strategies

The key feature of this category of approaches is that they all strive to find
the best possible outcome for the task they are designed for, by minimizing
or maximizing a certain objective function also called cost function. Dealing
with the energy management of a Hybrid Electric Vehicle, the cost function is
usually defined as dependent on the fuel consumption, battery SOC variation,
pollutant emissions, after-treatment device temperature and other parameters,
either by themselves or as a combination of them [2]. With the minimization of
a cost function, the ultimate goal for this method is to achieve optimality in the
exploitation of the energy stored on board by properly splitting the power between
the electric motor and the internal combustion engine. The optimization can be
global or applied online and under these two labels [32], different optimization
methods can be identified: the Dynamic Programming (DP) [33] and Pontryagin’s
Minimum Principle (PMP)[34] are global optimization methods while Equivalent
Consumption Minimization Strategy (ECMS)[35] or Model Predictive Control
(MPC)[36] are online methods.

Global optimization methods

The two methods mentioned above belonging to this category are called global
because by considering the entire driving cycle they try to find the optimal control
trajectory that minimizes the cost function. This aspect gives them the chance to
actually reach the optimal control strategy for a certain driving cycle because the
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optimization process relies on the complete knowledge of the task, all the future
actions are known in advance so it is possible to compute the best sequence of
actions, and so the power split among the two onboard sources in this case, in
order to achieve the minimization of the cost function. The two main approaches
of this category are now briefly analyzed.

• Dynamic Programming

"The principle of optimality suggests that an optimal policy can
be constructed in piecemeals, first constructing an optimal policy
for the “tail subproblem” involving the last stage, then extending
the optimal policy involving the last two and continuing in this
manner until an optimal policy for the entire problem is found."
Bellman, 1949 Principle of Optimality [33].

Dynamic programming (DP)[33][23] is used to solve multi-stage decision
problems with the aim of minimizing a cost function. The problem is
structured by identifying the state variables x(t), those representing the
state of the system and its evolution in time, the control variables u(t),
those chosen to be the way through which the system behavior is controlled
and the ones that the algorithm can use to reach optimality, the cost of a
state g(x(t),u(t)) which represents the value to be minimized at each time
instant. At the end of the task, all the instantaneous costs will be summed
in the total cost that depends on a precise control trajectory and so the
trajectory of the minimum total cost is called the optimal trajectory.

Total cost J(x0,u0, . . . ,uN−1) = gN(xN)+
N−1

∑
k=0

gk(xk,uk) (4.1)

Optimal cost Jopt(x0) = min
uk∈Uk(xk)

Jk(x0,u0, . . . ,uN−1) (4.2)

Optimal control strategy [u∗0, . . . ,u
∗
N−1] = arg min

uk∈Uk(xk)
Jk(x0,u0, . . . ,uN−1)

(4.3)
Now, it has been mentioned the so-called tail sub− problem which means
solving the search for the optimal strategy starting from the last stage, the
tail, and moving back until the initial state is reached. This method is
particularly effective since the optimal cost for the considered sub-problem
is found by minimizing the sum of the current state and the optimal cost-to-
go which is the optimal cost computed in the previous computation stage. In
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this way is possible to build the optimal control strategy iteratively solving
a tail sub-problem, moving off one stage at a time. The whole optimization
process can be subdivided into two main phases: the backward phase and
the forward phase.

As just completely explained, the first phase is meant to solve the tail
sub-problem, increasing the length o f the tail step by step and storing the
optimal value of the cost function and the optimal control sequence for each
iteration and for each possible state of the system. For all xN set:

Jopt
N (xn) = gN(xN) (4.4)

For each k = N-1,N-2,...,0 evaluate iteratively:

Jopt
k = min

(
g(xk,uk)+ Jopt

k+1 ( fk(xk,uk))
)
∀xk (4.5)

Then, for the forward phase, the algorithm starts from the initial state x(0)
of the system and uses the stored value of the optimal cost function in order
to identify the related control trajectory and proceeding with the simulation
until the last instant of the task. For each k = 0,1,...,N-1 evaluate:

uk(xk) = argmin
(
g(xk,uk)+ Jopt

k+1 ( fk(xk,uk))
)

(4.6)

and advance the simulation:

xk+1 = fk(xk,uk) (4.7)

When dealing with HEV and Energy Management System [37], the most
used state variables are the battery SOC and the engine state while, for
the control parameter, it is straightforward using the gear number and the
power split factor α which is the ratio between the torque of the electric
motor and the total torque required by the road. These must not be taken
as rules but they are a good starting point to understand how to treat our
specific case with Dynamic Programming.

• Pontryagin’s Minimum Principle
Starting from the Euler-Lagrange equations including constraints on the
control inputs, the minimum principle of Pontryagin (PMP) generalizes
those concepts[34]. To dive a little bit the principle, let’s start with the
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definition of the Hamiltonian function H:

H(x,u, p) = F (x(t),u(t))+ pT f (x,u) (4.8)

where p is the co-state vector. The objective with this approach would be
of minimizing a performance index J defined as:

J = Φ
(
x(t f )

)
+
∫ t f

t0
F (x(t),u(t)) (4.9)

where the dynamics of the state depends on the state itself and on the control
variables and x(t0) = x0 and x(t f ) = x f . The optimal control strategy will
be:

u∗(t) = argmin
u∈U

(H(x,u, p)) (4.10)

And the necessary condition for u to be the optimal control action is:

Ṗ = −
(

∂H
∂x

)T

(4.11)

For an HEV application, the PMP optimization problem can be defined as
follow:

J =
∫ t f

t0
ṁ f (u)dt subject to SoC(t0) = SoC(t f ) (4.12)

What these two approaches have in common is in the limitation of offline applica-
tions only. This is due to two main reasons:

• They rely on the knowledge in advance of the whole driving cycle (more
in general on the future information of the task itself) and so they are not
applicable online, in driving scenarios never met before, because they could
not be provided with future data if not based on predictions and so not
compliant with the optimality principle.

• Especially for DP, the computational cost rises quickly with the increasing
number of states and control variables. The more the state is accurately
represented by many variables, the more reliable will be the optimal control
trajectory identified. The same holds if the variables are highly discretized
or even continuous. On one side, the solution will be always more accurate
but, as a shortcoming, the number of computations will grow rapidly facing
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the so-called Curse o f dimensionality[2]. For this reason, the computa-
tional burden is too high to apply these solutions online.

Online optimization method

Also known as Static optimization method, they are the answer of the automotive
industry to the limitations of the global optimization methods. Instead of requiring
information on the whole task, from the beginning to the end, these methods try
to optimize the power split by only relying on the short-term time horizon of the
past and, if possible, of the future. In this way, optimization turns from a global
to a local one.

• Equivalent Consumption Minimization Strategy (ECMS)
One of the most known approaches is the ECMS which aims to minimize
instantaneous fuel consumption using powertrain information to estimate
the energy flow. As it is possible to easily understand from the name, this
method exploits the concept of an Equivalent Fuel Consumption where,
thanks to an equivalence f actor, the energy consumption of the battery is
summed to the actual fuel consumption coming from the ICE. This sum
represents the function the algorithm strives to locally minimize realizing
a real-time optimization. In the following is reported the formula of the
equivalent fuel consumption:

ṁ f ,eq(t) = ṁ f (t)+ ṁv(t) (4.13)

where obviously, ṁ f is the mass flow rate of the fuel and ṁv is the virtual
fuel consumption coming from the electrical energy used can be defined as
follow:

ṁv(t) =
s(t) ·Pbatt(t) · p(SOC(t))

Qlhv
(4.14)

where:

– s(t) is the Equivalence Factor converting the battery energy into fuel
energy

– Pbatt(t) is the instantaneous power provided or absorbed by the battery

– p is the penalty f unction which is a correction defined by the differ-
ence by the current SOC(t) and the target value

– Qlhv is the fuel lower heating value [MJ/kg]
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The concept of considering the electrical energy expenses as fuel consump-
tion is that, if the vehicle is propelled by the EM, solely or in collaboration
with the engine, later during the cycle, that energy will be restored by the
engine itself in a recharging phase so increasing the fuel consumption with
respect to the one needed to satisfy the required load. This is because, most
of the time an HEV operates in Charge-Sustaining (CS) mode and so the
initial energy present in the battery should equal the one at the end of the
cycle plus or minus a certain tolerance. This does not hold for Plug-In HEV
which usually runs in the combination of Charge-Depleting (CD) and CS
modes.

The performance of the logic behind the ECMS holds in its equivalence
factor. That constant establishes the degree of conversion of the battery
energy into fuel energy:

– if the factor is too high, the usage of the EM is discouraged and so the
controller mainly relies on the engine not exploiting as it could the
potentiality of an HEV;

– if the factor is too low, the cost given to the battery energy is low
enough to often promote the usage of the EM leading to an advanced
battery depletion.

From this reason comes the main limitation of the ECMS, where the equiv-
alence factor should be properly tuned on the specific task and cannot fit
different driving cycles, otherwise it would output very poor results. The
ECMS is applicable online because it does not require future information to
run over a driving cycle but, concerning the equivalence factor evaluation,
it requires information about the vehicle mission profile. To overcome this
issue, Adaptive-ECMS (AECMS) has been proposed as a solution to avoid
the need for information about the driving scenario because the equivalence
factor is updated according to the current driving conditions.

• Model Predictive Control (MPC)
At every time instant the current state and inputs are considered as the initial
condition of the optimization problem. From that data, the prediction of the
short-term future and then a finite-time open-loop optimization problem is
solved online in the so-called rolling optimization phase. The first action of
the optimal strategy evaluated at that time instant is applied to the system
under control. Then the procedure is repeated at each time instant using
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as a starting condition the new state of the system in a sort of feedback
correction phase. MPC-EMS[38] is considered one of the most promising
control strategies due to its reasonable computational cost and ease of
control effect. It is characterized by the main following advantages:

– Thanks to a short-term prediction of the vehicle operating mode,
it responds to the change in the power demand by improving the
vehicle’s performance. This benefit can be obtained by applying
different procedures like the k-nearest neighbor method to identify the
current driver model and so predicting future parameters or proposing
a robust fuzzy MPC scheme.

– While optimizing the energy split in the short-term predictive range,
MPC is also able to consider multi-objective functions. In fact, the
search for an optimal control depends also on the definition of the cost
function that can contain different goals such as fuel consumption
minimization, battery degradation cost, reduction of engine start and
stop events. . .

– Integrating in the optimal control strategy the system constraints is
fundamental like making the ICE and EM work at the allowed speed
and power. Anyway, the dynamic constraints also play a relevant
aspect in the optimization process, the value of the SOC is one of the
main constraints for an HEV, especially if a real fuel consumption
reduction is targeted. These constraints are easily implementable in
MPC.

4.3 Current AI-based control strategies

During the last twenty years, loads of step forward has been made in terms of
applicability and performance when talking about EMSs for HEVs. From the first
rule-based strategies, the optimality has constantly increased all the way to the
recent introduction of Artificial Intelligence (AI) algorithm[39]. The huge study
and advances carried out in the AI field, summed with the enhancement on the
computational platforms provided to vehicles, has brought great interest in the
application of Machine Learning (ML) techniques to improve the HEV energy
management.
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Fig. 4.4 Evolution of EMSs from 1993 to 2018 [8].

AI methods seem promising not only because they can be applied online since
they don’t require any data about the driving cycle, but also because they aim to
reach global optimality rather than a local one as it was for ECMS or for MPC.
They are able to process vast amounts of data and they can learn how to quickly
adapt to changes in the environment where they are asked to operate, from urban
congestion to highway cruising. Based on all the information gathered at every
instant, AI approaches can identify the current driving scenario and accordingly
the most suitable driving mode and the best power allocation. Any kind of ML
has been applied to solve the energy management problem, from Supervised
Learning, Unsupervised Learning and Reinforcement Learning.

Furthermore, AI-powered EMS can be not only passive in orchestrating
the energy flow just by reading the current driving conditions but they can be
proactive in the energy management by predicting future driving scenarios. By
analyzing and combining different data such as traffic patterns, topography and
weather forecasting (or current conditions) they can optimize the power allocation
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and choose the most suitable operating mode to better deal with the upcoming
events[40].

Integrating this kind of tool into HEV EMS has immense potential but it
is still at the very early stage and plenty of work must be done to achieve a
good accuracy of the models, create robust and reliable algorithms, handle the
computational complexity and properly collect the huge amount of real-time data
most of these sophisticated algorithms require. Anyway, the horizon has never
been so promising for EMS of HEV where AI technology represents a huge leap
forward towards always more efficient algorithms able not only to use the HEV
potential more effectively but also to enhance the driving experience.





Chapter 5

Test case

5.1 Vehicle specification

As previously mentioned, the thesis work aims at developing a supervisory control
for a Hybrid Electric Vehicle. For this reason, the selected vehicle used as the base
to create its digital twin is a Mercedes E300de, a state-of-the-art diesel PHEV
available in the European market. The powertrain layout is schematically shown
in figure 5.1.

ICE: Internal Combustion Engine HPCU: Hybrid Power Control Unit K0: Separation Clutch 

EM: Electric Machine PTC: Positive Temperature Coefficient TC: Torque Converter
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Fig. 5.1 Powertrain layout: a diesel engine is connected through an auxiliary clutch to an
EM. Both the ICE and the EM are connected to the transmission by means of a torque
converter.
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Table 5.1 Vehicle and powertrain main specifications.

Vehicle
Curb Weight [kg]

Power [kW] @ 100 km/h
2060
14.9

Transmission Type 9-AT w/ Torque Converter

ICE

Type
Displacement [cm3]

Max Power [kW] @ 3800 rpm
Max Torque [Nm] @ 1600-2800 rpm

Compression Ratio

In-line 4 cylinders Turbo Diesel
1950
143
400

15.5:1

EM

Type
Max Power [kW] @ 2000 rpm
Max Torque [Nm] @ 1750 rpm

Max Speed [rpm]

PM Synchronous Motor
90
440

6000

HV Battery

Type
Rated Voltage [V]

Cacapity [kWh]/[Ah]
Cooling System

Li-NMC
365

13.5/37
Water Cooled

The propulsion system relies on a conventional 2.0-liter diesel ICE compliant
with the Euro 6d-temp legislation coupled with a 90 kW Permanent Magnets (PM)
synchronous EM through an auxiliary clutch (K0) realizing a P2 architecture. Both
the ICE and EM drive the rear axle through a 9-speed Automatic Transmission
(AT) with upstream a Torque Converter (TC). To feed the EM, a 13.5 kWh Li-Ion
Nickel-Manganese-Cobalt-oxide (Li-NMC) HV battery is placed towards the
back of the vehicle, guaranteeing a full-electric range of 54 km and a maximum
speed in full-electric mode of 130 km/h. The Low Voltage (LV) loads, i.e. the 12V
starter and the electrical oil pump for gearbox lubrication, and the 12V battery
are connected thanks to a DC/DC converter to the HV battery that supplies them
with electrical energy. All these features are summarized in table 5.1.

A PHEV is meant to be operated in two different modes:

• Charge Depleting (CD):
Usually enabled with high level of State of Charge (SOC) of the battery,
it consists in propelling the vehicle with the EM only in the so-called
full-electric mode and so depleting the charge present in the battery;

• Charge Sustaining (CS):
This operating mode is usually associated to an HEV with a small battery
or to a PHEV that is out of the window to keep going in CD mode. When
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the SOC hits a pre-set lower threshold, the ICE is switched on and a blend
of both the ICE and the EM is adopted in order to maintain the SOC in a
certain range.

Even if the combination of these two modes represents the best way to exploit
all the potentialities of a pHEV, in this project only the CS mode will be considered
to test the vehicle over standardized mission profiles.

To obtain the vehicle performance and all the possible powertrain operating
conditions, it has been subjected to a massive experimental campaign where
through reverse engineering procedures the various operating modes have been
analyzed [41] [42]. The experimental measures have been carried out thanks to an
All-Wheel Drive (AWD) dynamometer where the vehicle, equipped with Portable
Emissions Measurement System (PEMS), was run on Real Driving Emission
(RDE) scenarios. A Hybrid Power Control Unit (HPCU) connected to the HV
inverter handles the energy flows between the EM and the HV battery pack and
enables four possible operating modes according to the driver’s power request
and desire. A brief explanation for each of them is here reported:

• Hybrid Drive:
The ICE and EM work in cooperation to satisfy the road request, all the
possible hybrid modes are available, from energy recovery to the electric
boost meant to cover the transient response of the ICE;

• Electric Drive:
The vehicle is propelled relying only on the EM following what has been
previously defined as CD mode. This modality is usually enabled when
traveling at low speeds or in congested scenarios;

• E-Save Drive:
This mode sees again the ICE and the EM working in combination but this
time ensuring the sustaining of the battery SoC;

• Charge Drive:
The road load is totally covered by the ICE which is asked to output an
even higher power, running at a high-efficiency point, to charge the battery.

One final feature to point out is how the Hybrid Drive or Electric Drive is
mechanically realized. Considering figure 5.1, the device in between the ICE
and the EM is the clutch K0 that discriminates between the two modes. When
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engaged, it couples the two propulsion systems that run synchronously to provide
the necessary power. When the clutch is disengaged it relieves the powertrain
from engine inertia and the EM drives the whole drivetrain in full electric mode
avoiding the waste of dragging the ICE.

5.2 Mission profiles

Concerning regulatory driving cycles, i.e. WLTC and NEDC, they present a clear
procedure to follow on the chassis dynamometer for type-approval purposes[43].
If the testing involves a PHEV, the guidelines defined in the UNECE Regulation
83 require two tests [44]:

• Condition A:
At the beginning of the test, the HV battery must be fully charged;

• Condition B:
At the beginning of the test, the HV battery must be fully discharged.

According to the guidelines of the legislation, Condition B has to be repeated
both with a warm engine right after Condition A and a cold engine one day after
Condition A. Table 5.2 shows the main characteristics of the most representative
cycles used during the experimental campaign.

On the other hand, the RDE cycles shown in table 5.2, were performed to
identify the control logic rather than to certify the vehicle performance over
regulatory mission profiles. Some of the RDE cycles were carried out on the
test bench, while others were run on public roads around the Italian city of Turin
(these cycles are denoted with the symbol ✗ in table 5.2). All those RDE cycles
allow to test the vehicle in a wide variety of driving conditions ranging from urban
congested scenarios to motorway routes or even uphill and downhill rural roads.

By the way, the driving cycles database was not only used to evaluate the real
vehicle performance and to run reverse engineering analysis on its powertrain
operating conditions. Those cycles represent tasks and so episodes that can be
used to train a RL agent. In the specific case considered, the environment will be
made up of a virtual vehicle model running on a standardized cycle. As previously
highlighted, RL is different from Supervised or Unsupervised Learning and it
does not need a huge static database to learn but it directly interacts with the
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Table 5.2 Characteristic values of the cycles performed during the experimental campaign.

Cycle Time Distance Avg.
Speed

Max
Speed

Avg.
Acc.

Max
Acc.

Required
Energy

Test
Bench

[s] [km] [km/h] [km/h] [m/s2] [m/s2] [Wh/km] [−]

NEDC 1180 11 34 120 0.38 1.42 184 ✓
WLTC 1800 23 47 131 0.41 1.84 222 ✓

RDE1 838 13 57 161 0.74 5.56 274 ✗

RDE2 4322 69 57 128 0.36 1.74 258 ✗

RDE3 4327 68 56 144 0.37 1.91 273 ✗

RDE4 6657 89 48 126 0.30 1.68 207 ✓

RDE5 6666 89 48 126 0.29 1.69 215 ✓

RDE6 5926 97 59 139 0.38 3.41 225 ✗

RDE7 5532 97 63 138 0.35 4.22 223 ✗

world proposed. This means that it is enough to submit a cycle to the agent and
let it run over the same cycle several times until a convergence of the reward is
obtained. The agent training step will be deeply explained in section 6.3 but it is
worth mentioning here that for that purpose only the WLTC is selected because
representative of various real-world driving patterns. To what concerns the testing
of the agent, the choice can be easily expanded to the other cycles of the database
to assess the performance of the agent, especially when it is asked to interact in an
environment that it has never seen before. This is the best practical test to evaluate
the ability to generalize of the agent. Many more details on that in section 7.2.2.

5.3 Modelling approach

Nowadays, the majority of the analysis carried out at the production level of the
vehicle component relies on simulation tools since an experimental approach im-
plies an amount of time and costs no longer feasible. In this context, dealing with
single components or limited-size subsystems for development purposes is quite
usual: detailed simulation models, from 1D up to 3D-CFD, are often available
and well spread among the community easing their usage and implementation. At
the vehicle level, things are not that straightforward because even a 1D simulation
model could result in excessive computational cost due to the system complexity
and the length of the simulation itself. This is why, in these cases, energy analysis
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at the vehicle level can better fit the task thanks to a look-up table approach to
compute fuel efficiency and pollutant emissions [9].

The scope of this project is to compute the fuel consumption and the energy
consumption of a digital twin of the vehicle under study. To do so, the vehicle
must be modeled through mathematical equations in all of its components and
evaluated over some standardized cycles following the vehicle-level energy analy-
sis mentioned before. Since these methodologies are well-known in the field and
this thesis work has not introduced any novelty in these terms, a brief overview
will be presented as a reference to the approach adopted.

The vehicle is considered as a single-point mass lumped in the center of
gravity of the vehicle. As a first and simplistic approach, the dynamics analysis is
limited to just vehicle speed, acceleration, and power (or torque) demand. This
means that the energetic approach of equation 5.1 is sufficient to properly describe
the vehicle dynamics.

Meq
dv
dt

= Fpwt +Fbrakes +Froll +Faero +Fgrade (5.1)

Meq = Mveh +
2Iwh, f +2Iwh,r

r2
wh

+
Ieng

r2
wh

i2f di2gb +
IEM

r2
wh

i2f di2gb (5.2)

Where Fpwt is the powertrain tractive force, Fbrakes is the mechanical braking
force, Froll is the rolling resistance, Faero is the aerodynamic resistance and Fgrade

is the resistant force due to the road slope [9].
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Fig. 5.2 Forces acting on a vehicle [3].

Meq is the term taking into account all the real and equivalent masses of the
vehicle. All the driveline components are part of the overall equivalent mass
due to their inertia contribution. dv/dt represents the acceleration of the vehicle
according to the second Newton’s law.
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The rolling resistant force can be simply modeled according to [16]:

Froll = crollMvehgcosα (5.3)

Where g is the gravitational acceleration, α is the road slope angle and Croll

is the rolling resistance coefficient. This last term is the combination of different
contributions coming from tire pressure, thread design, external temperature and,
obviously, vehicle speed:

croll = c0 + c1v+ c2v2 + c3v3 (5.4)

Where ci are coefficients experimentally evaluated. Concerning the aerody-
namic resistance can be expressed as:

Faero =
1
2

ρairA fCdv2 (5.5)

Where ρair is the air density, A f the vehicle frontal area and Cd the aerody-
namic drag coefficient. The resistant force due to the road slope is modelled
thanks to the following equation:

Fgrade = Mvehgsinα (5.6)

To limit the costs related to the estimation of the coefficients characterizing
the vehicle, the simple but effective coast-down test is performed. The vehicle
is brought to a certain speed in open space conditions and then free deceleration
performances are measured. Properly neglecting the environmental conditions as
possible bias of the measurements, the deceleration is considered as due only to
the aerodynamic and rolling resistances and so, according to the instantaneous
vehicle speed, the so-called Coast-Down coefficients [45] are estimated. It comes
the following equation for the total drag force acting on the vehicle:

Froll+aero =C0 +C1v+C2v2 (5.7)

Where C0, C1 and C2 are the above-mentioned Coast-Down coefficients.

Considering the just seen equations of motion as the starting point for the
vehicle virtual modelling, two different and well-known methodologies are de-
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scribed in the following to evaluate the fuel consumption and other energy related
parameters.

The first approach presented is called Forward Dynamic Analysis and it tries
to replicate the dynamics of a real vehicle, including the driver. The longitudinal
vehicle dynamics equations are solved starting from the driver’s behavior. The
vehicle speed profile described by the cycle is set as the target value that a
Proportional-Integral-Derivative (PID) controller, representing the driver model,
must reach acting on the accelerator or braked pedal and so generative a traction
or braking torque. From this point the operating conditions of the vehicle are
computed along with the engine speed and torque demand.

Fig. 5.3 Information flow in a forward simulator [9].

The other well-established methodology is called Backward Kinematic Analysis
where the speed profile of the cycle is imposed on the vehicle, unlike the forward
approach that uses that value as a target. The internal powertrain dynamics are
neglected here because efficiency, power loss, and fuel consumption maps are
used to model the components. Instead of using detailed 0D or 1D fluid-dynamics
models, look-up tables are used in a quasi-static approach where the mission is
divided into small intervals where speed, acceleration, and torque remain constant.
Even if this methodology seems to be too simplified it is widely adopted because
of its computational efficiency, furthermore, the fuel consumption and emissions
predictions turn out to be acceptable in terms of accuracy, especially when a
preliminary estimation is required.

Starting from the imposed speed and acceleration, it is possible to derive
the engine, electric motor, and wheel speed thanks to a very simple kinematic
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Fig. 5.4 Information flow in a backward kinematic approach [3].

relationship that neglects any kind of transient behavior and considers all the
wheels in pure rolling conditions.

wwh =
v

rwh
(5.8)

wgb = wwhi f digb (5.9)

Where:

• wwh is the wheel speed

• v is the vehicle speed

• wgb is the inlet gearbox rational speed (electric motor side)

• rwh is the effective wheel rolling radius

• i f d is the final drive gear ratio

• igb is the gearbox gear ratio (depending on the actual gear)

Thanks to the equation of motion presented before, the power demand is computed.
Once the kinematic relationship is established as shown in equations 5.8 and 5.9,
the power flow is computed going backward along the driveline. For the sake of
brevity, many of the mathematical steps are avoided and the final relationship is
here shown.

Pgb = ( f0+Mvehgsin(δ )+ f1v+ f2v2+Meqa)vη
sign(−( f0+Mvehgsin(δ )+ f1v+ f2v2+Meqa))
gb

(5.10)

Where Pgb is the power at the gearbox inlet which can be seen as the power
request to the whole powertrain that the controller will split among the two on-
board sources. C0, C1 and C2 are the coast-down coefficients, Mveh is the vehicle
mass, Meq is the equivalent mass of the vehicle considering all the driveline inertia
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contributions as explained previously, α is the road slope, g is the gravitational
force, a is the vehicle acceleration and ηgb is the gearbox efficiency computed
thanks to a map interpolation.

Once the split between the ICE and the EM has been computed by the con-
troller on the basis of the total power request, and the kinematic relation at the
wheels has been back-propagated until the engine speed is computed, it is finally
possible to evaluate the engine Brake Mean Effective Pressure (BMEP) according
to the following formula:

BMEP =
60 i Peng

nV
(5.11)

Where Peng is the fraction of the whole power demand requested to the engine,
i is the number of revolutions per power stroke (i.e. 2 for four-stroke engines), n is
the engine rotational speed in rad/s and V is the engine displacement. Knowing
the BMEP, it is only necessary to consult the look-up tables and enter interpolating
engine speed and mean effective pressure. In this way, the fuel consumption is
obtained with a punctual computation based on a table.

Fig. 5.5 Detailed information flow in a backward kinematic approach [1].

Seeking a simple model that allows most of the focus on the RL application,
the backward kinematic approach has been selected and it will be adopted in this
project work.
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5.4 Simulation tools

AI seems to fit every kind of task, improving the human or machine capabilities
to evaluate patterns, manage data and classify categories. That’s why nowadays
these kinds of algorithms are at the center of everyone’s attention. However, apart
from some fancy applications devoted to the public, their potentialities are not
simple to be understood and applied. Furthermore, when dealing with Energy
Management Systems, these mathematical tools represent a good opportunity to
optimize the energy flow on an HEV where there is a higher number of degrees
of freedom with respect to a conventional vehicle. In this context, the selection of
the software environment is not a trivial issue. Not only it must be suitable for
the creation of the simulation environment, i.e., the digital vehicle twin running
on a standardized mission profile, but even more importantly for the implementa-
tion and training of a Reinforcement Learning algorithm. On the wide portfolio
available, one of the most spread and well-known programming languages is
MATLAB, short for Matrix Laboratory. Widely used in academia, research and
industry, it is designed primarily for numerical computations aimed at mathemati-
cal modeling, algorithms development, data analysis and visualization. Thanks to
its built-in toolboxes, which ease almost any kind of domain-specific task, and
to its interactive and user-friendly environment, it has been largely adopted in
engineering and scientific fields. When dealing with control systems simulations,
experimental data analysis, physical phenomena modeling and complex systems
algorithms development, MATLAB represents a guarantee to the result achieve-
ment. Despite all these good premises, it comes with some downsides, especially
when compared to another powerful language that has gained popularity in sci-
entific computing and data analysis: Python. Probably, one of the first benefits
of switching from MATLAB to Python is due to the license cost. In fact, while
MATLAB is a commercial software characterized by a costly license, Python is
an open-source and free-to-use software, which makes it accessible to a much
broader audience. Not with less relevance, the community and ecosystem around
Python should be identified as another great advantage of this latter language.
Especially when dealing with new tools like AI, relying on a larger community
where thousands of users are trying to exploit them for the first time, makes a
huge difference when developing new code. Furthermore, the rich ecosystem
of libraries and infrastructure built around Phyton (some examples are NumPy,
SciPy, Pandas and many others) provides similar functionalities to the toolboxes
available in MATLAB. Moreover, in terms of flexibility and integration, Python is
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unrivaled: being a general-purpose language, it can not only be applied to a wide
variety of tasks but it also integrates well with other programming languages and
tools, making it the preferred choice when involving various technologies and
data sources. In contrast, MATLAB is very powerful with specialized tasks and
therefore less versatile. Last but not least, libraries such as Tensorflow, PyTorch
and scikit-learn have made Phyton a go-to choice. At the end of the story, even if
MATLAB represents a robust and well-established environment, choosing Python
can imply an improvement if seeking for a cost-effective solution with broader
applicability and access to a vast array of libraries and add-on tools.

This thesis work aims to develop RL algorithms on Python. This software
environment owns its success to the Objected Oriented Programming (OOP)
which is a paradigm that focuses on modeling real-world entities using ob jects.
Everything is an object in Python but, more precisely, an object is an instance of
a class. Accordingly, a Python class can be seen as an object constructor, a sort of
blueprint for creating objects. Defining a class means defining a set of possible
objects that will inherit the same properties and methods, that are functions built-
in in the object itself. Attributes and methods are said to be encapsulated in a
class aiming at operating with the data provided to the class itself. The OOP
promotes a modular design of classes which enhances code organization, reusing
classes, modifying them and avoiding redundant code. This approach is also very
useful to improve code readability since it creates a kind of abstraction that hides
the complexity of the object’s internal implementation. From outside it becomes
easier to get what an object does rather than how it does it. In other words, OOP
enables developers to mimic real-world entities through objects, making the code
intuitive and self-explanatory. In this project, the main vehicle components used
in a backward kinematic approach are modeled through classes.

As an example of how a Python class is built to mimic a real vehicle compo-
nent, in the following the engine class will be analyzed in all its features. The
part of the code defining that class, the subject of the discussion, is reported in
Appendix A.1 to improve the explanation. From here on, only small parts of the
code will be directly shown in the text while, for the sake of brevity, the longer
ones are visible in Appendix A.

The __init__ method is used to initialize the class properties according to
the data given as input to the class. As can be seen from the first lines of code,
those properties can be called with the method sel f which represents a way to
call the class itself. The function de f is used to define a method of the class, it
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is possible to create a sort of built-in function that represents some aspects of
the real-world entity the class is trying to model. Taking for instance the Maxtrq
method, its function is to display the maximum torque allowed to the engine at a
given rotational speed. In particular, the LookU p1D class, reported here below, is
called in the output of the method to interpolate the values of a one-dimensional
array, the engine torque limits array in this case.

1 class LookUp1D:
2 def __init__(self , x, y, var_info):
3 self.x = np.array(x)
4 self.y = np.array(y)
5 self.var_info = var_info
6

7 if len(x) != len(y):
8 raise("Not␣compatible␣dimension␣between

␣x␣and␣y")
9

10 def interp(self , x_eval):
11 f = interp.interp1d(self.x, self.y)
12 y_eval = f(x_eval)
13 return y_eval

Similar are the subsequent methods, such as FuelTrqMap, where the only
difference is that another class called LookU p2D is used to interpolate data over
a two-dimensional map to extrapolate values, such as the fuel consumption in this
case, as a function of two variables, torque and engine speed in this method.

Having explained how a class is built, it is now useful to see some examples
of how it can be used. First of all, an object should be created, recalling that it is
an instance of a class. This is done in the code here reported:

1 EN = Engine(Engine_data)
2 EN.Maxtrq(Engine_limits)
3 EN.Maxpwr(Engine_limits)
4 EN.Mintrq(Engine_limits)
5 EN.Minpwr(Engine_limits)
6 EN.FuelTrqMap(Engine_FuelTrqMap)
7 EN.FuelPwrMap(Engine_FuelPwrMap)
8 EN.BsfcTrqMap(Engine_BsfcTrqMap)
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9 EN.BsfcPwrMap(Engine_BsfcPwrMap)
10 EN.EffTrqMap(Engine_EffTrqMap)

In the first line, an object called EN is created assigning to it all the properties
and methods of the class Engine that takes as input the Data f rame (i.e. a data
structure of the library Pandas) called Engine_data. Once the instance is created,
all the methods are executed to create in the workspace of the software the
structured data coming from their inputs and elaborated by the functions defined
inside the method itself.

Once these steps are performed for each vehicle component, the class mod-
eling the whole vehicle and its functioning is defined. Now, all the previously
defined objects become the properties of the vehicle class as shown in the code
below:

1 class VehicleModel:
2

3 def __init__(self , DC, WH, BT, EN, EM, FD , GB ,
Vh):

4 self.DrivingCycle = DC
5 self.Wheel = WH
6 self.Battery = BT
7 self.Engine = EN
8 self.Electricmotor = EM
9 self.Finaldrive = FD

10 self.Gearbox = GB
11 self.Vehicle = Vh

Now, in the definitions of the dynamics of the system, the objects and their
features are used to model the vehicle components’ behavior, as the reader can
see from the following lines of code:

1 def FuelConsumption(self ,iceSpd , icePwr , ice_state)
:

2

3 fuel_rate = self.Engine.FuelPwrMap_tab.
interp(iceSpd , icePwr)

4

5 if ice_state == 0:
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6 fuel_rate = 0
7 elif ice_state == 1 and iceSpd > self.

Engine.Cutofflimit and icePwr < 0:
8 fuel_rate = 0
9

10 co2_rate = fuel_rate * self.Engine.
CO2molarmass / self.Engine.Fuelmolarmass

11

12 #output
13 self.fuel_rate = fuel_rate
14 self.co2_rate = co2_rate

To better understand, an example of employing an object property is shown
in the computation of the CO2 rate where the molar mass of the carbon diox-
ide and of the fuel are recalled as properties of the engine object with the
formula sel f .Engine.CO2molarmass and sel f .Engine.Fuelmolarmass. On the
other side, for the computation of the fuel rate, the method FuelPwrMap of the
engine object is used directly relying on its output map, as explained before, and
interpolating the entering values of that map with the method interp of the class
LookU p2D.

5.5 Model validation

Up to now, it was explained how the vehicle model was built up according to the
theory behind a backward kinematic approach. As figure 5.6 shows, the vehicle
has been modelled thanks to the connection between several blocks, each of them
implemented as an ob ject, a typical data structure in Python language.

As previously explained, the cycle is imposed on the vehicle and, moving
backward over the driveline, all the physical quantities (i.e. speed, torque and
power) are computed to finally evaluate the fuel consumption and the energy
expenditure. However, the most important block of the vehicle model is still
missing. The controller that, at any instant, allocates power to the ICE rather than
to the EM has not been integrated yet. In this thesis work, the aim is to realize
it through RL algorithms but, to make the results comparable, the model of the
vehicle needs to be validated. For this purpose, a model based on the same real
vehicle built on a MATLAB environment is available. In that model, the control
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Fig. 5.6 The main vehicle’s components are modeled through Python classes.

strategy is realized through the mathematical technique denoted as Dynamic
Programming. It is particularly suitable for recursive algorithms where the goal is
to find a global optimum. In the EMS framework, it is usually involved in setting
a benchmark in terms of an optimal control strategy that, anyway, lacks real-time
applicability due to the offline nature of DP. For this project, DP will serve not
only as a target for the introduced RL agent but will also set a common control
strategy between the MATLAB and Python models to carry out the validation of
the latter.

Fig. 5.7 Dynamic Programming is used as the algorithm to evaluate the optimal control
strategy.
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Once the optimal control strategy identified by the DP is delivered to the
Python model, some variables of interest are taken to validate the model with
respect to the MATLAB baseline. Running back along the driveline, the first
component selected to compare the two models is the power trend at the inlet of
the final drive. In figure 5.8 is possible to see that power plotted against the speed
profile imposed by the WLTC. Up to this stage of the driveline, the power trend
of the two models is fully superimposable.

40000

20000

0

20000

40000

60000

 F
D 

Po
we

r [
kW

]

Final drive power comparison
Py
DP

0 250 500 750 1000 1250 1500 1750
Time [s]

0

25

50

75

100

125

Sp
ee

d 
[k

m
/h

]

WLTC speed profile

Fig. 5.8 Power at the final drive plotted against the speed profile.

Moving on, the same comparison is realized for the power level reported at
the inlet of the gearbox, as shown in figure 5.9
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Fig. 5.9 Power at the gearbox plotted against the speed profile.

Despite the perfect resemblance between the two cases of the final drive power,
which implies the correctness of the required torque and speed up to that point,
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the power at the Gearbox is the first component where the two trends cannot be
perfectly overlapped. Even if the graphs here above seem to match, a closer look
at the power trend shows that some inaccuracy is introduced in the model of the
gearbox. Figure 5.10 and 5.11 confirms what just stated.

Fig. 5.10 Power at the gearbox where a discrepancy point is highlighted.

Figure 5.11 is the zoom of the graph reported in figure 5.10 inside the small
green circle. It highlights the difference between the two models that might look
almost negligible at this stage of the comparison but that must be considered as
the possible source of future divergences that propagated from this point.

Obviously, the reason behind that divergence was investigated and identified
as an issue with the gearbox efficiency which comparison is reported in figure
5.12 that shows the eta values at the gearbox related to the same instants of the
cycle focused on the previous graph.
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Fig. 5.11 Focus on the power at the gearbox where it is clear the difference between the
model built in Python and the results of the DP from the MATLAB model.

Fig. 5.12 Focus on the gearbox efficiency.

This behavior is explained by the code implementation difference in the
conversion of the Gearbox Efficiency map from the input to the output values.
This correction is required because the values to enter the map are measured at
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the input of the gearbox but in a backward approach, the entering values come
from the output of the gearbox (as figure 5.13 tries to visually explain).

Fig. 5.13 Visual explanation of the inconsistency between the backward approach and the
way the gearbox efficiency has been modeled.

The next variable used to assess the resemblance between the two models is
the fuel rate. The two plots reported here below are overlapped, this is because
the DP has as a control variable the Engine Torque and so its value is imposed. In
other words, independently of the value of power measured at the gearbox inlet of
the two models, the value of torque at the ICE is decided by the optimal control
strategy found by DP and so it will not be affected by the deviation encountered
at the gearbox. Therefore, the plot confirms that the model for the thermal source
of the vehicle is accurate.
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Fig. 5.14 Fuel rate plotted against the speed profile.
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For the sake of completeness, cumulative fuel consumption is also involved in
the comparison.
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Fig. 5.15 Cumulative fuel consumption plotted against the speed profile.

Switching to the electric side of the on-board sources, the energy taken and
restored in the battery is computed and the SOC is updated. Globally the trends
are quite similar but not identical.
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Fig. 5.16 SoC plotted against the speed profile.

Looking closer at the SOC fluctuations it is possible to notice the divergence
better. This is due to the propagation of Gearbox Efficiency error since no other
issues have been found. However, the magnitude of this inaccuracy is very little
and, along the whole trend, the sign of the divergence is kept constant, hints that
the source of this difference is always the same.
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Fig. 5.17 A look closer to the SoC trend over the cycle.

At the end of the cycle, the vehicle model in python registers a value of
the SOC that is 0.23% higher than the one of the MATLAB model. This very
low difference can be neglected to the scope of this project and, from this point
onward, the two models will be considered completely equivalent.



Chapter 6

EMS controller design

6.1 Agent selection

In section 3.6 three RL agents have been introduced: DDPG, TD3 and SAC. The
DDPG is a well-known and largely employed agent thanks to its peculiar features
such as the excellent behavior it shows with continuous action spaces, where
traditional RL algorithms struggle due to the challenges posed by infinite possi-
bilities. Moreover, the use of DNN allows the agent to handle high-dimensional
state spaces, making it suitable for complex tasks such as the one this project is
working with. Thanks to the off-policy updates, this agent turns out to be very
sample efficient, good at learning and not prone to fall into suboptimal policies.
In contrast, it can become unstable during learning, leading to an overestimation
of the Q-value and a possible overfitting of the policy. In this context, more
exploration is required. TD3 tries to overcome those shortcomings by using a
twin-critics architecture, significantly reducing the overestimation bias present
in single-critic structures. This results in more accurate and robust Q-value esti-
mation. Furthermore, the introduction of a delayed policy update enhances the
stability of optimization. To what concerns the exploration, even if a stochastic
noise is used to perturbate the chosen action, this agent inherits the poor explo-
ration strategy of the DDPG keeping unsolved the trade-off between exploration
and exploitation. Moving to the last agent proposed, i.e., SAC, the introduction
of a stochastic policy actor integrates exploration as a core feature of the agent
structure itself, instead of relying on some additional noise, promoting the search
for optimal actions. In addition, the entropy formulation creates a distribution
over near-optimal solutions and so it not only improves the learning by collecting



94 EMS controller design

more interesting exploratory data but also makes the policy more robust allowing
the agent to find good actions even when the environment changes. Besides
the addition of the entropy term reduces the total reward obtained in the short
term, it makes learning more robust in the long run by collecting data according
to a near-optimal policy distribution rather than following the exact policy. In
conclusion, thanks to its promising characteristics and the results obtained by
[46], the choice falls on the SAC agent.

6.2 Implementation

It should be now quite clear how powerful is the Reinforcement Learning paradigm
in Machine Learning. The potentialities lying under the framework of an agent
learning to make decisions by interacting with an environment are outstanding but
the application of these tools is not as straightforward as someone could imagine.
For this reason, the authors looked for some pre-built toolkits or libraries able to
ease the implementation of these new algorithms. Overlooking the long research
and comparison of different sources, the set of improved RL implementations
called Stable Baselines 3 (SB3) was selected. This library provides a collection
of high-quality and easy-to-use modules of RL algorithms. It is developed as part
of the OpenAI Baselines project and it is meant to facilitate the application of
this new AI algorithm branch. Also, it includes a great variety of agents, among
which is obviously present SAC, and it represents a modular and flexible solution,
able to support multiple Deep Learning frameworks such as PyTorch, TensorFlow
and so on. . .

However, the agents provided by SB3 need to have a properly set environment
to work. In fact, the more the environment these agents find is suitable for them,
the easier will be their implementation and the quicker will start the training
phase. Being the SB3 package based on the OpenAI framework, all its agents can
be directly used with the Open AI’s Gymnasium (or Gym) environments meant
to train RL agents. Despite the wide range of environments available, the huge
potential of this framework is allowing to set and use custom environments. As
already stated, the environment in which this thesis works is the digital model of
a real car running over a standardized mission profile. While conceptually, all that
is needed is just converting the environment created into a Gym environment, this
process turns out to be quite tricky because it has to comply with several rules to
be “registered”, and so recognized, as a true Gym environment. That’s why the
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first tough part of the SAC implementation from SB3 begins with the engineering
around the world the agent will interact with. As already done for Python classes,
the Gym environment definition starts with the initialization method reported in
the following.

1 class Vehicle300de_P2Env(gym.Env):
2 """ Custom Environment that follows gym

interface """
3

4 def __init__(self , DC, WH, BT, EN, EM, FD , GB ,
Vh):

5 self.DrivingCycle = DC
6 self.Ts = self.DrivingCycle.Time[1]-self.

DrivingCycle.Time [0]
7 self.Wheel = WH
8 self.Battery = BT
9 self.Engine = EN

10 self.Electricmotor = EM
11 self.Finaldrive = FD
12 self.Gearbox = GB
13 self.Vehicle = Vh
14 ’’’self.Update = {"Batt soc": 0, "FD speed

": 0, "GB speed": 0, "GB power ": 0,
15 "ICE state": 0} ’’’
16 self.Output = {"SOC": np.zeros (1), "FC": np

.array ([]), "EM_Power": np.array ([]), "
ICE_Power": np.array ([]), "GB_Power": np.
array ([]), "FD_Power": np.array ([]), "
BT_Power": np.array ([]), "Action": np.
array ([])}

As it is possible to see, the piece of code imported and pasted above defines all
the classes needed to model the vehicle but, more importantly, this is also the time
to set the observation and action space. The action taken by the agent consists of
the normalized torque of the ICE and it has a continuous space ranging from 0 to
1. The observation space is made by five normalized continuous variables:

• The vehicle speed
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• The powertrain demand (i.e. the power at the gearbox inlet)

• The powertrain speed (again at the gearbox inlet)

• The battery SoC

• The traveled distance over the total distance

The action and the observation spaces are chosen according to the author’s
know how of the subject.

Then, all the methods and functions describing the dynamics of the envi-
ronment are reported in the class Vehicle300de_P2Env that fully represents the
Gym environment where the SAC agent will explore. Once these preliminary
steps are completed, two fundamental methods of a Gym environment must be
defined: the step and reset methods. The first logical method to address is the
reset method since this is what gets called for every new episode before any step
is done. Its purpose is to set up the start of the environment as well as return
the first observation from where the agent can start choosing actions. The code
relative to the reset method is reported in Appendix A.2.

The function of the reset method is nothing but initializing all the parameters
to the value they had at the beginning of the episode. Firstly, the time index is
initialized to zero and then the method setSimulatioInput is called to set all the
variables coming from the standardized cycle to their initial value, according to
the time index. The method is here reported:

1 def setSimulationInput(self , time_idx):
2 self.time = self.DrivingCycle.Time[time_idx]
3 self.time_perc = self.time/self.DrivingCycle.

Time[-1]
4 self.speed = self.DrivingCycle.Speed[self.time]
5 self.acc = self.DrivingCycle.Acc[self.time]
6 self.travel = self.DrivingCycle.dist_travel[

self.time]
7 self.travel_perc = self.travel/self.

DrivingCycle.dist_travel [-1]
8 self.gear = int(self.DrivingCycle.GearN[self.

time])
9 return self.time , self.time_perc , self.speed ,

self. acc , self.travel , self.gear
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In the reset method, the SOC and the ICE state are set to the initial conditions
but they will be then the result of the action taken by the agent at each timestep.
The observations related to the first time instant of this new episode are computed
and then normalized to improve the stability during learning. To sum up, the only
output of the reset method is the observation array and the entries sel f .done and
sel f .truncated are set to false because the episode is just starting.

Subsequently, it is the turn of the definition of the core of the environment:
the step method. It takes only one input, that is the action selected by the agent.
That action is then used to update the environment’s state and to evaluate the
reward. The reward is defined inside this method (aside from some constant terms
that were defined just after the initialization method) but how and why it is set
in some ways is a matter of paragraph 6.5. When all the variables of interest
are computed, the time index and all the cycle parameters are updated and the
observation for the next state is evaluated. If the time index has reached the last
time instant of the cycle, the sel f .done variable is set equal to true if the episode
was not truncated before by some unfeasible condition. For the step method, the
outputs are the observation array, the reward, and the status of the episode (i.e.
done or truncated). The code relative to the step method is reported in Appendix
A.3.

The last stage of the creation of a custom Gym environment is its registration
in the Open AI framework. This is done very easily with just a couple of lines of
code as shown in the code below:

1 # Register the environment
2 register(
3 id=’Vehicle300de_P2Env -v0’,
4 entry_point=’Env:Vehicle300de_P2Env ’,
5 )

Some tools were used to check the compliance of the custom environment
with the requirements to make it a real Gym environment. Once these verifications
are carried out with positive results, it is sufficient to have a single line of code to
generate the environment desired from the gym library.

1 env = gym.make(env_id , DC=DC , WH=WH, BT=BT , EN=EN,
EM=EM, FD=FD , GB=GB, Vh=Vh)
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With the environment defined and the required libraries imported, another line
of code is enough to create the SAC agent model, as shown below:

1 model = SAC(’MlpPolicy ’, env , verbose=1,
2 tensorboard_log=logdir , learning_rate=

LearningRate ,
3 learning_starts =200, batch_size=BatchSize ,

tau=Tau , gamma=Gamma , train_freq=
TrainingFrequency ,

4 gradient_steps =1, target_update_interval=
TargetUpdateInterval , policy_kwargs=
policy_kwargs ,

5 ent_coef=EntropyCoefficient)

The environment registration, its generation and the RL agent model creation
are an example of how applying SB3 implementations become simple when the
custom environment is recognized as part of the Open AI Gym library. At this
point of the code, all the necessary steps have been carried out and the training
can start with just two commands: the first to launch the learning of the model
over the environment and the second to save the model trained.

1 for i in range (21):
2 print(i+1)
3 #training
4 model.learn(total_timesteps=TIMESTEPS ,

log_interval =5, reset_num_timesteps=False ,
tb_log_name=agent_name , progress_bar=True)

5 model.save(f"{models_dir }/{ TIMESTEPS *(i+1)
/1800}")

The two functions are integrated into a for loop because the model trained
after a certain number of episodes is saved before proceeding with the training.
The training results and trials will be discussed in an upcoming section.

To complete the summary of how the algorithm was implemented, a quick
overview of the testing procedure is now presented. Similarly to the training
process, the first steps required are the registration of the environment and its
creation through the method gym.make. After, instead of creating a new model,
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the one trained that is the object of the test is loaded in the workspace as follows:

1 model = SAC.load(model_path , env=env)

Everything is already set to start the testing so the environment is reset and a
while loop is established:

1 while not done:
2 action , _states = model.predict(obs ,

deterministic=True)
3 obs , reward , done , truncated , info = env.step(

action)
4 episode_reward.append(reward)

Up to when the done variable is not set to true, the loop continues and the
trained model is used to make predictions based on the observations. It is worth
noting that during the testing phase, the stochastic nature of the actor is canceled
in favor of a greedier deterministic policy. After that, a step forward in the cycle
is done until the while loop does not break.

6.3 Training

The training is the most exciting as well as boring part: the code has been set
to run hundreds of thousands of steps where the agent is asked to interact with
the environment to learn, episode after episode, the best optimal control strategy.
This may take a while. In the meantime, it is possible to observe the training trend
in two different ways.
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Fig. 6.1 One of the logger displayed on Python console during training.

Every time a model is saved, a logger appears in the Pyhton console and it
provides some information about how the agent is doing. A random logger is
shown in figure 6.1. It reports some parameters related to the training to let the
user better understand what’s going on. The mean episode length is constant in
the task addressed in this project because, apart from some possible deviation of
the SOC out of the allowed boundaries (i.e. between 0.2 and 0.8), the episode
consists in the standardized cycle defined by WLTP with a duration of 1800
seconds. On the other hand, the mean value of the cumulative reward of each
episode is an indicator of how well the agent is performing. Keeping in mind that
the algorithm is working with a normalized reward, scoring 1670 as the mean
reward value means that the agent is close to converge to a saturation point. In
fact, being the reward normalized, the timestep set equal to one second and the
model trained over the WLTC that lasts 1800 seconds, the maximum mean reward
cannot overcome the value of 1800. Other useful parameters are the number
of episodes and the total timesteps elapsed when the logger is visualized. The
actor loss and the critic loss are values representing how good the estimate of the
expected reward or the value action was. The entropy coefficient is instead the
β factor at that time instant. Remember that the entropy is self-adjusted by the
agent during training according to some internal parameters depicting how good
the agent is doing during training.

The other way to watch what’s happening during training is by plotting the
values just described. The tool used to log model performance is a tool of
TensorFlow called Tensorboard. With this visual instrument is possible not only
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to assess the agent’s behavior but also to compare several models. Some of the
diagrams plotted on Tensorboard are shown here.
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Fig. 6.2 Mean reward trend of different agents visualized through Tensorboard against
the number of steps performed.

This plot depicts the trend of the cumulative mean reward for three different
models over the number of steps run by the agent. More insights about how the
hyperparameters of the agent impact the training will be given in section 6.4. By
now, it is enough to say that being able to visualize this kind of value really helps
in the examination of the model, especially when the model is unstable and a
convergence is not reached.

Fig. 6.3 Table with additional information regarding the parameter plotted for several
agents.
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In addition, figure 6.3 shows the tab that appears when moving the pointer
along the lines in the diagram. It provides some details about the run, in particular
the name of the models, the value of the mean reward at that timestep, the time
when the simulation was carried out, and the duration of the simulation up to the
selected point.
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Fig. 6.4 Entropy coefficient adopted by the agent during training as a function of the steps
performed.

As already explained, the length of the episode is constant because the vehicle
always runs on the WLTC but the diagram showing the episode length is more
useful than the reader might guess because it is an additional indicator that
everything works properly. In fact, during training, due to some bugs in the code,
the mean length started fluctuating, a phenomenon that is not compliant with the
task.

The entropy coefficient graph reported in figure 6.4 is remarkable because it
shows how the agent handles entropy during the training and, as trivial, the lower
the value the higher the reward.

6.4 Neural Network manual tuning

To gain deeper insights into the training dynamics of the agent, manual parameter
tuning was first assessed. Even if this approach is not feasible to achieve an actual
optimization of the SAC agent’s hyperparameters, it turns out to be useful for the
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authors to test the sensitivity of the agent and to firsthand experience how some
changes in the agent features affect the training, paving the way for more efficient
approaches in future developments.

Before going through the several simulations run to understand the impact of
some hyperparameters, a quick glance at the code is suggested.

1 policy_kwargs = dict(net_arch=dict(qf=[256, 256],
pi=[256, 256]))

2 LearningRate = 0.0003
3 BatchSize = 256
4 Tau = 0.005
5 Gamma = 0.99
6 TrainingFrequency = 1
7 TargetUpdateInterval = 1
8 EntropyCoefficient = ’auto’
9

10 model = SAC(’MlpPolicy ’, env , verbose=1,
tensorboard_log=logdir , learning_rate=
LearningRate ,

11 learning_starts =200, batch_size=
BatchSize , tau=Tau , gamma=Gamma ,
train_freq=TrainingFrequency ,

12 gradient_steps =1,
target_update_interval=
TargetUpdateInterval , policy_kwargs=
policy_kwargs ,

13 ent_coef=EntropyCoefficient)

Thanks to this simple notation allowed by SB3, the hyperparameter of the
agent can be modified as desired. The values reported in the code are the default
ones. In the following, a review of the most relevant tuning parameter is proposed
with the aid of the previously mentioned visualization tools allowing for a better
understanding.

Since the very first runs of the learning process, the model behaved very well
with no relevant issues like huge divergence or very fluctuating behavior. For the
sake of clarity, only the results of a properly working environment, in the largest
sense of its meaning, are presented in this project work and all the interventions
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needed to fix bugs in the code and modeling errors in the environment are left to
the development phase of this thesis.

First, it is useful to define the baseline and the trend of the mean reward when
the agent model has all its hyperparameters set to their default value. Keeping in
mind that, as mentioned before, the maximum reward is 1800, the default setting
performs quite well according to figure 6.5.
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Fig. 6.5 Cumulative mean reward trend with default parameter in all its behavior plotted
against the number of steps performed by the agent.
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Fig. 6.6 Cumulative mean reward trend over the number of steps with default parameter
in a zoomed view to catch the behavior where it will compared with other models.

The most relevant aspect is that the reward converges to a value that is very
close to 1800 indeed. The first part of the training is characterized by a sharp rise
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which brings the reward to hits the value of 1600 in only 35 cycles. Right after
this point, the reward seems to gradually start its convergence but a sudden peak is
registered after about 100 cycles from the beginning that brings the reward around
the saturation value. This steep jump can be explained by the agent that exploring
is able to “escape” a local minimum and reach for the real global optimal policy.
After only 105 cycles, the value plateaus in a value range included between 1765
and 1779. It is worth mentioning what the agent is doing during all the remaining
cycles since it scores almost the same value. As discussed in section 3.6, the
algorithm adopted follows the max-entropy formulation where the value to be
maximized is not only the long-term expected cumulative reward but also the
entropy of an action in a state. This implies that the mean value of the reward
collected throughout the training contains the entropy term that is lowered, or
even canceled, only close to the end of the training. In other words, even when
the trend seems to be steady around the same figure and no additional runs are
believed to be required, the agent is still exploring and learning. Only the values
registered at the end of the training represent the real reward obtained by the
agent. To conclude this overview, the trend followed by the reward in the default
configuration will not experience substantial change due to some hyperparameter
tuning which is coherent with the SAC property of being slightly affected by NN
parameters modifications.

The first parameter to be modified is the learning rate, that is the rate at which
the neural network parameters are updated during training. It determines how
much the model’s weights are adjusted in response to the computed gradients
by controlling the size of the step taken during the update. A too-high learning
rate can lead to oscillations and divergence in training, while setting it too low
may result in slow convergence or getting stuck in local minima. The learning
rate is swept from 0,0003 to 0,001 and so a faster, but potentially more unstable,
learning is expected.
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Fig. 6.7 Cumulative mean reward trends of an agent with default parameter, i.e., 0,0003,
(green line) and another one with learning rate equal to 0,001 (orange line) plotted against
the number of steps

The trend with the higher learning rate, the orange one, is much faster than
the default one. The reward rapidly grows and after just 15 cycles it exceeds the
value of 1600. Surprisingly, it turns out to be even more stable than the default
setting and it saturates to a higher mean reward value around 1782.

The second sweep involves the coefficient γ , the well-known discount factor
typical of continuous tasks. The role of this coefficient is crucial in controlling
the balance between immediate and future rewards. It is a real number ranging
from zero to 1:

• γ close to zero makes the agent short-sighted and mainly focuses the atten-
tion on maximizing the immediate rewards;

• γ close to one characterizes an agent valuing more the long-term perfor-
mance of the algorithm.

In the charts reported in figure 6.8, gamma is decreased to 0.9 from the
original 0.99 so it is given less relevance to future consequences that will probably
translate into a lower final value and a slower convergence.
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Fig. 6.8 Cumulative mean reward trends of an agent with default parameter, i.e., 0.99,
(green line) and another one with gamma equal to 0.9 (blue line)

As expected, lowering gamma has brought very poor performance: not only
the overall mean reward values scored are much lower with respect to the baseline,
but also the trend depicts a very unstable learning that never reaches a steady
behavior. Moreover, the value of 0.99 seems to be very well balanced because
increasing it from its default value to 0.999 outputs worse results, with a very
fluctuating value of the mean reward as it is shown in figure 6.9.
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Fig. 6.9 Cumulative mean reward trends of an agent with default parameter, i.e., 0.99,
(green line) and another one with gamma equal to 0.999 (yellow line)
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Moving on, now it is time to double the batch size, from 256 to 512. Recalling
some theory, the batch size is a hyperparameter that determines the number
of experiences (i.e. state, action, reward and next state) collected from the
environment and used in each training iteration. Its value is one of the most
important trade-offs between computation efficiency and learning stability. More
robust and consistent training is expected with a larger batch size because it
averages over a larger set of data while a small batch size may introduce more
noise in learning but it certainly allows to speed up convergence since it requires
less memory.
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Fig. 6.10 Cumulative mean reward trends of an agent with default parameter, i.e., 256,
(green line) and another one with a batch size of 512 (cyan line)

As forecasted, the trend is more stable and shows higher performance than the
baseline as visible in figure 6.10. Below is also reported a log window with some
additional data and two values that are worth noticing: the higher final value and
the much greater simulation time implied by the larger batch size. A batch with
double the size increases the training duration by approximately 16%.
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Fig. 6.11 Table with additional data regarding the comparison between an agent with
default parameter (green circle) and another one with a batch size of 512 (cyan circle)

The next configuration evaluated sees two parameters changed at once: the
τ coefficient and the target update interval. In SAC and other deep RL algo-
rithms, target networks are used to stabilize training and improve convergence.
These target networks are slowly updated over time to provide more stable tar-
get values for the Q-learning objective. τ is also sometimes referred to as the
so f t update coe f f icient because it smoothens the affection of the parameters of
the main policy network (actor) or of the main Q-network (critic) to the update of
the target network parameters, both for the target critic and actor. In the next run,
the τ is raised from 0,005 to 1 which means that the parameters of the behavioral
network are copied to the target network at each update. In addition, the target
update interval is increased from 1 step to 1801 and so the target network is
updated only at the end of each episode. In this way, the fluctuating behavior that
would derive from setting τ equal to 1 is overcompensated with no other actions
taken.
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Fig. 6.12 Cumulative mean reward trends of an agent with default parameter, i.e., 0.005
for τ and 1 for the target update frequency, (green line) and another one with the τ equal
to 1 and the target update equal to 1801 (purple line)

This configuration significantly improves the agent performance, converging
more rapidly and to higher values of the mean reward showing that letting the
behavior policy improve over a cycle and then copying its parameters to the
target policy is a winning approach. Then, to slightly improve the computational
efficiency with respect to the default setting, the target update interval is increased
from 1 to 10 and no other parameters are modified. The results are nothing
unexpected: a little faster training with the same result as it’s possible to see in
figure 6.13.
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Fig. 6.13 Cumulative mean reward trends of an agent with default parameter, i.e., 1,
(green line) and another one with the target update equal to 10 (violet line)



6.5 Reward 111

As last comparison is left the one between parallel and series training. In
parallel training, multiple instances of the same episode are run simultaneously,
each with its own agent. Even if these agents come from the same central system
that handles all the data and updates all the agents in the same way, they interact
with their respective environments independently and in parallel. After each
timestep, all the data collected from the parallel training are used to update the
target parameters of all the agents. In series training a single agent interacts with
the environment sequentially. It completes an episode or batch of episodes before
moving on to the next batch. This implies a faster convergence because the data
is always exchanged between the same agent and environment but it also means
dealing with longer simulation time of the process since all the episodes must be
run in sequence.

Number of steps [-]

M
ea

n
 C

u
m

u
la

ti
ve

 R
ew

ar
d

 [
-]

Fig. 6.14 Cumulative mean reward trends of two agents with default parameters but one
trained in series (green line) while the other one in parallel (cyan line)

The blue line represents the parallel training and it turns out to be very unstable
according to the fact that it averages the data collected from different instances of
the same episode, but it eventually converges to the same mean reward value.

6.5 Reward

Before discussing how the reward should be set for the specific case treated in the
framework of this thesis, a little recap could be useful to better address the reward
definition task. The agent is asked to learn, but what does it mean for a machine
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to learn? To answer try to think about what a policy is: a function made up of
logic and tunable parameters. The goal of the agent is to set those parameters
in a way that produces an optimal policy. In other words, it tries to map state to
actions to maximize the long-term reward. It should be clear how relevant is the
role of the reward in this context. Crafting a reward function is not as trivial as
the reader might think because it should be able to make the algorithm understand
when the policy is improving and, eventually, converging to the desired result
avoiding any kind of shortcut. The reward is a function that produces a scalar
number that represents the goodness of an agent being in a particular state and
taking a particular action.

reward = f unction(state,action) (6.1)

The great potential in RL when dealing with a reward function is that there
are no restrictions on its creation. The agent can receive sparse rewards or
rewards every timestep or even rewards coming only at the very end of an episode.
Rewards can be the product of complex non-linear functions or just be computed
using thousands of parameters. This great freedom in the definition comes with
the huge shortcoming of getting stuck around the poor behavior of the agent. In
fact, if the agent finds itself exploring tons of new actions and visiting thousands
of new states without getting any reward, no learning is taking place. Hoping that
the agent will casually take the right sequence of actions to get a reward in an
environment with several degrees of freedom is worth of the best of the fairy tales.
It should be striking how much difference makes shaping the reward function in
one way rather than another.

On this premise, it is obvious that a well-developed know-how of the subject
is required to define the reward. For this reason, the path highlighted by the
previous work with DP carried out by the authors is followed as a guide in the
definition of a reward aimed at optimizing the energy flows of an HEV. After
some discussions and trials, two rewards are designed.

• Case 1
Considering that making an HEV work in CS mode means guaranteeing
that the charge level in the battery stays in the neighborhood of the initial
SOC, the first reward is thought to be a simple minimization of the fuel
consumption with a penalty proportional to the deviation of the SOC from
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the target value.

rcase1 = k1− k2ṁ f ∆t− k3(SoC−SoCtrg)
2 (6.2)

where k1, k2 and k3 are constants which weigh the influence of the relative
term, ṁ f is the fuel rate, SoC and SoCtrg are the actual and the target SoC,
respectively. This formulation exploits a so-called continuous penalization
of the SoC. As it is possible to notice, the fuel consumption and SoC terms
have a negative sign. This is easily explained recalling that an RL agent
always wants to maximize the reward while the EMS’s ultimate objective
is to minimize the fuel consumption. As will be discussed in chapter 7.1,
the constant coefficients k1, k2, k3 are mutually changed to find the best-
performing set of values starting from a default configuration coming from
the work with DP. This function turns out to be very simple in training,
it introduces a penalty to the SoC over the entire duration of the cycle,
limiting the potentialities of a Hybrid configuration.

• Case 2
This case aims to give more freedom to the SoC to fluctuate between some
boundaries and to tighten those limits while approaching the end of the
cycle. Its definition looks like:

PSoC =


(SoC−SoCtrg)

2 i f SoC < SoCl

0 i f SoCl ≤ SoC ≤ SoCh

(SoC−SoCtrg)
2 i f SoC > SoCh

(6.3)

rcase1 = k1− (k2ṁ f + k3PSoC)∆t (6.4)

As shown in figure 6.15, for the first three-quarters of the cycle, the SoC is
penalized proportionally to the square of the distance from the target value
only if it overcomes one of the boundaries set at 0.55 and 0.45. Inside the
window, the agent has complete authority in action selection. For the last
quarter of the cycle, the boundaries converge to the target value to force the
SoC to close the cycle near the desired value. This formulation comes from
the DP boundary lines method described in [47] and it allows the agent to
freely choose the action that maximizes the reward as long as the boundary
lines are not exceeded.
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Fig. 6.15 SoC boundary lines for Case2 reward.



Chapter 7

Results

The proposed Reinforcement Learning-based Energy Management System was
mainly tested on the same cycle used for training: WLTC. Even if the trained
agent was then tested over two additional cycles to assess how bad or good was
the generalization capability of the algorithm, in the framework of this thesis,
the majority of the final analysis focused on the comparison between two reward
formulations explained in section 6.5. This project presented a new methodology
so plenty of different tests and improvements are still on the way. The author
preferred to focus on a careful comparison of the above-mentioned rewards and
their performance with respect to the benchmark set by Dynamic Programming.
DP allows to obtain the optimal solution, that is why it represents a target to
aim to but not reachable. In contrast, it needs apriori knowledge of the driving
cycle that, in addition to the unfeasible computational effort, makes it not suitable
for online application. On the other hand, the RL agent achieves a sub-optimal
performance but with the possibility of being applied on board. In the following,
a comparison between the two rewards in terms of SoC and fuel consumption
is proposed and, once the best solution is identified, it is the moment for the
performance assessment with respect to global optimum.

7.1 Comparative analysis of the rewards

The first reward was defined in section 6.5 but nothing was mentioned about
the experimental coefficients k1, k2 and k3. According to previous works of the
authors with the same model, a genetic algorithm was used to better assign a
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value to those parameters. The best combination proposed was adopted as default
configuration and it featured the following values:

k1 = 0

k2 = 200

k3 = 400

(7.1)

Looking at these values, it is striking how huge relevance is given to the SoC
deviation. The goal of the agent is to score the highest reward possible which
means minimizing the fuel consumption and the SoC deviation since both terms
have a negative sign in the reward formulation. This rule is applied during the
whole cycle which implies that the agent should be very careful in using the
energy stored in the battery if it does not want to score very poorly. With these
values, a low exploitation of the electric energy, and so little fluctuations in the
SoC, is expected in the upcoming plots. Figure 7.1 shows the results of the reward
1 with default coefficients against the optimal control strategy identified by DP.
As a reference, the final values obtained by DP are shown in table 7.1.

Fig. 7.1 SoC trend of the SAC agent trained with reward 1 with default parameters: k1 =
0, k2 = 200 and k3 = 400.
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Table 7.1 Dynamic Programming optimal control strategy results over WLTC.

SoC FC FC

[−] [kg] [l/100km]

DP 0.5 0.9658 4.9349

The final value of the SoC reached by the model guided by the SAC control
strategy is equal to 0.5137 while the fuel consumption, shown in figure 7.2, is of
1080,5 g. As expected, the deviation from the target value of SoC (i.e. 0.5) is
very little and this is due to the reward formulation that continuously penalizes
the agent when charging or discharging the battery. For almost three quarters of
the cycle, the agent follows the trend resulted from Dynamic Programming. In
the last quarter, probably due to the distance from the reference value of SoC, the
SAC agents decided to quickly recharge the battery. It should be remembered
that the last section of the WLTC is the high-speed high-power demand part of
the cycle, representing a possible highway scenario. To catch the relationship
between the agent’s behavior and the required speed, in figure 7.3 the two plots
are aligned.

Fig. 7.2 FC trend of the SAC agent trained with reward 1 with default parameters: k1 = 0,
k2 = 200 and k3 = 400.
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Fig. 7.3 SoC trend of the SAC agent trained with reward 1 with default parameters: k1 =
0, k2 = 200 and k3 = 400; plotted against the speed profile of WLTC.

A peculiar characteristic of the SoC trend achieved by the SAC that will
appear in all the different reward configurations presented in the following is the
sudden rise of the level of energy in the battery at the very end of the cycle. A
careful look at figure 7.1 points out that the same behavior also characterizes the
DP result, even if in that case the spike is handled in a way that makes the vehicle
to reach the target SoC at the end of the cycle. This sharp increase can be easily
explained by looking at the speed profile: the cycle ends with a dip of speed and
being the vehicle under test a HEV, it can exploit regenerative braking to store
electric energy in the battery. While DP is aware of all the task’s aspects from
the beginning of the mission and can so plan what action to take according to the
speed profile, the SAC agent does not have an idea of the upcoming road request
and so it is forced to recharge during braking even if the SoC level is already
about the target value. The reader might wonder why regenerative braking cannot
be avoided if not necessary and the answer is that, for sake of simplicity, that
mode was imposed every time the vehicle is required to slow down.

In the attempt of reducing the weight given to the SoC deviation in the reward
formulation, the coefficient k3 is lowered from 400 to 200 becoming equal to k2.
The agent is tested again on WLTC with the new reward configuration and the
output is reported in figure 7.4.
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Fig. 7.4 SoC trend of the SAC agent trained with reward 1 with modified parameters: k1
= 0, k2 = 200 and k3 = 200.

The SAC agent makes the vehicle complete the cycle with a SoC of 0.4698
that is quite below the target value of 0.5. This result is not surprising since
the penalty given to the deviation from the SoC has been reduced: the agent is
more likely to exploit the EM to propel the vehicle in order to minimize the fuel
consumption because it is not receiving a reward as bad as it was with default
parameters. In accordance with a higher use of the electrical energy stored in the
battery, the fuel consumed during the cycle is 979 g, much closer to the DP value
as shown in figure 7.5.
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Fig. 7.5 FC trend of the SAC agent trained with reward 1 with modified parameters: k1 =
0, k2 = 200 and k3 = 200.

Based on the result obtained, the value of coefficient k3 is increased to 300.
The goal of the authors in this framework is to minimize as much as possible
the fuel consumption while guaranteeing a charge sustainability over the cycle
that possibly terminates slightly below the target to take advantage of the little
tolerance permitted by the legislation.

The trend of the SoC obtained in figure 7.6 is not trivial to be analyzed and
understood. The weight given to the electrical side of the powertrain is higher
than before and, as a matter of fact, the final SoC is higher than the target value.
Unexpectedly, this model seems to be even more conservative than the default
reward configuration where the weight assigned to the battery usage was even
heavier. Not only this last test concludes with a higher level of the charge, but
overall, it also exploits less the hybrid nature of the powertrain keeping the SoC
between 0.49 and 0.50 for more than half of the mission. The fuel consumption
almost resembles the result of the default case with a value of 1078,7 g.
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Fig. 7.6 SoC trend of the SAC agent trained with reward 1 with modified parameters: k1
= 0, k2 = 200 and k3 = 300.

Fig. 7.7 FC trend of the SAC agent trained with reward 1 with modified parameters: k1 =
0, k2 = 200 and k3 = 300.
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Trying to reach perfect charge sustainability, the coefficient k3 is lowered
again, this time it is set equal to 250. The behavior is forecasted to lay in between
the ones obtained for k3 equal to 200 and 300. The result is depicted in figure 7.8.

Fig. 7.8 SoC trend of the SAC agent trained with reward 1 with modified parameters: k1
= 0, k2 = 200 and k3 = 250.

The vehicle completes the mission profile with a SoC of 0.4866, showing that
the agent is very sensitive to the weight of the SoC deviation. Slightly better than
the attempt with k3 equal to 200, the final result is not satisfactory yet, that’s
why the k3 coefficient is set to 275, trying to get closer to the behavior of the
reward with k3 equal to 300 but avoiding overcoming the target value. Figure 7.9
presents the result.

With a final value of 0.4959, it seems that the right value for k3 has been
found. Aside from a weird depletion at t = 1250s, the trend is quite conservative
and it keeps the same features of the previous diagrams. On the other hand, fuel
consumption is not as low as it could be based on battery exploitation. Figure
7.10 shows the cumulative trend that sums up to 1068,5 grams.
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Fig. 7.9 SoC trend of the SAC agent trained with reward 1 with modified parameters: k1
= 0, k2 = 200 and k3 = 275.

Fig. 7.10 FC trend of the SAC agent trained with reward 1 with modified parameters: k1
= 0, k2 = 200 and k3 = 275.

Even if not a real best solution has been identified among the various configu-
rations of reward tested, the results were all quite satisfactory with no signs of
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divergence or unstable behavior. Anyway, the weakness of this reward stands in
its continuous formulation which prevents the vehicle from really exploiting the
additional degree of freedom introduced by the EM and the battery pack. With the
objective of leaving the agent more room to act, reward 2 is applied. As explained
in section 6.5, the agent is penalized proportionally to the SoC distance from
the target value only when outside some pre-set boundaries. In between them,
the agent is free to charge and discharge the battery according to its preference.
The boundaries are defined by two straight lines positioned at SoC levels of 0.55
and 0.45 for three quarters (i.e. up to t = 1350s) of the cycle. During the last
quarter, the two lines start to converge narrowing the window available to the
agent for fluctuations. At the end of the cycle, the gap between the two thresholds
is 0.02, symmetrically defined around the target value. The aim of the authors is
to promote the agent to use the electrical energy as long as the SoC remains in the
penalty f ree area. The first test is performed with the same default parameters
used in reward 1.

Fig. 7.11 SoC trend of the SAC agent trained with reward 2 with default parameters: k1 =
0, k2 = 200 and k3 = 400; compared with the SoC trend of reward 1 with equal parameters.

In accordance with the SoC trend evaluated with reward 1 with default param-
eters, the agent behaves in a conservative way, making the vehicle complete the
cycle with a charge level in the battery higher than the target. On the other hand,
reward 2 allows the agent to use more of the electrical potential of the powertrain.
As it appears clearly in figure 7.11, the agent significantly discharges the battery
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in the first 250 seconds and then keeps the SoC almost constant around 0.46 to
not face the poor reward out of the boundaries. In the last quarter of the cycle, it
then modestly increases again the charge level overcoming the threshold up to the
final value of 0.5275.

Fig. 7.12 FC trend of the SAC agent trained with reward 2 with default parameters: k1 =
0, k2 = 200 and k3 = 400; compared with the FC trend of reward 1 with equal parameters.

Especially due to the last quarter of the mission, the cumulative fuel consump-
tion experienced by reward 2 is even higher than the one of reward 1, with a final
value of 1133,7 grams.

The same sweep of the k3 coefficient from a value of 400 to the one of 200
performed with reward 1 is proposed again with reward 2. Figure 7.13 shows the
output. Apart from a weird fall of the SoC of reward 2 close to the end of the
cycle, the trend looks good because the agent can exploit more the battery but
still reaches a value close to the target at the end of the driving cycle, precisely at
0.5010. With a fuel consumption of just 1054,4 g, and so a difference of slightly
more than 9% with respect to the result obtained by DP, this value of k3 seems
to be much more suitable for reward 2 than it was for reward 1, where the agent
carelessly discharged the battery.
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Fig. 7.13 SoC trend of the SAC agent trained with reward 2 with modified parameters:
k1 = 0, k2 = 200 and k3 = 200; compared with the SoC trend of reward 1 with equal
parameters.

In order to proceed with the comparison between the two rewards, the sweeps
already carried out for reward 1 are now proposed also for reward 2. The next
k3 value evaluated is 300. This reward configuration for reward 1 was quite
conservative, closer to the default one. The same is expected for reward 2.

Unexpectedly, the trend obtained with reward 2 is very close to the one
obtained by the same reward with k3 coefficient equal to 200, as shown in figure
7.15. This time the agent is a little more conservative during the first half of the
cycle, in fact it never makes the SoC overcome 0.5 or fall under 0.46. Only at the
end of the cycle, the lower boundary is trespassed. This configuration is maybe
one of the best Charge Sustaining example seen up to now, closing the cycle with
a SoC value of 0.4996 that implies a fuel consumption of 1049,5 g, one of the
lowest ever neglecting the ones obtained with a SoC too much below the target.
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Fig. 7.14 SoC trend of the SAC agent trained with reward 2 with modified parameters:
k1 = 0, k2 = 200 and k3 = 300; compared with the SoC trend of reward 1 with equal
parameters.

Fig. 7.15 FC trend of the SAC agent trained with reward 2 with modified parameters: k1 =
0, k2 = 200 and k3 = 300; compared with the FC trend of reward 1 with equal parameters.
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For the reward 2 case, the range 200-300 for the coefficient k3 value seems
to be much less sensitive than it was for the case of reward 1. Anyway, being
very close to the possible best reward 2 set up, the k3 values of 250 and 275 are
investigated too.

Fig. 7.16 SoC trend of the SAC agent trained with reward 2 with modified parameters:
k1 = 0, k2 = 200 and k3 = 250; compared with the SoC trend of reward 1 with equal
parameters.

The result is far from being coherent with the previous simulation. With the
value of 250 for the parameter k3, the agent behaves in a much less comprehensible
way, showing this way to be less consistent than it was with reward 1. The SoC
fluctuates much more than in previous runs and it finishes the cycle out of the
boundaries.
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Fig. 7.17 SoC trend of the SAC agent trained with reward 2 with modified parameters:
k1 = 0, k2 = 200 and k3 = 275; compared with the SoC trend of reward 1 with equal
parameters.

Figure 7.17 confirms that the agent trained with reward 2 is more unstable
than predicted. With a slight change in the value of k3, from 250 to 275, the SoC
trend goes from a fluctuating behavior ending far over the target, to a trend even
more variable that ends way under the target. These last two tests put some doubt
on the goodness of reward 2 but still, it was able to train the agent well in some
conditions and so it is considered in the selection process of the best-performing
agent among the ones tested.

So far, two kinds of reward with 5 configurations each have been proposed
and evaluated in terms of fuel consumption minimization in a charge sustaining
condition. To assess the potential of the SAC algorithm in this first application and
compare its effectiveness with the result of Dynamic Programming, the authors
looked for the reward configuration which trained the best agent. Figure 7.18 is
meant to simplify the selection procedure allowing to compare the multiple cases
with just a glance.
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Fig. 7.18 Comparison between SAC agent with 2 different rewards with 5 configurations
each and DP optimization: trade-off between fuel consumption and final SoC.

The diagram is thought to plot the performance of the agent in terms of trade-
off between a certain reward final SoC and fuel consumption. The reader might
remember that the SoC target, highlighted in the graph with a gray dashed line,
is 0.5 which implies that every test ending with a value lower than this target,
aside from some tolerance, cannot be considered because breaking the charge
sustaining requirement. The agent trained with reward 2 with k3 coefficient equal
to 300 is selected as the most desirable thanks to its very low fuel consumption
(i.e. 1049,5 grams) and a SoC of 0.4996, that can be approximated to 0.5 with
very low numerical deviation.

7.2 Agent performance assessment

The agent’s performance assessment will be carried out firstly on the same cycle
used for training,i.e., WLTC, and then on two additional cycles in order to evaluate
its generalization capabilities.
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7.2.1 Agent testing on WLTC

Once the best agent model has been selected, a closer comparison with the bench-
mark set by DP is useful to evaluate the agent behavior. Before going through
that, a little step back must be taken. The agent, with all default hyperparameters,
has been trained with the case 2 reward (and k3=300) which gives complete
freedom to the agent to use the battery if the SoC remains inside the boundaries.
Out of those thresholds, a penalty for the SoC deviation is applied. This setup
involves greater use of the battery aimed to rely as little as possible on the ICE in
the minimization of the fuel consumption that represents the term of continuous
penalty to the agent according to reward 2 formulation exaplained in section 6.5.
As previously explained in section 3.5 the agent starts the interaction with the
environment at the beginning of the task with no apriori knowledge about it and
so it explores to learn about the world. This learning phase, analyzed in section
6.3 thanks to the plot of the mean cumulative reward value over the number of
steps performed, can be observed also through the vehicle’s quantities and not
only with the algorithm parameters. The greatest example of this is represented
by the SoC trend over training shown in figure 7.19.
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Fig. 7.19 SoC behavior during SAC agent training over the WLTC with reward 2 with
modified parameters: k1 = 0, k2 = 200 and k3 = 300.

In figure 7.19 the charge level of the battery along the WLTC is displayed
every 60 episodes of training. To better catch the meaning of this plot, in figure
7.20 is reported the trend of the value of the cumulative mean reward for the agent
under investigation in this paragraph.
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Fig. 7.20 Trend of the mean value of the selected best performing reward in all its
behavior.

In figure 7.20 the reward value is plotted against the number of steps instead
of the number of episodes but it is just enough to remember that 1800 steps
constitute one cycle and so one episode. After the first 60 episodes (i.e. 108000
steps), the agent is still in its explorative part of the learning but the cumulative
mean reward value is already approaching 1700. That is why, looking at figure
7.19, the SoC trend after 60 episodes is the only one that seems to be fluctuating.
Of course, a closer look at figure 7.19 reveals that the agent continues to explore
because the trends are not overlapped but, as figure 7.20 confirms, from 200000
steps on (equal to say 120 episodes) the reward is going to convergence and it is
gradually reducing the relevance of the entropy term as explained in section 3.6.

It is now time to evaluate the performance achieved with this SAC algo-
rithm. In figure 7.21 and figure 7.22 are reported the trends of the SoC and fuel
consumption with respect to the time.

It is striking that the difference between the SAC agent and the DP behavior
stands in the higher exploitation of the electrical capabilities of the vehicle from
the first of them. Being free to act inside the boundaries, the agent quickly
discharges the battery at the beginning of the cycle and then, probably aware of
the penalty received out of the limits, keeps the charge level quite steady around
the value of 0.48. The fluctuations at the end of the cycle characterized all the
simulations and can be seen as a peculiar feature of the agent rather than as an
unstable behavior.
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Fig. 7.21 SoC trend performed by the SAC agent trained with the selected reward
configuration.

Fig. 7.22 FC trend performed by the SAC agent trained with the selected reward configu-
ration.

The resulting SoC trend is reflected on the fuel consumption plot where the
SAC agent relies much more on the EM to propel the vehicle in the first part of
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the cycle, outperforming the DP values. The trend is reversed around t = 600s,
where the will of the RL agent to keep the SoC around the same value, forces
it to use more of the ICE increasing the fuel consumption that will never fall
again under the DP value. In this configuration, the proposed algorithm is able to
conclude the WLTC in a perfectly charge-sustaining condition with an increase in
the fuel consumption of just 8.6% with respect to the DP result.

Table 7.2 Results comparison between Dynamic Programming optimal control strategy
and SAC control strategy on WLTC.

SoC FC FC
[−] [kg] [l/100km]

DP 0.5 0.9658 4.9349
SAC 0.4996 1.0495 5.3623

7.2.2 Generalization over different mission profiles

One of the most important aspects of training a RL agent, or a NN more in general,
is achieving good performance not only on the task used for training itself but
also on tasks the agent has never experienced before. A common problem in ML
is the so-called over f itting phenomenon that occurs when a model becomes too
specialized in capturing noise and specific patterns in the training data, rather than
learning the underlying patterns. In other words, it learns the training data too well
to the point that it starts to perform poorly on new, never-seen tasks. Finding the
right balance between fitting the training data and generalizing to new data was not
among the objectives of this thesis since it represents one of the biggest challenges
when dealing with AI algorithms. Nonetheless, a brief glance at the performance
the selected agent is able to obtain on new mission profiles is proposed in this final
paragraph. In particular, two additional tests are carried out on two standardized
driving cycles coming from American legislation: Federal Test Procedure 75
(FTP75) and Highway Fuel Economy Test (HFET)[48]. FTP75 is one of the
main standardized test cycles developed by the Environmental Protection Agency
(EPA) for regulatory purposes, designed to simulate urban driving conditions.
HFET is another standardized driving cycle used for evaluating the vehicle’s fuel
efficiency and emissions in highway or steady-state driving conditions. According
to the authors, the choice was thought to test the agent in two opposite scenarios
the agent had never seen before and compare its performance again with respect
to the optimal control strategy identified by DP. In table 7.3 are presented the
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benchmark values set by DP on the two cycles in terms of final SoC and fuel
consumption.

Table 7.3 Dynamic Programming optimal control strategy results for the two additional
cycles.

SoC FC FC
[−] [kg] [l/100km]

FT P75 0.5 0.7815 5.2569
HFET 0.5 0.5706 4.1172

As already done in the tests for the rewards evaluation, the SoC and fuel
consumption trends are presented in the following to evaluate the goodness of the
agent over the new cycles. The performance assessment starts with FTP75.

Fig. 7.23 SoC trend performed by the SAC agent over the FTP75 standardized cycle
plotted against the speed profile.
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Fig. 7.24 SoC trend performed by the SAC agent over the FTP75 standardized cycle.

Looking at figure 7.24 it’s possible to see almost the same behavior the agent
showed in figure 7.21. At the beginning of both cycles, the agent discharges the
battery and then it tries to keep the SoC fluctuating around the same charge level.
This trend is more severe on the FTP75 where the initial depletion makes the SoC
fall under the value of 0.46 to then take it back to 0.48 and keep it steady until
the last quarter of the mission. To understand the behavior of the agent in the last
part of the cycle, it’s necessary to look at figure 7.23. Differently from the WLTC
where the last quarter simulates a highway or extra-urban scenario, in FTP75,
the environment represents just an urban scenario. This being said, the agent
performs well at the end of the FTP75, probably because it has learned that the
SoC boundaries are narrowing as the task completion is approached. It recharges
slightly the battery, between t = 1400s and t = 1500s, to bring the charge level
around the target value (i.e. 0.5) and tries to keep it until the end. In this last
part, the agent also collects energy from the steep decelerations imposed by the
cycle, that it carries out in regenerative braking mode as imposed by the rules set
at the boundaries by the authors, making the SoC to overcome the upper penalty
threshold.
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Fig. 7.25 FC trend performed by the SAC agent over the FTP75 standardized cycle.

For the sake of completeness, the cumulative fuel consumption is reported in
figure 7.25 where the agent scores a value of 919.2 g which translates to 6.1826
l/100 km. Being the final SoC for the SAC agent equal to 0.52, it’s clear that the
fuel consumption is higher than the one obtained by DP and reported in table 7.3,
equal to 5.2569 l/100km.

Table 7.4 Results comparison between Dynamic Programming optimal control strategy
and SAC control strategy on FTP75.

SoC FC FC

[−] [kg] [l/100km]

DP 0.5 0.7815 5.2569
SAC 0.52 0.9192 6.1826

Moving to HFET cycle, it’s now time to evaluate the behavior of the agent in
an unknown almost steady-state scenario.
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Fig. 7.26 SoC trend performed by the SAC agent over the HFET standardized cycle,
plotted against the speed profile.

Fig. 7.27 SoC trend performed by the SAC agent over the HFET standardized cycle.

As figure 7.26 depicts, the speed profile is less fluctuating than FTP75 or
WLTC, it involves higher speeds so it’s not trivial for the agent deciding what
to do, if exploiting the EM power to steadily propel the vehicle, or just to cover
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some little transients dynamic or, on the contrary, to shut down torque delivery of
the EM and rather using it as a generator run by the torque in excess provided by
the ICE. Figure 7.27 shows that, in this case, the agent is not able to handle the
power request while ensuring a charge-sustaining condition. At the beginning, it
strives to keep the charge level around the target value but after only 300 seconds,
the SoC starts to diverge and will never rise again at levels close to the DP ones.
According to this battery charge-depleting attitude, lower fuel consumption is
expected for the SAC agent that closes the cycle with an SoC level of 0.4814.

Fig. 7.28 FC trend performed by the SAC agent over the HFET standardized cycle.

Figure 7.28 confirms what was expected: the SAC agent realizes a fuel
consumption of 559.3 g, which translates into 4.04 l/100km.

Table 7.5 Results comparison between Dynamic Programming optimal control strategy
and SAC control strategy on HFET.

SoC FC FC

[−] [kg] [l/100km]

DP 0.5 0.5706 4.1172
SAC 0.4814 0.5593 4.0358



140 Results

To sum up, the agent selected at the end of section 7.1 guarantees satisfying
performance even in tasks never experienced before. The cycles sample used
to assess the generalization capability of the agent is too small to make precise
statements about it, but it shows that at least the agent doesn’t fall in unacceptable
fluctuating behavior of the SoC and it’s able to stay in the neighborhood of the
DP results, even if better results must, and can, be obtained.



Chapter 8

Conclusions and Future Work

In the strive of the world to pursue carbon neutrality, Hybrid Electric Vehicles
(HEV) rose as an effective solution thanks to their capability to combine the
benefits of an electric and conventional powertrain. Nonetheless, the additional
degree of freedom, key to their efficiency, implies a greater complexity that must
be handled by an additional control level: the Energy Management System (EMS).
During the past years, several approaches have been investigated to identify the
optimal control strategies but nowadays, Artificial Intelligence (AI) algorithms
have gained popularity due to their ability to process vast amounts of data.

In this framework, this thesis project has presented a new methodology to
develop, test and tune an AI-based EMS. After having explained the theory and
the potential behind the concept of an agent obtaining rewards from its interaction
with an environment characterizing the branch of Machine Learning (ML) called
Reinforcement Learning (RL), the workflow directed to the development of a
virtual simulation platform. The vehicle digital twin to design and evaluate the
innovative EMS was developed based on some experimental data gathered from a
commercially available plug-in HEV (pHEV) with reverse engineering techniques.
Once the virtual test rig has been validated against another simulation model, the
Soft-Actor Critic agent was selected as one of the most promising RL algorithms
currently used and trained over the Worldwide Harmonized Light-duty vehicles
Test Cycle (WLTC). This agent turned out to quickly learn from the environment,
taking the trained model to convergence in few hundreds episodes. The SAC
agent was then tested with two different rewards set in various configurations,
showing results very close to the solution provided by DP even with the less
performant configurations. The best SAC model was able to operate the vehicle
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over the WLTC in a perfect Charge Sustaining (CS) mode while increasing the
fuel consumption of only 8.6% with respect to the benchmark set by DP.

Future work will be aimed at achieving the targets discussed here below:

• The Python environment where the vehicle digital twin has been modelled
offers a rich ecosystem of libraries and infrastructure. In this context,
several tools are available to carry out an optimization of all the Neural
Networks (NN) parameters in order to obtain the most performant algorithm
for the specific study case;

• Expanding the batch of possible rewards to better guide the RL agent in the
learning while acting;

• Increasing the complexity of the vehicle model, introducing transient dy-
namics and a driver loop to better represent the real driving conditions. This
step can be performed either before or after the training. In the first it would
train an agent to make it aware of the real environment dynamics, while in
the second it would be useful to assess the generalization capability of the
agent;

• Training the agent over different cycles, maybe even through a parallel train-
ing, to give it much more comprehension of the world and increasing the
chance of obtaining an agent suitable for every possible driving condition.
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Appendix A

Python Code

A.1 Engine Class (extract)

1 class Engine:
2 def __init__(self , engine=pd.DataFrame):
3 if not engine.empty:
4 self.Fuellhv = engine["Fuel␣LHV"][1]
5 self.Fueldensityvalue = engine["Fuel␣

density␣value"][1]
6 self.Idlespeed = engine["Idle␣speed"

][1]
7 self.Maxspeed = engine["Max␣speed"][1]
8 self.Bore = engine["Bore"][1]
9 self.Stroke = engine["Stroke"][1]

10 self.Ncylinder = engine["N␣cylinder"
][1]

11 self.Inertia = engine["Inertia"][1]
12 self.Displacement = engine["

Displacement"][1]
13 self.CO2molarmass = engine["CO2␣molar␣

mass"][1]
14 self.Fuelmolarmass = engine["Fuel␣molar

␣mass"][1]
15 self.Cutofflimit = engine["Cut -off␣

limit"][1]
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16 else:
17 self.Fuellhv = []
18 self.Fueldensityvalue = []
19 self.Idlespeed = []
20 self.Maxspeed = []
21 self.Bore = []
22 self.Stroke = []
23 self.Ncylinder = []
24 self.Inertia = []
25 self.Displacement = []
26 self.CO2molarmass = []
27 self.Fuelmolarmass = []
28 self.Cutofflimit = []
29

30 def Maxtrq(self , engine_limits = pd.DataFrame):
31 var_info_dict = {"Speed": engine_limits["

Speed"][0], "MaxTrq": engine_limits["Max␣
Torque"][0]}

32 self.Maxtrq_tab = LookUp1D(engine_limits["
Speed"][1:], engine_limits["Max␣Torque"
][1:], var_info_dict)

33

34

35 def FuelTrqMap(self , engine_fueltrqmap = pd.
DataFrame):

36 engine_fueltrqmap = np.array(
engine_fueltrqmap)

37 engine_fueltrqmap_x = engine_fueltrqmap [1,
2:]

38 engine_fueltrqmap_y = engine_fueltrqmap [2:,
1]

39 engine_fueltrqmap_z = engine_fueltrqmap [2:,
2:]

40 var_info_dict = {"Speed": engine_fueltrqmap
[2, 0], "Torque": engine_fueltrqmap [0,
1], "Fuel␣rate": engine_fueltrqmap [0, 0]}
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41 self.FuelTrqMap_tab = LookUp2D(
engine_fueltrqmap_x , engine_fueltrqmap_y ,
engine_fueltrqmap_z , var_info_dict)

A.2 Reset Method

1 def reset(self , seed=None , options=None):
2

3 #Method to reset environment to initial state
and output initial observation

4 self.time_idx = 0
5 self.setSimulationInput(self.time_idx)
6

7 self.ice_state = 0
8 self.SOC = 0.5
9

10

11 self.RoadToGb(self.ice_state , self.speed , self.
acc , self.gear)

12 gbPwr_in = self.gbPwr_in
13 gbSpd_in = self.gbSpd_in
14 fdSpd = self.fdSpd
15

16

17 self.state = {"Speed": self.speed , "Power␣
Demand": self.gbPwr_in ,

18 "Gearbox␣speed": self.gbSpd_in ,
"SOC": self.SOC ,

19 "Traveled␣distance": self.
travel}

20

21 InputState = np.array([self.speed , self.
gbPwr_in , self.gbSpd_in , self.SOC ,

22 self.travel ]).astype(np
.float32)

23
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24 self.Normalization = StateNormalization(self)
25

26 self.observation = self.Normalization.Normalize
(InputState , 1, 0).astype(np.float32)

27

28

29 self.Output = {"SOC": np.zeros (1), "FC": np.
array ([]), "EM_Power": np.array ([]), "
ICE_Power": np.array ([]), "GB_Power": np.
array ([]), "FD_Power": np.array ([]), "
BT_Power": np.array ([]), "Action": np.array
([])}

30 self.Output["SOC"][0] = self.SOC
31

32 #The episode has just started so
33 self.done = False
34 self.truncated = False
35

36 if seed is not None:
37 random.seed(seed)
38

39 self.info = dict()
40

41 return self.observation , self.info

A.3 Step Method

1 def step(self , action):
2 # Method that apply system dynamics and

simulates the environment with the given
3 # action for one step.
4

5 if action > 0.075:
6 self.ice_state = 1
7 else:
8 self.ice_state = 0
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9

10

11 self.RoadToGb(self.ice_state , self.speed , self.
acc , self.gear)

12 fdPwr = self.fdPwr
13 gbPwr_in = self.gbPwr_in
14 gbSpd_in = self.gbSpd_in
15 fdSpd = self.fdSpd
16 ice_state = self.ice_state
17 u = action
18

19 self.Powersplit(u, gbPwr_in , gbSpd_in ,
ice_state , self.acc , self.speed)

20 ice_speed = self.iceSpd
21 ice_Pwr = self.icePwr
22 em_speed = self.emSpd
23 em_Pwr = self.emPwr
24

25 self.FuelConsumption(ice_speed , ice_Pwr , self.
ice_state)

26 FC = self.fuel_rate
27

28 self.ElectricalUnits(em_speed , em_Pwr , self.SOC
)

29 btPwr = self.battPwr
30 self.SOC = self.batt_soc [0]
31

32 self.Output["SOC"] = np.append(self.Output["SOC
"], self.SOC)

33 self.Output["FC"] = np.append(self.Output["FC"
], FC)

34 self.Output["EM_Power"] = np.append(self.Output
["EM_Power"], em_Pwr)

35 self.Output["ICE_Power"] = np.append(self.
Output["ICE_Power"], ice_Pwr)

36 self.Output["GB_Power"] = np.append(self.Output
["GB_Power"], gbPwr_in)
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37 self.Output["FD_Power"] = np.append(self.Output
["FD_Power"], fdPwr)

38 self.Output["BT_Power"] = np.append(self.Output
["BT_Power"], btPwr)

39 self.Output["Action"] = np.append(self.Output["
Action"], action)

40

41 #Reward
42 ’’’Reward 1’’’
43 #self.reward = float(self.k1 + (self.k2 * FC *

self.Ts) + \
44 # (self.k3 * self.soc_gain * (self

.SOC - self.soc_target)**2))
45 ’’’Reward 3’’’
46

47 if self.time_idx < 1350:
48 if self.SOC < 0.45:
49 self.P_soc = (self.SOC - self.

soc_target)**2
50 elif self.SOC > 0.55:
51 self.P_soc = (self.SOC - self.

soc_target) ** 2
52 else:
53 self.P_soc = 0
54 else:
55 if self.SOC > (0.67 - (self.time_idx * 8.89

e-5)):
56 self.P_soc = (self.SOC - self.

soc_target) ** 2
57 elif self.SOC < (0.33 + (self.time_idx *

8.89e-5)):
58 self.P_soc = (self.SOC - self.

soc_target) ** 2
59 else:
60 self.P_soc = 0
61
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62 self.reward = float(self.k1 + (self.k2 * FC +
self.k3 * self.soc_gain * self.P_soc) * self.
Ts)

63

64

65 # timestep update
66 if self.time_idx < (len(self.DrivingCycle.Time)

- 1):
67 self.time_idx = self.time_idx + self.Ts
68

69 self.setSimulationInput(self.time_idx)
70

71 self.RoadToGb(self.ice_state , self.speed ,
self.acc , self.gear)

72 gbPwr_in = self.gbPwr_in
73 gbSpd_in = self.gbSpd_in
74 fdSpd = self.fdSpd
75

76 self.state = {"Speed": self.speed , "Power␣
Demand": self.gbPwr_in ,

77 "Gearbox␣speed": self.
gbSpd_in , "SOC": self.SOC
,

78 "Traveled␣distance": self.
travel}

79

80 InputState = np.array([self.speed , self.
gbPwr_in , self.gbSpd_in , self.SOC , self.
travel ]).astype(np.float32)

81

82 self.observation = self.Normalization.
Normalize(InputState , 1, 0).astype(np.
float32)

83 self.reward = self.Normalization.
Normalize_reward(self.reward , 1, 0)

84
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85 elif self.time_idx == (len(self.DrivingCycle.
Time) - 1):

86 self.done = True
87 print(f"done␣-␣{self.time_idx}")
88 elif self.SOC <= 0.3 and self.SOC >= 0.7:
89 self.truncated = True
90 print(f"truncated␣-␣{self.time_idx}")
91

92 self.info = {}
93

94 return self.observation , self.reward , self.done
, self.truncated , self.info
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