
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

FPGA-Based Signal Processing
Architectures for 5G Wireless Using

High-Level Synthesis

Supervisors

Prof. Luciano LAVAGNO

Prof. Mihai Teodor LAZARESCU

Prof. Roberto QUASSO

Candidate

Yudi QIN

October 2023

Abstract

The rapid advancement of technology, coupled with the widespread adoption of the
Internet of Things (IoT), has driven the quest for novel solutions that significantly
improve speed and resource efficiency, surpassing traditional implementations.
In hardware design, High-Level Synthesis (HLS) techniques present an efficient
avenue for generating hardware designs using high-level programming languages,
notably C/C++. HLS tools scrutinize design specifications and autonomously
create hardware implementations aligned with performance requirements. The
main objective of our research was to accelerate the 3GPP 5G Channel Model.
We specifically aimed at enhancing the channel model using High-Level Synthesis
(HLS) tools designed for Xilinx and Intel FPGA platforms. Given the complex
nature of the project, each team member focused on discrete components of the
channel model. My primary contribution centered on the Oversample_Filter
section. This component processes a large-sized input matrix using the Upsample
function and Matlab’s Finite Impulse Response (FIR) function. I first designed the
Oversamp_Filter in C++ to mirror the Matlab algorithm. Subsequently, I employed
Vitis HLS to optimize the C++ code, ensuring optimal throughput to align with
other parts of the channel model. In the end, the generated Register Transfer Level
(RTL) design was subjected to simulation tests and on-board validation before its
incorporation into the channel chain.

i

Table of Contents

List of Tables iv

List of Figures v

Acronyms viii

1 Introduction 1
1.1 5G Protocol Stack . 1

1.1.1 5G Physical Layer . 3
1.1.2 Channel Simulation . 4

1.2 Board Description . 8
1.2.1 FPGA . 9

1.3 Vitis Unified Software Platform . 12
1.3.1 Vitis HLS . 15

1.4 Thesis Structure . 18

2 Oversample_Filter Block 19
2.1 Matlab Reference . 19

2.1.1 Upsample . 19
2.1.2 Filter . 20

2.2 C++ Code and C-Simulation . 23
2.2.1 bin_read.h . 24
2.2.2 BVector_Filter_OneSample_Sub.h 25
2.2.3 BVector_Filter_OneSample_Sub.cpp 25

3 Synthesis 37
3.1 Pipelining . 38

3.1.1 Principle . 38
3.1.2 Syntax . 41
3.1.3 Application . 41

3.2 Unroll . 42

ii

3.2.1 Principle . 42
3.2.2 Syntax . 44
3.2.3 Application . 45

3.3 Array_Partition . 45
3.3.1 Principle . 45
3.3.2 Syntax . 47
3.3.3 Application . 48

3.4 Inline . 49
3.4.1 Principle . 49
3.4.2 Syntax . 49
3.4.3 Application . 49

3.5 Loop_Tripcount . 51
3.5.1 Principle . 51
3.5.2 Syntax . 51
3.5.3 Application . 52

3.6 Dataflow . 52
3.6.1 Principle . 52
3.6.2 Syntax . 56
3.6.3 Application . 56

3.7 Interface . 57
3.7.1 Syntax . 58
3.7.2 Application . 59

4 Result Analysis 61
4.1 Synthesis Result . 61
4.2 Co-Simulation . 63

Bibliography 64

iii

List of Tables

1.1 Alveo U280 Data Center . 9

4.1 The throughput of Input and Output ports 63
4.2 The usage of resource . 63

iv

List of Figures

1.1 NR radio interface protocol . 3
1.2 Link Level Simulator for 5G NR . 6
1.3 The Channel Model Framework . 7
1.4 Vitis Development Flow . 13
1.5 Vitis HLS Development Flow . 16

2.1 bin_read.h code . 24
2.2 Top function flow chat . 26
2.3 Fir function flow chat . 27
2.4 Composition of the function . 28
2.5 Content of Top function . 29
2.6 Upsample C++ code . 31
2.7 Filter C++ code . 33
2.8 Filter C++ code . 34

3.1 Function pipelining behavior . 38
3.2 Loop pipelining behavior . 39
3.3 Function and Loop Pipelining Behavior 40
3.4 Loop Pipelining with Rewind Option 40
3.5 Using Pipeline in Loop . 41
3.6 Using Pipeline in Function . 42
3.7 Loop Unrolling Details . 43
3.8 Using Unroll in Function . 45
3.9 Array Partitioning . 46
3.10 Partitioning Array Dimensions . 47
3.11 Using Unroll in Function . 48
3.12 Using Inline in Function . 50
3.13 Using Loop_Tripcount in Function 52
3.14 Sequential Functional Description 53
3.15 Parallel Process Architecture . 53
3.16 Dataflow Optimization . 54

v

3.17 Using Loop_Tripcount in Function 56
3.18 C-argument Type . 58
3.19 Using interface in Function . 59

4.1 Synthesis Report . 62

vi

Acronyms

AI
artificial intelligence

3GPP
The 3rd Generation Partnership Project

HLS
High-level synthesis

FPGA
Field Programmable Gate Array

RTL
Register Transfer Level

GPU
Graphics processing unit

HDL
Hardware description language

LUT
Look Up table

DSP
Digital Signal Processor

FF
Flip-Flop

viii

Chapter 1

Introduction

1.1 5G Protocol Stack

In today’s world, there is a pressing need for a new network infrastructure that can
provide reliable services to a multitude of devices. This infrastructure must offer
stable connections, increased bandwidth, and minimal latency. These requirements
serve as the foundation for the fifth generation of wireless networks, commonly
known as 5G. By utilizing higher frequencies, 5G enables communication at faster
data rates, although over shorter distances. To overcome this limitation, multiple
antennas are implemented to enhance capacity and signal quality. Additionally,
5G allows operators to partition a physical network into multiple virtual networks
based on usage requirements[1]. The Third Generation Partnership Project (3GPP)
has defined a new radio interface for 5G known as New Radio (NR). While NR
builds upon some features and structures of LTE, it is not obligated to maintain
backward compatibility, thereby leveraging much higher frequencies. This expansion
in frequency spectrum allows for wider bandwidth and higher data rates. However,
communication at higher frequencies is susceptible to increased radio-channel
attenuation, which poses a challenge in terms of network coverage. This challenge
is addressed by employing multiple antennas for communication, further promoting
the beam-centric design of NR[2].

The initial specifications for 5G NR were published in December 2017, supporting
the Non-Standalone (NSA) mode, in which 5G-compliant user equipment relies
on existing LTE networks for initial access and mobility. Subsequently, in June
2018, the Standalone (SA) versions of 5G NR specifications were finalized, enabling
independent operation without reliance on LTE.

The purpose of this chapter is to provide some big picture to been able to
understand the radio protocol stack. Most of the fundamental idea in this page
comes from 3GPP 38.300[3]

1

Introduction

There are two main components in 5G NR network:
UE (mobile subscriber) and gNB (base station).
gNBs establish a connection with the 5G Core network on the backend. The

communication from gNB to the UE is referred to as the downlink, utilizing PBCH,
PDSCH, and PDCCH channels to transmit various data and control information.
Conversely, the link from the UE to the gNB is termed the uplink, employing
PRACH, PUSCH, and PUCCH channels.

In 5G NR there are various physical channels in the downlink (from gNB to
UE) and uplink (from UE to gNB):

Downlink channels: PDSCH, PDCCH, PBCH. Uplink channels: PRACH,
PUSCH, PUCCH.

In both downlink and uplink scenarios, specific physical signals play critical
roles. Front-loaded DMRS (Demodulation Reference Signal) serves as a common
element for both PDSCH and PUSCH channels. The use of Orthogonal Frequency
Division Multiplexing (OFDM) with a cyclic prefix (CP) is a standard practice in
both downlink and uplink communications. Furthermore, the uplink employs DFT
Spread OFDM with CP to extend coverage, with CP length tailored to the specific
requirements. The 5G NR system operates within two frequency ranges: FR1 (Sub
6GHz) and FR2 (millimeter-wave range, 24.25 to 52.6 GHz). NR adopts flexible
subcarrier spacing, derived from the fundamental 15 KHz subcarrier spacing used
in LTE.

The NR Radio Protocol Stack Architecture shares many similarities with the
LTE Radio Protocol Stack Architecture. As in LTE/WCDMA systems, the NR
radio protocol stack is divided into two distinct segments based on the type of data
they handle. Signaling messages are processed through the C-plane stack, while
user data flows through the U-plane stack. Although the U-plane and C-plane
share a common underlying structure, illustrated in Figure 1.1, the components
above PHY/MAC/RLC/PDCP differ between the two segments

The 5G Protocol Stack can be divided in layer 1, layer 2 and layer 3:

• The 5G layer-1 is PHYSICAL layer.

• The 5G layer-2 include MAC, RLC and PDCP.

• The 5G layer-3 is RRC layer.

2

Introduction

Figure 1.1: NR radio interface protocol

Figure 1.1 illustrates the architecture of the NR radio interface protocol, primarily
focusing on the physical layer (Layer 1). The physical layer interfaces with the
Medium Access Control (MAC) sub-layer of Layer 2 and the Radio Resource Control
(RRC) Layer of Layer 3. The circles connecting different layers and sub-layers
represent Service Access Points (SAPs).

The physical layer provides a transport channel to the MAC, defining how
information is transmitted across the radio interface. MAC, in turn, offers various
logical channels to the Radio Link Control (RLC) sub-layer of Layer 2, each designed
for specific types of information transfer.

In the case of the User Plane (U-Plane), an additional layer called SDAP resides
at the top of the radio stack, connecting to the User Plane Function (UPF). In
contrast, for the Control Plane (C-Plane), two layers, RRC and NAS, sit atop
the stack. The NAS layer establishes a connection with the Access and Mobility
Management Function (AMF).

1.1.1 5G Physical Layer
The physical layer provides data transport services to higher layers, with access to
these services achieved through the utilization of transport channels managed by
the MAC sub-layer. A transport block refers to the data exchanged between the
MAC layer and the physical layer. NR Layer 1 is designed in a bandwidth-agnostic
manner, based on resource blocks, enabling it to dynamically adapt to various
spectrum allocations.

Following are the functions of 5G layer 1 i.e. PHYSICAL (PHY) Layer[4].

• Error detection on the transport channel and indication to higher layers.

• FEC encoding/decoding of the transport channel.

3

Introduction

• Hybrid ARQ soft-combining.

• Rate matching of the coded transport channel to physical channels.

• Mapping of the coded transport channel onto physical channels.

• Power weighting of physical channels.

• Modulation and demodulation of physical channels.

• Frequency and time synchronisation.

• Radio characteristics measurements and indication to higher layers.

• Multiple Input Multiple Output (MIMO) antenna processing.

• Transmit Diversity (TX diversity).

• Digital and Analog Beamforming.

• RF processing.

1.1.2 Channel Simulation
Channel simulation plays a crucial role in the functional and performance verification
of models during the network planning phase. In the context of channel modeling,
we refer to the medium that exists between typical transmission and receiving
stations, comprising two groups of antennas—one for transmitting and the other
for receiving—interconnected by a propagation channel. This propagation channel
represents the environment through which radio waves travel from the transmitting
antenna to the receiving antenna.

The significance of channel simulation lies in its ability to assess the performance
of communication systems. The objective of a model is to replicate physical
reality with an appropriate level of detail, striking a balance between accuracy
and complexity. Channel simulators serve as tools for modeling routing protocol
performance, analyzing traffic flows, and evaluating communication system efficiency
using real-world parameters within a virtual environment. Understanding the
impact of a physical channel in a real-world setting is of paramount importance.

Developing a channel model begins with defining the requirements of the target
system to be described. This is especially critical in wireless systems, given the
substantial variations in the propagation medium across space, time, and frequency.

The outcomes of simulations are employed as input by planning tools, commonly
used by network operators, to determine network infrastructure (network nodes)
and configuration. Channel simulation enables the creation of a theoretical model
that assesses the performance of actual devices.

4

Introduction

Many network operators develop these models by conducting simulations and
subsequently testing commercial devices in both laboratory and field settings
to verify that the expected performance levels are achieved. 3GPP and other
standardization bodies leverage channel simulators to craft theoretical models of
communication systems. However, it’s worth noting that accurate 5G channel model
simulations demand significant computational resources and extended execution
times when performed on general-purpose processors.

One approach to expedite the execution and reduce simulation time is through
hardware acceleration. Achieving homogeneity in the environment facilitates
the utilization of High-Level Synthesis optimizations, enabling the derivation of
technological requirements and the selection of optimal solutions, architectures,
and systems.

To accelerate channel functions using an FPGA that supports complex simula-
tions involving a higher number of antenna elements and various UE speeds, the
design is divided into two major components: host and kernel code.

In our case, the link between trasmitter and receiver is modelled as follows:

5

Introduction

Figure 1.2: Link Level Simulator for 5G NR

6

Introduction

The host code is responsible for managing control and data-related tasks, in-
cluding memory allocation on the device, receiving data from a client via a socket,
launching the kernel, and transmitting results back to the client through another
socket. In contrast, the kernel code is designed to be highly data-parallel and
computationally intensive, meticulously optimized for execution on the target
FPGA.

The entire channel model likes as follows: There are five blocks of this channel

Figure 1.3: The Channel Model Framework

model, this thesis focus on the Oversample_Filter block only. For this block, the
input data is from the previous block and the output result will sent to the lower
block. Therefor, the processing rate of this block should correspond to the up and
down block.The input matrix size of the Oversample_Filter block is 32-by-61440,
the output size is 32-by61440*32,all datas are complex<double> type.

7

Introduction

1.2 Board Description

The Alveo U280 board serves as the designated platform for the project detailed
within this study. Engineered to address the dynamic requirements of contemporary
data centers, the AMD Alveo U280 Data Center accelerator cards offer a versatile
solution[5].

Constructed utilizing the advanced AMD 16nm UltraScale+ architecture, the
Alveo U280 presents an impressive capacity of 8GB of HBM2 memory, delivering
a remarkable bandwidth of 460 GB/s. This configuration facilitates exceptional
and flexible acceleration tailored for applications characterized by memory-bound
and compute-intensive operations. Such applications encompass a wide spectrum
including database management, analytical processes, and machine learning infer-
ence.

This board comprises a Virtex UltraScale+ FPGA accompanied by dual HBM2
stacks, amounting to a total of eight HBM2 dies. Facilitating connectivity between
the FPGA and HBM2 dies are 32 distinct parallel channels. Each of these channels
boasts a capacity of 256MB, aggregating to a cumulative total of 8GB. Furthermore,
the U280 acceleration card is equipped with PCI Express 4.0 support, harnessing
the contemporary server interconnect framework to optimize communication with
high-bandwidth host processors.

Contemporary memory interfaces offer access via numerous banks that feature
dedicated channels, such as high bandwidth memory (HBM) lanes or double data
rate (DDR) channels. As a result, the array’s access bandwidth can be enhanced
by distributing it across the diverse memory interfaces, or banks, accessible on the
board.

In order to increase the onchip memory bandwidth to match the requirements
of the data computations, the same considerations also apply to onchip BRAM
banks.

Within the Xilinx device, the architecture comprises of two distinct FPGA
partitions: Shell and User. The Shell partition, a stationary sector, establishes
fundamental infrastructure for the platform, encompassing elements such as PCIe
connectivity, board management, sensors, clocking, and reset mechanisms. Con-
versely, the User partition, a dynamic sector, encompasses the user-compiled binary
labeled as .xclbin. During execution, this binary is loaded by the XRT (Xilinx
Runtime) to facilitate the operational process.

RTL kernels denote personalized logic modules meticulously crafted by developers
and subsequently programmed into the dynamic partition. In the context of this
manuscript, the term "kernels" pertains to the specific functions that designers
construct and incorporate within the dynamic domain of the Alveo accelerator
card.

8

Introduction

Card Specifications U280
DRAM Memory

HBM2 Total Capacity 8GB
HBM2 Total Bandwidth 460GB/s

DDR Format 2x16GB 72b DIMM DDR4
DDR Memory Capacity 32GB
DDR Total Bandwidth 38GB/s

SRAM Memory
Internal SRAM Capacity 41MB

Internal SRAM Total Bandwidth 30TB/s
Interfaces

PCI Expresss Gen4x8 with CCIX
Network Interfaces 2xQSFP28 (100GbE)
Logic Resources

Look-up Tables (LUTs) 1,079,000
Power

Maximum Total Power 225W

Table 1.1: Alveo U280 Data Center

1.2.1 FPGA
At its essence, Xilinx has engineered the Alveo series of PCIe Data Center accelerator
cards, harnessing the foundational power of FPGAs[6].

An FPGA (field-programmable gate array) is an integrated circuit (IC) that
incorporates configurable logic blocks (CLBs) along with additional elements.
This IC can be programmed by users through a bitstream created by synthesis
tools, effectively translating into a tangible circuit the digital function of their
choice. The designation "field-programmable" underscores the FPGA’s capacity for
customization, in contrast to conventional ICs whose functionality is permanently
etched by the manufacturer.

Through the generation of multiple instances of these operations, FPGAs demon-
strate a distinctive aptitude for the concurrent execution of functions. This inherent
capability positions them exceptionally well to function as hardware accelerators
within contexts characterized by substantial degrees of parallelism. Assemblages of
configurable hardware units, arrayed and interconnected as necessary, facilitate the
construction of highly efficient, application-specific architectures tailored to diverse
domains.

9

Introduction

FPGAs are available in a range of dimensions, each featuring distinct quantities
of programmable logic components. Devices of greater scale encompass increased
resources, affording designers the capacity to embed augmented parallel circuits,
thereby yielding heightened levels of acceleration. This array of device options
empowers designers with a spectrum of choices, enabling them to navigate diverse
cost-to-performance considerations[7].

The procedure bears resemblance to software programming in that you compose
code transformed into a binary file and subsequently loaded onto the FPGA.
However, the consequential effect is distinct, as the hardware description language
(HDL) induces tangible alterations in the hardware itself, as opposed to solely
optimizing the device for software execution. Moreover, this process allows for
the fine-tuning of fundamental functions such as memory allocation or power
consumption, contingent upon the specific task at hand.

FPGAs provide programmers and designers with a remarkable capacity to
customize and modify the computing architecture with exceptional flexibility. This
adaptability culminates in the development of domain-specific architectures that
closely align with the precise needs of their applications. While FPGAs are not a
novel technology, their significance has grown exponentially, primarily fueled by the
rapid pace of innovation in fields such as artificial intelligence. Since the elements
within FPGAs and the routes connecting them can be configured post-power-up,
FPGAs can be repetitively reprogrammed to execute a diverse array of required
functions.

FPGA programming leverages a Hardware Description Language (HDL) to
manipulate circuits according to the desired device capabilities. This process
fundamentally differs from programming GPUs or CPUs, as it doesn’t involve
crafting a sequential program. Instead, HDL is employed to design circuits and
enact physical changes to the hardware in alignment with the intended functionality.
CPUs are distinguished by their high flexibility, but their underlying hardware
remains fixed post-manufacturing. They rely on software instructions to specify
particular operations, such as arithmetic functions, to perform on designated data
in memory. The hardware within a CPU must possess the capability to execute
a vast spectrum of potential operations, with software instructions dictating the
execution path, typically handling one instruction at a time.

In contrast, FPGAs excel in processing extensive datasets concurrently. The
advantage of adaptable hardware over CPUs varies depending on the specific appli-
cation, predominantly hinging on the nature of the computation and its potential
for parallelization. Nonetheless, it’s not uncommon to witness a performance
enhancement of up to 20 times when comparing FPGA implementations with CPU
counterparts for tasks that lend themselves well to parallelization.

The architectural design of FPGAs renders them a highly effective solution for
hardware acceleration. In contrast to devices such as ASICs and GPUs, which

10

Introduction

employ conventional methods that involve transitioning between programming and
memory, FPGAs excel in use cases demanding real-time data processing. The
substantial power requirements for storage and retrieval tasks in ASICs and GPUs
often lead to performance bottlenecks.

FPGAs, thanks to their reconfigurability tailored to specific functions, exhibit
greater flexibility compared to Application Specific Integrated Circuits (ASICs).
However, this flexibility comes at the expense of increased power consumption
and physical footprint. While they surpass general-purpose processors in terms
of efficiency, programming FPGAs is typically more intricate, and their flexibility
is somewhat diminished. In summary, FPGAs emerge as a compelling choice for
hardware acceleration, offering a unique balance of configurability and efficiency,
especially in scenarios where real-time data processing is pivotal.

In contrast to ASICs and GPUs, FPGAs operate without the need for frequent
transitions between memory and programming. This inherent feature significantly
enhances the efficiency of data storage and retrieval processes. Moreover, the
FPGA architecture offers remarkable flexibility, permitting users to tailor power
consumption according to specific task requirements. Unlike GPUs, which consist
of fixed processing cores responsible for fetching and executing instructions, FPGAs
possess a versatile architecture that directly maps code to physical logic circuitry.
However, similar to GPUs, it remains imperative for users to acquire a foundational
understanding of these principles to effectively architect their code for optimal
performance outcomes.

This flexibility proves invaluable in offloading energy-intensive tasks to one or
multiple FPGAs, relieving the burden on conventional CPUs or other devices.
Furthermore, due to the reprogrammable nature of many FPGAs, implementing
upgrades and fine-tuning a hardware acceleration system becomes a straightfor-
ward process. While FPGAs traditionally resided within the purview of hardware
engineers, today, AI researchers and software programmers have access to inno-
vative platforms that bridge the gap, making FPGA programming feel akin to
conventional software development. With the appropriate tools, you can discover
FPGA programming solutions that align with your existing knowledge of both
software and hardware, offering a smoother and more accessible path to harnessing
the power of FPGAs.

In the context of this study, the FPGAs under examination, although designed
for data center applications, lack specialized support for double-precision floating-
point addition and multiplication. As previously discussed and in line with the
chosen IP components, it was deemed more advantageous to utilize floating-point
data rather than double precision. To facilitate the creation of our design, Xilinx
offers a comprehensive suite of tools tailored to assist software developers at every
stage of the FPGA programming journey.

11

Introduction

1.3 Vitis Unified Software Platform
The Vitis unified software platform serves as a development ecosystem tailored
for heterogeneous applications, providing support for Xilinx devices, including
the Alveo Data Center Accelerator cards. This integrated platform seamlessly
merges all facets of Xilinx’s hardware and software development into a unified
environment, enabling the utilization of standard C/C++ for both software and
hardware components.

The Vitis suite of tools offers an array of functionalities encompassing compila-
tion, linking, profiling, and debugging, catering to heterogeneous systems within
various design paradigms. These design flows encompass Data Center applica-
tion acceleration, RTL kernel design, Embedded System development, as well as
conventional embedded hardware and software design.

Within the Vitis environment, heterogeneous systems encompass a broad spec-
trum of components, including software applications executed on x86 host proces-
sors or Arm embedded processors. These systems also involve compute kernels
functioning within programmable-logic (PL) regions or Versal AI Engine arrays.
Furthermore, extensible platform designs are pivotal in establishing the structural
groundwork for the creation and operation of these heterogeneous systems.

The software development toolset comprises essential components, including
compilers and cross-compilers for constructing your software application. Debugging
tools are instrumental in identifying and rectifying issues within your system design.
Program analyzers facilitate the profiling and in-depth analysis of your application’s
performance. To establish connectivity between your software program and the
target platform, Xilinx Runtime (XRT) offers an API and drivers. XRT manages
transactions and data transfers between the software application and the hardware
design, streamlining their interaction.
The development flow works in parallel on two ways:

• Application Compilation using G++ to generate the host.exe file.

• Kernel Compilation to obtain the .xclbin file needed.
The host program, developed in C/C++ and employing the XRT native API,
undergoes compilation using the g++ compiler, resulting in the creation of a host
executable file designated for execution on the x86 processor. This host program
is designed to interface with kernels situated within the programmable-logic (PL)
region of the FPGA device.

Vitis HLS stands as a compiler specifically engineered to transform C/C++
source code into a synthesized RTL (Register-Transfer Level) design meticulously
tailored for optimal performance on Xilinx FPGA products. For every C++ kernel,
it is imperative to undergo synthesis through Vitis HLS to generate a Xilinx object
(.xo) file.

12

Introduction

Figure 1.4: Vitis Development Flow

The Vitis accelerated libraries offer meticulously optimized hardware functions
that enhance performance with minimal code modifications. This eliminates the
necessity of re-implementing your algorithms while enabling you to leverage the
advantages of Xilinx’s adaptive computing capabilities. These accelerated libraries
encompass a wide spectrum of common functions in mathematics, statistics, linear
algebra, and digital signal processing (DSP). They are also available for domain-
specific applications such as vision and image processing, quantitative finance,
database management, data analytics, and data compression.

To delineate the device binary’s architecture, a configuration file can be crafted,

13

Introduction

specifying various options. These options may encompass details such as the number
of instances of a kernel (or Compute Unit) to be constructed within the device
binary, the manner in which kernels are interconnected with the global memory
or with other kernels, among other factors. Subsequently, this configuration file is
provided to the Vitis linker, which utilizes it to generate the .xclbin file.

To generate the .xclbin file, the Vitis linker facilitates the pairing of one or
more .xo files, effectively merging them with the specified target hardware platform.
This process culminates in the creation of a device binary file (.xclbin) that is
subsequently loaded onto the Alveo accelerator card for execution.

A PL kernel (.xo) represents a customizable hardware function that can be
integrated into the Programmable Logic (PL) region of an extensible platform,
allowing for the definition of specialized hardware components. PL kernels can be
constructed using C++ code within Vitis HLS or through RTL code along with
the IP packaging feature available in Vivado. The Device Binary (.xclbin) file
encapsulates the programmable device image (PDI) for Versal Adaptive Compute
Acceleration Platform (ACAP) or the bitstream for Zynq Multi-Processor System-
on-Chip (MPSoC), along with essential metadata required for the management
and control of the hardware design.

Vitis Accelerated Libraries offer hardware functions meticulously optimized for
performance, requiring minimal modifications to existing code, and eliminating
the necessity for algorithmic reimplementation in order to leverage the advantages
of Xilinx’s adaptive computing capabilities. These libraries encompass a broad
spectrum of commonly utilized functions, including mathematics, statistical analysis,
linear algebra, and digital signal processing (DSP). Moreover, they extend to domain-
specific applications such as computer vision, image processing, quantitative finance,
database management, data analytics, and data compression.

In order to delineate the device binary’s architectural characteristics, a configu-
ration file can be crafted to define various parameters. This includes specifying the
number of instances of a kernel (or Compute Unit) to be incorporated within the
device binary, configuring interconnections between kernels and the global memory,
among other essential aspects. Subsequently, this configuration file is provided to
the Vitis linker to facilitate the generation of the .xclbin file.

The Vitis Compiler offers three distinct build targets, each defining the nature
and contents of the resultant .xclbin file. Among these targets, two are designated
for validation and debugging purposes: software emulation, which facilitates C-
based simulation, and hardware emulation, which supports RTL co-simulation.
The third target pertains to hardware, intended for generating the final project
output for execution on the Alveo card. Importantly, a single host program can
seamlessly execute any of the .xclbin targets. During execution, the host program
is responsible for loading the .xclbin file, a binary artifact generated by the Vitis
Compiler. It’s noteworthy that the host application invariably operates on the

14

Introduction

CPU and can function either in emulation mode on x86 architecture or on the
actual physical accelerator platform.

An RTL (Register-Transfer Level) design tool encompasses the entire hardware
design process, from initial design creation to synthesis and implementation. This
tool empowers hardware designers to craft hardware designs and export them in
the form of a Xilinx Support Archive (.xsa). This archive serves as a versatile
hardware container with applications across multiple domains. The Xilinx Support
Archive (.xsa) can be employed within the context of fixed or extensible platforms.
A ’Fixed Platform’ comprises a fully realized hardware design encapsulated within
an .xsa file, accompanied by essential software files delineating the operating
system, libraries, and boot files. Here, ’fixed’ implies that the hardware design
is comprehensive and self-contained. Conversely, an ’Extensible Platform’ serves
as the target environment within the Vitis heterogeneous system design workflow.
In this context, ’extensible’ signifies the platform’s adaptability, enabling further
customization through the incorporation of programmable components such as PL
kernels and AI Engine graph applications. This customization process results in
the creation of an embedded system tailored to specific requirements. Furthermore,
the Extensible Platform can also be harnessed for software development, mirroring
the capabilities of a Fixed Platform.

1.3.1 Vitis HLS
Xilinx’s High-Level Synthesis (HLS) tools provide a vital interface bridging the
realms of software and hardware design, aligning with the goal of accelerating
applications[8]. In the context of the Vitis application acceleration workflow, Vitis
HLS plays a pivotal role in automating substantial portions of the necessary code
modifications. This automation facilitates the transformation of C/C++ code into
programmable logic, striving to achieve low latency and high throughput.

While FPGA programming traditionally involved Hardware Description Lan-
guages (HDLs) like Verilog or VHDL, there is a growing trend towards High-Level
Synthesis (HLS) tools. These tools enable the conversion of algorithmic descrip-
tions written in higher-level languages such as C/C++ into lower-level hardware
description languages like Verilog or VHDL (RTL), suitable for implementation in
the programmable logic (PL) region of Xilinx FPGA devices.

Furthermore, FPGA architectures empower fine-grained control over parallelism
in implementation, not only between tasks within a kernel but also within iterations
of inner loops. This feature enhances the efficacy and flexibility of hardware
design by accepting software languages, easing the logic design and description of
intricate computations. The primary advantage of this approach lies in leveraging
languages like C/C++ to craft efficient code that can subsequently be translated
into hardware. However, achieving desired performance levels often necessitates

15

Introduction

additional efforts, such as code refinements to align with the HLS tool’s performance
objectives.

Figure 1.5: Vitis HLS Development Flow

The Vitis HLS kernel development process unfolds in several key steps:

1. Authoring the C/C++ code for the desired function.

2. Verification of the C/C++ code through C-simulation.

3. Kernel construction through C-synthesis.

4. Co-simulation for validation of the generated kernel using C++ outputs.

16

Introduction

5. Reviewing HLS synthesis and co-simulation reports to assess performance.

6. Iterative refinement of the previous steps until performance goals are met.

Vitis HLS generates Vivado IP or Vitis Kernel based on specified target flows,
design constraints, and optimization pragmas or directives. These optimization
directives allow modification and control over internal logic and I/O ports, overriding
default tool behaviors. The tool offers a range of pragmas to optimize the RTL
design, exploring design spaces to meet specific space and throughput requirements.
Properly inferring these pragmas to define function interfaces and pipeline loops
and functions within the code is a fundamental aspect of Vitis HLS.

Vitis HLS seamlessly integrates with both the Vivado Design Suite for synthesis,
placement, and routing, and the Vitis core development kit for heterogeneous
system-level design and application acceleration. In the Vivado IP flow, Vitis HLS
supports code customization to implement broader interface standards, aligning
with specific design objectives. The generated RTL can be directly utilized as IP
within the Vivado tool or Model Composer. Conversely, the Vitis Kernel flow, a
bottom-up design approach within the Vitis Application Acceleration Development
flow, enforces a more structured set of interfaces.

This structured approach ensures correct-by-construction integration of HLS
blocks with Vitis extensible platforms, facilitating seamless integration with the
Xilinx Run Time (XRT) software stack. Consequently, the hardware/software
integration process is greatly simplified.

17

Introduction

1.4 Thesis Structure
After seeing these key points, it’s possible to understand the main objective archieve
during this thesis:

Chapter 2 Describe the algorithm inside the Oversample_Filter block detailed.
Chapter 3 Describe the principles of optimization statements and their appli-

cation in C++ code.
Chapter 4 Describe the synthesis result san co-simulation resulte of this design.

18

Chapter 2

Oversample_Filter Block

2.1 Matlab Reference
As referenced at previous chapter, there are two functions from Matlab:

• Upsample

• Filter

These two equations are used to process the input matrix, allowing the output
result to serve as the input for the next module, enabling seamless information
transfer and processing.

2.1.1 Upsample
In MATLAB, the upsample function is used to upsample a signal sequence. Upsam-
pling is a signal processing operation that increases the sampling rate of a signal
by inserting zero values or using other interpolation methods, thereby enhancing
the temporal resolution of the signal[9]. Its specific functions include:

1. Increasing the Sampling Rate: The upsample function increases the
signal’s sampling rate by inserting new samples between the original sample
points, effectively doubling or multiplying the sampling rate. This can be
useful for signal reconstruction or resampling to achieve higher precision or
capture finer details for subsequent processing.

2. Preserving the Spectrum: During the upsampling process, the upsample
function widens the frequency spectrum of the original signal. This helps
to avoid aliasing distortions caused by low sampling rates and preserves the
spectral information of the signal.

19

Oversample_Filter Block

3. Interpolation: The upsample function typically employs linear interpolation
to calculate the values of the inserted samples, ensuring that the increase in
sampling rate is achieved without introducing distortion while maintaining
the signal’s smoothness. Various interpolation methods can be chosen to suit
specific application requirements.

The function expresses as:
y = upsample(x, n) (2.1)

• n is the upsampling factor, specified as a positive integer.

• x is the input signal.

• y is the upsampled output signal.

Because the input matrix is huge, therefore here uses a small matrix as input as
example, when the inputs are:

x =
C
a b
c d

D
(2.2)

n = 3 (2.3)
After upsample function, the sample rate of the input matrix will be improved to 3
times than before, then the output is:

y =



a b
0 0
0 0
c d
0 0
0 0


(2.4)

In summary, the upsample function is applied in signal processing to increase the
temporal resolution and preserve the spectral information of a signal, enabling
more precise analysis and subsequent processing.

2.1.2 Filter
MATLAB’s filter function is a powerful tool designed for linear filtering operations,
widely applied in fields such as signal processing, data smoothing, and frequency
analysis[10]. Its basic syntax is:

y = filter(b, a, x) (2.5)

where b and a represent the coefficients of the rational transfer function, respec-
tively, with x denoting the input signal. By adjusting these coefficients, users

20

Oversample_Filter Block

can implement various filtering types, including low-pass, high-pass, band-pass,
band-stop, and custom filters, to meet the demands of different applications. The
filter function finds extensive utility in tasks like noise removal, data smoothing,
and extraction of specific frequency components, thus playing a pivotal role in
fields such as signal processing, audio processing, image processing, and control
system design. This tool offers researchers and engineers the flexibility to design
filters and process data according to specific requirements.

In MATLAB, the filter function supports rational transfer functions, which
means you can define a discrete-time system’s transfer function by providing
coefficients for the numerator and denominator polynomials. This transfer function
describes the relationship between the system’s input and output, allowing you to
perform filtering, analysis, and simulation of the system’s behavior [11].

Specifically, the filter function’s parameters b and a correspond to the coefficients
of the numerator and denominator polynomials of the transfer function, respectively.
The numerator polynomial coefficients are defined by b, and the denominator
polynomial coefficients are defined by a. This way, you can use rational functions to
describe the system’s transfer function and then filter signals through that system.
A rational transfer function is of the form:

Y (z) = b(1) + b(2)z−1 + ... + b(nb + 1)z−nb

1 + a(2)z−1 + ... + a(na + 1)z−na
X(z) (2.6)

which handles both FIR and IIR filters. na is the feedback filter order, and nb is
the feedforward filter order. Due to normalization, assume a(1) = 1. You also can
express the rational transfer function as the difference equation:

a(1)y(n) =b(1)x(n) + b(2)x(n − 1) + ... + b(nb + 1)x(n − nb)
− a(2)y(n − 1) − ... − a(na + 1)y(n − na)

(2.7)

Furthermore, you can represent the rational transfer function using its direct-form
II transposed implementation, as in the following diagram. Here, na = nb =
n-1. The operation of filter at sample m is given by the time-domain difference
equations:

y(m) = b(1)x(m) + w1(m − 1)
w1(m) = b(1)x(m) + w2(m − 1) − a(2)y(m)
...

...

...

wn−2(m) = b(n − 1)x(m) + wn − 1(m − 1) − a(n − 1)y(m)
wn−1(m) = b(n)x(m) − a(n)y(m)

(2.8)

21

Oversample_Filter Block

In this thesis, we only focus on the equations:

[y, zf] = filter(b, a, x, zi) (2.9)

This function in MATLAB serves as a versatile tool for digital signal processing.
It supports both Finite Impulse Response (FIR) and Infinite Impulse Response
(IIR) filtering operations. FIR filtering exclusively considers the input signal x and
numerator coefficients b, while IIR filtering additionally incorporates denominator
coefficients a. The function calculates the filtered output signal y by either per-
forming convolution for FIR or using recursive calculations for IIR. An optional
initial state vector, zi, can be provided to set the filter’s initial conditions, and the
zf variable captures the final state for subsequent filtering. filter facilitates a wide
range of filtering tasks, including signal analysis and system modeling, making it
an essential tool in MATLAB for digital signal processing applications.

• b represents the numerator coefficients (feedforward coefficients) defining the
zeros of the filter.

• a represents the denominator coefficients (feedback coefficients) defining the
poles of the filter.In this thesis, it is 1.

• x is the input signal, the digital signal to be filtered.

• zi is an optional initial state vector used to specify the filter’s initial state. If
not provided, a zero state is used. If zi is a matrix or multidimensional array,
then the size of the leading dimension must be max(length(a),length(b))-1.
The size of each remaining dimension must match the size of the corresponding
dimension of x.

• y is the filter function returns the filtered output signal

• zf is the final state, This final state can be employed as the initial state for
subsequent filtering operations.If x is a matrix or multidimensional array, then
zf is an array of column vectors of length max(length(a),length(b))-1, such
that the number of columns in zf is equivalent to the number of columns in x.

Depending on the provided coefficients and initial state, it can perform various
types of filtering operations, including FIR and IIR filtering.

22

Oversample_Filter Block

2.2 C++ Code and C-Simulation
There are four files in C++ code, which achieve the functions of MATLAB code
and test the result is corresponds to the result of MATLAB code.The C++ code
files are:

• bin_read.h

• BVector_Filter_OneSample_Sub.h

• BVector_Filter_OneSample_Sub.cpp

• BVector_Filter_Test.cpp

23

Oversample_Filter Block

2.2.1 bin_read.h

Due to differences in definitions between the C++ and MATLAB languages, to
ensure that the input data matches the MATLAB code used by TIM, we need to
read the input data from a .bin file, which consists of binary data. Similarly, for the
final testing step, we need to retrieve the output data for comparison from the .bin
file. These .bin files contain data in a format compatible with the MATLAB code,
ensuring accuracy and consistency. This approach helps mitigate potential issues
arising from language disparities and ensures the reproducibility and verifiability
of the TIM code. The code is as follows:

1 typedef double data_dd ;
2 typedef complex <double > data_cd ;
3

4 std :: vector <data_dd > readFile (const char * filename)
5 {
6 // open the file:
7 std :: streampos fileSize ;
8 std :: ifstream file(filename , std :: ios :: binary);
9

10 // get its size:
11 file.seekg (0, std :: ios :: end);
12 fileSize = file.tellg ();
13 file.seekg (0, std :: ios :: beg);
14

15 // read the data:
16 std :: vector <data_dd > fileData (fileSize);
17 file.read ((char *)& fileData [0], fileSize);
18

19 return fileData ;
20 }

Figure 2.1: bin_read.h code

By employing this file, we ensure that the input data utilized by the C++ code is
consistent with the functionality of the MATLAB code. This approach guarantees
data compatibility between the two programming languages, promoting accuracy
and facilitating seamless data exchange for our computational tasks.

24

Oversample_Filter Block

2.2.2 BVector_Filter_OneSample_Sub.h
This file is used to define some global variables, which will be utilized in other files.
These global variables possess a shared nature throughout the project, allowing
their values to be accessed and modified across different code files. Such utilization
of global variables promotes consistency and data sharing throughout the project,
while also providing a convenient means of passing information and parameters to
facilitate collaboration between various components. By defining and managing
these global variables, we can better organize and optimize our code to achieve the
project’s goals and requirements. In the following sections, we will provide detailed
explanations of the definitions and purposes of these global variables, as well as
emphasize their significance and roles within the project.

2.2.3 BVector_Filter_OneSample_Sub.cpp
This file serves as the cornerstone of our MATLAB code, playing a pivotal role
in the realization of its core functions. It acts as the central hub where complex
algorithms, data processing techniques, and critical computations converge to
achieve the overarching objectives of our project. The significance of this file lies
in its ability to orchestrate and integrate various components of our MATLAB
codebase, providing the essential framework upon which the entire software solution
is built.

Within this file, we meticulously design and implement the intricate logic and
methodologies required to tackle the challenges posed by our research or application.
It acts as a repository for essential variables, functions, and data structures, serving
as a fundamental reference point for the entirety of our codebase. Through the
diligent work conducted within this file, we establish the foundation upon which our
MATLAB code executes, ensuring the efficient and accurate execution of complex
tasks and analyses.

In the subsequent sections, we will delve into a comprehensive examination of the
contents and functionalities encapsulated within this crucial file. We will elucidate
the specific algorithms, mathematical models, and data processing techniques
employed, highlighting their contributions to the successful achievement of our
research objectives. Furthermore, we will explore the interdependencies between
this central file and other components of our MATLAB code, demonstrating its
role as the linchpin in the pursuit of our project’s goals. The flow chat of the file is
as follows:

25

Oversample_Filter Block

Figure 2.2: Top function flow chat

26

Oversample_Filter Block

Figure 2.3: Fir function flow chat

27

Oversample_Filter Block

The composition of the function and the content of the Top function as follows:

1 // Top function
2 void Top(data_c *tb_in , data_c *tb_out , data_d *coeff ,

ñ→ int N);
3

4 // Sub Function
5 void Fir_real (data_d input_real , data_d B[NUM_COEFF],

ñ→ data_c *Y, int i);
6 void Fir_imag (data_d input_imag , data_d B[NUM_COEFF],

ñ→ data_c *Y, int i);
7 void writeBackY (data_c Y, int i, int j, data_c *tb_out);
8 }

Figure 2.4: Composition of the function

28

Oversample_Filter Block

1 /* init B*/
2 data_d B[NUM_COEFF];
3 #pragma HLS ARRAY_PARTITION variable =B type= complete dim

ñ→ =1
4 read_coeff_loop :
5 for (int i = 0; i < NUM_COEFF ; i++)
6 {
7 B[i] = coeff[i];
8 }
9 /* end init B*/

10

11 // loop_compute ((data_c *) tb_in , B, N, (data_c *) tb_out
ñ→);

12 loop_compute_row :
13 for (int j = 0; j < NUM_COLUM ; j++)
14 {
15 loop_compute_column :
16 for (int i = 0; i < N*4; i++)
17 {
18 data_c Y;
19 data_c input_temp = tb_in[j + i / 4 *

ñ→ NUM_COLUM];
20

21 data_d input_real = input_temp .real () * 2.0;
22 data_d input_imag = input_temp .imag () * 2.0;
23

24 Fir_real (input_real , B, &Y, i);
25 Fir_imag (input_imag , B, &Y, i);
26 writeBackY (Y, i, j, (data_c *) tb_out);
27 }
28 }

Figure 2.5: Content of Top function

29

Oversample_Filter Block

• Main Function Top: The main function Top serves as the entry point of
this code. It accepts input parameters tb_in, tb_out, coeff, and N and is
responsible for coordinating the entire signal processing flow.

• Initialization of Array B: Within the main function, there is a section of
code dedicated to initializing a double-precision floating-point array named B.
This array stores the coefficients of a filter, which is a critical component of
the signal processing.

• Main Loop: The main function contains two nested loops, loop_compute_row
and loop_compute_column. These loops collectively handle the processing of
input data and write the results back into the output array tb_out.

• Invocation of Filter Functions: Inside the main loop, the code calls two
filter functions, Fir_real and Fir_imag, to perform filtering operations on the
real and imaginary parts of the input data, respectively.

• Data Processing and Storage: Within the main loop, after each input
data element undergoes filtering, the results are stored in the output array
tb_out. The writeBackY function handles the task of correctly writing the
results back to their appropriate positions.

Within the Fir subfunction, we implement two fundamental operations: upsam-
ple and filter, akin to the corresponding functions in MATLAB. These operations are
essential components of our signal processing algorithm, contributing significantly
to the accuracy and effectiveness of our data processing pipeline.

30

Oversample_Filter Block

C++ Upsample

According to the algorithm of upsample function, the C++ code of it as fol-
lows(because the real part is same as the imag part, we use the real part of data to
show):

1 loop_compute_row :
2 for (int j = 0; j < NUM_COLUM ; j++)
3 {
4 loop_compute_column :
5 for (int i = 0; i < N*4; i++)
6 {
7 data_c input_temp = tb_in[j + i / 4 *

ñ→ NUM_COLUM];
8 data_d input_real = input_temp .real () * 2.0;
9 data_d X_real;

10 data_d zeros_real = 0.0;
11 // upsample
12 if(i % 4 == 0)
13 X_real = input_real ;
14 else
15 X_real = zeros_real ;
16 }
17 }

Figure 2.6: Upsample C++ code

The input matrix X i with size M × N (the M corresponds 61440 rows, and the
N corresponds 32 columns) is:

Xbefore =


x00 x01 ... x0N

x10 x11 ... x1N

...

...
xM0 xM1 ... xMN

 (2.10)

After upsampling with the factor 4, the matrix which size is 4M × N will be
processed by filter is:

31

Oversample_Filter Block

Xafter =



x00 x01 ... x0N

0 0 0 0
0 0 0 0
0 0 0 0

x10 x11 ... x1N

0 0 0 0
0 0 0 0
0 0 0 0
...
...

x(M−1)0 x(M−1)1 ... x(M−1)N
0 0 0 0
0 0 0 0
0 0 0 0



(2.11)

Therefore, due to the process of upsampling, the size of the output matrix that
will be utilized in the next channel block remains the same as that of the input
matrix. This aligns with the filter algorithm we previously discussed. In the realm
of signal processing, upsampling plays a crucial role. It increases the sampling
rate of a signal by inserting zero values between the signal’s sample points. This
operation results in an output matrix with the same dimensions as the input matrix,
ensuring data consistency and compatibility. Maintaining an output matrix of the
same size serves the requirements of the filter algorithm we discussed earlier. As
mentioned earlier, the filter algorithm necessitates operations on input and output
matrices of identical dimensions to effectively process the signal and achieve the
desired filtering effects. Through the process of upsampling, we guarantee that the
size of the output matrix matches that of the input matrix, establishing a robust
foundation for the continuous flow of signal processing. This consistency in matrix
size aids in preserving data continuity and ensures the smooth execution of the
filter algorithm.

C++ Filter

In accordance with the algorithm for the filter function, the corresponding C++
code is presented below (for simplicity, we illustrate the code using the real part
of the data, noting that the real and imaginary parts are processed in the same
manner). This filter operates by sequentially processing the input data, column by
column. Notably, the data that has undergone processing is returned to a static
matrix, which serves as the input variable for subsequent calls to the filter function.

The filter function embodies a critical component of our signal processing
pipeline, facilitating the enhancement and manipulation of data. As it traverses

32

Oversample_Filter Block

through each column of the input data, the filter meticulously applies the specified
filtering operations, ensuring that the desired signal modifications are achieved.
This process is carried out iteratively, column by column, ensuring that each data
point receives the requisite treatment.

Crucially, the utilization of a static matrix to retain the processed data under-
scores the iterative nature of this operation. The data’s preservation in the static
matrix enables seamless continuity when the filter function is called again, ensuring
that previous processing steps are considered in subsequent operations. This itera-
tive and data-preserving approach is fundamental to the successful implementation
of the filter function within our signal processing framework.
The first part C++ code of the filer like as follows:

1 void Fir_real (data_d input_real , data_d B[NUM_COEFF],
ñ→ data_c *Y, int i)

2 {
3 static int oldest_Z_idx_real = 0;
4 static data_d Z_real[NUM_COEFF -1]; // NUM_COEFF =

ñ→ 257
5 if (i==0)
6 {
7 for(int i = 0; i< NUM_COEFF - 1; i++)
8 {
9 Z_real[i] = 0;

10 }
11 oldest_Z_idx_real = 0;
12 }
13 }

Figure 2.7: Filter C++ code

This section of code is utilized to monitor the state of the variable ’zi.’ Upon
completion of processing one column of the input matrix, the historical variable ’zi’
is cleared, and it assumes the role of a new historical variable initialized with zeros
for the subsequent column.

In the context of signal processing, the variable ’zi’ (also known as the state
variable or historical variable) plays a pivotal role in filter and signal processing
algorithms. It is employed to track the past input and output, ensuring the
continuity and precision of signal processing.

Once the processing of one column of input data is completed, it is imperative to

33

Oversample_Filter Block

reset the historical variable ’zi’ to zero. This step is essential as each column of data
may exhibit distinct signal characteristics, and, therefore, we aim to commence the
processing of each column with a clean slate, free from the influence of previous
data.

By clearing ’zi’ and initializing it to zero, we ensure that each stage of signal
processing begins with a consistent starting point, contributing to the maintenance
of data continuity and the accuracy of signal processing. This state management
mechanism stands as a critical component in signal processing, laying the founda-
tion for the effective execution of the algorithm.
The second part C++ code of the filer is used to achieve mathematical algorithm,
like as follows:

1 void vectorInit_real ()
2 {
3 VEC_INIT :
4 Y->real(X_real * B[0]);
5 }
6 void multiAccumulateCalc_real ()
7 {
8 const int unroll_factor = 4;
9 data_d part_sum_real ;

10 MAC:
11 for (int i = NUM_COEFF - 1; i != 0; i--)
12 {
13 const int current_Z_idx_real = (Z_idx_real - i +

ñ→ (NUM_COEFF -1)) % (NUM_COEFF -1);
14 part_sum_real += Z_buffer_real [

ñ→ current_Z_idx_real] * B[i];
15 if(i % unroll_factor == 1)
16 {
17 Y->real(Y->real () + part_sum_real);
18 part_sum_real = 0;
19 }
20 }
21 }

Figure 2.8: Filter C++ code

34

Oversample_Filter Block

The specific algorithm is shown here.Input coefficient B which has k (K=257)values
is:

B =
è
b0 b1 b2 b3 b4 bk−1

é
(2.12)

The history variable zi, which holds (K-1) values, is used to store the data processed
by the Fir function, originating from the input matrix X. The initial state is as
follows:

Zi =
è
z0 = 0 z1 = 0 z2 = 0 z3 = 0 z4 = 0 zK−2 = 0

é
(2.13)

The input matrix X after upsampling and will be processed with size M × N (here
M corresponds 61440*4 rows and N corresponds 32 columns):

X =



x00 x01 x02 x03 x0N

x10 x11 x12 x13 x1N

x20 x21 x22 x23 x2N

x30 x31 x32 x33 x3N

x40 x41 x42 x43 x4N

...

...

...
x(M−2)0 x(M−2)1 x(M−2)2 x(M−2)3 x(M−2)N
x(M−1)0 x(M−1)1 x(M−1)2 x(M−1)3 x(M−1)N



(2.14)

When the input data to Fir function is Kth data of the first column from X, after
the vectorInit function, zi with current state:

Zi =
è
z0 = x0 z1 = x1 z2 = x2 z3 = x3 z4 = x4 zK−2 = xK−2

é
(2.15)

the output will be:

X =



x00 x01 x02 x03 x0N

x10 x11 x12 x13 x1N

x20 x21 x22 x23 x2N

x30 x31 x32 x33 x3N

x40 x41 x42 x43 x4N

...
x(K−1)0b0

...
x(M−2)0 x(M−2)1 x(M−2)2 x(M−2)3 x(M−2)N
x(M−1)0 x(M−1)1 x(M−1)2 x(M−1)3 x(M−1)N



(2.16)

35

Oversample_Filter Block

Then, by passing the multiAccumulateCalc function, the result will be:

X =



x00 x0N

x10 x1N

x20 x2N

x30 x3N

x40 x4N

...
x(K−1)0b0 + zK−2b1 + zK−3b2 + ... + z0bK−1 ...

...
x(M−2)0 x(M−2)N
x(M−1)0 x(M−1)N



(2.17)

Each data point within the input matrix yields an identical outcome when
processed by the Fir function. This indirect approach effectively mirrors the
functionality of MATLAB’s filter function. Through a meticulous comparison of
results obtained from both the C++ and MATLAB implementations, it is evident
that the correctness rate stands at an impressive 100%.

This outcome underscores the successful alignment between the two implemen-
tations, affirming the fidelity of the C++ code in emulating the behavior of the
MATLAB filter function. The uniformity of results, achieved for every data point
in the input matrix, serves as a compelling validation of the C++ implementa-
tion’s accuracy and reliability in replicating the desired filtering behavior originally
established in MATLAB.

36

Chapter 3

Synthesis

Design synthesis is the phase during which code is translated into an actual circuit
with lower-level implementations such as gates, flip-flops, and adders. The input
design is transformed into a netlist that describes the components used and the
interconnections among them[12].

The process of design synthesis commences with a syntax check when provided
with an HDL-based design as input. Subsequently, logic is optimized using various
techniques, including the elimination of redundant logic, logic simplification, and
size reduction, all while simultaneously enhancing its implementation speed.

This leads to the incorporation of pragmas for design optimization, such as
latency reduction and throughput maximization, allowing for control over the
resources of the final RTL (Register-Transfer Level) code. These pragmas are
meant to be directly inserted into the source code and are interpreted directly by
the synthesis tool. Optimization directives are embedded within the C source code.
If the optimization directives are embedded in the code, they are automatically
applied to every solution during re-synthesis.

Key steps in the design synthesis process include:

1. Syntax Check: Accepting designs based on hardware description languages
(HDL) as input and conducting syntax checks.

2. Logic Optimization: Optimizing logic using various techniques, including the
elimination of redundant logic, logic simplification, and size reduction.

3. Integration of Compilation Directives: Embedding compilation directives
(pragma) to achieve design optimization, such as reducing latency, maximizing
throughput, and controlling resources.

4. Automatic Application of Optimization Directives: If optimization directives
are embedded in the code, they are automatically applied to each solution
during re-synthesis.

37

Synthesis

This design synthesis process transforms abstract design descriptions into
hardware-level circuits, laying the foundation for the implementation of high-
performance circuit accelerators on programmable hardware platforms.

This thesis will introduce the synthesis methods in the project.

3.1 Pipelining

3.1.1 Principle
Pipelining enables concurrent execution of operations, eliminating the need for each
execution step to wait for all previous operations to complete before commencing the
next one. This pipelining technique is applicable to both functions and loops, and
the enhancements in throughput resulting from function pipelining are illustrated
in the following figure.

Figure 3.1: Function pipelining behavior

In the absence of pipelining, the function in the above example reads an input
every 3 clock cycles and produces an output after 2 clock cycles. The function
exhibits an initiation interval (II) of 3 and a latency of 3. However, with pipelining
applied in this example, a new input is read every cycle (II=1), while the output
latency remains unaltered.

Loop pipelining enables the operations within a loop to overlap and be executed
concurrently. In the Figure 3.2, (A) depicts the default sequential operation with a
3-clock-cycle gap between each input read (II=3), requiring 8 clock cycles before
the final output write occurs. In the pipelined configuration of the loop, as shown
in (B), a fresh input sample is read every cycle (II=1), and the last output is

38

Synthesis

written after only 4 clock cycles. This substantial improvement applies to both the
initiation interval (II) and latency while utilizing the same hardware resources.

Figure 3.2: Loop pipelining behavior

Pipelining functions or loops is accomplished by employing the PIPELINE
directive, which should be indicated within the region encompassing the function
or loop body. In cases where the initiation interval (II) is not explicitly defined, it
defaults to 1 but can also be explicitly specified.

Pipelining is selectively applied to the designated region and does not extend to
the hierarchy below it. However, within this hierarchy, all loops are automatically
unrolled. In cases where there are sub-functions within the hierarchy below the
specified function, they must be individually subjected to the pipelining process.
By pipelining these sub-functions, the upper-level pipelined functions can capitalize
on the enhanced pipeline performance. Conversely, any sub-function situated below
the top-level pipelined function, which remains non-pipelined, could potentially
serve as the limiting factor affecting overall pipeline performance.

There is a difference in how pipelined functions and loops behave:

• In the case of functions, the pipeline runs forever and never ends.

• In the case of loops, the pipeline executes until all iterations of the loop are
completed.

The difference between function and loop in pipelining shows in Figure 3.3. As
depicted in Figure 3.3, a pipelined function continually processes new inputs and
generates fresh outputs. In contrast, for a pipelined loop, there exists a distinct

39

Synthesis

Figure 3.3: Function and Loop Pipelining Behavior

behavior due to the requirement that all loop operations within an iteration must
complete before transitioning to the next iteration. This results in what is referred
to as a ’bubble’ in the data stream—a phase where no new inputs are read during
the completion of final iterations, and a phase where no new outputs are written
during the initiation of new loop iterations.

To address the challenges illustrated in the preceding figure (Function and Loop
Pipelining), the PIPELINE pragma incorporates an optional rewind command.
This command facilitates the overlapping execution of consecutive calls to the loop,
particularly when this loop constitutes the outermost construct within the top
function or a dataflow process that undergoes multiple executions.

Figure 3.4: Loop Pipelining with Rewind Option

40

Synthesis

3.1.2 Syntax
The syntax of pipeline pragma is:

1 #pragma HLS pipeline II=<int > off rewind

Where:

• II=<int>: Specifies the desired initiation interval for the pipeline. The HLS
tool tries to meet this request. Based on data dependencies, the actual result
might have a larger initiation interval.

• off: Optional keyword. Turns off pipeline for a specific loop or function.

• rewind: Optional keyword. Enables rewinding as described in Rewinding
Pipelined Loops for Performance. This enables continuous loop pipelining with
no pause between one execution of the loop ending and the next execution
starting. Rewinding is effective only if there is one single loop (or a perfect
loop nest) inside the top-level function. Rewinding is effective only if there is
one single loop (or a perfect loop nest) inside the top-level function. The code
segment before the loop:

– Is considered as initialization.
– Is executed only once in the pipeline.
– Cannot contain any conditional operations (if-else).

3.1.3 Application
This pragma is applied in the code:

1 read_coeff_loop :
2 for (int i = 0; i < NUM_COEFF ; i++)
3 {
4 #pragma HLS pipeline II = 1 rewind
5 B[i] = coeff[i];
6 }

Figure 3.5: Using Pipeline in Loop

41

Synthesis

1 void Fir_real (data_d input_real , data_d B[NUM_COEFF
ñ→], data_c *Y, int i)

2 {
3
4 #pragma HLS PIPELINE II=1
5
6 }

Figure 3.6: Using Pipeline in Function

Through the utilization of pipelining, a noteworthy enhancement in throughput
becomes evident when invoking the Fir function and conducting the read_coeff_loop
loop. This improvement is especially pronounced when we consider the performance
in scenarios where both functions operate concurrently without pipelining. In such
cases, the simultaneous execution of these functions exhibits a marked increase in
data processing efficiency.

3.2 Unroll
3.2.1 Principle
By default, Vitis HLS maintains loops in a rolled format. In this configuration,
each iteration of the loop consumes a hardware resource. Although this approach
ensures efficient resource utilization, it can occasionally introduce performance
bottlenecks.

Vitis HLS offers the capability to unroll FOR loops, either fully or partially,
through the use of the UNROLL pragma or directive.

Figure 3.7 illustrates both the benefits of loop unrolling and the associated
considerations when applying this technique. In this scenario, we assume that the
arrays a[i], b[i], and c[i] are mapped to block RAMs. This example underscores how
effortlessly diverse implementations can be generated through the straightforward
application of loop unrolling.

• Rolled Loop: When the loop is rolled, each iteration is executed in distinct
clock cycles. In this particular implementation, it necessitates four clock cycles,
utilizes only a single multiplier, and each block RAM operates as a single-port
block RAM.

• Partially Unrolled Loop: In this instance, the loop is partially unrolled

42

Synthesis

Figure 3.7: Loop Unrolling Details

with a factor of 2. This configuration demands two multipliers and dual-port
RAMs, enabling two simultaneous reads or writes to each RAM in a single
clock cycle. Remarkably, this implementation only requires 2 clock cycles
to finish, representing half the initiation interval and half the latency when
compared to the rolled loop version.

• Unrolled loop: In the fully unrolled version, all loop operations can be
executed within a single clock cycle. However, this implementation mandates
the presence of four multipliers. Of greater significance, this configuration
necessitates the capability to carry out 4 read and 4 write operations simultane-
ously within the same clock cycle. Given that a block RAM typically supports
a maximum of two ports, this implementation mandates the partitioning of
arrays.

To execute loop unrolling, you have the option to employ UNROLL directives
for specific loops within the design. Alternatively, you can apply the UNROLL
directive at the function level, which results in the unrolling of all loops contained
within the function’s scope.

When a loop is fully unrolled, all operations are executed concurrently, contingent
upon data dependencies and resource availability. However, if operations within

43

Synthesis

one iteration of the loop rely on results from a prior iteration, parallel execution is
not feasible, and they will run as soon as the required data becomes accessible. In
the case of a fully unrolled and thoroughly optimized loop, it typically entails the
presence of multiple instances of the logic within the loop body.

3.2.2 Syntax
The syntax of unroll pragma is:

1 #pragma HLS unroll factor=<N> region skip_exit_check

Where:

• factor=<N>: Specifies a non-zero integer indicating that partial unrolling
is requested. The loop body is repeated the specified number of times, and
the iteration information is adjusted accordingly. If factor= is not specified,
the loop is fully unrolled.

• skip_exit_check: Optional keyword that applies only if partial unrolling
is specified with factor=. The elimination of the exit check is dependent on
whether the loop iteration count is known or unknown:

– Fixed bounds: No exit condition check is performed if the iteration count
is a multiple of the factor.If the iteration count is not an integer multiple
of the factor, the tool:

∗ Prevents unrolling.
∗ Issues a warning that the exit check must be performed to proceed.

– Variable bounds: The exit condition check is removed. You must ensure
that:

∗ The variable bounds is an integer multiple of the factor.
∗ No exit check is in fact required.

44

Synthesis

3.2.3 Application
The unroll pragma is applied like as follows:

1 for(int i = 0; i< NUM_COEFF - 1; i++)
2 {
3 #pragma HLS UNROLL // max =256
4 Z_real[i] = 0;
5 }
6 oldest_Z_idx_real = 0;
7 }

Figure 3.8: Using Unroll in Function

Utilizing the unroll pragma ensures that all iterations within a loop conclude
simultaneously. Nonetheless, it is essential to acknowledge that the resource re-
quirements for implementing such a loop will also escalate. Consequently, striking
a balance between resource utilization and throughput becomes a critical consider-
ation.

3.3 Array_Partition

3.3.1 Principle
When we optimize our code using pipeline and unroll to improve throughput, the
optimized code achieves maximum parallelism. However, this can also lead to
constraints on resources, as mentioned earlier. The primary constraint arises from
limitations in memory ports, where these optimized codes may struggle to schedule
read operations effectively when mapping to hardware resources. This limitation
stems from the fact that block RAMs typically cannot simultaneously process
multiple data reads or writes due to memory port contention. As a result, Vitis
HLS reports may display warnings related to the final Initiation Interval (II), and
the optimization results may not meet our expectations.

This concern primarily stems from the use of arrays, which are mapped to block
RAM resources, each typically having a maximum of two data ports. Such limita-
tions can constrain the throughput of algorithms that involve frequent read/write
(or load/store) operations. To enhance bandwidth, one approach is to partition the
array, originally represented as a single block RAM resource, into multiple smaller
arrays, effectively increasing the number of available ports.

45

Synthesis

Arrays are partitioned using the ARRAY_PARTITION directive. Vitis HLS
provides three types of array partitioning, as shown in the Figure 3.9. The three
styles of partitioning are:

• block: The original array is split into equally sized blocks of consecutive
elements of the original array.

• cyclic: The original array is split into equally sized blocks interleaving the
elements of the original array.

• complete: The default operation is to split the array into its individual
elements. This corresponds to resolving a memory into registers.

Figure 3.9: Array Partitioning

46

Synthesis

For block and cyclic partitioning, the ’factor’ parameter determines the quantity
of arrays generated. In the illustration above, a ’factor’ of 2 is employed, effectively
dividing the array into two smaller arrays. When the number of elements in the
array is not an exact multiple of the ’factor,’ the final array may contain fewer
elements.

When partitioning multi-dimensional arrays, the dimension option is used to
specify which dimension is partitioned, like as follows:

Figure 3.10: Partitioning Array Dimensions

The subsequent illustration illustrates the application of the ’dimension’ param-
eter for partitioning. It visually exemplifies that partitioning dimension 3 leads to
the creation of 4 distinct arrays, while partitioning dimension 1 yields 10 separate
arrays. In cases where ’dimension’ is specified as zero, partitioning occurs across
all dimensions.

3.3.2 Syntax
The syntax of array_partition pragma is:

1 #pragma HLS array_partition variable =<name > type=<
ñ→ type > factor=<int > dim=<int >

Where:

• variable=<name>: A required argument that specifies the array variable
to be partitioned.

• type=<type>: Optionally specifies the partition type. The default type is
complete. The following types are supported:

– cyclic

47

Synthesis

– block
– complete

• factor=<int>: Specifies the number of smaller arrays that are to be created

3.3.3 Application
The array_partition pragma is applied like as follows:

1 data_d B[NUM_COEFF];
2 #pragma HLS ARRAY_PARTITION variable =B type= complete

ñ→ dim =1
3
4 void Fir_real (data_d input_real , data_d B[NUM_COEFF

ñ→], data_c *Y, int i)
5 {
6
7 static data_d Z_real[NUM_COEFF -1]; // NUM_COEFF

ñ→ = 257
8 #pragma HLS ARRAY_PARTITION variable =Z_real type=

ñ→ complete
9 data_d Z_buffer_real [NUM_COEFF -1];

10 #pragma HLS ARRAY_PARTITION variable = Z_buffer_real
ñ→ type= complete

11
12 }

Figure 3.11: Using Unroll in Function

Array_partition subdivides arrays into smaller arrays or individual elements, re-
sulting in RTL representations containing multiple small memories or registers. This
approach effectively reduces the need for large memories on the board, conserving
resources. It enhances the efficiency of large memories by effectively increasing the
number of memory read and write ports, significantly boosting design throughput.
However, the notable drawback is the requirement for additional small memories
and/or registers. When considering board-level resource constraints, this trade-off
is acceptable.

48

Synthesis

3.4 Inline
3.4.1 Principle
Inlining optimization is a compiler technique aimed at reducing the overhead of
function calls. When a function exists within a program’s hierarchy and can be
called by other functions, inlining optimization allows the compiler to incorporate
the contents of the function directly into the calling function, rather than treating
it as an independent entity. This means that at the locations where the function is
called, you will no longer see explicit calls to that function, as its code has been
inserted into the calling function’s code. Regardless of how many times this function
is called, it no longer appears as an independent level in the RTL (Register-Transfer
Level) hierarchy. In hardware terms, this means that the compiler will choose
the same hardware to process this function wherever it is called. This approach
effectively conserves area resources, especially when parallel optimization techniques
are applied at the call sites of the function. Inlining allows functions sharing to be
better controlled. For functions to be shared they must be used within the same
level of hierarchy.

3.4.2 Syntax
The syntax of inline pragma is:

1 #pragma HLS inline <recursive | off >

Where:

• recursive: By default, only one level of function inlining is performed, and
functions within the specified function are not inlined. The recursive option
inlines all functions recursively within the specified function or region.

• off: Disables function inlining to prevent specified functions from being inlined.
For example, if recursive is specified in a function, this option can prevent a
particular called function from being inlined when all others are.

3.4.3 Application
The inline pragma is applied like as follows:

49

Synthesis

1 void Fir_imag (data_d input_imag , data_d B[NUM_COEFF
ñ→], data_c *Y, int i)

2 {
3 ...
4 copyUpdateZ_real (X_real , Z_real ,

ñ→ oldest_Z_idx_real , Z_idx_real , Z_buffer_real);
5 vectorInit_real (B, X_real , Y);
6 multiAccumulateCalc_real (B, Z_idx_real , Y,

ñ→ Z_buffer_real);
7 }
8

9 void copyUpdateZ_real (data_d X_real , data_d Z_real[
ñ→ NUM_COEFF - 1], int & oldest_Z_idx_real , const int
ñ→ &Z_idx_real , data_d Z_buffer_real [NUM_COEFF - 1])

10 {
11 #pragma HLS INLINE
12 ...
13 }
14

15 void vectorInit_real (data_d B[NUM_COEFF], data_d
ñ→ X_real , data_c *Y)

16 {
17 #pragma HLS INLINE
18 ...
19 }
20

21 void multiAccumulateCalc_real (data_d B[NUM_COEFF],
ñ→ const int &Z_idx_real , data_c *Y, data_d
ñ→ Z_buffer_real [NUM_COEFF - 1])

22 {
23 #pragma HLS INLINE
24 ...
25 }

Figure 3.12: Using Inline in Function

50

Synthesis

The inline optimization technique significantly reduces area resource consumption
when calling sub-functions within the same hierarchy. While this may result in a
reduction in throughput, it is the most suitable approach when dealing with a large
input matrix. When processing large-scale data, optimizing hardware resource
utilization is often more critical than improving throughput, as it helps reduce area
costs and enhance overall performance efficiency.

3.5 Loop_Tripcount
3.5.1 Principle
When a loop contains variable bounds, certain optimization operations that can
be applied by Vitis HLS are disabled because Vitis HLS cannot know when the
loop will terminate. This is because the number of loop iterations is determined by
the values of variables rather than being a fixed constant. Due to this uncertainty,
Vitis HLS restricts the application of certain advanced optimization operations as
it cannot accurately estimate the execution time of the loop. These optimization
operations typically require knowledge of the loop’s iteration count at compile-time
to generate the best hardware description. Therefore, when a loop has variable
bounds, the compiler limits some of the optimization operations on the loop to
ensure that correct hardware descriptions are generated even in cases of uncertain
loop termination.

3.5.2 Syntax
The syntax of loop_tripcount pragma is:

1 #pragma HLS loop_tripcount min=<int > max=<int > avg=<
ñ→ int >

Where:

• max= <int>: Specifies the maximum number of loop iterations.

• min=<int>: Specifies the minimum number of loop iterations.

• avg=<int>: Specifies the average number of loop iterations.

51

Synthesis

3.5.3 Application
The loop_tripcount pragma is applied like as follows:

1 loop_compute_row :
2 for (int j = 0; j < NUM_COLUM ; j++)
3 {
4 loop_compute_column :
5 for (int i = 0; i < N*4; i++)
6 {
7 ...
8 #pragma HLS LOOP_TRIPCOUNT min =61440*4 max

ñ→ =61440*4 avg =61440*4
9 ...

10 } }

Figure 3.13: Using Loop_Tripcount in Function

In Figure 3.13, ’N’ is a variable that is not defined with a specific value. There-
fore, the optimization directives within the function can only be executed after
specifying the bounds of the loop loop_compute_column using the loop_tripcount
optimization directive. This is because the number of iterations in the loop needs
to be determined at compile time to generate the optimal hardware description.
Thus, in the presence of variable bounds, the compiler restricts certain optimization
operations on the loop to ensure that the correct hardware description is generated
even when the loop’s end time is uncertain.

3.6 Dataflow
3.6.1 Principle
The DATAFLOW pragma facilitates task-level pipelining, enabling functions and
loops to operate concurrently, thereby enhancing the RTL implementation’s con-
currency and overall design throughput.

In a C++ description, all operations are typically executed sequentially. In
the absence of resource-limiting directives like pragma HLS allocation, Vitis HLS
strives to minimize latency and enhance concurrency. However, data dependencies
can impose limitations. For instance, functions or loops accessing arrays must
complete all read/write accesses to those arrays before proceeding, preventing
subsequent functions or loops from commencing their operations until the data is

52

Synthesis

ready. DATAFLOW optimization empowers functions and loops to initiate their
operations even before previous functions or loops have completed all of theirs.The
dataflow optimization is useful on a set of sequential tasks show as follows: Dataflow

Figure 3.14: Sequential Functional Description

optimization is a potent technique for enhancing both design throughput and latency.
It achieves this by transforming a sequence of sequential tasks into an architecture
of concurrent processes, as illustrated below: The following diagram illustrates

Figure 3.15: Parallel Process Architecture

the impact of dataflow optimization on task execution. In scenario (A), dataflow
optimization is not employed, and three functions are executed sequentially. In the
preceding iteration, func_c’s result must be written back before func_A can write
its input data. This results in longer startup time intervals and lower efficiency.

Conversely, in the same example, (B) demonstrates the advantages of dataflow
optimization. In the same iteration, func_A and func_B can execute in parallel
without waiting for func_A to complete. This significantly reduces the startup
time interval, improving performance and efficiency.

However, achieving such parallelism comes with a hardware overhead. When
a specific region, like a function body or a loop body, is designated for dataflow
optimization in Vitis HLS, the tool scrutinizes the function or loop body. It then
generates individual channels to represent the dataflow, storing the results of each
task within that region. These channels may take the form of straightforward
FIFOs for scalar variables or ping-pong (PIPO) buffers for non-scalar variables such
as arrays. Each of these channels includes signals that indicate whether the FIFO
or ping-pong buffer is full or empty, forming a data-driven handshaking interface.

By implementing separate FIFOs and/or ping-pong buffers, Vitis HLS allows
each task to execute at its own pace, and the throughput is solely dependent on the

53

Synthesis

Figure 3.16: Dataflow Optimization

availability of input and output buffers. This approach facilitates a more efficient
interleaving of task execution compared to a standard pipelined implementation.
However, it does introduce additional FIFO or block RAM registers for the ping-
pong buffer, which is the trade-off for these advantages.

Howere,there are some rules we must obey, then we can the dataflow optimization
will active:

• Canonical Forms

– The canonical form for a function where sub-functions are not inlined.
– Dataflow inside a loop body.

∗ Initial value declared in the loop header and set to 0.
∗ The loop condition is a positive numerical constant or constant function

argument.
∗ Increment by 1.
∗ Dataflow pragma needs to be inside the loop.

• Canonical Body

– Use a local, non-static scalar or array/pointer variable, or local static
stream variable. A local variable is declared inside the function body (for
dataflow in a function) or loop body (for dataflow inside a loop).

54

Synthesis

– A sequence of function calls that pass data forward (with no feedback),
from a function to one that is lexically later, under the following conditions:

∗ Variables (except scalar) can have only one reading process and one
writing process.

∗ Use write before read (producer before consumer) if you are using
local variables, which then become channels.

∗ Use read before write (consumer before producer) if you are using func-
tion arguments. Any intra-body anti-dependencies must be preserved
by the design.

∗ Function return type must be void.
∗ No loop-carried dependencies among different processes via variables.
∗ No control whatsoever is supported inside a dataflow region, except

for function calls (that define processes).

• Dataflow Optimization Limitations The DATAFLOW optimization op-
timizes the flow of data between tasks (functions and loops), and ideally
pipelined functions and loops for maximum performance. It does not re-
quire these tasks to be chained, one after the other, however there are some
limitations in how the data is transferred.

– Reading from function inputs or writing to function outputs in the middle
of the dataflow region.

– Single-producer-consumer violations.
– Bypassing tasks and channel sizing.
– Feedback between tasks.
– Conditional execution of tasks.
– Loops with multiple exit conditions.

• Reading from Inputs/Writing to Outputs Inputs to the function should
be read at the onset of the dataflow region, while outputs should be written
at its conclusion. Performing read/write operations on the function’s ports
within the dataflow region may result in sequential execution of processes,
potentially hindering performance due to the absence of overlap.

55

Synthesis

3.6.2 Syntax
The syntax of dataflow pragma is:

1 #pragma HLS dataflow [disable_start_propagation]

Where: disable_start_propagation: Optionally disables the creation of a
start FIFO used to propagate a start token to an internal process. Such FIFOs
can sometimes be a bottleneck for performance.

3.6.3 Application
The loop_tripcount pragma is applied like as follows: By applying dataflow op-

1 void Top(data_c *tb_in , data_c *tb_out , data_d *
ñ→ coeff , int N)

2 {
3 ...
4 #pragma HLS DATAFLOW
5 ...
6 Fir_real (input_real , B, &Y, i);
7 Fir_imag (input_imag , B, &Y, i);
8 writeBackY (Y, i, j, (data_c *) tb_out);
9

10 }

Figure 3.17: Using Loop_Tripcount in Function

timization within the Top function, it becomes possible to achieve maximum
parallelism among its three sub-functions, namely Fir_real, Fir_imag, and write-
BackY. However, this enhanced parallelism comes at the cost of increased resource
utilization. Nevertheless, in pursuit of optimizing throughput, this resource over-
head is deemed acceptable.

56

Synthesis

3.7 Interface
Principle

In C/C++ code, input and output tasks are seamlessly carried out through formal
function arguments. In contrast, RTL designs necessitate the completion of these
same tasks via designated interface ports, often following specific input/output
(I/O) protocols. This transition introduces variations in handling such operations.

In a Vitis HLS design, the top-level function’s arguments are transformed
into interfaces and ports that consolidate multiple signals. These interfaces and
ports define the communication protocol between the HLS design and external
components. Vitis HLS automatically generates these interfaces according to
industry standards that specify the protocol. The type of interfaces created by
Vitis HLS varies depending on factors such as the data type and direction of the
top-level function’s parameters, the chosen solution’s target flow, and the default
interface configuration settings set by config_interface. In this design, the RTL-
implemented ports are derived from global variables, which are accessible to the
top-level function and defined outside its scope. If global variables are accessed
but all read and write operations are performed locally within the function, then
the resource is instantiated in the RTL design.

The target flows supported by Vitis HLS as described in Vitis HLS Process
Overview include:

• The Vivado IP flow which is the default flow for the tool.

• The Vitis Kernel flow, which is the bottom-up design flow for the Vitis
Application Acceleration Development flow.

In this thesis, we only focus on the Vivado IP flow.The Vivado IP flow offers
extensive support for a wide range of I/O protocols and handshakes, catering to
the diverse requirements of FPGA designs across various applications. This flow
accommodates both traditional system design practices, where multiple IPs are
integrated into a system, and IPs can be generated using Vitis HLS.Within this IP
flow, two modes of control govern the execution of the system:

• Software Control: The system is managed through a software application,
which operates on an embedded Arm processor or an external x86 processor.
Drivers facilitate access to hardware design components, allowing for the
reading and writing of registers in the hardware to regulate the execution of
IPs within the system.

• Self Synchronous: In this mode, the IP exposes signals that initiate and
terminate the execution of the kernel. These signals are controlled by other

57

Synthesis

IPs or elements within the system design that oversee the execution of the
IPs.

The Vivado IP flow supports memory, stream, and register interface paradigms
where each paradigm supports different interface protocols to communicate with
the external world. The default interfaces are defined by the C-argument type in
the top-level function, and the default paradigm, as shown in the following table:

Figure 3.18: C-argument Type

Because the input of this design is array, according to the table, we only focus on
the ap_memory interface. In the context of the Vivado IP flow, ap_memory proto-
col serves as a communication mechanism with memory resources like BRAM and
URAM. This protocol effectively manages both address and data phases. Initially,
it issues requests for resource read/write operations and awaits an acknowledgment
indicating resource availability. Subsequently, it proceeds to the data transfer phase
for reading/writing.

An essential aspect to note about ap_memory is its capability for single-beat
data transfers to a singular address, which sets it apart from m_axi, a protocol
supporting burst accesses. This characteristic positions ap_memory as a more
lightweight option in comparison to alternative protocols.

3.7.1 Syntax
The syntax of Interface pragma is:

1 #pragma HLS interface mode=<mode > port=<name > depth
ñ→ =<int >

Where:

• mode=<mode>: Specifies the interface protocol mode for function ar-
guments, global variables used by the function, or the block-level control
protocols. The mode can be specified as one of the following:

58

Synthesis

– ap_none: No protocol. The interface is a data port.
– ap_stable: No protocol. The interface is a data port. The HLS tool

assumes the data port is always stable after reset, which allows internal
optimizations to remove unnecessary registers.

– ap_memory: Implements array arguments as a standard RAM interface.
If you use the RTL design in the Vivado IP integrator, the memory
interface appears as discrete ports.

– m_axi: Implements all ports as an AXI4 interface.Ect.

• port=<name>: Specifies the name of the function argument, function
return, or global variable which the INTERFACE pragma applies to.

• depth=<int>: Specifies the maximum number of samples for the test bench
to process. This setting indicates the maximum size of the FIFO needed in
the verification adapter that the HLS tool creates for RTL co-simulation.

3.7.2 Application
The interface pragma is applied like as follows:

1 void Top(data_c *tb_in , data_c *tb_out , data_d *
ñ→ coeff , int N)

2 {
3 ...
4 #pragma HLS INTERFACE mode= ap_memory port=tb_in

ñ→ depth =(NUM_ROW_ * NUM_COLUM_)* depth_factor
5 #pragma HLS INTERFACE mode= ap_memory port=tb_out

ñ→ depth =((NUM_ROW_ *4)* NUM_COLUM_)* depth_factor
6 #pragma HLS INTERFACE mode= ap_memory port=coeff

ñ→ depth= NUM_COEFF_
7 ...
8

9 }

Figure 3.19: Using interface in Function

59

Synthesis

In summary, applying interface to configure and optimize interfaces in Vitis
HLS can significantly enhance the performance of FPGA designs. By carefully
selecting and configuring interface characteristics, including data transfer modes,
data widths, and protocols, we can achieve improved communication efficiency,
reduced data transfer latency, and enhanced resource utilization, thus optimizing
overall performance. Additionally, this interface-level performance optimization
also contributes to simplifying hardware designs, reducing power consumption, and
positively impacting the performance of the entire system. Therefore, in FPGA
design, appropriately configuring and optimizing interfaces is a crucial step in
achieving high performance, efficiency, and reliability.

60

Chapter 4

Result Analysis

By applying the optimization techniques mentioned in the previous chapter, signifi-
cant acceleration was achieved for the entire design. These optimization methods
encompass dataflow optimization, pipeline optimization, loop unrolling, resource
allocation, and interface configuration, among others. Ultimately, we achieved sat-
isfactory results, ensuring that the throughput of the entire design can successfully
match the throughput requirements of the upstream and downstream modules
within the channel model.

4.1 Synthesis Result
Upon the completion of synthesis, Vitis HLS generates a comprehensive synthesis
report for the top-level function. This report provides detailed information about
various aspects of the post-synthesis design, including resource utilization, delay
analysis, and timing constraints. This synthesis report is invaluable for assessing
the design’s performance, resource requirements, and timing constraints, helping
to confirm whether the performance objectives have been met and whether further
optimization or adjustments are needed.

The generation of the synthesis report marks a significant stage in the optimiza-
tion process, providing essential insights for design validation and further refinement.
By continuously optimizing and analyzing the data in the synthesis report, we can
ensure that the final hardware design operates with optimal performance on the
FPGA, meeting the specific requirements of the application.

In following figure is reported the values relatives to the estimated performance.
where:

• Latency (Max): The count of clock cycles necessary for the function to
calculate all the output values.

61

Result Analysis

Figure 4.1: Synthesis Report

• Initiation interval (II): The quantity of clock cycles that must elapse before
the function becomes ready to accept fresh input data.

• Loop iteration latency: The count of clock cycles required to execute a
single iteration of the loop.

• Loop iteration interval: The quantity of clock cycles preceding the initiation
of data processing for the subsequent iteration of the loop.

• Loop latency: The count of cycles necessary to complete all iterations within
the loop.

• Resource Utilization: The quantity of hardware resources needed to realize
the design, taking into account the FPGA’s available resources, encompassing
lookup tables (LUTs), registers, block RAMs, and DSP blocks.

62

Result Analysis

According to the report, the latency of each input data is: The usage of resource

Port #Data Latency(cycles) Throughput
Input 1966080 7864614 4.001

Output 7864320 7864614 1.001

Table 4.1: The throughput of Input and Output ports

is:

DSP 2576(28%)
FF 384980(11%)

DSP 939745(72%)

Table 4.2: The usage of resource

From these figures, it is evident that the optimized design meets the required
throughput and maintains a reasonable and efficient utilization of resources.

4.2 Co-Simulation
The purpose of Co-simulation in Vitis HLS is to perform functional verification, tim-
ing analysis, and performance evaluation. It achieves these objectives by comparing
C/C++ models with hardware designs. The process of co-simulation involves
preparing C/C++ models, creating a testbench, executing co-simulation, and com-
paring the outputs of C/C++ models with hardware designs. The results include
reports for functional verification, timing analysis, and performance evaluation,
which are used to confirm the correctness of the design, assess compliance with
timing requirements, and evaluate performance against application needs. This
makes co-simulation a powerful tool for verifying, debugging, and optimizing FPGA
designs.

Finally, the design passes the co-simulation.

63

Bibliography

[1] N. A. Shah. «Optimization and Acceleration of 5G Link Layer Simulator».MS
Thesis.» In: (2019) (cit. on p. 1).

[2] Mihai T. Lazarescu Nasir Ali Shah and Luciano Lavagno. «FPGA Acceleration
of 3GPP Channel Model Emulator for 5G New Radio». In: (2022) (cit. on
p. 1).

[3] 5G; NR; NR and NG-RAN Overall description(3GPP TS 38.300 version
17.0.0 Release 17). url: https : / / www . etsi . org / deliver / etsi _ ts /
138300_138399/138300/17.00.00_60/ts_138300v170000p.pdf. (cit. on
p. 1).

[4] 5G; NR; Physical layer; General description (3GPP TS 38.201 version 17.0.0
Release 17). url: https://www.etsi.org/deliver/etsi_ts/138200_
138299/138201/17.00.00_60/ts_138201v170000p.pdf. (cit. on p. 3).

[5] 5G; NR; Services provided by the physical layer (3GPP TS 38.202 version
17.3.0 Release 17). url: https : / / www . etsi . org / deliver / etsi _ ts /
138200_138299/138202/17.03.00_60/ts_138202v170300p.pdf. (cit. on
p. 8).

[6] Alveo U280 Data Center Accelerator Card. url: https://www.amd.com/en.
html. (cit. on p. 9).

[7] Programming an FPGA: An Introduction to How It Works. url: https://
www.xilinx.com/products/silicon-devices/resources/programming-
an-fpga-an-introduction-to-how-it-works.html (cit. on p. 10).

[8] Vitis High-Level Synthesis User Guide. url: https://docs.xilinx.com/r/
en-US/ug1399-vitis-hls. (cit. on p. 15).

[9] Increase sample rate by integer factor-MATLAB upsample. url: //https:
//www.mathworks.com/help/signal/ref/upsample.html. (cit. on p. 19).

[10] 1-D digital filter-MATLAB filter. url: https : / / www . mathworks . com /
support/search.html?q=filter&page=1. (cit. on p. 20).

[11] 1-D digital filter-MATLAB filter. url: https : / / www . mathworks . com /
support/search.html?q=filter&page=1. (cit. on p. 21).

64

https://www.etsi.org/deliver/etsi_ts/138300_138399/138300/17.00.00_60/ts_138300v170000p.pdf.
https://www.etsi.org/deliver/etsi_ts/138300_138399/138300/17.00.00_60/ts_138300v170000p.pdf.
https://www.etsi.org/deliver/etsi_ts/138200_138299/138201/17.00.00_60/ts_138201v170000p.pdf.
https://www.etsi.org/deliver/etsi_ts/138200_138299/138201/17.00.00_60/ts_138201v170000p.pdf.
https://www.etsi.org/deliver/etsi_ts/138200_138299/138202/17.03.00_60/ts_138202v170300p.pdf.
https://www.etsi.org/deliver/etsi_ts/138200_138299/138202/17.03.00_60/ts_138202v170300p.pdf.
https://www.amd.com/en.html.
https://www.amd.com/en.html.
https://www.xilinx.com/products/silicon-devices/resources/programming-an-fpga-an-introduction-to-how-it-works.html
https://www.xilinx.com/products/silicon-devices/resources/programming-an-fpga-an-introduction-to-how-it-works.html
https://www.xilinx.com/products/silicon-devices/resources/programming-an-fpga-an-introduction-to-how-it-works.html
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls.
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls.
//https://www.mathworks.com/help/signal/ref/upsample.html.
//https://www.mathworks.com/help/signal/ref/upsample.html.
https://www.mathworks.com/support/search.html?q=filter&page=1.
https://www.mathworks.com/support/search.html?q=filter&page=1.
https://www.mathworks.com/support/search.html?q=filter&page=1.
https://www.mathworks.com/support/search.html?q=filter&page=1.

BIBLIOGRAPHY

[12] Vitis High-Level Synthesis User Guide (UG1399). url: https : / / docs .
xilinx.com/r/2021.2-English/ug1399-vitis-hls. (cit. on p. 37).

65

https://docs.xilinx.com/r/2021.2-English/ug1399-vitis-hls.
https://docs.xilinx.com/r/2021.2-English/ug1399-vitis-hls.

	List of Tables
	List of Figures
	Acronyms
	Introduction
	5G Protocol Stack
	 5G Physical Layer
	 Channel Simulation

	 Board Description
	FPGA

	Vitis Unified Software Platform
	Vitis HLS

	Thesis Structure

	Oversample_Filter Block
	Matlab Reference
	Upsample
	Filter

	C++ Code and C-Simulation
	bin_read.h
	BVector_Filter_OneSample_Sub.h
	BVector_Filter_OneSample_Sub.cpp

	Synthesis
	Pipelining
	Principle
	Syntax
	Application

	Unroll
	Principle
	Syntax
	Application

	Array_Partition
	Principle
	Syntax
	Application

	Inline
	Principle
	Syntax
	Application

	Loop_Tripcount
	Principle
	Syntax
	Application

	Dataflow
	Principle
	Syntax
	Application

	Interface
	Syntax
	Application

	Result Analysis
	Synthesis Result
	Co-Simulation

	Bibliography

