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Summary

Urban air mobility (UAM) can become an integral part of worldwide urban mobility
for last-mile connections (up to 50 km range) or sub-regional routes (from 100 to 300
km range). To work in future urban scenarios, environmentally friendly air vehicles
are designed to be able to perform vertical take-off and landing (VTOL). Although
many challenges are expected to be faced for enabling technologies, infrastructures
and air space management, many prototypes of UAM vehicles are proposed. VTOL
characteristics can be easily achieved by a multirotor configuration in order to
produce a vertical force to balance the weight of the system. However, such a
configuration limits the aerodynamic efficiency and poses noticeable endurance
restrictions, thus limiting the operability of the UAVs to local missions only. A
first approach to improve the flight efficiency is to design a hybrid configuration
with both Fixed Wing (FW) and MultiRotor (MR) capabilities in order to exploit
lift generation in horizontal flight. The hybrid nature of the vehicle implies several
design complications in terms of transition phase from MR to FW mode during
which the system is extremely over-actuated. Moreover, for multiple people carrying
applications, the vertical thrust required for vertical operations involves large rotors.
This could significantly penalize the aerodynamic performance of the aircraft in
FW configuration. In order to overcome the aforementioned limitations, a novel
solution based on the patented system ThrustPod is proposed. A conventional
FW aircraft is equipped with rotors that are activated only during vertical flight
phases. On the contrary, during the FW cruise phase, the rotors are retracted inside
the fuselage, and the horizontal thrust is provided by dedicated tail propellers.
The typical mission of the vehicle would include MR vertical take-off and landing
and FW cruising with a transition to mildly transfer the control functions from
the vertical rotors to the aerodynamic surfaces. The transition regime causes
additional difficulties in the control system design as control inputs from MR
and FW configurations are simultaneously active. Therefore, a control allocation
scheme is needed to adequately distribute the control load on both MR and FW
control variable sets for the best exploitation of the aerodynamic forces. The
proposed idea is to gradually prioritize the aerodynamic control surfaces over MR
actuators as the speed of the vehicle is increased. The vehicle is represented as
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a state machine in which each phase corresponds to a state. First MR state is
activated to perform vertical flight and hovering. As horizontal speed increases,
the second state is initiated and a control system for the transition phase comes
into play. A control load placement over the multiple actuators is investigated in
order to provide a controlled altitude transition. The control inputs are weighted
with a continuous function of velocity and an Incremental Nonlinear Dynamic
Inversion (INDI) technique is adopted. At this stage an INDI approach is preferred
over the classical NDI as it is less reliant on the mathematical model of the plant,
consequently it allows to use a less accurate aerodynamic model. The third state
of the state machine (i.e. Fixed Wing flight) is activated at around stall velocity.
However the same control logic as the transition phase can be retained, with
exception of providing all the required forces and torques through aerodynamic
surfaces only.
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“Where the world ceases to be the scene of our personal hopes and wishes,
where we face it as free beings admiring, asking and observing,

there we enter the realm of Art and Science.”
[A. Einstein: The Human Side (1979), p.37-27 January 1921 ]
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Chapter 1

Introduction

In recent years, significant progress in energy storage, particularly in battery ca-
pacities, coupled with the development of Distributed Electric Propulsion (DEP),
has paved the way for a new era in transportation known as Urban Air Mobility
(UAM). UAM represents a pivotal component of the broader concept of Advanced
Air Mobility (AAM), which extends beyond urban areas to encompass rural, re-
gional, and subregional routes. DEP technology is distinct from traditional urban
aircraft like helicopters in that it replaces a single large rotor with multiple smaller
propellers, offering versatility in design and layout.

The concept of UAM itself has historical roots dating back to the 1980s in
Europe, exemplified by services like the Airlink shuttle, which shuttled passengers
between Gatwick and Heathrow airports. However, concerns related to noise,
pollution, safety, and stringent low-altitude flight regulations led UAM to languish
in obscurity for years. Only recently has a renewed interest and optimism been
cast upon the field [1].

According to the European Union, the urban population has more than doubled
over the past four decades and is projected to reach a staggering 5 billion by 2050
[2]. These statistics raise concerns about the challenges that future cities will face,
with traffic congestion and associated emissions being at the forefront. As such,
it is imperative to explore innovative transportation solutions to address these
impending urban challenges.

The new wave of Advanced Air Mobility (AAM) proposes to use electric vertical
take-off and landing (eVTOL) vehicles to exploit a third dimension, i.e. the rela-
tively unused low-altitude airspace for transportation purposes. This could help to
solve some of the challenges facing current transportation systems, such as traffic
congestion and pollution.
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These eVTOLs are designed to be low-noise, low-emission, safe, and cost-effective,
positioning them as promising alternatives.

Despite skepticism, the UAM industry is anticipated to reach significant growth
by 2050, although technology refinement and regulatory framework development
are ongoing challenges [3]. EASA has taken steps to develop a regulatory framework
for UAM, including airworthiness regulations for VTOL aircraft, preparations for
pilot and operator rules, and the creation of U-Space/UTM regulations for safe
UAS integration in urban environments [4].

Currently, there is ongoing research into various configurations of eVTOLs, and
most of these configurations can be categorized as follows [5]:

Figure 1.1: eVTOLs classification

Multicopters represent an advancement in the world of helicopters, thanks to the
application of Distributed Electric Propulsion technology. Their ability to hover
and perform vertical flight makes them well-suited for urban environments. Unlike
traditional helicopters, DEP technology allows for optimized designs without the
need for a large main rotorcraft. However, their primary limitation lies in flight
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efficiency, affecting their endurance. The absence of lifting surfaces makes them
less suitable for extended operations.

This limitation is addressed by Fixed Wing eVTOLs, a category of vehicles that
combines vertical flight capabilities with fixed-wing cruising. This enables eVTOLs
to cover longer distances. However, the flight dynamics become more complex,
particularly in the thrust vectoring subcategory, where the same propeller is used
for both thrust and vertical flight, making it challenging to individually optimize
each phase of flight.

Independently optimizing each phase becomes achievable in the Lift+Cruise
subcategory, where thrust and lift motors are separate. Nevertheless, traditional
Lift+Cruise vehicles tend to experience reduced aerodynamic efficiency due to
additional aerodynamic drag caused by lift propellers.
To tackle this particular challenge, the forthcoming chapter introduces an innovative
solution built upon the patented ThrustPod (TP) technology.

The aim of this thesis project is to develop a control system for an innovative
eVTOL configuration that relies on the previously mentioned TP technology. The
project unfolds as follows:

• Chapter 2: This chapter begins with an overview of the vehicle and delves
into its primary control challenges.

• Chapter 3: Here, we provide an introduction to the mathematical tools
essential for this project’s analysis and design.

• Chapter 4: We conduct a linear stability analysis of the innovative vehicle,
considering various trim velocities.

• Chapter 5: This chapter offers a concise explanation of the control theory
concepts that will be applied in the design of the control system, a process
detailed in Chapter 6.

• Chapter 6: In this chapter, we comprehensively design the control system,
leveraging the control theory concepts discussed in Chapter 5.

• Chapter 7/8: The project culminates in the simulation of two extensive
missions, where the developed control system is put to the test.

• Chapter 9: The project concludes with a concise project summary and
highlighting potential avenues for future developments and research studies in
the field.
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Chapter 2

ThrustPod

In this chapter, we introduce the patented solution known as ThrustPod (TP).
This innovative aerial platform features a unique design that merges the VTOL
capabilities of Multirotor (MR) vehicles with the aerodynamic efficiency of fixed-
wing (FW) flight. An essential aspect of this design is to maintain minimal
interdependence between the two modes of operation, allowing for independent
optimization of each state. To achieve this goal, the design eliminates the mechanical
complexity associated with tilting surfaces [6].

The primary objective is to develop a green, fully electric aircraft capable of
autonomously completing sub-regional routes within urban environments, thereby
contributing to the expansion of Urban Air Mobility (UAM).

The platform’s hovering and vertical flight capabilities are provided by six ducted
vertical lift propellers, which are exclusively used during VTOL phases. These
lift propellers can be fully retracted within the fuselage during other operational
phases to prevent aerodynamic performance degradation. The storage of lift motors
within the main body is made possible by offsetting along the Z-axis the motors on
one side of the longitudinal plane, enabling overlapping when retracted. The rotor
extraction and retraction mechanism employs rails, ensuring extremely low energy
consumption.
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(a) Top view (b) Front view

Figure 2.1: TP technology

The platform’s wing-tail architecture is achieved through a boxed wing design
aimed at reducing induced drag [6]. Aerodynamic control surfaces include elevators
for pitch control and ailerons for roll control. Additionally, each wing features a
horizontal thrust propeller, allowing for yaw control through differential thrust.
This design choice eliminates the need for a vertical empennage.

(a) Front view (b) Lateral view

(c) Top view (d) Isometric view

Figure 2.2: eVTOL views
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In summary, ThrustPod (TP) presents a pioneering approach to aerial platform
design, combining VTOL and fixed-wing capabilities while prioritizing independent
optimization and aerodynamic efficiency. The integration of lift propellers and the
retraction mechanism contributes to the realization of a green and autonomous
aircraft for Urban Air Mobility (UAM) purposes.

2.1 Mission overview
One of the primary challenges encountered within the domain of Urban Air Mobility
(UAM) revolves around the safe navigation within constricted and confined spaces.
This scenario gives rise to two pivotal consequences: the inevitable requirement for a
Multirotor (MR) mode during phases involving vertical flight and the imposition of
stringent size constraints. As a result of these prescribed limitations, the platform’s
capacity is constrained to accommodating a maximum of five passengers throughout
the subsequent phases:

1. Vertical Takeoff and Hovering: The aircraft must execute a vertical takeoff and
maintain a hovering posture until reaching a suitable speed for the transition
to fixed-wing (FW) mode.

2. Climb: The aircraft is mandated to accelerate and ascend up to an altitude of
3000 meters, where pressurization is unnecessary.

3. Cruise: The aircraft is obliged to cover the stipulated distance while maintain-
ing a cruising speed of 75 m/s.

4. Descent: The aircraft is instructed to descend to the altitude required for
executing a vertical landing.

5. Hovering and Vertical Landing: Upon transitioning back to the Multirotor
(MR) mode, the aircraft is obligated to conduct hovering and achieve a vertical
landing.

Notably, the transition from Multirotor (MR) to fixed-wing (FW) flight and
viceversa entails a shift in control variables. Hence, an intermediary transition
phase is indispensable to facilitate a gradual change in the aircraft’s state. While
the ideal scenario envisions a transition occurring during steady level flight, safety
considerations mandate that the aircraft must possess the capability to execute
maneuvers during the transition phase as well. Overall, the lift motors represent
the most energy-intensive control component, highlighting the need for a quick and
smooth transition.
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Figure 2.3: Mission Profile

2.2 Descent and Energy Recovery System
One of the fundamental strengths of the patented system lies in its environmentally
friendly design, grounded in a fully electric concept that eliminates emissions. In
order to maintain energy sustainability, a high degree of aerodynamic efficiency is
essential. Despite being crucial to achieving high efficiency, excessive minimization
of intrinsic drag could prevent the system from reaching a sufficiently high flight
path angle (γ) during descent without facing uncontrolled acceleration due to
gravitational forces.

In the basic scenario, in absence of additional drag by means of aerobrakes
or substitutes, a simplified 2D dynamical model can be employed to assess the
maximum permissible γ under the assumption of pure longitudinal motion:

I
Tsin(α) + L−mgcos(γ) = 0
Tcos(α) −D −mgsin(γ) = 0

(2.1)
(2.2)

A visual representation of the longitudinal flight’s free body diagram is depicted
in Figure 2.4.
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Figure 2.4: Free Body diagram for longitudinal flight

The highest descending flight path angle can be determined by setting the thrust
term T to zero. Rearranging the equations, the analytical solution for the limiting
value of γ is given as: :

γ
lim

= tan−1(−D

L
) = tan−1(− 1

E
) (2.3)

It is crucial to note that this value heavily relies on the vehicle’s aerodynamic
efficiency. In the nominal case, this value was found to be unacceptably low
(less than 1.8◦). Any value exceeding this threshold would result in uncontrolled
acceleration due to gravity.

To mitigate an excessively prolonged descent phase, the platform must be
equipped with a system to increase drag and consequently enhance the descent
angle. Two options are available:

1. Aerobrakes: This conventional choice enables the aircraft to decelerate and
generate the necessary drag for maintaining a steeper descent at a constant
speed. However, the energy is dissipated and cannot be reclaimed.

2. Energy Recovery System: An alternative approach involves deploying the
lift motors to function as aerogenerators, recharging the batteries through
the influence of ram air. This approach provides a dual benefit as it partially
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converts potential energy loss during descent into electrical energy, enhancing
the platform’s sustainability, while creating a force opposing gravity.

Figure 2.5: Energy Recovery System

The design of the energy recovery system is beyond the scope of this work and
it will require further investigation in the future.

2.2.1 State Machine and Controls
The nominal mission profile consists of three main phases, and it is beneficial to
view the platform from a discrete state machine perspective in terms of control.
Each phase of flight can be associated with a different state of the aircraft, with
transition logic governing the progression from one state to the next.

In this context, the system can be discretized based on its forward speed.
However, it’s essential to consider that lift propellers are highly energy-intensive.
Therefore, the goal is to transition to forward fixed-wing flight as early as possible
to reduce the weight of the battery. This transition should ideally occur at very
low speeds.

One challenge with transitioning early is that below the stall velocity, aerody-
namic lift alone is insufficient to keep the vehicle airborne. To address this, an
additional state is introduced between FW (Fixed-Wing) and MR (Multicopter)
modes, known as Transition or Hybrid mode. This state is essential for facilitat-
ing a seamless transition from the VTOL (Vertical Takeoff and Landing) phase
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to cruising by appropriately allocating control actions based on the flight velocity [7].

The resulting state machine is:

1. Vertical flight phase → Multi-Rotor mode (MR) ⇐⇒ u < Vtri
.

Active actuators: lift ducted propellers.

2. Transition phase → Transition mode (TR) ⇐⇒ Vtri
< u < KSVst = Vtrf

[m
s

].

Active actuators: lift ducted propellers, aerodynamic surfaces and thrust
propellers.

3. Fixed Wing phase → Fixed-Wing mode (FW) ⇐⇒ u > Vtrf
.

Active actuators: aerodynamic surfaces and thrust propellers.

Where KSVst is the stall speed of the aircraft multiplied by a safety factor and Vtri
,

Vtrf
are the transition starting and ending velocities, respectively.

The stall speed can be computed as:

Vst =
ó

2mg
ρSCLMax

(2.4)

The Hybrid mode is characterized by the coexistence of control variables from
both FW and MR modes. The problem of redundancy is addressed by splitting
control actions between each mode based on the current velocity. Assuming that
aerodynamic control becomes more effective as the speed relative to the wind
increases, we can allocate any requested control action (denoted as AC) as follows:

f(V ) = V − Vtri

Vtrf
− Vtri

→ AC = AC · f(V )ü ûú ý
FW actuators

+AC · (1 − f(V ))ü ûú ý
MR actuators

(2.5)

The transition function f(V ) is constructed to ensure that boundary conditions
between contiguous machine states are respected [7]. Indeed, if V = Vtri, all the
control load is placed on MR actuators. Conversely, if V = V trf , the control action
is entirely generated by FW actuators.
These boundary conditions are crucial for achieving a smooth transition between
different operational states of the aircraft.
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Figure 2.6: State machine
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Chapter 3

Mathematical model

This chapter serves as an introductory exploration into the mathematical model
of the aircraft. First a description of the essential reference frames is provided,
followed by the derivation of the comprehensive non-linear state-space model. The
latter encompasses a detailed description of forces and moments exerted on the
system.

3.1 Reference Frames and Rotations
To describe the orientation and position of one rigid body relative to another,
reference frames are essential. Each reference frame encompasses an origin point
and three mutually orthogonal base vectors.

For this discussion, it is beneficial to introduce the following:

1. Inertial frame

2. Body attached frame

3. Wind frame

4. Flight-path frame

3.1.1 Inertial Frame
When assuming a flat, non-rotating Earth, the North-East-Down (NED) reference
frame can serve as an inertial frame, i.e. Newton’s laws hold. Its origin is located
at the projection of the vehicle’s center of mass (CoM) at time t0 onto the Earth’s
surface, and its axes are as follows:
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• XN : Lies within the plane tangential to the Earth’s surface and points toward
the North pole.

• ZD: Perpendicular to the tangent plane and parallels the gravity vector; if
Earth is considered to be perfectly spherical, the D-axis consistently points to
its center.

• YE: Resides within the tangent plane and follows the right-hand rule.

Figure 3.1: NED reference frame

It’s important to note that the NED frame isn’t ideal for accurately describing
the inertial position of the vehicle.
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3.1.2 Body Frame
The body frame remains fixed with the vehicle and is particularly useful for
describing the system’s mass and geometric attributes as constants over time. It is
typically centered at the aircraft’s center of mass, and its axes are defined as:

• XB: Exists within the aircraft’s longitudinal plane, aligning with the forward
direction of motion.;

• ZB: Resides within the aircraft’s longitudinal plane, extending toward the
underside of the fuselage.;

• YB: Conventional orientation assumes it extends to the right of an imaginary
pilot situated within the vehicle.

Figure 3.2: Body reference frame

3.1.3 Wind Frame
The wind frame provides a convenient framework for describing aerodynamic actions
on the vehicle:

• XW : Aligned with the direction of relative wind, i.e. the wind vector perceived
by the aircraft due to its own motion relative to the surrounding air mass.
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• ZW : Runs parallel to the Lift force but in the opposite direction, pointing
downwards.

• YW : Completes the right-handed coordinate system.

Figure 3.3: Wind reference frame

The velocity vector can be written in terms of body velocity components [u, v, w]T
which allow us to define the aerodynamic angles of sideslip (β) and attack (α) as:

α = atan(w
u

) (3.1)

β = asin( v

V∞
) (3.2)

where V∞ = |Vw| =
√
u2 + v2 + w2.

3.1.4 Flight-path Frame
The flight-path axes are aligned with the velocity vector of the aircraft with respect
to the ground. They are used to identify the inertial displacement over time of the
CoM of the system.

• XF P : Aligned with the direction of the aircraft’s velocity vector and pointing
in the direction of the aircraft’s motion through the air.

• YF P : Runs perpendicular to both the local vertical and the velocity vector.
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• ZF P : Completes the right-handed coordinate system.

Figure 3.4: Flight-path reference frame

This reference frame allows us to introduce two fundamental angles. Defining
the inertial velocity vector of the CoM as [Ẋ, Ẏ , Ż]T we can define the flight-path
angle γ and the azimuth angle χ as:

γ = acos(

ñ
Ẋ2 + Ẏ 2

V∞
) (3.3)

χ = atan( Ẏ
Ẋ

) (3.4)
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3.1.5 Rotations
It is possible to align any two reference frames by applying a sequence of no more
than three planar rotations. The order in which these rotations are performed is
significant, and according to the Euler convention, the sequence Z → Y → X is
adopted. In this context, a passive perspective of rotation is embraced, wherein
Direction Cosine Matrices (DCMs) are employed to describe the same vector in
various coordinate systems. Notably, the vector remains fixed in space throughout,
and it is only the coordinate systems that change orientation.
When converting a vector’s coordinates from NED (North-East-Down) reference
frame to Body reference frame, a transformation matrix needs to be applied. This
Direction Cosine Matrix (DCM) results from a sequence of rotations aligning the
NED frame with the Body frame:

1. (N,E,D) → (N∗, E∗, D) through a rotation of ψ about the D axis.

2. (N∗, E∗, D) → (XB, E
∗, D∗) through a rotation of θ about the E∗ axis.

3. (XB, E
∗, D∗) → (XB, YB, ZB) through a rotation of ϕ about the XB axis.

Figure 3.5: NED to Body transformation
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Each elementary rotation’s DCM can be computed through scalar products of
the vector bases between the involved frames. The first DCM, about the D axis, is
computed as:

DCM =

êN∗ · êN êN∗ · êE êN∗ · êD

êE∗ · êN êE∗ · êE êE∗ · êD

êD · êN êD · êE êD · êD

 =

 c(ψ) s(ψ) 0
−s(ψ) c(ψ) 0

0 0 1

 (3.5)

where c(·) and s(·) denote the cosine and sine functions respectively.
Similarly, the other two elementary DCMs can be computed, resulting in the final
transformation from NED to Body:

CB/N =

1 0 0
0 c(ϕ) s(ϕ)
0 −s(ϕ) c(ϕ)


c(θ) 0 −s(θ)

0 1 0
s(θ) 0 c(θ)


 c(ψ) s(ψ) 0
−s(ψ) c(ψ) 0

0 0 1

 (3.6)

The Body coordinates of any vector V can now be expressed in terms of its
NED coordinates and the transformation matrix as follows:

VB = CB/N(ϕ, θ, ψ)VN (3.7)

A similar process can be applied to derive the transformation matrices from
Body to Wind and from NED to Flight-path axes:

CW/B =

 c(β) s(β) 0
−s(β) c(β) 0

0 0 1


 c(α) 0 s(α)

0 1 0
−s(α) 0 c(α)

 (3.8)

CF P/N =

c(γ) 0 −s(γ)
0 1 0

s(γ) 0 c(γ)


 c(χ) s(χ) 0
−s(χ) c(χ) 0

0 0 1

 (3.9)

The following properties for DCMs hold and will be used later on:

• C−1
A/B = CT

A/B = CB/A

• CA/C = CA/BCB/C

3.2 Kinematic and Dynamic equations
The motion of a rigid body can be seen as the combination of the CoM translation
and the attitude change due to its rotation about the CoM itself. The complete
set of equations will therefore include both rotational and translational kinematics
and dynamics.
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3.2.1 Kinematics
The linear kinematics emerges directly from the mathematical connection between
the NED and Body reference frames. The initial set of equations, commonly
referred to as navigation equations, is a direct result of this relationship:

ṖN =

ẊẎ
Ż


N

= CN/B(ϕ, θ, ψ)VB = CN/B(ϕ, θ, ψ)

uv
w


B

(3.10)

The kinematics governing rotational motion can be derived by employing the
chain rule for angular velocities. According to this rule, when dealing with N
distinct reference frames, the angular velocity of frame N with respect to frame 1
can be obtained through the summation of angular velocities as follows:

ωN/1 = ωN/N−1 + ...+ ωj/j−1 + ...+ ω2/1 (3.11)

In this equation, each term ωj/j−1 represents the angular velocity of frame j
with respect to frame j − 1. Applying such rule, the link between body angular
rates and Euler rates can be found as:

Φ̇ =

ϕ̇θ̇
ψ̇

 =

1 s(ϕ)t(θ) c(ϕ)t(θ)
0 c(ϕ) −s(ϕ)
0 s(ϕ)

c(θ)
c(ϕ)
c(θ)


pq
r

 = T (Φ)ωB
B/N (3.12)

where t(·) stands for tangent function and ωB
B/N is the angular velocity vector

of the Body frame w.r.t. the inertial one in body components.

3.2.2 Dynamics
The effect of moments and forces acting on the system is mathematically described
by the flight dynamics equations. The linear equations of motion relate the inertial
acceleration of the system CoM to the external forces exerted onto it and can be
derived by Newton’s second law:

d(mV )
dt

=
Ø
Fext (3.13)

It is convenient to take the time derivative of the velocity vector in the same
frame that we intend to express the equation in. Leveraging the time derivative
transport theorem for vectors, the resulting matrix equation in Body coordinates
is:

B d

dt
V B + ωB

B/N × V B = 1
m

Ø
FB

ext (3.14)
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Likewise, the rotational dynamics equations establish a connection between the
rate of change of angular momentum of the system with respect to the CoM and
the external moments exerted on the system:

d(H)
dt

=
Ø
Mext (3.15)

Here, the angular momentum incorporates the inertia tensor of the rigid body.
The description of rotational dynamics is also presented in Body coordinates, which
conveniently allows us to assume that the inertia matrix remains constant over
time. Expanding equation (3.15) we obtain:

B d

dt
HB + ωB

B/N ×HB =
Ø
MB

ext (3.16)

If rotors are included in the analysis, then the angular momentum of the whole
system becomes:

HB = JBωB
B/N + JB

Rω
B
R/B (3.17)

where JB is the inertia matrix of the whole system including rotors at rest,
whereas JB

R is the inertia matrix of the rotors. The term ωB
R/B represents the

angular velocity of the rotors w.r.t. the body fixed frame. Everything is expressed
in body coordinates. Substituting (3.17) into (3.16) the resulting expression for
the gyroscopic effect is: GB = ωB

B/N × JB
Rω

B
R/B [8].

3.3 Forces and Moments
In order for the set of equations previously derived to be useful, a model of forces
and moments is needed. The actions exerted on the system can be categorized into
two main groups:

1. Aerodynamic

2. Propulsive

The second category can be further subdivided based on whether they originate
from thrust or lift propellers.

3.3.1 Aerodynamics
In this dissertation a linear model of the vehicle aerodynamics is included. This
means that actions on the aircraft caused by its interaction with the airflow are
assumed to be first order polynomials in control and state variables.
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Conveniently, forces are given in wind axes components, whereas moments are
described in the body frame.

Figure 3.6: Aerodynamic actions

Defining the ram air dynamic pressure as q = 1
2ρV

2, each aerodynamic force
component can be expressed using dimensionless coefficients that encompass both
the influence of state (x) and control variables (u). Additionally, in the linear case,
the effect of u can be entirely distinguished from the dependence from x, resulting
in:

FW
A =

−D
S

−L

 = FW
Ax

(x) + FW
Au

(u) (3.18)

Here, for simplicity’s sake, the steady-state coefficients are incorporated into
the state dependency, leading to:

21



Mathematical model

FW
Ax

= qS

−1 0 0
0 1 0
0 0 −1


CDss CDα CDβ

CDp CDq CDr CDu

CSss CSα CSβ
CSp CSq CSr CSu

CLss CLα CLβ
CLp CLq CLr CLu





1
α
β
p
q
r
V


(3.19)

FW
Au

= qS

 0 0
0 0

−CLδe
0

 C
δe

δa

D
(3.20)

The same applies to aerodynamic moments that can be written as:

MB
A =

 lama

na

 = MB
Ax

(x) +MB
Au

(u) (3.21)

where:

MB
Ax

= qS

b 0 0
0 c 0
0 0 b


Clss Clα Clβ Clp Clq Clr Clu

Cmss Cmα Cmβ
Cmp Cmq Cmr Cmu

Cnss Cnα Cnβ
Cnp Cnq Cnr Cnu





1
α
β
p
q
r
V


(3.22)

MW
Au

= qS

b 0 0
0 c 0
0 0 b


 0 Clδa

Cmδe
0

0 Cnδa

 C
δe

δa

D
(3.23)

The terms b, c, S correspond, in order, to wingspan, aerodynamic mean chord and
wing planform area.

3.3.2 Propulsion
Forces and torques generated from a propeller can be approximately modelled using
Renard’s formulas. Defining Γ = V

ωRe
as the grading ratio, the coventional form of
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the equations is given as:

T = ρR4
eτ(Γ)ω2 (3.24)

Q = ρR5
eK(Γ)ω2 (3.25)

In these equations, T and Q represent the thrust and reaction moment generated by
the propeller, respectively. They depend on air density ρ, blade radius Re, propeller
angular speed ω and the Renard’s coefficients τ and K. A common approach is
to determine constant values for these coefficients using a least squares fit from
experimental data [9],[10]. A simpler formulation is then achieved as:

T = KTω
2 (3.26)

Q = KQω
2 (3.27)

Figure 3.7: Propeller actions

Lifting Propellers

Each propeller acts on the system with a torque and thrust as described in the
previous subsection. If we combine all the effects together we can obtain a mathe-
matical equation for the overall effect of the lift propellers on the aircraft.
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For the sake of simplicity we can make the following assumptions:

1. The thrust vectors are anti-parallel w.r.t. the Zb axis.

2. The distance between the rotation axes of the middle motors along Xb and
the CoM is equal to zero.

As a result of 1, the net force of the motors will act along Zb only. Additionally,
no moment is produced along the same axis due to differential thrusts and the only
rotational effect on Zb is caused by the reaction torques.

Figure 3.8: Vertical propellers’ actions

The resulting expression for the net force in body components is given by:

FB
Tv

=

 0
0

− q6
i=1 Ti

 = −KTv

 0
0q6

i=1 Ω2
vi

 (3.28)

Taking into consideration the moment components generated by differential thrust,
we can derive the following expression for the net moment exerted on the system:
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MB
Tv

=

 KTvdyv(q3
i=1 Ω2

vi
− q6

i=4 Ω2
vi

)
KTvdxv(Ω2

v1 + Ω2
v6 − Ω2

v3 − Ω2
v4)

KQv

q6
i=1(−1)2i−1Ω2

vi

 (3.29)

When merging the expressions for forces and moments into a single matrix equation,
we obtain the following result [10]:


Tz

τx

τy

τz

 =


KTv 0 0 0

0 KTvdyv 0 0
0 0 KTvdxv 0
0 0 0 KQv




1 1 1 1 1 1
1 0 −1 −1 0 1
1 1 1 −1 −1 −1

−1 1 −1 1 −1 1





Ω2
v1

Ω2
v2

Ω2
v3

Ω2
v4

Ω2
v5

Ω2
v6


(3.30)

Thrust Propellers

Everything that was stated for the lifting propellers also holds for the thrust ones.
In this case, however, the net force is assumed to be aligned with Xb.

Figure 3.9: Horizontal propellers’ actions

The resulting matrix equation for forces and moments is:
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Tx

lT
mT

nT

 =


KTh

0 0 0
0 KQh

0 0
0 0 KTh

dzh
0

0 0 0 KTh
dyh




1 1
1 −1

−1 −1
1 −1


C
Ω2

h1
Ω2

h2

D
(3.31)

The overall propulsive effect on the system will be a function of the control
vector u only and can be expressed in body components as:

FB
T (u) =

 Tx(u)
0

−Tz(u)

 (3.32)

MB
T (u) =

τx(u)
τy(u)
τz(u)

 +

 lT (u)
mT (u)
nT (u)

 (3.33)

In addition, the internal gyroscopic moment due to rotating parts will appear as:

GB(x,u) =

 0 −r q
r 0 −p

−q p 0

 (

JRh
0 0

0 0 0
0 0 JRv


 Ωh2 − Ωh1

0q6
i=1(−1)i−1Ωvi

) (3.34)

3.3.3 Non Linear State Space Model

The equations obtained earlier can be integrated into a system of non-linear first-
order ordinary differential equations involving both the state (x) and control (u)
variables. With the initial conditions x(t0) and the time history of inputs u, we
can determine the complete state of the system for any t > t0. This mathematical
framework is not only useful for predicting system behavior but also lends itself
well to control applications.
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V̇ B = −ωB
B/N × V B + 1

m
(FB

T + CB/N(mgN) + CB/WF
W
A )

Φ̇ = T (Φ)ωB
B/N

ω̇B
B/N = (JB)−1(−ωB

B/N × JBωB
B/N +MB

A +MB
T −GB)

ṖN = CN/BV
B

(3.35)

This system consists of 12 first-order non-linear ordinary differential equations
involving the following state and control variables:

xT = [u, v, wü ûú ý
xT

1

, ϕ, θ, ψü ûú ý
xT

2

, p, q, rü ûú ý
xT

3

, PN , PE, PDü ûú ý
xT

4

] ∈ R12×1 (3.36)

uT = [δe, δaü ûú ý
uT

F W

,Ωh1 ,Ωh2ü ûú ý
uT

HT

,Ωv1 ,Ωv2 ,Ωv3 ,Ωv4 ,Ωv5 ,Ωv6ü ûú ý
uT

V T

] ∈ R10×1 (3.37)

For conciseness of notation we may define the following subsets for both x and u
as:

xT = [xT
1 ,x

T
2 ,x

T
3 ,x

T
4 ] (3.38)

uT = [uT
F W ,u

T
HT ,u

T
V T ] (3.39)

With this notation, we can rewrite the state equations as follows:



ẋ1 = −x3 × x1 + CB/N(x2)gN + 1
m

(CB/W (x1)FW
A (x1,x3,uF W ) + FB

T (uHT ,uV T ))

ẋ2 = T (x2)x3

ẋ3 = (JB)−1(−x3 × JBx3 +MB
A (x1,x3,uF W ) +MB

T (uHT ,uV T ) −GB(x3,uHT ,uV T ))
ẋ4 = CN/B(x2)x1

(3.40)

Finally, the system can be represented in the standard form as:

ẋ = f(x,u) (3.41)

It’s worth noting that due to the presence of gyroscopic effects, even with a
simplified linear aerodynamic model, the system is not in control-affine form, which
means it’s not linear in the control variables. If we were to disregard the gyroscopic
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term and use the squared rotor speeds as inputs, the system could be rewritten in
a control-affine form:

ẋ = F (x) +G(x)u (3.42)

Typically, the state equation is accompanied by an output equation denoted as
y = h(x,u). Here, y denotes the system’s output, which includes a collection of
variables that can be measured and used for feedback purposes. In the context of
this dissertation, we consider the entire state vector to be accessible for feedback.
However, in practical scenarios, an estimation algorithm becomes essential to
compute state variables that are not directly measurable.

3.3.4 Linear State Space Model
Most of control theory and stability analysis apply to linear systems only. Usually,
non linear systems are linearized about an equilibrium point and the stability of
the system is assessed for small perturbations only.

In order to linearize the system, we first need to find an equilibrium point by
setting the derivative of the state to zero and solving a set of non linear algebraic
equations:

(x∗,u∗) = (x,u)eq ⇔ ẋ∗ = f(x∗,u∗) = 0 (3.43)

After an equilibrium point is found, we can take the first order Taylor expansion of
the state equations as x and u approach their equilibrium values:

ẋ = ∇xf(x,u)(x,u)eqδx+ ∇uf(x,u)(x,u)eqδu as ẋ → ẋeq = 0 (3.44)

The state and control Jacobian matrices are commonly written as A and B, whereas
δ(·) indicates a small perturbation from equilibrium.
The standard form for the linear state space representation is:

δẋ = Aδx+ Bδu (3.45)

For a system to exhibit linear stability around an equilibrium point, it’s necessary
for the real components of all eigenvalues in the matrix A to be negative. This
principle is particularly applicable when analyzing an aircraft’s dynamics, which can
be divided into two separate planes of motion: longitudinal and lateral-directional.
When considering linear stability,indeed, these two planes can be assessed indepen-
dently. In the context of longitudinal dynamics, an additional factor comes into
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play due to the inclusion of vertical lift propellers as opposed to conventional FW
aircrafts.

For the longitudinal dynamics the A matrix becomes:

A11 = −ρ · Veq · S · (CDeq + 0.5 · Veq · CDV
)

A12 = −Txeq · sin(αeq) +m · g · cos(γeq) − qeq · S · CDα − Tzeq · cos(αeq)
A13 = −qeq · S · (CDq · c/(2 · Veq))
A14 = −m · g · cos(γeq)
A21 = −ρ · Veq · S · (CLeq + 0.5 · Veq · CLV

)
A22 = −Txeq · cos(αeq) +m · g · sin(γeq) − qeq · S · CLα + Tzeq · sin(αeq)
A23 = m · Veq − qeq · S · (CLq · c/(2 · Veq))
A24 = −m · g · sin(γeq)
A31 = ρ · Veq · S · c · (Cmeq + 0.5 · Veq · CmV

)
A32 = qeq · S · c · Cmα

A33 = qeq · S · c · (Cmq · c/(2 · Veq))
A34 = 0
A4: = [0, 0, 1, 0]

The Aij components are derived from the linearization of the state equations in
Wind Axes, where the state vector becomes:

xT
long = [V, α, q, θ] (3.46)

As vertical thrust solely aligns with −k̂b, the supplementary term remains absent
in the lateral-directional state matrix. Consequently, the standard configuration
commonly found in literature for Alat can be maintained, and the state vector is
defined as:

xT
lat = [β, ϕ, p, r] (3.47)

It’s essential to acknowledge that Wind Axes might not be the most suitable
framework for analyzing the dynamics of the MR (Multi Rotor) mode. However,
this dissertation will not include a linear stability analysis of such mode.
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3.3.5 Numerical Data
In the tables below all the coefficients needed for a numerical model of the aircraft
are listed:

ss α β pb
2V

qc
2V

rb
2V

Mach δe δa

CD 1.7e-2 9.76e-2 1.99e-3 -3.93e-2 -2.28e-1 -1.31e-2 7.1e-5 0
CS 0 -3e-6 -3.12e-1 -1.28e-1 4e-6 1.41e-1 0 0 0
CL 1.51e-1 5.62 3.89e-3 -9.78e-4 11.7 3.14e-3 5.32e-3 0.745 0
Cl 0 3e-6 -4e-2 -6.21e-1 -1.2e-5 3.87e-2 0 0 -0.127
Cm -8.12e-2 -1.79 -4.69e-3 4.35e-3 -17.12 -2.96e-3 2.75e-3 -1.34 0
Cn 0 1e-6 2.7e-2 -3.24e-3 0 -2.72e-2 0 0 -6.7e-3

Table 3.1: Aerodynamic Coefficients

Property Unit
Ixx 1.2387e3 Kg ·m2

Iyy 5.4933e3 Kg ·m2

Izz 6.3186e3 Kg ·m2

Ixz -300 Kg ·m2

m 2100 Kg
S 14 m2

b 8 m
c 1 m

Table 3.2: Aircraft geometrical and mass properties

Property Unit
KTh

3.56e-2 N · s2

KQh
2e-3 N ·m · s2

dxh
m

dyh
1.4 m

dzh
0.4 m

JRh
0.073 Kg ·m2

Table 3.3: Thrust Propellers data
[11]

Property Unit
KTv 7.39e-2 N · s2

KQv 5.1e-3 N ·m · s2

dxv 1.25 m
dyv 1.35 m
dzv m
JRv 0.126 Kg ·m2

Table 3.4: Lift Propellers data [11]
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The estimation of propeller inertias involved combining the inertia of the blades
with that of the DC motors. As an initial approximation, we can simplify each
blade’s shape to a rectangular form. This relationship can be expressed as follows:

JR = JDC +Nblades · 1
3mbladeL

2
blade (3.48)

Here, JDC denotes the moment of inertia of the DC motor’s rotor, which can
be extracted from the motor’s datasheet. In order to encompass the dynamic
characteristics of the propeller, we can deduce an equivalent moment of inertia,
as outlined in equation (3.48), under the assumptions of no gear in between the
motor and the load (propeller).

3.3.6 Actuators
The actuators employed within the simulation process were conceptually classified
into the subsequent categories:

1. Position Servomechanism:

• Objective: The primary goal of a position servomechanism is to pursue
a desired position or angle of a system, such as an actuator.

• Operation: The control system compares the current position with
the desired one; such comparison generates a command signal aimed at
minimizing any existing position error.

2. Velocity Servomechanism:

• Objective: The primary objective of a velocity servomechanism is to
regulate and maintain a specific velocity or speed of a system, such as a
motor.

• Operation: The control system measures the current velocity of the
system and compares it to the desired velocity. It generates a control signal
to adjust the system’s velocity to match the desired value, minimizing
any velocity error.

Position Servo

The first type of servomechanism controls the movement of the aerodynamic surfaces
δe and δa. While the detailed modeling of this mechanism isn’t covered here, it’s
important to address any delays introduced by the system in the aircraft’s overall
dynamics. These delays can potentially destabilize the system, so it’s crucial to
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simulate them accurately to avoid overestimating the control system’s performance.

We can think of the actuator as a black-box that, given a commanded deflec-
tion as an input, will output an actual angular displacement of the aerodynamic
surface with a certain delay.

Figure 3.10: Position Servo

The transfer function in the Laplace domain used for delay simulation is of the
following type [12]:

output

input
= δ

δcom

(s) = K

s+K
(3.49)

In state space representation, the corresponding differential equation is:

δ̇ = K(δcom − δ) (3.50)

where K is a constant that can be tuned accordingly to the amount of delay we
are willing to introduce.
In this work K was selected to be 20.
The corresponding step response and bode plots are shown in the next page.
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Figure 3.11: Actuator Bode plots

Figure 3.12: Actuator Step Response

As we can intuitively deduce from the step response, when a static step com-
mand is issued, the actuator doesn’t respond immediately but exhibits some latency
before reaching the commanded deflection. The Bode phase plot, on the other hand,
illustrates the delay introduced by the transfer function based on the frequency
content of any dynamical input.
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Additionally, the output of the transfer function is saturated according to the
aerodynamic surfaces deflection limits, which were selected as:

• δe ∈ [−24,+24]o

• δa ∈ [−24,+24]o

Velocity Servo

The second servomechanism category is utilized to regulate the rotational speed of
the propellers. In this scenario, a higher-fidelity electro-mechanical servomechanism
model was constructed to integrate actual data from the DC motor datasheet,
which was selected to drive the propellers.
The motor type was chosen in a prior design trade-off study, guided by an assess-
ment of the power required to maintain the aircraft in flight across all phases of
the mission.

A 1D mathematical model for the mechanical component of the actuator can be
derived by applying Newton’s second law for rotation as shown in the following
picture.

Figure 3.13: DC Motor mechanics

TM and TL are respectively the motor and load torques, whereas c and JR are
the viscous friction and inertia coefficients. The coefficients already include the
propeller characteristics.
The motor torque comes from the electric model which can be approximated with
a simple RL circuit, resulting in the following [8]:JRω̇ + cω = TM − TL

Ldi
dt

+Ri = VA −Kbω
(3.51)

VA represents the input voltage, whereas Kbω is referred to as back EMF, which
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factors in the conversion of electrical energy into mechanical energy. Apart from the
influence of back EMF, the interdependency between the two equations arises from
the motor’s torque. Specifically, TM is typically contingent on the electrical current
i flowing through the circuit, a current that is regulated by the input voltage. A
controller will provide an input voltage in response to the difference between the
desired rotational speed and the present speed of the propeller. For achieving this,
a sensor capable of measuring the rotation rate is essential.

Figure 3.14: DC Motor Block Diagram

The simulation employs DC motor data extracted from the EMRAX 348
datasheet. The table below presents the key numerical attributes [13].

Property Unit
Kb 0.15 V/RPM
Kt 1.92 Nm/A
R 13.15e-3 Ω
L 185.3 µH

TMmax 1000 Nm
ωmax 4500 RPM
c 0.05 Kgm2/s

VAmax 1000 V
JR 0.22042 Kg ·m2

Table 3.5: EMRAX 348
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3.4 Plant and actuators in Simulink environment
In the figure below the two sub-models for actuators and plant (i.e. physical system
to be controlled) are shown.

Figure 3.15: Plant + Actuators in Simulink environment

The first block models the actuators. The second one, instead, is the Simulink
implementation of the non linear state space model of the aircraft. The control
system provides a commanded input ucom to the actuators, which in turn will
output an actual displacement/rotational speed u to the plant. The physical
saturation limits restrict the actual aircraft’s input appropriately.
If we expand the actuation block, we can see that it is formed by the same electro-
mechanical model for both lift and thrust propellers and a first order differential
equation for aerodynamic control surfaces.

The plant is made by 4 main blocks. The first one calculates external forces and
torques exerted on the system which are then passed to the blocks implementing
the dynamical equations for rotation and translation. The dynamical equations
are integrated one time and the outcome of such integration is the passed onto
the kinematics blocks. A second integration will provide the variables needed to
complete the full state.

The code below shows how forces and moments are computed in body components.

1 f unc t i on [ forces_B , moments_B , F_c , M_c] = Actions_B ( state , u_FW,
Omega_h, Omega_v , rho , HT, S , b , c , dba , VT)

2

3 % s t a t e = [X Y Z u v w phi theta p s i p q r ] ’
4 % u = [ de da Tx1 Tx2 Tz taux tauy tauz ] ’ ;
5 C_BN = Ned2Body( s t a t e (9 ) , s t a t e (8 ) , s t a t e (7 ) ) ;
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6 x = [ s t a t e ( 4 : 6 ) ; s t a t e ( 1 0 : 1 2 ) ; s t a t e ( 7 : 9 ) ] ;
7 V = sqr t ( sum( s t a t e ( 4 : 6 ) . ^2 ) ) ;
8

9 Alpha = atan2 ( s t a t e (6 ) , s t a t e (4 ) ) ;
10 Beta = as in ( s t a t e (5 ) /V) ;
11

12

13 %Aerodynamic Act ions
14 i f s t a t e (4 ) < 2
15 A_a = ze ro s (6 , 1 ) ;
16 C_WB = eye (3 ) ;
17 e l s e
18 C_WB = Body2Wind( Alpha , Beta ) ;
19 A_a = Aero_FandM(x ,u_FW, rho , S , b , c , dba ) ;
20 %A_a = [D, S , L , l ,m, n ]
21 end
22

23 %Hor i zonta l Thrust Act ions
24 A_h = HT.AM ∗ Omega_h . ^ 2 ;
25 %V e r t i c a l Thrust Act ions
26 A_v = VT.AM ∗ Omega_v . ^ 2 ;
27 % .AM stands f o r a l l o c a t i o n matrix
28

29 %Forces and Moments computation
30 forces_B = C_WB’ ∗ [−A_a(1) ; A_a(2) ; −A_a(3) ] + [A_h(1) ; 0 ; −A_v(1) ] ;
31 moments_B = A_a( 4 : 6 ) + A_h( 2 : 4 ) + A_v( 2 : 4 ) ;
32

33 %Control f o r c e s and moments
34 M_c = 0.5∗ rho∗V^2∗S ∗ [ b 0 0 ; 0 c 0 ; 0 0 0 ] ∗ [ 0 dba . Cl . da ; dba .Cm. de 0 ;

0 dba .Cn . da ] ∗u_FW + [ 0 ; 0 ;A_h( end ) ] + A_v( 2 : end ) ;
35 F_c = [A_h(1) ; 0 ; −A_v(1) ] ;

37



Mathematical model

Figure 3.16: Actuator models
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Figure 3.17: Plant Simulink model
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Chapter 4

Trim Conditions and Linear
Stability Analysis

This section is dedicated to assessing the linear stability of the system under
different trim conditions during steady-level flight, with variations in speed. To
linearize the aircraft dynamics, the initial step involves identifying equilibrium
points. Subsequently, the eigenvalues of the state matrix are calculated.

4.1 Trim conditions

In this work, the equilibrium conditions are found under the assumption of steady-
level, longitudinal flight. In mathematical terms this can be expressed as:

Equilibrium point: ⇐⇒ ẋtr = d

dt



u
v
w
p
q
r
ϕ
θ
ψ


tr

= 0 (4.1)
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Longitudinal flight: ⇐⇒ xtr =



u
v
w
p
q
r
ϕ
θ
ψ


tr

=



u∗
0
w∗
0
0
0
0
θ∗
ψ∗


= cost (4.2)

The trim problem can be resolved by formulating a constrained optimization
problem [14], which can be solved using the MATLAB function fmincon.

Considering the previously discussed assumptions, further simplification of the
problem includes setting Φ̇ = 0 and v̇ = 0. The first set of equations arises directly
from these assumptions and doesn’t introduce uncertainties into the problem. The
second equation, however, may not be precisely accurate due to the presence of
unbalanced side forces. Nonetheless, the error introduced by setting v̇ = 0 is almost
negligible.

Consequently, the cost function is streamlined by excluding the derivatives of
Euler angles and side-velocity from consideration upfront:

J = u̇2 + ẇ2 + ṗ2 + q̇2 + ṙ2 (4.3)

The objective is to minimize the cost function, which is equivalent to finding an
equilibrium point that zeroes out the dynamical system. To achieve this, the
minimum of J must be determined while exploring the search space variables
zT = [Tx1, Tx2, Tz, δe, δa, α, θ, τx, τy, τz] under variation. It is important to notice
that J needs to be written explicitly in terms of z.

Below are the constraints for the search space variables ([15]), assuming a
predefined velocity, for the most general case, which is the TR mode. It’s important
to note that the FW mode can be considered a sub-case of the TR mode in which
the MR control variables are set to zero.

1. Linear Constraints:
γ = θ − α = 0
lδaδa(1 − f(V )) − f(V )τx = 0
mδeδe(1 − f(V )) − f(V )τy = 0
dYH

(Tx1 − Tx2)(1 − f(V )) − f(V )τz = 0

(4.4)
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Where f(V ) is the allocation function for redundant actuators in TR mode as
presented in chapter 2.

2. Inequality Constraints:


Tx1 , Tx2 , Tz > 0
α, θ ∈ [−16,16]o

δe, δa ∈ [−24,24]o

Ω2
Vi
> 0 ∀ i = 1 : 6 → [M ]†[Tz, τx, τy, τz]T > 0

(4.5)

Where [M ] is the allocation matrix as reported in equation (3.30).

3. Nonlinear Constraints:
the algorithm better minimizes the cost function if the dynamical equations,
set to zero, are used as nonlinear constraints themselves:

d

dt


u
w
p
q
r

 = 0 (4.6)

4.2 FW linear stability

Linear stability for the linearized equations is assessed for four different trim veloc-
ities, namely Vtr ∈ {50,55,65,75} [m

s
].

As an example, considering V = 55m
s

, the first step is to verify whether the
solution obtained from the minimization problem indeed represents an equilibrium
point. This can be done by simulating the nonlinear augmented plant (plant +
actuators) to ensure that for constant trim inputs, the system stays at rest. The
results for this specific case are presented below.
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Figure 4.1: u,v,w vs t

Figure 4.2: p,q,r vs t
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Figure 4.3: ϕ, θ, ψ vs t

Figure 4.4: α, β vs t

Based on the plots, we can conclude that the calculated trim point is satisfactory.
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Next, the trim values for state and control variables can be used to compute
the state matrices Along and Alat. Finally, their eigenvalues can be found. Each
real eigenvalue or couple of complex conjugate pairs represents a natural mode of
the system. Calculating the actual eigenvalues for this specific case yields:

Longitudinal plane →

λSP = −0.8229 ± 2.5906i → Short Period
λP H = −0.0021 ± 0.2486i → Phugoid

(4.7)

Latero-directional plane →


λR = −6.0253 → Roll
λS = −0.0003 → Spiral
λDR = −0.0249 ± 0.9512i → Dutch Roll

(4.8)

The generic solution to a linear ODE is of the form Ceλt = CeRe(λ)t sin(ωt+ ϕ).
To ensure system stability, the solution must approach 0 as time (t) increases.

It’s evident that the absolute value of the sine function cannot exceed 1. Therefore,
for the solution to remain bounded and converge to zero, the real part (Re(λ)) of
the eigenvalues must be negative.

In this specific case, all modes are stable. However, it’s important to note that
very lightly damped modes could exhibit unstable behavior in a nonlinear scenario.
This analysis remains valid for small perturbations from the trim point.

A simulation to show the linear behaviour of the aircraft (i.e. its linear modes)
can be performed by adding small perturbations to the initial state of the system
at rest.

x0 = xtr + δx (4.9)

In the case of a longitudinal perturbation, two primary modes, Short Period
and Phugoid, become active. Each longitudinal state variable responds to the
perturbation as a linear combination of these two modes. Theoretical findings
indicate that variables such as u and θ are more influenced by the Phugoid mode,
while variables like w and q exhibit more significant variations in the short term.

The subsequent plots illustrate the aircraft’s longitudinal response to speed
perturbations.
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Figure 4.5: u vs t

Figure 4.6: w vs t
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Figure 4.7: θ, α vs t

Figure 4.8: q vs t

The half-life time of each mode can be determined based on its eigenvalue using
the formula t1/2 = − log(2)

Re(λ) . In the case of the Short Period mode, it takes less than
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one second for its oscillations to halve. On the other hand, for the Phugoid mode, it
requires approximately 340 seconds for the exponential envelope of its oscillations
to halve.

Concerning the lateral modes, Dutch Roll stands out as the only mode charac-
terized by oscillatory behavior. In contrast, the other two modes exhibit purely
exponential decay, which presents challenges in visualization due to their extremely
short or lengthy half-life times. For instance, the Spiral mode has such light damp-
ing that it takes nearly 2000 seconds to diminish significantly. Conversely, the Roll
mode experiences rapid decay within a fraction of a second. The following plot
illustrates the behavior of the Roll mode. In the short term, it indeed demonstrates
purely exponential decay before other modes become prominent.

Figure 4.9: p vs t
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For longer simulation time, the other modes become visible as well.

Figure 4.10: v vs t

Figure 4.11: β vs t
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Figure 4.12: p,r vs t

Figure 4.13: ϕ, ψ vs t

Even though the linear analysis indicates the stability of all lateral modes, the
visual evidence in the plots clearly shows a departure from the trim conditions.
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As mentioned earlier, it’s a common occurrence for lightly stable linear modes to
become unstable in a nonlinear simulation.

At the end of the chapter , a table is presented, showing the eigenvalues associated
with the FW modes at different trim velocities.

4.3 TR linear stability
In Transition mode, the selected trim velocities for linear stability analysis are
Vtr ∈ {16,25,34,43} [m

s
].

All the considerations made for FW flight remain applicable in this flight regime.
However, it’s important to note that the linearized equations differ from the previ-
ous ones due to an additional thrust term acting along −k̂b.

Below are the results for Vtr = 34m
s

:

Longitudinal plane →

λSP = −0.5233 ± 1.6013i → Short Period
λP H = 0.0012 ± 0.2533i → Phugoid

(4.10)

Latero-directional plane →


λR = −3.9137 → Roll
λS = −0.0004 → Spiral
λDR = −0.0022 ± 0.6489i → Dutch Roll

(4.11)

Upon analyzing the numerical values of the eigenvalues, it becomes evident that
almost all modes exhibit reduced stability compared to the previous case. Notably,
the Phugoid mode has shifted towards instability.
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(a) u vs t (b) w vs t

(c) q vs t (d) θ,α vs t

Figure 4.14: Longitudinal linear modes in Transition regime

The figures presented above, derived from an open-loop simulation of the
augmented plant under small perturbations, provide concrete confirmation of our
theoretical analysis. It is now evident that the Phugoid mode has transitioned into
an unstable state, with oscillations that exhibit a divergent behavior, eventually
tending towards infinity.
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(a) v vs t (b) β vs t

(c) p,r vs t (d) ϕ,ψ vs t

Figure 4.15: Latero-directional linear modes in Transition regime

In the lateral-directional plane, our analytical analysis continues to indicate
stability for all modes. However, mirroring the behavior observed in the FW mode,
the Spiral mode exhibits such light damping that even a small perturbation in a
nonlinear simulation results in an unstable aircraft response.
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When we consider the system as a continuum, moving away from the discrete
state machine view, we can observe how the roots of the linear system change
as the speed increases. This can be visualized by plotting the eigenvalues on the
complex plane.

Figure 4.16: Root Locus w.r.t. velocity variations
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Figure 4.17: Longitudinal Poles

Figure 4.18: Lateral-Directional Poles
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Chapter 5

Control techniques

A common approach in designing a complete control system for an air vehicle is
to make use of the so called Time Scale Separation Principle relying on different
transient decaying speeds for the various state variables. To tailor a control system
effectively for a specific plant, it is essential to first assess the time scale of each
variable. This assessment can be carried out through analytical methods like
singular perturbations theory ([16],[17]) or by conducting simulations to evaluate
the open-loop response of the aircraft to various inputs.

For conventional aircrafts, it is generally safe to assume that linear dynamics are
slower than attitude dynamics. This greatly simplifies the control system design
by dividing it into two distinct loops: a faster inner loop for attitude tracking and
a slower outer loop for position tracking. The whole inner loop acts as an actuator
for the outer loop and such partition is based on the following assumptions:

1. The inner loop is sufficiently fast to treat linear velocity as constant within a
finite time horizon.

2. The outer loop is slow enough to consider attitude changes (governed by
the inner loop) as instantaneous. However, an incorrect assessment of this
second assumption can lead to instability. To mitigate this (i.e. to guarantee
stability), gains for the internal loop must be set higher than those for the
external loop [18],[19].

The primary advantage of this approach is that if the sum of the relative degrees of
each subsystem equals the total order of the system as a whole, then no uncontrolled
internal dynamics exist [17]. Consequently, this approach offers a significantly
simplified mathematical framework for designing a control system.

The following page features an illustration depicting the various time scales
present in aircraft dynamics. The evolution of any variable over time concerning a
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particular input is characterized by an order number, which is linked to the number
of integrations in between.

Figure 5.1: Time scales. Credit: R.C.van’t Veld [17]

The following subsections serve as an introduction into the foundations of control
theory needed for this thesis project.
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5.1 PID

PID (Proportional-Integral-Derivative) is a feedback-based control technique used
to minimize the error between a reference setpoint and the actual value of a variable
within a system. It achieves this by calculating the difference between the reference
and actual values and generating a control action as the sum of three contributions:

1. P: This component produces a control action that is proportional to the
instantaneous error between the desired value and the actual value of the
reference variable. In other words, it responds to the current error and attempts
to bring it to zero.

2. I: The integral component produces a control action that is proportional to the
integral (accumulated sum) of the error over time. It considers the history of
the error and helps eliminate any long-term steady-state errors by continuously
adjusting the control output.

3. D: The derivative component produces a control action that is proportional
to the rate of change (derivative) of the error with respect to time. It provides
insight into the future trend of the error and helps dampen any rapid changes
in the error, thus contributing to stability.

By combining these three components, a PID controller can effectively regulate a
system, bringing it to the desired setpoint and maintaining it there with minimal
error. The specific gains or coefficients assigned to each component (Kp, Ki, and
Kd) determine the controller’s behavior and are typically tuned to achieve desired
system performance.

In this work, the PID controller was implemented using the Simulink software, in-
corporating a modification in the form of a low-pass filter added to the derivative (D)
contribution [20]. This modification is intended to attenuate any high-frequency dis-
turbances. As a result, the controller’s transfer function can be expressed as follows:

PID

E
(s) = KP + KI

s
+KD

Ns

s+N
(5.1)

as opposed to its basic formulation, which is:

PID

E
(s) = KP +KI

s
+KDs → PID(t) = KP e(t)+KDė(t)+KI

Ú t

t0
e(τ)dτ (5.2)
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Figure 5.2: PID structure

5.2 Non-Linear Dynamic Inversion (NDI)
The dynamics of an aircraft are typically linear only under specific flight conditions
within a limited range. The conventional approach involves assessing various trim
points across the flight envelope and adjusting control gains for each specific con-
dition, as these gains tend to work effectively only around that particular flight
condition.
However, to bypass the challenge of gain-scheduling, there is a need to develop a
nonlinear controller. Nonlinear Dynamic Inversion has demonstrated its effective-
ness as a relatively straightforward method for controlling nonlinear systems while
leveraging linear control techniques.
For NDI to be applicable, certain prerequisites must be met: the system should
exhibit control affinity, and it must be restructured into a companion form. This
transformation facilitates the application of NDI, allowing for more robust control
across a broader range of flight conditions, including those where the system’s
dynamics are nonlinear.ẋ = F (x) +G(x)u x ∈ Rn,u ∈ Rm

y = H(x) y ∈ Rp
(5.3)

Each output yi needs to be differentiated until any input belonging to u appears
explicitly in the equation. Before deriving the controller, we need to define the Lie
derivative L(·).
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Given any function V (x(t)), its derivative w.r.t. time can be expressed in terms of
Lie derivatives, passing through partial differentiation first:

dV (x(t))
dt

= ∂V

∂x

dx

dt
= ∂V

∂x
ẋ = ∂V

∂x
(F (x) +G(x)u) = LfV (x) + LgV (x)u (5.4)

We can apply (5.4) to each of the p output equations. Knowing that the L(·)
operator is linear and assuming that each i− th component will be dependent on
u on its ri − th derivative, the following can be obtained:

ẏi = y
(1)
i = ∂Hi

∂x

dx

dt
= LfHi(x) (5.5)

·
·

y
(ri)
i = Lri

f Hi(x) +
mØ

j=1
Lgj

Lri−1
f Hi(x)uj (5.6)

The whole system can be rewritten in matrix form as:


yr1

1
·
·
yrp

p

 =


Lr1

f H1(x)
·
·

L
rp

f Hp(x)

 +


Lg1L

r1−1
f H1(x) · LgmL

r1−1
f H1(x)

· ·
· ·

Lg1L
rp−1
f Hp(x) · LgmL

rp−1
f Hp(x)

u = TF (x) +TG(x)u

(5.7)

Assuming TG is invertible and defining yri
i = vi , ∀i (vi = i-th virtual input) the

actual control variables ui can be defined in terms of the virtual input vi:

u = TG(x)−1(v − TF (x)) (5.8)

Since the virtual input vi will act only on the output yi the TG matrix is knows as
decoupling matrix.
In this work, dynamic inversion will be used only for square systems where
r = r1 + · · · + rp = n. This case is simpler since there is no uncontrolled in-
ternal dynamics to be stabilized.
Dynamic inversion is basically a change of coordinates that transforms a nonlinear
system into a new linear one in which all the classical linear control methodologies
can be applied.
Defining µT = [y1, ··, yr1−1

1 , · · ·, yp, ··, yrp−1
p ], the new linear system to be controlled
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is the following [21],[22]:µ̇ = Aµ+ Bv µ ∈ Rr,v ∈ Rp

ẏnew = µ
(5.9)

Where the state space matrices are:

A =



0 Ir1−1 0 · · 0
0 0 · · · 0
0 0 Ir2−1 · · 0
0 0 · · · 0
· · · · · ·
0 0 · · 0 Irp−1
0 0 · · · 0


, B =



0(r1−1)×1
1
·
·
·

0(rp−1)×1
1


(5.10)

Figure 5.3: Nonlinear dynamic inversion

Nonlinear Dynamic Inversion (NDI) can offer effective control solutions for
nonlinear dynamical systems. However, its performance can be limited by several
significant drawbacks, as outlined below:

• NDI requires the system to be affine in terms of the control inputs represented
by u. This assumption is particularly stringent, especially when employing
more intricate and accurate aerodynamic models in control system design.

• Another notable limitation lies in its strong reliance on the accuracy of the
mathematical model. NDI is sensitive to uncertainties arising from model
mismatches [23]. Unfortunately, uncertainties are inevitable in both the
aerodynamic and structural models..
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• NDI often places a greater computational burden compared to other control
techniques.

5.3 Incremental Non-Linear Dynamic Inversion
(INDI)

All of the aforementioned challenges associated with NDI can be effectively ad-
dressed through an incremental approach. The primary aim of this technique is to
liberate the control system from strong dependencies on precise mathematical mod-
els and enhance its robustness to inaccuracies and disturbances. One direct result
of the mathematical framework of this incremental approach is a control technique
that is less computationally demanding. Additionally, it offers the capability to
handle systems that do not exhibit control-affine properties.

To accomplish reduced realiance on the model, the complexity of real-world
dynamical phenomena is shifted away from the equations and instead placed onto
sensors. This approach is commonly referred to as the sensor-based approach, as
it relies on sensor measurements in every iteration of the control system. Conse-
quently, all unmodeled dynamics are introduced into the control law through actual
state and state derivative measurements of the aircraft [24].

The fundamental concept of Incremental Nonlinear Dynamic Inversion (INDI)
revolves around the idea of making adjustments to control variables based on past
sensor measurements. This approach utilizes time-scale separation, building upon
the notion of control effectiveness.
Control effectiveness, at its core, quantifies how a modification in a controlling
variable influences a controlled variable. When extending this concept over time,
we can differentiate between slow and fast dynamics. This distinction is made by
considering the strength of the input’s impact on the output within an arbitrarily
small time interval [25].

In essence, the core idea behind INDI is to make gradual adjustments to control
variables by leveraging historical sensor data. This approach employs the concept of
control effectiveness to differentiate between different time scales within a system’s
dynamics. Specifically, we can view the slower dynamics as the outer loop and
the faster dynamics as the inner loop. In this framework, from the perspective of
the outer loop, it is assumed that any reference value for the inner dynamics is
quasi-instantly achieved.

In the most general case, we can assume to be dealing with a nonlinear, non
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control-affine dynamical system:

ẋ = f(x,u) x ∈ Rn , u ∈ Rm (5.11)

Under the assumption of infinitesimal time increment, we can Taylor expand the
equation about the current point in time (x(t0),u(t0)). For a sufficiently small ∆t,
a first order approximation can be used:

ẋ ≈ ẋ0 + ∇xf(x0,u0)(x− x0) + ∇uf(x0,u0)(u− u0) (5.12)

Where the Jacobian matrices w.r.t. x and u are defined as:

∇xf0 =


∂f1
∂x1

· · ∂f1
∂xn

· · · ·
· · · ·

∂fn

∂x1
· · ∂fn

∂xn


(x0,u0)

∈ Rn×n (5.13)

∇uf0 =


∂f1
∂u1

· · ∂f1
∂um

· · · ·
· · · ·

∂fn

∂u1
· · ∂fn

∂um


(x0,u0)

∈ Rn×m (5.14)

Given the assumption of quasi-instantaneous actuators, where control actions can
be applied very quickly, there often exists a time scale separation that remains valid
within a small time sample. This separation implies that the control effectiveness
of the input vector u is significantly greater than that of the state vector x.
Intuitively, this means that a change in the control input u has a much faster
impact on the system compared to a change in the system state x itself. In other
words, the cause of a change in the system (control input) happens much faster
than the effect (system response).
Under these conditions, the following approximation can be considered valid:

∇xf0∆x << ∇uf0∆u (5.15)

This approximation likely represents a simplification or mathematical relationship
that reflects the dominance of control input changes over state changes within
a short time frame. The exact form of the approximation would depend on the
specific context and equations being used.
As for traditional NDI, considering full-state feedback (i.e. x = y), we can equal ẋ
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to the virtual input v and obtain the following equation:

u = u0 + (∇uf0)†(v − ẋ0) (5.16)

From this expression, several key points can be deduced:

• The linearization about the current point in time makes this technique appli-
cable even to non-affine systems..

• (∇uf0)† represents the Moore-Penrose (MP) inverse of the Control Effective-
ness Matrix ∇uf0. This extends the technique’s applicability to systems that
are neither square nor invertible. Additionally, the MP inverse can be re-
placed with solving an optimization problem to account for control saturation
constraints and power constraints, particularly when dealing with redundant
actuators [26],[27],[28].

• Knowledge of the plant is limited to the Control Effectiveness Matrix, which
can be computed analytically or can be derived from flight logs and parameter
estimation techniques. Additionally, the matrix can be adapted online for a
more robust and fault tolerant approach [24],[29]. The rest of the system is
known through acceleration and actuator output measurements. Any model
inaccuracy is, indeed, fed back to the system through sensors.

• All variables with a ’0’ subscript must be either measured or estimated.
ẋ0 typically involves angular accelerations, which cannot be directly measured
with a conventional IMU (Inertial Measurement Unit). Therefore, they need
to be estimated from rate measurements. To mitigate noise amplification
during differentiation, a pseudo-differentiation technique involving a low-pass
Butterworth filter is commonly used:

H(s) = σ2
n

s2 + 2ζσns+ σ2
n

(5.17)

• One of the primary challenges introduced by Incremental Nonlinear Dynamic
Inversion (INDI) is delay, which can threaten the closed-loop stability of
systems. This delay is mainly caused by:

1. Actuator dynamics, as actuators are not instantaneous. The first works
on INDI would neglect their presence. However, for Time Scale separation
to be applied, it is fundamental to assess the effect of actuation lag on
the overall system.
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2. Filtering for pseudo-differentiation introduces a lag on the derived vari-
ables which can destabilize the system. The problem can be solved by
time synchronizing the equation:

u = uf + (∇xf)†
f (v − ẋf ) (5.18)

Where the expression is expanded about the point in time tf rather than
t0. This involves making sure that all measurements are delayed by the
same amount by applying the same filter to all.

3. Sensors also introduce delays due to their inherent dynamics, which affect
the timing of variables.

It’s essential to emphasize that earlier research findings have demonstrated that
INDI is more sensitive to lag introduced by filtering than it is to actuator delays
[17].

5.3.1 Actuator Dynamics
Various methods have been developed to address actuator delay and constraints,
including saturation and rate limits:

• A fundamental approach involves using a reference model with Pseudo Control
Hedging (PCH). This approach accounts for the inherent dynamics of actuators
and considers output physical limits [30].

• Recent advancements have introduced an extended Incremental Nonlinear
Dynamic Inversion (E-INDI) technique that employs virtual inputs, denoted
as v, similarly to classical Nonlinear Dynamic Inversion (NDI). This extension
enhances the INDI framework and provides a way to incorporate actuators
directly into the control law [31].

Here’s an insight into how actuators are included in the derivation of E-INDI:

vi = y
(ri)
i ∀i → v = F (x,u) (5.19)

Extended INDI is based on a further differentiation of the precedent equation so as
to obtain:

v̇ = ∂F (x,u)
∂x

· ẋ+ ∂F (x,u)
∂u

· u̇ = A(x,u) · ẋ+B(x,u) · u̇ (5.20)

Assuming B to slowly varying and A·ẋ = dẋ to be acting as a negligible disturbance
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(as for conventional INDI), keeping in mind section 3.3.6, we can introduce the
actuator dynamics as follows:

u

uc

= KA ·FA(s) → ∆u(s) = uc(s) −u(s) = [(KA ·FA(s))−1 − I] ·u(s) (5.21)

Introducing differentiation in the Laplace domain yields:

∆u(s) = uc(s) − u(s) = (KA · FA(s))−1 − I
s

· u̇(s) = GA(s) · u̇(s) (5.22)

Similarly we can specify a desired behaviour for the pseudocontrol as:

v̇des(s) = GV (s) · ∆v(s) (5.23)

Going back to (5.20), neglecting state derivative terms, we obtain:

B · (G−1
A (s) · ∆u(s)) = GV (s) · ∆v(s) (5.24)

·
·

∆u(s) = GA(s) ·B−1 ·GV (s) · ∆v(s) (5.25)

The matrix to be inverted already contains information about control effectors.
Furthermore, more advanced allocation algorithms can readily introduce rate limits
and saturation constraints into the control system. The disturbance effect repre-
sented by dẋ can be estimated in real-time and integrated into the algorithm by
comparing the actual behavior of the pseudo-control with the desired behavior
specified by the transfer function GV (s) = KV ·FV (s). The control law in its most
general form known as ANDI (Actuator NDI) would be:

∆u(s) = GA(s) ·B−1 · (GV (s) · ∆v(s) − dẋ) (5.26)
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Figure 5.4: Extended INDI

The extended approach holds great promise, but its performance is strongly con-
tingent on the precision of parameter estimation for the control effectors. Precise
parameter estimation is a critical factor in the successful implementation and
effectiveness of this approach.

In contrast, PCH in its basic form offers a less complex yet more straightforward
method to address actuator limits. It requires minimal or no parameter estimation,
making it a more accessible option for dealing with actuator constraints.

5.3.2 Delay prediction
Delay has the potential to jeopardize the stability of a closed-loop system when
controlled using an incremental approach that relies on time scale separation.

One straightforward solution to mitigate the issues of time delay and the
availability of angular accelerations is to employ a linear predictive filtering method
(as proposed by Sieberling in [32]). It is essential for this filter to have minimal
reliance on the mathematical model to align with what is the primary objective of
INDI.

Mathematically the effect of non synchronized measurements can be described
as follows:

∆u = B†
0(v − ẋτ ) (5.27)

The control law will use measurements affected by lag. Consequently, the plant is
not perfectly linearized:

ẋ ≈ ẋ0 +B0∆u = ẋ0 +B0B
†
0(v − ẋτ ) (5.28)

Yielding:
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ẋ = ẋ0 + v − ẋτ → ẋ∆τ = ẋ(t0) − ẋ(t0 − τ) (5.29)

The predictive filter approach tries to tackle the issue of time synchronization by
predicting the variable one time-step ahead rather then delaying all the variables
through the use of a common lag filter.

The mathematical expression for a linear predictive filter is as follows:

ẋ0 =
nØ

i=1
[θxxt0−iτ + θrrt0−iτ ] + ϵ (5.30)

The value for ẋ at the current point in time t0 is a linear function of n precedent
measurements of x and n precedent reference values r = xref . The parameters θ
can be found through Least Square Estimation using a large set of data.

A more recent approach, as presented by Steffensen et al. in [33], offers promise
in addressing both delay and synchronization issues simultaneously. This approach
aims to obtain the output derivative when it’s not readily available through
conventional IMU systems.
In this approach, appropriately filtered measurements are integrated with data
from an online model of the plant, as illustrated below:

Figure 5.5: Complementary Filter

The estimate of the output derivative ˆ̇y is a linear combination of the de-
layed sensor measurement (appropriately filtered) ẏsf

t−τ , and the difference between
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a non delayed estimate of ẏ from an on board mathematical model of the plant
and the same quantity delayed by the same ∆t as the original output y, resulting in:

ˆ̇yt = ẏm
t + (ẏsf

t−τ − ẏm
t−τ ) (5.31)

All the transfer functions involved need appropriate inizialization.

The purpose of this section is to demonstrate the full potential of an incremental
approach in developing a versatile, robust, and straightforward control law that
can be deployed across various platforms thanks to the minimization of its reliance
on a complex mathematical model. We’ve shown how recent developments in
incremental control theory highlight its suitability for real-world situations where
actuators exhibit delays and measurements may not always be readily accessible or
available at all.

In this study, a conventional INDI approach is employed, assuming that all
the necessary quantities for feedback are accessible. The development of suitable
estimation algorithms is not within the scope of this work and will be a subject of
future research. Nonetheless, actuators will be incorporated into the study.

71



Chapter 6

Control System Derivation

This chapter marks the shift from theoretical control foundations to their practical
application in the creation of a comprehensive control system. The focus here is on
the development of dedicated controllers for MR, FW, and TR modes. Each of
these controllers undergoes a meticulous evaluation with respect to their tracking
performance and their ability to withstand wind disturbances.

6.1 Trajectory Generator
The design of a comprehensive guidance algorithm is not within the scope of this
work. Therefore, a simple polynomial trajectory generator is employed through the
Simulink block Polynomial Trajectory[34].
To create a third-order polynomial trajectory between two consecutive waypoints
(Pi,Pf) with their corresponding timepoints (ti,tf) and boundary conditions for
velocity (Vi,Vf ), the following problem needs to be solved:

P (t) = At3 +Bt2 + Ct+D s.t.


P (ti) = Pi = At3i +Bt2i + Cti +D

P (tf ) = Pi = At3f +Bt2f + Ctf +D

Ṗ (ti) = Vi = 3At2i + 2Bti + C

Ṗ (tf ) = Vf = 3At2f + 2Btf + C

(6.1)

Through the solution of the linear system that articulates the trajectory constraints,
one can derive the complete set of coefficients {A,B,C,D} that serve as the
comprehensive definition for the polynomial trajectory. Once these coefficients are
obtained, it becomes feasible to generate inertial position and velocity commands
utilizing the trajectory generator. These commands subsequently establish the
desired inertial trajectory for the vehicle to follow.
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6.2 Multi Rotor mode
In MR mode the only active control is through lift propellers. This mode employs
a direct force control approach, where the control vector consists of forces and mo-
ments generated by the propellers. These control inputs are subsequently converted
into rotational speeds. The control vector for MR mode can be defined as follows:

uMR = [Tz, τx, τy, τz]T (6.2)

During this phase, it’s important to note that aerodynamic surfaces remain in the
null position, and aerodynamic forces are solely dependent on the state vector x.
Furthermore, it’s important to note that the aerodynamic database is applicable
within a limited range of Angle of Attack (AoA). Hence, for simulation purposes,
aerodynamic effects are exclusively taken into account during forward flight, whereas
we assume that the aircraft is not influenced by airflow during vertical flight phases.
Given the relatively low velocities during take-off and landing, this approximation
remains reasonably accurate.
Defining the aerodynamic action vector as A(x,u) = [D,S, L, lA,ma, na]T , the
following holds:

AT
A(x,u) =

[FA(x)T ,MA(x)T ] if u ≥ 3
01×6 if u < 3

(6.3)

Where V B · îB = u = 3 is assumed to be the condition for the beginning of forward
motion. This condition is compatible with the mission profile to be analyzed,
during which the MR mode is required to complete vertical and planar maneuvers
separately. In case of combined motion, α should be used, instead.

6.2.1 Inner Loop
The inner loop, as derived in the subsequent subsection, remains consistent across
all three states of the aerial platform. Variations in gains will solely apply to
the MR mode. This implies that minimal gain scheduling is required and can be
straightforwardly integrated into the controller.
The primary objective of the inner loop is to achieve a desired attitude expressed
in terms of Euler angles, denoted as Φ = [ϕ, θ, ψ]T . It is of paramount importance
that the inner loop operates at a higher frequency than the outer loop. Indeed, in
cascaded control with time scale separation, the entire inner loop should effectively
act as an actuator for the outer loop.
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Attitude is governed by the following set of equations:

Φ̇ = H(Φ)ωB
B/N

ω̇B
B/N = −ωB

B/N × JBωB
B/N + (JB)−1(−GB(x,u) +MB

x (x) +MB
u (u))

(6.4)

The inner loop structure designed for attitude tracking involves the following
strategy:

1. Initially, a comparison is made between the desired attitude and the estimated
actual attitude to generate an error. This error is then transformed into the
desired rate for Euler angles through the use of a linear controller.

2. The first set of equations establishes a kinematic constraint relating Euler
rates to body angular velocities. Importantly, this equation is devoid of
mathematical model uncertainties, allowing traditional NDI to be employed
for generating desired body velocities as outputs.

3. A second linear controller is utilized to convert the error between desired and
actual body angular rates into desired angular accelerations.

4. The output of the second linear controller can be employed to invert the
second set of equations, facilitating the extraction of desired moments. It’s
worth noting that the dynamical equations for rotation do contain model
uncertainties, necessitating the adoption of INDI to enhance the robustness of
the inversion process.

As previously mentioned, in direct force control, the control vector contains
moments and forces. Consequently, a control allocation algorithm will be introduced
later as a means of effectively translating these moments and forces into actual
actuator commands.
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Figure 6.1: Inner Loop

INDI for rotational dynamics

Rewriting the rotational dynamics in terms of x and u as for eq. (3.40) and setting
uF W ,uHT = 0, the following holds:

ẋ3 = (JB)−1(−x3 × JBx3 +MB
A (x1,x3) +MB

T (uV T ) −GB(x3,uV T )) (6.5)

Gyroscopic effects are small compared to control actions , so the equation can be
furthered simplified into:

JBẋ3 = −x3 × JBx3 +MB
A (x1,x3)ü ûú ý

f(x)

+MB
T (uV T )ü ûú ý

u=[u2,u3,u4]T

(6.6)

Considering the moment produced by propellers as the control input itself (direct
force control) and expanding (6.6) as a Taylor series yields:

JBẋ3 = JB(ẋ3)0 + ∂f(x0)
∂x

∆x+ ∂u0

∂u
∆u+O(∆x2,∆u2) ≈ JB(ẋ3)0 + ∆u (6.7)

Defining the virtual input v = ẋ3 we can finally perform the inversion:

∆u = JB(v − ẋ30) (6.8)

Assuming that (6.8) perfectly linearizes the plant, we can follow the same procedure
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as for (5.7) in order to obtain the new linear system to be controlled:

µ =

pq
r

 → µ̇ = Aµ+ Bv = I3×3v (6.9)

The linear controller chosen in this work is a classical PID in the Simulink block
form, i.e. with the addition of a low pass filter for noise attenuation during error
differentiation. Introducing the error dynamics for eω = ωdes − ω into eq. (6.9),
the system becomes:

µ̇ = v = PID(eω) = KPeω(t) +KDėω(t) +KI

Ú τ

t0
eω(τ)dτ (6.10)

KP ,KI ,KD are diagonal gain matrices in R3×3 whose elements Kii are selected
through an appropriate tuning process. In this work the empirical Ziegler-Nichols
method was used as a starting point, followed by trial and error fine tuning to
obtain desired responses to step and sinusoidal inputs.

As mentioned in the past chapter, angular accelerations are not available through
conventional IMUs. However, a complementary filter can be used for solving both
the acceleration estimate and synchronization issues.

In this work, gyroscopic effects were considered to be negligible in the develop-
ment of the controller. This assumption is especially valid due to the incremental
nature of the control law. However, if gyro effects need to be included, the control
law can be easily modified into [24]:

JB∆ω̇B
B/N = ∂(GB +MB

T )(Ωv0)
∂Ωv

∆Ωv (6.11)

Recalling from the mathematical model that torques are linked to Ω2
v via a constant

allocation matrix (Mal), and taking into account the expression of gyroscopic
effects, we can deduce:

JB∆ω̇B
B/N = (2Maldiag[Ωv0 ] − ( åωB

B/N)0J
B
R

0 0 0 0 0 0
0 0 0 0 0 0
1 −1 1 −1 1 −1

)

ü ûú ý
B=Control Effectiveness Matrix

∆Ωv

(6.12)
In this case a pseudo-inverse is needed since the system is not square.
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Figure 6.2: Inner Loop Simulink model
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The gains selected for the linear controllers shown in table below.

KP KI KD N
p 48 0 2.4 100
q 60 0 3 100
r 10 0 1.5 100

Table 6.1: Gains for body angular rate PID controllers

First the response of the inner loop to ωB
(B/N)cmd

inputs is presented.

1. The initial plot illustrates the response to two impulses: one at +15deg
s

and the
other at −10deg

s
. The desired angular rate is rapidly and precisely attained.

Figure 6.3: Response to double impulse pdes

2. Next the system response to a sinusoidal input is presented. The input is
selected as: pdes(t) = 17 π

180sin(1.3t+ 1). Once again, the controller is able to
perfectly track the input.
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Figure 6.4: Response to sinusoidal pdes

Subsequently, responses to qdes and rdes are shown.

Figure 6.5: Response to double impulse qdes
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Figure 6.6: Response to sinusoidal pdes

Figure 6.7: Response to double impulse rdes
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Figure 6.8: Response to sinusoidal rdes

NDI for attitude kynematics

As stated earlier, for rotational kinematics a classical NDI approach can be used
since no model uncertainties are present [26]. Rewriting the kinematic constraint
in terms of state and control variables we get:

ẋ2 = H(x2)x3 (6.13)

For this set of equations, x3 = [p, q, r]T acts as an input, while x2 = Φ = [ϕ, θ, ψ]T
is the output. Applying NDI to (6.13), we obtain:

x3 = H(x2)−1v (6.14)

H(x2) is the decoupling matrix of this subsystem and allows us to obtain the new
linear decoupled system to be controlled as:

µ =

ϕθ
ψ

 → µ̇ = Aµ+ Bv = I3×3v (6.15)

Like for INDI, a PID controller is used to drive the error eΦ = Φdes − Φ to zero.
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The same tuning method as for INDI is also used for this second set of PID
controllers and yields the gains listed in the table below:

KP KI KD N
ϕ 2 0 0.1 100
θ 3 0 0.12 50
ψ 1.6 0 0.15 100

Table 6.2: Gains for Euler Angles PID controllers
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Next, tracking performance for step and step + sine wave commands for Euler
angles are shown.

Figure 6.9: Tracking step ϕref

Figure 6.10: Tracking step + sine wave ϕref
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Figure 6.11: Tracking step θref

Figure 6.12: Tracking step + sine wave θref
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Figure 6.13: Tracking step ψref

Figure 6.14: Tracking step + sine wave ψref
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6.2.2 Outer Loop
The outer loop control system is primarily responsible for following a desired tra-
jectory in terms of inertial position. To achieve this, it receives velocity commands
from a guidance algorithm and subsequently provides desired attitude to the inner
loop and desired forces to an allocation algorithm.

From a mathematical perspective, the dynamical equations for linear motion
are employed, after some manipulation. The vectorial equation for linear dynamics
can be rewritten in terms of inertial accelerations as:

AN
i = P̈N =

ẌŸ
Z̈

 = 1
m

(CN/BF
B
T +mgN + CN/WF

W
W ) (6.16)

At low speeds, we can assume aerodynamic forces to be negligible and the expanded
version of equation (6.16) becomes:

P̈N = 1
m
CN/B(Φ)

 0
0

−Tz

 +

0
0
g

 (6.17)

The outer loop structure designed for trajectory tracking involves the following
strategy:

1. A guidance algorithm generates references for inertial position and velocity.
These references are used as inputs for a two-PID structure, which calcu-
lates desired inertial accelerations by considering position and velocity error
functions.

2. The desired accelerations, obtained from the double PID controller, serve as
a virtual input for the dynamical equations. As these equations are subject
to model uncertainties, an incremental inversion method is employed. This
results in the determination of desired attitude and desired forces.

3. The yaw angle ψ does not appear in the rearranged version of equation 5.15
used for inversion, therefore its reference has to be computed differently.
Instead of inputting ψ into the inner loop, the azimuth angle χref is injected.
This choice is made because χref can be readily computed from reference
velocities, providing a more straightforward way to determine the desired yaw
angle ψ.
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Figure 6.15: Outer Loop

INDI for translational dynamics

In order to derive the control system, the first two equations belonging to (??)
need to be rotated in their body components through CB/N :

AB
i = CB/N(Φ)

ẌŸ
Z̈

 = CB/N(Φ)

0
0
g

 +

 0
0

−Tz

 (6.18)

Writing explicitly the first two equations yields:ẌB = −g sin θ
Ÿ B = g cos θ sinϕ

(6.19)

For this 2 × 2 system of non linear equations, Φ represents the output, while the
inertial acceleration components, appropriately transformed in body coordinates,
can be thought of as the input. The system is clearly non affine in Φ, but INDI
easily solves the issue as follows [35]:ẌB = ẌB

0 − g cos θ0∆θ
Ÿ B = Ÿ B

0 − g sin θ0 sinϕ0∆θ + g cos θ0 cosϕ0∆ϕ
(6.20)
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To complete the outer loop we need to include a third equation for vertical acceler-
ation. This time, the equation is kept in NED coordinates as follows[35]:

Z̈ = g + CN/B(Φ)(3,3)(−Tz) = g− 1
m

cosϕ cos θ Tzü ûú ý
f(Φ,u1)

(6.21)

According to the time scale separation principle, in a short period of time, the
effect of the actual output Tz will be much more impactful than the influence of
the Euler angles, therefore we can reduce eq. (6.21) to:

Z̈ ≈ Z̈0 + ∂f(Φ0, u10)
∂Φ

∆Φ + ∂f(Φ0, u10)
∂u1

∆u1 ≈ Z̈0 − 1
m

cosϕ0 cos θ0 ∆u1 (6.22)

The incremental equations obtained through a Taylor first order expansion can be
grouped into one matrix equation:

∆

Ẍ
B

Ÿ B

Z̈N


ü ûú ý

(v−ẋ0)

=

 −g cos θ0 0 0
−g sin θ0 sinϕ0 g cos θ0 cosϕ0 0

0 0 1
m

cosϕ0 cos θ0


ü ûú ý

B = Control Effectiveness Matrix

 ∆θ
∆ϕ
∆Tz


ü ûú ý

∆u

(6.23)

It must be noted that desired accelerations are provided by the PID controller in
NED axes, which means they need to be rotated in their respective body compo-
nents. Assuming that the inner loop is able to track attitude faster than position
variations occur, such rotation can be applied using current estimated Euler angles.
Should that not be the case, INDI can still be applied to the dynamical equations in
NED components as a whole, resulting just in a slightly more complicated Control
Effectiveness Matrix.

The desired accelerations are determined through the combination of two
PID contributions. The first contribution focuses on correcting velocity errors
(eP = PN

ref −PN ), while the second contribution is tasked with minimizing position
errors (eV = ṖN

ref − ṖN):

P̈N
ref =

è
KPP

KPV

é C
eP

eV

D
+

è
KDP

KDV

é C
ėP

ėV

D
+

è
KIP

KIV

é Cs
ePs
eV

D
(6.24)

Position error control allows the UAV (drone) to make corrections not only when
there is a deviation in speed but also when there is a positional offset from the
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desired location. This means that the drone will adjust its acceleration and trajec-
tory to quickly bring itself back to the desired position, even if its speed already
matches the desired velocity.

As previously mentioned, the Euler angle ψ is not directly considered during
inversion, which means its reference value needs to be determined differently. In
this context, yaw primarily serves to correct off-track errors. Therefore, the azimuth
angle can be leveraged as a reference value for calculating the appropriate angular
rate of yaw, denoted as ψ̇, in the inner loop:

χref = tan−1( Ẏref

Ẋred

) (6.25)
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Figure 6.16: Outer Loop Simulink model
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Through the same tuning approach as earlier, the following gains are obtained:

KP KI KD N
X 0.6 0 1 100
Y 0.6 0 0.01 100
Z 15 0 0 0
Ẋ 1.3 0 0.5 100
Ẏ 1.2 0 0.7 100
Ż 10 0.2 0.005 100

Table 6.3: Gains for inertial velocity and position PIDs

Next, the performance of velocity tracking is shown for a planar maneuver and
a vertical one.

1. Planar maneuver composed of a step in Ẋ and a step + sine wave in Ẏ :

Figure 6.17: Tracking Ẋref and Ẏref

91



Control System Derivation

Figure 6.18: Tracking χref

2. Vertical maneuver composed of a step + sine wave in Ż:

Figure 6.19: Tracking Żref
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To assess the robustness of the controller to wind inputs, the equations of
motion need to include wind speed. In that case we can use the chain rule for
linear velocities, i.e. we can consider the inertial speed of the aircraft as the sum of
its relative speed w.r.t. the wind vector (Vcm/W ),also used for aerodynamic actions,
and the velocity of wind w.r.t. to the inertial frame (VW/E) [12]:

Vcm/G = Vcm/W + VW/E (6.26)

If only steady wind is considered, the dynamics of the aircraft becomes:

V̇ B
cm/W = 1

m
FB + CB/N(Φ)gN − ωB

B/N × V B
cm/W (6.27)

Results for the following wind input in NED coordinates in m
s

are shown:

VWX

= 7.5
VWY

= pulse(3,3,18) + pulse(−2,50,20)
VWZ

= 1
(6.28)

The arguments of the pulse function are respectively amplitude, starting time and
duration.

Figure 6.20: Wind velocities in NED axes
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The aircraft response in terms of inertial position and Euler angles is:

Figure 6.21: A/C inertial displacement

Figure 6.22: Euler angles
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Despite the influence of wind, the UAV demonstrates a rapid recovery to its
initial (zero) position. Furthermore, Figure 6.22 illustrates the stabilization of the
pitch angle (θ) to a non-zero value. This adjustment is necessary as the UAV needs
to pitch forward to generate horizontal thrust, counteracting the aerodynamic
forces introduced by the external wind.

Finally, a simulation for a simple waypoint-tracking mission is shown, with some
wind disturbances acting on the system.

The matrix of waypoints to be followed is given in NEU (North-East-Up) coor-
dinates:

WPTsN =

N
T

ET

HT

 =

0 0 0 0 0 0 0
0 0 0 305 610 610 610
0 500 1000 1000 1000 500 0

 (6.29)

Figure 6.23: 3D trajectory
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The effect of external disturbances on the inertial position of the drone is
visualized below:

Figure 6.24: PN vs WN

Figure 6.25: PE vs WE
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Figure 6.26: PH vs WH

Following the time-history of the control variable ΩV is shown:

Figure 6.27: ΩV
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6.3 Fixed Wing mode
In FW mode, the control of the drone involves two distinct types of mechanisms.
The first is the utilization of thrust motors, responsible for managing both hori-
zontal thrust and yaw moments. The latter control is achieved by adjusting the
speeds of these motors differentially. Additionally, aerodynamic surfaces come into
play for generating moments along the aircraft’s body axes, specifically the X-axis
and Y-axis. When we consider direct force control, these control variables are
translated into the following control vector:

uF W = [Tx(ΩH), l(δa),m(δa), n(ΩH)]T (6.30)

During this phase of the mission, the lift motors are turned off and retracted within
the fuselage to enhance aerodynamic efficiency.

6.3.1 Inner Loop
Regarding the inner loop, direct force control enables the application of the same
strategy that was previously developed for the MR mode. The only distinction lies
in the gains of the linear controllers, which, however, will remain consistent during
the transition mode.

It’s important to highlight that even when employing a more intricate aero-
dynamic model, the incremental approach still permits the utilization of linear
simplified aerodynamics due to its limited reliance on the mathematical model of
the plant.

In the case of utilizing a nonlinear aerodynamic model, the general equation for
rotational dynamics can be expressed as follows:

JBω̇B
B/N = −ωB

B/N × JBωB
B/Nü ûú ý

f(x)

−GB(ωB
B/N ,ΩH) +MB

A (x,uF W )ü ûú ý
g(x,u)

+MB
T (ΩH)ü ûú ý
h(u)

(6.31)

Using first order Taylor expansion and neglecting state dependent terms (Time
Scale Separation) yields:

JB∆ω̇B
B/N ≈ (∂(GB +MB

T )
∂ΩH

)0∆ΩH + ( ∂M
B
A

∂uF W

)0∆uF W (6.32)

As expected, INDI allows us to rewrite the equation in control-affine form.
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Next, the performance of the inner loop is shown for step and sinusoidal inputs,
starting from the following cruise trim conditions:

xtr =



u
v
w
p
q
r
ϕ
θ
ψ


tr

=



59.29 [m
s

]
0 [m

s
]

9.21 [m
s

]
0 [ rad

s
]

0 [ rad
s

]
0 [ rad

s
]

0 [rad]
0.154 [rad]

0 [rad]


(6.33)

utr =


δe

δa

ΩH1

ΩH2


tr

=


−15.78 [deg]
2e− 4 [deg]

1447.6 [Rpm]
1447.6 [Rpm]

 (6.34)

Figure 6.28: Response to double impulse pdes
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Figure 6.29: Response to sinusoidal pdes

Figure 6.30: Response to double impulse qdes
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Figure 6.31: Response to sinusoidal qdes

Figure 6.32: Response to double impulse rdes
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Figure 6.33: Response to sinusoidal rdes

The inner loop for FW mode differs from the MR phase in its objective to
maintain a zero Angle of Sideslip (β) to enhance flight efficiency. To achieve this,
the desired yaw rate ψ̇des is generated through a sideslip controller, wherein the
error eβ = 0 − β is converted into ψ̇des using a linear controller[35].

Additionally, in fixed-wing flight, turning is primarily achieved through the roll
angle (ϕ). Thus, the azimuth angle χref obtained from the outer loop is converted
into a reference roll angle (ϕref ) using a linear controller.

Subsequently, the performance of Euler angles tracking is presented. Each plot
includes β over time to assess how effectively the sideslip controller maintains it at
zero. Moreover, in fixed-wing flight, yaw (ψ) is not of primary interest; instead,
the azimuth angle is depicted. As mentioned earlier, azimuth tracking is indeed
achieved by rolling the aircraft via ϕ.
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Figure 6.34: Response to step ϕdes

Figure 6.35: Response to step + sine wave ϕdes
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Figure 6.36: Response to step θdes

Figure 6.37: Response to step + sine wave θdes
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Figure 6.38: Response to step χdes

Figure 6.39: Response to step + sine wave χdes

It must be noted that some low pass filtering is performed on internal reference
signals to attenuate high frequency oscillations.
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6.3.2 Outer Loop
The outer loop, again, serves the purpose of tracking the inertial trajectory as well
as providing references for the inner loop in terms of attitude. The external part of
the controller will be different from the MR mode due to the different nature of
sustained flight in which thrust is provided horizontally and flight level is achieved
by exploiting aerodynamic lift.

For the FW controller, linear dynamics is conveniently written in fligh-path
axes. By applying the transformation matrix CF p/N(γ, χ) to the linear dynamics,
the following can be obtained: mV̇

mV c(γ)χ̇
−mV γ̇

 = CF p/N

 0
0
mg

 + CF p/NCN/B

TX

0
0

 + CF p/NCN/W

−D
S

−L

 (6.35)

Under the assumption of attitude tracking being faster than trajectory tracking,
we can further simplify the equations by neglecting the latero-directional motion.
Eq. (6.35) becomes: V̇ = 1

m
(TX cos(α) −D −mg sin(γ))

γ̇ = 1
mV

(TX sin(α) + L−mg cos(γ))
(6.36)

The strategy for the outer loop controller involves the following steps:

1. A guidance algorithm provides inertial position and velocity. The desired
position is compared with the actual one and the produced error is turned
into an additional reference velocity by means of a PID controller. The sum
of the two velocity components is the final reference to be followed.

2. Classical NDI is applied to the kinematic constraint between flight-path
and inertial variables. Therefore, reference inertial velocity components are
transformed into desired azimuth angle, flight-path angle and magnitude of the
inertial velocity vector. The original approach would involve transforming these
variables into their desired derivatives through linear controllers. However,
the controller turned out to perform better if γ and χ are directly passed to a
PID controller and turned into desired pitch and roll angles.

3. V and γ still need to be transformed into V̇ and γ̇ by a set of PID controllers
in order to correct the offset between their desired and actual values.

4. Finally, V̇ and γ̇ are used to incrementally invert the simplified dynamical
equations (6.35) to provide the commanded thrust value TX .
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Figure 6.40: Outer Loop

INDI for translational dynamics

As mentioned earlier, the pitch angle θ is commanded to track the desired flight-path
angle. As a result, γ is tracked independently of the thrust provided by the engines
and we can assume that the effect of γ is sufficiently taken into account by sensor
measurements. Therefore, we can reduce speed control to a single equation for INDI:

mV̇ = TX cos(α)ü ûú ý
u1·g(x)

−D −mg sin(γ)ü ûú ý
f(x)

(6.37)

Even though the equation is control-affine from the perspective of direct force
control, INDI is still preferred over classical inversion because any uncertainty in
the model is fed back to the control system in the form of sensor measurements.
Applying INDI as shown in the previous sections yields:

∆TX = m
V̇ − V̇0

cos(α0)
(6.38)

As usual, all the variables with a ’0’ subscript need to be estimated. In this case
V̇0 is the time derivative of the velocity vector at current point in time, and it can
be obtained through appropriate manipulation of accelerometer measurements.
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The desired acceleration is obtained through a PID controller, which transforms
the velocity error eV = Vdes − V into a commanded acceleration:

V̇ = KPV
eV +KDV

ėV +KIV

Ú
eV dτ (6.39)

NDI for translational kinematics

The desired velocity used for computing eV comes from a kinematical relationship
between inertial and flight-path variables.
In mathematical terms, such kinematical constraint can be expressed as follows:

ṖN = CN/F p(χ, γ)

V0
0

 →


Ẋ = V cos(γ) cos(χ)
Ẏ = V cos(γ) sin(χ)
Ż = V sin(γ)

(6.40)

This set of equations does not contain any model uncertainties and lends itself
well to classical dynamic inversion[26]. A proper rearrangement of the inverse
relationships results in:


Vdes =

ñ
Ẋ2 + Ẏ 2 + Ż2

χdes = tan−1( Ẏ
Ẋ

)
γdes = sin−1(−Ż

V
)

(6.41)

This is one of the rare cases in which NDI can be applied to non control-affine
systems. We can think of [V, γ, χ]T as the input u and ṖN as the output, which can
be conveniently taken as the virtual input v. The result is the following nonlinear
relationship:

u =

Vdes

χdes

γdes

 = f(

Ẋdes

Ẏdes

Żdes

) = f(v) (6.42)

To understand where the virtual input comes from, we need to consider the guidance
algorithm. In this context, such algorithm provides a reference inertial position as
well as a reference inertial velocity. In order for the control system to be able to
correct position errors, the commanded velocity has to be equipped with an extra
term which provides a ∆ṖN when a position offset occurs. An easy solution is to
pass the position error (eP = PN

g − PN) to a PID controller that gives an extra
velocity term only when position corrections are needed.
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The resulting expression for v is:

ṖN
des = ṖN

g +
è
KP KD KI

é  eP

ėPs
ePdτ

 (6.43)

The subscript ’g’ denotes a variable sourced from the guidance algorithm.

Finally, the reference attitude for the inner loop is yielded by:

• Two PID controllers that convert γdes and χdes respectively into reference pitch
and yaw angles ([θ, ϕ]des).

• One Sideslip controller consisting of a PID that transforms the reference AoS
(βref = 0) into a desired yaw rate ψ̇.
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Figure 6.41: FW Outer Loop Simulink model

110



Control System Derivation

The outer loop’s performance is demonstrated during a combined maneuver,
involving a simultaneous step and sine wave input for all flight-path variables,
including V , γ, and χ. The dynamic input applied to the azimuth angle serves as
a validation of the controller’s effectiveness, in spite of the approximations in the
linear dynamics equations used in the outer loop.

Figure 6.42: V tracking for step + sine wave Vref

Figure 6.43: γ tracking for step + sine wave γref
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Figure 6.44: χ tracking for step + sine wave χref

Given the kinematic relationship between velocities and flight-path variables,
assessing the system response to [V, χ, γ]T inputs is the same as evaluating the
tracking performance to velocity commands.
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The robustness of the controller to external atmospheric disturbances is tested
in a simulated mission through the following NEU waypoints:

WPTsN =

N
T

ET

HT

 =

 0 1e3 1e4 1.5e4 2.5e4
0 0 0 5e3 1e4

1e3 1e3 2e3 2e3 2e3

 [m] (6.44)

The 3D real trajectory is compared against the reference trajectory issued by the
guidance algorithm in the following plot:

Figure 6.45: 3D trajectory

At such high speeds, the aircraft’s center of mass covers a considerable distance,
making it challenging to discern the actual deviation of the flight path from the
ideal trajectory. Therefore, to assess the impact of external wind, the figures below
illustrate the evolution of the inertial position error over time:
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Figure 6.46: Effect of North wind on North inertial displacement
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Figure 6.47: Effect of East wind on East inertial displacement
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Figure 6.48: Effect of Down wind on Down inertial displacement

The control system exhibits effective responsiveness to external disturbances.
The largest error induced by wind amounts to approximately 10 meters, in contrast
to the distance traveled in the same direction, which is on the order of 10 kilometers.
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The time history the flight-path variables is shown below.

Figure 6.49: V vs t

Figure 6.50: χ vs t
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Figure 6.51: γ vs t

The aircraft possesses the capability to maneuver and counteract external
disturbances, all while maintaining a close-to-zero value for β throughout the
process.

Figure 6.52: β vs t
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6.4 Transition/Hybrid mode
In a typical mission profile, the aircraft would need to smoothly transition between
different flight modes, specifically from a Vertical Takeoff and Landing (VTOL)
or Short Takeoff and Landing (STOL) mode, referred to as MR, to FW mode for
efficient cruise. This transition should ideally involve a constant-altitude, linearly
accelerated motion, where the aircraft gradually increases its forward speed until
aerodynamic lift becomes sufficient to sustain it in midair. However, safety con-
siderations dictate that the aircraft must also have the capability to maneuver
in a Transitional mode. This TR mode is crucial to ensure safe and controlled
operations during the transition phases.

The inherent complexity in controlling a hybrid mode aircraft stems from the
presence of overactuation, where all control mechanisms are simultaneously active.
However, one approach to simplify this complex control problem is to employ a direct
force control method. With this method, the control vector uT R is transformed as
follows: 

δe

δa

ΩH1
ΩH2
ΩV 1

·
·

ΩV 6


→


TX

TZ

MX

MY

MZ

 (6.45)

The control system operates by calculating the necessary control forces and
moments needed for the aircraft’s desired maneuvers. These computed control
inputs are then translated into actual actuator commands through the use of a
control allocation algorithm. This algorithm is responsible for distributing the
required control inputs to the various actuators on the aircraft, ensuring that the
desired control actions are effectively carried out.

6.4.1 Inner Loop
As previously discussed, the inner loop remains consistent with the Fixed-Wing
(FW) mode, both in terms of control strategy and the gains used for the linear
controllers. This represents a significant advantage offered by nonlinear control
techniques, as they eliminate the need for gain scheduling.
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The assessment of tracking performance for the inner loop begins with the
following trim conditions, assuming steady level longitudinal flight.

xtr =



u
v
w
p
q
r
ϕ
θ
ψ


tr

=



28.364 [m
s

]
0 [m

s
]

6.039 [m
s

]
0 [ rad

s
]

0 [ rad
s

]
0 [ rad

s
]

0 [rad]
0.2098 [rad]

0 [rad]


, utr =



δe

δa

ΩH1

ΩH2

ΩV1

ΩV2

ΩV3

ΩV4

ΩV5

ΩV6


tr

=



−14.254 [deg]
0 [deg]

1992.5 [Rpm]
1992.5 [Rpm]
1806.7 [Rpm]
1667.2 [Rpm]
1514.9 [Rpm]
1514.9 [Rpm]
1667.2 [Rpm]
1806.7 [Rpm]



(6.46)

To begin with, the tracking of body angular velocity inputs is demonstrated. A
combined input is applied to simultaneously stimulate all three body axes. Each
component of this input is instructed to follow a combination of a sine wave and a
double impulse input.

Figure 6.53: ωB
B/N tracking for sine + double impulse input

Moving on, the assessment of attitude tracking involves inputting a combination
of a sine wave, a step function, and a double impulse simultaneously for both roll
(ϕ) and pitch (θ) angles.
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Figure 6.54: [ϕ, θ] tracking for sine + step + double impulse input

As for FW mode, χ is preferred over yaw as it provides information about the
inertial trajectory projected onto the tangential plane to the Earth’s surface. Also
in TR mode the control system tracks the azimuth angle via roll ϕ.

Figure 6.55: χ tracking for sine + step input
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6.4.2 Outer Loop
The Fixed-Wing and Transitional modes share the same outer loop controller. They
share the same gains for the PID blocks and they are nearly identical in terms
of their control strategies. The only distinction between them is that during the
transition phase, the control force vector has an additional component acting along
the −k̂b axis.

As a result, the equations governing the linear dynamics, while maintaining
the assumption of longitudinal motion, cannot be reduced to a single expression.
Therefore, an INDI approach needs to be applied to the following 2 × 2 system:V̇ = 1

m
(TX cos(α) −D −mg sin(γ) − Tz sin(α))

γ̇ = 1
mV

(TX sin(α) + L−mg cos(γ) + Tz cos(α))
(6.47)

In this scenario, considering the low speeds and the relatively small influence of
aerodynamic surface deflection on lift (Lδeδe), it’s reasonable to assume that the
contribution of Lδeδe is minor compared to other control effects. Consequently, we
can assume the two thrust terms are the only control variables involved.

When linearizing the system and neglecting the state-dependent terms, the
simplified equations become:

∆
C
V̇
γ̇

D
=

C 1
m

0
0 1

mV0

D C
cos(α0) − sin(α0)
sin(α0) cos(α0)

D
ü ûú ý

B = Control Effectiveness Matrix

C
∆TX

∆TZ

D
(6.48)

In the TR mode, similar to what was done for FW flight, the reference flight
path angle (γref) from the NDI for linear kinematics could be passed through
a PID controller to output θref . However, in TR mode, the flight path angle
(γ) is additionally influenced by the vertical thrust component (TZ). Ideally, the
controller should take into account the strong coupling between γ and the velocity
V through TZ when determining the reference pitch angle.

In the literature, for the simpler case of zero vertical thrust ([26]), this coupling
is addressed by extending the output vector for the linear dynamics to a 2 × 1
matrix consisting of [TX , θ]T . Similarly, in this work, we can expand the output to
a 3 × 1 matrix consisting of [TX , TZ , θ]T . The expression to be inverted (using a
pseudo-inverse) becomes:

∆
C
V̇
γ̇

D
=

C 1
m

0
0 1

mV0

D C
cos(α0) − sin(α0) (−TX0 sin(α0) − TZ0 cos(α0) − qSCDα0

)
sin(α0) cos(α0) (TX0 cos(α0) − TZ0 sin(α0) + qSCLα0

)

D
ü ûú ý

B = Control Effectiveness Matrix

∆TX

∆TZ

∆θ


(6.49)
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It must be noted that ∆α = ∆θ − ∆γ ≈ ∆θ because of time scale separation.

A comparison for the two different strategies is reported below to select the most
suitable method from different inputs in terms of flight path variables [V, χ, γ].

1. The nominal scenario involves a straight, constant altitude transition. There-
fore their performance to a step in V while keeping χ and γ to zero is evaluated:

Figure 6.56: V tracking - strategy 1 Figure 6.57: V tracking - strategy 2

Figure 6.58: γ regulation - strategy 1 Figure 6.59: γ regulation - strategy 2

In the nominal scenario, the basic strategy (strategy 1, same as for FW)
consisting of using γref from NDI directly to produce θref seems to perform
better in terms of smaller overshoot for V and smoother θref . However, future
studies will involve playing around with appropriate filtering and gains.
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2. Next a different scenario involving dynamic variations in the longitudinal plane
is considered. χ is still kept at zero, however both V and γ are commanded
to vary through a step + sine wave.

Figure 6.60: V tracking - strategy 1 Figure 6.61: V tracking - strategy 2

Figure 6.62: γ tracking - strategy 1 Figure 6.63: γ tracking - strategy 2

Again, the two strategies show very similar performances. However, strategy 1
provides a smoother θref .

3. Next, a complete maneuver involving variations in azimuth is analysed. All
three flight path variables are required to track a step + sine wave command.
This is far from the nominal scenario, however the controller should be able
to respond even in case of emergency.
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Figure 6.64: V tracking - strategy 1 Figure 6.65: V tracking - strategy 2

Figure 6.66: γ tracking - strategy 1 Figure 6.67: γ tracking - strategy 2

Figure 6.68: χ tracking - strategy 1 Figure 6.69: χ tracking - strategy 2
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Similar to the findings in previous case studies, it seems that strategy 1 remains
the more effective option in terms of achieving a smoother reference pitch.

The comparison between the two strategies can be quantified using two main
criteria:

1. Root Mean Square Error (RMSE): The pitch angle is used to track the
flight path angle; therefore, we are interested in minimizing the flight path
error rather than pitch. Therefore, it makes sense to use the RMSE for γ:

RMSEγ =

öõõô NØ
i=1

(γrefi
− γi)2

N
(6.50)

A reduced RMSE reflects enhanced tracking performance for the flight path
angle.

2. Standard Deviation (σ): To ensure passenger comfort, we aim for the
controller to execute smooth attitude changes. This can be quantified as the
standard deviation of the pitch angle, reflecting how much it oscillates around
its mean value. The standard deviation of θ is calculated as:

θ =
NØ

i=1

θi

N
→ σθ =

öõõô NØ
i=1

(θ − θi)2

N
(6.51)

A smaller Standard Deviation suggests fewer variations in attitude concern-
ing the mean value, which indicates a more comfortable experience for the
passenger.

To assess the full outer loop performance, the RMSE for velocity is employed as
well. The following table presents such values for both strategies for all three cases
analyzed:
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Controller 1 Controller 2

Case 1
σθ 0.0217 0.0234

RMSEγ 0.0262 0.0261
RMSEV 1.959 2.003

Case 2
σθ 0.0517 0.1246

RMSEγ 0.0171 0.0151
RMSEV 1.133 1.195

Case 3
σθ 0.054 0.1201

RMSEγ 0.0181 0.0143
RMSEV 1.255 1.367

Table 6.4: Comparison Table

The table data indicates that Strategy 1 exhibits slightly less accurate tracking
for γ and slightly better performance for V compared to Strategy 2. However,
Strategy 1 significantly outperforms the second strategy in terms of minimizing
pitch reference oscillations.

Finally, a complete maneuver plus wind disturbances is considered to investigate
the robustness of the two different approaches. The NED components of simulated
wind are as follows:

Figure 6.70: Wind velocity

Taking into account the presence of the previously mentioned wind disturbance,
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it was observed that only the basic controller could adequately track the input.
This, in addition to the findings displayed in the previous table left no doubts
in choosing strategy 1 for all upcoming comprehensive mission simulations. The
performance of this selected strategy is illustrated below.

Figure 6.71: V tracking

Figure 6.72: γ tracking
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Figure 6.73: χ tracking

The results indicate that external inputs have minimal impact on the tracking
of the heading angle (χ). In contrast, variables in the longitudinal plane, such
as airspeed (V ) and flight path angle (γ), are influenced by the presence of wind.
Nevertheless, the controller effectively manages and limits the effects of these
disturbances, ensuring robust tracking performance.

6.5 Control Allocation Algorithm
For each state of the system, direct force control requires a control allocation
algorithm in order to convert the desired forces and moments into tangible actuator
commands. Knowing the mathematical relationship between control actions and
actuation variables, this can be easily done by inverting such equation.

As stated in the previous chapters, INDI provides an increment in control actions
and estimates of their current values are needed. Such estimates can be performed
by using the mathematical expression between actions and actuation variables in
the forward direction, where the current states of actuators are provided through
sensor measurements.

In the most general case with 6DOF control, according to INDI, the control
action to be converted into actuator inputs is given by the sum of the action
increment and the current action estimate, as follows:
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AB
C(t+ dt) =

C
FB

C

MB
C

D
(t+ dt) = ÂB

C(t) + ∆AB
C (6.52)

Once the required control action coming from the control system is computed, it
can be converted into actuator input (uA):

AB
C = f(uA) → uA = f−1(AB

C) (6.53)

6.5.1 MR control allocation
Control allocation for MR mode is relatively straightforward and entails a matrix
inversion process. Drawing parallels with equation (3.30), the control action vector
is connected to actuator variables through a fixed allocation matrix denoted as M :

AB
MR =


TZ

τX

τY

τZ

 = [M ]Ω2
V → ΩV =

ñ
[M ]†AB

MR (6.54)

It’s important to emphasize that a Moore-Penrose pseudoinverse is employed due
to the dimensions of the allocation matrix ([M ] ∈ R4×6).

6.5.2 FW control allocation
In FW mode, the allocation matrix has to be appropriately constructed. First of
all, gyroscopic effects due to thrust propellers and aerodynamic surface deflections
effects on lift can be safely neglected. Under these assumptions, we can write the
following: 

TX = KTH
(Ω2

H1 + Ω2
H2)

mc = lδaδa +KQH
(Ω2

H1 − Ω2
H2)

lc = mδeδe +KTH
dZH

(−Ω2
H1 − Ω2

H2)
nc = nδaδa +KTH

dYH
(Ω2

H1 − Ω2
H2)

(6.55)

The control allocation matrix is a direct consequence of equation (6.55), and the
inversion process takes the following form:


δe

δa

Ω2
H1

Ω2
H2

 =


0 0 KTH

KTH

0 lδa KQH
−KQH

mδe 0 −KTH
dZH

−KTH
dZH

0 nδa KTH
dYH

−KTH
dYH


−1

AB
F W (6.56)
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The final step involves taking the square root of the rotational speeds.

6.5.3 TR control allocation
The allocation process for TR mode involves a great number of actuator variables,
therefore a direct inversion approach is not feasible.

First, the problem of functional redundancy has to be addressed. In this context,
redundancy refers to the fact that some of the control actions can be produced by
multiple actuators:

• TX → ΩH

• TZ → ΩV

• mc → ΩV + δa

• lc → ΩV + δe

• nc → ΩV + ΩH

This challenge is tackled by distributing the control actions among the functionally
redundant actuators using a velocity function. Given the assumption that aero-
dynamic actions become increasingly effective as velocity rises, the allocation of
control load can be partitioned based on the aircraft’s flight speed in the following
manner([7]):

f(V ) = V − VT Ri

VT Rf
− VT Ri

→

mc

lc
nc

 =

mc

lc
nc

 f(V )

ü ûú ý
FW control

+

mc

lc
nc

 (1 − f(V ))

ü ûú ý
MR control

(6.57)

Here, VT Ri
and VT Rf

represent the initial and final velocities during the transition
phase, respectively. It’s worth noting that more advanced and refined partitioning
methods will be explored in future investigations. However, this approach allows
for a gradual and smooth shift from the first state of the plant to its cruising FW
condition.

The significant advantage of direct force control lies in its ability to compute
control actions in a straightforward manner, and the partitioning of these actions
can be achieved sequentially and with ease, regardless of the location of the func-
tional redundancy within the system.
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The second challenge that needs to be addressed stems from the fact that each
actuator generates both desired control effects and undesired secondary ones. These
undesired effects cannot be disregarded during INDI since they operate on the
same time scale as control actions. Each actuation will generate the following:

• δe →

Control effects: mδeδe

Undesired effects: Lδeδe

• δa →

Control effects: lδaδa

Undesired effects: nδaδa

• ΩH →

Control effects: Tx , np

Undesired effects: mp , lp , gyro

• ΩV →

Control effects: Tz , τx , τy , τz

Undesired effects: gyro

It can be safely assumed that gyroscopic effects are negligible compared to other
control components. However, other undesired effects still need to be taken into
account. The problem can be solved using a cascaded inversion for predicting and
compensating undesired actions.

1. First, the aerodynamic control actions are converted into commanded deflec-
tions: C

δe

δa

D
=

C
0 lδa

mδe 0

D−1 C
lc
mc

D
f(V ) (6.58)

The susbsequent undesired effects can be expressed as Lδeδe and nδaδa.

2. Following, the desired control actions from thrust propellers are considered.
Their required values need to be corrected to compensate for the undesired
effects of aerodynamic surfaces.T ′

x = Tx − Lδeδe sin(α)
n′

p = ncf(V )′ = ncf(V ) − nδaδa

(6.59)

The actuators commands become:

ΩH = 1
KTH

C
1 1
dYH

−dYH

D−1 C
T ′

x

n′
p

D
(6.60)

132



Control System Derivation

This inversion will produce KQH
(Ω2

H1 − Ω2
H2) and −KTH

dZH
(Ω2

H1 + Ω2
H2) as

undesired moments respectively along XB and YB.

3. Finally, lift propellers are considered. Compensation of previous undesired
effects leads to the following new requested actions:

T ′
z = Tz − Lδeδe cos(α)
τ ′

x = lc(1 − f(V ))′ = lc(1 − f(V )) −KQH
(Ω2

H1 − Ω2
H2)

τ ′
y = mc(1 − f(V ))′ = mc(1 − f(V )) +KTH

dZH
(Ω2

H1 + Ω2
H2)

(6.61)

The MR allocation algorithm can, then, be applied to the new requested MR
action vector:

ΩV =

öõõõõõõô[M ]†


T ′

z

τ ′
x

τ ′
y

τz

 (6.62)

The allocation method described in this subsection allows to effectively predict
and compensate undesired effects that operate on the same time scale as control
actions and therefore cannot be neglected during the first order Taylor expansion
of the dynamical equations.
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Full Mission simulation

The objective of this chapter is to present the outcomes of a comprehensive mission
that involves transitions between different states. Each controller has been individu-
ally validated and demonstrated to function effectively. However, it is imperative to
establish the controller’s ability to smoothly transition between control variables in
practice. This may necessitate the adjustment of gains w.r.t. previous simulations
to ensure satisfactory performance during each phase of the mission as well as dur-
ing the transitions between phases. It’s worth noting that aerobrakes or alternative
deceleration methods are not yet incorporated at this stage. Consequently, the
mission is designed to minimize the need for the high-efficiency vehicle to execute
abrupt decelerations or descents. The primary objective is indeed to determine
whether the combination of controllers can effectively handle transitions between
states.

The vehicle is requested to undergo all flight phases, starting from ground. As
stated earlier, the results shown will focus more on the transition between states
rather than each single phase, since the effectiveness of the single controllers was
already tested.
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The complete mission profile is shown below.

Figure 7.1: 3D trajectory for full mission
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7.1 Forward Transition

In this context, ’forward transition’ pertains to the acceleration phase and encom-
passes two distinct state switches.

1. MR → TR

2. TR → FW

7.1.1 MR → TR

The first switch involves the activation of aerodynamic surfaces and thrust motors.
We expect the vehicle to tilt backwards, given that forward propulsion now relies on
thrust motors and vertical traction is entirely dedicated to counteracting gravity.

Figure 7.2: MR to TR

The state machine approach determines an on-off behaviour for FW control
variables. This will certainly cause a fast change in pitch reference. In order for it
to be attenuated, a limiter on the reference pitch rate is applied. It is necessary to
limit accelerations for the sake of passengers’ comfort and structural integrity.
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Figure 7.3: 3D plot for switch n.1

From the provided figure, it’s evident that the transition results in a minor
altitude increase. This can be attributed to the upward pitching motion, aligning
the vertical thrust with the local vertical. This transient surge in lift contributes
to the elevation gain. Notably, the precise switching point occurs while in linear
motion, primarily affecting linear state variables.
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Figure 7.4: Φ for switch n.1

Figure 7.5: h and V vs t for switch n.1
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As mentioned earlier, this switch causes the aircraft to pitch up. The change in
attitude (Fig. 7.4) is not abrupt and residual oscillations decay in a few seconds.
Figure 7.5 shows that the controller is able to respond to a height change very
quickly resulting in an imperceptible altitude error.

Figure 7.6: Control variables for switch n.1

Before the switching time point, all FW control variables are set to zero. After
the transition takes place, aerodynamic surface deflections continues being small
owing to the velocity based allocation algorithm.
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7.1.2 TR → FW
The second transition involves deactivating the lift motors. Rather than adopting
an on-off behavior, we’ve chosen to implement an exponential function for a gradual
reduction in motor power. This approach aims to ensure a smoother and more
controlled transition.

The deactivation of the lift motors is expected to result in a reduction of the
upward force, which, in turn, may lead to a decrease in altitude. To counteract this
effect, we anticipate the vehicle adjusting its Angle of Attack (AoA) to generate
additional aerodynamic lift, compensating for the absence of the lift motors.

Figure 7.7: TR to FW

Again, a rate limiter for pitch is essential for avoiding unacceptable angular
accelerations.
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The 3D plot depicted below illustrates that, on this occasion, the switch takes
place during a turning maneuver. As a result, any alterations in lateral-directional
state variables should be attributed to the maneuver itself rather than the transition
process.

Figure 7.8: 3D plot for switch n.2
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Figure 7.9: Φ for switch n.2

Figure 7.10: h and V for switch n.2
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As mentioned earlier, the mode switch causes the aircraft to pitch up. The
change in attitude is satisfactorily smooth and its small oscillations decay in very
few seconds. As expected, there is a small altitude loss, however the controller is
able to quickly respond and recover the requested flight level.

Figure 7.11: Control variables for switch n.2

The plot for control variables depicts the imposed exponential decrease of vertical
thrust.
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7.2 Backward transition

Backward transition is the reverse process of forward transition. During deceleration
the aircraft will undergo the following:

1. FW → TR

2. TR → MR

7.2.1 FW → TR

First, the performance of the controller in switching from FW to hybrid is assessed.
The main abrupt change that may cause problem involves the sudden starting of
lift motors, which can provoke an overshoot in terms of altitude. This should be
contrasted by the aircraft pitching nose down to decrease lift.

Figure 7.12: 3D plot for switch n.3
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Figure 7.13: Φ for switch n.3

Figure 7.14: h and V for switch n.3
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Figure 7.15: Control variables for switch n.3
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7.2.2 TR → MR

The concluding transition involves a shift from hybrid mode to MR mode. The
primary adaptation in control variables revolves around discontinuing horizontal
thrust. To counterbalance this change, the aircraft must initiate a nose-down pitch,
resulting in a slight increase in altitude due to the alignment of vertical thrust with
the local vertical. In this configuration, the lift motors assume the responsibility of
providing the new forward force necessary to sustain linear motion.

It’s important to highlight that there is no need for a gradual reduction in power
for the thrust motors. This is particularly true at low speeds, where aerodynamic
drag is minimal, resulting in low levels of horizontal thrust.

Figure 7.16: 3D plot for switch n.4
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Figure 7.17: Φ for switch n.4

Figure 7.18: h and V for switch n.4
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Figure 7.19: Control variables for switch n.4
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7.3 Energy consumption
It is essential to quantify the energy required by the control system for the aircraft
to terminate the mission. Clearly, the most energy intensive phases are MR and
TR due to the presence of vertical thrust to balance gravity. In order to minimize
battery weight, these two modes have to be terminated as quickly as possible.

For a primitive analysis, we can assume that the energy consumed by aerody-
namic surfaces is much smaller than that requested by propellers:

P (t) =
6Ø

i=1
PV T i

+
2Ø

j=1
PHT j

+ Pδe + Pδa ≈
6Ø

i=1
PV T i

+
2Ø

j=1
PHT j

(7.1)

Knowing that the power required by each rotor can be expressed as Q(Ω)·Ω = KQΩ3,
we can rearrange equation (7.1) as:

P (t) = KQV
· Ω3

V1 + · · · +KQV
· Ω3

V6 +KQH
· Ω3

H1 +KQH
· Ω3

H2 (7.2)

The time-history of requested power for the full mission is shown below.

Figure 7.20: Power(Watts) over time
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As anticipated, the instantaneous power demand when the lift motors are active
is significantly higher, ranging from one to two orders of magnitude greater than
during FW flight.

Finally, we can compute the energy consumed throughout the mission by inte-
grating the consumed power over time:

E =
Ú tf

0
(KQV

· Ω3
V1 + · · · +KQV

· Ω3
V6 +KQH

· Ω3
H1 +KQH

· Ω3
H2)dτ (7.3)

In this context, fixed-step explicit Euler was used for numerical integration, there-
fore we obtain:

E ≈
N−1Ø
k=1

[KQV

6Ø
i=1

(Ω(k+1)3

Vi
− Ω(k)3

Vi
) +KQH

2Ø
i=1

(Ω(k+1)3

Hi
− Ω(k)3

Hi
)]∆t (7.4)

This value was calculated to be 1.2514e8J.

Considering a classical Li-ion battery with[36]:

• Specific Energy Density(SED): 0.15kW ·h
Kg

;

• Depth of Discharge(DoD): 65%;

• Efficiency(η): 93%.

We can now estimate the weight of the battery needed to perform a similar mission
as:

m = E

DoD · η · SED
= 386.2Kg (7.5)

Which is 18.4% of the total mass of the aircraft, conforming with similar vehicles.
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7.4 Full Mission with Wind disturbances
The identical mission was simulated, incorporating wind disturbances introduced
at various time points across all flight phases. Additionally, wind disturbances were
strategically introduced at moments corresponding to the mode switches to do a
preliminary evaluation of the robustness and effectiveness of the switching logic
under non-nominal conditions.

Below is the plot of wind inputs in NED components for the whole mission.

Figure 7.21: Wind disturbances for full mission

Following that, the controller’s ability to mitigate external disturbances during
mode switches is demonstrated through plots depicting the actual altitude and
ground track compared to their respective reference values.
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1. Switch n.1: MR → TR

Figure 7.22: Switch n.1 under wind disturbances
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2. Switch n.2: TR → FW

Figure 7.23: Switch n.2 under wind disturbances
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3. Switch n.3: FW → TR

Figure 7.24: Switch n.3 under wind disturbances
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4. Switch n.4: TR → MR

Figure 7.25: Switch n.4 under wind disturbances
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Chapter 8

Realistic Mission simulation

In this final chapter, a practical application of TP technology is explored, highlight-
ing its potential to address challenges faced by mountain communities. Politecnico,
in collaboration with UNCEM (the National Union of Mountain Communities),
envisions the use of this technology as a solution to issues related to these remote
areas. Rather than relying on expensive cable car systems, the proposal suggests
the deployment of STOL (Short Takeoff and Landing) vehicles.

Traditional cable car installations can be cost-prohibitive, and their reliability
is often compromised by adverse weather conditions prevalent in mountainous
regions. In contrast, STOL vehicles offer a promising alternative. They require
less infrastructure, making use of available spaces as makeshift runways. This
approach not only potentially reduces costs but also provides a more adaptable
transportation option.

Mountainous areas typically offer ample space that can be repurposed as suitable
airstrips or landing zones for STOL vehicles. Moreover, these vehicles may offer
greater flexibility in operation during adverse weather, enhancing transportation
reliability in challenging terrains.

Overall, the concept of employing STOL vehicles in mountain communities
signifies a cost-effective and weather-resilient solution, utilizing existing open spaces
to improve accessibility and transportation options for goods and people in these
remote regions.

The selected route for simulation connects two mountain towns, Balme and
Ceres, which are situated at different altitudes: Balme at 1400 meters and Ceres
at 450 meters. Despite the relatively short ground distance of only 15 kilometers
between them, the mission profile involves several phases:
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1. T/O: The vehicle will initiate a vertical takeoff from the ground at Ceres (450
meters) and ascend to an altitude of 900 meters.

2. Acceleration: After takeoff, the aircraft will accelerate until it reaches its
cruise speed of 61 meters per second.

3. Cruise: The aircraft will follow the river bed for approximately 15 kilometers.
Interestingly, in this case, the cruise phase coincides with the ascending phase
due to the difference in altitudes between Balme and Ceres.

4. Deceleration: Upon reaching the destination area, the aircraft will begin to
decelerate until it comes to a complete stop.

5. LNDG: The aircraft will perform a vertical landing in Balme, which is at an
altitude of 1400 meters.

During phases 2 to 4, the aircraft will maintain a constant climb angle of ap-
proximately 3.05 degrees. This mission profile outlines the key steps and altitudes
involved in the simulated flight between Balme and Ceres.

The route was planned by marking specific waypoints along the river’s path.
These waypoints were then translated into NED inertial positions for navigation
purposes. To provide a visual representation of the route, it can be plotted on
Google Maps as shown in the next page.

Wind disturbances in the simulation were generated based on the prevailing
wind conditions in the two cities. Subsequently, the wind rose diagrams for both
locations are presented [37],[38]. These wind roses provide a visual representation of
the typical wind patterns and frequencies of wind directions over a specific period,
helping to simulate realistic wind scenarios for the given areas.

158



Realistic Mission simulation

Figure 8.1: Ceres-Balme route
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Figure 8.2: Wind rose for Ceres

Figure 8.3: Wind rose for Balme
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The polar wind charts indicate that throughout the entire year, the expected
wind speeds fall within the range of 0.6 to 5 meters per second. Consequently, when
simulating wind inputs, it is appropriate to consider values within this specified
range to accurately represent the typical wind conditions experienced in the area.
Wind disturbances expressed in body coordinates are shown below.

Figure 8.4: Wind disturbances

In the following page, the 3D and ground track trajectories of the aircraft are
compared with the reference ones. However, to actually see the effect of wind
disturbances on such a long period of time, it is necessary to plot also the inertial
position error for each axis of the linear motion.
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Figure 8.5: 3D trajectory for Ceres-Balme route

Figure 8.6: 2D planar trajectory for Ceres-Balme route
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Figure 8.7: Wind effect on inertial position error

In practical scenarios, it is entirely normal for wind inputs to introduce positional
errors, particularly when disturbances occur during maneuvering. The significant
variability in roll angle is an indication of the significant maneuvering load on the
vehicle as it attempts to track each waypoint, as shown below.

Figure 8.8: Euler angles for Ceres-Balme route
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Changes in roll and yaw angles primarily occur during turning maneuvers, while
rapid pitch adjustments typically take place during transitions between different
states. As discussed in the previous chapter, the activation and deactivation of
motors during these transitions can introduce discontinuities that the aircraft
needs to adapt to. Nevertheless, with careful tuning of control gains and the
implementation of rate limiters, it should be possible to ensure passenger comfort
during these phases.

Figure 8.9: Control variables

Finally, control variables are shown. As is customary, the lift motors are inten-
tionally deactivated in a gradual manner, employing an exponential decay approach,
until they reach a specified threshold. This method is employed to prevent abrupt
changes that could lead to sudden unacceptable discontinuities.

In summary, the aircraft demonstrates its capability to successfully accomplish
the mission despite encountering step wind disturbances and navigating through
demanding turns, which are essential for adhering to the course along the river bed.
It’s important to note that the primary objective of this work was not to determine
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the optimal trajectory, but rather to establish that the vehicle can effectively handle
challenging routes. Consequently, the vehicle should be well-equipped to adhere to
smoother and more efficient trajectories in future missions.

To perform a reverse simulation of the mission, involving a descent, it was
hypothesized that the horizontal thrust propellers could generate reverse thrust.
This adaptation was implemented to mitigate uncontrolled acceleration resulting
from gravity during steep descents. To achieve this, adjustments to the control
allocation algorithm were necessary. Once the required horizontal thrust for each
propeller was determined, the desired rotational speed was computed as follows:

C
TX1

TX2

D
= KTH

C
|ΩH1|ΩH1

|ΩH2|ΩH2

D
→

C
ΩH1

ΩH2

D
=

C
sign(ΩH1) 0

0 sign(ΩH2)

D öõõô 1
KTH

C
TX1

TX2

D
(8.1)

Results for the return mission are presented below in the following figures:

Figure 8.10: Ground Track for return mission
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Figure 8.11: Euler angles for return mission

Figure 8.12: Altitude and speed for return mission
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Figure 8.13: Position error and wind disturbances for retirn mission

Figure 8.14: Control variables for return mission
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The plot displaying the rotational speeds of the horizontal motors illustrates
that the aircraft requests reverse thrust for most of the descent phase. This is a re-
sult of the flight path angle exceeding the aircraft’s limiting γ for this mission profile.

Lastly, an important aspect is to ensure that the aircraft can energetically sustain
a round-trip mission. The consumed energy was calculated for both legs of the
journey, resulting in an approximate value of 7.3E+7 J. This energy consumption
corresponds to a battery mass of about 230 Kg, which is slightly more than 10% of
the total take-off mass.

Figure 8.15: P(W).vs.t(s) - Balme-Ceres

Figure 8.16: P(W).vs.t(s) - Ceres-Balme
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Chapter 9

Conclusions

This work delves into the development of a control system tailored for an au-
tonomous all-electric Fixed-Wing hybrid aircraft. Following a concise introduction
to the realm of UAM and innovative hybrid concepts suitable for mid-range mis-
sions, Chapter 2 provided an in-depth exposition of the proposed patented TP
technology as a viable solution. Subsequent chapters served as a foundation for
the mathematical tools required to model the aircraft, presenting nonlinear equa-
tions of motion and the various forces and moments acting on the system. The
mathematical model was further linearized to evaluate the aircraft’s linear stability
across different trim points and speeds.
The groundwork of control theory necessary for crafting the control system was
introduced, with a particular emphasis on the novel INDI control technique. Ref-
erences to relevant literature that addresses challenges posed by INDI were also
provided.
Subsequently, the control system was designed and validated for its tracking per-
formance and resilience in the face of wind disturbances. Three distinct controllers
were developed, each dedicated to a specific state of the aircraft. Chapters 8 and 9
witnessed the amalgamation of these controllers, enabling the simulation of two
comprehensive missions. The efficacy of the state machine in transitioning seam-
lessly between controllers was assessed, revealing a satisfactorily smooth transition
process.
Future developments will include:

• Enhancing and refining the TR mode controller. It is imperative to explore
alternative methods of providing reference attitudes to the inner loop. This
exploration aims to account for the significant coupling between velocity
and altitude, due to the simultaneous action of lift motors, aerodynamic lift
(elevator deflection), and thrust motors. One approach to achieving this is by
investigating different methods of inverting equations through the formulation
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of optimization problems.

• Evaluating the impact of sensor characteristics and potential delays introduced
by filtering processes. Given the profound reliance of INDI control on sensor
measurements and their derivatives, it is essential to conduct simultaneous
simulations of navigation and control. This simultaneous assessment can help
determine whether complementary filtering techniques can effectively mitigate
the sensitivity to time delays.

• Incorporating a PCH mechanism into the controller. This addition aims to
prevent the controller from reaching saturation limits, ensuring smoother and
more stable performance.

• Developing a model for the energy recovery system and assess aircraft per-
formance for deceleration and descent phases properly and retuning gains if
needed.
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