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Abstract

This thesis work aims at developing a Machine Learning (ML) algorithm able to recognize
and predict the progression of amyotrophic lateral sclerosis (ALS), which is commonly
known as Lou Gehrig’s disease. There is evidence that rapid eye movement (REM) sleep
behaviour disorder (RBD) may serve as a precursor or early indicator of ALS, owing to
the shared motor system dysfunction between the two conditions. Genetic or environ-
mental factors might also contribute to the development of both diseases.
Hence, this thesis examines several studies about RBD and REM sleep without ato-
nia (RSWA), as they have been associated with various neurodegenerative pathologies,
primarily those in the alpha-synucleinopathies group, such as Parkinson’s disease and
Dementia with Lewy bodies.

For this purpose, comprehensive datasets on ALS and RBD patients’ sleep patterns,
motor abilities, and health records have been collected and analyzed. The study could
help to develop a precise prediction system for ALS using non-invasive measures such
as polysomnography, which is a sleep study that records brain waves, eye movements,
muscle activity and other indicators to reveal the presence of sleep disorders.

Unfortunately, acquiring and then analysing polysomnographies has some drawbacks:
patients need to spend at least one night in the hospital and this significantly affects the
quality of their sleeping and sleep technicians manually score eight hour long (or even
more) records of sleeping for each patient. This requires the technicians to be extremely
accurate and expert in the field of sleep scoring. Therefore, a ML approach could improve
and facilitate the task, thus enhancing its speed and precision.

As a preliminary step, manual evaluation of the RBD and its state of the art were
analyzed, focusing on how the RAI, SINBAR and Montreal indices are usually computed
and estimated. In a second step those results were compared to those obtained by the
Dissociation Index showing the goodness of such an algorithm.
Data were acquired from a set of patients of the Regional Centre for Sleep Medicine at
the Molinette Hospital in Turin in three different stages: at the first check-up and later
on, at the 6- and 12-month follow-ups.
Since ALS is a rapid-course disease with a very low life expectancy, some patients in
the final stage were not able to attend follow-ups and unfortunately, others had already
passed away.
Research shows that RBD symptoms may appear several years in advance with respect
to those of affected by ALS; in this scenario, such a prediction model can significantly
enhance the ALS diagnosis and treatment, potentially paving the way for novel therapies
and improving patients′ quality of life.
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Chapter 1

Introduction

Rapid advances in medical research have unveiled intricate connections between seem-
ingly disparate diseases, igniting fresh insights into the mechanisms underlying their
development. One such captivating interplay has emerged between the enigmatic world
of amyotrophic lateral sclerosis (ALS) and the intriguing realm of REM sleep behaviour
disorder (RBD). ALS, often referred to as Lou Gehrig′s disease, is a progressive neurode-
generative disorder that leads to the selective deterioration of motor neurons, resulting in
muscle weakness, paralysis, and ultimately, fatal respiratory failure. In contrast, RBD is
a sleep disorder characterized by the loss of the typical muscle atonia during REM sleep,
leading to vivid and often violent dream enactments.

While ALS and RBD might appear unrelated at first glance, growing evidence sug-
gests a remarkable association that has caught the attention of researchers and clinicians
alike. Recent studies have demonstrated a compelling link between the two conditions,
suggesting that RBD may act as an early biomarker or even a potential risk factor for
the subsequent development of ALS. This connection has set the stage for a deeper ex-
ploration of shared pathophysiological mechanisms and genetic underpinnings that could
shed light on both disorders.

The convergence between ALS and RBD becomes even more intriguing when consider-
ing the potential implications for early diagnosis and intervention strategies. Identifying
RBD in individuals who have not yet manifested the full spectrum of ALS symptoms
could offer a unique window of opportunity for therapeutic interventions that might slow
down or even prevent the progression of ALS. Furthermore, deciphering the intricate
neurobiological interactions between these disorders could provide crucial insights into
the mechanisms of neurodegeneration, potentially unlocking novel avenues for the devel-
opment of targeted therapies.

Through the pages that follow, we will delve into these two fields, looking for the
connection between them and providing a new solution for interpreting differently the
results of patients′ examinations.

In the first chapter, we can dig into the topic: we will start by analyzing the clinical
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Introduction

background and separately the two diseases understanding their mechanisms of action
and development. We will also provide a differentiation between two clinical conditions:
RBD and RSWA according to what has been stated until now by medical literature.

To create a machine learning algorithm, having a suitable dataset is essential. This
dataset serves as the foundation upon which the algorithm is trained and tested: for
this purpose, the second chapter has been drawn up. As it was previously blinding, the
disease progresses exceedingly fast. In light of this, I deemed it valuable to allocate a
section to assess patient survival rates.

The core essence of this dissertation can be found in the third chapter: here, we
will dive into the methods used to develop the algorithm. Firstly, it has been crucial
to understand how the RBD can be estimated and evaluated. For this reason, we will
analyze the gold standard of the manual evaluation of RBD represented by RAI, Montreal
and SINBAR indices. Once this evaluation has been completed, it is possible to compute
it for the set of patients involved in this work: this will serve as our benchmark for
assessing the effectiveness of the developed machine-learning algorithm explained in the
last section of this chapter and in the following one.

The final chapters are devoted to discussing the outcomes obtained. In the fourth
chapter, a detailed exposition of the research methodology is provided, elucidating the
various techniques, tools, and procedures used in the course of the investigation. This
chapter not only sheds light on the theoretical framework underpinning the study but
also delves into the practical aspects of data collection, analysis, and experimentation.
Additionally, Chapter Four serves as a repository for the numerical results acquired during
the research process. It offers a meticulous presentation of empirical data, showcasing
the outcomes of experiments, simulations, and quantitative analyses conducted. These
numerical results serve as a vital component in substantiating the research′s claims,
enabling readers to assess the validity and reliability of the study′s findings.

A crucial checkpoint is set for future implementations and enhancements of the re-
search approach in the fifth chapter. It provides guidance for researchers, practitioners,
and stakeholders interested in building upon the study′s foundations. These conclusions
encapsulate the core contributions and implications of the research, offering a clear and
concise summary of its key takeaways. By identifying areas for further exploration, poten-
tial refinements, and avenues for future research, this chapter paves the way for ongoing
innovation and development in the field.

1.1 Clinical and technical background
REM sleep plays a key-role in overall sleep quality and cognitive functioning, making it
a subject of intense study, particularly in the context of sleep disorders.

Before delving specifically into REM sleep and its role in sleep disorders, it is essential
to understand the sleep cycle. Sleep is not a monotonous state; instead, it includes several
stages, typically categorized into non-REM (NREM) and REM sleep.

To better understand these features, researchers often utilize a tool called hypnogram,
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which is a graphical representation of an individual′s sleep cycle throughout the night.
It displays the transitions between different sleep stages, including REM and non-REM
(NREM) sleep and provides a visual representation of the sleep architecture. Thanks
to the analysis of the hypnogram, physiologists can identify anomalies in sleep patterns,
such as prolonged periods of wakefulness or abnormal REM sleep occurrences, investigat-
ing sleep disorders or mental health-related impairments. Many psychiatric conditions,
as a matter of fact, including bipolar disorder and schizophrenia, are associated with
irregularities in sleep patterns and disturbances in the sleep cycle. This visual represen-
tation plays a crucial role in diagnosing and studying sleeping issues, helping healthcare
professionals adapt treatment plans for individuals experiencing sleep disturbances in the
context of mental health disorders and neurodegenerative diseases.

As said before, a sleep cycle is usually an alternation of NREM and REM sleep:

• NREM Stage 1 (N1): N1 is a transitional stage marked by the onset of sleep, it
usually lasts for few minutes. Brainwave patterns shift from alpha to theta waves,
indicating a reduction in mental activity. It is a light sleep stage, and individuals
may experience hypnagogic hallucinations or sudden muscle twitches.

• NREM Stage 2 (N2): N2 is a deeper stage of NREM sleep. It is a more sta-
ble stage of sleep and represents a significant portion of the sleep cycle. Brain
activity continues to slow down, spontaneous muscle activity decreases further,
and sleep spindles (bursts of rhythmic brainwave activity) and K-complexes (sharp
waveforms) become prominent. Sleep spindles are thought to play a role in mem-
ory consolidation, while K-complexes may serve as a protective mechanism against
sleep disruptions.

• NREM Stage 3 (N3): Also known as slow-wave sleep (SWS) or deep sleep, N3
is characterized by the slowest brain waves of the sleep cycle. Since muscle activity
is at its lowest, during this stage it may be challenging to awaken the sleeper: it
is believed to play a crucial role in physical restoration and rejuvenation, muscle
repair, growth, and maintenance. At this stage, the growth hormone release is at its
highest, helping to complete the regeneration of the entire human body. N3, often
referred to as slow-wave sleep (SWS) or deep sleep, is characterized by the presence
of delta waves on electroencephalogram (EEG) recordings, indicating a state of
profound physical and mental rest, with slow and steady breathing and heart rate.
Furthermore, it is involved in memory consolidation, particularly for declarative
and procedural memories, helping organize and store information acquired during
wakefulness.

• REM sleep: REM sleep is the most distinct stage of the sleep cycle. As the name
suggests, REM sleep is marked by rapid horizontal movements of the eyes beneath
closed eyelids. This phase is strictly related to vivid, emotionally charged dream-
ing with intricate, bizarre, or even surreal content. Another crucial feature of this
sleeping stage is muscle atonia: a state of temporary paralysis that ensures dream

5



Introduction

experiences remain in the realm of the mind and do not lead to physical movements.
Despite the body′s paralysis, brain activity during REM sleep is high and resembles
the one of wakefulness. EEG recordings show rapid, irregular, and desynchronized
brainwave patterns. This stage is associated with irregular breathing, increased
heart rate, and fluctuations in blood pressure. These changes, coupled with muscle
paralysis, contribute to the unique characteristics of REM sleep. Furthermore, it
is believed to play a vital role in memory consolidation, particularly in processing
emotionally charged or procedural memories. The brain processes and integrates
information gathered throughout the day, aiding learning. It is associated with in-
creased creativity and problem-solving abilities. Dreams often involve novel ideas
and scenarios, potentially contributing to creative thinking. It may help regulate
emotions and emotional experiences. Dreams during this stage often feature emo-
tionally charged content, providing an opportunity for the brain to process and
make sense of emotional events. Adequate REM sleep is thought to reduce stress
and emotional reactivity. Disruptions in REM sleep may lead to heightened stress
levels and emotional instability. Typically, it occurs approximately 90 minutes after
falling asleep, and each subsequent cycle includes longer and more prominent REM
periods. As the night advances, REM sleep duration increases.

These characteristics are essential for understanding its functions and its potential
role in sleep disorders.

1.2 REM sleep Behaviour Disorder (RBD)

REM sleep behaviour disorder (RBD) is a sleep disorder characterized by abnormal move-
ments and behaviours during rapid eye movement (REM) sleep. It is considered a para-
somnia, which involves unwanted events or experiences occurring while sleeping. It is
believed to be caused by a disruption in the normal inhibition of muscle activity during
REM sleep, leading to the acting out of dreams.

The symptoms of RBD primarily involve the execution of complex motor behaviours
during sleep. Individuals affected by RBD may exhibit actions such as punching, kicking,
jumping, or shouting while asleep. These behaviours can be violent and potentially
dangerous, both for the individual itself and for their sleep partner. RBD is typically
more common in males and has been associated with the degeneration of dopaminergic
neurons in the brain. [3], [2] Diagnosing RBD involves a comprehensive evaluation of
the patient′s medical history, sleep history, and a polysomnography study. The latter
is a sleep study that measures various physiological parameters during sleep, including
brain activity, muscle tone, and eye movements. An absence of muscle atonia, the normal
paralysis of muscles during REM sleep, is a defining characteristic of RBD.

Treatment options for RBD mainly involve managing the symptoms and reducing
the risk of injury. Medications such as clonazepam, a benzodiazepine, have been found
to be effective in controlling the motor behaviours associated with RBD. [11] However,
long-term use of these medications can lead to side effects and may not be suitable
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for everyone. Furthermore, it is essential to address any underlying neurodegenerative
conditions that may be present or developing. It has been showed that RBD is often a
precursor to neurodegenerative disorders such as Parkinson′s disease and Dementia with
Lewy bodies. This disorder has been associated with various neurodegenerative diseases,
not only alpha-synucleinopathies (PD, DLB). Recent studies show a connection also to
Amyotrophic Lateral Sclerosis (ALS). [16] Both RBD and ALS are complex neurological
conditions that have sparked much interest and research in recent years. The prevalence
of RBD in these conditions suggests that there may be a shared underlying mechanism or
pathology. According to some different studies, this raises the possibility of using RBD
as a potential biomarker for the early detection of these disorders.

One study published in the Scientific Reports [15] found that over 20% of ALS patients
also exhibited symptoms of RBD. This highlights the potential for RBD to serve as a
clinical marker for the early detection of ALS.

Understanding the relationship between RBD and ALS is crucial for early diagno-
sis and intervention. Identifying RBD in ALS patients can help medical professionals
initiate appropriate treatment strategies and potentially slow the progression of the dis-
ease. Furthermore, studying RBD in ALS patients may provide valuable insights into
the underlying mechanisms of both conditions. As the field of neuroscience continues to
advance, studies like this contribute to a broader understanding of these conditions and
pave the way for improved patient care and outcomes.

In the study of RBD, Electromyographic (EMG) recordings are a crucial tool in
revealing different patterns of muscle activation during REM sleep. It is essential to
consider how these patterns have a significant impact on the patients in order to fully
comprehend the fundamentals of RBD and its associated motor manifestations.

Essentially, it is possible to distinguish between tonic activity and phasic activity.
Tonic activity is characterized by a sustained and continuous level of muscle activity

during REM sleep. Within the context of RBD, this continuous muscular engagement
throughout REM sleep is deemed abnormal. Typically, during healthy REM sleep, mus-
cles remain relaxed (atonic) as a protective mechanism to prevent physical movements
while individuals vividly dream. In individuals with RBD, electromyographic (EMG)
recordings unveil the presence of tonic activity as an enduring, elevated muscle activity
during REM sleep. This observation signifies that the muscles do not reach the desired
state of atonia, leaving room for sustained or prolonged motor behaviours during this
sleep stage. The clinical significance of tonic activity lies in its association with RBD.
The persistence of muscle activity throughout REM sleep reveals the loss of the normal
muscle atonia seen in healthy sleep. Hence, individuals with RBD are capable of phys-
ically acting out their dreams, often leading to complex behaviours such as punching,
kicking, or other intricate movements.

Phasic activity, in stark contrast to tonic activity, is characterized by short bursts
or episodes of muscle activity during REM sleep. These bursts are typically brief and
sporadic, occurring intermittently throughout REM sleep. In the context of RBD, phasic
activity is also discernible in EMG recordings during REM sleep. Unlike the continuous
nature of tonic activity, phasic activity manifests as fleeting bursts of muscle contractions.
Remarkably, these bursts of muscle activity are often linked to the content of dreams,
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aligning closely with the moments when individuals enact their dreams. Consequently,
they are responsible for the defining dream-enacting behaviours observed in RBD. The
clinical significance of phasic activity in RBD is profound, as it directly corresponds to the
dream content and the subsequent behaviours exhibited during REM sleep. These bursts
of muscle activity are synchronized with the occurrences of dream enactment, and the
nature of these dreams can sometimes be characterized by violent or disruptive actions.

1.2.1 REM sleep without atonia (RSWA)

On the other hand, REM Sleep Without Atonia (RSWA) is characterized by the absence
of muscle atonia during REM sleep with no physical acting out of dreams, presenting a
distinctive clinical profile. Indeed, it is defined as excessive or intermittent chin EMG
activity during REM sleep, thus manifesting as tonic or phasic activity, and, due to
this reason, is considered the polysomnographic hallmark of RBD, though it lacks the
intense, aggressive, and violent behaviours seen in RBD, making it a comparatively milder
disorder in terms of physical manifestations.

The underlying mechanisms of RSWA remain a subject of ongoing research, but sev-
eral factors have been suggested. Neurologically, RSWA has been associated with cer-
tain conditions, such as Parkinson′s disease and multiple system atrophy, which affect
the brainstem structures responsible for regulating muscle atonia during REM sleep.
Additionally, neurotransmitter imbalances, particularly related to serotonin and nora-
drenaline, have been proposed as contributors to RSWA. These neurotransmitters play
pivotal roles in the modulation of REM sleep and muscle tone. [8]

The clinical diagnosis of RSWA necessarily involves a combination of clinical evalua-
tion and objective assessment through polysomnography (PSG). During PSG, increased
muscle activity during REM sleep is observed, indicating the absence of normal muscle
atonia. This objective measurement, coupled with a clinical evaluation, aids in diagnosing
RSWA.

Some studies [4, 14] have suggested that the misfolding and aggregation of proteins,
while different in ALS (e.g., TDP-43, SOD1) compared to alpha-synucleinopathies, could
potentially intersect or influence one another. This phenomenon, known as "cross-seeding,"
implies that misfolded proteins from one neurodegenerative disorder could potentially im-
pact the aggregation of proteins linked to another disorder. This intersection of protein
misfolding may contribute to the observed clinical associations. In addition, neuroinflam-
mation and neurodegeneration are common features across various neurodegenerative
diseases. These processes can affect different regions of the brain, potentially leading to
diverse clinical manifestations. Shared neuroinflammatory pathways might play a role in
the co-occurrence of RBD/RSWA and ALS.
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1.3 Amyotrophic Lateral Sclerosis (ALS) in the context of
neurodegenerative pathologies

Amyotrophic lateral sclerosis (ALS), often referred to as Lou Gehrig′s disease from the
famous baseball player who passed away in 1941 because of this disease, is a devastating
neurodegenerative disorder that has confused the medical community for centuries. Un-
fortunately, it remains an enigmatic condition with no known cure yet. In recent years,
researchers have made significant improvements in understanding the pathophysiology of
ALS, shedding light on its complex nature.

Finding successful treatments and interventions requires an absolute understanding
of the pathophysiology of ALS. Motor neurons in the brain and spinal cord are the main
targets of ALS, which results in progressive muscle atrophy and weakening. Some of the
most significant hallmarks of this pathology are:

• Motor Neuron Degeneration: these neurons are responsible for transmitting
signals from the brain to muscles, enabling voluntary movements. This will lead to
progressive muscle weakness, typically starting in the limbs, which is a hallmark of
ALS. Patients may exhibit difficulty walking, climbing stairs, or lifting objects or
difficulties swallowing (dysphagia) due to the involvement of the muscles respon-
sible for swallowing. Also, respiratory muscles can weaken, leading to breathing
difficulties. Many ALS patients, in fact, eventually require ventilatory support.

• Glutamate Excitotoxicity: an imbalance in neurotransmitters, particularly ex-
cess glutamate, leads to overstimulation of motor neurons, causing cell damage and
death.

• Genetic Factors: approximately 10% of ALS cases are familial, with specific gene
mutations identified as causative factors. Mutations in genes have been linked to
both familial and sporadic ALS.

• Oxidative Stress and Inflammation: oxidative stress and inflammation in the
central nervous system contribute to motor neuron damage in ALS.

• Protein Misfolding: an accumulation of misfolded proteins in motor neurons is
a prominent pathological feature in many ALS cases.

• Astrocyte and Microglial Involvement: non-neuronal cells, particularly astro-
cytes and microglia, play a role in ALS pathogenesis, contributing to neuroinflam-
mation and motor neuron death.

Other common clinical manifestations are spasticity and increased muscle tone lead-
ing to stiffness and reduced range of motion; cognitive changes, ranging from mild
cognitive impairment to frontotemporal dementia (FTD); bulbar symptoms, affecting
speech and facial muscles. Given the heterogeneity of ALS symptoms, accurate and early
diagnosis is crucial. Unfortunately, there is no single definitive test for ALS yet, making
it a diagnosis of exclusion and relying on clinical criteria.
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Chapter 2

Introduction to the observational
clinical study

This chapter aims to discuss the design of the retrospective study in light of the charac-
teristics of the patient data-set, the input features, and the assessed endpoints.

2.1 Population study
The study′s participant population was constructed in the context of a Longitudinal
Study of the Regional Centre for Sleep Medicine at Molinette Hospital in Turin, which
encompassed data collection between December 2021 and April 2023, spanning three dis-
tinct time points: initially at the baseline examination, followed by assessments at the
6-month and 12-month follow-up intervals. The clinical trial is currently underway with
an active recruiting process for new volunteer participants. The aim of this longitudinal
study is to assess the effect of Melatonin-based treatment on the extent of RSWA, over
a 18-month total time period. It is relevant to highlight that all statistical analyses pre-
sented henceforth pertain to the entire group of patients enrolled in this research.

However, it is noteworthy that our focus shifts to a well-defined subgroup within the
original cohort for the evaluation of specific parameters essential to the computation of
various indices, encompassing sleep parameters, REM sleep Atonia Index (RAI) [4, 6],
Montreal and SINBAR scoring [13], and the Dissociation Index (DI) [10]. This deliberate
subdivision facilitates a more detailed examination of the targeted parameters and their
relevance within the context of our study′s objectives.

In the following tables, demographic and clinical data of the cohort are presented and
classified according to the availability of medical records. The first one exclusively en-
compasses patients for whom we had access only to the initial examination data.
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PatientID PatientSEX PatientAGE follow-up at 6months follow-up at 12months
3371 M 60 N N

3331 F 64 N N
3300 M 62 N N
3453 M 64 N N
3458 M 71 N N
3491 M 68 N N
3510 M 73 N N
3515 F 54 N N
3529 M 82 N N
3551 M 66 N N
3695 M 79 N N
3749 F 56 N N
3753 M 57 N N
3792 M 77 N N
3847 M 70 N N
3901 F 68 N N
3929 M 74 N N
3944 M 71 N N
3950 M 71 N N
3958 M 77 N N
3979 F 76 N N
3991 F 63 N N
4000 F 74 N N
4022 M 46 N N
4115 M 57 N N
4121 M 70 N N
4159 F - N N
4211 F 73 N N

Table 2.1. Population study acquired at the Regional Centre for Sleep Medicine,
Molinette Hospital, Turin, Italy.

.
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Conversely, the second table consists of all patients for whom we not only had access
to the initial examination records but also to at least one of the two subsequent follow-up
records.

PatientID PatientSEX PatientAGE follow-up at 6months follow-up at 12months
3683 M 69 Y N

3196 M 73 Y N
3245 M 67 Y N
3306 M 70 Y N
3336 F 56 Y N
3378 F 70 Y N
3379 M 74 Y N
3459 F 82 Y N
3461 F 58 Y N
3462 F 59 Y N
3528 M 62 Y N
3532 M 63 Y N
3533 M 77 Y N
3616 M 49 Y N
3620 M 63 Y N
3626 F 54 Y N
3631 M 61 Y N
3701 M 61 Y N
3777 M 69 Y N
3820 F 61 Y N
3823 M 58 Y N
3172 F 77 Y Y
3170 M 43 Y Y
3368 F 80 Y Y
3181 M 47 Y Y
3330 F 60 Y Y
3340 M 58 Y Y
3514 F 77 Y Y
3655 F 54 Y Y
3698 M 67 Y Y

Table 2.2. Population study acquired at the Regional Centre for Sleep Medicine,
Molinette Hospital, Turin, Italy.

.
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As illustrated by the pie chart below, the original cohort of patients obtained for this
study exhibits a notable preponderance of male individuals in comparison to their female
counterparts. This finding aligns with broader epidemiological data indicating a higher
incidence of neurodegenerative diseases among males as compared to females, with esti-
mates often ranging from about 60%-70% of cases occurring in males and 30%-40% in
females. [12]
However, specific sex ratios for neurodegenerative diseases may vary by region, popula-
tion, and through time. Additionally, research is ongoing to better understand the factors
contributing to these gender differences in disease incidence. These percentages can vary,
and it is relevant to consult up-to-date epidemiological studies or global health organiza-
tions for the most accurate and region-specific statistics on the ALS sex ratio.

Figure 2.1. Sex Differentiation.
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2.2 Survival Outcomes
The survival outcomes of Amyotrophic Lateral Sclerosis (ALS) patients one year after
diagnosis can vary widely depending on several factors, including the age of onset, the
rate of disease progression, and the effectiveness of medical interventions and support.
Generally, ALS is a progressive and often fatal neurodegenerative disease, and one-year
survival rates reflect this challenging prognosis. It is important to remember that ALS is
a highly variable disease, and individual experiences can deviate from the averages.

From the histogram below, the survival outcomes can be highlighted.
The original cohort involved in this study is composed of 58 patients (21 women, 37 men).
Only 30 of them attended the first follow-up after 6 months from the first examination,
representing slightly more than half of the total.
After one year from the first acquisition, only nine patients have repeated the examina-
tion, representing only slightly more than 15%. Many of them had worse health condi-
tions, having difficulties in undertaking the exam, others instead had already passed away.

These findings support the existing statistical data, confirming that Amyotrophic Lateral
Sclerosis (ALS) is a disease defined by rapid disease development, eventually resulting in
dramatically reduced life expectancy.

Figure 2.2. Survival Outcomes
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Chapter 3

Material and Methods

3.1 Manual evaluation of RBD

Clinical assessment plays a pivotal role in the evaluation of REM Behaviour Disorder.
Physicians employ a combination of clinical interviews, patient history, and specialized
tests to arrive at a diagnosis. Furthermore, as said before, it is essential to differentiate
RBD from other sleep disorders, particularly because it can sometimes be a precursor to
neurodegenerative conditions.

When evaluating a patient suspected of having RBD, clinicians often begin with a
comprehensive clinical interview. Patients are asked about their sleep patterns, dream
experiences, and any unusual behaviours during sleep. Close attention is paid to descrip-
tions of dream enactment, including any violent or aggressive actions. Accurate diagnosis
of RBD relies on specific criteria outlined in the International Classification of Sleep Dis-
orders (ICSD) and the Diagnostic and Statistical Manual of Mental Disorders (DSM).
These criteria help distinguish RBD from other sleep disorders. The ICSD-3 (Interna-
tional Classification of Sleep Disorders, Third Edition) criteria provide a standardized
framework for diagnosing RBD. These criteria emphasize the presence of specific clinical
and polysomnographic features.

• Presence of REM Sleep without Atonia: One of the hallmark features of RBD is
the presence of REM sleep without atonia. Atonia refers to the normal paralysis of
skeletal muscles that occurs during REM sleep, preventing individuals from physi-
cally acting out their dreams. In RBD, this atonia is disrupted, allowing individuals
to enact their dreams physically.

• Clinical History of Dream-Enacting Behaviours: To meet the ICSD-3 criteria, pa-
tients must have a documented clinical history of dream-enacting behaviours during
REM sleep. These behaviours can vary widely and may include actions such as talk-
ing, yelling, punching, kicking, or even getting out of bed during dream episodes.
Importantly, these actions are not consciously initiated but are instead a manifes-
tation of the dream content.
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• Exclusion of Other Potential Causes: The ICSD-3 criteria also emphasize the im-
portance of ruling out other potential causes or disorders that could explain the
observed behaviours. This step is crucial in ensuring that the diagnosed condition
is indeed RBD and not another sleep disorder or medical condition.

These ICSD-3 criteria provide a structured approach to diagnosing RBD and serve as a
valuable tool for healthcare professionals, ensuring consistency and accuracy in the diag-
nosis of this sleep disorder.

The DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition)
also includes diagnostic criteria for RBD. These criteria align closely with the ICSD-3
criteria and provide additional guidance for clinicians in identifying and diagnosing RBD.
The DSM-5 criteria for RBD include:

• Recurrent episodes of arousal during sleep associated with vocalization and/or
complex motor behaviours: This criterion focuses on the recurrent nature of the
episodes, emphasizing that RBD is not a one-time occurrence but a repetitive pat-
tern of sleep-related behaviours.

• Partial or complete amnesia for the dream: Individuals with RBD often have par-
tial or complete amnesia for the content of the dreams that lead to the observed
behaviours. This amnesia is a distinguishing feature from other sleep-related disor-
ders.

• The sleep disturbance is not better explained by another sleep disorder, medical
condition, medication, or substance use: like the ICSD-3 criteria, the DSM-5 crite-
ria emphasize the importance of excluding other potential causes for the observed
sleep disturbances. This ensures that the diagnosis of RBD is accurate and not
confounded by other factors.

The DSM-5 criteria complement the ICSD-3 criteria and are particularly relevant for
mental health professionals and clinicians who use the DSM-5 as a diagnostic reference.

In addition to the established diagnostic criteria outlined in the ICSD-3 and DSM-5,
there are several specialized indices and assessment tools that further aid in the manual
evaluation of REM Behaviour Disorder (RBD). These indices provide valuable insights
and quantifiable measures to enhance the understanding and diagnosis of RBD. Among
these, the RAI (REM Atonia Index), Montreal Criteria, and SINBAR (Sleep Innsbruck
Barcelona) criteria stand out as noteworthy contributions to the assessment of RBD.

3.1.1 REM Atonia Index (RAI)

Recent research has suggested that the REM Atonia Index (RAI) can serve as a valuable
adjunct to the diagnostic criteria outlined in the ICSD-3 and DSM-5. It is a continuous
index defined in the range [0, 1] [7], where 0 represents total loss of physiological chin
atonia during REM sleep. Between these extremes, RAI values provide a continuum,
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with values less than 0.8 strongly indicative of altered (reduced) chin EMG atonia during
REM sleep. Values falling between 0.8 and 0.9 suggest a less pronounced alteration of
atonia, while values above 0.9 are characteristic of normal recordings [13], [7]

Hence, lower RAI values – i.e., below 0.7 – can provide additional objective evidence
of disrupted REM sleep muscle atonia, and may be used to support the diagnosis of RBD,
serving as a fast, first-line tool for screening [13]. Incorporating the RAI into the manual
evaluation of RBD enhances diagnostic accuracy and aids in distinguishing it from other
sleep disorders with similar clinical presentations. The RAI functions very well as a first-
line screening tool for RSWA; on the other hand, monitoring the overall progression of
RBD and its potential association with neurodegenerative diseases (such as Parkinson′s
disease and Dementia with Lewy bodies) is a challenging task, and longitudinal assess-
ments should be based not only on the evaluation of EMG tone dissociation, but also on
other parameters. This may help to provide insights into disease severity and evolution.

The RAI is derived from EMG recordings during REM sleep. The computation of
such measure involves first meticulous scoring of sleep stages, done manually by trained
sleep technologists, at times aided by automated scoring systems. Once REM sleep has
been identified, the index quantification is performed automatically by implementing the
method presented by Ferri et al., 2018 [5] This relies on analysing the amplitude chin
EMG during REM Sleep, thus providing an objective measure of muscle tone during
REM sleep. Specifically, the algorithm works as follows:

1. Filter the EMG signal in the range 10–100 Hz, allowing for high-frequency noise
reduction and minimisation of slow drifts,

2. Rectify the EMG signal,

3. Segment the EMG signal in 1-second epochs, to be employed for further computa-
tion,

4. Count the number of 1-second epochs with amplitude lower than 1 , amplitude in
the range 1–2 and amplitude higher than 2 .

Then, the RAI value is obtained as follows:

RAI = amp ≤ 1
100 − 1 ≤ amp ≤ 2 (3.1)

RAI values below the threshold of 0.7 are a strong indicator of REM Sleep Without
Atonia, and may suggest a higher risk for RBD. Indeed, the cited study also demonstrated
that RBD patients typically exhibit lower RAI values compared to individuals without
RBD. An improved version of the RAI accounts for the background noise surrounding
each 1-second epoch [7]; this thesis work implements this new version.

Tracking changes or fluctuations in the RAI can help clinicians and researchers identify
individuals who may benefit from closer monitoring and early intervention.

The quantification and analysis of chin EMG activity during sleep are critical as-
pects of sleep research, offering valuable insights into the neuromuscular dynamics that
underlie various sleep stages. Other studies by Figorilly et al. [13] explore in detail the
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automated scoring algorithm utilized for the assessment of chin EMG activity, employing
the HypnoLab software. This sophisticated software, along with its digital signal pro-
cessing techniques, plays a pivotal role in the computer-aided diagnosis (CAD) of sleep
disorders. Indeed, the use of an automated scoring system not only reduces the inter-
rater variability which necessarily affects manual scoring, but also allows for the analysis
of large datasets with greater efficiency and consistency. [13]

The Hypnolab software is also able to define 20 amplitude classes, each representing
a distinct range of amplitude values, such as amp≤ 1, 1≤ amp ≤2, and so forth, up to
amp≥19, where each number represents the value in of EMG activity. These amplitude
classes serve as a basis for characterizing the intensity and patterns of EMG activity.
Indeed, these amplitude classes may hold significant clinical relevance. Muscle atonia,
the state characterized by reduced muscle activity or complete inactivity, is indicated by
high values in the first class (amp≤1). In contrast, both phasic and tonic activations are
expected to result in higher values in the remaining amplitude classes (e.g., 1≤ amp≤2
and beyond). This classification scheme provides a framework for distinguishing between
different types and levels of muscle activity during sleep.

In conclusion, the automated quantification of chin EMG activity during sleep rep-
resents a significant advancement in sleep research methodology. The utilization of the
HypnoLab software, with its advanced signal processing techniques and robust algorithm,
offers a comprehensive and objective means of assessing muscular activity patterns dur-
ing sleep. As sleep research continues to evolve, other automated scoring algorithms are
provided [1], allowing for the faster, computer-aided scoring of RSWA.

Although computerised versions of such metrics are effective instruments for assessing
RSWA, they come with some limitations. First, the scoring of EMG activity can vary
between sleep laboratories and scorers. Therefore, standardization of scoring methods
and inter-rater reliability assessments are necessary to ensure consistency in RAI values
across different settings. In addition, the interpretation of such atonia metrics should
always be considered in the clinical context; indeed, they do not provide information
about the underlying cause of RBD, which can be multifactorial.

The following subsections present other metrics currently employed in the RSWA
evaluation.

3.1.2 Montreal Scoring Criteria

The Montreal Scoring System represent a set of expert consensus guidelines developed to
assist in the clinical diagnosis of RBD. These criteria build upon the diagnostic criteria
outlined in the ICSD-3 and the DSM-5 and provide additional clinical insights into RBD
evaluation. The Montreal Criteria emphasize several key aspects of RBD assessment,
including:

• The presence of dream-enacting behaviours during REM sleep

• The exclusion of other potential causes of parasomnia, such as other sleep disorders
or medication side effects

• The importance of a detailed clinical history to identify RBD-related symptoms
and behaviours
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These criteria serve as a practical tool for clinicians and researchers to systematically
evaluate patients suspected of having RBD. The incorporation of the Montreal Criteria
into the manual evaluation process enhances the clinical accuracy of RBD diagnosis and
ensures a thorough assessment of relevant clinical features. As it has been described by
Figorilli et al. [13] this method, adapted to 30-second epochs, employs a sophisticated
approach to classify EMG activity as either "tonic" or "atonic." Furthermore, it takes
into account the density of phasic chin EMG activity during sleep, shedding light on the
complexities of sleep patterns and potential abnormalities. The procedure is a refinement
of previous techniques, adapted to 30-second epochs and each of them is meticulously
evaluated, and classified as "tonic" when there is increased sustained EMG activity present
in more than 50% of the epoch′s duration. This sustained activity is characterized by an
amplitude at least twice that of the background EMG muscle tone or more than 10 µV.
Conversely, epochs that do not meet these criteria are scored as "atonic". This binary
classification provides a clear and objective means of assessing muscular activity during
sleep.

One of the key parameters introduced by this method is the concept of "tonic EMG
density". Tonic EMG density is defined as the percentage of 30-second epochs that are
scored as tonic. This metric serves as a quantitative measure of sustained EMG activity
during sleep and can be a valuable tool for identifying patterns and trends in muscular
activity.

Phasic chin EMG activity is also evaluated, by dividing each 30-second epoch into
2-second mini-epochs, allowing for a more detailed examination of short bursts of EMG
activity. These bursts, referred to as "phasic EMG events", are characterized by their
duration, with a range of 0.1 to 10 seconds, and their amplitude, which must exceed four
times the amplitude of background EMG activity. Phasic chin EMG density, another
crucial parameter, is defined as the percentage of 2-second mini-epochs that contain EMG
events meeting the specified criteria. This metric provides insights into the frequency and
intensity of phasic chin EMG activity during sleep.

The study by Figorilli et al. [13] establishes criteria for abnormal chin EMG activity
during REM sleep. Specifically, REM sleep chin EMG activity is considered abnormal
when tonic chin EMG density is equal to or exceeds 30%, and/or phasic chin EMG density
is equal to or exceeds 15%. These thresholds serve as diagnostic markers for potential
sleep disorders where excessive muscular activity during sleep can disrupt the normal
sleep architecture and lead to sleep disturbances.

3.1.3 SINBAR Scoring Criteria

The SINBAR (Sleep INnsbruck BARcelona) criteria are another set of diagnostic criteria
and scoring systems designed to aid in the evaluation of RBD, and the only criteria
included by the ICSD-3. These criteria take into account clinical, polysomnographic,
and video-based observations to assess RBD-related behaviours. Key components of the
SINBAR criteria include:

• Clinical features such as the presence of dream-enacting behaviours

• Polysomnographic evidence of increased muscle activity during REM sleep
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• Video recordings of sleep to capture and analyze abnormal behaviours during REM
sleep

The SINBAR criteria enhanced the diagnostic accuracy of RSWA. The inclusion of
video recordings allows for the direct observation and documentation of dream enactment,
further supporting the diagnosis.

The SINBAR methodology includes the analysis of chin EMG activity and flexor
digitorum superficialis (FDS), left and right, EMG activity. These sources are employed
to compute tonic and phasic activity, as well as the any activity, that encompasses both
tonic and phasic components, which is crucial for understanding sleep patterns.

Each 30-second epoch of sleep is scored, and categorized as "tonic" when sustained
EMG activity is detected in more than 50% of its duration. This sustained activity must
exhibit an amplitude that is at least twice that of the background EMG muscle tone or
exceeds 10µV. Phasic EMG activity, on the other hand, is evaluated at a finer temporal
scale. Each 30-second epoch is divided into 3-second mini-epochs to capture short bursts
of EMG activity. Phasic EMG activity is defined as any burst of muscle activity lasting
from 0.1 to 5 seconds with an amplitude exceeding twice the background EMG activ-
ity. Importantly, the SINBAR group′s methodology accounts for the complex interplay
between tonic and phasic activity. For a phasic chin EMG burst to be scored within a
3-second mini-epoch, it must exhibit at least twice the amplitude of the background tonic
EMG activity occurring in the same mini-epoch. This approach enables the detection and
quantification of both tonic and phasic components within the same temporal window,
providing a more detailed picture of neuromuscular activity during sleep. Finally, to al-
low for the computation of the SINBAR Index, in each 3-second mini-epoch, the presence
of either tonic or phasic EMG activity is recorded as "any" activity. This classification
is significant because it allows for the inclusion of EMG activity lasting from 5 to 15
seconds, which was not measured by previous methods.

However, it is essential to establish standardized parameters and thresholds for iden-
tifying abnormal EMG activity during sleep. This analysis has led to the identification
of specific cutoff values that optimize the balance between sensitivity and specificity in
detecting abnormal EMG activity during REM (rapid eye movement) sleep. Specifically,
the SINBAR group has determined the optimal cut-off values for achieving high specificity
and sensitivity in identifying abnormal EMG activity during REM sleep. [1, 10,13]

These cutoff values have significant clinical implications, as they serve as diagnostic
markers for sleep disorders characterized by abnormal EMG activity. Disorders such as
REM sleep behaviour disorder (RBD) are associated with increased muscular activity
during REM sleep, and the SINBAR group′s methodology provides a valuable tool for
diagnosing and monitoring such conditions.
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CUT-OFF VALUE IDENTIFIED IN
>16.3% 3-second mini-epochs with phasic chin EMG activity
>18% 3-second mini-epochs with any chin EMG activity

3-second mini-epochs with any chin EMG activity
>32% combined with bilateral phasic EMG activity

in the flexor digitorum superficialis (FDS) muscle
30-second epochs with any chin EMG activity

>27% combined with bilateral phasic EMG activity
in the flexor digitorum superficialis (FDS) muscle

Table 3.1. Threshold Values identified by the SINBAR guidelines in [1]

.

3.2 Dissociation Index

State-of-the-art and clinically employed methods for RSWA scoring focus on the manual
inspection of EMG signal′s amplitude characteristics during REM sleep (the duration of
muscular tone and twitches, in the time domain).

In accordance with the preceding paragraphs, the Montreal and SINBAR techniques,
which evaluate the EMG signal′s amplitude and burst duration during REM sleep in
2(3)-second epochs, respectively, require visual scoring, although the SINBAR criteria
were recently implemented in a commercial PSG system [9]
In the process of automating these scoring methods, Machine Learning (ML) approaches
have played a fundamental role in the advancement of autonomous sleep analysis. Using
polysomnographic (PSG), electromyography (EMG), and electrooculogram (EOG) data,
automatic categorization of sleep disorders and RBD diagnosis were attempted. However,
the suggested classification technique turns out to be complex since it involves a variety
of signals and several characteristics. A method for blind, automated detection of RSWA
in polysomnographic data based on spectrum analysis of EMG records during REM sleep
in Parkinson′s disease patients has been presented in [10].

In this dissertation work, those ML methods have been implemented to classify a subject
as affected by RSWA or not in ALS patients, adapting the algorithm to their specific
features.
The Dissociation Index (DI) is a continuous metric that assesses the degree of impairment
of the subject using Euclidean Distance (ED) measures in suitable vector spaces [10]. In-
deed, RSWA involves a state separation of mind and body; in fact, although the EEG
indicates that the person is in REM, the motor neurons are active and excitable. The
ability to describe the degree of dissociation is useful in therapeutic practice and can
help with longitudinal examinations. Despite the fact that it requires further validation,
the DI might serve as a test bed for a finer evaluation and monitoring of RSWA and its
development to neurodegeneration.
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In this regard, to automatically identify RSWA patients, supervised learning ap-
proaches were used. These methods are fundamental machine learning techniques in
which a model is trained on a labelled dataset, called training dataset. The principal aim
of supervised learning is to let the model understand the underlying patterns and corre-
lations between the input data and the target labels so that it is possible to make correct
predictions or classifications on new, previously unseen data. The model updates its pa-
rameters iteratively in order to minimize the gap between its predictions and the actual
labels in the training data, often using a specified loss function and optimization method.
To avoid performance bias, the analysis was performed using manually (rather than au-
tomatically) graded PSG data. The two ML models used were the K-Nearest Neighbour
(K-NN) and the Support Vector Machine (SVM). Specifically, those algorithms adopt
a binary categorization method to distinguish between RSWA and non-RSWA patients.
These aspects will be discussed more in-depth later in the thesis.

As discussed, RBD is considered a precursor to neurodegeneration. Moreover, sub-
jects that present more serious clinical manifestations of RSWA are more likely to develop
RBD. In fact, RSWA does not manifest itself at the same dissociation extent for all sub-
jects. In light of these observations, the DI is defined as a distance-based continuous
index correlated with the degree of sleep (and atonia) impairment. It acts as a similarity
measure, comparing an individual to a reference model of health. This comparison is
quantified using the ED, where a zero distance implies identity with the reference (stand-
ing for a state of perfect health), while larger distance values signify increasing deviation
from this reference. Notably, this study represents a pioneering effort in proposing a
distance-based model to assess the level of disease in individuals with sleep-related dis-
orders.
However, it is important to recognize that defining the concept of "neighbourhood" in
this context is not straightforward, primarily due to the absence of a clinically validated
disease model.
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Chapter 4

Experimental results

In the following sections the methodology used will be presented, showing the results
produced by the deployment of the developed algorithm.

4.1 Methodology

The data processing and the algorithm software implementation were performed in Mat-
lab 2020b and Python language. First of all, a set of nineteen features to be input to
the classification algorithms have been identified. In this study, commonly employed
polysomnographic variables [10] are taken into consideration and computationally ex-
tracted from the manually annotated hypnogram. They include the Sleep Onset Latency
(SOL), Wake After Sleep Onset (WASO), Total Sleep Time (TST), Time in Bed (TIB),
Sleep Efficiency (SE), Arousal Index (ARI), Minutes of REM Sleep (MREM), average
length and proportion of segments classified as belonging to the same sleep stage, Sleep
Transition Index (STI), REM and non-REM (NREM) Fragmentation Indices (RFI and
NFI). These latter measure sleep fragmentation patterns, typical of poor sleepers [10].

Other significant features are worked out from EMG data, including RAI and a set
of features encompassing information from the spectral analysis of EMG during REM
sleep. Following the study from Rechichi et al., 2022 [10], we selected 1-second mini-
epochs, to match the RAI computation, and estimated the Power Spectral Density (PSD)
using the Welch-modified periodogram with Hamming window. Three features are then
obtained: Mean Frequency of the power spectrum estimate, an averaged measure which
represents the PSD centroid; Median Frequency (a.k.a. Spectral Edge Frequency at 50%,
SEF50) representing the frequency below which 50% of the total power lies; Spectral
Edge Frequency at 95% (SEF95), i.e., the frequency below which 95% of the total power
lies.

The complete list of features is shown in the table4.1
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Figure 4.1. Features implemented in the algorithm [10]

All the features underwent z-score normalization and a two-tailed T-test at the 5%
significance level. To perform the analysis, the dataset was partitioned into a training
set (70% ) and a test set (30% ). Performance on the training data was assessed through
k-fold Cross-Validation (CV), where k=5. Cross-validation is a method that enables
the evaluation of a trained classifier′s generalization ability, specifically its capacity
to accurately classify new, unseen data. This technique involves randomly dividing the
training dataset into k subsets. During each iteration, the model is trained on k-1 subsets
and validated on the remaining one.

As far as distance-based algorithms are concerned, in this dissertation work the following
two have been exploited:

• K-NN classifies each element by taking the majority vote on the class of its K closest
items (i.e., neighbours) [31], where K is a parameter to be optimised.

• SVM aims at finding the hyperplane which effectively separates the elements in the
dataset according to their class, by ensuring the maximum distance between the
nearest items of each class.

To allow for the computation of the DI, the distance neighbourhood presented in the
cited study was employed – i.e., a neighbourhood of R=5.92, and as a reference vector
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a healthy model comprising the characteristics of all healthy subjects in the dataset was
employed. The DI is computed as:

DIi = Hi − min

max − min
(4.1)

where Hi represents the ED of the i-th subject, min is the minimum admissible distance
value (i.e., 0), and max is the maximum distance value (i.e., the neighbourhood radius,
R2). Values of DI to 0 indicate a strong similarity to a healthy model, and growing values
represent increasing dissociation.
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4.2 Numerical results and discussion
This section presents the results of the computational analysis performed following the
procedures described above.

Figure 4.2. Tonic Density, Phasic Density (Montreal method), Phasic Density
(SINBAR method)

From the boxplot 4.2 above, we can see that the percentage of tonic density in each
stage is much higher than the one of the phasic (regardless of the method employed for
the analysis). As it is known, ALS is a neurodegenerative disease that leads to the loss
of motor neurons and a progressive reduction in the number of active motor units and
a decrease in muscle strength. Consequently, the inability to suppress muscle activity
during REM sleep may occur disrupting the inhibitory control and losing the ability to
prevent individuals from physically acting out their dreams.

Another important highlight is the higher percentage of phasic activity computed by
means of the SINBAR index with respect to the one computed with the Montreal Method.
This may be caused by the fact that the SINBAR group differs from Montreal in the
way they evaluate phasic density (dividing differently the 30s epochs into shorter mini-
epochs) and also because they score as "any" some intermediate activities encompassing
both tonic and phasic components, which is relevant for allowing the inclusion of EMG
activity lasting from 5 to 15 seconds, which was not measured by previous methods.
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Figure 4.3. REM Atonia Index

Figure 4.4. Boxplot REM Atonia Index control patients - population study

The boxplot 4.4 above shows four boxes: all of them are RAI evaluations differentiated
among control patients and ALS patients in the three stages described in the previous
sections. All of them share a median value around 0.8 and slightly over 0.9 showing up a
modified muscle activity in most of the patients. Apart from the T0 patients whose data
lies mostly in a range between 0.778 (Q1) and 0.974 (Q3), all the other data distributions
are negatively skewed showing a strongly altered muscle atonia. The median values of the
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boxplots in the three measurements taken at six-month intervals demonstrate that as the
disease progresses, the values tend to shift towards lower RAI, indicating an alteration in
muscle atonia.
In order to test the algorithm, some control patients′ sleep parameters have been ana-
lyzed. From those features, the same considerations as before have been made, and the
computation of RAI for those patients results to be aligned with the parameter intervals.
Unfortunately, due to privacy reasons, little to no information was provided on this sec-
ond cohort (sex differentiation, age, diseases and their relative stages), apart from the
fact that they are affected by neurodegenerative diseases different from ALS.

The scatter plot in Figure 4.5 highlights a clear negative correlation between the
Dissociation Index (x-axis) and the REM Atonia Index (y-axis). As the value of the DI
increases, there is a noticeable decrease in RAI scores. Outliers are minimal and do not
significantly affect the overall trend. This suggests that, in general, the points form a
clear descending trend.

Figure 4.5. Scatter Plot. Dissociation Index - REM Atonia Index
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In the boxplot below 4.6 the boxes are positively skewed mainly due to the outliers
in the population study, and all of them share very low values of the Dissociation Index.
Since the DI is a distance-based index describing the degree of similarity to a healthy
model, we have reasons to believe that, regardless of the neurodegenerative diseases affect-
ing the patients, those involved in this cohort mostly belong to Low Tier and Moderate
Tier, according to the ranges estimated in [10].

Figure 4.6. Boxplot Dissociation Index control patients - population study
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Chapter 5

Conclusion

In conclusion, this dissertation explored the intricate dynamics behind the progression of
Amyotrophic Lateral Sclerosis starting from sleep disorders such as REM Sleep Without
Atonia and REM sleep Behaviour Disorder.
Through an extensive review of the literature, rigorous data collection and analysis, and
a critical examination of various theories and models, we have addressed the central re-
search questions and objectives set out at the beginning of this study.
The literature review highlighted highlighted the ability of Machine Learning algorithms
to distinguish between healthy and RBD/RSWA subjects, by leveraging the most sig-
nificant sleep-related features. In the context of this work, a stratified, longitudinal
evaluation of the degree of impairment of ALS subjects has been carried out, through
quantitative measures previously presented in research, namely the REM Atonia Index
and the Dissociation Index.

Additionally, this research has highlighted limitations and areas for future studies.
These include the possibility of having a larger cohort of patients involved in the study
and suggest opportunities for further exploration, such as digging deeper into the analysis
of the mechanisms behind the progress of REM sleep Without Atonia in ALS patients.
In the broader context, this thesis underscores the importance of continued improvements
in sleep research to investigate some relevant peculiarities, such as the way specific phar-
macological treatments affect or not the advance of the disease through the passing of
time, as we have pointed out for the analysed cohort under melatonin treatments. It is
our hope that this work can serve as a foundation for future improvements and validation
in the field, providing a springboard for further investigations and advancements.
Finally, this work highlights the importance of having a single parameter in order to
evaluate the level of REM dissociation and, therefore, monitor the disease progress and
the potential impact it can have on the quality of life and expectancy of patients.
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5.1 Future improvements
The association between seemingly unrelated disorders like ALS and RBD provides a
unique opportunity to gain insights into the underlying mechanisms of neurodegener-
ation. By understanding the shared genetic and neurobiological factors that connect
these disorders, researchers might uncover fundamental processes that contribute to the
development of various neurodegenerative diseases, not just ALS.

Investigating the link between ALS and RBD encourages collaboration between clin-
icians, neuroscientists, and sleep researchers. This interdisciplinary approach can foster
new perspectives and accelerate progress in understanding both disorders, potentially
leading to better treatment and quality of patient care.

As already mentioned, RBD itself is an intriguing sleep disorder that is not yet fully
understood. Exploring its connection to ALS could shed light on the mechanisms un-
derlying RBD and its relationship to other neurological conditions. This could lead to
advancements in sleep medicine and the development of more effective treatments for
RBD and other neurodegenerative diseases. In this context, since RBD has been recently
acknowledged as an early biomarker for ALS, it could pave the way for more personalized
and targeted treatment approaches. Different individuals might have different risk pro-
files based on their RBD status, allowing for tailored interventions that take into account
their specific risk of developing ALS.

On the other hand, considering the connection between ALS and RBD, this could
open up novel avenues for therapeutic interventions. Targeting the pathways that are
involved in both disorders might lead to the development of treatments that are effective
across a spectrum of neurodegenerative conditions, potentially revolutionizing the field
of neurology.
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