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Summary

Margin loans have gained increasing attention as financial instruments tailored

for newly listed firms such as startups or small emerging companies. These loans,

provided by banks as financing instruments, utilize a specific number of company-

owned shares as guarantee (aka “collateral”), valued higher than the loan amount

at the beginning of the effective date. Like margin accounts, should the value of

the company’s shares decline, the borrower is required to provide additional shares

to cover the shortfall and meet the stipulated collateral requirements. This thesis

focuses on a comprehensive analysis of the financial risks associated with margin

loans, with a particular emphasis on monitoring the performance of the company’s

shares following the loan agreement, whose price strongly depends on relevant

market shocks. To achieve this, we delve into the study of renowned stochastic

processes for simulating stock price movements in the stock market, specifically,

Lévy processes. In this context, jump models become particularly relevant, proving

invaluable for generating market scenarios to estimate the value of a shortfall event.

We will conduct a comparative analysis of different pricing models: the Merton’s

Jump Diffusion model, Kou’s Double Exponential Jump Diffusion model, and the

Variance Gamma process proposed by Madan and Seneta. As part of Margin

Loan pricing, whether through Monte Carlo simulations or closed formulas, an
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essential aspect is the calibration of the model parameters to the market-priced

option data. This involves fine-tuning the model’s internal settings to accurately

replicate market prices, ensuring coherence of the model with market predictions.

In detail, we will use both European plain vanilla options and a unique category of

exotic options known as One-Touch Knock-Out Daily Cliquet Options, which are

suitable for capturing significant fluctuations in stock prices. The calibration of

these parameters will be addressed as an optimization problem, and we will employ

the Non-Linear Least-Squares algorithm to solve it. Tackling the subject of margin

loan pricing using various models will enable us to assess the intricacies of pricing

these instruments and the inherent valuation risk linked to model choices.

Keywords: Margin Loans, Lévy processes, Variance Gamma, Merton Jump

Diffusion, Kou Jump Diffusion, option pricing, calibration, vanilla otpions, one-

touch knock-out daily cliquet options
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Chapter 1

Introduction

Margin loans have emerged as vital financial instruments tailored for startups

and emerging companies. This thesis delves into a comprehensive analysis of the

inherent financial risks associated with margin loans, with a particular focus on

their evaluation and accurate pricing.

In contrast to traditional loans, where banks primarily face credit risk – the risk

that the borrower may not repay the debt – margin loans shift the risk to market

performance. In this scenario, the bank must contend with the post-loan agreement

market performance of the beneficiary company. To address this problem, we will

employ stochastic processes, specifically Lévy processes, to simulate stock price

movements in the stock market. These processes, including jump models, facilitate

the estimation of potential shortfall events. In Chapter 2, we provide an overview

of margin loans, starting with the concept of loans themselves. We will explore

how margin loan contracts work and explain the theoretical instruments necessary

for our analysis. Chapter 3 explains the stochastic processes used in this thesis

and contains their theoretical background and description. We emphasize their
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Introduction

significance in modeling stock price movements. Then, chapter 4 shows how to

realize Monte-Carlo simulations of these processes, that will be needed in subsequent

chapters in the context of option pricing and margin loans pricing. We thus discuss

methods for pricing options using both closed-form solutions and Monte-Carlo

simulations in Chapter 5. We will explain how option pricing methods allow us to

calibrate models parameters to ensure accurate process simulations. In Chapter 6,

we will show the results of our calibration procedure, illustrating how the outcomes

strongly depend on the set of parameters chosen. Finally, Chapter 7 will explain

how to price our margin loans given all the steps previously discussed, drawing

conclusions in Chapter 8.
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Chapter 2

An overview of Margin

Loans

Margin loans are specialized financial instruments offered by banking institutions

to corporations. They fall within the broader category of bank loans, primarily

utilized by small businesses for financing projects related to financial investments

and growth. This chapter serves as a foundational exploration, commencing with a

general overview of loans. It aims to explain their key features, types, structural

aspects, and how they are managed by lending institutions. Subsequently, our

focus shifts to the central theme of this work—margin loans. We will examine

their background, characteristics, and distinctive traits, showing how they involve

an additional layer of complexity and risk. Furthermore, we will delve into the

mathematical framework essential for assessing and effectively managing these

associated risks.
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An overview of Margin Loans

2.1 Loans

A classic loan, in its essence, is a financial arrangement in which a lender, which

may be a corporation, financial institution or government, lends a sum of money

to an individual or other entity, creating a form of debt. This allows individuals

or businesses to access capital that they may not have immediately available. In

this agreement, the borrower consents to a set of specific terms, including finance

charges, interest rates, repayment dates, and other conditions. Loans can take a

variety of forms, including bonds and certificates of deposit (CDs), and may also

request collateral to protect the loan and guarantee repayment. [1]

2.1.1 Role and Impact

A loan contract is an agreement between the lender, who provides the funds, and

the borrower, who receives a specific sum known as the principal. The borrower

commits to repay this principal over a specified period, often with the added cost

of interest. This interest acts as compensation for the lender, accounting for both

the risk associated with granting the loan and the opportunity cost of lending

that money rather than investing it elsewhere. Loans have diverse applications.

They can serve to finance the expansion of a business, facilitate the purchase of a

residential property, or address unexpected financial needs. In effect, the existence

of loans expands an economy’s overall money supply while fostering competitiveness

by providing funding opportunities for emerging businesses. In addition, interest

and fees on loans are a major revenue for many financial institutions. From the

banks’ perspective, loans not only generate income, but can also help diversify

the risk associated with their portfolio. In this way, banks benefit from a steady
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An overview of Margin Loans

revenue stream and a well-balanced portfolio, making lending an integral part of

their business model [1].

2.1.2 Target Market

Loans are broadly classified into personal and commercial categories.

Personal loans are typically obtained by individual borrowers and could encom-

pass mortgages, car loans, student loans, home equity lines of credit, credit cards,

installment loans, and payday loans [2]. The main risk a bank face when agreeing a

loan to individuals is mainly credit risk, the risk that the borrower will default on

their loan repayments. This risk is generally managed by assessing an individual’s

creditworthiness before making a loan. Creditworthiness is determined by factors

such as credit history, income, job stability, and existing debts. A good credit

score and a stable financial profile generally make it easier to qualify for loans with

favorable terms.

Commercial or business loans share similarities with personal loans, but gen-

erally involve larger amounts and different underwriting procedures. Examples

are commercial mortgages, corporate bonds, and government guaranteed loans.

The underwriting process is more rating-based than score-based. In this paper,

we will focus on bank loans, i.e., the financing instruments that banks provide

to companies for expansion and capital investment, debt refinancing, to cover

short-term expenses or facilitating the acquisition of other businesses or assets.

2.1.3 Types of Loans

There are several types of loans, but they can generally be categorized based on

two key criteria [3]:

5



An overview of Margin Loans

1. Secured vs. Unsecured Loans:

• Secured Loans: These loans require collateral, such as assets or property,

to secure the loan. If the borrower fails to repay, the lender can seize the

collateral.

• Unsecured Loans: this type of loan is not backed by collateral, but is

granted only on the basis of the borrower’s creditworthiness, income, and

ability to repay. Since there is no collateral, they generally have higher

interest rates than secured loans.

2. Revolving vs. Term Loans:

• Revolving Loans: Revolving credit lines, like credit cards, allow borrowers

to access funds up to a set credit limit. Borrowers can repay and reuse

the credit as needed.

• Term Loans: Term loans provide borrowers with a lump sum of money

upfront, which is repaid over a predetermined period with fixed install-

ments.

2.1.4 Components of a Loan

This section aims to elucidate general key components of a loan, each of which

plays a crucial role in defining the terms and conditions [4].

1. Principal: it is the original sum of money lent to the borrower. The principal

amount is determined at the onset of the loan and it serves as the base upon

which interest accumulates.
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2. Interest: this is the cost of borrowing money, generally expressed as a percent-

age of the principal. It could be calculated in different ways, but the most

common are simple and compound interest.

3. Repayment Schedule: a detailed plan of how the loan would be repaid. It

includes the frequency (monthly, quarterly, annually, etc.), number of install-

ments, and the amount of each installment. The schedule also outlines how

much interest and principal is paid off with each payment.

4. Fees: These pertain to any additional charges associated with the loan. Com-

mon fees include origination fees, late fees, and prepayment penalties.

5. Loan Term: it refers to the duration over which the loan is expected to be

paid back. Short-term loans usually run for less than a year, while long-term

loans can last a few years to a few decades. The term typically affects the size

of the monthly payment and the total cost of the loan.

6. Collateral: required by secured loans - a valuable asset that the borrower

agrees to give to the lender if they can’t repay the loan. Typical examples

of collateral include cars, houses, and other valuable assets, like a company’s

shares.

7. Loan Agreement: the legal document that outlines the terms and conditions of

the loan, including the obligations of the borrower and lender, and potential

consequences of the violation of these terms.
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2.1.5 Metrics

Interest rates

Interest rates are directly proportional to the amount of risk associated with the

borrower. Interest is charged as compensation for the loss caused to the asset due

to utilization, effectively indicating the cost of borrowing. Interest rates have the

flexibility to be applied over varying intervals, including monthly, quarterly, or

semiannually, but the prevalent practice involves them to be annualized.

Additionally, they can be fixed if they remain constant for the entire term of

the loan and variable or floating if they can change periodically based on market

conditions or specific indexes. They can be divided into two main categories: simple

and compound interest rate [5].

Simple interest: the type of interest indicating that the total expense for

borrowing money (i.e., the simple interest) is computed only on the principal

amount and it remains constant throughout the loan term, according to the formula

SI = P · r · n (2.1)

where P is the principal, r is the interest rate and n is the term of the loan.

Compound interest: it takes into account the principal and the interest earned

or charged in previous periods. It results in compounding costs over time and it

can be computed by

A = P (1 + r

n
)nt (2.2)
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An overview of Margin Loans

where A is the final amount, P is the initial principal balance, r is the interest rate,

n the number of times interest applied per time period and t the number of time

periods elapsed.

Interest rates for loans depend on market conditions, borrower creditworthiness,

and economic factors. Market rates, influenced by benchmarks like central bank

rates, affect loan rates. Borrowers with strong credit, stable income, and low debt

levels typically secure lower rates. Economic conditions, including inflation and

economic growth, play a role, and lender policies and competition also impact rates.

Finally, global and geopolitical events can influence interest rates, particularly in

international markets.

Annual Percentage Rate (APR)

This is directly related to the interest rate and it is given by the nominal interest

rate and any fees or additional costs associated with the loan together.

Loan-to-Value ratio (LTV)

For secured loans LTV is a ratio that compares the loan amount with the appraised

value of the collateral. A higher LTV ratio reduces the lender’s risk and may lead

to more favorable loan terms for the borrower. The formula to compute it is the

following [6]

LTVS = Loan Amount
Appraised Value × 100% (2.3)

For an unsecured loan, the appraised value is replaced by the borrower’s annual

income.
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2.1.6 Analytic tools

Given all the technical knowledge required, we are able to analyze the mathematical

formulas that are used to calculate the key metrics of a loan agreement. The most

important are observed in this section [7].

1. Calculation of monthly payment

Assuming each regular payment is scheduled on a monthly basis, the install-

ment, i.e. the amount of money paid regularly to cover both the principal and

the interest accrued on the outstanding balance is given by

P = r · PV · (1 + r)n

(1 + r)n − 1 (2.4)

where: P is the installment, r is the monthly interest rate (r = annual rate
12 ), PV

is the principal, n is the number of installments.

2. Calculation of total interest paid

I = P · n− PV (2.5)

where I is the total interest paid and P , n and PV are as defined above

3. Calculation of outstanding loan balance at a given time

B = PV (1 + r)n − P (1 + r)n − 1
r

(2.6)

where B denotes the outstanding balance, P , r, n and PV are defined above.
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An overview of Margin Loans

2.2 Margin Loans

Let us now go into detail about margin loans, a type of bank loan designed for

startups and small or medium-sized companies that need liquidity to grow their

business. These are listed companies, which have nothing to give in return but

their own shares. The loan agreement is stipulated between a banking institution

and the borrowing company.

2.2.1 Background

The concept of margin lending has its roots in the late 19th century in the United

States, where margin loans were initially utilized as a method of financing the

development of railroads and other infrastructural projects. Investors pooled their

own funds and borrowed capital from banks or brokers to funnel more substantial

investments into railroads and other public companies. The purchased securities

were used as collateral for these loans, a method now known as buying on margin

[8].

2.2.2 Structure

In a margin loan arrangement, the bank extends to the borrower a term or revolving

loan secured by publicly traded equity securities. For this purpose, a Special Purpose

Vehicle (SPV) is created to hold and manage the shares of the borrower company.

This arrangement allows shared collateral management, with the SPV holding legal

ownership of shares and the borrower retaining beneficial ownership. It safeguards

the lending institution’s interests, reduces risk by limiting the lender’s exposure

11



An overview of Margin Loans

to SPV assets, and offers legal protection in case of borrower default or share

value decline. The structure of a margin loan is designed to retain the proceeds

generated by the underlying collateral. These income is set aside to cover any

early repayments before it can be withdrawn by the borrower and used for other

purposes.

Special Purpose Vehicles

SPVs are legal entities that are established for specific financial purposes. They are

designed to conduct financial transactions, hold assets, or manage risks without

directly involving the parent company’s core business. SPVs have their own legal

identity and limited liability, which protects the parent company from potential

financial repercussions in case of default. These vehicles are often structured to

be independent from the parent company’s bankruptcy proceedings, reducing the

risk of being affected by them. SPVs are customized to serve specific financial

objectives, such as holding mortgage portfolios or issuing asset-backed bonds.[9]

2.2.3 Borrowing base

The funding base for a margin loan is determined by examining the ratio of

outstanding loans to the value of collateral deposited in the SPV. The fact that

collateral is listed implies that its prices are available and updated daily without

reporting delays, following a mark to market approach. Since the borrower is a

newly listed firm, its shares are subject to greater volatility than those of well-

established businesses, and this implies a greater risk of incurring severe losses for

the bank. Therefore, an overcollateralization technique is adopted, in which the

LTV ratio, that is, the ratio of the value of the loan to the current value of the

12
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collateral, is kept very low [10]. Should the value of the collateral fall and the LTV

ratio exceed a threshold set in the loan agreement, the borrower is required to

increase the number of shares pledged as collateral to maintain the security of the

loan. This mechanism is known as margin call.

Margin calls

The previously mentioned threshold is named Margin call LTV and indicates the

lowest Loan-to-Value the loan can reach. This can occur if, on a market opening

day, the company’s stock price makes a significant downward jump, such as losing

10%. In this case, the LTV established at the contract date must be restored, which

means that the borrower needs to replenish the collateral with the required number

of shares. As detailed in [8], if "the borrower does not respond to the margin call by

submitting additional collateral or calling in the principal by the specified due date,

an event of default will occur, and the lender may declare the loan immediately

due and foreclose on the collateral".

13



An overview of Margin Loans

2.2.4 The quantitative approach

In such financing instruments, the risk exposure is entirely due to the underlying

equity. Thus, the primary risk factor shifts significantly from credit risk, as seen

in traditional loans, to market risk. Therefore, a comprehensive market analysis

becomes paramount for accurately assessing and managing the risk associated. This

directly influence the pricing process, which involves determining the appropriate

interest rates defining the cost of investment. This pricing must be grounded in

the evaluation of potential loss risks that the bank may incur if the borrower no

longer has sufficient assets to provide as collateral, potentially due to a significant

shortfall event. To effectively manage this risk, it is imperative to estimate the

final value of the company’s shares. Therefore, employing stochastic processes to

simulate the trajectory of these assets becomes essential. Stochastic processes, such

as Lévy processes, are indispensable tools for generating realistic market scenarios

that aid in estimating potential outcomes, including severe downturns in share

values. This thesis work plays a key role in the risk evaluation process by focusing

on several objectives. Specifically, it aims to model price trajectories using three

Lévy processes, to simulate realistic market scenarios. Additionally, the thesis

aims to calibrate the parameters of these models to real-market option prices,

specifically using One-Touch Knock-Out Daily Cliquet Options, a unique type of

derivatives tailored to value significant downward movements in the underlying

asset. Lastly, this work will conduct a comparative analysis of the stochastic

models under consideration. This analysis aims to provide insight into and assess

the inherent valuation risk associated with each model when employed for pricing

margin loans.
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Chapter 3

Financial Models for Stock

Prices

In this work, four distinct models have been examined to capture asset price

dynamics. The following sections will delve into the fundamental theories behind

each of these models.

3.1 The Black-Scholes Model

In the context of financial models for pricing derivatives, Fischer Black and Myron

Scholes emerged as pioneers in shaping the instruments that are now widely used.

In 1973, detailed in their seminal work [11], they derived the Black-Scholes formula,

an analytical tool used to price European call and put options, based on a set

of key assumptions that underlie its mathematical foundation. Foremost among

these assumptions is the proposition that the underlying asset’s price conforms to a

Geometric Brownian Motion (GBM). This is a stochastic process that amalgamates
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deterministic growth and stochastic fluctuations. The dynamics of this process are

captured by the equation:

dSt

St

= µdt+ σdW (t), (3.1)

where µ is the constant drift rate, σ is the constant volatility, W (t){t≥0} denotes

a standard Brownian motion, also referred to as the Wiener process. This model

assumes that percentage changes in the stock price in a very short period of time

are normally distributed [12], so that

dS

S
∼ N (µdt, σ2dt) (3.2)

where N(m, v) denotes a normal distribution with mean m and variance v. Conse-

quently, defining a future time T, it holds

ln
S(T )
S(0) ∼ N

CA
µ− σ2

2

B
T, σ2T

D
(3.3)

and

lnS(T ) ∼ N

C
lnS(0) +

A
µ− σ2

2

B
T, σ2T

D
, (3.4)

where S(T ) is the stock price at time T, S(0) is the initial stock price, lnS(T ) is

normally distributed with mean lnS(0) + (µ−σ2/2)T and standard deviation σ
√
T

so that S(T ) follows a lognormal distribution. In a risk-neutral world, the drift µ

has to be replaced with r, i.e. the risk-free interest rate, compounded continuously.

It means that the expected stock price grows at the same rate as the risk-free
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investment. For any time t, the dynamics of the underlying’s price becomes

S(t) = S(0)exp
IA

r − σ2

2

B
t+ σ

√
tZ

J
. (3.5)

with Z denoting a standard normal variable.

3.2 The Lévy Processes

The Lévy processes, named after the French mathematician Paul Lévy, are widely

used in mathematical finance as they describe financial markets in a more accurate

way than models based on Brownian motion. A Levy process has independent and

stationary increments and can be viewed as the continuous-time analog of a random

walk. The Brownian Motion and the Poisson process are processes belonging to

this class.

Definition 1 (Lèvy Process) A cadlag stochastic process (Xt)t≥0 defined on a

probability space (Ω,F ,P) with values in Rd such that X0 = 0 is said to be a Lévy

Process if it satisfies the following properties:

1. Independent increments: for 0 ≤ s ≤ t, Xt−Xs is independent of {Xu : u ≤ s}

2. Stationary increments: for 0 ≤ s ≤ t, Xt −Xs is equal in distribution to Xt−s

3. Stochastic continuity: ∀ε > 0, lim
h→0

P (|Xt+h −Xt| ≥ ε) = 0

The cadlag property means that the paths of X are P-almost surely right continuous

with left limits. The third condition serves to exclude processes that have jumps at

fixed (non-random) times, guaranteeing that the probability of observing a jump

at a given time is zero and emphasizing the random nature of discontinuities in the
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process.

A Lévy Process is infinitely divisible, which implies that the process can be

decomposed into an arbitrary number of independent and identically distributed

(i.i.d.) increments over any time interval. In other words, the process can be viewed

as the sum of an arbitrary number of independent and identically distributed

random variables.

Definition 2 (Infinite divisibility) A probability distribution F on Rd is said to

be infinitely divisible if for any integer n ≥ 2, there exist n i.i.d. random variables

Y1, . . . , Yn such that Y1 + . . .+ Yn has distribution F .

The infinitely divisible distributions can be fully characterized by the character-

istic exponent Ψ through an expression known as the Lévy–Khintchine formula.

Moreover, it is known that any Lévy process (Xt)t≥0 has the following property

E
1
eiθXt

2
= e−tΨ(θ), (3.6)

where Ψ(θ) is the characteristic exponent of Xt. Thus, the so called Lévy-Khintchine

representation allows to derive the characteristic function for Lévy Processes, that

is

E
1
eiθXt

2
= e−tΨ(θ), θ ∈ Rd (3.7)

where

Ψ(θ) = iaθ + 1
2σ

2θ +
Ú
R
(1− eiθx + iθx1|x|<1)Π(dx) (3.8)
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and a ∈ R, σ2 ≥ 0 and Π is a measure concentrated on R \ {0}, such that

Ú
R

inf{1, x2}Π(dx) =
Ú
R
(1 ∧ x2)Π(dx) <∞. (3.9)

The triplet [a, σ2,Π] is called the Lévy triplet where a ∈ R is the drift term, σ2 ∈ R

is the diffusion coefficient and the measure Π(dx) is the Lévy measure of x. In

particular, if Π(dx) is of the form ν(x)dx, i.e. it is a density that, in comparison to

a probability density, must not necessarily be integrable and must have zero mass

in the origin. Heuristically, the function ν(x) determines how frequently jumps of

size X occur in the Lévy process. By analyzing the characteristic triplet [a, σ2,Π]

of a Lévy process, we can gain insights into the properties of its typical sample paths.

Defining the total variation of a function f : [a, b]→ Rd as

TV (f) = sup
nØ

i=1
|f(ti)− f(ti−1)|, (3.10)

f is of finite variation if TV (f) is finite for each partition of each finite sets and it

can be written as the difference of two increasing functions.

If a Lévy process has trajectories which are almost surely functions of finite variation,

it belongs to the class of finite variation Lévy Processes.

Definition 3 (Finite variation Lévy processes) A Lévy process is of finite

variation if and only if its characteristic triplet [a, σ2,Π] satisfies:

σ = 0 and
Ú

|x|≤1
|x|Π(dx) <∞. (3.11)
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Another important class of the Lévy processes is the one of subordinators. A sub-

ordinator is a non-decreasing Lévy process with almost surely positive increments.

It is used to apply time changes to another Lévy process, effectively acting as a

clock that determines the time at which jumps occur. The following statement

provides equivalent definitions of a subordinator Lévy process.

Proposition 1 Let (Xt)t≥0 be a Lévy process on R. The following conditions are

equivalent:

1. Xt ≥ 0 almost surely for some t > 0.

2. Xt ≥ 0 almost surely for every t > 0.

3. Sample paths of (Xt) are almost surely non-decreasing: t ≥ s ⇒ Xt ≥ Xs

almost surely.

4. The characteristic triplet of (Xt) satisfies σ = 0, Π((−∞, 0]) = 0,s 0
−∞(x ∧ 1)ν(dx) < ∞, and a′ ≥ 0. In other words, (Xt) has no diffusion

component, only positive jumps of finite variation, and positive drift.

The simplest and well-known Lévy processes include the Wiener Process, the

Poisson process, but also any linear combination of indipendent Lévy processes,

such as the compound Poisson process. Being an extensive class of stochastic

processes, Levy processes encompass several subclasses, each distinguished by

distinct characteristics and properties. Among these subclasses two prominent

processes known as Jump-diffusion models will be analyzed in this work: the

Merton model [13] and the Kou model [14]. Another significant subclass arises
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from Brownian subordination, resulting in processes such as the Variance Gamma

process, which will be addressed below.

3.2.1 Jump Diffusion Processes

Jump-diffusion processes are stochastic models that combine a continuous diffusion

process with a jump process. They are widely used in finance thanks to their

ability to capture both the continuous movements of prices and sudden jumps due

to unexpected events. The general form of a jump-diffusion process is expressed by

the following equation:

X(t) = γt+ σW (t) +
N(t)Ø
i=1

Yi (3.12)

where W (t){t≥0}, is the Brownian motion that stands for the diffusion part, N(t){t≥0}

is the Poisson process that counts the number of jumps of X, and Yi denotes the

size of each jump. What can vary across different models is the distribution of

jump sizes, ν0(x).

Merton Model

The first jump diffusion process was proposed by Robert C. Merton in 1976, [13] as

an extension of the Black-Scholes model. Thus, the model assumes that the stock

price follows a geometric Brownian motion with a constant volatility, while the

jump component follows a log-normal distribution, which means that the logarithm

of the jump size is normally distributed with mean m and standard deviation δ.

This allows for the incorporation of both positive and negative jumps in the stock
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price.

The dynamics of the asset price St in the Merton Model can be described as follows:

dSt

St

= µdt+ σdW (t) + d

N(t)Ø
i=1

(Yi − 1)
 , (3.13)

where µ is the constant drift, σ is the constant volatility, W (t){t≥0} is a standard

Brownian motion, λ is the jump intensity, N(t){t≥0} is a Poisson process with rate

λ, and Yi{i ≥ 1} − 1 represents the size of the i-th jump. The Yi is lognormally

distributed, so that logYi ∼ N(m, δ2), then for any fixed n,

N(t)Ù
i=1

Yi ∼ logN (mn, δ2n). (3.14)

In the context of the Merton Jump Diffusion Model, the return process X(t) =

log
1

S(t)
S(0)

2
is defined by the equation:

X(t) = µt+ σW (t) +
N(t)Ø
i=1

Yi, X(0) = 0. (3.15)

After solving the differential equation 3.13, the stochastic dynamics under the

probability measure P of the asset price follows

P : S(t) = S(0) exp {µt+ σW (t)}
N(t)Ù
i=1

Yi. (3.16)

To guarantee completeness of such a model, a risk-neutral measure has to be

found, i.e. a measure Q ∼ P such that the discounted price E[e−rtS(t)] = S(0) is

a martingale. This lead to a change in the drift of the Wiener process but leaves
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unchanged the other ingredients. Thus, under the risk neutral measure QM :

QM : S(t) = S(0) exp
î
µM t+ σWM(t)

ïN(t)Ù
i=1

Yi, (3.17)

where

µM = r − σ2

2 − λE
è
eYi − 1

é
= r − σ2

2 − λ
C
exp(m+ δ2

2 )− 1
D
. (3.18)

Kou Model

The Kou Model, also known as the Double Exponential Jump Diffusion Model, was

developed by S.G. Kou in 2002 [14]. This model aimed to address two empirical

phenomena observed in stock market data: the asymmetric leptokurtic behavior of

returns and the volatility smile. It has been demonstrated that a normal distribution

for logarithmic returns of asset prices oversimplifies the real-world behavior and

fails to capture crucial features such as fat tails, skewness, volatility clustering,

and non-constant interest rates. The model developed by Kou is an exponential

Lévy with finite jump intensity where the size of the jumps follow a two-sided

exponential distribution.

The dynamics of the asset price St is as follows

dSt

St

= µdt+ σdW (t) + d

N(t)Ø
i=1

(Vi − 1)
 , (3.19)

where W (t){t≥0} is a standard Brownian motion, N(t){t≥0} is a Poisson process with

rate λ, Vi{i≥1} is a sequence of independent and identically distributed nonnegative

random variables such that Y = ln(V ) has an asymmetric double exponential
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distribution with density

fY (y) = pη1e
−η1y · 1{y≥0} + qη2e

η2y · 1{y<0}, (3.20)

η1 > 0, η2 > 0.

Here, p ≥ 0 and q ≥ 0, with p+ q = 1 denote the probabilities associated of upward

and downward jumps, respectively.

Each random variable Y can be decomposed by:

ln(V ) = Y =


ξ+ with probability p

−ξ− with probability q
(3.21)

where ξ+ ∼ Exp(η1) and ξ− ∼ Exp(η2). Consequently, the return process X(t) =

log(S(t)/S(0)) is given by

X(t) = µt+ σW (t) +
N(t)Ø
i=1

Yi, X(0) = 0. (3.22)

The stochastic dynamics of the asset price under the probability measure P is

obtained by solving the differential equation 3.19, such that:

P : S(t) = S(0) exp {µt+ σW (t)}
N(t)Ù
i=1

Vi. (3.23)

Since E[Y ] = p
1

1
η1

2
−q

1
1
η2

2
, and V ar[Y ] = pq

1
1
η1

+ 1
η2

22
+
1

p
η2

1
+ p

η2
2

2
, the expected
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value of Vi{i≥1} can be computed:

E [V ] = qη2

(η2 + 1) + pη1

(η1 − 1) , η1 > 1, η2 > 0, (3.24)

where the requirement η1 > 1 ensures that E [V ] < ∞, which means that the

average upward jumps cannot exceed 100%.

To find the risk-neutral adjustment to the dynamics, recall that it must be guar-

anteed E[e−rtS(t)] = S(0) to be a martingale. Introducing QK as the proper

risk-neutral measure, the stochastic dynamics of the asset price becomes

QK : S(t) = S(0) exp
î
µKt+ σWK(t)

ïN(t)Ù
i=1

Vi, (3.25)

where

µK = r − σ2

2 − λ(E [V ]− 1) = r − σ2

2 − λ
C

qη2

(η2 + 1) + pη1

(η1 − 1) − 1
D
. (3.26)
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3.2.2 The Variance Gamma Process

The Variance Gamma process was initially introduced by Madan and Seneta, who

illustrated a first symmetric version in 1990 [15]. After that, the general, non-

symmetric version of the model was described in a 1998 paper by Madan, Carr, and

Chang [16]. It was devised as an extension of the Black and Scholes model to better

model the distribution of asset price returns, having observed from real-world data

that the latter is often asymmetric with heavy tails, skewness, and excess kurtosis.

The Variance Gamma is a subordinated Levy processes, as it is obtained by applying

a random time change to a Brownian motion with constant drift and volatility. The

subordinator, which is always non-negative and non-decreasing, is the stochastic

gamma process, and it represents the waiting times between jumps of the VG

processes.

According to this, the first representation of the VG can be defined. Let

b(t; θ, σ) = θt+ σW (t) (3.27)

be a Brownian motion with constant drift rate θ and volatility σ where W (t) is a

Wiener process. Let γ(t;µ, ν) be a gamma process with mean µ and variance ν,

based on the gamma function Γ(·) and given by independent gamma increments

over non-overlapping intervals. The Variance Gamma process X(t;σ, ν, θ) is thus

obtained as a Brownian motion with stochastic time, given by a gamma process

with unit mean rate γ(t; 1, ν):

(t;σ, ν, θ) = b(γ(t; 1, ν); θ, σ), (3.28)
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where γ(t; 1, ν) is a gamma with unit mean rate and variance rate ν, while σ and

θ, are parameters inherited from the Brownian motion. The parameter σ controls

the volatility, ν and θ respectively control the skewness and the kurtosis of the

distribution. Denoting the final process as X(t) and the unit mean rate gamma as

γ(t), the Variance Gamma process is defined as

X(t) = θγ(t) + σWγ(t)(t). (3.29)

The characteristic function ϕX(t)(u) = E [exp (iuX(t))] can be obtained by condi-

tioning on the gamma time change and then employing the characteristic function

of the gamma process itself [17]. Given the chf of the gamma distribution:

ϕγ(t)(u) = E [exp (iuγ(t; 1, ν))] = (1− iuν)− t
ν (3.30)

and the chf of the normal distribution

ϕb(t)(u) = E [exp (iub(t; θ, σ))] = exp
A
iuθ − σ2u2

2

B
, (3.31)

it follows:

ϕX(t)(u) = E [E [exp(iuX(t) | γ(t; 1, ν)]] =

= E [E [exp(iu b(γ(t; 1, ν); θ, σ) | γ(t; 1, ν)]]

where b(γ(t; 1, ν); θ, σ) is normally distributed with mean θγ(t; 1, ν) and variance

σ2γ(t; 1, ν).
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Thus,

E [exp(iu b(γ(t; 1, ν); θ, σ) | γ(t; 1, ν)] = exp
A
iuθ γ(t; 1, ν)− σ2u2

2 γ(t; 1, ν)
B
(3.32)

and therefore

ϕX(t)(u) = E
C
exp(iuθ −

A
σ2u2

2

B
γ(t; 1, ν)

D
=

= E
C
exp(iu

A
θ − σ2u2

2iu

B
γ(t; 1, ν)

D
=

=
A

1− iu
A
θ − σ2u2

2iu

B
ν

B− t
ν

=

=
A

1− iθνu− σ2ν

2 u2
B− t

ν

. (3.33)

Another common representation of the VG process is derived considering that it

is Lévy a process of finite variation, thus it can be seen as the difference of two

independent increasing gamma processes:

(t;σ, ν, θ) = γ(t;µ+, ν+)− γ(t;µ−, ν−), (3.34)

whose parameters are given by

µ± = 1
2

ó
θ2 + 2σ2

ν
± θ

2 , (3.35)

ν± = µ2
±ν. (3.36)

Being a Lévy process, it can be uniquely characterized by the Lévy-Khintchine
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formula, which gives the characteristic exponent

Ψ(θ) = −1
ν
ln

I
1− iθνu+ σ2νu2

2

J
(3.37)

and the Lévy measure

Π(x) = 1
ν|x|

exp
 θ

σ2x−
1
σ

ó
2
ν

+ θ2

σ2 |x|

 . (3.38)

Being the drift rate and the diffusion component both zero the VG process is a pure

jump process with infinite activity and finite variation. Such processes, according

to Carr, Geman, Madan, and Yor (2002) [18] are more useful for fitting market

prices since they can capture both small and large fluctuations. A process with

infinite activity has a high frequency of small jumps, while a process with finite

variation has a limited number of large jumps. In conclusion, under the probability

measure P, the stochastic asset price dynamics can be expressed as

S(t) = S(0) exp [µt+X(t;σ, ν, θ)], (3.39)

where X(t;σ, ν, θ) is the Variance Gamma process and µ is the constant drift. A

risk-neutral probability measure QV G can be found such that the discounted asset

price is a martingale, i.e. it satisfies E[e−rtS(t)] = S(0). It follows [19]

QV G : S(t) = S(0) exp
è
µV Gt+XV G(t;σ, ν, θ)

é
, (3.40)

where

µV G = r + ω = r + 1
ν

ln(1− θν − σ2ν

2 ). (3.41)
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Chapter 4

Monte-Carlo simulation of

price dynamics

Monte Carlo simulations are a powerful computational technique widely used in

finance to model and analyze the behavior of financial assets over time. In the

realm of financial price paths, Monte Carlo simulations involve generating a large

number of possible future scenarios, simulating a multitude of paths that represent

potential outcomes. By doing so, analysts and investors are capable of exploring

diverse market conditions and assessing associated risks and opportunities. This

technique aids in pricing derivatives, estimating probabilities of different market

scenarios.

For each Monte Carlo simulation, the number of paths N , the time window T , and

the number of time steps days will be defined. The simulation process follows these

steps:

1. Initialization Set the initial conditions, such as the starting asset price and
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the parameters of each model.

2. Time Discretization: Divide the time window T into discrete time steps days.

3. Simulation Loop: For each simulation path, iterate through the time steps,

generating random numbers to represent the stochastic components, applying

the model equations, and calculating the asset price at the next time step.

4. Aggregation: Collect the results from all simulation paths in a matrix of

dimensions (days,N), with each path occupying one column.

The following sections present the algorithm for simulating each of the four models,

which are the subject of this work. The simulation code for all of the models can

be found in Appendix A

4.1 The Black-Scholes model

Given the equation 3.5 of the dynamics of the asset prices, the BS models requires

the simulation of the GBM.

Algorithm 1 Simulation of Geometric Brownian Motion
Input: GBM parameter σ; time spacing ∆t1, ...,∆tN s.t. qN

i=1 ∆ti = T
Initialization: Set S0 = S∗

0 , i = 1
while i ≤ N do

Generate Zi ∼ N (0,1) from a standard normal distribution
Compute Sti

= Sti−1 exp
1
(r − 1

2σ
2)∆ti + σ

√
∆tiZi

2
i← i+ 1

end while
return S

With the initial stock price S0 = 100 and the parameters r = 0.03, σ = 0.175, the

31



Monte-Carlo simulation of price dynamics

Figure 4.1 shows five simulated paths under the Black-Scholes model over T = 1

year, i.e. 252 financial days.

Figure 4.1: Five simulated paths of the BS model

4.2 The Merton Jump Diffusion model

The Merton jump diffusion dynamics of price, as detailed in 3.13 can be simulated

as follows.

Given the initial stock price S0 = 100 and the parameters r = 0.03, σ = 0.175,

λ = 0.5, m = 0.05, δ = 0.15 the Figure 4.2 shows five simulated paths under the

Merton Jump Diffusion model over T = 1 year, i.e. 252 financial days.
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Algorithm 2 Simulation of Merton Jump Diffusion model
Input: MJD parameters σ, λ,m, δ; time spacing ∆t1, ...,∆tN s.t. qN

i=1 ∆ti = T
Initialization: Set SS0 = S∗

0 , i = 1, µRF = exp(m+ δ2/2)− 1
while i ≤ N do

Generate Zi ∼ N (0,1) from a standard normal distribution
Generate Ni ∼ Pois(λ ·∆ti) from a Poisson distribution
Generate Ji ∼ N (m, δ2) from a normal distribution
Compute Sti

= Sti−1 exp
î
(r − 1

2σ
2 − µRF )∆ti + σ

√
∆tiZi + Ji ·Ni

ï
i← i+ 1

end while
return S

Figure 4.2: Five simulated paths of the MJD model
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4.3 The Kou Jump Diffusion model

Algorithm 3 demonstrates the procedure for simulating the Double Exponential

Jump Diffusion process, for which the corresponding equation is given by 3.19.

Algorithm 3 Simulation of Kou Jump Diffusion Model
Input: KJD parameters σ, λ, p, η1, η2; time spacing ∆t1, . . . ,∆tN s.t. qN

i=1 ∆ti =
T
Initialization: Set S0 = S∗

0 , i = 1, ζ = (p−1)·η2
η2+1 + p·η1

η1−1 − 1
while i ≤ N do

Generate Ni ∼ Poisson(λ ·∆ti)
Generate Zi ∼ N (0, 1) from a standard normal distribution

Compute jump size J =

1/η1 with probability p
−1/η2 with probability 1− p

Compute Sti
= Sti−1 exp

1
(r − 1

2σ
2 − λζ)∆ti + σ

√
∆tiZi + Ji ·Ni

2
i← i+ 1

end while
return S

Starting from a stock price S0 = 100, Figure 4.3 illustrates paths of the Kou Jump

Diffusion model with parameters r = 0.03, σ = 0.153, λ = 1, p = 0.6, η1 = 8.

η2 = 5.
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Figure 4.3: Five simulated paths of the KJD model
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4.4 The Variance Gamma

As highlighted by Fu in 2007 [19], there exist three primary approaches for simulating

VG processes. Among these, two are considered "exact," leading to the accurate

derivation of the distribution, while the third involves approximating the VG process

through a compound Poisson process. The initial two methods are elaborated upon

in Section 3.2.2, while the third approach falls beyond the scope of this study.

The first method, known as the Time-changed (subordinated) Brownian Motion,

directly incorporates the three parameters inherent to the VG process definition:

the volatility of BM denoted as σ, the constant drift rate of the BM indicated as

θ, and the variance rate of the gamma process denoted as ν. Simulation of this

approach can be executed utilizing the subsequent algorithm.

Algorithm 4 Simulation of VG as Time changed Brownian Motion
Input: VG parameters σ, θ, ν; time spacing ∆t1, ...,∆tN s.t. qN

i=1 ∆ti = T

Initialization: Set S0 = S∗
0 , i = 1, ω = 1

ν
·
1
1− θν − νσ2

2

2
while i ≤ N do

Generate ∆Gi ∼ Γ(∆ti/ν, ν) from a Gamma distribution
Generate ∆Zi ∼ N (0, 1) from a standard normal distribution
Compute Sti

= Sti−1 exp
1
(r + ω)∆ti + θ∆Gi + σ

√
∆GiZi

2
i← i+ 1

end while
return S

After setting S0 = 100, T = 1, days = 252, and then σ = 0.2, theta = −0.12,

ν = 0.05 the following sample can be observed.
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Figure 4.4: Five simulated paths of the VG model with method 1
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The second approach involves representing the VG process as a difference between

two gamma processes. This method utilizes equations 3.35 and 3.36 to determine

the parameters of the two gamma processes. Specifically, one of the gamma

processes captures the "positive" shifts in the asset price, corresponding to upward

jumps. As such, it carries the mean rate µ+ and variance rate ν+. Conversely,

the second gamma process characterizes the "negative" price shifts, representing

downward jumps in the asset price, with mean rate parameter µ− and variance

rate parameter ν−.

Algorithm 5 Simulation of VG as Difference of Gammas
Input: VG parameters σ, θ, ν; time spacing ∆t1, ...,∆tN s.t. qN

i=1 ∆ti = T

Initialization: Set S0 = S∗
0 , i = 1, µ+, µ−, ω = 1

ν

1
1− θν − νσ2

2

2
while i ≤ N do

Generate ∆γ−
i ∼ Γ(∆ti/ν, νµ−), ∆γ+

i ∼ Γ(∆ti/ν, νµ+) from a Gamma
distribution

Compute Sti
= Sti−1 exp

1
(r + ω)∆ti + ∆γ+

i −∆γ−
i

2
i← i+ 1

end while
return S

By simulating this process with an initial value of S0 = 100, and utilizing parameters

σ = 0.2, θ = −0.12, and ν = 0.05, we can derive the necessary parameters:

µ+ = 0.575, ν+ = 0.017 as well as µ− = 0.695, ν− = 0.024. The outcomes are

depicted in Figure 4.5.
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Figure 4.5: Five simulated paths of the VG model with method 2
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Chapter 5

Option Pricing

Option pricing is a fundamental concept in the world of finance that plays a pivotal

role in managing risk, making investment decisions, and ensuring the efficient

functioning of financial markets. Options are financial derivatives that provide

investors with the right, but not the obligation, to buy or sell an underlying asset at

a predetermined price within a specified time frame. They are powerful tools that

allow individuals and institutions to hedge against adverse price movements, spec-

ulate on market trends, and enhance portfolio diversification. Options are actively

traded in both organized exchanges and the Over-The-Counter (OTC) market.

Organized exchanges, such as the Chicago Board Options Exchange (CBOE) in the

United States or Euronext in Europe, provide standardized contracts with readily

available bid and ask prices.

In this chapter, we will explore the intricacies of option pricing, with a particular

emphasis on European Plain Vanilla options and Exotic options, specifically One

Touch Knock Out Daily Cliquets (OTKO). Our aim is to provide a comprehensive

40



Option Pricing

understanding of these financial instruments by combining theoretical insights with

numerical solutions. We will delve into the structures, payoffs, and the methodolo-

gies used to determine their fair values.

To determine the fair value of an option, we begin with the stochastic model that

models the evolution of the stock price. Each stochastic model has its own parame-

ters, unknown a priori. So, to simulate the N possible realizations of such stochastic

processes, on which to conduct the required analysis, we go through the process of

parameter calibration. It consists in finding accurate estimates of these parameters

by comparing, for a given set of options, the market and theoretical prices of these

options, i.e., calculating the difference between them. So one iteratively changes

the parameter estimates, obtaining those that minimize this difference.

5.1 European plain vanilla options

Plain vanilla options represent the bedrock of option trading. They possess a

straightforward structure, allowing their holders to buy (call) or sell (put) an

underlying asset at a predetermined price on a specified expiration date. The

European feature means they can only be exercised at the option’s expiration date,

in opposition with American options that allows their exercise at any time before or

on the expiration date. In this section, we explore the core concepts and dynamics

of these options and we delve into the numerical solutions for European Plain

Vanilla options, discussing closed-form solutions and the utilization of Monte Carlo

simulations to estimate their fair prices.

41



Option Pricing

Call options

A call option is a financial contract that gives the holder the right, but not the

obligation, to buy an underlying asset at a predetermined price, called the exercise

price or strike price, within a specified time frame. The last day of exercise is

known as expiration date or maturity date. As detailed in [12], there are two sides

to every option contract: a long position, the one of the investor who has bought

the option, and a short position, the one of the investor who has sold or written

the option. If T is the maturity date, and we denote ST as the underlying final

price and K as the strike price, the payoff formula from a long position in a call

option at expiration is straightforward:

max(0, ST −K), (5.1)

while the payoff from a short position in a call option is

−max(0, ST −K) = min(0, K − ST ). (5.2)

In this formula, if the asset price is higher than the strike price, the option holder

profits and the writer looses; otherwise, the option expires worthless.

Put options

A put option is a financial contract that provides the holder with the right, but

not the obligation, to sell an underlying asset at the exercise price, within the

expiration date. Similarly as above, the long position is taken from who has bought

the option, whereas the seller takes the short position. The payoff formula for a
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long put option at expiration is:

max(0, K − ST ), (5.3)

while the payoff formula for a short put option at expiration is:

−max(0, K − ST ) = min(0, ST −K). (5.4)

In this formula, if the asset price is lower than the strike price, the option holder

profits and the seller looses; otherwise, the option expires worthless.

(a) Call option with strike price K = 100

(b) Put option with strike price K = 100

Figure 5.1: Payoff of plain vanilla options
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5.1.1 Option pricing methods

Closed-form solutions for pricing European plain vanilla options rely on a general

approach that involves computing the expectation of the present value of the vanilla

payoffs. In a risk-neutral world, operating under a risk-neutral measure (Q), the

current value of a call option (C) can be determined by calculating the expected

value of the option itself when it is discounted to the present time:

C(S, r, T ) = e−rT EQ [max(0, ST −K)] . (5.5)

Similarly, the price of a put option (P ) at time t = 0 can be obtained from its

payoff.

P (S, r, T ) = e−rT EQ [max(0, K − ST )] , (5.6)

where r stands for the risk-free interest rate, ST is the underlying price at time T

and K is the strike price. However, it is important to underline that calls and puts

prices are related one another by the put-call parity relationship.

In this section, we will explore two distinct methods for determining plain vanilla

option prices. We will begin by investigating closed-form solutions for all the four

models considered in this work and then proceed to examine Monte Carlo pricing.
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Put-Call Parity

Put-call parity establishes a relationship between the prices of European call (C)

and put (P ) options with the same strike price (K) and expiration date (T ), as

outlined in [12]. This relationship can be expressed as:

C − P = S − K

(1 + r)T
(5.7)

We will explore this concept further as we delve into closed-form solutions for

various option pricing models.

5.1.2 Closed-form solutions

The development of closed-form solutions for pricing European plain vanilla options

marked a pivotal moment in the history of finance. In the early 1970s, economists

Fischer Black, Myron Scholes, and Robert Merton introduced the groundbreaking

Black-Scholes-Merton (BSM) model, revolutionizing the field of option pricing.

This model laid the foundation for understanding and valuing financial derivatives,

providing a rigorous framework for calculating option prices. The success of the

BSM model acted as a milestone in the development of closed-form solutions for

various other derivative instruments.

The Black-Scholes-Merton formula

The key assumptions of the Black-Scholes model include:

• Constant volatility of the underlying asset

• Constant risk-free interest rate

• Log-normal distribution of asset returns
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The closed-formula for the price of a European call option in the Black-Scholes

model is given by:

C(S0, K, T, r, σ) = S0N(d1)−Ke−rTN(d2), (5.8)

where:

• C is the call option price

• S0 is the current price of the underlying asset.

• K is the strike price of the option.

• T is the time to expiration.

• r is the risk-free interest rate.

• σ is the volatility of the underlying asset.

• N() is the cumulative standard normal distribution function.

• d1 and d2 are defined as:

d1 = ln(S0/K) + (r + (σ2)/2)T
σ
√
T

,

d2 = d1 − σ
√
T .

In a similar fashion, the price of a European put option within the Black-Scholes-

Merton model can be obtained using the following
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P (S0, K, T, r, σ) = Ke−rTN(−d2)− S0N(−d1). (5.9)

Here, P represents the put option price, and all other symbols maintain the same

meanings as in the call option formula. [12]

The Merton Jump Diffusion model

In MJD model, option prices are calculated using closed-formulas that account

for the influence of jumps on the underlying asset. Unlike the Black-Scholes-

Merton (BSM) model, where volatility is the primary focus, the MJD model places

significant importance on two key parameters: the mean jump size m and the jump

frequency λ, as discussed in detail in Chapter 3.

To determine the price of a European call or put option with a strike price K,

time to maturity T , and the current price of the underlying asset S(0), the general

formula, firstly described in [13], can be employed:

VMJD(0) =
∞Ø

k=0

exp(−mλT )(mλT )k

k! VBS(S,K, T, r, σk), (5.10)

where r is the risk-free interest rate, σ is the volatility, m is the mean jump size, λ

is the jump frequency and

• VMJD(0) can be substituted by C if it indicates the price or a European Call

option, or P if it stands for the price of a European Put;

• VBS(S,K, T, r, σ) represents the price of the same option using the Black-

Scholes formula.
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Kou Jump Diffusion model

The KJD model is a double exponential jump diffusion model. Similar to the

Merton Jump Diffusion model, it incorporates jumps described by parameters such

as the jump frequency λ, the upward jump probability p, and the mean jump sizes

1/η1 and 1/η2, as explained in Chapter 3.

The explicit formulas for European call and put options in the KJD model were

derived by Kou in [14]. The price of a European call option with a strike price K,

time to maturity T , and the current price of the underlying asset S(0) is given by:

CKJD(0) = S(0)Υ
3
r + 1

2σ
2 − λζ, σ, λ̃, p̃, η̃1, η̃2; log(K/S(0)), T

4
−Ke−rT Υ

3
r − 1

2σ
2 − λζ, σ, λ, p, η1, η2; log(K/S(0)), T

4
.

(5.11)

Here,

p̃ = p

1 + ζ

η1

η1 − 1 , η̃1 = η1 − 1, η̃2 = η2 + 1,

λ̃ = λ(ζ + 1), ζ = pη1

η1 − 1 + qη2
η2 + 1 − 1.

The price of the corresponding put option, PKJD(0), can be obtained using put-call

parity:

PKJD(0)− CKJD(0) = Ke−rT − S(0). (5.12)

The Υ function used in these equations is defined as:

Υ(µ, σ, λ, p, η1, η2; a, T ) = P{Z(T ) ≥ a}

Here, Z(t) is the stochastic process that describes the Kou Jump Diffusion model,

as given in Equation 3.22. An explicit formula for computing Υ can be found in
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[14], Theorem B.1 in Appendix B.

Variance Gamma process

The Variance Gamma (VG) model, which is a pure jump process, is characterized

by the key parameters mean rate θ and variance rate ν, in addition to the volatility

σ, as elaborated in Chapter 3, Section 3.2.2.

The explicit formulas for European call and put options within the VG model were

initially introduced by Madan et al. in [16], marking a significant advancement in

the theoretical framework of the VG process, originally theorized by Madan and

Seneta in [15]. These formulas have since played a pivotal role in option pricing and

have contributed to the broader understanding of VG-based financial derivatives.

The price of a European call option with a strike price K, time to maturity T ,

and the current price of the underlying asset S(0) can be determined using these

formulas.

CVG(0) = S(0)ψ
d
ó

1− c1

ν
, (α + s)

ó
ν

1− c1
,
T

ν



−Ke−rTψ

d
ó

1− c2

ν
, (αs)

ó
ν

1− c2
,
T

ν

 ,
(5.13)

where:

ζ = − θ

σ2 , s = σò
1 +

1
θ
σ

22
ν
2

, α = ζs

d = 1
s

C
log

A
S(0)
K

B
+ rT + T

ν
log

31− c1

1− c2

4D
,

c1 = ν(α + s)2

2 , c2 = να2

2

49



Option Pricing

and the function Ψ(a, b, γ) is defined in terms of the modified Bessel function

of the second kind, Kv(z), and the degenerate hypergeometric function of two

variables, Φ(α, β, γ;x, y). Further explanations of these formulas can be found in

[16], Appendix.

Furthermore, the corresponding put option price can be obtained using the put-call

parity relationship:

PVG(0)− CVG(0) = Ke−rT − S(0). (5.14)

In conclusion, these closed-form solutions have been extensively studied and are

detailed in the literature, making them fundamental tools for pricing financial

derivatives. The Python code developed for computing the prices of European put

and call options in our work will be presented in Appendix A.

5.1.3 Monte Carlo pricing

In the realm of option pricing, Monte Carlo methods play a pivotal role due to the

inherent need to compute expected values when valuing derivatives. The ability to

simulate the trajectories of stochastic processes that depict the evolution of asset

prices provides an indispensable tool for estimating their potential outcomes. As

expressed in Equations 5.5 and 5.6, the fair value of European vanilla options can be

derived directly from the expected payoff, which is then discounted to the present

time using the risk-free interest rate. This simulation-based approach not only

offers flexibility in handling complex financial instruments but also accommodates

the consideration of various market scenarios. The algorithm for determining the

fair value of vanilla options is presented below and serves as a general guideline,
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without distinguishing between different models. What sets apart these processes

is the computation of Si(T ), which follows the steps outlined in Algorithms 1, 2, 3,

4 and 5.

Algorithm 6 Monte Carlo option pricing
Input: Option type (call/put); Strike price K; Time to maturity T ; Number of
paths N
Initialization: Set S0 = S∗

0 , i = 1, n = 0, V̂ = 0
while i ≤ N do

Generate Si(T ) according to the chosen process
i = i+ 1

end while
if option type == ’call’ then

Set P̄n = 1
N

qN
i=1 ((Si(T )−K, 0)+) ▷ Average payoff

else if option type == ’put’ then
Set P̄n = 1

N

qN
i=1 ((K − Si(T ), 0)+) ▷ Average payoff

end if
return V̂n = e−rT P̄n ▷ Option price

Denoting V as the price of the European vanilla option (either call or put, depending

on the payoff), for any n ≥ 1, the estimator V̂n is unbiased, in the sense that its

expectation is the target quantity:

E[V̂n] = V ≡ E[e−rT (h(S(T ))],

where h(S(T )) represents the payoff function 5.1 or 5.3 depending on the option

price. The estimator is strongly consistent, meaning that as n→∞, V̂n → V with

probability 1 [20].
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5.2 Exotic options: One Touch Knock Out Daily

Cliquet

Now, our attention turns to One-Touch Knock-Out (OTKO) Daily Cliquet Options,

a subset of exotic options distinguished by unique features setting them apart

from European and American options. Our goal is to find optimal models parame-

ters calibrating them on their market prices of these options to identify optimal

parameters. This choice stems from the fact that OTKO Daily Cliquet options

represent one of the limited instruments within the derivatives market capable

of accurately pricing significant downward movements in the underlying asset,

whether it’s a stock or an index. In this section, we will explain their distinctive

structure and payoffs. Next, we will analyze the approximate pricing formulas

and the implementation of Monte Carlo pricing for these derivatives. Given their

purpose of hedging against rapid downside movements, it is essential to account for

sudden jumps in the pricing models. Consequently, the Black-Scholes model, which

relies on geometric Brownian motion, is inadequate for these options and assigns

them a price of 0, regardless of the volatility parameter chosen. Therefore, we will

focus exclusively on the three Lévy processes: Merton, Kou, and Variance Gamma.

Features

This derivative can be seen as a type of short-expiration, typically daily, put option

strip. Consequently, it incorporates daily reset points. In the case of a shortfall

event occurring during a trading day, the option becomes in-the-money, resulting

in a payout. If no shortfall event occurs, the option resets and remains active. Its
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key characteristics are best explained by the following features:

• Barriers. There is an upper barrier K1 and a lower barrier K2 expressed as

percentages, with K1 > K2. These are the payoff strikes.

• One-Touch feature. For the option to produce a payout, the price of the

underlying asset must touch or exceed K1 or K2 at least once during the life

of the option. If the touch level is never reached, the option expires worthless.

• Knock-Out feature. A shortfall event on a specified day t is defined as a

negative daily return of the underlying stock price. Specifically, with the daily

return denoted as Rt = St

St−1
, the option knocks out if Rt < K1 or, worse,

Rt < K2. At that juncture, it triggers a positive payout as determined by its

payoff structure and expires.

• Cliquet feature. The strike price for the next reset period i s determined based

on the spot price of the underlying asset at the end of the previous reset

period. In detail, with K1 and K2 representing percentages, the strike prices

for day t+ 1 are calculated as follows: K1p = StK1 and K2p = StK2.

• Payoff. It can be expressed according to the following equation

payoff = min {(K1 −K2),max {0, K1 −Rt}} , (5.15)

where K1 and K2 are the knock-out barriers and Rt = St

St−1
is the t− th return

of the stock price.
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(a) OTKO option with barriers K1 = 70, K2 = 0

(b) OTKO option with barriers K1 = 90, K2 = 80

Figure 5.2: Payoff of One-Touch Knock-Out Daily Cliquets Options

5.2.1 Option pricing methods

As in the case of European vanilla options, the general price formula for One-Touch

Knock-Out Daily Cliquet Options (Potko) can be determined by discounting the

expected value of its payoff to the present time. This expectation is calculated
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under a risk-neutral measure Q. Consequently, Potko is expressed as follows:

Potko = e−rT EQ [min {(K1 −K2),max {0, K1 −Rt}}] , (5.16)

where r is the risk-free interest rate, T is the option’s time to maturity, and EQ

indicates that we are operating within a risk-neutral framework.

In this section, we will explore two methods for determining the fair value of the

OTKO Daily Cliquets price Potko. To this purpose, will derive the approximate

pricing formulas tailored to our Lévy processes and we will present the Monte Carlo

pricing technique.

5.2.2 Approximated pricing formula

Pricing formulas for a type of closely related options, known as Gap Options or

Crash Notes, were meticulously examined by Tankov in 2008 [21]. In this work, the

author introduced a method for calculating the exact price of a gap option, which

involves a computationally expensive integral of the characteristic function of the

chosen model. Recognizing the high computational cost, Tankov also provided an

accurate approximate pricing formula suitable for Lévy processes. In this section

we will see how this approximate formula can be applied to our objectives, namely

the pricing of One-Touch Knock-Out Daily Cliquets options, although there may

be slight differences between the two.

What the Otko Daily Cliquets Options and the Gap Options described in [21], have

in common, is their reliance on assessing the daily performance of the underlying

stock (close to close). Both options require the occurrence of a gap event or the

reaching of a specific level to trigger an outcome. Following the occurrence of
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the gap event, characterized by a downside movement exceeding a predetermined

barrier, both options payout and terminate.

The distinctions between these two exotic options primarily stem from their struc-

tural differences. Specifically, Crash Notes rely on the singular strike level K as the

trigger for the gap event. In contrast, One-Touch Knock-Out (Otko) Daily Cliquets

feature two distinct barriers, which serve as strikes. Due to this structural variation,

the final payoff slightly differs, accounting for the presence of the additional lower

strike. It’s worth noting that while the upper strike must necessarily be K1 > 0,

there are some Otko Daily Cliquets options for which the lower strike is set to

K2 = 0. This scenario is illustrated in Figure 5.2a. In such cases, there is no

discernible difference between the two options at hand.

The approximate pricing formula, as presented in [21], is derived under the as-

sumption that St = S0e
Xt , where X is a Lévy process. If ν(dx) represents its Lévy

density, as discussed in Section 3.2, then the price of such an option at time t = 0

can be expressed as:

P (0) =
Ú β

−∞
f(ex)ν(dx)1− e−rT −T

s β

−∞ ν(dx)

r +
s β

−∞ ν(dx)
, (5.17)

where r denotes the risk-free interest rate, T is the time to maturity, β := logK < 0,

and f(x) represents the payoff of the gap options. It can be noticed that this

formula is universally applicable, in fact it is only necessary to substitute the correct

payoff expression into f(ex).
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Figure 5.3: Otko Daily Cliquets payoff

The payoff of the One-Touch Knock-Out (Otko) Daily Cliquets Options, illustrated

in Figure 5.3, can be expressed analytically as follows:

f(x|K1, K2) = (K1 −K2)1{0,K2}(x) + (K1 − x)1{K2,K1}(x). (5.18)

Consequently, we can derive the expression for the approximate pricing formula

applicable to all Lévy processes by substituting it into Equation 5.17. This results

in the following expression:

Ú β

−∞
f(ex)ν(dx) =

Ú α

−∞
(K1 −K2)ν(dx) +

Ú β

α
(K1 − ex)ν(dx), (5.19)

Here, α := logK2 < 0 and β := logK1 < 0. The specific price Potko, depending on

the chosen model, will then rely on the Lévy measure of that model, which should

be incorporated into Equation 5.17.
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Merton Jump Diffusion model

The Lévy density for the MJD model can be described by the following equation

[22, p. 109]:

νMJD(x) = λ

δ
√

2π
exp

I
−(x−m)2

2δ2

J
, (5.20)

where λ represents the jump intensity, while m and δ denote the mean and standard

deviation of the jump size, respectively.

The integrals in Equation 5.17 can be computed explicitly as follows:

Ú β

−∞
ν(dx) = λΦ(K1), (5.21)

Ú β

−∞
f(ex)ν(dx) = λ

5
K1Φ(β)−K2Φ(α)− em+ δ2

2
1
Φ(β − δ2)− Φ(α− δ2)

26
,

(5.22)

where Φ represents the cumulative distribution function of a Gaussian random

variable with mean m and standard deviation δ, so that Φ(x) = Φ
1

x−m
δ

2
.

Combining these two integrals in Equation 5.17 will yield a good approximation

of fair price for the One-Touch Knock-Out Daily Cliquet options according to the

Merton model.

Kou Double Exponential Jump Diffusion model

The Double Exponential Jump Diffusion process is characterized by a Lévy density

as described in [22, p.109]:

νKJD(dx) = λpη1e
−η1x1x>0 + λ(1− p)e−η2|x|1x<0 (5.23)
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Here, λ represents the total jump intensity, p denotes the probability of an upward

jump occurring, and 1/η1 and 1/η2 signify the means of the upward and downward

jump sizes, respectively.

When substituting this Lévy density into the expression 5.17, we derive the following:

Ú β

−∞
ν(dx) = λ(1− p)eβη2 (5.24)

Ú β

−∞
f(ex)ν(dx) = λ(1− p)

1 + η2

1
K1+η2

1 −K1+η2
2

2
(5.25)

In these equations, β = logK1. Consequently, we can easily determine the approxi-

mate price of an Otko Daily Cliquet Option using the Kou model.

Variance Gamma process

As described in Section 3, Eq. 3.38 is one of the three available forms of the Lévy

measure for the Variance Gamma process. Another representation, more suitable

for the purposes of this chapter, can be found in [23]. It is expressed in terms of

the VG parameters µ± (3.35) and ν± (3.36) and is given by:

νV G(dx) =


µ2

n exp(− µn
νn

|x|)
νn|x| dx for x < 0

µ2
p exp

1
− µp

νp
x

2
νpx

dx for x > 0

(5.26)

The Lévy density for the Variance Gamma (VG) process can be expressed in a

more compact and useful form as follows:

νV G(dx) = C

|x|
exp (Gx)1x<0 + C

x
exp (−Mx)1x>0, (5.27)
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where:

C = 1
ν
,

G =
ó1

4θ
2ν2 + 1

2σ
2ν − 1

2θν
−1

,

M =
ó1

4θ
2ν2 + 1

2σ
2ν + 1

2θν
−1

.

Then, we can solve the integrals in 5.17 to find the price of the Otko Daily Cliquet

Options according to the VG model:

Ú β

−∞
ν(dx) = −C

G
expi(βG), (5.28)

Ú β

−∞
f(ex)ν(dx) = C

G
(K2 expi(αG)−K1 expi(βG))

+ C

G+ 1 (expi(β(G+ 1))− expi(α(G+ 1))) ,
(5.29)

where α = logK2, β = logK1, and expi(x) =
s x

−∞
et

t
dt is the exponential integral.

5.2.3 Monte Carlo pricing

In Section 5.1.3, we discussed how Monte Carlo pricing methods are a powerful

tool suitable for options with known payoffs. To determine the price of One-Touch

Knock-Out Daily Cliquet Options, we simulate multiple trajectories of various

processes, calculate their expected values, and discount them to the present value

using Equation 5.16. It’s essential to note that each process generates its unique
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set of trajectories. Thus, the selection of the desired process and the execution

of simulations, following the procedures outlined in Algorithms 2, 3, and 4 or 5,

will yield N paths denoted as Si(t) with i = 1, . . . , N . The following algorithm

shows how the returns generated on each path are compared with the two strike

barriers to assess whether or not the option will be exercised. At the end of the

two loops, the payoffs of all paths are obtained, the expected value is calculated,

and the estimated price of the option is found.

Algorithm 7 Otko Option Pricing
Input: Paths of stock prices Si(t), upper barrier K1, lower barrier K2, time to
maturity T , num of generated paths N
Initialization: Set all payoffs π = 0
while i ≤ N do

for each t from 0 to T do
Compute daily return Ri(t) = Si(t)/Si(t− 1);
if Rt > K1 then ▷ rolls to the next trading day

πi ← 0
else if K2 < Rt ≤ K1 then ▷ payouts and terminates

πi ← K1−Rt

i = i+ 1
return πi

else if Rt ≤ K2 then ▷ payouts and terminates
πi ← K1−K2
i = i+ 1
return πi

end if
end for
i = i+ 1
return πi

end while
Set Π̄n = 1

N

qN
i=1 πi ▷ average payoff

return P̂otko = e−rT Π̄n ▷ option price
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Model calibration

In the context of pricing margin loans using the Lévy processes presented in

Chapter 3 the accurate determination of model parameters is crucial: the choice of

these parameters deeply influences the trajectory of the paths generated in Monte

Carlo simulations, which in turn are critical in pricing financial instruments such as

margin loans. To determine the correct parameters, a calibration process is used. In

financial markets, a pool of options with known prices serves as a reference point for

this calibration exercise. These market prices act, in fact, as reference points. The

goal is to replicate observed option prices using our stochastic models, as outlined

in Chapter 5. This entails exploring the model’s parameter space and identifying

values that minimize the difference between market prices and model-generated

prices. Consequently, parameter calibration is framed as an optimization problem,

specifically, a least-squares problem, wherein an objective function is minimized by

minimizing the squared differences between market and model prices.
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The Calibration Approach

Our calibration procedure began with S&P500 options due to their popularity

and liquidity. European vanilla options served as our initial benchmark. However,

the results of our S&P500 options calibration are not presented here, as they are

beyond the scope of this study. Our primary interest lies in analyzing individual

company movements, as options on their stock prices provide valuable insights for

parameterizing our simulations. The initial phase using S&P500 options helped

us understand the correlation between the movement of asset values in the stock

market and options prices. Thus, we have shifted our attention to three separate

individual stocks: AAPL, TSLA and NVDA. European vanilla option prices of

these securities were taken from a financial data provider [24]. In addition, we

incorporated One-Touch Knock-Out Daily Cliquets Options into our calibration

dataset, which, due to their over-the-counter nature, have lower market liquidity.

Price data for these options were provided by Intesa Sanpaolo S.p.A.

The observed market prices date back to January 20, 2016, with expiration on

January 20 of the following year, thus with a time-to-maturity T = 1.

There were two key reasons for this selection of assets.

First, these companies, especially at that moment in history, could be considered

as candidates for margin loan contracts. Although they do not perfectly embody

the ideal profile for such instruments, given their large market capitalization and

market positioning at the time, they provided a solid basis for our comprehensive

analysis.

Second, the options associated with these securities are abundant, which facilitates
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in-depth and precise analysis, thanks in part to the ready availability of historical

data. Detailed reports of these analysis will be explained later in this chapter.

6.1 Implied volatility

In addition to Lévy processes, Chapter 3 introduced the Geometric Brownian

Motion (GBM), the stochastic process behind the Black-Scholes model. GBM is

characterized by a single unobservable parameter known as volatility, which is the

standard deviation of daily log-returns in a stock’s price. In the context of options

pricing, the BS model employs implied volatility. This forward looking metric

estimates the future volatility of financial assets, such as stocks or indexes, based

on option prices associated with those assets, as outlined in [12]. Implied volatility,

denoted as σ, can be regarded as the level of volatility that, when incorporated

into the Black-Scholes formula, yields the observed market price (P ) of an option:

BS(S0, K, T, r, σ) = P.

In this equation, discussed in Section 5.1.2, the variables S0 (the current underlying

price), K (the strike price), T (the time to maturity), and r (the risk-free interest

rate) are all directly observable within the market. The implied volatility (σ),

instead, can be determined by reversing the Black-Scholes formula, using numerical

methods such as the Bisection method or the Netwon-Raphson method.

The Newton-Raphson method

The Newton-Raphson method is an iterative numerical technique for finding the

roots of a real-valued function. The method starts with an initial guess x0 and
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refines it step-by-step to get closer to the actual root. At each step, it linearly

approximates the function and solves for the root using the formula:

xn+1 = xn −
f(xn)
f ′(xn)

Where:

• xn+1 is the next approximation

• xn is the current approximation.

• f(xn) is the function value at xn.

• f ′(xn) is the derivative (first derivative) of the function at xn.

This process iterates until the desired level of accuracy is reached or until f(xn)

approaches zero sufficiently, converging to the root and iteratively improving the

approximation.

When it comes to option pricing, this method is reliable and allows us to determine

the correct value of σ corresponding to the given parameters. It is important to

note that the Black-Scholes model assumes a constant σ for all strike prices K and

times to maturity T , but in reality, σ varies with both. The relationship between

σ and K is known as the volatility smile, while its dependence on T is called the

term structure. Additionally, the relationship involving both σ(K,T ) is referred to

as the volatility surface.

In our study, we have considered the time-to-maturity to be fixed, i.e., T = 1.

We utilized the fsolve method from the Python library scipy.optimize to find the

volatility smile of European vanilla options on our stocks. This method implements

an improved Newton-Raphson method.
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Figure 6.1 displays the volatility smiles for both call and put options on AAPL

stock, traded on January 20, 2016, and expiring on January 20, 2017. These options

exhibit a moneyness ratio, i.e., the ratio K/S0, within the range [0.75, 1.35].

Figure 6.1: Observed and calibrated implied volatilities of 1 year options on the
AAPL stock, as a function of moneyness K/S0.
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6.2 Models Calibration on Option Prices

The full calibration of all parameters for the Lévy processes involves several steps

for each stock (AAPL, NVDA, TSLA) and each stochastic model (MJD, KJD, and

VG):

1. Parameter calibration based on European Vanilla Options

2. Parameter calibration based on Otko Daily Cliquets Options

3. Parameter calibration based on a mixed set of all options

We will start with an initial calibration solely based on European vanilla options.

This serves as a testing phase to validate the effectiveness of our formulas and

provides us with a benchmark for subsequent calibrations. It is expected that

due to the unique characteristics of one-touch knock-out options, the parameters

calibrated for these options may appear more aggressive. In other words, these

parameters may reflect a higher level of volatility in the underlying price movements,

considering the specific dynamics and features of Otko options. We will closely

monitor whether these expectations hold during the calibration process.

Weighted calibration

As extensively shown in [25], if we define Θ the set of parameters, the goal is to

find the optimal parameters Θ∗ that minimize the following objective function:

NØ
i=1

wi

A
Pi − f(Ki|Θ)

B2
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where wi are weights, defined as

wi = 1
spread2

i

= 1
|P bid

i − P ask
i |2

.

Here, Pi are the market prices and f is the pricing function, which depends on the

set of strike prices Ki (where i = 1, . . . , N). The specific form of f varies for each

Lévy process, as elaborated in Section 5. To address this optimization problem,

the least_squares method from the scipyȯptimize library has been employed,

which is well-suited for tackling the Nonlinear Least Squares (NLS) problem.

Nonlinear least squares optimization problem

The NLS problem aims to find the model parameters that minimize the sum of

squared differences between model predictions and observed data. It is used when

fitting complex models to data, especially when the relationship between variables

is nonlinear. The least_squares method, used with the trf algorithm, aims to

solve constrained minimization problem, allowing for setting boundaries condition

and a starting point. The trf algorithm, also known as Trust-Region-Reflective,

iteratively adjusts model parameters while adhering to a predefined trust region

representing the acceptable range of parameter changes. During each iteration, it

assesses the cost function to determine whether parameter adjustments enhance

the fit. If improvements are observed, the adjustments are accepted. Otherwise,

the algorithm either reduces the step size or changes direction. This process allows

the algorithm to navigate the parameter space efficiently, converging towards a

solution. Convergence occurs when one of the termination conditions is met. [26]
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6.2.1 Calibration on European Vanilla Options

In this context, options with a K/S0 ratio between 0.75 and 1.35 were chosen.

This range offers computational convenience, reducing numerical and stability

issues. Furthermore, it is considered to be representative of typical market behavior.

Options with moneyness close to 1 (i.e., options close to the current price of the

underlying asset) tend to exhibit higher liquidity and more active trading.

Algorithm The pseudo-code 8 demonstrates how the parameters of the Merton

Jump-Diffusion model are calibrated. It is required to minimize the cost function,

i.e. the objective function which measures the sum of squared differences between

the market prices of put options and the prices predicted by the model.

The algorithm takes an initial guess denoted as x0. and an array of bounds as inputs.

The initial guess set helps the convergence to the optimal solution while bounds to

set boundaries for the parameter space. The outcome is an array containing the

best estimation for the model parameters (σ, λ,m, v). Here’s a breakdown of the

steps:

1. The cost function updates iteratively the estimation of the four model param-

eters.

2. Using the current parameter estimates, the cost function computes the theo-

retical prices for put options.

3. It calculates the differences between the market option prices and the model

prices, weighting them by the bid-ask spread of each option.

4. The sum of squared differences quantifies the overall error.
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5. The optimization algorithm finds the parameter set that minimizes this error.

6. An array containing the best estimates for each parameter is returned.

The same procedure is performed with call option prices, using the specific Merton

formula for them.

Algorithm 8 Parameter Calibration for Put Options
Input: Initial guess x0, bounds [lb, ub], strike prices strikes, market prices
mkt_prices, weights w
Initialization: x← x0

function cost_function(x, strikes,mkt_prices)
sigma, lambd,meanJ, stdJ ← x

M ← Merton_pricer(S0, T, r, q, sigma, lambd,meanJ, stdJ)
th_prices←M.closed_formula_put(strikes)
sq_err ← q

w · (th_prices−mkt_prices)2

return sq_err
end function

Optimization:
x ← least_squares(cost_function, x0, args = (strikes,mkt_prices), bounds =
[lb, ub])

return x← x[: 4]
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It’s worth noting that this calibration process remains consistent when applying

other models such as the Kou Jump-Diffusion (KJD) or Variance Gamma (VG)

models. The primary differences lie in the choice of the model pricer class and

the specific formula used to compute option prices. All the formulas described in

Section 5 have been implemented for this purpose. Some results of the calibration

process are shown in Figure 6.2 and 6.3.

Figure 6.2: TSLA call options repriced using closed formulas and Monte-Carlo
pricing with the calibrated parameters
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Figure 6.3: NVDA put options repriced using closed formulas and Monte-Carlo
pricing with the calibrated parameters

6.2.2 Calibration on Otko Daily Cliquet Options

In this section, we will discuss the calibration of One-Touch Daily Cliquets (OTKO)

options using approximate formulas, as previously explored in Chapter 5. We

have at our disposal five Otko contracts, all with a one-year maturity. It is

important to note that these five contracts differ based on the pairs of strikes

[K1/100, K2/100], representing upper and lower barriers, where K1 and K2 are

percentages. Specifically, we will consider a set of options composed of the following

strike pairs: [0.70, 0], [0.75, 0], [0.80, 0.70], [0.85, 0.75], and [0.90, 0.80].

Algorithm Similarly to what Algorithm 8 demonstrates, the following 10 illus-

trates the calibration method for the Variance Gamma process parameters, focusing

exclusively on One-Touch Knock-Out Daily Cliquets Options. The steps involved

in this calibration process closely resemble those in the previous pseudo-code with

the primary distinction being the utilization of a specific VG function designed to
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approximate option prices, as elaborated upon in Section 5.2.2. The process of

calibrating parameters for the Merton Jump-Diffusion and Kou Jump-Diffusion

models remains consistent, requiring only the use of the correct model and the

application of the corresponding pricing formula.

Algorithm 9 Parameter Calibration for Otko Options
Input: Initial guess x0, bounds [lb, ub], strike prices strikes, market prices
mkt_prices, weights w
Initialization: x← x0

function cost_function(x, strikes,mkt_prices)
sigma, theta, nu← x

V G← VG_pricer(S0, T, r, q, sigma, lambd, nu)
th_prices← V G.closed_formula_otko(strikes)
sq_err ← q

w · (th_prices−mkt_prices)2

return sq_err
end function

Optimization:
x ← least_squares(cost_function, x0, args = (strikes,mkt_prices), bounds =
[lb, ub])

return x← x[: 3]
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Figure 6.4: Otko Daily cliquets option on all stocks repriced using closed formulas
with the calibrated parameters
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Figure 6.5: Otko Daily cliquets options on all stocks repriced using Monte-Carlo
technique with the calibrated parameters
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Figures 6.4 and 6.5 contain qualitative plots that illustrate the results of this

calibration process applied to all the models for each stock. In these plots, the black

segment represents the market bid-ask spread, while the midpoint is indicated with

a red marker labeled Market price.

It is evident that the best calibration results are achieved for the TSLA stock, where

all models reprice the options with nearly zero error, whether utilizing closed-form

solutions or Monte Carlo pricing. For AAPL and NVDA, the only notable concern

arises with the Kou model, which experiences minor difficulties in pricing the first

two options, those with K2 = 0. Nonetheless, there remains a high degree of

consistency between approximate formulas and Monte Carlo technique.

6.2.3 Calibration on a Mixed Set of Options

At this stage, we conducted a Mixed calibration, incorporating a total of 5 Call

Options, 5 Put Options, and 5 One-Touch Knock-Out Daily Cliquet Options, all

sharing the same start and expiry date. For each stock and each model under

consideration, the calibration process entailed the following steps:

1. Starting with an initial guess for the model’s parameters.

2. Defining bounds within the parameter space, as done in previous cases.

3. Optimizing the cost function, which, in this instance, differs from previous

calibrations because it takes into account all three types of options and,

consequently, the sum of squared errors for each.

Algorithm 10 outlines the steps and the content of the cost function. We have

instantiated the <model_name>_pricer class, where parameter estimates are up-

dated progressively. Subsequently, we determine theoretical prices and aggregate
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the squares of all errors. We specify that we will showcase the code for searching the

best-fitting parameters of the Kou model. However, as in previous cases, Merton

and Variance Gamma models are interchangeable.

Algorithm 10 Parameter Calibration for Otko Options
Input: Initial guess x0, bounds [lb, ub], call strikes strikes, put strikes p_strikes,
otko strikes o_strikes, call market prices c_mkt_prices, put market prices
pmkt_prices, otko market prices o_mkt_prices
Initialization: x← x0

function cost_function(x, strikes,mkt_prices)
σ, λ, p, η1, η2 ← x

K ← Kou_pricer(S0, T, r, q, σ, λ, p, η1, η2)
c_th_prices← K.closed_formula_call(c_strikes)
sq_err ← q(c_th_prices− c_mkt_prices)2

p_th_prices← K.closed_formula_put(p_strikes)
sq_err2← q(p_th_prices− p_mkt_prices)2

o_th_prices← K.closed_formula_otko(o_strikes)
sq_err3← q(o_th_prices− o_mkt_prices)2

return sq_err1 + sq_err2 + sq_err3
end function

Optimization:
x← least_squares(cost_function, x0, args, bounds = [lb, ub])

return x← x[: 5]
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It is important to emphasize that, in this third case, a weighted calibration approach

is not feasible. The reason lies in the significantly different characteristics of the

options under consideration, particularly in terms of bid-ask spreads. The bid-ask

spread serves as an indicator of option liquidity, reflecting the volume of market

trading activity. Notably, European vanilla options exhibit bid-ask spreads that

are substantially narrower than those of Otko Daily Cliquets options. Attempting

a weighted calibration would entail assigning a disproportionately high weight to

the vanillas and an exceedingly low weight to the OTKO options. This would

essentially revert to the calibration approach illustrated in Section 6.2.1.
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(a) Call Options for TSLA stock repriced by all models calibrated on mixed set

(b) Put Options for TSLA stock repriced by all models calibrated on mixed set

(c) Otko Options for TSLA stock repriced by all models calibrated on mixed set

Figure 6.6: All options repriced using closed-forms solution with the parameters
from the mixed calibration
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Some results of this last calibration can be observed in Fig. 6.6. The reported

results were obtained by running the three models with parameters resulting from

the mixed calibration. To validate these findings and appreciate the differences in

the calibration processes, the initial options were repriced, grouped by option type.

We present the results of this repricing performed with TSLA options. It is worth

noting that the results obtained with other stocks present the same behaviour, i.e.

the identified patterns remain consistent. Specifically:

1. Fig. 6.6a Repricing call options using non-calibrated parameters exclusively

for call options generates higher prices at the same strike.

2. Fig. 6.6b Repricing put options using parameters from the Mixed calibration

results in lower prices than the actual market ones at the same strike price.

3. Fig. 6.6c Repricing Otko options with parameters from the mixed calibration

yields results of less straightforward interpretation. The Kou model performs

consistently, providing lower prices for all OTKO contracts. Meanwhile, the

Merton model and Variance Gamma process exhibit a similar pattern for

OTKO contracts with both strike prices different from 0; they price these

contracts lower than the originals. However, they tend to overvalue the first

two contracts with K2 = 0.
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6.3 Results Analysis

This section focuses on the collection and analysis of calibration results. Due to the

extensive number of stocks analyzed, we’ll focus on the most significant findings.

Notably, these patterns often replicate across different Lévy processes.

In Figure 6.7, we present the calibrated parameter sets for the three models. A

notable observation is the variation in parameter values obtained from calibration

on different sets of options.

Specifically, when considering the implied volatility (σ), which is common to all

examined Lévy processes, a consistent trend emerges. Calibration on call options

consistently results in a significantly lower σ compared to calibration on put options

across all analyzed stocks. However, the interpretation becomes more intricate when

examining calibration results for OTKO options and the mixed set. For instance,

when analyzing TSLA stock, the σ derived from the mixed calibration is notably

higher than that from the OTKO calibration. In contrast, AAPL consistently

exhibits a lower σ from the mixed calibration compared to the OTKO one.

Another parameter of interest is λ, representing the frequency of jumps per year

in both Merton and Kou Jump Diffusion models. Calibrations on OTKO options

consistently yield higher λ values across all analyzed stocks, which aligns with the

nature of OTKO options, known for pricing significant downward movements in

stock prices.

Additionally, when examining parameters related to the Variance Gamma process,

specifically µ+ and µ−, representing the mean of upward and downward jumps,

respectively, an interesting pattern emerges. Calibration on OTKO options consis-

tently results in higher values for µ− compared to µ+, indicating that, on average,
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downward jumps are larger than upward jumps.

Similar observations hold when analyzing jump parameters for the MJD and KJD

models. In both cases, parameters such as the mean (m) of jumps in MJD and η1

and η2 in KJD demonstrate that, on average, there are bigger negative movements

than positive ones.

We can also conduct a general comparison among the parameters obtained for each

stock across all processes. It becomes apparent that the parameters calibrated for

TSLA options tend to be higher than the other two models in most cases. This

trend is particularly noticeable when considering volatility (σ), which consistently

yields the highest values. The reason for this trend is not clear nor readily derivable,

as the calibration of option parameters is influenced by multiple factors, including

historical volatility, the availability of options with different characteristics, and

specific stock market dynamics.

As discussed earlier, the diversity of the companies considered, can lead to differences

in investor expectations and, consequently, parameter estimations when it relies on

option prices. However, the exact reasons for these differences can vary depending

on the specific circumstances of each company and the market context, rendering a

concise explanation complex.

Overall, it should be noted that the Double Exponential Jump Diffusion model

represents an improvement over the Gaussian Jump Diffusion model, and this

distinction becomes evident in the pricing results. Furthermore, the Variance

Gamma model, despite relying on three parameters, demonstrates its ability to

capture the nuances of option pricing, making it an optimal choice for pricing

derivatives. These differences will be explored in greater detail in Chapter 7.

Figures 6.8, 6.9, and 6.10, later in this section, provide a more in-depth analysis,
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illustrating the Monte-Carlo simulations (Algorithms 2, 3, 4, 5) with all the sets

of parameters calibrated, for a total of N = 5000 paths in 252 days.

All sets of parameters calibrated

(a) MJD and KJD parameters calibrated on option prices

(b) VG1 (Time changed Brownian motion) and VG2 (Difference of Gammas)
parameters calibrated on option prices

Figure 6.7: Overview of all the models parameters found by calibration on the
different sets of options
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Monte-Carlo simulations

Figure 6.8: Monte-Carlo simulation of paths generated with the Merton Jump
Diffusion model with the four set of parameters calibrated for AAPL stock
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Figure 6.9: Monte-Carlo simulation of paths generated with the Kou Jump
Diffusion model with the four set of parameters calibrated for TSLA stock
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Figure 6.10: Monte-Carlo simulation of paths generated with the Variance Gamma
model with the four set of parameters calibrated for NVDA stock
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Let us now highlight the key observations arising from the Monte Carlo simulations

depicted in the preceding figures.

1. The distributions of the final price from simulations (i.e., the price at t = 252)

can provide valuable insights in the analysis of Monte Carlo simulated paths.

Distributions characterized by a pronounced peak and a narrow standard

deviation display a substantial portion of paths that quickly approach zero. In

addition to this feature, there are also exceptionally high extreme values (i.e.,

observing the 95-th quantile), indicating paths that attain very high prices.

(see 6.8).

2. The presence of extreme values on the right side is more pronounced in

simulations conducted with parameters calibrated for the OTKO options and

the mixed set. This further confirms our expectations, as previously discussed

at the beginning of this Chapter, Section 6.2. In general, the inclusion of

OTKO options during calibration results in parameter values that exhibit a

higher degree of risk-taking, leading to stochastic paths that either sharply

surge or precipitously decline.

3. In conclusion, all three jump models analyzed effectively capture significant

market fluctuations. Both the two Jump Diffusion models and the Pure Jump

model provide a solid foundation for pricing margin loans. Their differences

in this regard will be further examined in the subsequent chapter.

To conclude our analysis, we present a summary of the computational cost associated

with each calibration in terms of time.
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Figure 6.11: Summary of time required by each calibration procedure

Figure 6.11 illustrates the time required for each calibration process. Without a

doubt, the Kou Jump Diffusion model, when calibrated with vanilla options, stands

out as the most time-consuming. This is primarily due to the involvement of a set of

recursive functions, detailed in [14] Appendix B, which are used to compute the sum

of two double exponential random variables. As a result this cost carries over to the

calibration based on the mixed set of options, requiring nearly 3 hours. In contrast,

the calibration involving One-Touch Knock-Out Daily Cliquet Options, thanks to

its computationally straightforward approximate formula, requires minimal time.
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Margin Loans pricing

In light of the features of margin loans outlined in Section 2.2, we are now prepared

to simulate some contracts of this nature on the stocks we introduced in Chapter 6.

We have devised three distinct margin loans and have evaluated their outcomes

on each of the aforementioned stocks. In this chapter, we delve into the actual

pricing of these financial instruments. Specifically, we will simulate Monte Carlo

paths using the parameters calibrated in Chapter 6, employing the sets of options

Otko Daily Cliquets and the mixed set, which includes both European vanilla and

Otko options. For each path, we will assess the payoff of the specific margin loan

contract and evaluate its average loss. This loss will enable us to determine the

effective financing cost, or in other words, the interest rates. It’s worth noting that

the results obtained will be highly influenced by the choice of stochastic process.

In the next section, we will provide a detailed overview of the characteristics that

define a margin loan, as well as the algorithm used to estimate the loss on each

contract.
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7.1 Contract features and algorithm

The essential features required for a thorough analysis of our financial instrument

are as follows:

1. Date and Time Period: The margin loan contract was initiated on January 20,

2016, with a duration spanning 3 years. This date corresponds to the trading

date of options, taken into account for the calibration scope.

2. Loan Amount: The loan amount stands at €1,000,000, representing the funds

borrowed for the contract.

3. Loan-to-Value Ratio (LTV): The LTV ratio indicates that the loan is secured

by collateral worth 1/LTV% of the loan amount.

4. Collateral: The collateral amount can be determined using the equation

Collateral = Loan/LTV .

5. Margin Call Threshold: The margin call threshold is the critical level that

triggers the reintegration process. When the value of the collateral falls below

(1−Margin Call Threshold)× Loan, a margin call is initiated. The borrower

is required to add a specific number of shares to restore the LTV ratio to its

original value.

6. Closing Price: The closing price of the stock on the contract’s start date,

denoted as S(0). This value is crucial for calculating the initial number of

shares required as collateral at the beginning of the financing arrangement.

7. Initial Number of Shares as Collateral: This number can be computed di-

rectly based on the stock price at t = 0 using the formula: #of shares =
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Collateral/S(0).

8. Max Collateral Shares Available: This figure represents the upper limit of

shares that can be utilized as collateral throughout the loan period. It is

important to note that this number has illustrative purposes, since the company

may not have an unlimited quantity of shares available as collateral for the

lender. Therefore, a maximum limit was set at twice the initial value for

exercise purposes.

Algorithm 11 outlines the procedure for evaluating Monte Carlo simulation paths

for a specific given based on a specific Lévy process. The overall process iterates

through each path and assesses, day by day, whether a margin call has occurred,

following the rules outlined above. At the conclusion of each path, the total loss

for that realization is calculated. This total loss will be 0 if the final price ST

multiplied by the total number of shares requested remains above the loan amount.

Otherwise, the absolute value of the loss is computed.
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Algorithm 11 Margin Loan Price Calculation
Input: Paths of stock prices Si(t), loan amount F , loan-to-value ltv, maximum
allowable shares max_shares, margin call trigger trigger, # of simulation paths
N , loan period T ;

Initialization: Collateral: C = F/ltv, # of shares required currently: shares =
C/S[0], time-steps: days = 252 · T ;

for each i from 0 to N do
for each day from 0 to days− 1 do

price← Si[day] ▷ Get current price
if shares < max_shares then ▷ Reintegration allowed

if (price · sharesi) ≤ ((1 - trigger) · F ) then
shares_needed = C/price ▷ Add shares for reintegration
if shares_needed ≥ max_shares then

Set sharesi to max_shares ▷ Max availability reached
else

Set sharesi ← shares_needed
end if

else ▷ No big downward jumps encountered
Continue.

end if
end if

end for

S[days] the price at the end of the simulation path.
Calculate final_valuei ← Si[days]× sharesi.
if final_valuei ≥ F then

Set lossi to 0.
else

Set lossi to F − final_valuei.
end if

end for
return loss array
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7.1.1 Some examples

To gain insights into the behavior of margin loans, we conducted a series of tests

with the same loan amount but varying loan-to-value ratios (LTVs), resulting in

different collateral and the number of shares required. The duration of each test

remained consistent at three years. We applied each of these tests to the three

selected stocks: NVDA, TSLA, and AAPL. In this section, we will present the

results concerning total losses for each model, evaluating the outcomes of three LTV

ratios for each of our stock analyzed. The Monte Carlo simulations to estimate

total losses and calculate the resulting interest rate were conducted by generating

20,000 paths over a period of T = 3 ·days, where days = 252 represents the number

of financial days in a year, as specified in [27]. We chose to adopt a Margin Call

Threshold of 0.07, meaning that the threshold yield Rt that triggers the margin

call is set at th = 0.93. Therefore, collateral replenishment is required when the

price of the respective stock experiences a daily return of -7All these considerations

apply to the three different LTV ratios (LTV = 0.85, LTV = 0.7, and LTV = 0.75)

mentioned earlier. These ratios represent a range from the lowest amount of

collateral required to the highest. Comprehensive results will be summarized in

Section 7.2, where we will show the margin loans pricing.
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Margin Loan Contracts for Stock: AAPL

(a) AAPL Contract, LTV = 0.85 (b) AAPL total estimated loss comparison

Figure 7.1: Margin loan contract with LTV ratio of 0.85, to Apple Inc. starting
on January 20, 2016. Overview of details and losses.

(a) AAPL Contract, LTV = 0.70 (b) AAPL total estimated loss comparison

Figure 7.2: Margin loan contract with LTV ratio of 0.70, to Apple Inc. starting
on January 20, 2016. Overview of details and losses.

(a) AAPL Contract, LTV = 0.55 (b) AAPL total estimated loss comparison

Figure 7.3: Margin loan contract with LTV ratio of 0.55, to Apple Inc. starting
on January 20, 2016. Overview of details and losses.
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Margin Loan Contracts for Stock: NVDA

(a) NVDA Contract, LTV = 0.85 (b) NVDA total estimated loss comparison

Figure 7.4: Margin loan contract with LTV ratio of 0.85, to NVIDIA Corp.
starting on January 20, 2016. Overview of details and losses.

(a) NVDA Contract, LTV = 0.70 (b) NVDA total estimated loss comparison

Figure 7.5: Margin loan contract with LTV ratio of 0.70, to NVIDIA Corp.
starting on January 20, 2016. Overview of details and losses.

(a) NVDA Contract, LTV = 0.55 (b) NVDA total estimated loss comparison

Figure 7.6: Margin loan contract with LTV ratio of 0.55, to NVIDIA Corp.
starting on January 20, 2016. Overview of details and losses.
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Margin Loan Contracts for Stock: TSLA

(a) TSLA Contract, LTV = 0.85 (b) TSLA total estimated loss comparison

Figure 7.7: Margin loan contract with LTV ratio of 0.85, to Tesla Inc. starting
on January 20, 2016. Overview of details and losses.

(a) TSLA Contract, LTV = 0.70 (b) TSLA total estimated loss comparison

Figure 7.8: Margin loan contract with LTV ratio of 0.70, to Tesla Inc. starting
on January 20, 2016. Overview of details and losses.

(a) TSLA Contract, LTV = 0.55 (b) TSLA total estimated loss comparison

Figure 7.9: Margin loan contract with LTV ratio of 0.55, to Tesla Inc. starting
on January 20, 2016. Overview of details and losses.
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Comments

1. The most immediate observation that comes out from the nine contracts

simulated, from Fig. 7.1 to Fig. 7.9 is that the Kou model generates higher

losses compared to the other two models. These differences are enhanced in

all the margin loans proposed, when using simulations run with the Otko

calibrated parameters. In the other cases, all the losses generated are roughly

comparable.

2. When considering the three tested LTV ratios, a consistent trend emerges:

setting the LTV at 0.85 results in the highest losses, while an LTV of 0.7

leads to moderate losses, and an LTV of 0.55 results in the lowest losses. This

pattern is not surprising because when the required collateral at the start of

the contract is higher, the bank places a greater portion of the loss risk on the

initial collateral, thereby protecting itself from the outset.

3. The margin loans tested on AAPL (Fig. 7.1, 7.2, and 7.3) reveal that the

KJD model appears to be the most conservative from the bank point of view,

resulting in a higher expected loss. Regarding the other two models, MJD

evaluates a greater loss when simulated with parameters from the OTKO

calibration. However, in the case of the mixed calibration, the two models,

MJD and VG perform almost equally everywhere. In any case, the parameters

calibrated on the OTKO options consistently yield significantly higher losses.

4. Concerning the NVDA contracts, all the charts shown in Figures 7.4, 7.5, and

7.6 illustrate the same relationship established between the three calibrated

Lévy Processes based on the OTKO options: KJD results in almost double

the loss compared to MJD, which, in turn, outperforms the VG model. This
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trend changes when simulating paths with the parameters calibrated using

the mixed set. In this case, the MJD, KJD, and VG models all produce very

similar losses overall, altering the final ranking: MJD prevails over KJD in

Fig. 7.4 and 7.6.

5. The margin loan contracts offered for TSLA produce results that slightly differ

from the other stocks. As shown in Figures 7.7 and 7.9, the losses generated

by the KJD model when simulating with the OTKO-calibrated parameters or

the mixed set calibrated parameters are approximately the same. However,

in Figure 7.8, a different trend is observed, similar to the other cases. The

most significant difference is observed in the MJD and VG models. Not only

do the simulations using parameters estimated with the mixed set of options

produce considerably higher losses than the OTKO ones, but in this case, the

VG model consistently generates higher losses than MJD in all the provided

charts.

7.2 Pricing results

The formula for calculating the effective interest rate based on the initial loan and

losses is as follows:

Effective Interest Rate = Total Loss
Initial Loan × 100, (7.1)

which is expressed in percentage. Detailed calculations and results regarding the

estimated cost of the loan for each stock, along with each model run using the

two calibrated parameter sets (on Otko Daily Cliquets options and on the mixed
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set of options), can be found in Figure 7.10. This figure contains three tables,

each summarizing the findings for different scenarios. In the second column of the

tables, there can be found the contract details considered for each scenario. Pa-

rameters of the contract that vary based on the selected LTV are highlighted in gray.

Comments

Given that the actual interest rate is directly related to the estimated total loss,

as demonstrated by Equation 7.1, the findings presented in the tables in Figure

7.10 are in complete alignment with those detailed in Section 7.1.1. Notably, the

Kou model consistently yields the highest interest rates. This implies that if a

bank chooses to adopt this model for pricing margin loans, it is opting for the

most conservative approach — one that offers greater repayment, demanding a

significantly higher cost of borrowed capital.

Moreover, the relationships between the models, as previously explained in the

context of expected losses, remain valid and consistent when assessing interest

rates. It’s noteworthy that, contract by contract, the Merton and VG models

produce highly comparable interest rates, generally exhibiting close alignment. As

previously observed, the contract with an LTV of 0.55 allows for relatively lower

interest rates across the board, proving to be up to expectations. Indeed, it is a

foregone conclusion that the company involved can repay the loan at a lower rate

if it can secure more collateral at the principle.
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Figure 7.10: Cost of the three simulated margin loans. Comparison of the interest
rates estimated by each stochastic process.

100



Chapter 8

Conclusions

This thesis embarked on a journey to examine and compare various stochastic

models for pricing margin loans, a financial instrument that is sometimes unfamiliar

because of the target companies it is aimed at. Our central focus was simulating

diverse market scenarios to assess expected losses associated with margin loan

issuance. Using Monte Carlo methods, we crafted simulations incorporating factors

specific to margin loans, borrowing companies, and broader market trends.

In our pursuit of modeling potential price trajectories of the considered companies,

we chose to employ jump models, particularly three Lévy processes. This choice

was justified by the unique characteristics of margin loans, which necessitated the

consideration of extreme price drop scenarios. Our choice of the Merton and Kou

Jump Diffusion models and the Pure Jump Variance Gamma model proved to be

effective in accurately modeling extreme events. The calibration process of these

model, as detailed in Chapter 6, was a critical step in our research. In this endeavor,

we used approximated pricing formula tailored for generic gap options to derive

the ones for pricing One-Touch Knock-Out Daily Cliquets options, within all the
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three models taken into account in our journey.

Our findings revealed intriguing insights into the calibration process. Solely relying

on plain vanilla options resulted in less volatile simulated scenarios with significantly

lower values in the tail of the final price distribution. In contrast, utilizing OTKO

Daily Cliquets introduced more aggressive jump parameters in terms of intensity and

frequency. Therefore, we explored also a mixed calibration approach, incorporating

both vanilla and OTKO options, to achieve a balanced representation.

Comparing the results, we found that the parameters derived from Otko options

and the mixed set were most suitable for our margin loan pricing work. In the

final chapter, we evaluated different margin loan contracts and calculated the

applicable interest rates for each financial model. Notably, the Kou model provided

the highest estimates of expected losses, while the other two models, although

sometimes diverging from Kou’s estimates, remained consistent with each other.

In conclusion, this thesis significantly advances the field of margin loan pricing,

extending its applicability beyond the specific stocks analyzed. Future research may

encompass the analysis of different companies, calibration of models using associated

options, and further exploration of gain and loss distributions. Additionally,

implementing Value-at-Risk assessments can provide deeper insights into margin

loans and their associated risks.

The methodologies and insights generated through this research have the potential

to inform and shape risk assessment and management practices in the financial

industry. By broadening the scope of analysis and delving into more intricate

metrics, future studies can contribute to a more comprehensive understanding

of margin loans, ultimately facilitating a more informed approach to their risk

management.
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Appendix A

Python Code

Listing A.1: Black-Scholes Pricer - Class Definition

1 c l a s s BS_Pricer :

2 de f __init__( s e l f , S0 , r , q , sigma , ttm , e x e r c i s e , K) :

3 s e l f . S0 = S0 # current p r i c e

4 s e l f . r = r # i n t e r e s t r a t e

5 s e l f . sigma = sigma # d i f f u s i o n c o e f f i c i e n t

6 s e l f . ttm = ttm # maturity in years

7 s e l f . q = 0 # div idend y i e l d

8 s e l f . e x e r c i s e = None

9 s e l f .K = None # s t r i k e

10

11 de f BlackScholesPath ( s e l f , days , N) :

12 " " " Paths gene ra t i on " " "

13 S = np . z e r o s ( ( days , N) )

14 S [ 0 ] = s e l f . S0

15 dt = s e l f . ttm / days

16 f o r t in range (1 , days ) :
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17 Z = np . random . normal ( s i z e=N)

18 S [ t ] = S [ t − 1 ] ∗ np . exp ( ( s e l f . r − 0 .5 ∗ s e l f . sigma ∗∗ 2)

∗ dt + s e l f . sigma ∗ np . s q r t ( dt ) ∗ Z)

19 re turn S

20

21 de f c losed_formula_ca l l ( s e l f , K) :

22 " " " c l o s e d formula f o r c a l l opt i ons " " "

23 s e l f .K = K

24 d1 = (np . l og ( s e l f . S0 / s e l f .K) + ( s e l f . r − s e l f . q + s e l f .

sigma ∗∗ 2 / 2) ∗ s e l f . ttm ) / ( s e l f . sigma ∗ np . sq r t ( s e l f . ttm ) )

25 d2 = (np . l og ( s e l f . S0 / s e l f .K) + ( s e l f . r − s e l f . q − s e l f .

sigma ∗∗ 2 / 2) ∗ s e l f . ttm ) / ( s e l f . sigma ∗ np . s q r t ( s e l f . ttm ) )

26 re turn s e l f . S0 ∗ np . exp(− s e l f . q ∗ s e l f . ttm ) ∗ s s . norm . cd f ( d1 )

− ( s e l f .K ∗ np . exp(− s e l f . r ∗ s e l f . ttm ) ∗ s s . norm . cd f ( d2 ) )

27

28 de f closed_formula_put ( s e l f , K) :

29 " " " c l o s e d formula f o r put opt ions " " "

30 s e l f .K = K

31 d1 = (np . l og ( s e l f . S0 / s e l f .K) + ( s e l f . r − s e l f . q + s e l f .

sigma ∗∗ 2 / 2) ∗ s e l f . ttm ) / ( s e l f . sigma ∗ np . s q r t ( s e l f . ttm ) )

32 d2 = (np . l og ( s e l f . S0 / s e l f .K) + ( s e l f . r − s e l f . q − s e l f .

sigma ∗∗ 2 / 2) ∗ s e l f . ttm ) / ( s e l f . sigma ∗ np . s q r t ( s e l f . ttm ) )

33 re turn s e l f .K ∗ np . exp(− s e l f . r ∗ s e l f . ttm ) ∗ s s . norm . cd f (−d2 )

− s e l f . S0 ∗ np . exp(− s e l f . q ∗ s e l f . ttm ) ∗ s s . norm . cd f (−d1 )

34

35 de f MonteCarlo_Call ( s e l f , K, time , days , N) :

36 " " " MonteCarlo p r i c i n g opt ions " " "

37 s e l f .K = K

38 payo f f s = [ ]

39 SBlackScholes = s e l f . BlackScholesPath ( days , N)

108



Appendix: Python Code

40 paths_at_t = SBlackScholes [ time , : ]

41 f o r i in range ( l en ( paths_at_t ) ) :

42 payo f f s = s e l f . payo f f_van i l l a ( paths_at_t [ i ] , ’ c a l l ’ )

43 re turn np . mean( payo f f s ) ∗ np . exp(− s e l f . r ∗ s e l f . ttm )

44

45 de f payo f f_van i l l a ( s e l f , St , type_o ) :

46 " " " european put and c a l l " " "

47 i f type_o == ’ c a l l ’ :

48 re turn s e l f . payo f f_ca l l ( St )

49 e l i f type_o == ’ put ’ :

50 re turn s e l f . payoff_put ( St )

51 e l s e :

52 r a i s e ValueError ( ’ P lease s e l e c t " c a l l " or " put " type . ’ )

53 [ . . . ]

Listing A.2: Merton Pricer - Class Defintion

1 c l a s s Merton_pricer ( ) :

2 de f __init__( s e l f , S0 , K, ttm , r , q , sigma , lambd , meanJ , stdJ ,

e x e r c i s e ) :

3 s e l f . S0 = S0 # current STOCK p r i c e

4 s e l f .K = None # s t r i k e

5 s e l f . ttm = ttm # maturity in years

6 s e l f . q = 0 #div idend y i e l d

7 s e l f . r = r # i n t e r e s t r a t e

8 s e l f . sigma = sigma # d i f f u s i o n c o e f f i c i e n t

9 s e l f . lambd = lambd # Num of jumps per year

10 s e l f . meanJ = meanJ # m: Mean o f jump s i z e

11 s e l f . stdJ = stdJ # v : St . dev . o f jump s i z e

12 s e l f . e x e r c i s e = None
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13 de f MertonPath ( s e l f , days , N) :

14 " " " Paths Generation " " "

15 dt = s e l f . ttm / days

16 s i z e = ( days , N)

17 SMerton = np . z e r o s ( s i z e )

18 SMerton [ 0 ] = s e l f . S0

19 f o r t in range (1 , days ) :

20 mean = np . exp ( s e l f . meanJ + s e l f . stdJ ∗∗ 2 / 2)

21 Z = np . random . normal ( s i z e =(N, ) ) # Brownian motion ,

d i f f u s i o n component

22 Nj = np . random . po i s son ( lam=s e l f . lambd ∗ dt , s i z e =(N, ) )

23 J = np . random . normal ( s e l f . meanJ , s e l f . stdJ , s i z e =(N, ) )

24 jump_component = J ∗ Nj

25 drift_component = ( s e l f . r − s e l f . lambd ∗ (mean − 1) − 0 .5

∗ s e l f . sigma ∗∗ 2) ∗ dt # r i sk −neut ra l adjustment

26 dif fus ion_component = s e l f . sigma ∗ np . s q r t ( dt ) ∗ Z

27 SMerton [ t ] = SMerton [ t − 1 ] ∗ np . exp ( drift_component +

dif fus ion_component + jump_component )

28 re turn SMerton

29

30 de f c losed_formula_ca l l ( s e l f , K) :

31 " " " c l o s e d formula f o r c a l l ( put ) opt ions " " "

32 s e l f .K = K

33 V = 0

34 mean = np . exp ( s e l f . meanJ + s e l f . stdJ ∗∗ 2 / 2)

35 f o r k in range (40) :

36 r_k = s e l f . r − s e l f . lambd ∗ (mean − 1) + ( k ∗ np . l og (mean

) ) / s e l f . ttm

37 sigma_k = np . sq r t ( s e l f . sigma ∗∗ 2 + ( k ∗ s e l f . stdJ ∗∗ 2)

/ s e l f . ttm )
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38 k_fact = f a c t o r i a l ( k )

39 V += (np . exp(−mean ∗ s e l f . lambd ∗ s e l f . ttm ) ∗ np . power (

mean ∗ s e l f . lambd ∗ s e l f . ttm , k ) ) / k_fact ∗ BS_Pricer .

B lackScho les ( type_o=’ c a l l ’ , S0=s e l f . S0 , K=s e l f .K, ttm=s e l f . ttm , r=

r_k , q=s e l f . q , sigma=sigma_k )

40 re turn V

41

42 de f closed_formula_otko ( s e l f , K1 , K2) :

43 " " " approximated formula f o r otko opt ions " " "

44 t o l = 1e−6

45 phi1 = s s . norm . cd f (np . l og (K1) , s e l f . meanJ , s e l f . stdJ )

46 phi2 = s s . norm . cd f (np . l og (K2 + t o l ) , s e l f . meanJ , s e l f . stdJ )

47 phi4 = s s . norm . cd f (np . l og (K1) − s e l f . stdJ ∗∗ 2 , s e l f . meanJ ,

s e l f . stdJ )

48 phi5 = s s . norm . cd f (np . l og (K2 + t o l ) − s e l f . stdJ ∗∗ 2 , s e l f .

meanJ , s e l f . stdJ )

49 den = s e l f . r + s e l f . lambd ∗ phi1

50 num = (1 − np . exp(− s e l f . ttm ∗ den ) )

51 Int = s e l f . lambd ∗ (K1 ∗ phi1 − K2 ∗ phi2 − (np . exp ( s e l f .

meanJ + s e l f . stdJ ∗∗ 2 / 2) ∗ ( phi4 − phi5 ) ) )

52 re turn Int ∗ num / den ∗ 100

53

54 [ . . . ]
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Listing A.3: Kou Pricer - Class Definition

1 c l a s s Kou_pricer ( ) :

2 de f __init__( s e l f , S0 , K, ttm , r , sigma , lambd , p , eta1 , eta2 ,

e x e r c i s e ) :

3 s e l f . S0 = S0 # current STOCK p r i c e

4 s e l f .K = None # s t r i k e

5 s e l f .T = ttm # maturity in years

6 s e l f . r = r # i n t e r e s t r a t e

7 s e l f . sigma = sigma # d i f f u s i o n c o e f f i c i e n t ( annual

v o l a t i l i t y )

8 s e l f . lambd = lambd # Num of jumps per year

9 s e l f . p = p # p : p r o b a b i l i t y o f upward jumps

10 s e l f . q = 1 − s e l f . p # q : p r o b a b i l i t y o f downward jumps

11 s e l f . eta1 = eta1 # rat e o f exponent i a l r . v . (mean : 1/ eta1 )

12 s e l f . eta2 = eta2 # rat e o f exponent i a l r . v . (mean : 1/ eta2 )

13 s e l f . e x e r c i s e = None

14

15 de f KouPath( s e l f , days , N) :

16 " " " Paths gene ra t i on " " "

17 dt = s e l f .T / days

18 s i z e = ( days , N)

19 SKou = np . z e ro s ( s i z e )

20 SKou [ 0 ] = s e l f . S0

21 f o r t in range (1 , days ) :

22 # f i n d r i sk −neut ra l parameters

23 ze ta = s e l f . q ∗ s e l f . eta2 / ( s e l f . eta2 + 1) + s e l f . p ∗

s e l f . eta1 / ( s e l f . eta1 − 1) − 1

24 # Random numbers gene ra t i on

25 Z = np . random . normal ( s i z e =(N, ) )
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26 Nj = np . random . po i s son ( lam=s e l f . lambd ∗ dt , s i z e =(N, ) )

27 # Generate jump s i z e s J

28 U = np . random . uniform (0 , 1 , s i z e =(N, ) ) # Generate

uniform random v a r i a b l e s

29 J = np . z e r o s _ l i k e (U) # I n i t i a l i z e jump s i z e s

30 f o r i in range (N) :

31 i f U[ i ] >= s e l f . p :

32 J [ i ] = (−1/ s e l f . eta1 ) ∗ np . l og ((1−U[ i ] ) / s e l f . p )

33 e l s e :

34 J [ i ] = (1 / s e l f . eta2 ) ∗ np . l og (U[ i ] / s e l f . q )

35 # Find components

36 jump_component = J ∗ Nj

37 drift_component = ( s e l f . r − 0 .5 ∗ s e l f . sigma ∗∗ 2 − s e l f .

lambd∗ ze ta ) ∗ dt

38 # drift_component = ( s e l f . r − 0 .5 ∗ s e l f . sigma ∗∗ 2) ∗ dt

39 dif fus ion_component = s e l f . sigma ∗ np . s q r t ( dt ) ∗ Z

40 # New p r i c e s computation

41 SKou [ t ] = SKou [ t − 1 ] ∗ np . exp ( drift_component +

dif fus ion_component + jump_component )

42 re turn SKou

43

44 de f c losed_formula_ca l l ( s e l f , K) :

45 " " " c l o s e d formula f o r c a l l opt i ons " " "

46 s e l f .K = K

47 zeta = s e l f . p ∗ s e l f . eta1 / ( s e l f . eta1 − 1) + ( s e l f . q ∗ s e l f .

eta2 ) / ( s e l f . eta2 + 1) − 1

48 lambd2 = s e l f . lambd ∗ ( ze ta + 1)

49 eta1_2 = s e l f . eta1 − 1

50 eta2_2 = s e l f . eta2 + 1

51 p2 = s e l f . p / (1 + zeta ) ∗ s e l f . eta1 / ( s e l f . eta1 − 1)
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52 vkjd_1 = s e l f . S0 ∗ s e l f . Yfunction ( s e l f . r + 1 / 2 ∗ s e l f . sigma

∗∗ 2 − s e l f . lambd ∗ zeta , s e l f . sigma , lambd2 , p2 , eta1_2 , eta2_2 ,

np . l og ( s e l f .K / s e l f . S0 ) , s e l f .T)

53 vkjd_2 = s e l f .K ∗ np . exp(− s e l f . r ∗ s e l f .T) ∗ s e l f . Yfunction (

s e l f . r − 1 / 2 ∗ s e l f . sigma ∗∗ 2 − s e l f . lambd ∗ zeta , s e l f . sigma ,

s e l f . lambd , s e l f . p , s e l f . eta1 , s e l f . eta2 , np . l og ( s e l f .K / s e l f . S0 )

, s e l f .T)

54 re turn vkjd_1 − vkjd_2

55

56 # Three term r e c u r s i o n

57 de f Hh( s e l f , n , x ) :

58 i f n < −1:

59 re turn 0

60 e l i f n == −1:

61 re turn np . exp(−x ∗∗ 2 / 2)

62 e l i f n == 0 :

63 re turn np . s q r t (2 ∗ np . p i ) ∗ s c s . norm . cd f (−x )

64 e l s e :

65 re turn ( s e l f .Hh(n − 2 , x ) − x ∗ s e l f .Hh(n − 1 , x ) ) / n

66

67 # Pfunct ion from KOU 2002 ( Appendix B)

68 de f P( s e l f , n , k , eta1 , eta2 , p) :

69 q = 1 − p

70 i f k < 1 or n < 1 :

71 re turn 0

72 e l i f n == k :

73 re turn p ∗∗ n

74 e l s e :

75 sum_p = 0 ; i = k

76 whi le i <= n − 1 :
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77 sum_p = sum_p + ssp . binom (n − k − 1 , i − k ) ∗ ssp .

binom (n , i ) ∗ ( eta1 / ( eta1 + eta2 ) ) ∗∗ ( i − k ) ∗ ( eta2 / ( eta1 +

eta2 ) ) ∗∗ (n − i ) ∗ p ∗∗ i ∗ q ∗∗ (n − i ) ; i += 1

78 re turn sum_p

79

80 # Qfunction from KOU 2002 ( Appendix B)

81 de f Q( s e l f , n , k , eta1 , eta2 , p) :

82 q = 1 − p

83 i f k < 1 or n < 1 :

84 re turn 0

85 e l i f n == k :

86 re turn q ∗∗ n

87 e l s e :

88 sum_q = 0 ; i = k

89 whi le i <= n − 1 :

90 sum_q = sum_q + ssp . binom (n − k − 1 , i − k ) ∗ ssp .

binom (n , i ) ∗ ( eta1 / ( eta1 + eta2 ) ) ∗∗ (n − i ) ∗ ( eta2 / ( eta1 +

eta2 ) ) ∗∗ ( i − k ) ∗ p ∗∗ (n − i ) ∗ q ∗∗ i

91 i += 1

92 re turn sum_q

93

94 de f I ( s e l f , n , c , alpha , beta , d e l t a ) :

95 i f beta < 0 and alpha < 0 :

96 sum_i = 0

97 i = 0

98 whi le i <= n :

99 sum_i = sum_i + ( beta / alpha ) ∗∗ (n − i ) ∗ s e l f .Hh( i

, beta ∗ c − de l t a ) ; i += 1
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100 re turn −np . exp ( alpha ∗ c ) / alpha ∗ sum_i − ( beta / alpha

) ∗∗ (n + 1) ∗ (np . s q r t (2 ∗ np . p i ) / beta ) ∗ np . exp ( ( alpha ∗ de l t a

/ beta ) + ( alpha ∗∗ 2 / (2 ∗ beta ∗∗ 2) ) ) ∗ s c s . norm . cd f ( beta ∗ c

− de l t a − alpha / beta )

101 e l i f beta > 0 and alpha != 0 :

102 sum_i = 0 ; i = 0

103 whi le i <= n :

104 sum_i = sum_i + ( beta / alpha ) ∗∗ (n − i ) ∗ s e l f .Hh( i

, beta ∗ c − de l t a ) ; i += 1

105 re turn −np . exp ( alpha ∗ c ) / alpha ∗ sum_i + ( beta / alpha

) ∗∗ (n + 1) ∗ (np . s q r t (2 ∗ np . p i ) / beta ) ∗ np . exp ( ( alpha ∗ de l t a

/ beta ) + ( alpha ∗∗ 2 / (2 ∗ beta ∗∗ 2) ) ) ∗ s c s . norm . cd f (−beta ∗

c + de l t a + alpha / beta )

106 e l s e :

107 re turn 0

108

109 de f Pi ( s e l f , n , lambd ) :

110 re turn np . exp(−lambd ∗ s e l f .T) ∗ ( lambd ∗ s e l f .T) ∗∗ n / math

. f a c t o r i a l (n )

111

112 de f Yfunction ( s e l f , mu, sigma , lambd , p , eta1 , eta2 , a , T) :

113 bound = 10 ; sump1 = 0 ; sumq1 = 0

114 f o r n in range (1 , bound + 1) :

115 sump1_n = 0

116 sumq1_n = 0

117 f o r k in range (1 , n + 1) :

118 sump2_k = s e l f .P(n , k , eta1 , eta2 , p) ∗ ( sigma ∗ np .

s q r t (T) ∗ eta1 ) ∗∗ k ∗ s e l f . I ( k − 1 , a − mu ∗ T, −eta1 , −1 / (

sigma ∗ np . sq r t (T) ) , −sigma ∗ eta1 ∗ np . s q r t (T) )
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119 sumq2_k = s e l f .Q(n , k , eta1 , eta2 , p) ∗ ( sigma ∗ np .

s q r t (T) ∗ eta2 ) ∗∗ k ∗ s e l f . I ( k − 1 , a − mu ∗ T, eta2 , 1 / ( sigma

∗ np . sq r t (T) ) , −sigma ∗ eta2 ∗ np . s q r t (T) )

120 sump1_n += sump2_k ; sumq1_n += sumq2_k

121 sump1 += s e l f . Pi (n , lambd ) ∗ sump1_n

122 sumq1 += s e l f . Pi (n , lambd ) ∗ sumq1_n

123 Y1 = np . exp ( ( sigma ∗ eta1 ) ∗∗ 2 ∗ T / 2) / ( sigma ∗ np . s q r t (2

∗ np . p i ∗ T) ) ∗ sump1

124 Y2 = np . exp ( ( sigma ∗ eta2 ) ∗∗ 2 ∗ T / 2) / ( sigma ∗ np . s q r t (2

∗ np . p i ∗ T) ) ∗ sumq1

125 Y3 = s e l f . Pi (0 , lambd ) ∗ s c s . norm . cd f (−(a − mu ∗ T) / ( sigma

∗ np . sq r t (T) ) )

126 re turn Y1 + Y2 + Y3

127

128 de f closed_formula_otko ( s e l f , K1 , K2) :

129 " " " approximate formula f o r otko opt ions p r i c e " " "

130 beta = np . l og (K1)

131 phi = s e l f . lambd ∗ s e l f . q ∗ np . exp ( beta ∗ s e l f . eta2 )

132 den = s e l f . r + phi

133 num = (1 − np . exp(− s e l f .T ∗ den ) )

134 Int = s e l f . lambd∗ s e l f . q / (1 + s e l f . eta2 ) ∗ (K1∗∗(1+ s e l f . eta2

) − K2∗∗(1+ s e l f . eta2 ) )

135 re turn Int ∗ num / den ∗ 100

136 [ . . . ]

Listing A.4: Variance Gamma Pricer - Class Definiton

1 c l a s s VG_pricer ( ) :

2 de f __init__( s e l f , S0 , K, ttm , r , q , sigma , theta , nu , e x e r c i s e ) :

3 s e l f . S0 = S0 # current STOCK p r i c e
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4 s e l f .K = None # s t r i k e

5 s e l f . ttm = ttm # maturity in years

6 s e l f . r = r # i n t e r e s t r a t e

7 s e l f . q = q # div idend y i e l d

8 s e l f . sigma = sigma # d i f f u s i o n c o e f f i c i e n t

9 s e l f . theta = theta # D r i f t o f gamma proce s s

10 s e l f . nu = nu # var iance o f gamma proce s s

11 s e l f . rho = 1/ s e l f . nu

12 s e l f . e x e r c i s e = None

13

14 # Parameters o f the d i f f e r e n c e o f gammas r e p r e s e n t a t i o n

15 s e l f .mu_p = 0.5 ∗ np . s q r t ( s e l f . theta ∗∗ 2 + (2 ∗ s e l f . sigma

∗∗ 2 / s e l f . nu ) ) + 0 .5 ∗ s e l f . theta # p o s i t i v e jump mean

16 s e l f .mu_n = 0.5 ∗ np . s q r t ( s e l f . theta ∗∗ 2 + (2 ∗ s e l f . sigma

∗∗ 2 / s e l f . nu ) ) − 0 .5 ∗ s e l f . theta # negat ive jump mean

17 s e l f . nu_p = np . power ( s e l f .mu_p, 2) ∗ s e l f . nu # p o s i t i v e jump

var iance

18 s e l f . nu_n = np . power ( s e l f .mu_n, 2) ∗ s e l f . nu # negat ive jump

var iance

19

20 de f VarianceGammaPath1 ( s e l f , days , N) :

21 " " " Paths Generation as time changed Brownian motion " " "

22 dt = s e l f . ttm / days

23 s i z e = ( days , N)

24 SVarGamma = np . z e r o s ( s i z e )

25 SVarGamma [ 0 ] = s e l f . S0

26 omega = np . l og (1 − s e l f . theta ∗ s e l f . nu − 0 .5 ∗ s e l f . nu ∗

s e l f . sigma ∗∗ 2) / s e l f . nu

27 f o r t in range (1 , days ) :

28 Z = np . random . normal (0 , 1 , s i z e =(N, ) )
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29 deltaG = ss . gamma. rvs ( a=dt / s e l f . nu , s c a l e=s e l f . nu , s i z e

=(N, ) )

30 VG = s e l f . theta ∗ deltaG + s e l f . sigma ∗ np . sq r t ( deltaG ) ∗

Z

31 SVarGamma[ t ] = SVarGamma [ t − 1 ] ∗ np . exp ( ( s e l f . r + omega )

∗ dt + VG)

32 re turn SVarGamma

33

34 de f VarianceGammaPath2 ( s e l f , days , N) :

35 " " " Paths Generation as the d i f f e r e n c e o f two gammas " " "

36 dt = s e l f . ttm / days

37 s i z e = ( days , N)

38 SVarGamma = np . z e r o s ( s i z e )

39 SVarGamma [ 0 ] = s e l f . S0

40 omega = np . l og (1 − ( s e l f . theta ∗ s e l f . nu ) − ( s e l f . nu ∗ s e l f .

sigma ∗∗ 2) /2) / s e l f . nu

41 f o r t in range (1 , days ) :

42 Gamma_p = ss . gamma. rvs ( a=dt / s e l f . nu , s c a l e=s e l f .mu_p ∗

s e l f . nu , s i z e =(N, ) )

43 Gamma_n = ss . gamma. rvs ( a=dt / s e l f . nu , s c a l e=s e l f .mu_n ∗

s e l f . nu , s i z e =(N, ) )

44 VG = (Gamma_p − Gamma_n)

45 SVarGamma[ t ] = SVarGamma [ t − 1 ] ∗ np . exp ( ( s e l f . r + omega )

∗dt + VG)

46 re turn SVarGamma

47

48 de f omega ( s e l f ) : # mart inga le c o r r e c t i o n

49 re turn − np . l og (1 − s e l f . theta ∗ s e l f . nu − ( s e l f . sigma ∗∗ 2 ∗

s e l f . nu ) / 2) / s e l f . nu

50
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51 de f c losed_formula_ca l l ( s e l f , K) :

52 " " " c l o s e d formula f o r c a l l opt i ons " " "

53 s e l f .K = K; eps = 1e−6

54 de f Psy (a , b , g ) :

55 f = lambda u : s s . norm . cd f ( a / np . sq r t (u) + b ∗ np . sq r t (u)

) ∗ np . exp ( ( g − 1) ∗ np . l og (u)+eps ) ∗ np . exp (

56 −u) / ssp . gamma( g )

57 r e s u l t = quad ( f , 0 , np . in f , epsabs=1e −6, e p s r e l=1e−6)

58 re turn r e s u l t [ 0 ]

59

60 x i = − s e l f . theta / s e l f . sigma ∗∗ 2

61 s = s e l f . sigma / np . s q r t (1 + ( ( s e l f . theta / s e l f . sigma ) ∗∗ 2)

∗ ( s e l f . nu / 2) )

62 alpha = x i ∗ s

63 c1 = s e l f . nu / 2 ∗ ( alpha + s ) ∗∗ 2 ; c2 = s e l f . nu / 2 ∗ alpha

∗∗ 2

64 d = 1 / s ∗ (np . l og ( ( s e l f . S0 / s e l f .K) + eps ) + s e l f . r ∗ s e l f

. ttm + s e l f . ttm / s e l f . nu ∗ np . l og ( (1 − c1 ) /(1 − c2 )+eps ) )

65 c a l l = s e l f . S0 ∗ Psy (d ∗ np . s q r t ( (1 − c1 ) / s e l f . nu ) , ( alpha

+ s ) ∗ np . s q r t ( s e l f . nu / (1 − c1 ) ) , s e l f . ttm / s e l f . nu ) − s e l f .K ∗

np . exp(− s e l f . r ∗ s e l f . ttm ) ∗ Psy (d ∗ np . s q r t ( (1 − c2 ) / s e l f . nu ) ,

alpha ∗ np . sq r t ( s e l f . nu / (1 − c2 ) ) , s e l f . ttm / s e l f . nu )

66 re turn c a l l

67

68 de f closed_formula_otko ( s e l f , K1 , K2) :

69 " " " approximate p r i c i n g formual f o r otko opt ions " " "

70 t o l = 1e −6; c = 1 / s e l f . nu

71 G = 1 / (np . sq r t ( s e l f . theta ∗∗ 2 ∗ s e l f . nu ∗∗ 2 / 4 + s e l f .

sigma ∗∗ 2 ∗ s e l f . nu / 2) − s e l f . theta ∗ s e l f . nu/2)

72 phi = −c ∗ ssp . exp i (G ∗ np . l og (K1) )
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73 den = s e l f . r + phi

74 num = 1 − np . exp(− s e l f . ttm ∗ den )

75 Int1 = c / G ∗ (K2 ∗ ssp . exp i (G ∗ np . l og (K2 + t o l ) ) − K1 ∗

ssp . exp i (G ∗ np . l og (K1) ) )

76 Int2 = c / (G+1) ∗ ( ssp . exp i ( (G + 1) ∗ np . l og (K1) ) − ssp . exp i

( (G + 1) ∗ np . l og (K2 + t o l ) ) )

77 re turn ( Int1 + Int2 ) ∗ num / den ∗ 100

78 [ . . . ]

Listing A.5: Simulation of Monte-Carlo paths for each model

1 " " " Paths Simulat ion " " "

2 [ . . . ]

3 from BSpricer import BS_Pricer

4 from MERTONpricer import Merton_pricer

5 from KOUpricer import Kou_pricer

6 from VGpricer import VG_pricer

7

8 symbol = ’AAPL’ # TSLA, NVDA

9 dates = opt ions . get_expirat ion_dates ( symbol )

10

11 T_str = ’ June 21 , 2024 ’

12 puts = opt ions . get_puts ( symbol , T_str )

13

14 T_datetime = datet ime . s t rpt ime ( T_str , ’%B %d , %Y’ )

15 ttm = ( T_datetime − datet ime . now ( ) ) . days / 365 .0 # ttm in f l o a t mode

16

17 puts [ ’Time−to−maturity ’ ] = ttm

18

19 # h i s t o r i c a l v o l a t i l i t y
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20 stock_data = s i . get_data ( symbol , s tart_date=’ 31/05/2021 ’ , end_date=’

31/05/2023 ’ )

21 stock_data [ ’ Returns ’ ] = stock_data [ ’ c l o s e ’ ] / stock_data [ ’ c l o s e ’ ] .

s h i f t ( )

22 stock_data [ ’ Log Returns ’ ] = np . l og ( stock_data [ ’ Returns ’ ] )

23 v o l a t i l i t y = stock_data [ ’ Log Returns ’ ] . s td ( ) ∗ np . s q r t (252)

24 pr in t ( f ’ \n{symbol} h i s t o r i c a l v o l a t i l i t y : { round ( v o l a t i l i t y , 3) } ’ )

25

26 # Fix s imu la t i on parameters

27 S0 = s i . ge t_l ive_pr i ce ( symbol ) # get l i v e p r i c e o f s tock

28 T = ttm # Expiry Date in years

29 days = 252

30 paths = 1000

31 K = opt ion [ 2 ] #S t r i k e p r i c e

32 sigma = 0.153 #v o l a t i l i t y

33 r = 0 .03 #r i s k . f r e e i n t e r e s t r a t e

34 q = 0 #div idend y i e l d

35 s i z e = ( days , paths )

36 e x e r c i s e = ’ european ’

37

38 # Black Scho l e s model

39 BS = BS_Pricer ( S0 , r , q , sigma , T, e x e r c i s e , K)

40 SBlackScholes = BS . BlackScholesPath ( days , paths )

41 BS . plotBSPath ( SBlackScholes , symbol ) #Plot a l l paths

42

43 # Merton Jump D i f f u s i o n model

44 lamda = 0 . 5 ; jump_mean = 0 . 0 5 ; jump_std = 0.15

45 Merton = Merton_pricer ( S0 , K, T, r , q , sigma , lamda , jump_mean ,

jump_std , e x e r c i s e )

46 SMerton = Merton . MertonPath ( days , paths )
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47 Merton . plotMertonPath ( SMerton , symbol ) # Plot a l l paths

48

49 # Kou Jump D i f f u s i o n model

50 lamda = 1 ; eta1 = 8 ; eta2 = 5 ; p = 0 . 6 ;

51 KOU = Kou_pricer ( S0 , K, T, r , sigma , lamda , p , eta1 , eta2 , e x e r c i s e )

52 SKou = KOU. KouPath ( days , paths )

53 KOU. plotKouPath (SKou , symbol ) # Plot a l l paths

54

55 # Variance Gamma model

56 sigma = 0 . 2 ; theta = −0.12; nu = 0.05

57 VG = VG_pricer ( S0 , K, T, r , q , sigma , theta , nu , e x e r c i s e )

58 SVarGamma = VG. VarianceGammaPath1 ( days , paths )

59 SVarGamma2 = VG. VarianceGammaPath2 ( days , paths )

60 method = [ ’Time changed BM’ , ’ D i f f e r e n c e o f Gammas ’ ]

61 # Plot a l l paths

62 f i g 1 , axes = p l t . subp lo t s ( nrows=1, nco l s =2, f i g s i z e =(16 ,6) )

63 VG. plotVGPath (SVarGamma, symbol , method [ 0 ] , ax=axes [ 0 ] )

64 VG. plotVGPath (SVarGamma2 , symbol , method [ 1 ] , ax=axes [ 1 ] )

65 p l t . t ight_layout ( )

66 [ . . . ]

67 # Model v a l i d a t i o n

68 daily_avg = pd . DataFrame ( columns=[ ’ BlackScho les ’ , ’ Merton ’ , ’Kou ’ , ’

VarGamma1 ’ , ’VarGamma2 ’ ] )

69 # Day−by−day mean o f the 1000 paths , f o r each model

70 daily_avg [ ’ B lackScho les ’ ] = SBlackScholes . mean( ax i s =1)

71 daily_avg [ ’ Merton ’ ] = SMerton . mean( ax i s =1)

72 daily_avg [ ’Kou ’ ] = SKou . mean( ax i s =1)

73 daily_avg [ ’VarGamma1 ’ ] = SVarGamma . mean( ax i s =1)

74 daily_avg [ ’VarGamma2 ’ ] = SVarGamma2 . mean( ax i s =1)

75 St = S0 ∗ np . exp ( r ∗ T)
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76 dai ly_growth_factor = np . exp ( r / days )

77 St = S0 ∗ np . cumprod (np . f u l l ( days , dai ly_growth_factor ) )

78

79 f i g 1 = go . Figure ( )

80 f o r column in daily_avg . columns :

81 f i g 1 . add_trace ( go . Sca t t e r ( x=spx_data . l o c [ 0 : 2 5 1 , ’ Date ’ ] , y=

daily_avg [ column ] , name=column ) )

82 f i g 1 . add_trace ( go . Sca t t e r ( x = spx_data . l o c [ 0 : 2 5 1 , ’ Date ’ ] , y = St ,

name=’ Risk−f r e e Growth ’ ) )

83

84 f i g 1 . update_layout (

85 x a x i s _ t i t l e=’ Date ’ ,

86 y a x i s _ t i t l e=’ Pr i ce ’ ,

87 t i t l e = ’ Real vs Simulated SPX paths ’ ,

88 showlegend=True

89 )

90 pio . show ( f i g 1 )

Listing A.6: Find Implied Volatility from Option Market prices

1 " " " Impl ied v o l a t i l t y found on Cal l Options " " "

2 [ . . . ]

3 de f i m p l i e d _ v o l a t i l i t y ( pr i ce , S , s t r i k e , t , rate , q , type_o , method=’

f s o l v e ’ , d i sp=True ) :

4

5 de f obj_fun ( vo l ) :

6 re turn BS . BlackScho les ( type_o=type_o , S0=S , K=s t r i k e , ttm=t ,

r=rate , q=q , sigma=vol ) − p r i c e

7

8 de f vega ( vo l ) :
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9 re turn BS . vega (S , s t r i k e , rate , q , vol , t )

10

11 i f method ==’ f s o l v e ’ :

12 X0 = [ 0 . 0 1 , 0 . 2 , 0 . 35 , 7 ] #i n i t i a l guess po in t s f o r

imp . vo l .

13 f o r x_0 in X0 :

14 x , _, so lved , _ = scpo . f s o l v e ( obj_fun , x_0 , fu l l_output=

True , x t o l=1e−8)

15 i f s o lved == 1 :

16 re turn x [ 0 ]

17 i f d i sp :

18 re turn −1

19

20 IV_market = [ ]

21 f o r i in range ( l en ( c a l l _ p r i c e s ) ) :

22 IV_market . append ( i m p l i e d _ v o l a t i l i t y ( c a l l _ p r i c e s [ i ] , S=S0 , s t r i k e=

c a l l _ s t r i k e s [ i ] , t = T, ra t e =0.027 , q = 0 .02 , type_o=’ c a l l ’ ,

method=’ f s o l v e ’ ) )

23

24 pr in t ( f ’ Impl ied v o l a t i l i t i e s o f market p r i c e s ( c a l l s ) : \ nS0 = {S0} ’ )

25 f o r a , b in z ip ( c a l l _ s t r i k e s . t a i l ( 6 ) , IV_market [ −6 : ] ) :

26 pr in t ( f ’K = {a } , IV = {round (b , 4) } ’ )

27

28 # Plot market impl i ed v o l a t i l i t i e s w. r . t . moneyness K/S0

29 x = ( c a l l _ s t r i k e s /S0 )

30 IV_f i l t e r ed = [ iv f o r i v in IV_market i f i v != −1]

31 x _ f i l t e r e d = [ log_m f o r iv , log_m in z ip ( IV_market , x ) i f i v != −1]

32

33 f i g , ax1 = p l t . subp lo t s ( f i g s i z e =(6 ,5) )

125



Appendix: Python Code

34 ax1 . s c a t t e r (x , c a l l s [ ’C_IV ’ ] , marker=’ x ’ , l a b e l=’ provided ’ , c o l o r=’

red ’ , s =40)

35 ax1 . p l o t (x , IV_market , l a b e l=’BS i n v e r s i o n ’ , alpha = 0 . 8 , c o l o r = ’

green ’ )

36 ax1 . s e t_x labe l ( ’ Moneyness : K/S0 ’ ) ; ax1 . s e t_y labe l ( ’ Impl ied V o l a t i l i t y

’ ) ; ax1 . s e t _ t i t l e ( ’CALLS v o l a t i l i t y smi l e ’ )

37 ax1 . l egend ( ) ; p l t . g r i d ( True , l i n ew id th =0.5) ; p l t . show ( )

Listing A.7: Find the payoff of One-Touch Knock-Out Daily Cliquets Options

1 " " " Otko Payof f " " "

2 de f otko_payoff (R, K1, K2) :

3 payo f f s = [ ]

4 f o r Rt in R:

5 i f Rt > K1 :

6 payo f f s . append (0 )

7 e l i f K2 < Rt <= K1:

8 payo f f s . append ( (K1 − Rt) )

9 e l i f Rt <= K2 :

10 payo f f s . append ( (K1−K2) )

11 re turn payo f f s

12

13 R = np . l i n s p a c e (0 ,150 ,100)

14 f i g , axes = p l t . subp lo t s ( nrows=2, nco l s =2, f i g s i z e =(20 ,10) )

15 row = 0

16 c o l = 0

17

18 f o r index , cont rac t in otko_spx . i t e r r o w s ( ) :

19 i f index != 2 : # Exclude the 2nd row ( index 1)

20 K1 = cont rac t [ ’K1 ’ ]
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21 K2 = cont rac t [ ’K2 ’ ]

22 axes [ row , c o l ] . p l o t (R, otko_payoff (R, K1, K2) )

23 axes [ row , c o l ] . s e t_x labe l ( ’RETURNS ∗ 100 ’ )

24 axes [ row , c o l ] . s e t_y labe l ( ’ Payof f ’ )

25 axes [ row , c o l ] . s e t _ t i t l e ( f ’PAYOFF: OTKO {K1} − {K2} ’ )

26 i f index != 0 and index != 1 :

27 axes [ row , c o l ] . set_ylim ( −0.5 , 12)

28 axes [ row , c o l ] . g r i d ( )

29 axes [ row , c o l ] . axv l i n e ( x=K1, c o l o r=’ red ’ , l i n e s t y l e=’−− ’ )

30 axes [ row , c o l ] . axv l i n e ( x=K2, c o l o r=’ red ’ , l i n e s t y l e=’−− ’ )

31 c o l += 1

32 i f c o l == 2 :

33 row += 1

34 c o l = 0

35 p l t . t ight_layout ( )

36 p l t . show ( )

Listing A.8: Call Options calibration

1 " " " Ca l i b r a t i on o f Parameters on Cal l Options " " "

2 d f_ca l l = pd . read_csv ( ’ . . / . . / data /AAPL/OPT16_AAPL_CALLS_75_135 . csv ’ )

3 c a l l s [ ’ C_Midpoint ’ ] = abs ( c a l l s [ ’C_BID ’ ] + c a l l s [ ’C_ASK’ ] ) / 2

4 c a l l s [ ’ C_Spread ’ ] = c a l l s [ ’C_BID ’ ] − c a l l s [ ’C_ASK’ ]

5 # Set f i x e d parameters

6 q = 0 # div idend y i e l d

7 r = 0 .03 # r i sk −f r e e i n t e r e s t r a t e

8 S0 = c a l l s . i l o c [ 0 ] [ ’UNDERLYING_LAST’ ]

9 T = 1 # time−to−maturity

10 c a l l _ s t r i k e s = c a l l s [ ’STRIKE ’ ] # array o f K f o r c a l l opt i ons

11 e x e r c i s e = ’ european ’
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12 c a l l _ p r i c e s = c a l l s [ ’ C_Midpoint ’ ]

13 ca l l_spreads = c a l l s [ ’ C_Spread ’ ]

14 c_weights = 1/ ca l l_spreads ∗∗2

15

16 #I n i t i a l i z e o b j e c t s o f Pr i c e r c l a s s e s

17 BS = BS_Pricer ( S0=S0 , r=r , q = q , sigma=sigma , ttm=T, e x e r c i s e=

e x e r c i s e , K=None )

18 Merton = Merton_pricer ( S0=S0 , K=None , ttm=T, r=r , q = q , sigma =0.15 ,

lambd =0.5 , meanJ=−0.1, stdJ =0.1 , e x e r c i s e=e x e r c i s e )

19 Kou = Kou_pricer ( S0=S0 , K=None , ttm=T, r=r , sigma =0.15 , lambd =0.5 , p

=0.6 , eta1 =12, eta2 =5, e x e r c i s e=e x e r c i s e )

20 VG = VG_pricer ( S0 , K=None , ttm=T, r=r , q=q , sigma =0.15 , theta =−0.2,

nu=0.3 , e x e r c i s e=e x e r c i s e )

21

22 #Black−Scho l e s

23 x0 = 0 .5

24 bounds = [ 1 e −5, 2 ]

25 de f cos t_funct ion (x , s t r i k e s , mkt_prices ) :

26 sigma = x

27 BS = BS_Pricer ( S0=S0 , K = None , ttm=T, r=r , q=0, sigma=sigma ,

e x e r c i s e=e x e r c i s e )

28 sq_err = np . sum( c_weights ∗ (BS . c losed_formula_ca l l ( s t r i k e s ) −

mkt_prices ) ∗∗2)

29 re turn sq_err

30

31 resu l t_p = scpo . l ea s t_square s ( cost_funct ion , x0 , args=( c a l l _ s t r i k e s ,

c a l l _ p r i c e s ) , bounds=bounds , method = ’ t r f ’ , verbose =1)

32 calls_bs_params_aapl = resu lt_p . x [ 0 ]

33 [ . . . ]
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Listing A.9: Merton parameters calibration on Put Options

1 " " " Find Put Options p r i c e s accord ing to the MJD model and es t imate

the best− f i t t i n g parameters to market p r i c e s " " "

2 [ . . . ]

3 x0 = [ 0 . 4 , 0 . 5 , −0.05 , 0 . 1 ] #[ sigma , lambda , m, v ]

4 bounds = ( [ 1 e −3, 1e −2, −2, 0 ] , [ 1 , 5 , 2 , 2 ] )

5

6 de f cos t_funct ion (x , s t r i k e s , mkt_prices ) :

7 sigma , lambd , meanJ , stdJ = x

8 M = Merton_pricer ( S0 , None , T, r , q , sigma , lambd , meanJ , stdJ ,

e x e r c i s e )

9 sq_err = np . sum( p_weights ∗(M. closed_formula_put ( s t r i k e s ) −

mkt_prices ) ∗∗2)

10 re turn sq_err

11

12 s t a r t = time . time ( )

13 mert = scpo . l ea s t_square s ( cost_funct ion , x0 , args=(put_str ikes ,

put_prices ) , bounds=bounds , method=’ t r f ’ , verbose =2)

14 end = time . time ( )

15

16 mert_params_calibrated = [ round (p , 4) f o r p in mert . x [ : 4 ] ]

17

18 #Reprice Options with parameters found f o r r e s u l t s v a l i d a t i o n

19 days = 252

20 paths = 1000

21

22 put_ca l ib_pr ices = pd . DataFrame ({

23 ’STRIKE ’ : puts [ ’STRIKE ’ ] , # array o f K f o r put opt ions

24 ’MKT_BID’ : puts [ ’C_BID ’ ] ,
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25 ’MKT_MID’ : puts [ ’ C_Midpoint ’ ] ,

26 ’MKT_ASK’ : puts [ ’C_ASK’ ] ,

27 })

28 sigma , lambd , meanJ , stdJ = mert_params_calibrated

29 MertonCAL = Merton_pricer ( S0 , None , T, r , q , sigma , lambd , meanJ ,

stdJ , e x e r c i s e )

30 SMerton_CAL = MertonCAL . MertonPath ( days , paths )

31 avg_payoffs = [ ]

32 f o r k in put_st r ike s :

33 payo f f s = [ ] # s t o r e s here the payo f f f o r each path , f o r a

s p e c i f i c couple K1−K2

34 f o r St in SMerton_CAL[ −1 ] :

35 payo f f s . append (MertonCAL . payoff_put (k , St ) )

36 avg_payoffs . append (np . mean( payo f f s ) )

37 merton_mc_prices = np . z e ro s ( l en ( put_ca l ib_pr ices ) )

38 merton_cf_prices = np . z e ro s ( l en ( put_ca l ib_pr ices ) )

39 f o r index in range ( l en ( put_ca l ib_pr ices ) ) :

40 merton_mc_prices [ index ] = np . exp(−r ∗T) ∗ avg_payoffs [ index ]

41 merton_cf_prices [ index ] = MertonCAL . closed_formula_put (

put_st r ike s [ index ] )

42 put_ca l ib_pr ices [ ’MERTON MC’ ] = merton_mc_prices

43 put_ca l ib_pr ices [ ’MERTON CF ’ ] = merton_cf_prices

44

45 [ . . . ]

Listing A.10: Variance Gamma Parameters Calibration on OTKO Options

1 " " " Find OTKO Options p r i c e s accord ing to the VG model and es t imate

the best− f i t t i n g parameters to market p r i c e s " " "

2 [ . . . ]
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3 x0 = [ 0 . 3 6 1 2 , −0.185 , 0 . 7 6 ] #I n i t i a l guess : [ sigma , theta , nu ]

4 bounds = ( [ 1 e −3, −2, 0 ] , [ 0 . 8 , 2 , 4 ] )

5

6 de f cos t_funct ion (x , s t r i k e s , mkt_prices ) :

7 sigma , theta , nu = x

8 VG = VG_pricer ( S0 , None , T, r , q , sigma , theta , nu , e x e r c i s e )

9 sq_err = 0

10 f o r k in range ( l en ( s t r i k e s ) ) :

11 sq_err += weights [ k ] ∗ (VG. closed_formula_otko ( s t r i k e s [ k ] [ 0 ] ,

s t r i k e s [ k ] [ 1 ] ) − mkt_prices [ k ] ) ∗∗ 2

12 re turn sq_err

13

14 s t a r t = time . time ( )

15 vg = scpo . l ea s t_square s ( cost_funct ion , x0 , args=( s t r i k e s , mkt_prices )

, method=’ t r f ’ , bounds=bounds , verbose =1)

16 end = time . time ( )

17

18 vg_params_calibrated = [ round (p , 4) f o r p in vg . x [ : 3 ] ]

19 sigma , theta , nu = vg_params_calibrated

20 VG_CAL = VG_pricer ( S0 , None , T, r , q , sigma , theta , nu , e x e r c i s e )

21 SVarGamma_cal = VG_CAL. VarianceGammaPath1 ( days , paths )

22

23 #Reprice Options with parameters found f o r r e s u l t s v a l i d a t i o n

24 [ . . . ]

25 c a l i b r a t e d _ p r i c e s = pd . DataFrame ({

26 ’K1 ’ : otko_aapl [ ’K1 ’ ] ,

27 ’K2 ’ : otko_aapl [ ’K2 ’ ] ,

28 ’MKT_BID (%) ’ : otko_aapl [ ’BID(%) ’ ] ,

29 ’MKT_MID (%) ’ : otko_aapl [ ’ Midpoint (%) ’ ] ,

30 ’MKT_ASK (%) ’ : otko_aapl [ ’ASK(%) ’ ]
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31 })

32 avg_payoffs = [ ]

33 f o r K1, K2 in s t r i k e s :

34 payo f f s = [ ] # s t o r e s here the payo f f f o r each path , f o r a

s p e c i f i c couple K1−K2

35 f o r path in SVarGamma_cal .T:

36 payo f f s . append (VG_CAL. payoff_otko ( path , K1, K2) )

37 avg_payoffs . append (np . mean( payo f f s ) )

38

39 vg_mc_prices = np . z e r o s ( l en ( c a l i b r a t e d _ p r i c e s ) )

40 vg_cf_prices = np . z e r o s ( l en ( c a l i b r a t e d _ p r i c e s ) )

41

42 f o r index in range ( l en ( c a l i b r a t e d _ p r i c e s ) ) :

43 vg_mc_prices [ index ] = np . exp(−r ∗T) ∗ avg_payoffs [ index ] ∗100

44 vg_cf_prices [ index ] = VG_CAL. closed_formula_otko6 ( s t r i k e s [ index

] [ 0 ] , s t r i k e s [ index ] [ 1 ] )

45

46 c a l i b r a t e d _ p r i c e s [ ’VG MC (%) ’ ] = [ round (p , 2 ) f o r p in vg_mc_prices ]

47 c a l i b r a t e d _ p r i c e s [ ’VG CF (%) ’ ] = [ round (p , 2 ) f o r p in vg_cf_prices ]

Listing A.11: Kou Parameters Calibration on Mixed Set of Options

1 " " " Find opt ions p r i c e s o f a mixed s e t accord ing to the KJD model and

es t imate the best− f i t t i n g parameters to market p r i c e s " " "

2 [ . . . ]

3 x0 = [ 0 . 2 4 , 1 . 5 , 0 . 5 , 7 . 5 , 5 ] #[ sigma , lambda , p , eta1 , eta2 ]

4 bounds = ( [ 0 . 1 , 1e −2, 0 , 0 , 0 ] , [ 0 . 9 , 5 , 1 , 10 , 1 2 ] )

5

6 # Def ine the o b j e c t i v e func t i on
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7 de f cos t_funct ion (x , c_st r ike s , c_mkt_prices , p_str ikes , p_mkt_prices

, o_str ikes , o_mkt_prices ) :

8 sigm , lamb , p , eta1 , eta2 = x

9 KOU = Kou_pricer ( S0=S0 , K=c_str ike s , ttm=T, r=r , sigma=sigm ,

lambd=lamb , p=p , eta1=eta1 , eta2=eta2 , e x e r c i s e=e x e r c i s e )

10 sq_err1 = np . sum ( (KOU. c losed_formula_ca l l ( c_s t r i k e s ) −

c_mkt_prices ) ∗∗ 2)

11 sq_err2 = np . sum ( (KOU. closed_formula_put ( p_st r ike s ) −

p_mkt_prices ) ∗∗ 2)

12 sq_err = sq_err2 + sq_err1

13 f o r k in range ( l en ( o_st r i k e s ) ) :

14 sq_err += (KOU. closed_formula_otko ( o_s t r i k e s [ k ] [ 0 ] , o_s t r i k e s

[ k ] [ 1 ] ) − o_mkt_prices [ k ] ) ∗∗ 2

15 re turn sq_err

16

17 s t a r t = time . time ( )

18 kou = scpo . l ea s t_square s ( cost_funct ion , x0 , args=( c a l l s _ s t r i k e s ,

c a l l s _ p r i c e s , puts_str ikes , puts_prices , o tko_str ikes ,

otko_mkt_prices ) , method=’ t r f ’ , bounds=bounds , f t o l =1e −7, verbose

=2)

19 end = time . time ( )

20 k_params_mixed = [ round (p , 4 ) f o r p in kou . x [ : 5 ] ]

21 [ . . . ]

22 #Reprice Options with est imated parameters f o r r e s u l t s v a l i d a t i o n

23 days = 252

24 paths = 5000

25 #CALLS PRICES

26 c a l l s _ c a l i b _ p r i c e s = pd . DataFrame ({

27 ’STRIKE ’ : c a l l s [ ’STRIKE ’ ] , # array o f K f o r c a l l opt i ons

28 ’MKT_BID’ : c a l l s [ ’C_BID ’ ] ,
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29 ’MKT_MID’ : c a l l s [ ’ C_Midpoint ’ ] ,

30 ’MKT_ASK’ : c a l l s [ ’C_ASK’ ] ,

31 })

32 #PUTS PRICES

33 puts_ca l ib_pr i ce s = pd . DataFrame ({

34 ’STRIKE ’ : puts [ ’STRIKE ’ ] , # array o f K f o r c a l l opt i ons

35 ’MKT_BID’ : puts [ ’P_BID ’ ] ,

36 ’MKT_MID’ : puts [ ’ P_Midpoint ’ ] ,

37 ’MKT_ASK’ : puts [ ’P_ASK’ ] ,

38 })

39 # OTKO PRICES

40 otko_ca l ib_pr ices = pd . DataFrame ({

41 ’K1 ’ : otko_aapl [ ’K1 ’ ] ,

42 ’K2 ’ : otko_aapl [ ’K2 ’ ] ,

43 ’MKT_BID (%) ’ : otko_aapl [ ’BID(%) ’ ] ,

44 ’MKT_MID (%) ’ : otko_aapl [ ’ Midpoint (%) ’ ] ,

45 ’MKT_ASK (%) ’ : otko_aapl [ ’ASK(%) ’ ]

46 })

47 [ . . . ]

48 pr in t ( f ’> MIXED:\ t \ t \ t {k_params_mixed} ’ )

49 Kou4 = Kou_pricer ( S0 , None , T, r , k_params_mixed [ 0 ] , k_params_mixed

[ 1 ] , k_params_mixed [ 2 ] , k_params_mixed [ 3 ] , k_params_mixed [ 4 ] ,

e x e r c i s e )

50 SKou4 = Kou4 . KouPath ( days , paths )

51 avg_payoffs = [ ]

52 f o r K1, K2 in otko_st r i ke s :

53 payo f f s = [ ] # s t o r e s here the payo f f f o r each path , f o r a

s p e c i f i c couple K1−K2

54 f o r path in SKou4 .T:

55 payo f f s . append (Kou4 . payoff_otko ( path , K1, K2) )
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56 avg_payoffs . append (np . mean( payo f f s ) )

57 kou_mc_prices = np . z e r o s ( l en ( otko_ca l ib_pr ice s ) )

58 kou_cf_prices = np . z e r o s ( l en ( otko_ca l ib_pr ice s ) )

59 f o r index in range ( l en ( otko_ca l ib_pr ices ) ) :

60 kou_mc_prices [ index ] = np . exp(−r ∗T) ∗ avg_payoffs [ index ] ∗ 100

61 kou_cf_prices [ index ] = Kou4 . closed_formula_otko2 ( o tko_st r i ke s [

index ] [ 0 ] , o tko_st r i ke s [ index ] [ 1 ] )

62 otko_ca l ib_pr ices [ ’KOU MC (%) ’ ] = kou_mc_prices

63 otko_ca l ib_pr ices [ ’KOU CF (%) ’ ] = kou_cf_prices

64 [ . . . ]

Listing A.12: Margin Loans Evaluation

1 " " " Simulate Monte−Carlo Paths with est imated parameters and f i n d

margin loans i n t e r e s t r a t e s " " "

2 # MERTON MODEL

3 sigma , lambd , m, v = otko_mert_params_aapl # OTKO_PARAMS

4 Mert1 = Merton_pricer ( l a s t_pr i c e , None , T, r , q , sigma , lambd , m, v ,

None )

5 Smert1 = Mert1 . MertonPath ( days , paths )

6 sigma , lambd , p , eta1 , eta2 = mixed_kou_params_aapl # MIXED VANILLA+

OTKO PARAMS

7 sigma , lambd , m, v = mixed_mert_params_aapl # MIXED PARAMS

8 Mert2 = Merton_pricer ( l a s t_pr i c e , None , T, r , q , sigma , lambd , m, v ,

None )

9 Smert2 = Mert2 . MertonPath ( days , paths )

10

11 # KOU MODEL

12 sigma , lambd , p , eta1 , eta2 = otko_kou_params_aapl # OTKO_PARAMS
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13 Kou1 = Kou_pricer ( l a s t_pr i c e , None , T, r , sigma , lambd , p , eta1 , eta2 ,

None )

14 Skou1 = Kou1 . KouPath ( days , paths )

15 sigma , lambd , p , eta1 , eta2 = mixed_kou_params_aapl # MIXED VANILLA+

OTKO PARAMS

16 Kou2 = Kou_pricer ( l a s t_pr i c e , None , T, r , sigma , lambd , p , eta1 , eta2 ,

None )

17 Skou2 = Kou2 . KouPath ( days , paths )

18

19 #VG MODEL

20 sigm , theta , nu = otko_vg_params_aapl # OTKO_PARAMS

21 VG1 = VG_pricer ( l a s t_pr i c e , None , T, r , q , sigm , theta , nu , None )

22 Svg1 = VG1. VarianceGammaPath1 ( days , paths )

23 sigm , theta , nu = mixed_vg_params_aapl # MIXED VANILLA+OTKO PARAMS

24 VG2 = VG_pricer ( l a s t_pr i c e , None , T, r , q , sigm , theta , nu , None )

25 Svg2 = VG2. VarianceGammaPath1 ( days , paths )

26

27 # MARGIN LOANS EVALUATION

28 de f margin_loan_price1 ( Spaths , loan ) :

29 num_shares_required = [ num_of_shares_at_S0 ] ∗ paths

30 num_margin_calls = np . z e r o s ( paths )

31 f l a g = [ ’ green ’ ] ∗ paths

32 l o s s = np . z e ro s ( paths )

33 ga in_los s = np . z e r o s ( paths ) # Create an array to s t o r e ga ins /

l o s s e s

34

35 f o r path in range ( paths ) :

36 f o r day in range ( days − 1) :

37 p r i c e = Spaths [ day ] [ path ]

38 i f f l a g [ path ] == ’ green ’ :
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39 i f ( p r i c e ∗ num_shares_required [ path ] ) <= ((1 −

t r i g g e r ) ∗ loan ) :

40 num_margin_calls [ path ] += 1

41 shares_needed = c o l l a t e r a l / p r i c e

42 i f shares_needed >= max_shares :

43 num_shares_required [ path ] = max_shares

44 f l a g [ path ] = ’ red ’

45 e l s e :

46 num_shares_required [ path ] = round (

shares_needed , 2)

47 e l s e :

48 cont inue

49

50 f o r index in range ( paths ) :

51 S_T = Spaths [ −1 , index ]

52 f i na l_va lue = S_T ∗ num_shares_required [ index ]

53 ga in_los s [ index ] = f ina l_va lue − loan # Calcu la te ga ins /

l o s s e s , ga in i s p o s i t i v e , l o s s i s negat ive

54

55 f o r index in range ( paths ) :

56 S_T = Spaths [ −1 , index ]

57 f i na l_va lue = S_T ∗ num_shares_required [ index ]

58 i f f i na l_va lue >= loan :

59 l o s s [ index ] = 0

60 e l s e :

61 l o s s [ index ] = loan − f i na l_va lue

62

63 pr in t ( ’ Average margin c a l l s : ’ , round (np . mean( num_margin_calls ) ,

2) )
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64 marg in_ca l l_probab i l i ty = round (np . sum( num_margin_calls ) / ( days

∗ paths ) , 4)

65 pr in t ( f ’ P robab i l i t y o f a margin c a l l : { marg in_ca l l_probab i l i ty } ,

{ marg in_ca l l_probab i l i ty ∗ 100}% ’ )

66 pr in t ( ’ Average l o s s : ’ , round (np . mean( l o s s ) , 2) )

67 pr in t ( ’ Average p r o f i t & l o s s : ’ , round (np . mean( ga in_los s ) , 2) )

68 pr in t ( ’ Average num of share s r equ i r ed : ’ , round (np . mean(

num_shares_required ) , 2) )

69

70 re turn l o s s , ga in_los s # Return both ar rays

71

72 " " " Few examples o f margin loans computation " " "

73 loan = 1000000 # 1 MLN

74 loan_to_value = 0 .7

75 c o l l a t e r a l = 1/( loan_to_value / loan )

76 num_of_shares_at_S0 = round ( c o l l a t e r a l / l a s t_pr i c e , 2 )

77 max_shares = num_of_shares_at_S0 ∗ 2

78 t r i g g e r = 0.07

79

80 [ loss_merton1 , gain_loss_merton1 ] = margin_loan_price1 ( Smert1 , loan )

81 avg_loss_merton1 = round (np . mean( loss_merton1 ) , 2)

82 [ loss_merton2 , gain_loss_merton2 ] = margin_loan_price1 ( Smert2 , loan )

83 avg_loss_merton2 = round (np . mean( loss_merton2 ) , 2)

84

85 [ loss_kou1 , gain_loss_kou1 ] = margin_loan_price1 ( Skou1 , loan )

86 avg_loss_kou1 = round (np . mean( loss_kou1 ) , 2)

87 [ loss_kou2 , gain_loss_kou2 ] = margin_loan_price1 ( Skou2 , loan )

88 avg_loss_kou2 = round (np . mean( loss_kou2 ) , 2)

89

90 [ loss_vg1 , gain_loss_vg1 ] = margin_loan_price1 ( Svg1 , loan )
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91 avg_loss_vg1 = round (np . mean( loss_vg1 ) , 2)

92 [ loss_vg2 , gain_loss_vg2 ] = margin_loan_price1 ( Svg2 , loan )

93 avg_loss_vg2 = round (np . mean( loss_vg2 ) , 2)

94

95 [ . . . ]

96 #I n t e r e s t r a t e s computation

97 p r i c e= [ ]

98 p r i c e . append ( avg_loss_merton1/ loan ∗100)

99 p r i c e . append ( avg_loss_merton2/ loan ∗100)

100 p r i c e . append ( avg_loss_kou1/ loan ∗100)

101 p r i c e . append ( avg_loss_kou2/ loan ∗100)

102 p r i c e . append ( avg_loss_vg1/ loan ∗100)

103 p r i c e . append ( avg_loss_vg2/ loan ∗100)

104

105 [ . . . ]
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