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Abstract

The purpose of the Urban Air Mobility is to provide a safe and efficient transportation
system to improve daily life in large urban contexts. The main applications can
vary from air taxy to last-mile delivery. In this context drones open a wide range
of new opportunities that were unthinkable decades ago, with applications that
cover many fields, from military to agriculture and healthcare. The majority of the
applications cited above are covered by means of small rotary-wing drones. These
architectures are characterized by low thrust loading and poor efficiency due to the
regime in which they operate, characterized by predominant viscous effects. For
these reasons, in this thesis will be investigated both numerically, by means of CFD,
and experimentally, by means of Particle Image Velocimetry (PIV) and load cells,
the performance of a small-scale propeller in hover and in cross-flow in order to
understand the mechanisms of performance degradation and the effects on the wake
flowfield.
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Chapter 1

Introduction

Technology is playing a significant role in the process of globalization, and one
particular technology that stands out is drone technology. This technology is
experiencing a continuous increase in utilization across a wide spectrum of fields,
including agriculture, healthcare, and the military. Drones offer the capability to
gather real-time data in agriculture, empowering farmers to make well-informed
decisions about the utilization of resources on their farms [17]. Moreover, drones
have the potential to revolutionize healthcare by facilitating the aerial delivery
of essential medical supplies such as blood, vaccines, medications, and laboratory
samples to remote and isolated regions, particularly in developing nations during
health emergencies. In the military context, drones play a crucial role in enhancing
security and surveillance by monitoring and tracking the movements of adversaries,
aiding in the identification of targets for potential strikes.

While the advantages of drone technology are clear, it’s important to acknowledge
that improper usage can lead to harm to individuals and property. Inadequate
training of drone operators and technical malfunctions during flight can result
in injuries and damages. Additionally, there is a concern that drones could be
commandeered by extremists to divert payloads for their own gain, posing potential
security risks.

In this chapter some applications and a general classification of Unmanned Aerial
Vehicles (UAVs) is presented in section 1.1, together with the role of fluid dynamics in
designing such vehicles and challenges that need to be overcome. Section 1.2 focuses
on rotary-wing drones, providing a theoretical background in understanding fluid
dynamics features of propellers implemented in Micro Air Vechicles and numerical
methods employed to represent those features, that is the object of this thesis.



2 Introduction

1.1 The role of drones in modern society

Since their first developments, drones have revolutionized flight, opening a huge spec-
trum of new opportunities that were unthinkable decades ago. Drones applications,
which go from military uses to observation, exploration, meteorology and logistics,
are nowadays growing fast thanks to new technological developments in different
fields [18]. Over the past few decades, the emergence of a compact aerial device,
that is Micro Air Vehicles has led to a rise in the demand for intelligence-driven
operations. Consequently, significant attempts are currently underway to create
highly mission-specific, miniature air drones.

Fig. 1.1 Drones’ classification [1].

These endeavors have yielded a diverse range of small drones, exhibiting various
architectures and flight capabilities, as shown in figure 1.1. In general, drones can be
classified based on their performance characteristics. Key design parameters such
as weight, wing span, wing loading, range, maximum altitude, speed, endurance,
and production costs play a major role in distinguishing various types of drones and
facilitating useful classification metrics. Furthermore, drones can be sorted based
also on the type of engines they employ, in particular UAVs use fuel engines, while
MAVs use electrical motors.
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Fig. 1.2 Drones’ applications [1].

As shown in figure 1.2, drones have a wide range of purposes, also in our daily
life. These applications can be classified in several ways, including the type of
mission, type of the flying zone and type of the environment [1]. Among the several
employments of drones, mailing and delivery services seems to become important
realities. In particular, last-mile deliveries consist in a rapid package delivery from
local distribution hubs to a receiving vessel. This application, that could revolutionize
also the urban mobility, could have a viable market by 2030, as reported in the
market study conducted by McKinsey & Company [19]. Other applications consist
in environmental protection, such as managing national parks and tracking wildlife,
observe and monitor the climate change, but they can also be employed for recognition
and investigation of natural disasters. Beside conventional applications, drones can
be employed in some unconventional missions. For example, Tokyo’s Metropolitan
Police Department unveiled its anti-drones which are used to take down naughty or
offensive drones from the sky. Furthermore, drones can be used as runways for other
drones, can be applied to guide or scare birds away from airports and can also be
used to clean windows and solar panels.

The majority of the applications cited above are covered by means of rotary-wing
drones. Such drones can perform forward flight, vertical take-off and landing and
have the capability of hovering flight, some common architechtures are shown if
figure 1.3. Even if rotary wings have simple control systems, their main disadvantage
is the power consumption; in fact there are several challenges in designing these
drones when their size and consequently weight are decreased. For instance, when
they have low thrust loading and the efficiency of rotors is poor. For these reasons



4 Introduction

it is important to conduct experimental and numerical analyses in order to predict
the behaviour of these systems also in non-ideal conditions, such as cross-flow and
gusts. Here is where the work of this thesis is placed, which aims to study and
characterize the flow field of a small-sized rotor under various operating conditions,
in order to provide a better understanding of fluid dynamics features of rotors and
help engineers to design more efficient and less energy consuming drones, in attempt
to expand the market and the applications of these systems.

Fig. 1.3 Different types of MAVs.

1.2 Theoretical background

Predicting rotorcraft performance remains a challenging task. The aerodynamic flows
involved are inherently characterized by unsteadiness, non-linearity and complexity.
For example, a propeller blade could encounter its own tip vortex followed by the tip
vortex of other blades. This complexity intensifies when aerodynamic interactions
occur between multiple rotors and the fuselage, as can be seen in figures 1.4 and 1.5.
Moreover, small multi-rotor vehicles experience low efficiencies both in hover and
cruise [2],[20] due to the low Reynolds number regimes in which they operate. For
this reason, it is important to characterize both numerically and experimentally the
flowfield features of small-sized propellers.
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This section aims at providing a better understanding of the wake topology of a
propeller, how it affects the performance of the rotor and the differences in small-sized
(MAVs) and big-sized (helicopters) rotors wake flowfield.

Fig. 1.4 Complexity of the wake of a drone in different configurations (iso-surfaces of
Q-criterion) [2].

Fig. 1.5 Complexity of the wake of a drone in different configurations (velocity magnitude)
[2].

1.2.1 Wake topology of propellers

The wake flowfield developing downstream a rotor can be decomposed in three major
fields: near, mid and far wake. In particular, the near wake is the region where the
flow leaves the rotor blade and completes the formation of the first trailing edge
vortices, together with the first tip vortices (see figure A.1 in Appendix A). An
accurate solution of this field is needed to correctly predict the airloads and the rotor
vibrations. In fact, according to [3] and [21], it was found that the rotor performance
is mainly sensitive to this near wake features, that is because a rotor wake follows a
trajectory that periodically passes near its own generating rotor blades before being
convected downstream by the induced axial flow.
The mid wake is instead representative of the region where the flow interacts with
the body. Here the trailing edge vortices have begun to evolve in a coherent structure
denominated "Vortex sheet", while the tip vortices still remain discernable in their
own structure. The correct computation of this region’s flowfield permits to accurately
evaluate the interaction forces between the rotor wake and the body which sustains
the rotor, which could be for example an helicopter fuselage or a drone frame.
Finally, the far wake is where wake-environment interactions such as ground effect
and brownout take place. This effects could non-negligibly affect the performances, so
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(a) Schematic of hovering rotor wake structure
[5]. (b) Real rotor wake [4].

Fig. 1.6

it is important to take them into account. However, in this region the tip vortices and
trailing edge ones are mixed together in a turbulent structure, so it is consequently
more difficult to accurately compute the flowfield.

The primary features of a rotor wake are the tip vortex, which arises from the
rolling up of the vortex sheet shed from the tip region of the blade, and the vortex
sheet shed from the inboard section of the blade [5], a schematic representation of
the main features of a propeller wake can be seen in figure 1.6.

Although the tip vortex and the vortex sheet shed from the trailing edge of
the blade are separate entities, they influence each other. In fact, because of the
velocity induced by the tip vortex, the axial advection velocity near the tip of the
inner vortex sheet is greater than that of the tip vortex. The axial velocity of the
inner vortex sheet increases also with the radial position, resulting in a linear cross
section. An important aspect, that distinguish rotary-wings from fixed-wings, is
the counterrotating vortex (figure 1.7) formed at the edge of the inboard vortex
sheet, whose strength approaches 50% of that of the tip vortex [3]. The presence
of the counterrotating vortex is well demonstrated in the case of highly loaded and
untwisted blades, and it is likely to be caused by aspects of rotation, such as radial
acceleration. The presence of the counter-rotating vortex is of particular importance
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Fig. 1.7 Counterrotating vortex [3].

because of the possible influence on the structure of the wake, with strong effect on
the induced velocities and the thrust that the rotor develops. In fact, where the
inboard vortex sheet rolls into the counter-rotating vortex, a strong downward flow
is induced and this effect causes difficulties in compute the strength of the tip vortex:
if the induced velocity is used as a parameter for computing tip vortex strength, then
the calculations will result in a high estimation of this quantity.

Now that the main actors of a rotor wake are clear, let’s see how these features
evolve downstream in the wake. Once the tip vortex leaves the blade, it initially
moves inward, toward the rotation axis of the rotor, and stays close under the
blades; as a consequence, the next blade’s tip to come round experiences an upwash,
increasing the incidence and finally intensifying the tip vortex strength [4].

Fig. 1.8 Tip vortex motion [4].



8 Introduction

The axial transport velocity remains relatively constant in the near wake before
and after the passage of the subsequent blade, but with different values; in fact, in
figure 1.9 it is possible to notice a linear variation of the axial displacement of the
tip vortex with respect to the wake azimuth. This axial velocity increases linearly
with increasing blade loading and decreases moderately with increasing blade twist;
furthermore, the axial velocity is insensitive to variations in the number of blades
[5]. Regarding the radial displacement of the tip vortex, many authors such as [5]
and [6] confirm an exponential decay as the wake azimuth (wake age) is increased,
this contraction appears to be a function of the rotor disk loading: more the loading,
more the contraction. Regarding the inboard vortex sheet, the axial velocity of the
sheet become greater with increasing the disk loading and increasing the blade twist.

Fig. 1.9 Radial and axial displacement [5] (left), [6] (right).

According to the experiments conducted in [21], the initial size of the tip vortex
core is approximately 10% of the blade chord and increasing the wake age it becomes
bigger, following a square root function of wake age, with the tip vortex that tends
to have an elliptical shape; whereas the inner vortex sheet remains visible until a
wake age of 30 degree. As the tip vortex travels downstream an increase in aperiodic
motion occurs. This aperiodic and isotropic motion [6] it is a precursor of the
instability of the far wake. In particular, the transition to the far wake has been
shown to occur throw a deterministic vortex pairing rather than a chaotic way. When
the tip vortices interact, they roll around each other. The rollup process continues
until the cores come close together and then loss definition in the merger. The
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merged vortices could then weaken much quicker than their components did before
merger, and this delineates the start of the far wake.

The discrete structures present in the far wake might undergo fragmentation, in
a similar manner to shear layer growth. Even as these mechanisms become more
intricate with a higher count of blades, they adhere to deterministic explanations
until vortex merging take place. In figure 1.10 it is shown the process of vortex
pairing for a 2 blade rotor.

Fig. 1.10 Vortex pairing sequence [3].



10 Introduction

Finally, wake geometry is insensitive to independent variations of tip speed and
aspect ratio, and the influence of number of blades is limited to the wake azimuth
angle at which the axial velocities increase significantly. On the other side, the
performance of a rotor is sensitive to the tip vortex geometry. This is particularly
true in hover flight for rotors with high number of blades.

1.2.2 Rotors at low Reynolds number

The aerodynamics of rotary-wing vehicles in regimes’ typical of MAVs’ are very
different from those in higher Reynolds number regimes, such as helicopters (see
figure 1.11). In fact, if compared to helicopters, MAVs experience a poor hover
efficiency [22].

Fig. 1.11 Relative magnitude of various aircraft [7].

Since the Reynolds number represents the ratio between inertial and viscous
forces, MAVs operate in regimes where viscous forces are dominant. Consequently,
the boundary layer physics such as flow separation and re-attachment zones on the
airfoil vary. In [7] it is proved that profile drag for low Reynolds regime is significantly
stronger (45%) then full-scale helicopters (30%). These effects can be attributed to
an increase in viscous drag of the airfoil and flow separation susceptibility of the
boundary layer, fact it is known that the sensitivity of airfoil performance at different
Reynolds number is related to the boundary-layer characteristics.
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Fig. 1.12 Airfoil separation characteristics at different Re [8].

Referring to figure 1.12, it is possible to notice that at conventional Reynolds
numbers (c), the laminar flow that travels over the upper surface of the airfoil
experiences a large adverse pressure gradient close to the leading edge; because of
the low kinetic energy of a laminar boundary layer, the flow separates as a shear
layer. The shear layer then gains momentum from the free stream and reattaches as
a turbulent boundary layer, originating a laminar separation bubble (LSB). Even
though the turbulent boundary layer is more energetic than the laminar one, at high
angles of attack it separate closer to the trailing edge, resulting in increased pressure
drag and decreased lift.

At lower Reynolds numbers (b), as a consequence of the higher contribution of
viscous effects, both the separation bubble and the turbulent boundary layer grow
in size, resulting in increased parasitic drag. The separated shear layer still gains
enough energy from the free stream to be able to reattach as a turbulent boundary
layer. Nevertheless the reattachment point is very far from the leading edge. As
the angle of attack increases, the reattachment point moves in the direction of the
trailing edge, creating a very large separation bubble. When the airfoil is close to
stall, the flow fluctuates between separation and reattachment, causing an unsteady
aerodynamic phenomenon: lift and drag are difficult to quantify.

In the case of low Reynolds numbers (a), as the angle of attack increases, the
separation point moves in the direction of the leading edge, resulting in a shear layer.
The shear layer in this case is unable to reattach as a turbulent boundary layer,
resulting in high drag and poor lift. The separation region then increases in size as
the Reynolds number is decreased for a given angle of attack.
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Fig. 1.13 Effect of Re on airfoil lift to drag ratio [8].

It is evident also from figure 1.13 that downsizing an airfoil drastically reduces
its aerodynamic efficiency in terms of lift to drag ratio, so an airfoil suitable for
high-Re applications is not suited for low-Re regimes, reducing the overall efficiency
of the drone and so, reducing the power consumption. These effects are easy to
see in a polar curve, like figure 1.14, where it is possible to notice a relatively flat
behaviour of the efficiency. The low lift to drag ratio could be a consequence of
the laminar separation bubble in a wide portion of the blade. In particular, at this
low-Re regimes, the profile drag has a larger influence over the total power required
by the rotor. This is why also a reduction in induced power does not influence so
much the rotor performance.

Fig. 1.14 Airfoil lift to drag ratio [9].



1.2 Theoretical background 13

An estimate of the efficiency of a rotor in hover is the figure of merit (FM), that
is the ratio between the ideal power and the actual required power of the rotor. This
parameter should be used as a comparative measure between two rotors at the same
blade loading [10].

FM = C
3/2
T

CP

√
2

(1.1)

Where CT is the thrust coefficient and CP the power coefficient, defined as:

CT = T

ρAΩ2R2 (1.2)

CP = P

ρAΩ3R3 = τΩ
ρAΩ3R3 (1.3)

Where τ is the torque and Ω the rotational speed. Experimentally, if we can measure
T and τ then it is possible to compute the figure of merit.

Another key factor is the power loading, defined as the ratio between thrust and
power required to hover.

PL = T

P
= CT

CP

1
ΩR

= FM

ó
2ρ

DL
(1.4)

Where DL is the disk loading. The propeller efficiency could be also defined intro-
ducing the advance ratio J , defined as J = V/(ΩD).

η = J
CT

CP

(1.5)

Disk loading, figure of merit and power loading could be used as comparative
metrics for testing different type of aifoils and to study the effect of the Reynolds
number for different propeller geometries. Some examples could be found in [9], [22]
and [10] (figure 1.15).
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(a) Power loading as a function of disk loading. (b) Cambered airfoil performance at Re=40900.

Fig. 1.15 [10]

1.2.3 Numerical methods

Small-scale propellers behaviour is difficult to predict via simulations. A great
amount of this difficulty arises from the dependence of the performance on the
Reynolds number [23], previously discussed. In literature different approaches for
determining the aerodynamic performance of a propeller are proposed. In general,
the problem of determining the performance parameters of a propeller could be
addressed in three ways: analytical approach, experimental approach and numerical
approach. All of these three approaches have advantages and disadvantages. In
particular, an analytical approach is limited only to high Reynolds applications,
such as helicopters, whereas an experimental approach could be expensive and time
consuming. Although no one method is better than another, a numerical approach
seems to be the most immediate way of studying this problem, this is strongly
supported by the technological improvements made in computer sciences, with the
effect of computational cost reduction.

Nowadays the numerical methods adopted range from low-fidelity (actuator disk,
blade element theory, blade element memontum theory) to high-fidelity (3D CFD).
Momentum theory and blade element theory are approximations to estimate CT

and CP , but are based on important fluid semplifications; on the other hand, many
numerical studies that involved small-scale propellers proved that RANS (Reynolds-
Averaged Navier-Stokes) can provide good agreement with experimental data in
predicting thrust and torque [24]. RANS equations use the Reynolds decomposition,
which states that the variable of interest could be seen as a sum of an average part
and a fluctuating term.

∇ · U = 0 (1.6)

∇ · u′ = 0 (1.7)
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ρ
DU

Dt
+ ρ∇ ·

1
u′u′

2
= ρg − ∇p + µ∇2U (1.8)

Equations 1.6 and 1.7 are the RANS continuity equations for the average part
and fluctuating part of the flow respectively, equation 1.8 is the RANS momentum
equation for an incompressible flow. The process of averaging give rise to a term
(∇ · u′u′) that represents the divergence of the Reynolds stresses, caused by the
fluctuating part of the flow. These stresses act like added shear stresses and should
be modeled adding a turbulent viscosity to the fluid conventional viscosity. This
method of modelling and taking into account the effect of the turbulence on the
mean flow is based on the Boussinesq approximation.

The most common turbulence models are the k − ϵ, k − ω and k − ω SST. The
k − ϵ model introduces two more equations in order to close the system of equations.
The first equation is the transport equation for the turbulence kinetic energy and
the other one for the turbulence dissipation rate.

∂(ρk)
∂t

+ ∇ · (ρUk) = ∇ ·
53

µ + µt

σk

4
∇k

6
+ Pk + Pb − ρϵ + Sk (1.9)

∂(ρϵ)
∂t

+ ∇ · (ρUϵ) = ∇ ·
53

µ + µt

σk

4
∇ϵ
6

+ C1
ϵ

k
(Pk + C3Pb) − C2ρ

ϵ2

k
+ Sϵ (1.10)

Solving for ϵ and k gives µt, that is the turbulence viscosity.

µt = Cµ
ρk2

ϵ
(1.11)

The k − ϵ model uses empirical damping functions in the viscous sub-layer (thanks
to coefficients C1, C2 and Cµ). These functions provide inaccurate results if the flow
in characterized by strong adverse pressure gradients. In particular the k − ϵ model
under these conditions is not able to predict correctly the separation point and so
the friction coefficient. For this reason the k − ω turbulence model was introduced.
In this case ϵ is replaced by the specific dissipation rate ω.

ω = ϵ

Cµk
(1.12)

∂(ρω)
∂t

+ ∇ · (ρUω) = ∇ ·
53

µ + µt

σk

4
∇ω

6
+ γ

γt

Pk − βρω2 (1.13)

The k − ω turbulence model is more accurate than k − ϵ, but has the disadvantage
of a strong dependence of the turbulence intensity of the free stream: small changes
in the turbulence intensity could lead to big changes in µt. In order to overcome this
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deficit, the k − ω SST turbulence model was introduced. This model is a blending of
k − ω and k − ϵ models. Here the equations are:

∂(ρk)
∂t

+ ∇ · (ρUk) = ∇ ·
53

µ + µt

σk

4
∇k

6
+ Pk + Pb − ρϵ + Sk (1.14)

∂(ρω)
∂t

+∇·(ρUω) = ∇·
53

µ + µt

σk

4
∇ω

6
+ γ

γt

Pk−βρω2+2(1−F1)
ρσω2

ω
∇k : ∇ω (1.15)

F1 in the blending function, if F1 = 0 the k − ϵ model is used, if F1 = 1 then the
k − ω model is used.

The models introduced above are "fully turbulent" models. Another important
class of turbulent models are those that take into account also laminar flows or not
fully turbulent flows, for example boundary layers in which a wide portion of the
flow is laminar. Here, the Transitional k − ω SST model uses the same equation
of the k − ω SST with a difference in the production and dissipation terms of the
equations.

∂(ρk)
∂t

+ ∇ · (ρUk) = ∇ ·
53

µ + µt

σk

4
∇k

6
+ Pk − Dk (1.16)

∂(ρω)
∂t

+∇·(ρUω) = ∇·
53

µ + µt

σk

4
∇ω

6
+ γ

γt

Pk−βρω2+2(1−F1)
ρσω2

ω
∇k : ∇ω (1.17)

Here γ is the turbulence intermittency. If Pk = 0 the flow is laminar, if Pk = 1
the flow is fully turbulent. This model requires one more equation that represents
the transport of γ and one for the transport of Reθ,t , which is the Reynolds number
(referred to the momentum thickness) at which the transition occurs.

∂(ργ)
∂t

+ ∇ · (ρUγ) = ∇ ·
CA

µ + µt

σγ

B
∇γ

D
+ Pγ − Dγ (1.18)

∂(ρReθ,t)
∂t

+ ∇ · (ρUReθ,t) = ∇ ·
CA

µ + µt

σθ,t

B
∇Reθ,t

D
+ Pθ,t (1.19)

Any cell in the domain will have a specific value of Reθ,t , then it is computed the
Reynolds number at which the intermittency begin to become greater: if this value
crosses a threshold then the turbulence production term will be activated.

One of the major disadvantages of the turbulence models based on the Boussinesq
approximation (Turbulent Viscosity Hypothesis) is that they don’t take into account
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and they can’t capture the effects of the curvature of the flow. This limit has been
overcome modifying the turbulent kinetic energy production term. In this case a
function named fr1 multiply the turbulent kinetic energy production term Pk. If the
function is 0 (convex curvature) the production term is negligible, if the function is
set to 1.25 (concave curvature) the production term become important.

frot = (1 + Cr1)
2r∗

1 + r∗

è
1 − Cr3tan−1Cr2r̃)

é
− Cr1 (1.20)

fr1 = max[min(frot, 1.25), 0] (1.21)

Fig. 1.16 Comparison between k − ω SST and k − ω SST-CC in predicting the tip vortex
characteristics of a wing with a NACA 0012 airfoil [11].

The k − ω SST-CC (curvature correction) has been tested in a wide range of
simulations and test cases demonstrating to provide more accurate results with
respect to the traditional k − ω SST [12]. In particular, the old model seems to
overestimate the intensity of a tip vortex and so the decay of axial velocity of the
vortex, due to an overestimate in the turbulence activity in the vortex, this behaviour
can be seen in figure 1.16.

The nature of the flow developed by a rotating rotor is unsteady. This implies a
simulation with a dynamic mesh, which is typically very computationally expensive.
An alternative is studying the problem with a moving reference frame fixed with
respect to the rotor (figure 1.17), in which the flow could be modelled as a steady-state
[25].
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Fig. 1.17 Multiple reference frame technique [12] (left) and computational domain [13]
(right).

The rotating fluid around the rotor, in which the blades and the hub are relatively
stationary, is set as the moving reference frame. The connection between the
stationary and rotating part of the computational domain is controlled by a mesh
interface, which has no physical meaning, but is required only for the simulation [26].
For this type of simulation the momentum equation is modified in order to include
the effect of rotation experienced by the cells is the moving reference frame domain.
In particular, in the moving reference frame:

U = Ur + Ω × r (1.22)

Where Ur is the relative velocity and Ω × r the tangential velocity. The fundamental
idea is to resolve the Navier-Stokes equations in terms of Ur for every cell in the
moving reference frame and then compute the absolute velocity U .

∇ · (UrUr) = −1
ρ

∇p + ∇ · (ν∇Ur) − Ω × Ω × r − 2Ω × Ur (1.23)

The two extra terms represents the Coriolis force and centrifugal effects. Typically
the moving reference frame technique is referred as frozen rotor because the rotor
position remains fixed in the space. A more accurate, but more computationally
consuming, is the sliding mesh technique, in which the rotor moves together with the
elements inside the rotating zone to represent the actual rotational effect. The sliding
mesh technique can represent also the transient effects such as vortex shedding,
while the moving reference frame technique is not able to resolve and is not able to
represent the actual rotational effects because relative motion between the rotating
zone and adjacent zone is not taken into account and furthermore because the MRF
approach can only provide the time averaged steady-state solution. Even though the
MRF approach is less accurate with respect to the sliding mesh approach, it is able
to well predict thrust and power consumption of propellers, with the big advantage
of very fast simulations.
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In conclusion, the numerical method adopted for the simulation of a rotor should
be chosen thinking of the problem. BET and BEMT models are very easy and
fast methods to use, but they’re use is limited to specific cases with a reliability
that decreases with the increase in the advance ratio. Furthermore, these methods
require input parameters from experimental studies, which make them difficult to
use in absence of experimental data. On the other hand, CFD simulations are
highly used to study the aerodynamics of rotors. In particular, the moving reference
frame technique seems to represent a good compromise between computational costs
and accuracy, in particular when 3D effects and turbulence are taken into account.
However, CFD simulation reliability depends on the mesh size and quality, domain
size , physical formulation, turbulence model adopted and solution type.



Chapter 2

Experimental and numerical setup

2.1 Introduction

The following chapter has the purpose of introducing the experimental and numerical
setup adopted for the experiments, describing its main components and functions,
as well as the motivations that led to certain choices. More in detail, section 2.2
will briefly discuss the operating principle of the Particle Image Velocimetry (PIV)
technique and its constituent components. Following that, the rotor support on which
the experimental analyses will be conducted will be presented. Finally, in section
2.3, the numerical setup will be introduced, including the choice of computational
domain dimensions, the mesh, and the numerical models used for the analyses.

2.2 Experimental setup

The main advantages of pneumatic or anemometric measurement techniques are their
ease of use. However, these techniques have the disadvantage of being intrusive and
point-based, not allowing for mapping of the entire flow field. In order to overcome
these limitations, optical techniques have been developed, which provide information
on the entire flow field without errors due to intrusiveness. The Particle Image
Velocimetry (PIV) falls into this category of techniques.

PIV is based on evaluating the displacement of tracing particles, which move
with the flow, in order to indirectly determine the velocity field. A typical PIV setup
consists of several subsystems, including: seeding, a laser source, a camera, optical
lenses, and image processing software, as shown in figure 2.1. In practice, small
particles on the order of microns are injected into the flow field. The investigation
region is illuminated by a laser sheet, and a camera is positioned perpendicular to it
to capture the scene. Typically, the interrogation region is illuminated twice by two
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laser pulses separated by a certain time interval ∆t, which depends on the studied
phenomenon. At this point, the illuminated particles are photographed for each laser
flash, and the scene is recorded on a camera frame.

Fig. 2.1 An example of a PIV apparatus.

Consequently, two images representing the flow field at time t and t + ∆t are
obtained. These two images are then divided into appropriately sized interrogation
windows. Each window in the image captured at time t is compared to the correspond-
ing window in the image at time t + ∆t to evaluate the cross-correlation coefficient,
which represents the most probable displacement of the particles. Given the time ∆t

and the pixels per millimeter, each interrogation window will be associated with a
velocity vector.

In this thesis, planar PIV was used to study the wake topology and fluid dynamics
characteristics of a drone propeller under different operating conditions. Figure 2.2
shows the PIV setup. A Dantec Dynamics Nd: YAG Dual Power 200 laser, operating
in dual pulse mode with a pulse energy of 200 mJ and a repetition rate of 15 Hz, was
employed to illuminate the tracer particles. To create a thin laser sheet, the laser
beam was manipulated using an optical setup comprising a spherical lens with a focal
length of 1000 mm and a cylindrical lens with a focal length of -50 mm. To capture
images of the tracing particles, a synchronized Andor Zyla 5.5Mpix sCMOS camera
with a sensor size of 2560x2160 pixels2 and a pixel size of 6.5 µm was employed.
The camera operated in double exposure mode and had an acquisition frequency of
15 Hz. To capture the images, a Tokina 100 mm Macro lens with an aperture value
of f = 11 was attached to the camera. The investigation area covered a region of
approximately 15x16.8 cm in the x-y plane (refer to figure ), which corresponds to
an optical/spatial resolution of roughly 16 pixels per millimeter. For seeding the flow
upstream of the contraction (see figure 2.3a), a Laskin nozzle was employed, which
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generated particles of approximately 1 µm in size. These particles were dispersed
using the high-performance seeding fluid "PIVLIGHT."

Fig. 2.2 Experimental setup.

(a) Seeding system. (b) Andor Zyla 5.5Mpix sCMOS camera.

Fig. 2.3
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The experiments were conducted in an open-loop wind tunnel, which will be
extensively described in chapter 3. Below, the rotor setup will be described more in
detail.

2

1

3
4

5

Fig. 2.4 X-Y is the interrogation plane. On the right the rotor setup. x-y is the body
reference frame, fixed with the propeller. (1) propeller, (2) motor, (3) load cell, (4) torque
cell, (5) servo.

The main components, as illustrated in Figure 2.4, are briefly described. The
propeller used in the experiments has a radius R of 7.5 cm and a NACA 4412
airfoil, the propeller was fabricated using 3D printing technology with VisiJet Armor
M2G-CL resin. The rotor setup consists of several components and subsystems.
A TRX370 1000KV brushless motor with a diameter of 2.8 cm and a maximum
power of 150 W is used as the main driving force. The motor is controlled by an
external electronic speed control (ESC) controller, which receives input commands
through an Arduino Uno board. To measure the rotational speed of the motor shaft,
a Hobbywing RPM sensor is employed. This sensor is connected to two of the three
phases of the brushless motor and detects voltage changes within a 0.1-second time
interval. The information is then converted into RPM values. The RPM sensor has
a rated output ranging from 1000 to 300,000 RPM for 2-pole motors.

The rotor, including the motor and the propeller, is mounted on a 3D printed
support made of polylactic acid (PLA). The support is designed to minimize vibrations
caused by the rotating propeller. Additionally, the support incorporates two load
sensors. The first is a bi-directional axial load cell LSB200 Futek, excited with 5
VDC, used for measuring thrust. It has a rated output of 2.5 N with a non-linearity
and hysteresis of ±0.1% of the rated output. The operating temperature range
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of the load cell is 223-365 K. The second sensor is a torque sensor TFF400 Futek,
excited with 10 VDC, used for measuring torque. It has a rated output of 0.07 Nm
with a non-linearity and hysteresis of ±0.2% of the rated output. The torque sensor
operates within the temperature range of 223-365 K.

Finally, the PLA support is connected to an Optosigma OSMS-120YAW servo
motor, which allows for a 360° rotation around a vertical axis passing through the
propeller’s hub. This feature enables the propeller to be positioned and fixed within
the test section when rotated.

2.3 Numerical setup

According to [12], there are several approaches to studying rotor aerodynamics:
analytical, numerical, and experimental. The analytical approach is not suitable for
analyzing small-sized rotors, as these theoretical approaches are based on the simpli-
fication of high Reynolds numbers. In this thesis, both numerical and experimental
approaches are used, highlighting how the two approaches complement each other.

Among all the numerical methods adopted in rotor aerodynamics studies, CFD
simulations remain the most widely used, as discussed in chapter 2. Numerical studies
conducted on small rotors have revealed that a Reynolds-averaged Navier-Stokes
(RANS) approach can provide adequate and satisfactory results in terms of thrust
and torque; for this reason the Multi Reference Frame approach (Frozen rotor) is
implemented in this thesis. In particular, in this section will be discussed the chosen
domain, the dimensions, the boundary conditions, the mesh and the turbulence
model adopted for the analysis, with particular emphasis to the reasons that led to
concrete choices.

One choice concerns the shape and the dimension of the computational domain.
Many authors adopt different shapes: rectangular [27], cylindrical [12][24][25][13] and
bullet type. No shape appear to be better than another, the choice is driven primary
by the problem. As already discussed, the computational domain is composed of
different sub-domains: external domain and rotating domain. In particular, the
external domain is stationary, while in the rotating reference frame the rotation is
simulated by writing the RANS equations in an appropriate reference frame. The
stationary domain and the rotating domain are linked by an appropriate interface,
while the propeller is fixed in space and time. Clearly, the smaller the domain, the
better in terms of computational costs, but it is not necessarily the same for the
accuracy of the solution obtained. For this reason, in this section will be investigated
the influence of the computational domain size, both stationary and rotating, on the
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solution. After the optimum size is reached, different meshes will be compared with
the final purpose of a compromise between computational costs and accuracy.

A typical domain is represented in figure 2.5a. It is composed of two cilyndrical
regions with different dimensions: the rotating region and the stationary region. In
this phase of the analysis the dimensions A,B and C are varied in order to investigate
the influence of the dimensions of the stationary domain on the solution. The mesh
and the mesh refinement regions in figure 2.5b, which will be discussed later, remain
unchanged during this analysis.

(a) Numerical domain. (b) Refinement regions.

Fig. 2.5 Numerical domain and refinement regions.

Once the proper dimensions of the stationary domain are chosen, we will investi-
gate the influence of the rotating domain and the influence of the mesh size on the
solution, in order to reach an optimum in terms of computational costs and accuracy.
Table 2.1 summarize the domain size investigated, where D is the diameter of the
propeller. The thrust T is used as a reference parameter, while ϵ is the error with
respect to the reference (Dom1 ).



26 Experimental and numerical setup

Table 2.1 Stationary domain analysis (D=0.1524 m).

A B C T [N] ϵ [%]

Dom1 5D 7D 13D 0.4269 0
Dom2 4D 5D 10D 0.4270 0
Dom3 3D 4D 7D 0.4270 0

The analysis is conducted at a fixed rotational speed equal to 5000 rpm, in
hovering. The dimensions D and E of the rotating domain are both fixed and equal
to 0.56D and 0.23D respectively. As can be seen, the thrust experience a very little
variation with respect to the reference value. These results allow the selection of
a smaller domain, for example Dom2 or Dom3, for the analysis, thus reducing the
number of cells and so the computational cost.

Another question to address regards the rotational domain thickness. This is
a crucial problem in multiple reference frames simulations, in particular for small
propellers and rotors with 2 blades [25]. In particular, a rapid transition from a
rotating frame to a stationary one could result in an unphysical numerical diffusion
of the conservative quantities, causing a change in the flow characteristics around
the propeller. For this reason, the dimension E of the rotating domain will be varied
mantaining costant the other parameters. Table 2.2 summarize the results obtained.

Table 2.2 Rotating domain analysis (D=0.1524 m).

D E T [N] ϵ [%]

Rot1 0.56D 0.23D 0.4269 0
Rot2 0.56D 0.11D 0.3630 15
Rot3 0.56D 0.36D 0.4269 0

From table 2.2 it can be seen that the rotating domain size affects the solution.
In particular, small domains seems to underestimate the thrust of the propeller.

Once the proper size of the stationary and rotating domain are selected, we focus
on the mesh optimization. For this study a cartesian mesh has been chosen. The
base size of each cell is a fraction of the airfoil chord at 75% of the propeller radius c,
see equation 2.1. This base size is then multiplied by a magnification factor for the
regions where the cell size could be bigger. Ref1, Ref2 and Ref3 are three cylindrical
refinement regions, in order to better capture the wake of the propeller. The size
of these regions and the influence on the results will be discussed later. Table 2.3
summarize the base size for each region.
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Bs = c

100 (2.1)

(a) Mesh (zoomed). (b) Blade detail.

Fig. 2.6 Cartesian mesh.

(a) Airfoil detail. (b) Trailing edge detail.

Fig. 2.7 Cartesian mesh.

Table 2.3 Mesh base size (c=0.011304 m).

Base size

Stationary 256Bs

Rotating Bs

Ref1 16Bs

Ref2 32Bs

Ref3 64Bs

Regarding the boundary layer, the target was to reach a Y + value below 1 all
over the surface of the propeller, in order to resolve the whole boundary layer and not
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use wall functions. More in detail, the Y + represents the non-dimensional distance
between the wall and the centroid of the first cell. The target Y + should be chosen
considering the turbulence model adopted. The general procedure for determining
the distance of the centroid of the firs cell is the following: Firstly the Reynolds
number is needed.

Re = ρUL

µ
(2.2)

Once the Reynolds is computed we calculate some viscous parameters.

Cf = [2Log10(Re) − 6.5]−2.3 (2.3)

τw = 1
2ρV 2Cf (2.4)

uτ =
ó

τw

ρ
(2.5)

Finally the total height of the first cell is computed.

yH = 2y+µ

ρuτ

(2.6)

Once the first height is computed, we can determine the number of layers by
computing the boundary layer total thickness. If Re < 5e + 5.

δBL = 4.91L√
ReL

(2.7)

If Re > 5 · 105:
δBL = 0.38L

Re1/5 (2.8)

It is important to notice that if we adopt a full turbulent model, we have to calculate
the boundary layer thickness with the second equation, even if the Reynolds number
of the simulation is less than 5 · 105. Finally, selected a proper stretching factor (G),
we can compute the number of layers (N).

δBL =
N−1Ø
k=0

yHGk = yH
1 − GN

1 − G
(2.9)

In conclusion, a total of 10 layers with a near wall thickness of 2 · 10−5 m and a
total thickness of 0.001 m has been selected as input values for the prism layer mesh.
As can be seen in figure ??, the wall Y+ values are well below 1 for most of the
propeller surface.
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(a) Y+, upper surface. (b) Y+, bottom surface.

Fig. 2.8 Wall Y+ values.

In general, as we take in consideration some quality metrics, as skewness angle of
the cells and cell quality index, the overall mesh quality is more than acceptable, see
figure 2.9. Even if the mesh quality is high, the present mesh has a high number of
cells, approximately 8.2 million if we consider Dom1. This considerations suggest a
mesh independence study, in order to reduce the number of cells while maintaining
the same quality.

(a) Cell quality. (b) Skewness angle.

Fig. 2.9 Mesh quality metrics.

A grid independence study should be parametric, that is a parameter is varied
while the others are fixed. Following this way, it is possible to study the dipendence
of the mesh on a specific parameter. In the present study the base size is chosen as
the variable parameter.

Table 2.4 Mesh independence study.

Base size Number of cells T [N] ϵ

Mesh1 c/100 8.16e6 0.4269 0
Mesh2 c/80 5.60e6 0.4231 0.89
Mesh3 c/60 3.57e6 0.4208 1.43
Mesh4 c/40 1.96e6 0.4101 3.93
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Fig. 2.10 Mesh independence study.

Figure 2.10 and table 2.4 show the results of the mesh independence study. Four
different meshes have been tested, and it is clear that Mesh2 represents a good
compromise between computational costs and solution accuracy. For this reason it is
possible to conclude that for a reliable numerical simulation, it is suggested to select
the dimensions of the stationary domain according to table 2.1, in particular for
dimension A, 3 to 4 diameters of the propeller should be selected, for dimension B, 4
to 5 diameters and for dimension C 7 to 10 diameters should work fine. Regarding
the rotating domain size it has been proven that the size affects the results, this is
particularly true for small dimensions, so a D dimension of 0.56 diameters and an E
dimension of 0.23 diameters seems to be a good compromise. Finally, a base size of
c/80 it is suggested, in order to reduce the computational costs, saving more or less
2.5 million cells, with a difference of less than 1% in thrust with respect to the finest
mesh.



Chapter 3

Wind tunnel characterization

3.1 Introduction

Wind tunnels are used to study the aerodynamic properties of objects in a controlled
environment. They consist of a test section, where a model is placed, and a wind
tunnel that generates a flow of air or other fluid over the model. The flow is
then monitored and analyzed to determine the aerodynamic characteristics and
performance of the object, such as drag, lift and pressure distribution.

Wind tunnels can be used to test a wide range of objects, from small models
of aircraft, automobiles, and building structures, to large-scale models of industrial
equipment and sports equipment. They are widely used in fields such as aeronautical
and aerospace engineering, mechanical engineering, and sports science, to design and
optimize the performance of various systems and products.

There are various types of wind tunnels, including open-circuit, closed-circuit,
subsonic, supersonic, hypersonic, and transonic wind tunnels, each designed to test
objects in different flow regimes. Open-circuit wind tunnels draw air in from the
environment, while closed-circuit wind tunnels recirculate air through the tunnel.

In addition to testing physical models, wind tunnels can also be used to study
numerical simulations and computational fluid dynamics (CFD) models. By compar-
ing the results of these simulations with experimental data obtained in wind tunnels,
engineers can validate and improve the accuracy of their simulation models.

Because of the critical role of wind tunnels in advancing the understanding
of fluid dynamics and aerodynamics, in this chapter will be discussed the main
features of "Ferrari" wind tunnel, an open circuit wind tunnel located in the "Modesto
Panetti" laboratory, part of the Department of Mechanical and Aerospace engineering
(DIMEAS) of the Polytechnic university of Turin. This wind tunnel has been used
in this project in order to study the aerodynamics performance of a rotorblade in
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different configurations and conditions. In particular, in this chapter we focus our
attention on the wind tunnel characterization, that is the process of measuring and
analyzing the properties of a wind tunnel, such as flow quality, speed, and turbulence,
in order to ensure that it is operating within specified limits and is suitable for its
intended use.

3.2 Ferrari wind tunnel

The wind tunnel consists of 1.14 meters long contraction with a contraction ratio of
3.5 : 1 with an inlet diameter of 0.75 meters and an exit jet diameter of 0.4 meters.
The test section has a cubic shape with a lenght of 0.9 meters, while the diffuser has
a diffusing ratio of 1 : 2.4. A 7 blades fan is mounted downstream the diffuser and it
is run by a three-phase asyncronous motor with a maximum power of 7.5 kW. In
the contraction section are mounted two metallic meshes to reduce the turbulence
intensity of the flow. The wind speed range is approximately 2.5 − 25 m/s.

Fig. 3.1 Ferrari wind tunnel

In figure 3.2 it’s shown the relation between the angular speed of the fan and the
wind speed, and the relationship between the difference of pressure measured at the
ring (∆PRG) and the pressure difference measured by the Pitot tube, that is (∆PP T ).
Figure 3.2 (a) is obtained by varying the fan rotational speed from 0 to 2200 round
per minute. At each rotational speed the wind speed is obtained by means of a Pitot
tube and a pressure transducer. The acquisition time has been settled to 60 seconds
with an acquisition frequency of 16.7 Hz. ∆PRG represent the pressure difference at
the ring, that is the difference of pressure measured in proximity of the inlet and the
outlet of the convergent. Once the experimental data was obtained, a fitting curve
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Fig. 3.2 Pressure and velocity correlations.

has been computed. In particular, the U − ∆PRG correlation can be expressed by
the following expression:

U(∆PRG) =
ñ

1.8618 · ∆PRG (3.1)

While ∆PP T − ∆PRG correlation can be expressed as:

∆PP T = 1.0892 · ∆PRG (3.2)

3.3 Flow characteristics

In order to reach accurate and reliable results it is important to evaluate the flow
characteristics of the wind tunnel, in particular in the test section, where the testing
model is mounted. In this section we investigate the quality of the flow in terms of
velocity profile, turbulence intensity profiles and turbulence power spectra.
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Y

Z

Fig. 3.3 Schematic of the wind tunnel and reference system. (red: x, blue: z, green: y).

The velocity profiles were obtained experimentally by using a hot-wire anemometer.
In particular, the z and y profiles are derived for two different x positions in the test
section, that are the outlet of the jet (position A) and the middle position respect to
the test section (position B). To gain a better understanding, refer to figure 3.4.

Fig. 3.4 Position A and B of the hot wire probe in the test section.

The velocity profiles in y and z direction were obtained by varying the distance
of the hot-wire probe with respect to the x-z plane for the y profiles and to the
x-z plane for the y profiles. The distance range in which the probe computed the
velocity it is shown in figure 3.5 for both y and z profiles, and for position A and B.
In particular, the range are:
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(a) Distance range in z direction. (b) Distance range in y direction.

Fig. 3.5 Hot-wire probe operational distance range, in grey a schematic of the hot-wire
probe.

• Position A: [-21.5 : 20.5] cm in the z direction and [-18 : 18] cm in the y
direction;

• Position B: [-34 : 26] cm in the z direction and [-28 : 26] cm in the y direction;

In order to achieve reliable velocity profiles, the following procedure was adopted:
Firstly the hot-wire calibration. In this phase we acquired the ring pressure values
and then the voltage signal from the hot-wire. The acquisition time and frequency
was settled to 60 seconds and 16.7 Hz for the pressure acquisition and 10 seconds
and 25.6 kHz for the hot-wire acquisition. This phase was executed for the range
of angular velocity of the fan, that is from 0 to 2200 round per minute, with an
incremental step of 100 revolutions per minute. Once the signals were acquired, we
calculated ∆PRG for each acquisition and computed an averaged wind speed. The
same process of averaging was applied to the voltage signal from the hot-wire. In the
end a 4th order polynomial was computed in order to fit the voltage-wind speed data
obtained experimentally. Finally the hot-wire acquisition was performed. Once the
hot-wire calibration was performed, the velocity profiles were obtained by varying the
distance of the probe from the x-y plane and x-z plane by step of 2 cm. This process
was executed for position A and B at a fan rotational speed of 500/900/1350/1800
revolutions per minute. In this case the hot-wire acquisition time was settled to 60
seconds, while the acquisition frequency remained unchanged with respect to the
calibration process.

For a better comprehension of the results, here the following Reynolds decompo-
sition is adopted:

Ui = U + u′ (3.3)
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where Ui is the istantaneous velocity, U is the mean velocity and u′ is the fluctuating
part of the velocity field. The turbulence intensity (Ti) is computed as follow:

Ti =

1
u′2
21/2

U
(3.4)

As can be seen from figure 3.8, the turbulence intensity stays below 1% for a wide
range, approximately 38 cm, in both y and z direction. Table 3.3 summarizes the
flow characteristics in position A. In tables the quantity S represent the standard
deviation of the velocity measures and it is computed as follow:

S =

öõõô 1
N − 1

NØ
i=1

|Ui − U |2 (3.5)

In equation 3.5, N represents the number of measures considered to evaluate the
mean velocity, the mean turbulence intensity and the standard deviation. In this case
N is 10, that are the points between -10 cm and 10 cm in both y and z profiles. This
extent has been selected because the propeller will encounter the airstream within
this specific range only. Some considerations are made for velocity and turbulence
profiles in both A (jet exit) and B (test section center) position. For completeness,
in table 3.1 is reported the corresponding Reynolds Number, calculated as equation
3.6 for each rotational speed of the wind tunnel fan.

Re = UD

ν
(3.6)

Table 3.1 Reynolds numbers (D = 40 cm).

Ω (rpm) U (m/s) Re

500 5.87 156000
900 10.92 291200
1350 16.55 441330
1800 22.18 591470

The velocity profiles and turbulence profiles shown below have a similar trend
to those already present in the literature, see for example [28]. Here, each color
corresponds to a specific fan rotational speed: purple 500 rpm, orange 900 rpm,
blue 1350 rpm and green 1800 rpm. The velocity profiles in position A appear very
straight in a range of about 38 cm, in fact this region can be interpreted as the
potential core of the jet, a particular region where the wind speed is uniform and
irrotational. Outside of the potential core a wind speed reduction occurs, due to the
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presence of the shear layer; this hypothesis is confirmed by an increase in magnitude
of turbulence intensity.
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Fig. 3.6 Velocity profiles, position A (Purple: 500 rpm, orange: 900 rpm, blue: 1350 rpm,
green: 1800 rpm).
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Fig. 3.7 Non-dimensional velocity profiles, position A (Purple: 500 rpm, orange: 900 rpm,
blue: 1350 rpm, green: 1800 rpm).
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Fig. 3.8 Turbulence intensity profiles, position A (Purple: 500 rpm, orange: 900 rpm, blue:
1350 rpm, green: 1800 rpm).

Table 3.2 Summary of the flow characteristics in A

Ω (rpm)
z direction y direction

U (m/s) S (m/s) Ti (%) U (m/s) S (m/s) Ti (%)

500 5.87 0.011 0.707 5.61 0.072 0.689
900 10.92 0.031 0.768 10.51 0.087 0.673
1350 16.55 0.086 0.822 16.89 0.102 0.685
1800 22.18 0.098 0.730 23.01 0.182 0.755

The same considerations made for position A can be extended to the profiles in
position B. The geometry of the velocity and turbulence profiles slightly change from
those in position A (figures 3.9, 3.11) , this difference is mainly due to the increased
distance from the outlet of the jet, from where the potential core progressively
contract reducing its width. In this case the velocity profile appear well straight in a
range of about 26 cm, and the turbulence intensity remains under 2% in a range of
about 20 cm. These results highlight an increase in turbulence intensity away from
the jet exit.
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Fig. 3.9 Velocity profiles, position B (Purple: 500 rpm, orange: 900 rpm, blue: 1350 rpm,
green: 1800 rpm).
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Fig. 3.10 Non-dimensional velocity profiles, position B (Purple: 500 rpm, orange: 900 rpm,
blue: 1350 rpm, green: 1800 rpm).
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Fig. 3.11 Turbulence intensity profiles, position B (Purple: 500 rpm, orange: 900 rpm,
blue: 1350 rpm, green: 1800 rpm).

Table 3.3 Flow characteristics in B

Ω (rpm)
z direction y direction

U (m/s) S (m/s) Ti (%) U (m/s) S (m/s) Ti (%)

500 5.84 0.014 1.249 5.90 0.027 1.009
900 10.59 0.024 1.343 11.09 0.029 1.079
1350 16.06 0.031 1.252 16.55 0.053 1.065
1800 22.22 0.038 0.961 21.87 0.043 1.245

Below are shown the turbulence velocity spectra obtained at position B, focusing
specifically on the potential core of the jet and the shear layer region, covering all
the velocity values mentioned earlier. The values have been normalized with respect
to the maximum power obtained, in order to make the trends comparable. In more
detail, figure 3.12 (a) shows the spectrum at a point within the potential core. In
this case, a rapid decrease in power is observed even at low frequencies, highlighting
the absence of particularly large and energetic turbulent structures in the flow. The
peaks, on the other hand, represent the rotational frequency of the wind tunnel
fan blades. Observing figure 3.12 (b) , it is possible to notice a classic trend of
a turbulent spectrum, characterized by a plateau at low frequencies, indicative of
large scales, and a rapid descent with a slope of -5/3, representative of the inertial
sub-range. Alongside the spectra, probability density functions have been provided
for the same points, but this time only for a specific rotational speed value, that is
500 rpm. Along with the probability density functions, to better characterize the
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distribution, some characteristic parameters such as skewness and flatness have been
calculated.
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Fig. 3.12 Turbulence power spectra, position B (Purple: 500 rpm, orange: 900 rpm, blue:
1350 rpm, green: 1800 rpm).
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Fig. 3.13 Probability density function, 500 rpm.

In particular, skewness and flatness are defined as follow:

S = u′31
u′2
23/2 (3.7)
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F = u′41
u′2
22 (3.8)

By analyzing the distribution in the potential core, it can be seen that it is very
steep and peaked around the mean, these results further highlight how turbulence is
very low in the potential core. Whereas in the case of the shear layer, the skewness is
negative equal to -1.18, while the flatness is positive with a value of 4.83, indicating
a flatter distribution characterized by signal intermittency and so turbulent motion.

3.4 Considerations on the flow quality and model
positioning

The purpose of characterizing the flow in the wind tunnel was to guide the model po-
sitioning in the test section and to ensure that certain critical flow quality parameters,
such as the turbulence intensity and the flow uniformity, were satisfactory for our
purpose. The results highlight a large potential core zone with an average turbulence
intensity below 1%. The velocity profiles, particularly the non-dimensional profiles
shown in Figure 3.14, demonstrate a uniform flow throughout the region affected by
the presence of the examined propeller, both along the y-direction and the z-direction.

Fig. 3.14 Non-dimensional mean velocity profiles in center test section compared with
propeller size.

In conclusion, the decision to position the rotor and the entire setup in the
central region of the test section was based on careful consideration. The choice was
deemed reasonable due to the favorable flow quality observed in that specific zone,
along with the convenient accessibility it offered for the PIV setup. These factors
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played a crucial role in ensuring reliable and accurate measurements throughout the
experimental process.



Chapter 4

Results

4.1 Introduction

In this chapter both experimental and numerical results will be discussed. In
particular, in section 4.2.1 a comparison of Thrust and Torque between numerical
and experimental analysis, for the hovering condition, is presented. Finally, in section
4.2.3 are reported the mean fields in the wake.

4.2 Hovering performance

In the present section the hovering performance at various Reynolds numbers will be
investigated. In particular, in subsection 4.2.1 the influence of the Reynolds number
on the thrust and torque will be analyzed, in subsection 4.2.2 the distribution of
the wall shear stress on the blade will be used to investigate separated flow regions;
finally, in subsection 4.2.3 the effect of the Reynolds number on the wake topology
and mean flow field quantities will be discussed.

4.2.1 Thrust and Torque

Thrust and torque results, both numerical and experimental, at different rotational
speeds are discussed and compared. In figure 4.1, thrust (left) and torque (right)
are shown as a function of rotational speed of the propeller. From these figures it
is possible to notice a good agreement between numerical and experimental data.
Table 4.1 summarizes the relative error of the numerical value with respect to the
experimental ones.
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Table 4.1 Numerical vs. experimental comparison for thrust and torque prediction. Ω is
the rotational speed, Te is the thrust obtained experimentally and Tn is the thrust obtained
numerically. The same nomenclature is applied for the torque Q.

Ω [rpm] Te [N] Tn [N] ϵT [%] Qe [Nm] Qn [Nm] ϵQ [%]

2000 0.0559 0.0630 12.7 8.001e-4 8.825e-4 10.2
3610 0.2093 0.2181 4.15 0.0027 0.0029 5.99
7020 0.8544 0.8708 1.91 0.0104 0.0104 0.44

Observing table 4.1 it is possible to see an increase in ϵT (thrust error) and ϵQ

(torque error) while decreasing the rotational speed of the propeller, this behaviour
can be attributed to the large uncertainty of the load and torque cell at these
operational regimes.

Fig. 4.1 Thrust and torque as a function of rotational speed.

Thrust and torque values can be normalized in order to estimate the thrust
coefficient (eq. 4.1) and the torque coefficient (eq. 4.2). Another important parameter
is the power coefficient, defined in eq. 4.3.

CT = T

ρD4(Ω/60)2 (4.1)

CQ = Q

ρD5(Ω/60)2 (4.2)

CP =
2π Ω

60Q

ρD5(Ω/60)3 = P

ρD5(Ω/60)3 (4.3)
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In the literature some authors prefer to make their considerations with CQ, while
others with CP , but they are both a measure of the power consumption of the
propeller. In this thesis the CQ is preferred.

Fig. 4.2 Thrust and torque coefficients as a function of Reynolds number.

The forces acting on a single blade element at a radius r from the propeller center
of rotation, are presented as:

dT = dLcos(ϕ + αi) − dDsin(ϕ + αi) (4.4)

dQ = r [dLsin(ϕ + αi) + dDcos(ϕ + αi)] (4.5)

Equations 4.4 and 4.5 derive from the blade element theory. In this theory the blade
is divided into infinite elements along the radius, as represented in figure 4.3. Each
element contributes to the integral forces and moments acting on the blade.

Fig. 4.3 Blade element [14].
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It is known that an increase in the Reynolds number, and so the rotational speed
of the propeller, will increase the lift coefficient (until stall occurs) and decrease
the drag coefficient of a generic airfoil of the blade. Referring to equation 4.4,
both an increase in CL and a decrease in CD is benefical for the thrust coefficient,
this is also supported by figure 4.2 (left) which shows the CT as a function of the
Reynolds number obtained numerically and experimentally. As it can be seen, the
Reynolds effect on the CT is more pronounced at low rotational speeds. Increasing
the rotational speed the CT grows, but then seems to reach an asymptotic value
around 0.1. Regarding the torque coefficient, and so the power consumption, a
decrease in drag is benefical, but this is not true for an increase in lift. From figure
4.2 (right) it is possible to see an increase in CQ for the experimental data and a
decrease for the numerical ones with increasing the Reynolds number. This different
behaviour can be attributed to the substantial difference between numerical and
experimental approaches: in the latter the blade is a physical entity. In fact, during
the experiments an important bending of the blades was noticed; this bending could
cause an increase of the twist of the blade, with the final result of an increase in the
pitch. This pitch increase cause an increase in CL and CD and so, recalling eq. 4.5,
the final effect of an increase in CQ.

For a better understanding of the performance of the propeller in hover at different
Reynolds numbers, the CT and CQ distributions along the blade radius are reported
in figure 4.4.

Fig. 4.4 CT (left) and CQ (right) distribution along the half-span.

As it can be seen, the thrust and torque coefficients increase along the propeller
radius until approximately 85% of the radius, where a maximum is reached. The
increase in CT can be attributed to the linear increase in radial velocity, and so the
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Reynolds number, and by the presence of the tip vortex that increase the incidence for
that specific section of the blade. These considerations can also explain the increase
in CT increasing the rotational velocity. After the maximum, the CT collapses quickly
due to the stall of the blade near the tip. The behaviour of the torque coefficient
along the blade semi-span follows a similar trend, in this case at lower Reynolds the
blade experiences an higher CQ for almost all of the sections considered.

A better comprehension of the trends reported above can be achieved analyzing
the lift and drag coefficient distribution along the blade. For this reason it is essential
to determine the inflow angle distribution (ϕ + αi in figure 4.3). For this purpose, a
method for the prediction of the inflow angle has been used [15]. This method is
based on the analysis of the velocity flowfield from the CFD computation. The idea is
to obtain the induced axial velocity at the rotor plane using several planes upstream
and downstream of the propeller disk. In particular, four planes perpendicular to the
propeller axis of rotation (2 upstream and 2 downstream) have been selected. Each
plane was discretized in many annulus and then each annulus has been averaged in
terms of axial velocity. Once the axial velocities are known for all of the discretized
and averaged planes (now we have a line), the values at the rotor plane can be
estimated by using the Lagrangian Polynomial interpolation. A schematic of the
method is reported in figure 4.5

Vax(z0) =
NØ

i=1

Vax(zi)
 Ù

j=1,j ̸=i

z0 − zj

zi − zj

 (4.6)

In this case Vax(z0) is the axial velocity value at the disk.

Fig. 4.5 Schematic of the method [15].
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The axial velocity distribution at the disk then has been used for computing the
inflow angle ϕ + αi. The distribution of the inflow angle along the blade semi-span is
reported in figure 4.6

Fig. 4.6 Inflow angle in Hover for 5000 and 7000 rpm.

Once the inflow angle has been computed, it is easy to obtain the lift and drag
coefficient distribution along the blade. The infinitesimal lift and drag for each
discretized portion of the blade:

dL = 1
2ρW (r)2Clc(r)dr (4.7)

dD = 1
2ρW (r)2Cdc(r)dr (4.8)

Where W (r):
W (r) =

ñ
(Ωr)2 + V 2

ax (4.9)

And finally the lift and drag coefficients:

Cl = dL

0.5ρW (r)2c(r)dr
(4.10)

Cd = dD

0.5ρW (r)2c(r)dr
(4.11)

In this case, we already have dT (infinitesimal thrust) and dFQ (infinitesimal force
responsible of torque), we can use these values for determining dD and dL:

dD = dFQcos(ϕ + αi) − dTsin(ϕ + αi) (4.12)

dL = dT + dDsin(ϕ + αi)
cos(ϕ + αi)

(4.13)
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By substituting these values in eq. 4.10 and 4.11 we can compute Cl and Cd along
the blade span.

Fig. 4.7 Cl and Cd distributions along the blade span for different rotational speed.

Observing figures 4.7 it is confirmed that an increase in the Reynolds number
reduces the Cd along the blade, while the Cl is nearly constant. The trend in Cl and
Cd confirms the the hypothesis of an increase in thrust coefficient and a reduction
in torque coefficient increasing the Reynolds number.

A reduction in thrust and an increase in power as the Reynolds number decreases
results in a reduced efficiency for a propeller. In fact, as previously explained, a
decrease in the Reynolds number causes a decrease in the lift coefficient and an
increase in the drag coefficient of the generic airfoil of the blade. This sensitivity
with the Reynolds number can be attributed to the behaviour of the boundary layer;
at this regimes a laminar separation bubble is formed on the low pressure side of
the blade. The size of the laminar separation bubble will affect these coefficients,
in particular, the bubble grows in size as the Reynolds number decreases. The
investigation of the influence of the separation bubble on the performance of the
propeller will be discussed in the next section.



4.2 Hovering performance 51

4.2.2 Wall flow features

In this section the influence of the Reynolds number on the rotor performance in
hover is investigated. A typical parameter used for investigate the performance of a
rotor is the power loading (PL) defined in chapter 2 and here recalled:

PL = T

P
(4.14)

PLid =
A

T

2ρA

B−1/2

(4.15)

Where A is the disk area, and PLid the ideal power loading. Figure 4.8 shows the
power loading as a function of disk loading (TD=T/A).

Fig. 4.8 Power loading as a function of disk loading.

As it can be seen, the ratio between experimental and ideal power loading
highlights a negative trend reducing the disk loading, i.e the thrust. This behaviour
can be attributed to an increase in power consumption at low Reynolds regimes, due
to the viscous effects.

The hypothesis of a power increase due to viscous effects can be supported by
analyzing the wall shear stress distribution on the blade surface; this quantity can be
used for the identification of separated flow regions. Figures 4.9, 4.10 and 4.11 shows
the wall shear stress distribution in the chord direction for upper and lower surface of
the blade, at different rotational velocities. Observing the figures, it can be noticed a
region where the flow is separated from the blade surface. In the 2000 rpm case, the
flow separates and then it is unable to reattach due to the low kinetic energy of the
flow. Increasing the rotational velocity, the flow separates and then reattaches in the
portion of the blade from the root to mid-span. The extension of the reattachment
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region seems to increase with the rotational speed, and so the Reynolds number.
Regarding the lower surface, for these conditions, the flow is always attached to the
surface.

For a better comprehension of the wall shear stress distribution in the x direction,
three locations along the span has been selected: one near the root, one in the mid
and one close to the tip, as can be seen in figure 4.12. Figures 4.13, 4.14 and 4.15
show the results for 2000 rpm and 7020 rpm only.

(a) Upper surface. (b) Lower surface.

Fig. 4.9 Wall shear stress, 2000 rpm.

(a) Upper surface. (b) Lower surface.

Fig. 4.10 Wall shear stress, 5000 rpm.
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(a) Upper surface. (b) Lower surface.

Fig. 4.11 Wall shear stress, 7020 rpm.

Fig. 4.12 Planes location along the blade span.

(a) 2000 rpm. (b) 7020 rpm.

Fig. 4.13 Wall shear stress (x direction) at the root.
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(a) 2000 rpm. (b) 7020 rpm.

Fig. 4.14 Wall shear stress (x direction) at mid-span.

(a) 2000 rpm. (b) 7020 rpm.

Fig. 4.15 Wall shear stress (x direction) at the tip.

In figures 4.13, 4.14 and 4.15 the black squares represent the locations where
the wall shear stress changes sign. A change in sign allows to locate not only the
separation of the flow and the reattachment, but also the stagnation point of the
airfoil.

Observing figures 4.13 to 4.15 it is possible to recognize some trends. In particular,
at low Reynolds (low rotational speed), the flow separates and then it is unable to
reattach. On the contrary, for the higher Reynolds number, the flow separates and
then reattaches. The extension of the reattachment region depends on the Reynolds
number, this is confirmed also by analyzing different rotational speeds. A bigger
extension of the reattachment region means a smaller separation bubble and so lower
viscous effects. As it can be seen in the figures the flow seems to experience a bigger
separation near the tip, this behaviour can be due to the influence of the tip vortex in
this particular region of the blade. Another aspect that can be observed is that at the
lower Reynolds numbers the separation point on the upper surface is more far away
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from the leading edge with respect to the higher Reynolds condition. This behaviour
seems to be contradictory; in fact, at higher Reynolds the boundary layer should be
more energetic with respect to the low Reynolds condition and so the flow should
remain attached for a longer distance before the separation. In this latter condition
the boundary layer separation could occur in a laminar condition, but this behaviour
cannot be predicted in these analyses because of the turbulence model adopted, in
this case full-turbulent. So a possible explanation is that the boundary layers for both
low and high Reynolds number are turbulent, but in the high Reynolds condition
(higher rotational speed) the adverse pressure gradient is bigger, causing the flow to
separate earlier. These considerations are also in agreement with the over prediction
of the thrust with respect to the experimental data, in particular at low Reynolds
number where a laminar boundary layer could exist, while at higher Reynolds an
asymptotic condition is expected to be reached. This is in part confirmed by the
behaviour of the CT with the Reynolds number, commented in the previous section
and with the lower error in thrust and torque prediction with respect to experimental
data.

The wider separation region with reducing the Reynolds number it is confirmed
by figure 4.16.

Fig. 4.16 Separated flow region (black) on the upper surface. 1: 2000 rpm, 2: 3610 rpm, 3:
5000 rpm and 4: 7020 rpm.

As it can be seen the area of separated flow, highlighted in black, reduces with
increasing the Reynolds number, while the reattachment area increases. This trend
confirms the tendency of the PL/PLid of figure 4.8 to increase with the Reynolds
number, until an asymptotic value of 0.5 is reached, indicating a reduction in parasitic
drag.
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Fig. 4.17 Ratio between separated flow area and total upper surface area (As/Au) as a
function of disk loading.

In figure 4.17 it is shown the reduction of separated area with respect to the total
area of the upper surface increasing the disk loading, i.e the thrust. This reduction
in separated flow area could be responsible for the increase of PL/PLid, indicating a
reduction in parasitic drag; this reduction is more pronounced for lower Reynolds,
while increasing the Reynolds the curve seems to follow an asymptote, in agreement
with previous considerations.

Fig. 4.18 As/Au function of Reynolds number.

Observing figure 4.18, the values of As/Au follow a linear variation with respect
to the Reynolds number in the range 2000-5000 rpm, after that range a non linear
behaviour occur.
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4.2.3 Wake topology

The experimental analysis was carried out at various Reynolds numbers. The aim
was to investigate the influence of the Reynolds number on the propeller topology
and mean flow field quantities. The analyses were conducted at different rotational
speeds, that are 3000, 5000, 7000 and 9000 revolutions per minute. The corresponding
Reynolds numbers are listed in table 4.2.

Table 4.2 Test cases in hover.

Ω [rpm] Re

3000 13530
5000 22550
7000 31571
9000 40591

(a) 3000 rpm. (b) 5000 rpm.

Fig. 4.19 Mean axial velocity flow field (PIV).

(a) 7000 rpm. (b) 9000 rpm.

Fig. 4.20 Mean axial velocity flow field (PIV).
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Figures 4.19 and 4.20 show the mean axial speed (x direction) in hover condition
at different rotational speed. It is clearly visible (as expected) an increase of the
mean axial velocity with increasing the rotational speed of the propeller. Increasing
the rotational speed it is also possible to notice an increase in suction due to the
higher pressure difference across the propeller disk. Observing the U velocity profiles
for different x/R values (figures 4.21 and 4.22) we can see an increase in y/R with
increasing x/R and so, physically, an increase in the transverse dimension of the
wake, whereas the rotational speed seems to not have an influence on the wake
transverse dimension.

Examining more in detail the velocity profiles, we can see that the maximum
velocity in the x/R direction is not directly proportional to the x/R coordinate.
In fact, we can see a maximum for x/R = 1 and for y/R between 0.3 and 0.4.
Computing the axial velocity with respect to x/R for a fixed y/R position, as in
figure 4.23, we can see that the axial velocity grows until x/R = 1 and then slowly
decreases far in the wake.

(a) 3000 rpm. (b) 5000 rpm.

Fig. 4.21 Mean axial velocity profiles.

(a) 7000 rpm. (b) 9000 rpm.

Fig. 4.22 Mean axial velocity profiles.
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Fig. 4.23 U/Umax as a function of x/R for a fixed y/R coordinate equal to 0.3.

This behaviour in the axial speed can be attributed to the effect of the wake
contraction in the near wake region. In fact, due to the momentum conservation,
if the wake reduces its width the velocity should increase. On the contrary, after
x/R = 1 the wake become wider and so the velocity decreases. Another factor that
could affect the induced velocity in the wake is the tip vortex. It is possible that
after a certain distance dowstream in the wake, the tip vortex reduces its strength,
and so induces a smaller velocity in the wake, until it dissipates causing the wake to
grow in size. These considerations can be supported by analyzing the vorticity out
of the plane ωz, the Reynolds shear stress u′v′ and the turbulent kinetic energy in
the wake Ek.

(a) 3000 rpm. (b) 5000 rpm.

Fig. 4.24 Mean out of plane vorticity field (PIV).
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(a) 7000 rpm. (b) 9000 rpm.

Fig. 4.25 Mean out of plane vorticity field (PIV).

Observing the vorticity distributions in figures 4.26 and 4.27, the vorticity mag-
nitude increases with the rotational speed, due to the increase in strength of the
tip vortex. The vorticity peak, for all of the tested rotational speeds it is close to
the blade, where the tip vortex is formed and then the magnitude decreases with
increasing the downstream distance due to the breakdown and then the dissipation
of these structures.

(a) 3000 rpm. (b) 5000 rpm.

Fig. 4.26 Mean out of plane vorticity profiles. Black square represent the maximum
vorticity.
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(a) 7000 rpm. (b) 9000 rpm.

Fig. 4.27 Mean out of plane vorticity profiles. Black square represent the maximum
vorticity.

Figures 4.26 and 4.27 better explain the wake topology and the evolution of the
tip vortices downstream in the wake. For all of the rotational velocities analyzed
and close to the propeller disk (X/R = 0.05), a local maxima of positive vorticity ωz

is located at approximately 80% of the blade radius. This result is an evidence of
a zone where the tip vortex remains for a longer time, until the next blade passes,
causing the vortex to convect downstream. This hypothesis can also explain the
increase in CT for that portion of the blade, as previously explained and shown in
figure 4.4. Observing the vorticity profiles it is possible to notice a region of negative
vorticity, this can be caused by the vortex sheet shed by the inner part of the blade,
the hub and by the presence of the rotor support.

Increasing x/R the positive vorticity peak reduces its value due to the evolution
of the tip vortex in the wake, which loses strength. The reduction in vorticity is
accompanied by a shift of the vorticity peak at lower y/R, as expected.

(a) 3000 rpm. (b) 5000 rpm.

Fig. 4.28 Reynolds stresses (PIV).
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(a) 7000 rpm. (b) 9000 rpm.

Fig. 4.29 Reynolds stresses (PIV).

As it can be seen in figures 4.28 and 4.29, an increase in rotational speed
corresponds to an increase in the u′v′ component of the Reynolds stress tensor.
Larger values of shear stress are located in the shear layer region. Increasing the
distance from the propeller disk u′v′ increases. This behaviour is opposite to what
was observed for the mean vorticity ωz, and makes one think that the tip vortex,
evolving dowstream, becomes unstable and eventually experiences a break down that
increases the turbulence in the wake. In fact, even so the turbulence is a phenomenon
characterized by high vorticity fluctuations, the mean vorticity can approach a null
value. The increase in rotational speed has the effect of an higher u′v′ magnitude
due to the fact that the tip vortices are more energetic with respect to low rotational
speeds, and so, when they break up the turbulence is characterized by more severe
velocity fluctuations.
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4.3 Axial inflow performance

In this section the performance of the propeller with axial velocity inflow of 3 m/s,
6 m/s and 9 m/s will be investigated and compared with respect to the hovering
condition. Here, the axial freestream velocity will be denoted with U∞.

4.3.1 Thrust and Torque

Figure 4.30 shows the CT and CQ as a function of the advance ratio, defined as:

J = U∞

Ω/60 · D
(4.16)

Fig. 4.30 Thrust and torque coefficients as a function of the advance ratio.

From the figure it can be seen the influence of the advance ratio on the CT and
CQ of the propeller and the effect of the Reynolds number. Increasing the Reynolds
number the CT increases almost constantly with increasing J . On the contrary, the
effect of the Reynolds on the CQ is that for low advance ratios an increase in the Re

causes a reduction in CQ, but for higher advance ratios the tendency is the opposite.
As discussed for the hover performance, an increase in the Reynolds number causes
an increase in the lift coefficient and a decrease for the drag coefficient. Both of these
contributes are benefical for increasing the CT . For the torque coefficient, a decrease
in drag coefficient is benefical, while an increase in lift coefficient is not. Observing
figure 4.30 (right) it is possible to assume that at low advance ratios the decrease in
drag coefficient, increasing the Reynolds number, is greater with respect to higher
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advance ratios and the increase in lift is smaller at low advance ratios with respect
to higher J . With these considerations one can conclude that at low advance ratios
an increase in the Reynolds number is benefical for the power consumption, but this
is not true at high advance ratios. For a better comprehension of the phenomenon,
the efficiency of the propeller with respect to J , at various Re, is shown in figure
4.31. The efficiency of a propeller is defined as:

η = CT

CP

J (4.17)

Fig. 4.31 Efficiency of the propeller.

For high advance ratios the effect of the Reynolds number is more remarcable,
the high Reynolds condition lead to a more efficient propeller. This behaviour can
be attributed to increase in thrust, that overcome the increase in torque. For η = 0
the curves cut the axis in order from lower to higher Reynolds. This is due to the
ability of the high Reynolds propeller to produce higher CT at higher advance ratios.
Figure 4.32 shows the CT and CQ distribution along the blade radius. Increasing J ,
the maximum CT reduces its value and shifts inboard of the blade. This shift could
be caused by a different inflow distribution and by the fact that the tip vortex is
convected more rapidly in the wake. A similar behaviour it’s observed for the CQ

distribution. The reduction in CT and CQ can be attributed to a reduction in CL

and CD caused by an increase in the inflow angle ϕ in figure 4.3 and so a reduction
in angle of attack α. These consideration are also supported observing the static
pressure distribution on the upper surface of the blade, in fact as can be seen in
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figure 4.33, increasing J the static pressure decreases in module, causing a reduction
in ∆p across the propeller disk.

Fig. 4.32 Thrust and torque coefficients along the blade as a function of the advance ratio
(CFD).

Fig. 4.33 Thrust and torque coefficients along the blade as a function of the advance ratio
(CFD).

For supporting the considerations above the Cl and Cd distribution along the
blade has been calculated, as already done for the hovering case. The method used
for the estimation of the inflow angle (ϕ + αi) is the same presented in the hovering
section.
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Fig. 4.34 Axial velocity interpolation, hover (left), J=0.24 right.

Fig. 4.35 Axial velocity interpolation, J=0.47.

Figures 4.34 and 4.35 show the results of the interpolation. The axial velocity
distribution at the disk then has been used for computing the inflow angle ϕ + αi.
The distribution of the inflow angle along the blade semi-span is reported in figure
4.36
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Fig. 4.36 Inflow angle

As can be seen, ϕ + αi increases with J , and so the incidence decreases. Further-
more, the angle ϕ + αi follows the trend of β, that’s because increasing the distance
from the hub the local tangential velocity (Ωr) increases and so the effect is to reduce
the angle ϕ + αi. Once ϕ + αi is computed, the Cl and Cd along the blade are easy
to calculate.

Fig. 4.37 Cl and Cd distributions along the blade span for different J.

Figure 4.37 shows the Cl and Cd distribution on the blade semi-span. Increasing
J , both Cl and Cd decrease, this could justify the trend of CT and CQ in figure 4.30.
The reduction in Cl and Cd are justified by the increase in ϕ + αi with J , which
causes a reduction in incidence of the airfoil. Another important noticeable aspect
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it is the local peak in Cl at 80% of the propeller radius in the hovering case. This
can be attributed to the increase in incidence due to the upwash induced by the tip
vortex. This could be observed also in figure 4.34 (left), where a positive velocity
near the tip is present.

For a better comprehension of the physical phenomenon responsible of the trends
reported above, the wall features will be discussed. The next subsection presents the
results obtained by CFD. Although when looking at the graphs above, the numerical
data deviates from the experimental data, CFD and experiments report the same
trend; this could mean that the physical phenomenon is the same.

4.3.2 Wall flow features

Figures 4.38 and 4.39 shows the wall shear stress in x-direction for different advance
ratio at 5000 rpm. As can be seen, the advance ratio has a benefical effect on flow
separated regions, with a reduction in separated flow area (As) increasing J .

Fig. 4.38 Wall shear stress for J=0 (left) and J=0.24 (right) at 5000 rpm.

Fig. 4.39 Wall shear stress for J=0.47 (left) and J=0.71 (right) at 5000 rpm.
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So, in terms of power consumption, an increase in J reduces the separated flow
regions on the blade surface, this has the effect of a reduction in drag and so in
torque, as explained previously. Figure 4.40 shows the trend of reduction in separated
area for different J at fixed rotational speed, while figure 4.41 shows the ratio As/Au

(separated area/upper surface area) with respect to J. On the same diagram it is
reported the CQ as a function on J , which has a similar trend of As/Au, reinforcing
the idea of a decrease in CD and CL caused by a bigger inflow angle.

Fig. 4.40 Separated flow regions (black) at 5000 rpm. 1: J=0, 2: J=0.24, 3: J=0.47, 4:
J=0.71.

Fig. 4.41 Effect of J on separated flow regions and CQ.
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4.4 Cross-flow performance

4.4.1 Wake topology

In this section the wake topology of the propeller in cross-flow conditions was
investigated by means of PIV. Figures 4.42 and 4.43 shows the mean axial velocity
fields obtained experimentally with 1 m/s of cross-flow. The effect of the cross-flow
velocity is to distort the wake, the distortion in more pronounced for low rotational
velocities, that’s because in these conditions the cross-flow velocity is of the same
order of magnitude of the maximum velocity in the wake.

(a) 3000 rpm. (b) 5000 rpm.

Fig. 4.42 Mean axial velocity flow field (PIV), 1 m/s cross-flow.

(a) 7000 rpm. (b) 9000 rpm.

Fig. 4.43 Mean axial velocity flow field (PIV), 1 m/s cross-flow.

With respect to the hovering case, the maximum velocity in the wake is lower in
magnitude. This behaviour can be attributed to the non symmetric inflow condition
of the two blades, this condition could cause a reduction in ∆p across the propeller
disk. So, the effect of the cross-flow is double: a distortion of the wake and a
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reduction in mean axial velocity by a decreased ∆p, in fact, the reduction of mean
axial velocity could not be attributed to fluid dynamics effects inside of the wake,
because the wake itself (the stream tube) it is not permeable to external flow.

Increasing the cross-flow velocity, all of these effects become more pronounced,
as shown in figure 4.44 and 4.45. For a better comprehension of the wake topology
variation with respect to the cross-flow velocities, the velocity profiles of mean axial
velocity in the wake has been reported in figure 4.46 and 4.47, with respect to the
hovering case (dashed line).

(a) 3000 rpm. (b) 5000 rpm.

Fig. 4.44 Mean axial velocity flow field (PIV), 3 m/s cross-flow.

(a) 7000 rpm. (b) 9000 rpm.

Fig. 4.45 Mean axial velocity flow field (PIV), 3 m/s cross-flow.

Observing the velocity profiles, the hypotesis of a non-permeable wake is partially
confirmed by the fact that the profiles have a similar trend with respect to the
hovering case (black dashed lines).
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(a) 7000 rpm. (b) 9000 rpm.

Fig. 4.46 Mean axial velocity profiles, 3 m/s cross-flow.

(a) 7000 rpm. (b) 9000 rpm.

Fig. 4.47 Mean axial velocity profiles, 3 m/s cross-flow.
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Conclusions

In this thesis, the effect of the Reynolds number and the advance ratio on the
performance of a small-scaled propeller has been studied both experimentally and
numerically. We have seen that decreasing the Reynolds number, the propeller
experiences a performance degradation due to the increase in parasitic drag. The
numerical data are in agreement with the experimental ones, with an error on thrust
and torque prediction that increases reducing the Reynolds number. The higher error
with respect to experimental data at low Reynolds numbers underline the limitations
of using a Fully-turbulent model in regimes where the boundary layer on the blade
could be partially laminar; for this reason a Transitional model could provide more
accurate results.
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Appendix A

Images

Fig. A.1 Representative flow visualization of the rotor wake in hover [16].
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