
Politecnico di Torino
Master’s Degree in Data science and Engineering

Evaluation of the effectiveness of
adopting MLops practices in an industrial
context, the problem of concept drift and

conformity with the new AI Act

Supervisors

Prof. Antonio VETRÒ

Candidate

Nicolò VERGARO

October 2023

Summary

This thesis project is about applying MLOps practices in an industrial environment.
MLOps refers to the intersection of DevOps with Machine Learning through
practices that aim at automating and handling the processes related to the life
cycle of an ML application. These processes include developing, testing, deploying,
and monitoring a machine learning model.

The focus of the thesis is not only MLOps but also two other important aspects
that can be linked with MLOps and have become more important lately, especially
the latter, which is highly recent. The first aspect is related to concept drift, which
is a shift in the statistical properties of data while the model is in production.
Concept drift has become more prominent, especially given the dynamic and fast-
paced environment in which we generate data at an increasing rate with time. The
second aspect concerns fairness, which refers to avoiding creating a machine learning
system that embeds biases and discriminates in its predictions. A significant step
towards fairness is the new AI Act, created by the European Union to be the
first regulation concerning AI in the world. When enforced, it will separate AI
applications into three levels based on the risk they pose to users, each of which
will have consequences on the company that produces the application and on the
application itself.

The proposed solution will address these two aspects while enforcing MLOPs
practices by developing a pipeline on the partner platform Amazon Web Services
(AWS). The pipeline will automatically handle the end-to-end lifecycle of an ML
application, which starts from the ingestion of the dataset and ends with the
deployment of the trained model on an endpoint where the end user can make
predictions while continuously monitoring the model for drift. We will see how the
solution brings value to potential clients and simultaneously considers concept drift
and respects fairness.

ii

Table of Contents

List of Figures vi

Acronyms viii

1 Introduction 1
1.1 About the company . 1
1.2 About the project . 2
1.3 Motivations of the work . 2

2 Machine Learning in production 4
2.1 MLOps . 4
2.2 Drift . 6
2.3 FairML . 9

3 Project 12
3.1 Overview of the project . 12
3.2 SageMaker pipelines . 14

3.2.1 The pipeline object . 14
3.3 KubeFlow . 16

3.3.1 SageMaker components for KubeFlow 17
3.3.2 KubeFlow deployment on AWS 18

3.4 Framework choice . 19
3.5 Versioning and deployment techniques 20
3.6 SageMaker pipelines step description 21

3.6.1 Amazon roles . 21
3.6.2 Amazon Resource Names . 21
3.6.3 ProcessingStep . 22
3.6.4 TrainingStep . 24
3.6.5 QualityCheckStep e ClarifyCheckStep 25
3.6.6 ConditionStep . 29
3.6.7 FailStep . 30

iv

3.6.8 ModelStep . 30
3.6.9 LambdaStep . 32
3.6.10 SageMaker session and Pipeline Session 33

4 Architecture of the solution 35
4.1 General setup . 35

4.1.1 IDE . 35
4.1.2 Data storage configuration 35
4.1.3 Configuration files . 36
4.1.4 The Pipeline object in-depth 36
4.1.5 Use case . 37

4.2 Automatic deploy . 38
4.2.1 Containerization . 38

4.3 Data ingestion . 40
4.4 Data bias and data quality statistics 41

4.4.1 Bias metrics . 43
4.5 Model training . 46
4.6 Model evaluation . 47
4.7 Model registration . 48

4.7.1 ConditionStep . 48
4.7.2 ModelStep . 49

4.8 Model deployment . 52
4.8.1 Deploy the model on an endpoint 53
4.8.2 Activate model monitoring 54
4.8.3 Enable notifications when drift is detected 55
4.8.4 Enable retraining when drift is detected 57

4.9 Model monitoring . 59
4.9.1 Numerical features . 61
4.9.2 Categorical features . 61

4.10 Drift simulation . 62

5 Evaluation 65
5.1 Value provided to potential clients 65
5.2 Fairness and Legal implications . 66

6 Conclusions and future works 68

Bibliography 70

v

List of Figures

2.1 An example of operations to perform to have an ML model in
production . 5

2.2 Types of concept drift . 7
2.3 Types of concept drift, source [15] 8

3.1 An example of the DAG of a pipeline 13
3.2 An example of the metadata for a training step 14

4.1 The Model Registry with some model packages 50
4.2 Evaluation metrics on the model registry 51
4.3 Bias metrics on the model registry 51
4.4 An example of monitoring history 59
4.5 Drift distribution comparison for FLAG_OWN_CAR 63
4.6 Drift distribution comparison for AMT_ANNUITY 63
4.7 Violation details in SageMaker studio 63
4.8 Plot of collected and baseline distributions for each feature 64
4.9 CloudWatch alarm . 64

vi

Acronyms

AI
Artificial Intelligence

MLOps
Machine Learning operations

AWS
Amazon Web Services

DAG
Directed acyclic graph

S3
Simple Storage Service

EKS
Elastic Kubernetes Service

ECR
Elastic Container Registry

SNS
Simple Notification Service

ARN
Amazon Resource Name

IAM
Identity and Access Management

viii

Chapter 1

Introduction

1.1 About the company

This thesis project was performed during my employment as an intern at Data
Reply, the Reply group company which offers a broad range of advanced analytics
and AI-powered data services across different industries and business functions. The
Reply group was founded in 1996 in Turin and has since grown into a multinational
company. Each of the Reply’s companies is also divided into Business Units,
independent divisions of the company responsible for their profits and losses.

The goal of Data Reply is to achieve meaningful outcomes through the effective
use of data. The company partners with Amazon Web Services, so it relies on
AWS infrastructure to build Big Data platforms and implement ML and AI models,
allowing clients to exploit the full potential of their data. The partnership with AWS
also allows Data Reply access to the latest technologies and resources developed by
Amazon, allowing them to iterate faster and incorporate emerging technologies into
their products. The result of this project is offered as a service on AWS, namely
SageMaker pipelines, which allowed us to have the foundation on which to develop
our solution.

Even if the main focus of the company is doing consulting work for external
clients, Data Reply has also begun lately to develop the so called" offerings", which
are projects on new technologies that are developed internally, as a proof of concept,
by a team of employees that work in the same business unit. The offering is
developed over several months, and if it leads to satisfactory results, it is pitched
and eventually sold to potential clients.

1

Introduction

1.2 About the project
This project is an offering in Business Unit 3, Enterprise and Analytics (ENA),
about MLOps. It aims to describe an MLOps solution that orchestrates the entire
life cycle of an ML application. In order to do so, it leverages DevOps practices
for the Machine Learning world to automate and simplify development, testing,
training, deployment and continuous monitoring of the models created by Data
Scientists. Furthermore, it focuses also on what revolves around MLOps and is
becoming increasingly more important, namely concept drift and the upcoming
EU regulation of AI, the AI Act.

1.3 Motivations of the work
This project was assigned by management to the group of employees I worked with
to allow them to gain experience on different projects from those they were working
on with clients and on relatively new themes. These topics are chosen considering
what clients could find interesting and what they could buy in the future, along
with the fact that there are not many projects about this topic. This topic, MLOps,
meets all these criteria; therefore, it was structured into an offering.

What makes this project interesting is that given that machine learning systems
are becoming increasingly prominent in many industries, there is a need for tools
to standardize and ease the production of these systems, from data ingestion to
model deployment and subsequent monitoring.

The project also focuses on the challenges that have arisen, especially in the
last times. The first is that, given the dynamic nature of data, ML models in
production are at risk of suffering from drift, so there is a need to keep these models
updated or at least be aware when drift happens. The second is that with the
upcoming AI regulation (AI Act), machine learning applications categorized as
high risk (trivially, a system that classifies people as worthy of a loan are high
risk) must produce a self assessment declaring that the system is fair and does not
discriminate.

After developing this offer, Data Reply can sell the complete MLOps pipeline
to customers, which can obtain the advantage of plugging in their database and,
after minor tweaks to the configuration, obtain an endpoint which accepts data
and makes predictions. Clients can save time and money and set up a machine
learning system for their needs. The system that they will set up will also:

• Be compliant with the upcoming AI regulation since the system will compute
fairness measures and produce a report which can be exported for later use.
Furthermore, the system will automatically check if data is unbiased and, if

2

Introduction

it does not comply with specified thresholds, block the execution before the
model is even trained.

• Be monitored after it is deployed to check if data drifts compared to the data
it was trained on. The client can decide the frequency of the monitoring, set
up notifications to be aware when drift happens, and set up the automatic
retrain of the model after drift has been detected to update the model with
new data

In conclusion, this project merged the commitment to innovation with anticipation
of industry trends.

3

Chapter 2

Machine Learning in
production

2.1 MLOps
Machine learning solutions are becoming increasingly spread across various indus-
tries, but adopting AI brings many challenges. As found by the IBM Global AI
Adoption Index of 2022 [1], only 35% of companies have adopted AI, while an
additional 42% is still exploring this possibility but facing many challenges such
as insufficient expertise or knowledge on AI, price is too high or lack of tools to
develop AI solutions. Furthermore, when a data science project is started, the path
to its completion is full of dangers. As stated by [2], some reasons a data science
project may fail are:

• Poor deployment planning: Usually, companies start data science projects
because they want to do it; they do not have a clear goal in mind. Even when
companies have a clear goal, they often start with a basic proof of concept
that evolves into the final model to use, but they did not think about the
infrastructure to move the model into production. What happens in those
cases is that when predictions are needed, the data scientist manually calls
the model from the testing environment.

• Poor maintenance planning: Since companies usually want to "move fast",
they skip maintenance decisions, such as tracking experiments, versioning
models or foreseeing model monitoring, in favour of obtaining the final model
as soon as possible. These practices make maintaining these models over time
difficult and expensive, accumulating technical debt [3].

When a company decides to adopt AI, even if it can thoroughly plan and avoid
generating technical debt, it still has to embark on a very long journey composed

4

Machine Learning in production

of many phases that start with data ingestion and are completed with model
monitoring. It does not finish there, as these steps should be executed again
periodically or when drift is detected. Figure 2.1 shows an example of such steps.

Figure 2.1: An example of operations to perform to have an ML model in
production

To remove all the hassle and automate this process, we can leverage MLOps,
which stands for Machine Learning Operations. As stated in [4], MLOps is the
intersection between machine learning and DevOps, specifically, applying DevOps
practices to the machine learning life cycle. DevOps practices [5] aim at minimizing
the time from the inception of a software requirement to when it is deployed
and available to the customer by focusing on Continuous Integration (CI) and
Continuous Delivery (CD). Continuous Integration means that developers of differ-
ent teams should frequently integrate their code, which should also happen with
other applications and services. Continuous Delivery means that newly developed
features should get to the customer quickly. A new paradigm for machine learning
was necessary, as ML applications are not only code but belong to a broader
system that also includes data which is not static but is subject to change. If the
change happens after the application goes into production, it will produce wrong
results. For this reason, a new component was introduced alongside CI and CD: CT
(Continuous Training) [6]. Continuous Training refers to automatically retraining
and serving the models. CT uses collected feedback and production data to keep
the model up to date.

To sum up, implementing an ML solution does not only mean writing code to
train a model, but many more operations should be performed before and after this
step. Many of these operations are complex and require a specific infrastructure
to support the development and deployment of the solution. By adopting MLOps
practices, companies can create pipelines that can automatize and standardize the
end-to-end life cycle of an ML application, from data ingestion to model deployment
and monitoring. Maintaining high performances is easier as models are continuously
monitored and retrained when needed. Furthermore, MLOps helps lower technical
debt by tracking and versioning models, code, hyperparameters, experiments, logs,
and so on. Development and maintenance processes are streamlined and more
efficient, resulting in teams being able to focus on new technologies and creating

5

Machine Learning in production

new models quickly [7].

2.2 Drift
After talking about MLOps, the next important topic is drift. It needs to be
addressed as, in the last years, it has been estimated that the amount of data
produced is in the order of the quintillion of bytes every day [8]. Many of the data
sources are becoming faster, for example, sensors that collect and stream large
amounts of data in short periods; in fact, one of the characteristics of this kind of
data (Big Data) is velocity [9], along with volume and variety (3 V’s of BigData).

It is often assumed that the process that generates this data is stationary.
However, in many scenarios, the process is non-stationary, and data is affected by
variations that change the statistical properties of data. Some proposed that we
add at least two more V’s to the definition of Big Data, one of which is Variability,
which means that data structure and how people interpret it may change during
time [10]. From these non-stationary processes we derive the idea of concept drift
[11].

Concept drift is a phenomenon in which the statistic properties of the target
variable (what the model predicts, the label) change arbitrarily during time, so
the representation of data that was learnt by the model using data of past events
may not be relevant for new events, resulting in the degraded performances of the
model itself [12].

Concept drift is a very modern concept, given that we live in a fast evolving
world where we produce large amounts of data. An example of an application that
can be affected by drift is a recommender news system for a particular individual.
What he finds interesting at a certain time might not be interesting after some
time. We will see this specific example more in-depth later.

Following the notation introduced by [13], we can define Pt(X, y) as the joint
distribution, at time t, of the set of the input variables X and the target variable y.
Changes in the data are caused by changes in the components of this relationship.
We can write:

Pt(X, y) = Pt(X)Pt(y|X)
Where Pt(X) is the marginal probability of X, which represents the probability of
observing data without taking into consideration the label; instead, with Pt(y|X) we
refer to the conditional probability of y given X, which represents the probabilities
of the labels y given that we observed X: this can also be interpreted as the decision
boundary learnt by our model. Formally, we observe the phenomenon of drift if:

∃t : Pt(X, y) /= Pt+1(X, y)

We can analyze concept drift by analyzing the changes in the components:

6

Machine Learning in production

• Real concept drift: Pt(y|X) /= Pt+1(y|X), while P (X) does not change. In
this case, we have the mutation of the decision boundary, while the probability
of observing data does not change.

• Virtual concept drift: Pt(X) /= Pt+1(X), while P (y|X) does not change. In
this case, we have a variation of the input data, while the decision boundary
does not change.

We can observe the two types of drift in Figure 2.2.

Figure 2.2: Types of concept drift

To better understand the difference between virtual and real drift, we can look
at an example from [13]: Given a website on news about real estate, the task of
the user is to classify the news as relevant or not relevant. If, at that moment, the
user wants to buy a house, news about houses on sale will be relevant, while news
about holiday houses will be irrelevant. If the editor of the news were to change,
the style of the news might change too, but the user would still find relevant only
news about houses on sale: this represents virtual drift (P (X) changes, but not
P (y|X)). If the user decides he does not want to buy a house anymore but prefers
to go on holiday, the news will stay the same. However, the interests of the user
changed, as he will find news about holiday houses relevant, while news about
houses on sale will become irrelevant: this represents real drift (P (y|X) changes,
but not P (X)).

Furthermore, we can notice that the transition of data distribution can be of
four different types [12]:

• Sudden: For example, changing a sensor with another with a different calibra-
tion.

• Incremental: For example, a sensor that degrades and slowly loses its precision.

7

Machine Learning in production

• Gradual: This kind of drift is a variation of incremental drift. An example is
a user who starts to find news about holiday houses more relevant than news
about houses on sale but still finds relatively relevant news about houses on
sale; he eventually loses interest in the latter.

• Reoccurring concept: We have this kind of drift when an old concept returns
after a certain time. This type of drift can be associated with cyclical phe-
nomena like seasons or irregular ones like inflation or market mood. Another
example is Black Friday, which occurs regularly once per year [14].

We can observe the different types of drift in Figure 2.3.

Figure 2.3: Types of concept drift, source [15]

To adapt to concept drift, we can decide to adopt two approaches, active or
passive[11]:

• Active: We try to detect drift and adapt to the situation, for example, by
retraining the model or understanding if there are errors in the data.

• Passive: The model is updated continuously, regardless of whether drift is
present.

Passive approaches are effective with gradual or recurring drift, while active ap-
proaches are useful for sudden drift.

There are many algorithms to detect drift, but in this project, we focused on
data distribution-based drift detectors since it is what AWS SageMaker gives
us by default. With these kinds of methods, we monitor the distance between two
data distributions. Section 4.9 will discuss more implementation details.

8

Machine Learning in production

2.3 FairML
As was repeatedly said, machine learning solutions are rapidly being used in many
industries and for different applications. As machine learning algorithms improve
in accuracy, many decisions become automated while human feedback becomes
less valuable; as [16] shows, humans are more likely to overestimate the credibility
of an algorithm and follow its decision even if it is incorrect and contradicting,
with the side effect of providing a false sense of security that a human has overseen
the decision. The problem with these practices arises when an algorithm produces
unfair and biased decisions due to the unfair and biased training data.

For these reasons, research on fairness of machine learning has become a widely
popular field, with many conferences started and many companies looking into
this matter. It is crucial, given that automated decisions are taken in many fields
nowadays, from harmless movie recommendations to more critical ones, for example,
to decide whether a defendant is at risk of becoming a recidivist [17]. A wrong
suggestion about a movie has no critical effects, as we can stop playing it; being
labelled with a high risk of recidivism might limit your liberty [18].

Given all the previously cited problems with machine learning systems in the
scope of fairness, the EU started working towards the world’s first rules on AI,
the AI Act, which was approved by the EU Parliament on June 14, 2023 [19].
The following steps involve talks with EU countries in the Council to decide the
final form of the law, aiming at an agreement by the end of 2023. It brings a
classification of AI systems based on the severity of the risk they pose to users.
While there is a paragraph on the rapidly growing generative AIs, it also indicates
three different levels of risk, which have different implications:

• Unacceptable risk: These applications are considered a threat to people and
will be banned. Examples are estimations of the reliability of people (credit
score) or systems that use real-time biometric identification for monitoring
purposes.

• High risk: These applications negatively affect safety or fundamental rights.
An example is scanning a candidate’s CV to assign a score. They are divided
into two main categories: The first includes applications already governed by
existing product safety legislation (e.g., medical devices) that must conform
to existing legal frameworks. The other category includes eight areas such as:

– Employment, worker management and access to self-employment
– Migration, asylum and border control management
– Biometric identification and categorization of natural persons

These systems have to present a self assessment before being put on the market
and will also be assessed while on the market.

9

Machine Learning in production

• Limited risk: These applications should comply with minimal transparency
requirements to allow users to make informed decisions and decide whether
to continue using the system. Users should be made aware that they are
interacting with AI.

Given the recent approval of the AI Act, it would be interesting to link it with
MLOps practices. For our project, we used a test dataset that is perfect for this
case and can be used for real applications: fraud detection on loan requests. This
dataset is "high risk", following the AI act definition, given that we use it to
perform "categorization of natural persons"; furthermore, in the previous draft,
it was explicitly considered high risk for "creditworthiness assessment", which is
precisely our case. For these cases, it is necessary by law (when it will be approved
in its final form plus within two more years for the law to enter into force) that
the company developing the application presents a self-assessment stating that
the application that uses AI is safe. For this reason, we can include an innovative
function in our MLOps pipeline that computes fairness measures on the training
dataset and stops the execution if some criteria are not satisfied. Otherwise, we
can conclude that the data is safe. Furthermore, the AI act also has more links
with MLOps, given that by using MLOps practices, we enforce traceability, version
control (of model and data) and reproducibility, all of which improve transparency
and accountability.

Talking instead about drift, we can detect drift in data with model monitoring;
thus, we can notice when statistical properties of data change (and consequently,
the performances of the model can degrade), restart the pipeline and compute
fairness metrics again. This could make us aware that new bias in the data has
arisen, also improving transparency; it also has the positive effect of updating the
model with new data, preventing model performances from degrading substantially,
and potentially taking decisions that can have a negative impact. Finally, drift
can also be seen as "evaluation bias" as a cause of fairness problems. We have
evaluation bias when evaluation data do not represent the target population well
or when training and evaluation/operation data differ.

In conclusion, we saw how the importance of fairness in machine learning
has grown, as ML systems are becoming widespread and automated decisions
about critical topics can be unfair and influenced by biases in the data. The
increasing research and the approval of the EU’s AI Act can be seen as the need for
transparency, accountability and awareness in this domain, with one of the most
important examples being generative AI.

Given the existence of MLOps, it becomes clear that these practices will play a
crucial role in ensuring compliance and fairness as it becomes easier to ensure trans-
parency or integrate fairness checks. Moreover, it helps address drift, simultaneously
preserving fairness and the model’s performance.

10

Machine Learning in production

The convergence of these two aspects will help create a framework that pri-
oritizes ethics, transparency and accountability while adapting to the changing
environment.

11

Chapter 3

Project

3.1 Overview of the project
In this section, we take a high-level look at the project by first introducing the
provider on which we based the solution, Amazon Web Services, citing the various
services we used to implement the pipeline. It is worth noting that to perform
machine learning operations, the most used AWS service is SageMaker, which is a
fully managed ML service. Among the various services that SageMaker offers, we
have, for example:

• Services used to perform rapid data processing (ProcessingJob), model training
(TrainingJob), model deployment (CreateEndpoint), monitoring, and other
ML related operations. Moreover, we can use SageMaker’s UI to inspect these
processes; for example, we can check when they began, how long the processing
took, inputs, outputs, and logs.

• The tool SageMaker Model Building Pipelines (from now on, we will refer to it
as just SageMaker Pipelines), through which we can orchestrate ML pipelines.
(we will see a more in-depth description in Section 3.2)

• The IDE SageMaker Studio is a web IDE based on Jupyter Lab. It allows
the user to access many tools to manage the different phases of developing
a machine learning model, such as Jupyter notebooks, terminals, sections to
check the model registry and endpoints, etc. SageMaker Studio also allows
us to analyze the pipelines being executed or executed in the past. We can
examine the pipeline visually by analyzing its DAG (directed acyclic graph, a
graph that represents the steps and how they are linked with each other) as
we can see in Figure 3.1; this tool also allows us to inspect parameters, inputs,
outputs and logs of the various steps and of the pipeline itself, for example we
can see in Figure 3.2 some parameters of the training step.

12

Project

• Pre-built Docker images based on some of the most common and used ML
frameworks, such as scikit-learn, PyTorch, and TensorFlow. These images also
include some standard libraries usually used in these scenarios, like Pandas
and NumPy. SageMaker also makes available containers for some built-in
algorithms like XGBoost, which we can use for training a model without
further configurations. Furthermore, we can install more libraries if necessary
for the specific use case; the only requirement is that they are on PyPi.

• SageMaker Python SDK, thanks to which we can use SageMaker services
in Python, for example, to define a pipeline and its components, handle
monitoring and experiment tracking, etc. The pipeline that we built was
developed using this SDK

Figure 3.1: An example of the DAG of a pipeline

To implement MLOps practices, we used the tool SageMaker Pipelines, with which
we were able to create a smooth automated process that starts from data ingestion
and ends at model deployment; the process continues under the hood by monitoring
the model to detect any drift, and, if detected, sends a notification to alarm the
user and starts the pipeline again, with updated data.

To create and orchestrate pipelines on Amazon Web Services, we have multiple
choices. Among the various approaches, we explored Amazon SageMaker Pipelines
and KubeFlow. We decided to explore these two solutions since my coworkers
already had some experience with KubeFlow, while SageMaker Pipelines is the
native solution of the provider AWS. After having identified these two techniques,

13

Project

Figure 3.2: An example of the metadata for a training step

we carried out a preliminary research phase, which allowed us to have a clear picture
of both solutions and understand the pros and cons of using a native solution versus
using an external framework. In the following sections, we will describe in more
detail these two approaches, and eventually, we will discuss the choice made.

3.2 SageMaker pipelines
SageMaker Model Building Pipelines is a tool for building machine learning pipelines
that take advantage of direct integration with Amazon SageMaker. SageMaker
Pipelines represent the native solution on Amazon Web Services to manage the life
cycles of machine learning models. Since this tool is also integrated with SageMaker
Python SDK, we can create our pipelines using Python.

SageMaker pipelines allow us to create steps and manage them easily and
efficiently. Since it is a fully managed service, we can orchestrate the pipeline at a
high level without worrying about handling resources, for example, the underlying
physical machines, since SageMaker creates and handles the resources for us.
Furthermore, as we said before, this tool is integrated with SageMaker Studio,
allowing us to write code, test it, and analyze the results without leaving the
environment.

3.2.1 The pipeline object
SageMaker Pipelines supports different types of steps, which describe the actions
that the pipeline takes and the relationships between steps. To define the steps the
pipeline will execute, we use an object of the class Pipeline. We define a Pipeline
object through its name, parameters and steps. The name of the pipeline must

14

Project

be unique inside the (account, region) pair. A basic example of the Pipeline
object is:

pipeline = Pipeline(
name=<pipeline-name>",
parameters=[parameters],
steps=[step_preprocessing, step_train, step_eval, ...],

)

A pipeline can be parameterized by introducing variables whose value can be
accessed at runtime, i.e. during the pipeline execution. SageMaker Pipelines
support the following parameter types: ParameterString, ParameterInteger,
ParameterFloat, ParameterBoolean. Examples of parameters are the kind of
machine to use for inference or the number of instances of the machine to allocate:

instance_type = ParameterString(
name= "InferenceInstanceType",
default_value= "ml.m4.xlarge"

)

All the parameters we reference when defining a step must be defined when we
create the Pipeline object. These parameters are defined with default values that
must match the parameter type. The default value can be overridden when a
pipeline is started using the method start() and defining a dictionary that contains
the parameters we want to modify:

execution = pipeline.start(
parameters=dict(

ProcessingInstanceCount= "2",
InferenceInstanceType= "ml.t3.medium"

)
)

When the pipeline will be executed on a machine instance, it will interface with
a new filesystem, which is the folder /opt/ml, in which there are subfolders for
each step, for example, the training step accesses /opt/ml/model. In contrast, the
processing step accesses /opt/ml/processing. What is important to understand
is that to make each step communicate with the outside, for instance, with Amazon
S3 1, the files must go through this particular folder. For example, to allow the
evaluation step (which is a processing step) to use the model, it must be moved
from S3 to the folder /opt/ml/processing, while every output will be at first

1Simple Storage Service, an Amazon service that provides object storage service on the cloud

15

Project

saved "locally" in /opt/ml/processing and then moved into the desired folder
on S3. We will see this mechanism in more detail in the sections describing the
various steps. More steps and components that we will need during the pipeline
development will be explored in Section 3.6.

Another important aspect of the pipeline we cited before is the dependencies
among the steps and how to specify which step comes after another. The order
in which we specify the steps list in the pipeline definition is not important, as
SageMaker Pipelines can automatically resolve the relationship between steps and
determine the order of execution. SageMaker can handle dependencies for us thanks
to a special attribute of each step called properties, which is resolved at runtime,
for example, the S3 URI of the trained model obtained as output from the training
step:

train_step.properties.ModelArtifacts.S3ModelArtifacts

As we can see, to obtain the desired nested property, we use JsonPath 2notation to
traverse the JSON property object. Properties are used to create data dependencies
between pipeline steps by passing the properties of a step as input for another
step. SageMaker then uses these dependencies to create the DAG of the pipeline
and make sure that a step that takes as input the property of another step is not
started before the latter has finished its execution.

There is also the case when no properties are passed from one step to another,
but we know that one step must necessarily start after another step has finished its
execution. For these cases, we can also decide to specify custom dependencies. To
define this kind of dependency we use the method add_depends_on(), for example:

training_step = TrainingStep(...)
processing_step = ProcessingStep(...)
training_step.add_depends_on([processing_step])

Adding custom dependencies must respect that the pipeline is a DAG, so creating
cyclic dependencies is forbidden and will throw an exception.

3.3 KubeFlow
KubeFlow [20] is an open source platform created by Google based on Kubernetes
3, used to orchestrate ML pipelines. The project’s goal is to make deployments of
machine learning (ML) workflows on Kubernetes simple, portable and scalable. This

2JsonPath implementation
3open source platform created by Google to deploy, scale, and manage containerized applications

16

https://goessner.net/articles/JsonPath/

Project

means that whenever we can run Kubernetes, we can run KubeFlow, thus effectively
making KubeFlow platform-agnostic. One of the components of KubeFlow is
KubeFlow Pipelines (KFP), a platform for building and deploying portable and
scalable machine learning (ML) workflows using Docker containers. It allows us to
write an ML pipeline in Python by writing entirely custom components or using
pre-built ones and execute the pipeline on any KubeFlow Pipeline conformant
backend based on Kubernetes or Google Cloud Platform. KubeFlow also allows us
to interact with pipelines through its UI, which lets us see or start runs, explore
the configuration, graph, and output of a pipeline run, compare the results of one
or more runs, etc.

KubeFlow was taken into consideration for implementing a pipeline on AWS for
two main reasons:

• We already had prior knowledge of KubeFlow to orchestrate a pipeline.

• It can be executed on AWS thanks to the service Amazon EKS (Elastic
Kubernetes Service), which is a managed service that can be used to execute
Kubernetes on AWS. By using EKS, we can also access other AWS services,
such as S3 for storage.

The most important strength of choosing this solution is given by the SageMaker
components for KubeFlow [21], which is a series of components created to
integrate Amazon SageMaker with KubeFlow. Thanks to these components, we can
exploit SageMaker’s functionalities for managing the life cycle of an ML model, such
as training or deploying a model on an endpoint, using KubeFlow to orchestrate
the pipeline. This approach offers the possibility to use the managed infrastructure
of SageMaker and its optimized algorithms while keeping the pipeline flexible and
platform-agnostic. Furthermore, by abstracting the components from the platform,
we can create reusable pipelines that can be executed independently from the
underlying platform, for example, GCP or AWS.

3.3.1 SageMaker components for KubeFlow
Generally, a KubeFlow component is a step of the pipeline represented by a Python
module built into a Docker image. When we run the pipeline, the container
of the component is instantiated on one of the nodes of the Kubernetes cluster
that runs KubeFlow; then the code is executed. Each component can generate
outputs that are read by the following components. Using SageMaker components
for KubeFlow instead, we do not encapsulate the logic of the component into
a container. Instead, we create and monitor native SageMaker processes (such
as training, tuning, or deploying to an endpoint) directly from the KubeFlow
pipeline. In this case, each component invokes SageMaker jobs, through which

17

Project

we can leverage SageMaker’s fully managed infrastructure. This also allows us
to monitor processes (e.g., processing, training, or deployment) directly from the
SageMaker UI without having to move to the KubeFlow UI.

The components come in two versions, v1 and v2; some come in both versions,
others only in v1. As far as possible, it is best to use the latest available version of
each component, as v2 leverages the SageMaker Operators for Kubernetes (ACK),
which allows us to define and use AWS services from the Kubernetes cluster. Also,
by deploying the "full" version of KubeFlow on AWS, the v2 components do not
need any additional configuration to access SageMaker, as this configuration is part
of the deployment itself.

In conclusion, when deciding to use KubeFlow and AWS as a cloud provider,
it is recommended to use SageMaker components for KubeFlow, as they offer
seamless integration with AWS SageMaker infrastructure while still orchestrating
with KubeFlow.

3.3.2 KubeFlow deployment on AWS
The vanilla deployment option is the most straightforward way to deploy KubeFlow
on AWS, with minimal changes and optimized for Amazon EKS. Before beginning
with the deployment, we created an Ubuntu environment using AWS Cloud9, which
is a cloud-based integrated development environment (IDE) that lets us write, run,
and debug code within a browser; furthermore, it also includes a debugger and
terminal; other than the code editor. After cloning the repository containing the
necessary tools for the deployment, we had to configure some options like region,
KubeFlow and AWS versions and install the necessary tools using the command
make on the makefile install-tools.

After performing these operations, we proceeded to perform the deployment
using Terraform, an infrastructure as code tool used to define both cloud and
on-prem resources in human-readable configuration files that can be versioned,
reused, and shared. It can create and manage resources on cloud platforms and
other services through their application programming interfaces (APIs). This makes
Terraform able to work with virtually any platform or service with an accessible
API. It already supports many providers such as Amazon Web Services (AWS),
Azure, Google Cloud Platform (GCP), etc. The workflow of Terraform consists
of three main stages: first we write, in which we define the resources; second we
plan, in which Terraform creates an execution plan in which it describes the step
it will take based on the platform it is executed on; finally, we apply, in which
Terraform performs the proposed operations in the correct order.

We chose to use Terraform because it automatically created a VPC, created
an EKS cluster, and deployed the vanilla distribution of KubeFlow on AWS. We
had to perform some of these manually with the other installation options, which

18

Project

would have added more overhead.
After manually defining variables like the cluster region and cluster name and

saving these to a .tfvars file, we performed the command

terraform init && terraform plan

with which we initialized Terraform and executed the "plan" step we saw before.
Finally, we used again the command make on the makefile called deploy, which
contains the "apply" steps of Terraform.

After deploying KubeFlow, we just need to execute two more commands to
connect to the KubeFlow UI, which consist of making a port forward through the
commands:

$(terraform output -raw configure_kubectl)
make port-forward

After following the whole procedure, we can access KubeFlow UI on the built-in
Cloud9 browser at localhost:8080 by logging in with the default credentials email:
user@example.com and password: 12341234.

3.4 Framework choice
After discussing both frameworks, we can analyze their advantages and disadvan-
tages to make an informed choice. In our choice, we did not only consider the
two solutions per se but also the resources made available to the project by the
company.

Amazon SageMaker Pipelines is the fully-managed native AWS solution, so it is
deeply integrated with the AWS environment; in fact, we can start using it right
away with SageMaker Studio, which provides us with a development environment
and tools to analyze the pipeline: all of this is given without requiring any additional
configurations. The disadvantage is that it is not cloud agnostic, so it is not a
portable solution should you decide to change cloud providers.

KubeFlow, on the other hand, is cloud agnostic, so there would be no need to
completely rewrite the pipeline by changing cloud providers; it is also an open source
project, very flexible, and on AWS it can leverage the SageMaker Components for
KubeFlow, thus allowing you to use the AWS infrastructure to run the different
steps. The major disadvantage is that it requires heavy configuration, management
and maintenance, as well as specific skills to manage a Kubernetes cluster, as it is
a custom solution not provided by AWS.

Although KubeFlow is a very viable option, based on the boundaries and
purposes of the project, we decided to opt for SageMaker pipelines, accepting a
compromise between the need for customization and convenience in management.

19

Project

3.5 Versioning and deployment techniques
To guarantee adequate code versioning and ease the release management, we adopted
GitHub as a code versioning system, as it is widespread across the organization,
provides an easy web interface, and all of us had experience with it. Our GitHub
repository was linked to CodeBuild, which is a fully managed continuous integration
service that compiles source code, runs tests, and produces ready-to-deploy software
packages.

We linked these two services using CodeBuild triggers, which constantly monitor
push events in the GitHub repository. Triggers are configured to react exclusively
to push events associated with tags that match a specific regular expression that
we defined. In particular, we set up two triggers that have two different regex.
The first captures all push actions on the main branch with a tag that starts with
"release", followed by the name of the use case and the version number preceded by
"-v"; an example could be ’release-use_case-v1.05’. The second trigger instead
has a similar structure but captures all push actions on any branch that starts
with "feature/" and on any push that starts with "prerelease", then it includes the
use case and version number as before. The two triggers are linked to the same
buildspec.yaml, in which we describe the steps to execute before running the
pipeline.

When one of the two triggers is triggered, the pipeline process is automatically
started through CodeBuild, which guarantees scalability and flexibility, allowing
us to execute build processes in parallel and manage the resources efficiently,
thus respecting the scalability needs of the project. This is particularly handy
in an ML project, where you should usually manage large quantities of data and
computationally intensive processes, but more importantly, where based on the use
case, architectural needs can vary broadly.

In particular, the steps executed when one of the two triggers is triggered are:

• Installation of a certain Python version (3.11), followed by the installation of
the dependencies specified in the "requirements.txt" file. This is important to
configure a coherent and reproducible environment for our pipeline.

• Export of three variables: the tag name, the use case and the version number.
The last two variables are obtained by splitting on the right points the tag
variable.

• Updates the Docker image of the training step by accessing the folder that
contains the training script and Dockerfile. This is useful because the pipeline
will always use the latest available training image, unless we specify another
one in its parameters. We will talk about this more in-depth in the following
sections.

20

Project

• The pipeline is started using the use case extracted previously. This means
that we can change which pipeline to launch just based on this parameter.

After completing these steps, the pipeline is running, and we can see its execution
by going into the Pipeline section of SageMaker Studio. Our pipeline architecture
(which we will see in the next sections) and the triggers mechanism guarantee an
efficient and unified handling of the ML workflows, allowing the Data Scientist to
focus on working on the code and formatting in the right way the tag associated
with the push on the branch; what comes next is handled autonomously by the
MLOps process.

3.6 SageMaker pipelines step description
Having chosen SageMaker Pipelines as the framework to orchestrate the pipeline,
let us learn more about it by describing the different steps we are going to use, to
get a clearer idea when we will describe the logical steps of the pipeline. Before
proceeding with the description of the steps, we will talk about an important aspect
of AWS in general, which we will name later during the description of the steps
and in the next section: AWS roles and resources names (ARNs).

3.6.1 Amazon roles
To securely control access to AWS resources, we use AWS Identity and Access
Management (IAM), a web service to centrally manage permissions to control
which AWS resources users can access. An IAM identity represents a user or
workload that can access AWS services and perform actions. An IAM role is an
IAM identity which, instead of being associated with one person, is intended to be
assumable by anyone who needs it. Each IAM identity can be associated with one
or more policies that determine what actions a user, role, or user group member
can perform, on which AWS resources, and under what conditions.

3.6.2 Amazon Resource Names
Amazon Resource Names (ARNs) uniquely identify AWS resources. ARNs are
used when it is required to specify a resource unambiguously across all of AWS.
They have a general format; in fact, they all start with arn: and are followed by
different information, each separated by a colon, for example:

arn:aws:iam::174159989471:role/bu3-mlops-deploy-model-lambda-role

which represents a role that was created to execute a Lambda function. The number
174159989471 represents the account ID that owns the resource. We will also use

21

Project

an ARN, for example, when we need to restart the pipeline, to specify the resource
to call. When we will see roles in later code, it refers to the ARN of the role.

3.6.3 ProcessingStep
The ProcessingStep is used to create a SageMaker Processing Job, which is useful
to process data, e.g. perform data validation, data preprocessing or model vali-
dation. This step needs an object of type Processor with which we describe the
characteristics of the processing job, such as the type of machine on which it will
run (instance type), the number of these machines, the Docker image on which
it is based, etc. To define the ProcessingStep, we also need to specify inputs and
outputs (if any). In our case, we will use as a Processor an object that inherits from
the Processor class called ScriptProcessor. The advantage of this type of Processor
is that it allows us to provide a script to execute during the processing job and
a command to execute the script (e.g. "python3"). Other typical Processors are,
for example, SKLearnProcessor or PySpark processor, in which we do not need
to pass the base image but just the framework version and the code, and it will
automatically obtain the correct Docker image on which to execute the code. The
mechanism that governs input and output allows the script that we define to be
platform agnostic, using the /opt/ml/processing directory. Any input we want to
use in the script must be moved from S3 to that folder, while any output generated
by the script is initially saved in the folder and later moved to S3. In more detail,
we describe input and output separately.

• input: Any input is passed as ProcessingInput. To define such an object, we
specify the path to the folder where the file is located on S3 at run time via
the source parameter; we also specify where it should be moved to be used
by the script via the destination parameter.

• output: Any output generated by our script is defined as ProcessingOutput.
We specify with the source parameter the path to the folder where the file
from the script is saved; with the destination parameter, we instead define
the destination of that output on S3, so where it will be moved on S3. We also
have a third parameter, called output_name, by which we define a symbolic
name for the output.

From a ProcessingStep, we can obtain as output many different types of files, for
example, a file that represents the dataset after preprocessing or a file that contains
the evaluation metrics of the model. This last example, in particular, can be saved
as a property file which is generally used to store output information from the
ProcessingStep. This method of saving outputs will be useful if we want to add a
conditional step to decide which actions to execute based on the results stored inside

22

Project

this file. To generate this kind of file, we pass the parameter property_files to
the ProcessingStep, which is an array of objects of type PropertyFile. This object
is instantiated by passing a name, the path of the JSON file saved inside the script
and finally, an output_name, which is the same we saw earlier when we defined the
ProcessingOutput.

To instantiate the ProcessingStep, we define its name with the parameter name
and its arguments through the parameter step_args. The latter is the result of
the run method on the previously defined Processor, and it is with this method
that we define inputs, outputs and the code that will be executed. An example of
ProcessingStep is:

script_processor = ScriptProcessor(
image_uri=<image>,
role=<role>,
instance_type=<instance_type>,
instance_count=<instance_count>,
sagemaker_session=<pipeline_session>)

step_args = script_processor.run(
inputs=[

ProcessingInput(
source=<input_data>,
destination="/opt/ml/processing/input"
)

],
outputs=[

ProcessingOutput(
output_name= "train",
source="/opt/ml/processing/train",
destination=<path_on_s3>
)

],
code= "process.py"

)

step_process = ProcessingStep(
name=<step_name>,
step_args=step_args,

)

23

Project

3.6.4 TrainingStep
The TrainingStep is used to create a SageMaker Training Job, which is useful for
model training. To define the TrainingStep, we need input data and an object of
type Estimator, which is used to describe the characteristics of the training job,
such as the Docker image on which the training will run, the role, hyperparameters,
etc. The output of this step is an object called model.tar.gz, which contains all
the outputs of the step, in our case, the trained model, saved as a pickle or joblib
file.

Inputs are passed to the training job through channels; a channel is a named
input source that training algorithms can consume. For each input, we specify the
name of the channel, for example, "train" or "validation", and associate an object
of the class TrainingInput to describe the channel. To create the TrainingInput, we
have many parameters; in our case, we used just two that are enough: s3_data
and content_type. With the former, we specify where the input is located on
S3; if this is the result of a previous step, for example, data preprocessing, we can
access this information using the properties of the ProcessingStep, for example

step_process.properties.ProcessingOutputConfig.Outputs[
"train"

].S3Output.S3Uri

where "train" is the output_name parameter that we saw before. On the other
hand, content_type is used to describe the MIME type of the input data.

Another interesting thing about Estimators is about the Docker image on which
the training job will be run. We can use a base Estimator and specify the image by
passing the Amazon Elastic Container Registry (Amazon ECR) path of the Docker
image containing the training algorithm or decide to use framework Estimators.
With these Estimators, we just need to specify the framework version and other
specific parameters, and SageMaker will automatically get the right Docker image
for us. Examples of framework Estimators are XGBoost, PyTorch, SKLearn.
Moreover, we can also decide to pass a custom Docker image to create our own
training container; we will discuss this in more detail in Section 4.2.1.

An example of TrainingStep is the following:

sklearn_estimator = SKLearn(
entry_point=<train_code.py>,
instance_type=<instance_type>,
framework_version=<sklearn_version>,
hyperparameters = {<name>: <value>},
sagemaker_session=<pipeline_session>)

sklearn_estimator.fit({’train’: <s3_data_path>)

24

Project

step_train = TrainingStep(
name=<step_name>,
step_args=step_args,

)

3.6.5 QualityCheckStep e ClarifyCheckStep
QualityCheckStep and ClarifyCheckStep can be used to both create new baselines
and to check against previously computed baselines to detect drift. The former
is focused on data quality or model quality; the latter is focused on bias analysis
and model explainability. In our project, we will use these steps only to compute
baselines for data quality and bias analysis, as data quality drift will be checked by
a monitoring schedule that will be discussed later. To achieve this, we can use two
parameters that are common to both steps:

• skip_check: This parameter indicates whether the drift check against the
previous baseline is skipped. We set it to True, so no check is performed.

• register_new_baseline: This parameter indicates whether a new baseline
should be computed or a newly calculated one is available. We set it to True,
so a new baseline is computed when the step is executed.

For both steps, we need one common object that specifies technical information
about the jobs, which is called CheckJobConfig; an example is:

check_job_config = CheckJobConfig(
role=<role>,
instance_count=<instance_count>,
instance_type=<instance_type>,
volume_size_in_gb=<size>,
sagemaker_session=<sagemaker_session>,

)

QualityCheckStep

With QualityCheckStep, we generate our baseline based on the training dataset.
Generating a baseline in this context means creating two files:

• statistics.json: This file contains statistics about the dataset and about
each feature. It computes common statistics for each feature, like the number
of missing values and the distribution, by creating a histogram with ten
bins. For numerical features, it also computes statistics like mean, standard

25

Project

deviation, min, max, etc. These statistics are computed using KLL [22], which
is an optimal and accurate quantile sketch. Quantile sketches are algorithms
that let us estimate the distribution of values in a stream.

• constraints.json: This file expresses the constraints that a dataset must
satisfy. For each feature, it specifies the name and the completeness (ratio of
present values over the total number of values, 1.0 means there are no missing
values); if a feature is numerical, it specifies if it is non negative, while if it is
categorical it specifies the domain of the feature, which means what are the
possible values that the feature can take.
This file also contains an object called monitoring_config, which is auto-
matically created and contains options for the monitoring job, specifying, for
example, whether to check for datatypes violations or domain violations or
how to perform the data distribution comparison during model monitoring and
what are the thresholds. These last options, in particular, will be discussed in
more detail in Section 4.9.

We can then generate and register our baselines with the model.register() method
and pass the output of that method to Model Step using step_args, so we can
access the baseline from the Model Registry when we perform model monitoring;
furthermore, we can also visualize them from SageMaker Studio. The QualityCheck
step leverages the Amazon SageMaker Model Monitor pre-built container, which has
a range of model monitoring capabilities, including constraint suggestion, statistics
generation, and constraint validation against a baseline. This container is also
used when the monitoring job is executed. To define the QualityCheckStep, we
need to create another object before, which is called DataQualityCheckConfig
that is used to describe the input dataset and where the constraints and statistics
JSON files will be saved on S3. We can see an example of QualityCheckStep in the
following example:

data_quality_check_config = DataQualityCheckConfig(
baseline_dataset=<baseline_dataset_path>,
dataset_format=<dataset_format>,
output_s3_uri=<s3_path>

)

step_data_quality_check = QualityCheckStep(
name=<step_name>,
skip_check=<True/False>,
register_new_baseline=<True/False>,
quality_check_config=data_quality_check_config,
check_job_config=check_job_config,

26

Project

model_package_group_name=<model_package_group_name>,
)

ClarifyCheckStep

With ClarifyCheckStep, we generate our baseline based on the training dataset.
In this context, generating the baseline means creating one machine readable file,
analysis.json and a report in multiple formats, which are pdf, html and ipynb
(Jupyter Notebook), which is instead intended for human readers.

• analysis.json: This file contains bias metrics and (if computed) feature
importance in JSON format. This file contains two sections, one for pre-
training bias metrics and one for post-training ones; we computed only the
first ones in our case.

• report: This file contains visualizations and explanations of bias metrics and
(if computed) feature importance. It includes, for example, the distribution of
label values, table of bias metrics and their descriptions, etc.

Both files contain the metrics computed on a certain protected attribute and on a
certain value of said attribute. To specify this information and further information
needed by the step, we create a configuration in which we define:

• dataset type: This parameter specifies what is the dataset format, for example,
text/csv or application/json, etc.

• label: This parameter is used to define the name of the column containing the
target attribute.

• label values or threshold: This is an array of label values or a threshold number
that represents the positive outcome of the label.

• facet: This is an array of facet objects, which are the sensitive attributes
against which bias is measured.

– name or index: the name of the column of the protected attribute.
– value or threshold: an array of facet values or a threshold number that

indicates the sensitive demographic groups that are disadvantaged.

• methods: This parameter specifies which methods should be used for the
analysis. We can specify "all" and let the step compute all methods.

As we saw before for the QualityCheckStep, also in this case we can register our
baselines with model.register() and pass the output to Model Step using its

27

Project

step_args, so these metrics can be accessed from the Model Registry when we
perform model monitoring and we can also visualize them.

The ClarifyCheck step leverages the Amazon SageMaker Clarify pre-built con-
tainer, that provides a range of model monitoring capabilities, including constraint
suggestion and constraint validation against a given baseline.

To define the ClarifyCheckStep, we need to create different objects before, which
are:

• BiasConfig: corresponds to the facet object that we saw before in the config-
uration;

• DataConfig: comprehends all the other objects but facet.

• DataBiasCheckConfig: this object is used to group the previous two configu-
rations together

We can see an example of ClarifyCheckStep in the following example:

data_config = DataConfig(
s3_data_input_path = <s3_path>,
dataset_type=<dataset_type>,
label=<target_column_name>,
s3_output_path=<s3_path>,
s3_analysis_config_output_path=<s3_path>

)

data_bias_config = BiasConfig(
label_values_or_threshold=<positive_label>,
facet_name=<facet_name>,
facet_values_or_threshold=<disadvantaged_value>,

)

data_bias_check_config = DataBiasCheckConfig(
data_config=data_config,
data_bias_config=data_bias_config,

)

step_data_bias_check = ClarifyCheckStep(
name=<step_name>,
clarify_check_config=data_bias_check_config,
check_job_config=check_job_config,
skip_check=<True/False>,
register_new_baseline=<True/False>,

28

Project

model_package_group_name=<model_package_group_name>
)

3.6.6 ConditionStep
The ConditionStep allows the pipeline to support the execution of other steps based
on the evaluation of a condition. Before defining the step, we need to specify one or
more conditions; we can do this thanks to the conditions that SageMaker provides
us, some of which are: ConditionEquals, ConditionGreaterThanOrEqualTo,
ConditionOr, ConditionNot. An example of condition definition is the following:

ConditionGreaterThanOrEqualTo(
left=JsonGet(

step_name=<step_name>.name,
property_file=<property_file_name>,
json_path= <jsonpath_to_metric>

),
right=<value>

)

At a higher level, we can see that conditions accept two parameters, which are
left and right, with which we define what are the values that will be on the left
and on the right of the operator. In the example, the condition is the following:

metric ≥ value

As we can see in the example, we used the function JsonGet, thanks to which
we can explore the content of the property file that we obtained as output of a
previous step. We use JsonPath notation to query the property JSON file to obtain
the metric we need. The condition is finally evaluated by the ConditionStep, which
decides to execute the (if_steps) or the (else_steps).

To define the ConditionStep we need a list of conditions, the steps to be executed
in case the specified conditions turn out to be true (if steps) and the steps to be
executed in the opposite case (else steps). If multiple conditions are present, they
are linked by a logical AND. An example of ConditionStep is the following:

step_cond = ConditionStep(
name=<step_name>,
conditions=[cond_1, cond_2, ...],
if_steps=[step_1, step_2, ...],
else_steps=[step_3, step_4],

)

29

Project

3.6.7 FailStep
The FailStep stops the pipeline execution when a condition is not met. When the
pipeline enters this step, the execution is logged as failed. This step also allows us
to enter a message to communicate the error, either as a static string or by using
SageMaker’s Join function to concatenate a string with pipeline parameters. This
step is always the last one that is executed, and there can be no steps that depend
on it. An example of the FailStep is the following:

step_fail = FailStep(
name=<step_name>,
error_message=Join(

on=" ",
values=[
"Pipeline failed due to <metric> <",
<pipeline_param>
]

),
)

In the example, we can see that the error message is constructed using the Join
function because we had to include a parameter of the pipeline (described in Section
3.2.1).

3.6.8 ModelStep
The ModelStep can be used for two different objectives: to create a model or register
a model on SageMaker’s Model registry. Whether we want to create a model so we
can deploy it right away or we want to register a model on the Model Registry, we
first have to create an object of type Model to which we pass the URI of the image
we used for training, the data of the model generated after the training step, etc.
We can create a Model in this way:

model = Model(
image_uri=<image_uri>,
model_data=

step_train.properties.ModelArtifacts.S3ModelArtifacts,
sagemaker_session=<pipeline_session>,
role=<role>,

)

Also, the ModelStep itself is the same for both objectives except for the parameter
step_args, which are different based on the fact that we are creating or registering

30

Project

the model, with the methods create() or register() respectively on the Model
object. An example of the ModelStep is the following:

step_model = ModelStep(
name=<step_name>,
step_args=<step_args>,

)

This step can be inserted as a step in the pipeline or as a if_step in a ConditionStep
to register or create the model just in case one or more conditions (for example, on
evaluation metrics, as we saw before) are satisfied.

Model registration

Before discussing how the model registration happens, let us first discuss the Model
Registry. The Model Registry is a SageMaker tool that allows us to perform
operations like:

• manage trained model versions

• manage its approval status

• associate it with training metadata such as accuracy, confusion matrix, etc

• deploy a model to an endpoint

A model in this context is called a Model Package. Many Model packages are stored
in collections called Model Package Groups, which are groups created to track
all models we train to solve a particular problem. When we add a new model to a
package group, SageMaker automatically creates a new version. A ModelPackage
represents a reusable abstraction of the model’s components that are necessary for
inference.

After defining the Model, we use the method register() to generate the
step_args that we will pass to the ModelStep to register the model on the model
registry.

register_model_step_args = model.register(
content_types=["application/json"],
response_types=["application/json"],
inference_instances=[instance_type],
transform_instances=[instance_type],
model_package_group_name=<model_package_group_name>,

)

With this method, we define the specifications of the model that will be saved on
the Model Registry.

31

Project

Model creation

If we instead want to create a model, after defining the Model object, we use the
method create() with which we generate the step_args.

create_model_step_args = model.create(
instance_type=<instance_type>

),

With this method, we create the SageMaker model that will be deployed on an
endpoint. When we create the model with this methodology we see the model
in the SageMaker UI, ready to be deployed, while if we register it on the Model
Registry, the model does not appear on the UI.

3.6.9 LambdaStep
The LambdaStep is used to execute an AWS Lambda function. AWS Lambda
is a serverless, event-driven compute service that allows us to run code without
provisioning or managing servers. It is up to the user to provide its custom code,
while Lambda runs it on high availability compute infrastructure and performs
all the administration of compute resources, such as server and operating system
maintenance, automatic scaling, security patch deployment, code logging, etc.

We can choose to execute an existing Lambda function or create one via Sage-
Maker. In order to execute a Lambda function using the LambdaStep, we need to
create an object of type Lambda. The Lambda type object can be created from an
existing Lambda function via the function_arn parameter, for example:

Lambda(
function_arn="arn:aws:lambda:..."

),

We also have the option of having SageMaker create the Lambda function for us,
via the handler parameter, with the format file_name.function_name, and one
between:

• zipped_code_dir: the path of the lambda function in .zip format.

• s3_bucket: the bucket of s3 where zipped_code_dir is loaded.

• script: the path to the lambda function script.

. An example is:

lambda=Lambda(
function_name=<lambda_function_name>,

32

Project

execution_role_arn=<lambda_role>,
script=<code_path>,
handler=script_name.function_name

)

Once we have created the Lambda type object, we can execute the Lambda Step
by passing the Lambda via the lambda_func parameter.

Our Lambda function can also process inputs and generate outputs. To define
inputs we create a dictionary of key-value pairs, where values can only be primitive
types (string, integer, or float) and nested objects are not supported. For the
outputs, we instead define a list of keys, which are the keys defined in the dictionary
returned as output from the Lambda function; also in this case, only primitive
types are supported.

An example of a Lambda Step is the following:

step_lambda = LambdaStep(
name=<step_name>,
lambda_func=lambda
inputs={

<key1> = <value1>,
<key2> = <value2>,

},
outputs=[

<ret_key1>, <ret_key2>
]

)

3.6.10 SageMaker session and Pipeline Session
We might have noticed that sometimes in the parameters of the objects we saw until
now, the parameter session may have appeared, for example, in the definition of
Model. In that particular case, the parameter is called sagemaker_session, but the
placeholder says pipeline_session. There is actually a difference between these
two types of session; in fact, Pipeline Session is an extension of SageMaker Session.
SageMaker Session manages the interactions between SageMaker APIs and AWS
services like Amazon S3 and provides convenient methods for manipulating entities
and resources that Amazon SageMaker uses, such as training jobs, endpoints, and
S3 input datasets.

The main difference is that sometimes we need to call a method that is needed
by the steps; for example, for ModelStep, we have to call model.register() or for
TrainingStep, we have to call estimator.fit(). Pipeline session makes sure that

33

Project

the fit() method does not immediately start a training job, but the method is
executed during a pipeline execution.

Processing and training components

Some components, like Processing and Training ones, need code that specifies
what operations the component should perform. For example, for a processing
component, we have to write the code for data processing or model evaluation,
while for a training component we could, for example, perform some operations
before starting the training, like transforming some columns. In this case, we have
the possibility to choose how to provide these instructions.

• Script mode: In script mode, we write our code in a file, for example a .py or
.sh file, and we pass it to the component, to which we will also pass a base
image and the command to use to execute the script, such as python3 or sh.
As we saw in Section 3.1, we can use as base images pre-built Docker images
that SageMaker has created for us and already has installed many common
libraries. We can find these images in lists divided by region or through the
method image_uris.retrieve that we can find in Python SDK.

• Bring your own container [23]: In this case, we create or already have an
image that contains our training script. If we create the image, we can choose
one pre-built container by SageMaker as base image or a Docker base image
on which we will install the necessary libraries for our script. This mode is
used when we want to install libraries not on PyPi, if the framework we want
to use is not already provided by SageMaker or if we want to customize the
environment. To use this method on SageMaker, we need to use the training
toolkit to make the image compatible with SageMaker and the inference
toolkit, which allows us to deploy the model on SageMaker. Both will be
discussed more deeply in Section 4.2.1.
In our project, we chose to use this strategy for another reason, which is that
by the containerization of the training script we can obtain traceability (thanks
to the versioning of the images enabled by default on ECR) and transparency
(since we can obtain the whole content of any image to inspect it or to rerun
the pipeline with an old image), which are two very important aspects in the
context of MLOps and AI Act. Also, we obtain the advantage of using an
algorithm not provided by SageMaker.

34

Chapter 4

Architecture of the solution

In this section I will talk about the implementation details of the solution. We will
discuss each logical step of the pipeline, describing in detail which kind of services
and steps we used, what are the inputs, outputs, and dependencies.

4.1 General setup

4.1.1 IDE
We implemented the pipeline using the IDE SageMaker Studio. As we said
before, this allows us to perform operations like writing code, checking the execution
status of the pipeline, its steps and their inputs and outputs, other than many more
operations. This can all be done in SageMaker Studio without having to move back
and forth to the SageMaker UI. To test the pipeline, we used the built in Terminal
and we launched the pipeline from the command line as a regular Python script
with:

python3 pipeline.py --use-case <use_case>

In a production environment, instead, the pipeline is launched automatically using
the two triggers we defined on the codebase, eliminating the need for manual
intervention.

4.1.2 Data storage configuration
The pipeline is set up to execute more use cases, which we pass as a command line
argument. For this purpose, the S3 bucket where all the data generated and that
is needed by the pipeline is organized by the following schema:

.

35

Architecture of the solution

data-it-ena-mlops/
use-case/

data/
pipeline-name/

timestamp/
step-name1
step-name2
...
Logs

The timestamp represents the moment in which the pipeline execution begins.
To maintain general coherence, the timestamp generated at the beginning of the
pipeline execution is passed down to all the steps so they can all refer to the same
folder. Inside the timestamp folder, other subdirectories store the outputs of the
steps, like the trained model or the evaluation file; it also contains a subfolder called
Logs where logs files produced during the execution of the pipeline are stored.

4.1.3 Configuration files
All of the configurations needed by the components of the pipeline are contained
inside a file called config.yaml, which has sections for each component that needs
configurations. Inside each section are the configuration values. This file was created
to make the pipeline as customizable as possible with the least effort possible, as
everything that needs to be changed is inside this file. For example, suppose we
want to adapt the pipeline to a new use case. In that case, we only have to adapt
the configuration file by changing the name of the dataset file, what represents the
positive outcome in the label, configurations for bias measures computations, etc.
To access the configuration file, we created a utility script that loads it wherever
needed.

4.1.4 The Pipeline object in-depth
Starting from a high level, we can discuss the Pipeline object more deeply. As we
described earlier in Section 3.2.1, we first define a Pipeline object; then, we start
the pipeline with pipeline.start() where we can also override some parameters.
There are three more methods that we have used in our solution, which are:

• pipeline.describe(): This method describes the details of the pipeline, for
example: its ARN, the datetime it was created and run for the last time, the
details of who created it and who modified it, etc.

• pipeline.upsert(role_arn=role): This method is fundamental and must
be used before using start(). It submits the pipeline definition (a JSON file

36

Architecture of the solution

that describes the pipeline) to the Pipeline service and is used to create a
pipeline if it does not exist or update an existing one. The role passed is used
to create all the jobs the pipeline needs.

• execution.wait(): This method waits for the execution to finish. We used
this to upload on S3 the log files generated during the execution.

Another aspect that we can talk about is parameters, in particular, what are
the parameters that we decided to use and what they represent:

• pipeline ARN: This is the ARN of the pipeline that is going to be executed.
We extract this parameter from the response of pipeline.describe() before
starting the pipeline and is used later to configure automatic retraining.

• train image: This is the URI of the training image used by the TrainingStep
to train the model. This parameter is fundamental if we want to launch a
training with an old image, for transparency reasons.

• training instance type: This parameter represents the instance type used for
training the model. The same instance is used across different steps to execute
different jobs, as the machine used for training is most of the time safe to be
used also for other jobs.

• inference instance type: This parameter represents the instance type used
for inference. We do not use the same instance type used for training as for
inference, a smaller machine that costs less is sufficient.

There are four more parameters, that we use to configure data quality and
data bias steps, which are: skip_check_data_quality, skip_check_data_bias,
register_new_baseline_data_quality, register_new_baseline_data_bias.

Section 3.6.5 will discuss the meaning and how we configured these parameters
to obtain the desired behavior.

4.1.5 Use case
For the whole duration of the Pipeline development, the use case that we tested
the pipeline on was chosen at the beginning of the project and it is credit default
risk. The dataset for this use case is a very popular one and contains information
about requests for loans with information about the person who requested it. This
use case is a binary classification task, where the label of the dataset represents
whether the person who asked for the loan could repay it or not. This dataset
contains sensitive attributes, such as CODE_GENDER, that represents the sex of the
person.

37

Architecture of the solution

4.2 Automatic deploy
The pipeline can be automatically started in two ways:

• Triggers: As we saw in Section 3.5, we set up triggers on the service CodeBuild
that are linked to our GitHub repository. The pipeline is started on pushes on
the main branch and on any branch whose name starts with "feature/" where
triggers match a certain regex.

• Retraining: Another way the pipeline is launched is if the model needs
retraining.
When drift on data is detected, the model’s performances will likely degrade
as the data the model was trained on differs from what the model is currently
receiving from the endpoint. Since the model has never seen this kind of data,
it could lack this degree of generalization and thus produce completely wrong
predictions, potentially damaging the client or the users who employ those
predictions to make critical decisions. We will discuss the implementation
details of this mechanism more in-depth in Section 4.9.

When the pipeline is started after the retraining is triggered, we only use its ARN.
The execution happens in the same conditions as the last pipeline execution (unless
pipeline parameters are changed), so it keeps all previously used parameters and
configurations.

On the other hand, when the pipeline is started through triggers, the environment
is set up by installing libraries, exporting environment variables, and using docker
cli commands to create our custom training image. This way, each time the pipeline
is started, it always uses the latest training image unless we specify another as a
pipeline parameter.

4.2.1 Containerization
As highlighted in 3.6.10, we use a custom training image for many reasons, so we
need to perform containerization to obtain such an image.

In each image build process, Docker executes the commands we defined in the
Dockerfile sequentially. The Dockerfile, the training script, configuration files, and
other auxiliary files are in a folder called trainer. In the Dockerfile, we specify
a Python image available on public ECR as a base image. Then, we install the
libraries we will need for the training, such as scikit-learn, Pandas, etc. We then
transfer the contents of the trainer folder into the local /opt/ml/ directory and
specify our training script as the entry point.

Inside the trainer folder, we have a bash script to perform the build and push
of the image on ECR. Once uploaded to ECR, each image is versioned, allowing

38

Architecture of the solution

for the retrieval and inspection of the contents of each file from the time of its
creation. This ensures transparency and traceability, permitting us to review the
exact training script used for any specific model.

When we create our own custom images, they are not immediately compatible
with SageMaker. However, we need to use two toolkits that implement the function-
alities needed to adapt our containers to run scripts, train algorithms, and deploy
models on SageMaker. For example, the training toolkit defines the locations for
storing code and other resources, which we discussed before, and is /opt/ml/. The
two toolkits are the inference toolkit and training toolkit.

To install the training toolkit, we include sagemaker-training in the list of
libraries we install with pip in our Dockerfile. Using the toolkit also allows us to
use the hyperparameters parameter in the Estimator object that we create for
model training and read the hyperparameters from the training script using the
library argparse. It also provides us with environment variables that we can read.
For example, the variable SM_CHANNEL_TRAINING provides the training channel’s
paths.

On the other hand, the inference toolkit allows us to adapt our container to
work with SageMaker hosting in case we want to host our model on an endpoint.
To use the toolkit, we created a file called inference.py file, which we included
in our Dockerfile and passed to the Model object (which we will see later) as an
entrypoint. In the file, we have three main functions, which are:

• model_fn(model_dir): In this function, we specify how SageMaker should
load a model. In our case, since we saved the model as a pickle file, we read it
using:

with open(Path(model_dir) / "model.pkl", ’rb’) as f:
loaded_model = pickle.load(f)

we used the Path method from the library pathlib, which lets us concatenate
paths better.

• input_fn(input_data, content_type): In this function we pre-process in-
put data. It allows us to deserialize input data so it can be passed to our model.
It takes the input data and the content type as input and returns deserialized
data. With the parameters, we can decide what kind of preprocessing to
perform. For example, in our implementation we have:

if content_type == ’text/csv’:
df = pd.read_csv(

StringIO(input_data),

39

Architecture of the solution

header=None,
delimiter=";")

return df.values
elif content_type == ’application/x-npy’:

return np.load(
BytesIO(input_data),
allow_pickle=True)

as we can see, we need to perform different preprocessing operations for
different types of data.

• predict_fn(input_object, model): This function is responsible for getting
predictions from the model. It takes the model and the data returned from
input_fn and returns the prediction. In our case, it is straightforward:

predictions = model.predict(input_object)

After implementing these two toolkits, our custom image is ready to be used
with SageMaker to train the model and deploy it on an endpoint. After the
containerization process has finished, we can finally start the pipeline via the
command line.

After this logical step, the pipeline execution starts with data ingestion.

4.3 Data ingestion
With data ingestion, the pipeline execution begins. We use a ProcessingStep that
has the task of performing very basic preprocessing, i.e. retrieving the complete
dataset from S3 and, if necessary, performing the feature selection process. Features
are selected in a static way by compiling a list of features to keep. Ideally, this list
is created by the data scientist who decides which features are important based
on ML methods (for example, Random Forest), statistical methods (for example,
correlation), domain knowledge, or by experimenting. In our case, the columns
were selected by a data scientist when the project first started.

In this step, other than selecting features, we perform an additional type of
preprocessing: map the label values that indicate a positive outcome to "1," while
the others are set to "0." This step is necessary since evaluation methods based on
calculating separate class metrics (e.g., recall, precision, etc) use "1" as the default
value to indicate the positive class. Furthermore, the data scientist does not have
to specify the label that represents the positive outcome in the configuration of the
ClarifyCheckStep (in the next section), as it is already set to "1".

40

Architecture of the solution

Finally, we split the dataset into training and testing following the configuration
specified by the data scientist in the configuration file. The configuration that we
used is test_size=0.2, which means that the test size will be 20% of the dataset
size and random_state: 42, with which we set a seed that allows us to split the
dataset consistently in the same way, so we avoid randomness across different
pipeline runs.

This first step is mandatory in order to perform the monitoring of the data drift
since the statistics must be computed (in the next step) on the same schema as
the requests received by the model deployed on endpoints.

The ScriptProcessor is instantiated with the command "sh" since a bash script
is first executed in this step. There was the need to use a bash script as the
base image does not come with the library PyYAML installed, needed to load the
config.yaml file. In the script, in fact, we install said library and then proceed to
execute the Python script that contains the processing code.

The inputs for this step are:

• input dataset: the dataset related to the use case that we will preprocess.

• path of the python script: the path where the python script that will execute
the preprocessing is located.

• path of the configuration file: the path where the yaml configuration file is
located.

• path of the utility file: the path where the file that contains the utility script
to load the configuration file is located.

As outputs, we obtain: the dataset that we will use for training and baselines
computation, the dataset that we will use for testing, and a log file created during
the execution of the step.

4.4 Data bias and data quality statistics
Once we performed the basic preprocessing, we used the dataset we obtained as
output to compute the baselines. As we saw in Section 3.6.5, we will use two
different types of steps: one that computes a baseline regarding data quality (and
that will be used for monitoring), the other one that computes a baseline regarding
biases in the input data; these steps are, respectively, DataQualityCheckStep
and ClarifyCheckStep. Before creating these steps, we need to configure the
DataQualityCheckConfig for the former, DataConfig and BiasConfig objects for the
latter; in particular the most important configurations are:

41

Architecture of the solution

• selection of the baseline dataset: This configuration tells the components
what is the dataset on which baselines computation should be performed.
The dataset is obviously the output of the previous step, so we retrieved
it using the step properties step_basic_preprocess_dataset.properties
and navigating using JsonPath notation until we reach the S3 URI of the folder
containing the dataset. To access the dataset, we use SageMaker’s builtin
Join function, which allows us to perform string concatenation operations that
are not otherwise allowed by SageMaker on properties or pipeline parameters.
To access the dataset, which is called train.csv, we execute the following
method:

Join(
on=’/’,
values=
step_basic_preprocess_dataset.properties.\
ProcessingOutputConfig.Outputs["train"].\
S3Output.S3Uri,
"train.csv"]

),

Using the properties attribute creates a data dependency, so these two
steps will always be executed after completing the previous one. Other than
specifying the dataset, we also need to set the dataset format, for example
text/csv.

• S3 output paths: where the outputs of these two steps will be stored on S3,
namely the statistics.json and constraints.json files for the DataQuali-
tyCheckStep and the analysis.json and the reports for the ClarifyCheckStep.

• configurations for bias checks: This configuration is used to configure the jobs
that will compute the bias metrics. These configurations include the column
name of the label, what is the label that represents a positive outcome, the
column name of the protected attribute, and the value that is disadvantaged.
In our case, we chose as the protected attribute the column COLUMN_GENDER,
which represents the gender of the person who requested the loan, and as a
disadvantaged value, we chose ’F’, which represents females.

There are also other settings that need to be configured. After these configurations
are done, the steps can be created.

When the ClarifyCheckStep finishes, it is followed by a significant addition
regarding fairness and the AI Act, which is a ConditionStep to check if a certain

42

Architecture of the solution

bias measure is within a specific boundary or not; the data scientist chooses the
measure and the threshold. This is fundamental because if the dataset turns out to
be biased, the model will learn from biased data, and the predictions will be biased.
With this step, we introduce an innovation as the pipeline is automatically stopped
if fairness in the dataset is not met. If the condition is not satisfied, the pipeline
is redirected to execute a FailStep, with a message informing the data scientist
that the pipeline could not be executed further as there are fairness problems. The
pipeline moves to the TrainingStep if the condition is satisfied.

Another step is executed before the condition is evaluated: a ProcessingStep.
This step is used to rearrange the output of the ClarifyCheckStep (a JSON file) as
it is unsuitable to search for the chosen fairness measure to check via JsonPath.
This step takes only one input, which is the output of the ClarifyCheckStep through
its properties attribute. This creates a data dependency, and this step is only
executed after the ClarifyCheckStep has finished computing fairness metrics. The
outputs of this step are a log file created during the execution of the step and the
rearranged JSON file that is saved as a property file that can be accessed by the
subsequent ConditionStep. The new file layout can now be easily explored using
JsonPath, like so:

metrics.<target_measure>

Since some measures are only positive, like the KL divergence, while others are
between -1 and 1, like Class Imbalance, another operation that the ProcessingStep
performs is to compute the absolute value of the measure before saving it into the
output file. This is actually a convenient operation since positive measures are not
affected, while measures that can take negative values are symmetric (discussed
later). This lets the data scientist specify a threshold representing an upper bound,
but for symmetric measures, it is really an interval that the measure should be
within. The code this step should execute is inside a Python script, and the
command to execute it is python, as we do not need a shell script in this case to
perform prior operations.

For the QualityCheckStep, instead, we execute the step and use its output further
in the pipeline when we will register the model on Model Registry.

We will now see a more in-depth view of the metrics computed by the Clarify-
CheckStep.

4.4.1 Bias metrics
The metrics computed by the ClarifyCheckStep are several, describing different
aspects of the data. Since we are computing these metrics before the model training,
they are called pre-training bias metrics because we analyze the dataset for biases
and mitigate them before the data is used for model training. These kinds of metrics

43

Architecture of the solution

answer the question: Do all facet values have equal or similar representation in the
data?

These metrics can be further split into macro-categories. The examples that
we will present are referred to the dataset that we chose, where the facet is the
column that represents gender. We will use d to represent the facet value that the
data scientist chooses as disadvantaged, while a to represent the advantaged facet
value; in our case, d is represented by females, while a is represented by males.

• Facet value representation irrespective of labels: This category contains only
one metric and is computed on the facet without taking into consideration
the label.

– Class Imbalance (CI): Measures how balanced is the representation of
facet values in the data. For example, in our dataset, males represent the
34.2% of data, females 65.8%. Class Imbalance is computed as:

CI = 0.342 − 0.658 = −0.316

A Positive CI means that the facet a has more training samples in the
dataset. A high class imbalance could lead to worse predictive performance
for the facet value with a smaller representation. This is a symmetric
measure and has values between −1 and 1.

• Facet value representation at the level of positive labels only: This category
contains two metrics representing whether all facet values contain a similar
fraction of samples with positive observed labels. This could reveal that some
groups are more advantaged than others. The metrics are:

– Label Imbalance (DPL): computes the difference between the proportion
of observed outcomes with positive labels for facet d with the proportion
of observed outcomes with positive labels of facet a in the training dataset.
For example, in our dataset, it is 0.031, computed as:

DPL = n1
a

na

− n1
d

nd

= 0.899 − 0.930 = −0.031

A Positive DPL means that facet a has a higher proportion of positive
outcomes. If it is close enough to 0, we can say that demographic parity
has been achieved.

– Conditional Demographic Disparity (CDD): Demographic disparity helps
us understand if a facet has a larger proportion of the rejected outcomes
in the dataset than the accepted outcomes.
Conditional DD, on the other hand, conditions DD on attributes that
define a strata of subgroups on the dataset. The regrouping can provide

44

Architecture of the solution

insights into the cause of apparent demographic disparities for less favored
facets. For example, for a famous sample dataset, DD indicated that
women had a lower acceptance rate than men. However, with CDD, we
can discover that women applied to departments with a lower acceptance
rate than men, and women were accepted more than men for these
departments.
This measure was not computed for our dataset as we could not identify
a column to regroup on.

• Facet value representation at the level of each label separately: With these
measures, we try to understand representation equality for each label, not just
the positive label. These metrics are more naturally applicable to non-binary
labels since imbalance in the positive label can be used to compute imbalance
in the negative label. This means that these metrics provide the same insights
as DPL. To compute them, we need to first introduce the concept of probability
distributions of labels for each facet. For binary labels, we can compute these
probabilities as:

Pa(y1) = n1
a

na

, Pa(y0) = n0
a

na

Pd(y1) = n1
d

nd

, Pd(y0) = n0
d

nd

– Kullback-Leibler Divergence (KL): Measures how much the outcome
distributions of different facets diverge from each other. The formula is:

KL(Pa||Pd) =
Ø

y

Pa(y) · log[Pa(y)/Pd(y)]

In our case, we only have two possible outcomes, 1 and 0; for our dataset
the value is:

KL = 0.06

Values near zero mean the outcomes are similarly distributed for the
different facets and the greater the value the higher the divergence.

– Jensen-Shannon Divergence (JS): measures how much the label distri-
butions of different facets diverge from each other. It is based on the
Kullback-Leibler divergence, but it is symmetric. The formula is:

JS() = 1
2KL(Pa||P) + 1

2KL(Pd||P)

Where P = 1
2(Pa + Pb).

45

Architecture of the solution

Values near zero mean the labels are similarly distributed and the greater
the value the higher the divergence. This metric is particularly useful to
understand if a significant divergence exists in one of the labels across
facets.

– Lp-norm (LP): The Lp-norm (LP) measures the p-norm distance between
the facet distributions of the observed labels. The formula is:

Lp(Pa, Pd) = (
Ø

y

||Pa − Pd||p]
1
p

The 2-norm is the Euclidean norm.
The range of this measure is [0,

√
2). Values near zero mean the labels are

similarly distributed and the greater the value the higher the divergence.
– Total Variation Distance (TVD): Measures half of the L1-norm and repre-

sents the largest possible difference between the probability distributions
for label outcomes of facets a and d. It quantifies how many outcomes in
facet a would have to be changed to match the outcomes in facet d.
The range of this measure is [0, 1). Values near zero mean the labels are
similarly distributed and the greater the value the higher the divergence.

– Kolmogorov-Smirnov (KS): This measure is equal to the maximum diver-
gence between labels in the distributions for facets a and d. It helps us
find the most imbalanced label. The formula is:

KS = max(|Pa(y) − Pd(y)|)

In our case, both labels provide the same value, 0.031, so there is not one
label that is more unbalanced than the other.
The range of this measure is [0, +1]. Values near zero mean the labels
are similarly distributed between facets in all outcome categories. Values
near one indicate the labels for one outcome were all in one facet, while
intermediate values indicate relative degrees of maximum label imbalance.

The data scientist should choose the right metric which is conceptually appropriate
for the application and the situation.

4.5 Model training
If the condition on the fairness measure is satisfied, the Pipeline can move on to
the next phase, which is training the model. To train the model, we create the
Estimator object to which we pass a training image. As discussed before, we can
use a pre-built SageMaker image or use a custom image following the practice

46

Architecture of the solution

"Bring your own container" discussed in Section 3.6.10. The latter is the strategy
that we use; in fact, to train the model, we pass the custom training image that was
created during the automatic deployment, whose process is described in Section
4.2.1. We used an algorithm that is not provided by SageMaker, Random Forest.
Another important parameter, besides the training image, is sagemaker_session,
which should be assigned a PipelineSession object, for the reasons we discussed
before; another parameter that we set is the S3 output path, which is where the
output of this step will be saved. In fact, after creating the Estimator, we need to
perform the fit of the model whose results are parameters that we will pass to the
TrainingStep.

As input to this step, we pass the S3 path of the dataset obtained as the output of
the basic preprocessing step. To access the dataset, we perform the same operation
that we did in Section 4.4, so we use the Join operation to concatenate the name of
the file with the folder path that we obtain as a property of the step. This creates
a data dependency, thus executing the TrainingStep necessarily after the basic
preprocessing. This happens even if we do not have this data dependency, as the
TrainingStep is always executed after the ConditionStep on the fairness measure.
As output, we obtain a file called model.tar.gz, which contains everything we
decide to save within the training script, i.e. the trained model saved as a .pkl
(pickle) file. Pickle is a generic object serialization module that can be used for
serializing and deserializing objects, but is commonly used to store and reload
trained machine learning models. We save the model in the following way:

with open(model_path, "wb") as out:
pickle.dump(model, out)

This means that we open the file where we want to save the model in binary mode
(wb), and then we perform pickle.dump() to save the model on the specified path.

4.6 Model evaluation
After the model has been trained, we must evaluate it against a test dataset to
compute metrics that let us decide whether the model should be deployed or is
too weak and needs more polishing. To perform model evaluation we instantiated
an object of type ScriptProcessor with a base scikit-learn image that is provided
by SageMaker, the code that should be executed, and ’python’ as a command to
execute the evaluation Python script. After, we create the ProcessingStep to which
we pass the ScriptProcessor that we just created, inputs and outputs.

The evaluation we perform is to compute different classification metrics, allowing
the data scientist to choose which one he wants to evaluate his model on. The
metrics that we compute are accuracy, precision, recall, f1, and the confusion

47

Architecture of the solution

matrix; they can be visualized in the Model Registry within SageMaker Studio,
alongside the other metrics.

For this task, we pass the test set and the model as input. The test set was created
during the basic preprocessing step, and we obtained it using its properties. This
also creates a data dependency between the two steps. Another data dependency
is created with the second input, which is the model that we will actually test.

As outputs, we obtain a log file that is created during the step execution and a
property file with the evaluation report. We created this property file so it can be
accessed by the next ConditionStep, with which we will decide whether to continue
with the pipeline.

4.7 Model registration
After we evaluated the model, we now need to register the model on the Model
Registry. The registration is not performed every time; it can happen that we
complete a training process that does not bring the results we hoped. For this
reason, it would not make sense to save a model that does not reach certain
minimum standards in terms of metrics, so we use a ConditionStep to check the
results of the evaluation before proceeding further with the pipeline.

4.7.1 ConditionStep
Using the ConditionStep, we can decide to continue with the pipeline, so register
the model and deploy it on an endpoint. The condition we evaluate is based on
the binary classification metrics we computed inside the evaluation step; they can
now be accessed through the generated property file called evaluation.json.

For the pipeline to continue, we want a certain metric, decided by the data
scientist, to be greater than or equal to a certain threshold, also defined by the data
scientist. To achieve this, we use the condition ConditionGreaterThanOrEqualTo.
In particular, the configuration is the following:

ConditionGreaterThanOrEqualTo(
left=JsonGet(

step_name=step_eval.name,
property_file=evaluation_report,
json_path=
f"binary_classification_metrics.{target_measure}.value"

),
right=threshold_register,

)

48

Architecture of the solution

Where target_measure and threshold_register are obtained from the configu-
ration file.

After we define the condition, we can create the ConditionStep where we include
as if_steps the model registration step and the model deployment step. As
else_steps we instead have a FailStep, which blocks the execution of the pipeline
if the threshold is not met.

4.7.2 ModelStep
After the ConditionStep evaluates the condition to be true, we can register the model
on the Model Registry. First, we create an object of type Model, which we configure
by passing as the image_uri our custom training image, as model_data we pass the
trained model that we obtained as an output of the training step using its properties
attribute. This creates a data dependency. Then we also need to remember to pass
as sagemaker_session the object of type PipelineSession, since we need to exe-
cute the model.register() method. For this method, other than the parameters
that we saw before, we also need to configure approval_status="Approved" since
we will need the model in this status to be able to create the monitoring schedule in
the next step automatically; we also remember to pass inference_instance_type
to the inference_instance attribute.

Two more parameters need to be configured; in fact, we need to register the
metrics we computed before on the registry (data quality and bias). In order to do
so, we need to configure two more parameters, which are:

model_metrics=model_metrics,
drift_check_baselines=drift_check_baselines,

With model_metrics, we register the data quality statistics that we computed
with the DataQualityCheckStep, so they can be used later during model monitoring
to compare the baseline computed on the training dataset with the inputs captured
by the endpoint. In model_metrics, we also store the metrics we computed with
the evaluation step, which will appear in the Model Registry, as shown in Figure
4.2. To pass these metrics, we create an object of type ModelMetrics, which we
initialize with objects of type MetricsSource. We initialize the latter with the S3
URI of the file we want to store and its content type.

On the other hand, with drift_check_baselines, we register data bias statis-
tics that we computed with the ClarifyCheckStep. These would be used if we also
monitored data bias. These metrics also appear in the Model Registry, as shown in
Figure 4.3. To pass these metrics, we create an object of type DriftCheckBaselines,
which we initialize with objects of the same type that we saw before: MetricsSource.
We can see an example in the following code snippet:

model_metrics = ModelMetrics(

49

Architecture of the solution

model_data_statistics=MetricsSource(
s3_uri=
step_data_quality_check.\
properties.CalculatedBaselineStatistics,
content_type="application/json",

),
model_data_constraints=MetricsSource(...)

)

drift_check_baselines = DriftCheckBaselines(
bias_pre_training_constraints=MetricsSource(
s3_uri=
step_data_bias_check.\
properties.\
BaselineUsedForDriftCheckConstraints,

content_type="application/json",
)

)

Figure 4.1: The Model Registry with some model packages

The result of the register() method is used to finally create the ModelStep, which
will register our model when executed. We can see an example of the Model
Registry with multiple versions of the model (model packages) in Figure 4.1.

50

Architecture of the solution

Figure 4.2: Evaluation metrics on the model registry

Figure 4.3: Bias metrics on the model registry

51

Architecture of the solution

4.8 Model deployment
After registering the model, the next and last step of the pipeline is a LambdaStep,
with which we perform many operations linked to model deployment, which are, in
order:

1. Deploy the model on an endpoint

2. Activate model monitoring

3. Enable notifications when drift is detected

4. Enable retraining when drift is detected

We will talk about each of these points in the following sections. Before moving to
the implementation, we will talk about the highest level of this stack, which is the
LambdaStep itself. We discussed this step in Section 3.6.9; now we will describe
its configuration, inputs, and outputs and then talk about the code the Lambda
function will execute.

Before creating the LambdaStep, we have to instantiate the object of type
Lambda, which we configure in the following way:

• execution_role: For the Lambda to be executed, we created an ad-hoc role
to be used only within this context.

• script: the path of the script that will be executed by the Lambda is config-
urable via the config.yaml file.

• handler: This is created before instantiating the Lambda object and is a con-
catenation of the name of the file that contains the script (without extension)
and the name of the function that will be executed inside the script, also
configurable via config.yaml.

After configuring the Lambda object, we can create the LambdaStep, whose inputs
are:

• bucket_name, s3_logs_path: we need these parameters because inside the
code we have to save the log file we produce during the execution on S3.

• use_case: This is the use case configured at the beginning of the pipeline. It
is used to generate the names for the endpoint, configurations, monitoring
schedule, etc.

• model_package_group_name: This is used to retrieve the model from the
Model Registry so it can be created and deployed on an endpoint.

52

Architecture of the solution

• execution_role, events_execution_role: These two parameters are used
to execute SageMaker functions inside the code. The former is the role that
we also use in the pipeline; the latter is the role that we created ad-hoc to be
able to execute the automatic retraining of the model.

• train_image: This parameter is the training image used to train the current
model and will be passed again to the pipeline when it is retrained.

• monitoring_report_path: This parameter represents the path on S3 where
the monitoring report will be saved if violations are detected (drift).

• features_to_monitor: This parameter represents the features we should be
alarmed if they drift.

• pipeline_arn: This parameter represents the ARN of the pipeline that will
be executed again when drift is detected. We use the ARN of the current
pipeline.

We can now discuss the operations that the Lambda function executes. Throughout
the execution, we will use methods that belong to the AWS Python SDK, which
is called Boto3, and is used to create, configure, and manage AWS services. We
will create a client for each service we need and use its methods to perform the
required operations.

4.8.1 Deploy the model on an endpoint
To deploy the model on an endpoint, the first operation is to obtain the latest
model from the model package. Before that, we create the Boto3 client that
we need for these operations with: sm_client=boto3.client(’sagemaker’). To
obtain the latest model package, we perform sm_client.list_model_packages,
which we configure with the name that we passed from the inputs, sort the results
descending by creation time and say that we want only one object. The result that
we obtain gives us the ARN of the model version on the Model Registry, and we
use it as a parameter of the method sm_client.describe_model_package, with
which we obtain the inference instance type that we configured when we registered
the model. Now, we create the SageMaker model with the ARN we obtained
before and name it using the following pattern: model-{use_case}-{datetime},
for versioning reasons. To create the model, we use sm_client.create_model.
The model can also be created because we registered it on the Model Registry with
approval status "Approved", so we do not need to do it by hand.

Once the model has been created, we can move on to the endpoint creation.
To create the endpoint, we first need to create its configuration, but if it already
exists, we remove it to update it to a new one. To check if a configuration already

53

Architecture of the solution

exists, we use the method sm_client.list_endpoint_configs, which, as with
the model packages, we configure to obtain the latest endpoint configuration with
a certain name. The name of the endpoint configuration follows a specific pattern,
which is {use_case}-endpoint-config. If at least one endpoint configuration is
found, we delete it with sm_client.delete_endpoint_config and create it again
using sm_client.create_endpoint_config. To create an endpoint configuration,
we specify:

• instance type: We use the instance type we retrieved from the model package.

• model name: We use the model name that we created before.

• configuration for data capture: Data capture is fundamental for monitoring,
as we specify that we want to capture the data that is fed into the endpoint
to make predictions. The model monitor will use this data to compare with
the baseline computed at the beginning of the pipeline and detect drift. To
configure data capture, we pass a dictionary which, in our case, contains the
following entries:

– enable data capture: Whether data capture should be enabled.
– sampling percentage: What is the fraction of data that will be stored, we

specified 100%, to store all the requests that arrive at the endpoint.
– destination S3 URI: Where the captured data should be stored.
– content type: What is the format of this data, we specified to accept data

in both CSV and numpy formats.
– capture options: Whether to store input data, model predictions, or both.

We set both.

After creating the endpoint configuration, we check if an endpoint exists using the
same procedure we used before, with sm_client.list_endpoints, searching for an
endpoint name that follows the pattern: {use_case}-endpoint. If an endpoint al-
ready exists, we update its configuration with sm_client.update_endpoint. Oth-
erwise, we create it by passing the configuration with sm_client.create_endpoint.

4.8.2 Activate model monitoring
After creating the endpoint, we can create the monitoring schedule, which will be
configured to run at a specific interval. Before creating the schedule, we need to
notice that as the endpoint is created or updated, it will be in status "Updating"
or "Creating", which does not allow us to set the schedule on the endpoint. In
order to solve this problem, I used the method sm_client.describe_endpoint
to obtain the status of the endpoint and periodically checked (every 60 seconds)

54

Architecture of the solution

if the status changed or not by calling the same method again. As soon as the
status changes to "In service" we can continue with the creation of the sched-
ule. We allow only one monitoring schedule per endpoint, with a name that
follows the pattern: {use_case}-monitoring-schedule. Before creating a new
one, we first delete the existing one. If a schedule exists, it will be deleted;
otherwise, the method sm_client.delete_monitoring_schedule throws an ex-
ception. In either case, we finally create our monitoring schedule with the method
sm_client.create_monitoring_schedule. To configure the schedule, we use the
parameter MonitoringScheduleConfig, to which we pass a dictionary with the
following entries:

• ScheduleConfig: We use this entry to set the ScheduleExpression; in our
case, we want to run the monitoring job hourly, so we pass cron(0 * ? * * *).

• MonitoringJobDefinition: With this entry, we define what baselines the
job should use to compare new data. We take the baselines from the model
we obtained from the Model Registry since we stored this information when
we registered the model.

• MonitoringInputs: This entry defines where the monitoring job will take its
inputs. We specified the endpoint that we just created.

• MonitoringOutputConfig: With this entry, we define the path on S3 where
the violations report will be saved if any are found during the monitoring
process.

• MonitoringResources: We define the technical configuration of the underly-
ing machines, such as the number of instances or instance type.

• MonitoringAppSpecification: With this entry we specify two important
configurations:

– What is the image URI that the job will execute. In our case, we pass the
default image, but we could decide to create our own monitoring image
to execute personalized drift methods.

– a preprocessor, if necessary, that will preprocess input data before it is
passed on to the monitoring job. We used a preprocessor since there are
problems with the CSV format, so we need to reshape the input.

4.8.3 Enable notifications when drift is detected
After creating the monitoring schedule, we can allow data scientists or clients
to receive notifications when drift is detected. In order to do so, we will use

55

Architecture of the solution

CloudWatch Alarms and Amazon Simple Notification Service (SNS). To perform
actions when drift is detected, we have to configure one or more alarms, each based
on a feature we want to monitor drift on. The basic characteristic of an alarm
is the metric we monitor (the feature in our case), the frequency with which the
metric is evaluated, a comparison operator, and the threshold; we will see more
specific parameters later. We can also specify actions that happen on state changes.
There are three possible states: insufficient data, OK, and alarm. If we do not send
data to the endpoint, the metric cannot be evaluated as there is no data, so we
are in the first state. When data is sent, the monitoring job computes baseline
drift metrics, which are, for example, how distant the two distributions are; this
metric is what is evaluated by Cloudwatch alarms, and if the condition we specified
through the threshold and the comparison operator is true, the status is "In alarm".
If the condition is not satisfied, e.g. the metric is lower than the threshold, the
status is "OK". The action is executed only once, on state change; if the alarm
persists in "Alarm" status, the action is not executed again.

We can configure an action to notify us when drift is detected. Now, Amazon
SNS comes into play. The first thing we need to do is to create a topic and then
subscribe to it. In SNS, we have Publishers who send messages to a topic; the
clients subscribe to the topic by defining how to receive notifications (e.g. email,
SMS, etc) and where (e.g. email address, phone number, etc). Once a Publisher
sends a message to the topic, it is broadcasted to the subscribers through the
method that they specified when they subscribed to the topic. To enable these
notifications, we specify the topic among the actions, for example, the "In alarm"
actions.

To use these services, we must first create their respective Boto3 clients with
cloudwatch=boto3.client(’cloudwatch’), sns=boto3.client(’sns’). After
that, we first check if a topic exists as we did before, by listing the topics using the
method sns.list_topics and checking if our topic exists. If it does not exist, we
create a new one using sns.create_topic, in which we specify its name that follows
the pattern data-it-ena-mlops-{use_case}-drift-topic. The subscription to
said topic is done manually in the AWS console. After creating the topic, we can
finally create one alarm for each metric, with cloudwatch.put_metric_alarm and
configure it with the following parameters:

• alarm name: The alarm is named after the pattern

{use_case}-drift-alarm-{metric_name}

• Alarm actions: We insert the ARN of the topic we have just created. We
retrieve the ARN from the response of the method crete_topic. We did not
specify any action in Ok actions or InsufficientData actions.

56

Architecture of the solution

• Information on how to aggregate data points: This information is important
since when the monitoring job is executed, it computes baseline drift metrics,
which are saved as data points inside CloudWatch. We can then decide
the length used each time the specified metric is evaluated (Period), the
number of periods over which data is compared to the specified threshold
(EvaluationPeriods), the number of data points within the Evaluation Periods
that must be breaching to trigger the alarm (DatapointsToAlarm) and the
metric data aggregations over specified periods (Statistic). We checked the
metric each hour with an evaluation period of 1, with one data point to alarm
and average as statistic.

• Comparison operator and threshold: We specified as threshold 0.1 and as com-
parison operator "GreaterThanThreshold". This means that if the aggregated
data points exceed the threshold, the alarm goes into "Alarm" status.

4.8.4 Enable retraining when drift is detected
After enabling the notifications service for the user, we can finally enable the
retraining. For this purpose, we need the alarms that we created earlier, and we
will use an AWS service called EventBridge. EventBridge is a serverless service that
allows us to interconnect different applications through events. For example, we
can start the pipeline training when a new file is uploaded on S3, interconnecting
SageMaker pipelines with AWS S3. In our case, we will use EventBus, a router
that receives events from one or more sources and delivers them to one or more
targets. To an EventBus, we associate rules that evaluate events as soon as they are
received. Each rule checks if the event matches a pattern specified by the rule itself
and sends the event to the target. Since we are using a new AWS service, we must
create its Boto3 client, which is event_bridge = boto3. client(’events’).

In order to create the rule, we need to define an object beforehand, the event
pattern, which defines what events EventBridge will select to send to the targets.
An event pattern has the following structure:

event_pattern = {
"source": [

<source>
],
"detail-type": [

<detail-type>
],
"resources": <resources>

}

57

Architecture of the solution

We specify the source, which is the service that produced the event we want
to capture; the detail-type specifies the event name generated by the source;
resources specifies the ARNs of the resources involved in the event.

The previous snippet is what we used in our code, and we configured it so the
source parameters contains the value "aws.cloudwatch", the detail-type contains
"CloudWatch Alarm State Change" and finally resources contain the variable
alarm_arns. This variable is created even before the event pattern and contains
the ARNs of the alarms. In order to retrieve these ARNs, we use the method
cloudwatch.describe_alarms_for_metric, which returns us a description of the
alarm by searching for a metric; we search for the same metrics on which we created
the alarm before.

To sum up the event pattern, we configured it such that we want to capture
events sent by CloudWatch that represent a state change into "Alarm" status and
that are generated by the alarms created previously.

As we can see, the value of each of these fields is an array. The event pattern
matches the received event if any value in the array matches the value in the event,
so it resembles an OR condition.

We can now create the rule with the method event_bridge.put_rule, naming
the rule with the pattern: data-it-ena-mlops-{use_case}-retrain-pipeline.

We are not finished yet, since we created the rule but we still need to attach
targets, which will receive the event after it has been generated and captured.
To attach targets, we use the method event_bridge.put_targets, which we
configure by specifying the name of the rule that we have just created and an array
of targets. Each target is a dictionary identified by an id, which in our case will
be {use_case}-retrain-pipeline. We also need to specify a role that will be
used for this target when the rule is triggered and the ARN of the target, in our
case, the pipeline itself; the role instead was created ad-hoc to be able to start the
pipeline. Since we are specifying a pipeline as a target, we can also pass pipeline
parameters so we can change the behavior of the pipeline when it is retrained if we
want to. In our case, we decided to pass the same parameters that were passed
when the pipeline was started with the start() method, as we want the pipeline
to repeat the same execution, just on new and updated data.

As of now, the retraining is performed on the same data, so it is exposed to the
same drift. We did not test it on a real case scenario, as we could not modify the
underlying data before the pipeline restarted. Ideally, the data we capture from
the endpoint should be labeled so it is available for new training.

The last step executed by the Lambda function is to upload the log file on S3,
using the information we passed as inputs to the Lambda.

58

Architecture of the solution

4.9 Model monitoring
The pipeline description can be considered over, as there are no more steps left,
and with the last one, we enabled anything necessary to perform monitoring,
notifications, and retraining. For this reason, we can talk more in-depth about
model monitoring, how it is performed, and how it detects drift.

When the pipeline terminates its execution without errors, the monitoring job is
scheduled to follow the schedule we configured. The monitoring job will be always
executed, whether the endpoint receives inputs or not. In SageMaker Studio, we
can see the monitoring jobs history in the Endpoint details, where we can see the
result of the monitoring job and when it was executed. We can see an example in
Figure 4.4.

Figure 4.4: An example of monitoring history

The monitoring job can produce three results, which are:

• Failed: The job has failed its execution; the most common reason is that it
did not find any data to analyze because the endpoint did not receive inputs;

• No issues: The monitoring job was executed successfully; after analyzing the
input data captured from the endpoint, it did not find any issue;

• Issue found: The monitoring job ran successfully, but the input data captured
by the endpoint had discrepancies with the baseline computed in the first
steps of the pipeline.

When issues are found, we can inspect the job execution and find out what are
the violations found and what are the features affected. Inside this detail page,
there is also a link to a notebook, which, by inserting the ARN of the monitoring
job, allows us to inspect the situation with graphs and tables. The violations are
not only about drift, but can also be about different aspects and are stored in a
file called constraints_violations.json. The path on S3 is configured when we
create the monitoring schedule; in our case, we save it in the directory "report" of
the current use case. This folder is further divided by year, month, day, and hour.
The model monitoring job provides the following checks:

59

Architecture of the solution

• data_type_check: We have a violation if the data types of the inputs are not
the same found in the baseline dataset.

• completeness_check: We have a violation if the percentage of non-null items
exceeds a certain threshold computed on the baseline dataset.

• baseline_drift_check: This is the violation that we are most interested in.
We have a violation if the distribution distance between the inputs and the
baseline dataset exceeds a certain threshold.

• missing_column_check: We have a violation if the number of columns in the
input is less than the number of columns in the baseline dataset.

• extra_column_check: We have a violation if the number of columns in the
input is more than the number of columns in the baseline dataset.

• categorical_values_check: We have a violation if there are more unknown
values in the input than in the baseline dataset.

As we said before, to perform model monitoring, we use the default image URI
that provides SageMaker, which we can find using the SageMaker Python SDK
function image_uris.retrieve, passing to the parameter framework the value
model-monitor and as a region our current region, which is eu-west-1 (Ireland).
The model monitor also emits CloudWatch metrics for each feature/column ob-
served in the dataset. For numerical features, the pre-built container emits the
metric feature_data_{feature_name}, which records the value that the feature
assumed in the baseline dataset. For both numerical and string fields, instead,
it emits two metrics, which are feature_baseline_drift_{feature_name} and
feature_non_null_{feature_name}. The former represents the distance between
the distributions of input and baseline datasets; the latter represents the number
of non-null items. In particular, feature_baseline_drift_{feature_name} is
the metric we will create the alarm on because it directly returns us the distance
between the distributions, which we can quickly check with a threshold.

Regarding drift detection, the default model monitor computes the distance
between two data distributions. We will now analyze the details of the method
implementation. The method we will see is based on the statistical properties
of data, comparing data distributions at different points in time. The method
differs whether features are numerical or categorical, starting from the histogram
computed to represent the data distribution:

• numerical features: The histogram is computed using ten bins, so all bins have
the same width, namely:

binWidth = max − min
10

60

Architecture of the solution

where max, min represent the maximum and minimum values the feature
assumes, respectively. The first bin is min +binWidth and so on.

• categorical features: The histogram is computed as the number of instances
for each distinct value assumed by the feature.

To detect drift for numerical features, the default model monitor uses the Two-
sample Kolmogorov–Smirnov test and the L-infinity test for categorical features.

4.9.1 Numerical features
For numerical features, the drift is detected using a method based on the Two-
sample Kolmogorov–Smirnov test [24]. The KS test is a nonparametric 1 test of
the equality of continuous one dimensional probability distributions 2. Since in
our case it is a two-sample KS test, we compare two samples, not one sample and
one reference probability distribution (one sample KS). The two samples are the
baseline dataset and the input dataset. It is used to quantify the distance between
the empirical distribution functions of two samples. The null hypothesis is that
the samples are drawn from the same distribution. The KS statistics is

Dn,m = sup
x

|F1,n(x) − F2,m(x)|

Where n, m are respectively the sizes of the first and second samples.
The test statistic is finally compared with the threshold that is set inside the

constraints.json file.

4.9.2 Categorical features
For categorical features, we use a similar approach called L-infinity distance, also
referred to as Chebyshev distance [25]. L-infinity distance is the infinity-norm
between pair of vectors, which in our case represent frequency distributions of each
feature. This distance is computed as the maximum between the absolute distances
for each categorical value. The Chebyshev distance can be written as:

Dc(x, y) = max
i

(|xi, yi|)

Where x and y represent the two samples, i.e., the input and baseline distribution.
The index i represents instead each categorical value.

1we make no assumptions on the population from which the sample is drawn, since we do not
assume a particular distribution or if we do, we do not know its parameters

2one dimensional since the sample space is one dimensional (only one feature at a time)

61

Architecture of the solution

4.10 Drift simulation
To check that model monitoring actually works, we simulated traffic on the endpoint
by using a notebook instance that we launched through the SageMaker console.
We use an object of type Predictor from the SageMaker Python SDK to perform
predictions. The object is instantiated with the endpoint name and, most impor-
tantly, with a serializer and deserializer, so we can communicate with the endpoint
by encoding the data that we feed to the endpoint as input and deserializing result
data. As serializer, we use an object of type CSVSerializer ; as deserializer, we
use an object of type CSVDeserializer. To make a prediction, we use the method
predictor.predict(data=<payload>).

After instantiating the object we are ready to make predictions, so we simulate
drift by changing the data distribution of two features that we chose for no particular
reasons, one categorical and one numerical:

• The categorical feature is FLAG_OWN_CAR, which represents the fact that a
person owns a car and can take values of Y or N. We change this feature so all
the new instances that we send to the endpoint take value Y.

• The numerical feature is AMT_ANNUITY, which represents the loan amount,
which has a mean around 27 715$. We changed this feature so all the new
instances have the mean around 147 715$.

We can see a comparison between the old and new feature distribution for 100
samples in Figure 4.6 for the numerical feature, in Figure 4.5 for the categorical
feature. After creating artificial drifted traffic, we wait for the monitoring job to
be executed according to the schedule. When the job finishes, we can see that it
found issues; by checking the details of the job, we can look at the features that
created problems and the type of issue. An example is in Figure 4.7. In our case,
the constraint violated is feature_baseline_drift; we can also see details of the
violation. For example, for the feature AMT_ANNUITY, we notice that we have a
problem since the baseline drift distance (0.9) exceeds the threshold of 0.1. In this
details page, we also have a link to a notebook that we can access within Studio,
which generates plots and tables to inspect problems more in-depth. An example
of generated plot is in Figure 4.8, in which we can also observe the drift on the
AMT_ANNUITY feature. Since we set up a CloudWatch Alarm, we can see in Figure
4.9 the alarm in the SageMaker console. Furthermore, we received an email alerting
us of drift, and the pipeline started the retraining.

62

Architecture of the solution

Figure 4.5: Drift distribution comparison for FLAG_OWN_CAR

Figure 4.6: Drift distribution comparison for AMT_ANNUITY

Figure 4.7: Violation details in SageMaker studio

63

Architecture of the solution

Figure 4.8: Plot of collected and baseline distributions for each feature

Figure 4.9: CloudWatch alarm

64

Chapter 5

Evaluation

5.1 Value provided to potential clients
We can now evaluate our proposed solution considering its value to potential clients.
In particular, we can find many strengths, which are:

• Process standardization: By executing the pipeline, each data scientist follows
the same process from the beginning to the end of the ML life cycle by writing
and training models in a definite and "standard" way, which is also repeatable.

• High traceability and fast reproducibility: These two characteristics are fun-
damental for debugging and creating baselines from models that were trained
in the past. Furthermore, we can easily compare model versions, even if they
are very distant in time, e.g. years.

• Ease of retraining for different model versions: the pipeline allows, other than
retraining a model, for example, with an old training image, also to execute
a whole set of operations that may be considered "boring" by data scientists.
These operations include registering on the model registry, tracking metrics,
deploying on an endpoint, monitoring, and such. These operations are, in fact,
usually seen as "extra" work and handled manually with scripts or notebooks
launched when needed. This also allows us to easily compare different model
versions since we can train two different model versions on the fly and compare
them in terms of evaluation metrics, predictions, and so on.

• Possibility to define strategies to handle drift: This is a significant point since
drift should not be handled in the same way for all use cases, but each brings
its peculiarities and challenges that have to be addressed with their strategy,
for example, we should decide what are the features to monitor, what the drift
threshold, whether to automatically retrain the pipeline and other operations.

65

Evaluation

Furthermore, another critical characteristic of our solution is that drift is
handled by design; by doing this, we can reduce the chances of deteriorating
the performances.

• Possibility of reuse with other use cases by having only one "change point",
the file config.yaml; we also call this modularity. Other than being modular,
the configuration needed to adapt the pipeline to a new use case is not heavy,
but there are only a few entries that need to be changed, in particular:

– for the basic preprocessing step, we only have to change the name of the
dataset file, specify the columns to keep, the name of the label column,
and the value that represents the positive outcome;

– for the data bias check, we only have to change two entries: the name of
the sensitive attribute column and the disadvantaged value;

– for the bias and evaluation condition, we could change the metrics and
respective thresholds;

– for the model deployment, we have to specify what are the features to
monitor.

5.2 Fairness and Legal implications
Now that we have a clear view of the whole pipeline, we can discuss its implications
regarding fairness and the upcoming AI Act, which will be approved by the end of
the year.

The first point on which we can evaluate our solution in terms of fairness is that
it is effective in preemptively blocking the training of the model if the training
dataset does not respect fairness measures decided by the data scientist, given
that any bias in a model’s predictions derive from a biased dataset. In this way,
understanding the problems with a dataset lets us correct any bias so the resulting
model is fairer than what it could have been.

Another important aspect is that the model monitor automatically creates a
bias report, stating the bias metrics computed on the dataset and their values.
It also provides graphs presenting a high-level view of the dataset based on the
sensitive attribute, allowing us, for example, to see any imbalance in the dataset.
This report can be used as a self assessment or as a starting point to produce one
since this document is mandatory for high risk applications, given that companies
must be able to demonstrate that their application does not discriminate.

Moreover, there are many links with the previous section about the value
provided to clients, in particular with:

66

Evaluation

• Traceability and reproducibility: These two aspects are essential for the AI
Act since they are two actions that improve transparency and accountability,
which are requisites of the AI Act.

• Drift detection: Drifting in data can introduce new biases (which we can then
detect) or degrade the model’s performance. If the model is used in high risk
applications, a degradation in performance could mean that decisions based
on wrong predictions harm people affected.

67

Chapter 6

Conclusions and future
works

MLOps has gained much interest in the ML field, especially in the industrial
context, since it helps reduce technical debt and standardize processes. Two related
aspects, concept drift and fairness, nicely link with MLOps to produce a solution
encompassing all three.

This thesis focuses on developing a pipeline on Amazon AWS that can incorporate
the practices of MLOps while also focusing on concept drift and fairness in the
scope of the AI Act. Concept drift is addressed by monitoring the deployed model,
notifications and retraining. At the same time, the AI Act is considered in the bias
detection methods and following evaluation based on fairness measures.

The main accomplishments of this project are:

• The successful development of a pipeline to manage the end-to-end life cycle
of an ML application, from dataset to deployed model on an endpoint.

• The solution is production-ready, which means that it can already be sold
as-is to a potential client who may need it, since it includes the critical stages
of any ML application development.

• The solution brings value to clients while foreseeing a correct usage when the
AI Act is enforced by law.

The main limitations of this project are:

• The solution is strongly linked with the platform it was developed on. If a
client uses another platform, the pipeline must be rewritten, or the client
should switch platforms.

68

Conclusions and future works

• The solution assumes that before starting the pipeline process, the data
scientist already knows the columns that must be selected from the dataset or
that the dataset has already been preprocessed for feature engineering.

• The data scientist should understand the fairness measures that are computed
and should be able to clearly define thresholds based on the dataset used and
the objective of the application. Furthermore, the data scientist should also
select the columns of the dataset that are monitored (to receive notifications
or make the pipeline restart) based on the objectives of the application and
the use case.

In the future, we can foresee some interesting developments that can enhance the
solution and make it more powerful and valuable:

• Implement a more advanced method of detecting drift: Since SageMaker
allows us to create a custom Docker image with monitoring capabilities, the
client could think to implement its own drift detection methods based on other
statistical tests that might be more fit for a specific use case.

• As of now, the retraining is performed on the same dataset used for the model
training. We need a more advanced mechanism to update the dataset with
the new instances (already captured by the endpoint) and label them. This
way, the retraining has a meaning, and the model is updated with new data.
The retraining proposed by our solution is a proof of concept to show that it
is a doable possibility.

• We can also improve our solution by enabling scheduled retrainings, which
update the model whether there is drift or not. It is assumed that the training
dataset is updated with new labelled instances.

• As of now, the bias monitor cannot be customized, and we are not able to
create our own custom Docker image like we can for the drift monitor, so we
cannot compute custom bias metrics. Instead, We can think of developing a
processing job that computes custom fairness measures and outputs a property
file that we can evaluate. This would need a fair amount of work to integrate
with the current solution.

69

Bibliography

[1] IBM. IBM Global AI Adoption Index 2022. Tech. rep. 2022 (cit. on p. 4).
[2] Robert J. Glushko. «Seven ways to make a data science project fail». In: Data

and Information Management 7.1 (2023). Special Issue on Data Science and
Information Science., p. 100029. issn: 2543-9251. doi: https://doi.org/
10.1016/j.dim.2023.100029. url: https://www.sciencedirect.com/
science/article/pii/S2543925123000037 (cit. on p. 4).

[3] David Sculley et al. «Hidden technical debt in machine learning systems». In:
Advances in neural information processing systems 28 (2015) (cit. on p. 4).

[4] Georgios Symeonidis, Evangelos Nerantzis, Apostolos Kazakis, and George A
Papakostas. «Mlops-definitions, tools and challenges». In: 2022 IEEE 12th
Annual Computing and Communication Workshop and Conference (CCWC).
IEEE. 2022, pp. 0453–0460 (cit. on p. 5).

[5] Sanjeev Sharma. The DevOps adoption playbook : Includes index. Indianapolis,
IN : Wiley, 2017. url: https://doi.org/10.1002/9781119310778 (cit. on
p. 5).

[6] Monika Steidl, Michael Felderer, and Rudolf Ramler. «The pipeline for the
continuous development of artificial intelligence models—Current state of
research and practice». In: Journal of Systems and Software 199 (2023),
p. 111615. issn: 0164-1212. doi: https://doi.org/10.1016/j.jss.2023.
111615. url: https://www.sciencedirect.com/science/article/pii/
S0164121223000109 (cit. on p. 5).

[7] Sridhar Alla and Suman Adari. Beginning MLOps with MLFlow: Deploy
Models in AWS SageMaker, Google Cloud, and Microsoft Azure. Jan. 2021.
isbn: 978-1-4842-6548-2. doi: 10.1007/978-1-4842-6549-9 (cit. on p. 6).

[8] Kristian Kersting and Ulrich Meyer. «From Big Data to Big Artificial In-
telligence?» In: KI - Künstliche Intelligenz 32 (2018), pp. 3–8. url: https:
//api.semanticscholar.org/CorpusID:256072197 (cit. on p. 6).

70

https://doi.org/https://doi.org/10.1016/j.dim.2023.100029
https://doi.org/https://doi.org/10.1016/j.dim.2023.100029
https://www.sciencedirect.com/science/article/pii/S2543925123000037
https://www.sciencedirect.com/science/article/pii/S2543925123000037
https://doi.org/10.1002/9781119310778
https://doi.org/https://doi.org/10.1016/j.jss.2023.111615
https://doi.org/https://doi.org/10.1016/j.jss.2023.111615
https://www.sciencedirect.com/science/article/pii/S0164121223000109
https://www.sciencedirect.com/science/article/pii/S0164121223000109
https://doi.org/10.1007/978-1-4842-6549-9
https://api.semanticscholar.org/CorpusID:256072197
https://api.semanticscholar.org/CorpusID:256072197

BIBLIOGRAPHY

[9] Douglas Laney. 3D Data Management: Controlling Data Volume, Velocity,
and Variety. Tech. rep. META Group, Feb. 2001. url: http : / / blogs .
gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-
Controlling-Data-Volume-Velocity-and-Variety.pdf (cit. on p. 6).

[10] Wei Fan and Albert Bifet. «Bifet, A.: Mining Big Data: Current Status, and
Forecast to the Future. SIGKDD Explorations 14(2), 1-5». In: ACM SIGKDD
Explorations Newsletter 14 (Apr. 2013), pp. 1–5. doi: 10.1145/2481244.
2481246 (cit. on p. 6).

[11] Gregory Ditzler, Manuel Roveri, Cesare Alippi, and Robi Polikar. «Learning
in Nonstationary Environments: A Survey». In: Computational Intelligence
Magazine, IEEE 10 (Nov. 2015), pp. 12–25. doi: 10.1109/MCI.2015.2471196
(cit. on pp. 6, 8).

[12] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, and Guangquan Zhang.
«Learning under Concept Drift: A Review». In: IEEE Transactions on Knowl-
edge and Data Engineering 31.12 (2019), pp. 2346–2363. doi: 10.1109/TKDE.
2018.2876857 (cit. on pp. 6, 7).

[13] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Hamid
Bouchachia. «A Survey on Concept Drift Adaptation». In: ACM Computing
Surveys (CSUR) 46 (Apr. 2014). doi: 10.1145/2523813 (cit. on pp. 6, 7).

[14] Alexey Tsymbal. «The Problem of Concept Drift: Definitions and Related
Work». In: (May 2004) (cit. on p. 8).

[15] Hang Yu, Tianyu Liu, Jie Lu, and Guangquan Zhang. Automatic Learning to
Detect Concept Drift. 2021. arXiv: 2105.01419 [cs.AI] (cit. on p. 8).

[16] Ben Green. «The flaws of policies requiring human oversight of government al-
gorithms». In: Computer Law & Security Review 45 (July 2022), p. 105681.
doi: 10.1016/j.clsr.2022.105681. url: https://doi.org/10.1016%2Fj.
clsr.2022.105681 (cit. on p. 9).

[17] Wikipedia. COMPAS (software) — Wikipedia, The Free Encyclopedia. http:
//en.wikipedia.org/w/index.php?title=COMPAS%20(software)&oldid=
1169881982. [Online; accessed 31-August-2023]. 2023 (cit. on p. 9).

[18] Ellora Israni. «When an Algorithm Helps Send You to Prison». In: New York
Times (Oct. 2017). url: https://www.nytimes.com/2017/10/26/opinion/
algorithm-compas-sentencing-bias.html (cit. on p. 9).

[19] European Parliament News Press. EU AI act: First regulation on artificial
intelligence: News: European parliament. June 2023. url: https://www.
europarl.europa.eu/news/en/headlines/society/20230601STO93804/
eu-ai-act-first-regulation-on-artificial-intelligence (cit. on
p. 9).

71

http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://doi.org/10.1145/2481244.2481246
https://doi.org/10.1145/2481244.2481246
https://doi.org/10.1109/MCI.2015.2471196
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1145/2523813
https://arxiv.org/abs/2105.01419
https://doi.org/10.1016/j.clsr.2022.105681
https://doi.org/10.1016%2Fj.clsr.2022.105681
https://doi.org/10.1016%2Fj.clsr.2022.105681
http://en.wikipedia.org/w/index.php?title=COMPAS%20(software)&oldid=1169881982
http://en.wikipedia.org/w/index.php?title=COMPAS%20(software)&oldid=1169881982
http://en.wikipedia.org/w/index.php?title=COMPAS%20(software)&oldid=1169881982
https://www.nytimes.com/2017/10/26/opinion/algorithm-compas-sentencing-bias.html
https://www.nytimes.com/2017/10/26/opinion/algorithm-compas-sentencing-bias.html
https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence
https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence
https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence

BIBLIOGRAPHY

[20] Kubeflow. [Online; accessed 02-September-2023]. url: https://www.kubefl
ow.org (cit. on p. 16).

[21] Shashank Prasanna and Alex Chung. Introducing Amazon SageMaker Com-
ponents for Kubeflow Pipelines. Accessed on 12 July, 2023. 2020. url: https:
//aws.amazon.com/it/blogs/machine-learning/introducing-amazon-
sagemaker-components-for-kubeflow-pipelines/ (cit. on p. 17).

[22] Zohar Karnin, Kevin Lang, and Edo Liberty. Optimal Quantile Approximation
in Streams. 2016. arXiv: 1603.05346 [cs.DS] (cit. on p. 26).

[23] AWS. When should I extend a SageMaker container? Accessed on 07 Septem-
ber, 2023. 2023. url: https://sagemaker-examples.readthedocs.io/
en/latest/advanced_functionality/scikit_bring_your_own/scikit_
bring _ your _ own . html # When - should - I - build - my - own - algorithm -
container%3F (cit. on p. 34).

[24] Wikipedia. Kolmogorov–Smirnov test. Accessed on 13 September, 2023. url:
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
(cit. on p. 61).

[25] Cyrus Cantrell. «Modern Mathematical Methods for Physicists and Engi-
neers». In: Measurement Science and Technology 12 (Nov. 2001), p. 2211.
doi: 10.1088/0957-0233/12/12/702 (cit. on p. 61).

72

https://www.kubeflow.org
https://www.kubeflow.org
https://aws.amazon.com/it/blogs/machine-learning/introducing-amazon-sagemaker-components-for-kubeflow-pipelines/
https://aws.amazon.com/it/blogs/machine-learning/introducing-amazon-sagemaker-components-for-kubeflow-pipelines/
https://aws.amazon.com/it/blogs/machine-learning/introducing-amazon-sagemaker-components-for-kubeflow-pipelines/
https://arxiv.org/abs/1603.05346
https://sagemaker-examples.readthedocs.io/en/latest/advanced_functionality/scikit_bring_your_own/scikit_bring_your_own.html#When-should-I-build-my-own-algorithm-container%3F
https://sagemaker-examples.readthedocs.io/en/latest/advanced_functionality/scikit_bring_your_own/scikit_bring_your_own.html#When-should-I-build-my-own-algorithm-container%3F
https://sagemaker-examples.readthedocs.io/en/latest/advanced_functionality/scikit_bring_your_own/scikit_bring_your_own.html#When-should-I-build-my-own-algorithm-container%3F
https://sagemaker-examples.readthedocs.io/en/latest/advanced_functionality/scikit_bring_your_own/scikit_bring_your_own.html#When-should-I-build-my-own-algorithm-container%3F
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://doi.org/10.1088/0957-0233/12/12/702

	List of Figures
	Acronyms
	Introduction
	About the company
	About the project
	Motivations of the work

	Machine Learning in production
	MLOps
	Drift
	FairML

	Project
	Overview of the project
	SageMaker pipelines
	The pipeline object

	KubeFlow
	SageMaker components for KubeFlow
	KubeFlow deployment on AWS

	Framework choice
	Versioning and deployment techniques
	SageMaker pipelines step description
	Amazon roles
	Amazon Resource Names
	ProcessingStep
	TrainingStep
	QualityCheckStep e ClarifyCheckStep
	ConditionStep
	FailStep
	ModelStep
	LambdaStep
	SageMaker session and Pipeline Session

	Architecture of the solution
	General setup
	IDE
	Data storage configuration
	Configuration files
	The Pipeline object in-depth
	Use case

	Automatic deploy
	Containerization

	Data ingestion
	Data bias and data quality statistics
	Bias metrics

	Model training
	Model evaluation
	Model registration
	ConditionStep
	ModelStep

	Model deployment
	Deploy the model on an endpoint
	Activate model monitoring
	Enable notifications when drift is detected
	Enable retraining when drift is detected

	Model monitoring
	Numerical features
	Categorical features

	Drift simulation

	Evaluation
	Value provided to potential clients
	Fairness and Legal implications

	Conclusions and future works
	Bibliography

