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Abstract

Sleep disorders decrease the quality of sleep for affected individuals, potentially
leading to serious, negative health effects. Therefore, it is essential to promptly
diagnose these disorders and subsequently monitor their progression. The diagnosis
of sleep disorders involves the examination of sleep, categorized into distinct stages,
with polysomnography (PSG) currently considered the gold standard for assessment.
However, PSG has limitations: it is expensive, time-consuming, complicated to
operate, obtrusive, and usually only performed on a single night. One possible
solution to these limitations is to leverage commercially available wearable and
contactless devices that are already capable of providing sleep stages classification.
These devices are affordable, easy to use, comfortable, and suitable for multiple
nights of use.

To investigate this alternative, this study analyzes the data collected from
patients with sleep disorders to whom two wearable devices (Fitbit Inspire 2
and Empatica E4) and two contactless devices (Somnofy and Emfit) were added
during PSG. The initial step consisted of an in-depth evaluation of the sleep stages
automatically provided by Somnofy, Fitbit, and Emfit in comparison to the PSG
for this particular type of patients. The devices demonstrated an overall accuracy
of 67% for Somnofy, 64% for Fitbit, and 47% for Emfit. Statistically significant
differences were found in all sleep measures, such as total sleep time and REM
latency, with particular difficulty in detecting cases of very short sleep stages
durations.

The dataset was then used to fine-tune some models using signals from Empatica
to classify sleep stages. The results aligned with those of the other devices,
performing better than Fitbit and worse than Somnofy.

Lastly, a novel approach to sleep stages classification was proposed: fusing sleep
stages from multiple devices. A random forest was trained to classify the sleep
stage of an epoch based on the sleep stages predicted by devices at that epoch.
Sleep stages from Somnofy, Fitbit, Emfit, and the fine-tuned Empatica model were
incorporated, and all possible combinations of two to four devices were tested. This
method achieved the highest accuracy of 73% when fusing Somnofy, Fitbit, and
Empatica. It was generally more accurate than the devices used alone, particularly
when combining three or four devices.

In conclusion, this study demonstrates the potential of using commercially
available devices for sleep stages classification. Encouraging results were achieved
through the integration of multiple devices. Despite some limitations, these de-
vices represent a promising path toward more comprehensive and accessible sleep
monitoring for both healthy individuals and patients with sleep disorders.
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Chapter 1

Introduction

Sleep is crucial since it can impact several aspects of our lives, including health
and cognitive performance. Numerous sleep disorders can interfere with sleep and,
subsequently, detrimentally affect people’s lives. Therefore, it is vital to monitor
sleep in order to detect disorders promptly and treat them appropriately.

Sleep is analyzed by dividing it into different stages, typically defined according
to the electrical activity of the brain as measured by electroencephalography (EEG)
during polysomnography (PSG), which is the gold standard for sleep monitoring.
However, PSG is an expensive, time-consuming, and obtrusive method that is
typically only conducted for a single night.

As an alternative, various commercially available wearable and contactless
devices with different sensors, such as accelerometers and photoplethysmography
(PPG), are capable of estimating sleep stages. Nevertheless, the accuracy of these
devices varies widely, and it is essential to verify and improve their performance
compared to PSG, especially in patients with sleep disorders.

1.1 Sleep
Sleep is a fundamental physiological process that is essential for our health and
well-being. During sleep, our bodies undergo a complex series of physiological and
neurological changes that allow us to recover, and regenerate. Sleep plays a crucial
role in many important aspects of our lives such as memory consolidation, learning,
and cognitive functions, as well as in the regulation of mood, appetite, and immune
function.

Sleep can be divided into several stages that were defined mainly based on
the signals from EEG, which measures the electrical activity of the brain, but
also electrooculography (EOG), detecting eye movements, and electromyography
(EMG), measuring the electrical activity of muscles. There are two main types
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Introduction

of sleep stages: rapid eye movement (REM) sleep and non-rapid eye movement
(NREM) sleep. According to the American Academy of Sleep Medicine guidelines,
NREM sleep can be further divided into three stages: stage N1, N2, and N3. Stage
N1 is the lightest stage of sleep, during which we may experience occasional muscle
twitches and drifting thoughts. Stage N2 is a deeper stage of sleep characterized
by slower brain waves and occasional bursts of rapid brain activity called sleep
spindles. Stage N3 is the deepest stage of sleep, also known as slow-wave sleep,
during which our brain activity slows down significantly and we experience minimal
muscle tone or movement.

It has become common, especially with the emergence of commercial devices
that can classify sleep stages, to group the N1 and N2 stages and call it light sleep,
while the N3 state is called deep sleep. This division into 4 sleep stages (wake,
REM, light sleep, and deep sleep) was used throughout the project.

1.1.1 Sleep disorders
Sleep disorders can affect the quality of sleep, leading to adverse health effects.

According to the International Classification of Sleep Disorders [1], sleep disorders
can be divided into the following categories:

• Sleep-related breathing disorders: they manifest as deviations in respiratory
patterns during sleep;

• Central disorders of hypersomnolence: they are characterized by excessive day-
time drowsiness, unrelated to disrupted nighttime sleep or irregular circadian
rhythms;

• Insomnia: it is characterized by ongoing struggles in starting, maintaining,
or achieving satisfactory sleep, even when given sufficient opportunity and
favorable conditions for rest;

• Parasomnias: it encompasses irregular sleep-related complex motions, actions,
sentiments, perceptions, dreams, and activity of the autonomic nervous system;

• Circadian rhythm sleep-wake disorders: they arise due to changes in the
circadian timing system, its synchronization mechanisms, or a mismatch
between the internal circadian rhythm and the external surroundings;

• Sleep-related movement disorders: they are predominantly marked by relatively
uncomplicated, commonly repetitive movements that disrupt sleep or its
initiation;

• Other sleep disorders.
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1.2 Polysomnography
Polysomnography (PSG) is a non-invasive diagnostic tool used to monitor and
record various physiological parameters during sleep. It is considered the gold
standard for sleep monitoring and involves the recording of brain waves, eye
movements, muscle activity, heart rate, oxygen saturation, and respiratory effort.

During PSG, the patient is typically required to spend a night in a sleep
laboratory, where they are monitored by a technician or sleep specialist. Electrodes
and sensors are attached to the patient’s scalp, face, chest, legs, and fingers, and
the data are continuously recorded throughout the night. The recorded data are
then analyzed by a trained sleep specialist, who can identify the different sleep
stages based on the EEG, EOG, and EMG signals.

PSG is an important tool for diagnosing sleep disorders. However, it is uncom-
fortable to wear, expensive, time-consuming, and requires specialized equipment
and expertise to perform it and analyze the results. Furthermore, the classification
of sleep stages for certain epochs can vary among physicians when presented with
the same data. The inter-rater agreement among different doctors has been esti-
mated to have a Cohen’s kappa of 63% [2], while the accuracy, or the percentage
of times that different doctors classify the same sleep stage, has been reported to
be 88% [3].

Therefore, there is a need for alternative sleep monitoring methods that are more
practical and accessible, while still providing accurate and reliable information.

1.3 Commercial devices
Sleep monitoring devices have become increasingly popular for home-based monitor-
ing of sleep quality and quantity. These devices can provide valuable information,
such as sleep duration and sleep stages, which can help individuals optimize their
sleep habits and improve their overall health and well-being. Commercial sleep
monitoring devices typically use various sensors, such as accelerometers and PPG,
to monitor different aspects of sleep. However, the accuracy and reliability of these
devices in measuring sleep parameters vary widely, and there is a need to assess
their performance against the gold standard for sleep monitoring (PSG), especially
for patients with sleep disorders, before they can be used for medical purposes.

The current study evaluated four commercially available devices:

• Somnofy;

• Fitbit Inspire 2;

• Emfit;

3
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• Empatica E4.

Somnofy and Emfit are contactless devices, while Fitbit and Empatica are
wearable wristband devices. Somnofy, Emfit, and Fitbit devices automatically
classify sleep stages.

Validation studies for the sleep stages provided by these devices exist in the
literature, but the majority are only conducted on healthy individuals, such as
the study on Somnofy [3] and the study on Fitbit [4]. Some validations have been
performed on specific populations, such as paper [5], which tested Somnofy and
Emfit, among two other devices, on a group of older individuals dealing with mild
sleep disturbances, mainly sleep apnea. Another paper [6] examined Fitbit Charge
2, a different model from the one used in this study, in shift workers. Still, none of
these studies involved individuals with diagnosed sleep disorders, as was done in
the validation paper of Emfit [7], where 70% of patients experienced sleep disorders,
specifically sleep-related breathing disorders and sleep-related movement disorders.
However, there remains a gap in validation that includes individuals with all types
of sleep disorders. This study aims to address this gap.

1.4 Study setup
Each patient underwent overnight polysomnography in the Sleep-Wake Epilepsy
Center (SWEZ), Department of Neurology, at the Insel, University Hospital, in
Bern (Switzerland). There, a team of qualified professionals ensured that the
sensors were worn correctly and checked that everything was in order during the
night.

Patients were also wearing the two wristbands (Fitbit Inspire 2 and Empatica
E4), while the two contactless devices were positioned in the room: Emfit was
placed under the mattress at chest level, and Somnofy was located above the bed at
the foot, facing the headboard. Not every patient had all four commercial devices
and some devices failed during the night.

The PSG data were then analyzed by sleep specialists to manually review each
patient’s sleep stages, supported by the RemLogic and SOMNOmedics PSG devices
which provide automated scoring.

The patients in this study are affected by some sleep disorders with the exception
of a small percentage of healthy patients.

1.5 Objectives
The goals of this work can be summarized as:
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• Evaluating of the sleep stages given by the commercial devices with respect
to the PSG;

• Building a custom model that classifies sleep stages starting from the raw
signals of the Empatica E4;

• Building a custom model that fuses the sleep stages of different devices.

The assessment of the device performance is important because, as mentioned
above, validation studies with patients suffering from different sleep disorders are
lacking, and at the same time it is fundamental before these devices can be used in
sleep clinics. The simultaneous testing of multiple devices on the same patients is
an added value, as it allows for a direct comparison of the results obtained.

The second objective is to fine-tune a model for this specific population. Em-
patica was chosen because it provides high-frequency data. It does not offer sleep
stages classification, and only one study in the literature has investigated sleep
stages classification using Empatica E4 [8]. In this work, the network from [9],
developed for sleep stages classification with another wearable device, is adapted
for use with Empatica E4, as it is a more flexible network than the one used in [8].
The results can then be compared with those obtained from the other devices in
the first step.

Finally, a novel approach to sleep stages classification is introduced. This
approach attempts to improve performance by using multiple devices simultaneously
and fusing the sleep stages classified by each of them.
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Chapter 2

Methods

2.1 Commercial devices
The devices included in the study are:

• Somnofy;

• Fitbit Inspire 2;

• Emfit;

• Empatica E4.

They are all consumer devices except the Empatica E4, which is a research
device.

Within this clinical study, the aim of my thesis was to analyze the data from
the given dataset and note that I was not involved in the selection of the devices.

2.1.1 Somnofy

Somnofy is a contactless device that uses radar sensors to detect movement,
breathing, and heart rate. It also collects data about the environment, such as
light intensity, noise level, and room temperature.

The raw sensors data are accessible at a frequency of 1 Hz, while the other
derived measurements, such as sleep stages, have a resolution of 30 seconds.

The Somnofy device is connected directly to the power plug, so it does not need
to be charged.
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2.1.2 Fitbit Inspire 2
Fitbit Inspire 2 is a wrist-worn device developed by Fitbit Inc. It is a fitness tracker
that can monitor the heart rate (HR) and the activity, but also the sleep, through
an accelerometer and an optical sensor.

The device automatically detects sleeping periods and provides a breakdown
of sleep stages. In our dataset, sleep stages are represented by the times at which
a stage change occurs (e.g. from light sleep to deep sleep) and it is calculated at
30-second intervals so that the change can occur at the beginning or in the middle
of each minute.

The producer claims up to 10 days of battery life.

2.1.3 Emfit
Emfit is a contactless device placed under the mattress that uses piezoelectric
sensors to monitor movement and breathing patterns as well as heart rate using
the ballistocardiograph signal.

From these measurements, it calculates other metrics such as heart rate variability
(HRV) and sleep stages.

Heart rate, respiration rate, and movement activity are provided every 4 seconds,
and sleep stages every 30 seconds.

It also connects directly to electricity.

2.1.4 Empatica E4
Empatica E4 is a wristband developed by Empatica Inc. and designed to collect
several physiological data through different sensors:

• PPG sensor to measure blood volume pulse (BVP) at a sampling frequency of
64 Hz, from which the HRV and the interbeat interval (IBI) are derived;

• 3-axis accelerometer to detect activity in the range [−2 g, 2 g] at a sampling
frequency of 32 Hz;

• Infrared thermopile to measure the skin temperature with the following
specifics:

– sampling frequency: 4 Hz
– range: skin temperature from −40 °C to 115 °C
– sensitivity: 0.02 °C
– accuracy: ±0.2 °C in the range 36 °C to 39 °C
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• Electrodermal activity (EDA) sensor to detect changes in sweat gland activity
at a sampling frequency of 4 Hz.

The device only provides the data described above and has no built-in algorithm
for predicting sleep stages.

The battery can last more than 32 hours.

2.2 Evaluation sleep stages of commercial devices
To comprehensively evaluate the performance of the sleep stages provided by
Somnofy, Fitbit, and Emfit compared to the PSG sleep stages, several analyses
were performed based on previous validation studies, namely:

• Analysis period: compare the duration of the estimated period of sleep;

• Sleep summary measures: compare metrics that summarize all-night sleep,
such as the total duration of each sleep stage;

• Epoch-by-epoch (EBE) concordance: compare sleep stages at the same epoch;

• Distribution of sleep stages consecutive durations: compare the distributions
of duration of successive sleep stages for each different sleep stage.

All devices utilize the following division of sleep stages: wake, REM, light sleep,
and deep sleep. However, the PSG uses a different set of stages: wake, REM, N1,
N2, and N3. In order to make the stages consistent, the N1 and N2 stages of the
PSG were converted to light sleep, while the N3 stage was treated as deep sleep.
Both the devices and PSG classify sleep stages in 30-second epochs.

2.2.1 Analysis period
The devices automatically detect when a person begins sleeping and classify the
sleep stages until the end of sleeping is detected. This start and end detection
determines the period during which the sleep stages are provided, referred to as the
Analysis Period Automatic (AP-A) as it is automatically detected by the device.

During the PSG, the personnel manually recorded the time when the lights were
switched off in the evening and the time when they were switched on in the morning.
This period is named the Analysis Period Manual (AP-M) and is considered the
ground truth for the analysis period.

In this assessment, the AP-A has been compared to the AP-M using a Bland-
Altman plot [10].
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2.2.2 Sleep summary measures
Some common measures are derived from the hypnogram and are important
indicators to assess sleep, in particular, they are used to diagnose sleep disorders.

The measures analyzed were:

• Total sleep time: total amount of time spent in either REM, light, or deep
sleep;

• Sleep onset latency: amount of time it takes to fall asleep after turning off the
lights;

• REM latency: amount of time from the sleep onset to the first occurrence of
REM sleep;

• Sleep efficiency: ratio between the total sleep time and the time spent in bed,
measured as the total duration of the analysis period;

• Wake after sleep onset (WASO) duration: total amount of time spent awake
after sleep onset;

• REM duration: total amount of time spent in a state of REM sleep;

• Light sleep duration: total amount of time spent in a state of light sleep;

• Deep sleep duration: total amount of time spent in a state of deep sleep.

All the measures were calculated on a single full night of a patient and were
computed both for the manual analysis period (AP-M) and for the automatic
analysis period (AP-A).

Bland-Altman plots were used to assess the degree of agreement between devices
and PSG results.

In addition, t-tests were executed to determine if the differences were statistically
significant: a paired t-test if the differences were normally distributed and a
Wilcoxon signed-rank test if they were not. To verify normality, the Shapiro-Wilk
test was used.

2.2.3 Epoch-by-epoch concordance
The EBE concordance analysis consists of comparing the sleep stage of each device
with the PSG at every epoch. This is important in order to obtain a correct
hypnogram that allows the assessment of sleep cycles and sleep fragmentation.

The epoch duration was 30 seconds both for the PSG and the devices. The
analysis was performed in all the epochs where both the device and the PSG were
present, which can be viewed as the intersection between the automatic and manual
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analysis periods. Only the valid epochs were taken into account, while the epochs
with artifacts in PSG or missing stage in the devices were discarded.

Different metrics can be computed by comparing the device’s stage classification
to the ground-truth classification of PSG and they can be calculated separately for
each sleep stage or globally for all stages. By computing the metrics at a single
sleep stage level, it becomes a binary classification where each epoch is either
classified as the sleep stage considered (True) or classified as another sleep stage
(False), which allows to define:

• True positives (TP): epochs where both the device and the PSG are the stage
taken into account;

• True negatives (TN): epochs where both the device and the PSG are not the
stage taken into account;

• False positives (FP): epochs where the device detects the considered stage,
while the PSG does not;

• False negatives (FN): epochs where the PSG detects the considered stage,
while the device does not.

The following metrics at single stage level were used:

• Sensitivity = TP
TP + FN

• Specificity = TN
TN + FP

• Accuracy = TP + TN
TP + TN + FP + FN

• Matthews correlation coefficient (MCC) =
TP × TN − FP × FNñ

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

The MCC was favored over Cohen’s kappa, a similar correlation metric frequently
used, due to its higher reliability, as Cohen’s kappa exhibits some undesired
behaviors [11].

The following global metrics were used:

• Balanced accuracy =
Sensitivitywake + SensitivityREM + Sensitivitylight sleep + Sensitivitydeep sleep

4
i.e. the balanced accuracy is the mean of the sensitivities for each sleep stage;
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• Accuracy = total correct epochs
total number of epochs, where the correct epochs are all the

epochs where the device and the PSG agree;

• Matthews correlation coefficient (MCC) =

s × c − q4
k pk × tkñ

(s2 − q4
k p2

k) × (s2 − q4
k t2

k)

s = total number of epochs, c = total correct epochs, k = class from 1 to 4
(wake, REM, light, and deep sleep), pk = total epochs classified as class k by
the device, tk = total epochs classified as class k by the PSG.

Sleep stages distribution was unbalanced, with most epochs being light sleep.
For this reason, balanced accuracy should be preferred to accuracy, which is also
reported only for the purpose of comparing results with those of other publications.
The reported MCC formula represents the generalization in the multiclass scenario.

2.2.4 Distribution of sleep stages consecutive durations
This analysis, presented in the Fitbit Charge 2 validation study [6], compares the
distribution of the consecutive durations of each sleep stage between the device and
the PSG. A consecutive duration of a sleep stage was defined as the time interval
(sum of adjacent epochs) in which the specific sleep stage remains uninterrupted,
followed by a shift to another sleep stage. By identifying the consecutive durations
for each patient, the total frequency for each possible duration of each sleep stage
can be obtained and the distribution of consecutive durations for each sleep stage
can be estimated.

The estimations of the distributions were plotted, allowing for a visual compari-
son between the devices and the PSG distributions. This comparison is essential for
understanding the reliability of sleep fragmentation representation in the devices’
hypnograms, pointing out whether they overestimate fragmentation, resulting in a
distribution that is more concentrated in short durations, or whether they underes-
timate fragmentation, with a distribution concentrated on longer durations than
PSG.

2.3 Empatica sleep stages
As mentioned before, Empatica E4 is able to collect several types of data, in
particular, the data exported from it consisted of the following files:

• ACC.csv: accelerometer data for each of the three axes at a frequency of 32 Hz.
Each value is in the range [-128, 128] which can be converted to the gravity of
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Earth (g) by dividing the value by 64, obtaining the original range of [−2 g,
2 g];

• BVP.csv: blood volume pulse data derived from the PPG sensor at a frequency
of 64 Hz;

• EDA.csv: electrodermal activity data expressed in Microsiemens at a frequency
of 4 Hz;

• HR.csv: average heart rate values computed in spans of 10 seconds every
second (1 Hz frequency) derived from BVP;

• IBI.csv: interbeat intervals, since each line contains the number of seconds
from the previous beat, there is no predefined frequency. The incorrect peaks
are removed automatically by the Empatica algorithm and they are reported
in the file;

• TEMP.csv: skin temperature data in degrees Celsius at a frequency of 4 Hz.

Two different models were tested:

• Random forest classifier using features extracted from accelerometer, IBI and
EDA signals;

• An encoder-decoder fully convolutional neural network.

2.3.1 Features extraction and random forest
The first approach to developing an algorithm for classifying sleep stages from
raw Empatica data aimed to be very simple in order to have a baseline for more
complex models. It consisted of extracting features from the signals and using
them as input to a random forest classifier.

The features were extracted using FLIRT [12] which stands for Feature generation
tooLkIt for weaRable daTa: it is a Python library that can extract features from
accelerometer, IBI and EDA signals from wearable devices, and it supports Empatica
E4.

The features are divided between:

• IBI: 52 features regarding heart rate and heart rate variability, it consists of
statistical features, as well as features in time and frequency domain;

• EDA: 44 features extracted from time and frequency domains;

• Accelerometer: 22 features for each axis (x, y, z) plus 22 general features for a
total of 88 features from time and frequency domains.

12



Methods

The detailed list of all the features can be found in [12].
Some features have been discarded either because they contained infinite values

(EDA and accelerometer discarded features) or the features values were invalid (i.e.
NaN values) for all rows (IBI features). The features discarded are:

• hrv_lf_hf_ratio: IBI feature for the ratio of low frequency to high frequency;

• hrv_hfnu: IBI feature for the high frequency power in normalized units;

• hrv_lfnu: IBI feature for the low frequency power in normalized units;

• phasic_entropy: EDA feature for the entropy of the phasic component of
EDA, also called skin conductance response;

• tonic_entropy: EDA feature for the entropy of the tonic component of EDA;

• x_entropy: accelerometer feature for the entropy of the x-axis data;

• y_entropy: accelerometer feature for the entropy of the y-axis data;

• z_entropy: accelerometer feature for the entropy of the z-axis data.

By removing these features, the final number of features was 49 for IBI, 42 for
EDA, and 85 for the accelerometer, which gives a total of 176 features.

The signals were divided into windows and the features were computed for each
window separately. The FLIRT library allows to set both the window length and
the step size to move the window. In line with the principle of having a simple
model in this approach, the window length was set to 30 seconds which is the
duration of the epoch, and also the step size was set to 30 seconds, in order to have
non-overlapping windows for each epoch in which the features are based on data
only of that epoch. Another simplification adopted was to discard all epochs in
which there was any invalid feature value (i.e. NaN value).

The model was validated through a leave-one-group-out cross-validation ap-
proach, with each group consisting of a different patient. At each iteration, one
patient was utilized as the test group while the remaining patients were used for
model training until every patient had been tested.

2.3.2 Fully convolutional neural network
The previous approach is very dependent on the quality of the extracted features,
which can be a major limitation.

To overcome this limitation, the model in the second approach received the data
as input after minimal preprocessing. This is possible using deep learning networks
that can learn to extract features and make predictions.
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The architecture chosen is based on U-Sleep [13], a fully convolutional network
based on U-Net [14], [15], which is a state-of-the-art algorithm for classifying sleep
stages from EEG and EOG signals of PSG.

This model was selected because it had been previously tested in another
wearable device [9], which made slight modifications from [13] and leveraged PPG
and accelerometer signals, both of which are also present in Empatica. Furthermore,
this model was preferred over the one previously tested on the Empatica device
in [8] due to its utilization of state-of-the-art techniques as well as its flexibility
to accommodate any type and number of input signals. The main contributions
of this step include adapting the network presented in [9] to work with Empatica
signals, experimenting with various signal combinations, identifying the optimal
parameters, and conducting a comprehensive model evaluation similar to that
performed on the other devices.

The data were divided into consecutive non-overlapping windows, each containing
a fixed number of epochs, to ensure uniform input sizes. The number of epochs in
a window is an arbitrary parameter, and experiments were conducted with different
lengths to see which was most effective. The segment size is expressed in seconds as
the multiplication of the number of epochs per window and the number of seconds
per epoch, which is 30.

The network is shown in Figure 2.1 and can be divided into four parts:

1. Conformation module: it serves to prepare the input for the network by
reshaping and zero padding it;

2. Encoder module: it extracts features from the data by compressing it to a
lower temporal dimension;

3. Decoder module: it brings the compressed feature representation of the input
back to the initial temporal dimension;

4. Segment classifier module: it segments and classifies the decoded vector into
the single epochs.

The conformation module has been introduced in [9], while the other modules
were already present in U-Sleep [13].

Each module is described in more detail below.

Conformation. The conformation handles concatenation, reshaping, and zero
padding of the input. The network is able to receive multiple signals as input,
and each signal is composed of three dimensions: the temporal dimension, which
is the product of the segment size and the frequency of the signal; the spatial
dimension, representing the number of data points for each time instant; and the
channel dimension, since a signal can be composed of several channels. The first
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Figure 2.1: Convolutional neural network for sleep staging classification with
Empatica

Representation of the network, adapted from [9]. It shows an example of how 1024 epochs
(equivalent to 8 hours and 32 minutes) are classified based on the activity and heart rate of the
Empatica, but other combinations have also been tested. The raw activity signal comprises three
separate signals from a 3-axis accelerometer, while the raw heart rate signal is the PPG, also
called BVP. After minimal preprocessing, the raw signals can be directly fed into the model, or
the spectrograms can be extracted and fed into the model. Both options have been tested, and
this example presents the use of spectrograms. The two spectrograms are fused into a single array
by the conformation module, which is then processed by M encoders followed by M decoders.
The output is then divided and converted into 30-second epochs, which are classified into the 4
classes: wake, REM, light, and deep sleep. The hypnogram in red shows the classification of the
model by taking at each epoch the class with the highest softmax output, while the hypnogram
in purple shows the corresponding classification of the PSG which is the ground truth.
M = number of encoder and decoder blocks, GELU = Gaussian Error Linear Unit activation
function [16], conv = convolution, convTranspose = transposed convolutional, batch norm =
batch normalization [17], ACC = accelerometry, PPG = photoplethysmography.

operation of this module is to combine all input signals and reshape them into a
3-dimensional vector along the channel axis, which requires that all signals have
identical temporal and spatial dimensions. The last step is to ensure that the first
two dimensions are a power of 2 by adding zeros to them until the nearest power
of 2 is reached, if necessary.

Encoder. The encoder module consists of a stack of M units. Each unit comprises
a 2D convolution, a Gaussian Error Linear Unit (GELU) activation function [16], a
batch normalization [17], and another 2D convolution, which reduces the temporal
and spatial dimensions by half. The output of the last encoder unit undergoes a
2D convolution, a GELU activation function, and a batch normalization before
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being fed to the decoder module.

Decoder. The decoder module, like the encoder, comprises a stack of M units.
The unit has the peculiarity of receiving two inputs: one from the decoder at
the previous level and one from the batch normalization output of the encoder at
the same level of this decoder. The input from the previous decoder undergoes
a transposed convolution to upsample it to the same dimension as the encoder
output, allowing the next operation, which is the concatenation of the two. The
concatenated array is then passed through a 2D convolution, a GELU activation
function, and a batch normalization.

Segment classifier. In order to classify one sleep stage for each 30-second epoch, the
array with the initial temporal size needs to be downsized. The steps are: removal
of the zeros added during padding in the conformation modules, reshaping into a
2D array, a 1D convolution with GELU activation, average pooling in the temporal
dimension to reduce it to the desired number of epochs, a 1D convolution with
GELU activation, and a dense convolution with a softmax activation function. The
final softmax function gives the probability of each stage for each epoch, and the
stage with the maximum probability is the one classified by the model.

The architecture is very flexible and can be configured to accept any type of
signal as input. Both direct input of the raw signals and input of the spectrogram
of the signals have been tested.

Empatica signals were trimmed between lights off and lights on times in the
original dataset. PPG and accelerometer data were preprocessed according to [9]
and consisted of a z-score normalization (zero mean and unit standard deviation) for
PPG and a median normalization to 0 for accelerometer. An adaptive interquartile
range normalization on a 300-second sliding window was then applied to both
signals, followed by clipping of outliers above 20 times the interquartile range. EDA,
temperature, and HR signals were not included in the study [9]. After conducting
experiments, it was found that performance did not improve with normalization for
these signals compared to passing them directly without preprocessing. Therefore,
no normalization was performed. When combining multiple signals for raw data
input, they were resampled to 32 Hz, as done in [9], by downsampling (PPG) or
upsampling (EDA, temperature, HR) to have the same temporal dimension.

2.4 Fusion of devices sleep stages
In this step, a novel approach to sleep stages classification is introduced: fusing
together the sleep stages provided by different devices.
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A random forest model was used to fuse the sleep stages because the data in
input is very simple: there is only one sleep stage per device. The model is built to
classify one epoch at a time, taking as input the sleep stage given by each device
for that specific epoch. In addition to Somnofy, Fitbit, and Emfit, the sleep stages
classification of the Empatica model is also used to allow the merging of all devices
in the study. The Empatica model that obtains the best performance among all
those previously proposed is used.

Performances were evaluated using leave-one-group-out cross-validation. This
means that during each iteration, one patient is used for testing while the others
are utilized for training, and the process is repeated until all patients have been
tested.
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Chapter 3

Results

3.1 Study population
The starting dataset consisted of 160 one-night PSG recordings of different patients
as a result of the study conducted in the Sleep-Wake Epilepsy Center (SWEZ),
Department of Neurology, at the Insel, University Hospital, in Bern (Switzerland)
with Dr. Markus Schmidt M.D. Ph.D. as principal investigator and Prof. Tobias
Nef as sponsor. The commercial devices (Somnofy, Fitbit, Emfit, and Empatica)
were added to the usual PSG, resulting in the presence of data from these devices
in the dataset. The number of patients with each device varied: 144 for Somnofy,
58 for Fitbit, 103 for Emfit, and 149 for Empatica, noting that not all patients had
all devices. The so marked difference in the Fitbit is due to the fact that this device
was introduced after the study had already begun. All data were subject to error
checking, as described in the following section, which resulted in the exclusion of
some patients for certain analyses. The demographic characteristics of the patients
with valid data are then described.

3.1.1 Error checking
The sleep stages from PSG, Somnofy, Fitbit, Emfit, and Empatica raw data
were checked for errors prior to analysis. Three patients were excluded from all
subsequent analyses because they exhibited issues with their PSG data including
sleep stages reported during the daytime rather than nighttime, a considerable
discrepancy between the specified lights on time of 3 p.m. and the actual end of
the PSG stages at 7 a.m., and sleep stages being reported twice for each epoch
with conflicting epochs.

Somnofy is the only device that classifies some epochs as missing during the
night, and for some patients, this classification represents a good part of the night,
so 10 patients with more than 30% missing epochs were excluded. The device also
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sometimes failed to detect sleep and classified most epochs as wake, so 5 patients
with more than 90% of epochs classified as wake were discarded.

No errors were found in Fitbit stages, and only one patient was excluded from
the Emfit analysis due to a classification lasting only 2 hours instead of the full
night.

Regarding Empatica, 13 patients were removed because data were only available
for less than 5 hours instead of a full night. In addition, 6 patients not among
those removed had a malfunctioning temperature sensor that provided no data,
so these patients were not excluded from all analyses because the other sensors
worked, but when the temperature was used, these patients were discarded.

3.1.2 Demographics
The demographics of the entire study population after removing patients with
invalid data and those whose data were correctly collected for each device are
shown in Table 3.1.

Table 3.1: Study population characteristics

All Somnofy Fitbit Emfit Empatica

Valid patients: n 157 128 56 101 133
Females: n (%) 86 (54.78) 74 (57.81) 29 (51.79) 56 (55.45) 73 (54.89)
Age (years): mean ± SD
[range]

44.94 ± 16.20
[18.2, 84.6]

44.30 ± 16.40
[18.2, 84.6]

41.39 ± 16.02
[18.6, 79.1]

43.29 ± 15.59
[18.2, 75.3]

45.32 ± 16.23
[18.2, 84.6]

Diagnosis: %

Breathing disorders 56.05 53.91 51.78 55.45 57.14
Hypersomnolence 17.84 17.97 25.00 19.80 15.79
Insomnia 5.09 5.47 1.79 4.95 6.02
Parasomnias 3.82 3.12 1.79 3.96 4.51
Circadian disorders 1.27 1.56 0 0.99 1.50
Movement disorders 1.91 2.35 1.79 1.98 2.26
Other disorders 3.19 3.12 3.57 0.99 3.01
Healthy controls 4.46 5.47 8.93 4.95 4.51
Missing diagnosis 6.37 7.03 5.35 6.93 5.26

SD = standard deviation

The device with the most valid patients is Empatica (133), followed by Somnofy
(128), Emfit (101), and Fitbit (56).

In general, the proportion of women is close to half (54.78%), and the average
age is about 45 years, ranging from a low of 18 years to a high of 84 years. All
patients suffer from a sleep disorder except for a small percentage (about 5 percent)
of healthy patients, and the majority of them suffer from sleep-related breathing
disorders. There is also a portion of patients whose diagnosis is missing, typically
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these are special cases in which it is not easy to diagnose the type of disorder and
for which there was a need for a more in-depth examination.

27 patients have valid data for all four commercial devices. Some results are
reported using only these patients so that the results of different devices on the
same patients can be directly compared. The characteristics of this group are
shown in Table 3.2.

Table 3.2: Characteristics of patients with valid data from all commercial devices

Patients with all devices

Valid patients: n 27
Females: n (%) 14 (51.85)
Age (years): mean ± SD
[range]

42.24 ± 16.15
[19.0, 72.8]

Diagnosis: %

Breathing disorders 51.86
Hypersomnolence 22.23
Parasomnias 3.70
Insomnia 3.70
Circadian disorders 0
Movement disorders 3.70
Other disorders 0
Healthy controls 11.11
Missing diagnosis 3.70

SD = standard deviation

3.2 Evaluation sleep stages of commercial devices
Results are reported separately for each analysis performed, which were:

• Analysis period;

• Sleep summary measures;

• Epoch-by-epoch concordance;

• Distribution of sleep stages consecutive durations.

20



Results

3.2.1 Analysis period
The Bland-Altman plots in Figure 3.1 provide a comprehensive visualization of the
comparison between the durations of automatic analysis periods derived from the
devices and the manual analysis periods obtained from PSG. These plots serve to
illustrate the level of agreement between the two sets of durations. The y-axis of
the plots represents the difference between the duration of the automatic period
and the manual period, while the x-axis depicts the average of the two durations.
The orange line, denoting the null difference, indicates cases in which the durations
are perfectly in agreement. Points above the orange line indicate instances where
the device has overestimated the duration of the sleeping period, while points below
the line indicate an underestimation of the sleeping period by the device. Notably,
the plots also include the average difference and the 95% limits of agreement.

It is important to note that within the original dataset provided by the study,
Somnofy and Emfit data were already trimmed to include only the data within the
lights off and lights on times, i.e. the manual period. Consequently, the automatic
period for these devices never exceeds the manual period, except for a few instances
where the lights off and on times were later corrected. Therefore, for these devices,
the information we can get from the plots is only about the possible underestimation
of sleep periods in cases where the automatic period either starts after the lights
off time or ends before the lights on time.

Given this context, Figure 3.1a demonstrates that Somnofy can recognize sleep
throughout the entire period without any systematic underestimation. Differ-
ences are mostly concentrated around zero, with a few exceptions. This is further
supported by the mean difference of less than 2 minutes and narrow limits of
agreement. In contrast, Figure 3.1c indicates a clear tendency towards underes-
timation for Emfit. This trend is confirmed by a substantial mean difference of
more than 20 minutes and wider limits of agreement, implying greater variability
in underestimation.

From Figure 3.1b illustrating the Fitbit differences, it is evident that they are
widely scattered both above and below the null difference line, as reflected in
the limits of agreement, which are at more than 1 and a half hours. However,
there appears to be negligible systematic bias as the mean difference results in an
overestimation of 3 and a half minutes.
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Figure 3.1: Bland-Altman plots analysis period of each device
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(b) Fitbit
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(c) Emfit
Differences between the durations of the Automatic analysis periods and the durations of the
Manual analysis periods are plotted for each patient. The orange center line shows the zero
difference. The black solid line shows the mean of the differences, while the two dashed lines
indicate the upper and lower limits of agreement at 95%. Reported values are in minutes.
min = minutes, SD = standard deviation
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3.2.2 Sleep summary measures

The sleep measures results for each device are reported in separate tables (Somnofy:
Table 3.3, Fitbit: Table 3.4, and Emfit: Table 3.5) as each device has different
patients. For both the automatic and manual analysis periods, mean values are
presented, along with the resulting P value from the t-test between the device and
the PSG (paired t-test if the differences follow a normal distribution, otherwise
Wilcoxon signed-rank test). Additionally, Bland-Altman plots are included for
the individual measures during the manual period, as results with the automatic
period are very similar and the data for Somnofy and Emfit were already cut for
the manual period. The tables also show the differences that do not follow a normal
distribution (Shapiro-Wilk test), which are the total sleep time, sleep onset latency,
REM latency, sleep efficiency, and, WASO duration, which should be taken into
account when reading the Bland-Altman plot of these measurements. Nonetheless,
the Bland-Altman plots remain a useful visual tool for assessing agreement and
bias between the two measurement methods.

The Somnofy results in Table 3.3 show that the sleep onset latency, REM latency
(automatic period), light sleep duration, and deep duration had no statistically
significant differences compared to PSG. Significant differences were found for
the other parameters. The Bland-Altman plots (Figure 3.2) revealed remarkable
proximity to zero in most cases, suggesting a degree of agreement between the
automatic analysis of Somnofy and PSG data. However, the substantial dispersion
in the differences, which in some instances extended towards notably larger values,
is reflected in the wide agreement limits.

In Table 3.4 significant differences are reported across all sleep metrics when
comparing Fitbit to PSG, except only the REM latency and sleep onset latency
(automatic period). Moreover, the Bland-Altman plots (Figure 3.3) reveal differ-
ences in biases, with some metrics showing considerable biases, such as a notable
underestimation of 33 minutes in WASO duration. In contrast, other metrics
demonstrate biases that are extremely close to zero, with a difference of less than
one minute in the case of REM latency. Nonetheless, it is essential to note a
persistent trend observed across all metrics: a clear dispersion in the differences, as
reflected in the broad limits of agreement. Furthermore, a pattern seems to emerge
when considering sleep onset latency and WASO duration, suggesting that as the
values of sleep onset latency and WASO duration increase, the underestimation
also increases.

Looking at Table 3.5 with the Emfit results, all metrics exhibited statistically
significant differences. Additionally, the Bland-Altman plots (Figure 3.4) indicate
the presence of considerable biases in most cases and substantial scatter among
data points, which implies a wide dispersion of the differences between Emfit and
PSG. A clear trend exists in the metrics of sleep onset latency, which subsequently
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affects REM latency and WASO duration. This trend is a consequence of the
partial or complete lack of classification of wake epochs by Emfit. As Emfit fails to
detect any episodes of wakefulness, sleep onset latency is mostly estimated as zero,
assuming a linear trend with the value given by PSG, and the same happens with
WASO duration.

3.2.3 Epoch-by-epoch concordance

The results of epoch-by-epoch concordance are first presented individually for each
device (Somnofy: Table 3.6, Fitbit: Table 3.7, Emfit: Table 3.8) using all patients
with valid data, followed by Table 3.9 with the results of each device on the 27
patients with valid data for all devices, enabling a direct comparison.

The results from Somnofy (Table 3.6) indicate comparable sensitivity across
sleep stages and very good specificity for all stages except light sleep. Light sleep
is the most common stage in PSG and is frequently classified by devices, leading
to the highest number of misclassified epochs. This is reflected in the accuracy
as well, with accuracies nearing 90%, whereas it is 70% for light sleep. MCC
demonstrates a moderate correlation for both individual sleep stages and overall.
Global balanced accuracy and accuracy are equal (67%) in this case, indicating
consistent performance across sleep stages.

In Table 3.7, Fitbit exhibits considerably lower sensitivity for wake than for the
other stages, indicating that Fitbit has difficulty detecting wake, and again lower
specificity for light sleep, as well as accuracy. MCC scores are moderate for both
individual sleep stages and the aggregate. Overall accuracy is 64%, with balanced
accuracy lower at 60%, largely because Fitbit struggles to classify wake epochs.

Emfit (Table 3.8) has a sensitivity of less than 50% for REM and deep sleep
and is particularly low for the wake stage, which Emfit also struggles to detect,
confirming what was previously mentioned, that in many patients no awakenings
are classified while they are present. Light sleep again has lower specificity and
accuracy than the other sleep stages. It is important to note that MCC shows
a weak correlation in all cases. Overall accuracy is quite low (47%) as well as
balanced accuracy (40%), again lower mainly due to the wake stage.

For a direct comparison on the same data, Table 3.9 shows the performance of the
devices in patients with valid data from all devices. Overall, Somnofy outperforms
the other devices with consistently superior accuracy, MCC, and balanced accuracy
metrics. Fitbit is ranked second, with the highest sensitivity for light sleep and the
best specificity for deep sleep. Emfit performs considerably worse than the other
two, with the only higher metric being wake specificity, however, this is due to the
fact that this stage is hardly ever classified by the device.
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3.2.4 Distribution of sleep stages consecutive durations
The distributions of consecutive sleep stages durations are shown in Figure 3.5 for
the 27 patients with valid data from all devices because the distributions are very
similar with all patients and the results can then be compared directly. For all
sleep stages, the PSG’s distribution is concentrated on short durations with the
peak occurring during consecutive durations of 1-2 epochs (30 seconds-1 minute).
This characteristic is particularly pronounced in WASO, whereas in REM there is
a longer tail towards longer durations.

Somnofy is the device with the closest distributions to PSG, particularly in
WASO and light sleep. In REM, the peak is observed to occur during the duration
of three consecutive epochs, with no occurrences for shorter durations. For these
patients, Somnofy is unable to identify durations lasting one to two epochs in REM.
Additionally, the distribution of deep sleep shows a less pronounced peak on shorter
epochs and a longer tail than PSG.

The Fitbit distributions deviate substantially from those of PSG, with all
durations concentrated on longer time periods, as in the case of WASO, where
the peak is at the 5-minute duration. In the distributions of REM and deep sleep,
a discontinuity is observed with no durations less than 4 and a half minutes for
REM and 3 and a half minutes for deep sleep. This nonbiological discontinuity, i.e.
solely due to a device limitation, since biologically there can be shorter durations
as shown in the PSG, is the same as that found in [6] on another Fitbit model,
indicating that the algorithm used in these devices is similar and suffers from this
limitation.

In Emfit distributions, these discontinuities are even more pronounced. No
durations shorter than 4 and a half minutes exist in WASO, and in deep sleep,
few durations are shorter than 9 minutes, with none shorter than 2 and a half
minutes. Similarly, in light sleep, durations shorter than 8 consecutive minutes are
very rare. Notably, the distributions’ peaks are significantly shifted towards longer
time intervals, with 13 minutes for deep sleep and 20 minutes for light sleep.
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Table 3.3: Sleep measures Somnofy

Sleep measure PSG Somnofy-A Somnofy-M

TST
(min)

Mean ± SD 354.95 ± 112.81 368.61 ± 114.73 368.32 ± 114.80
95% CI mean [335.40, 374.49] [348.73, 388.48] [348.43, 388.20]
P value t-test - <.001* <.001*

SOL
(min)

Mean ± SD 19.01 ± 21.82 20.01 ± 26.89 22.48 ± 33.55
95% CI mean [15.23, 22.79] [15.35, 24.67] [16.66, 28.29]
P value t-test - .587* .202*

REML
(min)

Mean ± SD 151.44 ± 90.07 128.46 ± 72.67 126.27 ± 71.76
95% CI mean [135.84, 167.05] [115.87, 141.05] [113.84, 138.70]
P value t-test - .052* .019*

SE
(%)

Mean ± SD 77.86 ± 13.45 81.19 ± 13.67 80.86 ± 13.82
95% CI mean [75.53, 80.19] [78.82, 83.55] [78.47, 83.26]
P value t-test - <.001* <.001*

WASOd
(min)

Mean ± SD 72.99 ± 55.26 58.97 ± 47.39 54.82 ± 45.35
95% CI mean [63.42, 82.56] [50.76, 67.18] [46.97, 62.68]
P value t-test - <.001* <.001*

REMd
(min)

Mean ± SD 57.50 ± 36.25 76.77 ± 40.53 76.77 ± 40.54
95% CI mean [51.22, 63.78] [69.75, 83.79] [69.75, 83.79]
P value t-test - <.001 <.001

Lightd
(min)

Mean ± SD 220.23 ± 79.27 218.14 ± 75.42 217.86 ± 75.42
95% CI mean [206.50, 233.96] [205.07, 231.20] [204.79, 230.92]
P value t-test - .642 .597

Deepd
(min)

Mean ± SD 77.21 ± 39.31 73.70 ± 28.89 73.69 ± 28.89
95% CI mean [70.41, 84.02] [68.69, 78.70] [68.69, 78.70]
P value t-test - .287 .286

Underlined P values represent statistically significant differences.
Somnofy-A = Somnofy measures during automatic analysis period, Somnofy-M = Somnofy
measures during manual analysis period, TST = total sleep time, SOL = sleep onset latency,
REML = REM latency, SE = sleep efficiency, WASOd = WASO duration, REMd = REM
duration, Lightd = light sleep duration, Deepd = deep sleep duration, min = minutes, SD =
standard deviation, CI = confidence interval, * = differences not normally distributed
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Figure 3.2: Bland-Altman plots for Somnofy sleep measures
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Table 3.4: Sleep measures Fitbit

Sleep measure PSG Fitbit-A Fitbit-M

TST
(min)

Mean ± SD 393.90 ± 118.19 444.84 ± 122.09 433.79 ± 120.17
95% CI mean [362.95, 424.86] [412.86, 476.82] [402.31, 465.26]
P value t-test - <.001* <.001*

SOL
(min)

Mean ± SD 14.05 ± 12.64 13.41 ± 16.76 8.42 ± 14.95
95% CI mean [10.74, 17.36] [9.02, 17.80] [4.50, 12.34]
P value t-test - .687* <.001*

REML
(min)

Mean ± SD 140.95 ± 84.27 148.68 ± 81.84 141.76 ± 75.34
95% CI mean [118.88, 163.03] [127.25, 170.12] [122.03, 161.50]
P value t-test - .209* .496*

SE
(%)

Mean ± SD 80.43 ± 12.51 89.92 ± 6.02 88.84 ± 11.63
95% CI mean [77.15, 83.71] [88.34, 91.49] [85.79, 91.89]
P value t-test - <.001* <.001*

WASOd
(min)

Mean ± SD 58.84 ± 41.79 29.71 ± 18.86 25.29 ± 17.43
95% CI mean [47.89, 69.78] [20.73, 29.86] [24.77, 34.66]
P value t-test - <.001* <.001*

REMd
(min)

Mean ± SD 67.62 ± 39.46 89.92 ± 47.66 88.28 ± 48.23
95% CI mean [57.29, 77.96] [77.44, 102.40] [75.64, 100.91]
P value t-test - <.001 <.001

Lightd
(min)

Mean ± SD 246.73 ± 86.61 287.85 ± 76.16 279.21 ± 74.42
95% CI mean [224.05, 269.42] [267.90, 307.80] [259.72, 298.70]
P value t-test - <.001 <.001

Deepd
(min)

Mean ± SD 79.54 ± 39.29 67.07 ± 32.84 66.29 ± 32.93
95% CI mean [69.25, 89.83] [58.47, 75.67] [57.67, 74.92]
P value t-test - .025 .017

Underlined P values represent statistically significant differences.
Fitbit-A = Fitbit measures during automatic analysis period, Fitbit-M = Fitbit measures during
manual analysis period, TST = total sleep time, SOL = sleep onset latency, REML = REM
latency, SE = sleep efficiency, WASOd = WASO duration, REMd = REM duration, Lightd =
light sleep duration, Deepd = deep sleep duration, min = minutes, SD = standard deviation, CI
= confidence interval, * = differences not normally distributed
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Figure 3.3: Bland-Altman plots for Fitbit sleep measures
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Differences between the sleep measures of Fitbit and PSG during the manual analysis period.
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Table 3.5: Sleep measures Emfit

Sleep measure PSG Emfit-A Emfit-M

TST
(min)

Mean ± SD 367.50 ± 120.09 435.78 ± 118.73 434.29 ± 118.66
95% CI mean [344.08, 390.92] [412.62, 458.93] [411.15, 457.43]
P value t-test - <.001* <.001*

SOL
(min)

Mean ± SD 11.03 ± 19.19 0.75 ± 3.55 0.74 ± 3.52
95% CI mean [7.29, 14.77] [0.06, 1.44] [0.06, 1.43]
P value t-test - <.001* <.001*

REML
(min)

Mean ± SD 140.63 ± 86.99 47.57 ± 42.74 47.57 ± 42.74
95% CI mean [123.66, 157.59] [39.23, 55.90] [39.23, 55.90]
P value t-test - <.001* <.001*

SE
(%)

Mean ± SD 77.09 ± 13.09 97.33 ± 3.49 91.75 ± 6.12
95% CI mean [74.54, 79.65] [96.65, 98.01] [90.56, 92.95]
P value t-test - <.001* <.001*

WASOd
(min)

Mean ± SD 63.33 ± 42.47 10.78 ± 12.81 10.97 ± 12.55
95% CI mean [55.04, 71.61] [8.28, 13.27] [8.52, 13.41]
P value t-test - <.001* <.001*

REMd
(min)

Mean ± SD 62.40 ± 38.78 101.88 ± 34.79 101.70 ± 34.70
95% CI mean [54.83, 69.96] [95.10, 108.67] [94.94, 108.47]
P value t-test - <.001 <.001

Lightd
(min)

Mean ± SD 229.82 ± 82.70 250.59 ± 71.03 249.64 ± 70.93
95% CI mean [213.69, 245.95] [236.74, 264.45] [235.81, 263.48]
P value t-test - <.001 <.001

Deepd
(min)

Mean ± SD 75.28 ± 37.05 83.30 ± 29.09 82.95 ± 29.19
95% CI mean [68.06, 82.51] [77.63, 88.97] [77.25, 88.64]
P value t-test - .028 .035

Underlined P values represent statistically significant differences.
Emfit-A = Emfit measures during automatic analysis period, Emfit-M = Emfit measures during
manual analysis period, TST = total sleep time, SOL = sleep onset latency, REML = REM
latency, SE = sleep efficiency, WASOd = WASO duration, REMd = REM duration, Lightd =
light sleep duration, Deepd = deep sleep duration, min = minutes, SD = standard deviation, CI
= confidence interval, * = differences not normally distributed
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Figure 3.4: Bland-Altman plots for Emfit sleep measures
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Differences between the sleep measures of Emfit and PSG during the manual analysis period.
min = minutes, SD = standard deviation

31



Results

Table 3.6: Epoch-by-epoch concordance Somnofy

Sleep stage Sensitivity Specificity Accuracy Matthews
CC

Wake 0.60 ± 0.23
[0.56, 0.64]

0.94 ± 0.10
[0.92, 0.95]

0.87 ± 0.10
[0.85, 0.89]

0.57 ± 0.18
[0.54, 0.60]

REM 0.71 ± 0.29
[0.66, 0.76]

0.91 ± 0.07
[0.90, 0.92]

0.89 ± 0.07
[0.88, 0.90]

0.53 ± 0.29
[0.48, 0.58]

Light sleep 0.69 ± 0.14
[0.67, 0.72]

0.71 ± 0.13
[0.69, 0.74]

0.70 ± 0.10
[0.69, 0.72]

0.40 ± 0.20
[0.37, 0.44]

Deep sleep 0.67 ± 0.23
[0.63, 0.71]

0.93 ± 0.06
[0.92, 0.94]

0.88 ± 0.06
[0.87, 0.89]

0.59 ± 0.19
[0.55, 0.62]

Global
Balanced accuracy 0.67 ± 0.13 [0.64, 0.69]

Accuracy 0.67 ± 0.12 [0.65, 0.69]
Matthews CC 0.51 ± 0.17 [0.48, 0.54]

Values presented as mean ± standard deviation followed by 95% confidence interval.
CC = correlation coefficient

Table 3.7: Epoch-by-epoch concordance Fitbit

Sleep stage Sensitivity Specificity Accuracy Matthews
CC

Wake 0.39 ± 0.20
[0.33, 0.44]

0.97 ± 0.05
[0.96, 0.98]

0.87 ± 0.09
[0.85, 0.89]

0.45 ± 0.15
[0.41, 0.49]

REM 0.67 ± 0.28
[0.60, 0.74]

0.90 ± 0.06
[0.89, 0.92]

0.87 ± 0.06
[0.86, 0.89]

0.50 ± 0.25
[0.43, 0.56]

Light sleep 0.77 ± 0.11
[0.74, 0.80]

0.59 ± 0.16
[0.55, 0.63]

0.68 ± 0.10
[0.65, 0.70]

0.36 ± 0.19
[0.32, 0.41]

Deep sleep 0.56 ± 0.25
[0.50, 0.63]

0.95 ± 0.04
[0.93, 0.96]

0.87 ± 0.07
[0.85, 0.89]

0.52 ± 0.22
[0.46, 0.58]

Global
Balanced accuracy 0.60 ± 0.12 [0.56, 0.63]

Accuracy 0.64 ± 0.11 [0.61, 0.67]
Matthews CC 0.44 ± 0.16 [0.40, 0.49]

Values presented as mean ± standard deviation followed by 95% confidence interval.
CC = correlation coefficient
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Table 3.8: Epoch-by-epoch concordance Emfit

Sleep stage Sensitivity Specificity Accuracy Matthews
CC

Wake 0.11 ± 0.13
[0.08, 0.13]

0.99 ± 0.02
[0.99, 0.99]

0.83 ± 0.12
[0.81, 0.85]

0.17 ± 0.19
[0.14, 0.21]

REM 0.45 ± 0.25
[0.40, 0.50]

0.81 ± 0.07
[0.79, 0.82]

0.76 ± 0.07
[0.74, 0.77]

0.20 ± 0.21
[0.15, 0.24]

Light sleep 0.63 ± 0.07
[0.62, 0.64]

0.52 ± 0.08
[0.50, 0.53]

0.57 ± 0.06
[0.56, 0.59]

0.14 ± 0.13
[0.12, 0.17]

Deep sleep 0.43 ± 0.18
[0.39, 0.46]

0.86 ± 0.05
[0.85, 0.87]

0.78 ± 0.06
[0.77, 0.79]

0.26 ± 0.17
[0.23, 0.29]

Global
Balanced accuracy 0.40 ± 0.09 [0.38, 0.42]

Accuracy 0.47 ± 0.09 [0.45, 0.49]
Matthews CC 0.19 ± 0.11 [0.16, 0.21]

Values presented as mean ± standard deviation followed by 95% confidence interval.
CC = correlation coefficient
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Table 3.9: Epoch-by-epoch concordance comparison on common patients

Sleep
stage Device Sensitivity Specificity Accuracy Matthews

CC

Wake
Somnofy 0.64 ± 0.21

[0.56, 0.72]
0.94 ± 0.07
[0.91, 0.97]

0.89 ± 0.07
[0.86, 0.92]

0.61 ± 0.15
[0.55, 0.67]

Fitbit 0.38 ± 0.17
[0.31, 0.44]

0.98 ± 0.03
[0.97, 0.99]

0.88 ± 0.08
[0.85, 0.91]

0.46 ± 0.13
[0.41, 0.51]

Emfit 0.09 ± 0.11
[0.05, 0.14]

0.99 ± 0.03
[0.98, 1.00]

0.85 ± 0.10
[0.81, 0.89]

0.16 ± 0.18
[0.09, 0.23]

REM
Somnofy 0.71 ± 0.29

[0.59, 0.82]
0.93 ± 0.05
[0.91, 0.95]

0.90 ± 0.05
[0.88, 0.92]

0.57 ± 0.28
[0.46, 0.68]

Fitbit 0.68 ± 0.29
[0.57, 0.79]

0.89 ± 0.07
[0.86, 0.91]

0.86 ± 0.07
[0.83, 0.89]

0.48 ± 0.26
[0.37, 0.58]

Emfit 0.48 ± 0.22
[0.39, 0.57]

0.82 ± 0.07
[0.79, 0.85]

0.77 ± 0.06
[0.75, 0.80]

0.24 ± 0.20
[0.16, 0.32]

Light
sleep

Somnofy 0.73 ± 0.09
[0.69, 0.77]

0.72 ± 0.14
[0.67, 0.78]

0.72 ± 0.08
[0.69, 0.76]

0.45 ± 0.17
[0.38, 0.51]

Fitbit 0.77 ± 0.10
[0.73, 0.80]

0.60 ± 0.16
[0.53, 0.66]

0.68 ± 0.09
[0.65, 0.72]

0.36 ± 0.16
[0.30, 0.43]

Emfit 0.64 ± 0.08
[0.61, 0.67]

0.51 ± 0.08
[0.48, 0.54]

0.58 ± 0.06
[0.55, 0.60]

0.15 ± 0.13
[0.09, 0.20]

Deep
sleep

Somnofy 0.65 ± 0.22
[0.57, 0.74]

0.94 ± 0.05
[0.92, 0.96]

0.89 ± 0.06
[0.87, 0.91]

0.59 ± 0.22
[0.50, 0.67]

Fitbit 0.52 ± 0.24
[0.43, 0.61]

0.95 ± 0.05
[0.93, 0.97]

0.87 ± 0.06
[0.85, 0.90]

0.50 ± 0.24
[0.41, 0.59]

Emfit 0.40 ± 0.15
[0.34, 0.45]

0.85 ± 0.05
[0.83, 0.87]

0.77 ± 0.05
[0.75, 0.79]

0.23 ± 0.14
[0.18, 0.28]

Global

Balanced
Accuracy

Somnofy 0.68 ± 0.12 [0.63, 0.73]
Fitbit 0.59 ± 0.12 [0.54, 0.63]
Emfit 0.40 ± 0.08 [0.37, 0.43]

Accuracy
Somnofy 0.70 ± 0.09 [0.67, 0.74]

Fitbit 0.64 ± 0.11 [0.60, 0.69]
Emfit 0.48 ± 0.09 [0.45, 0.52]

Matthews
CC

Somnofy 0.54 ± 0.15 [0.49, 0.60]
Fitbit 0.44 ± 0.16 [0.37, 0.50]
Emfit 0.19 ± 0.12 [0.15, 0.24]

Values presented as mean ± standard deviation followed by 95% confidence interval.
CC = correlation coefficient

34



Results

Figure 3.5: Distributions of sleep stages consecutive durations
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(d) Deep sleep
Comparison of the estimated distributions of consecutive durations for each sleep stage between
the PSG and the devices. The distributions are calculated for the common patients. Each plot is
normalized so that the area under the histogram integrates to 1.
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3.3 Empatica sleep stages
3.3.1 Features extraction and random forest
Table 3.10 displays the results of the random forest classification model using
features extracted from the Empatica data. The table shows the epoch-by-epoch
concordance metrics of the patients with valid data for all devices so that they
can be directly compared with those of the other devices (Table 3.9), also the
results with all Empatica patients are very similar. The results were obtained
through leave-one-group-out cross-validation, where all patients with valid data
from Empatica were utilized, but only the folds containing the test patient as one
of the common patients were taken into account.

The model has very poor performance, in particular, it is unable to detect REM
and deep sleep epochs (low sensitivity and high specificity), and most epochs are
classified as light sleep (high sensitivity and low specificity). MCC ranges from
weak correlation (wake and light sleep) to no correlation (REM and deep sleep).
Overall metrics are also low, and the model generally performs worse than any of
the other devices, despite being trained on this specific population.

Table 3.10: Sleep staging classification performance based on features extracted
from Empatica on common patients

Sleep stage Sensitivity Specificity Accuracy Matthews
CC

Wake 0.33 ± 0.15
[0.27, 0.39]

0.95 ± 0.04
[0.94, 0.97]

0.83 ± 0.08
[0.80, 0.86]

0.34 ± 0.13
[0.29, 0.39]

REM 0.00 ± 0.01
[0.00, 0.01]

0.99 ± 0.01
[0.99, 1.00]

0.84 ± 0.10
[0.80, 0.87]

-0.01 ± 0.04
[-0.02, 0.01]

Light sleep 0.92 ± 0.07
[0.89, 0.94]

0.18 ± 0.09
[0.15, 0.22]

0.55 ± 0.10
[0.51, 0.59]

0.14 ± 0.12
[0.09, 0.19]

Deep sleep 0.06 ± 0.09
[0.02, 0.09]

0.98 ± 0.03
[0.97, 1.00]

0.85 ± 0.08
[0.82, 0.88]

0.07 ± 0.11
[0.03, 0.11]

Global
Balanced accuracy 0.33 ± 0.04 [0.31, 0.35]

Accuracy 0.53 ± 0.10 [0.49, 0.58]
Matthews CC 0.18 ± 0.10 [0.14, 0.22]

Epoch-by-epoch concordance for the random forest using the features extracted from Empatica on
common patients. Values presented as mean ± standard deviation and 95% confidence interval.
CC = correlation coefficient
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3.3.2 Fully convolutional neural network
The 133 patients having valid Empatica data were divided into 3 sets: training,
evaluation, and test. The demographics of each set are shown in Table 3.11. The
test set represents the holdout set, which is not used in any way during training
but is subsequently used to measure the model’s performance on new data. The
27 patients (approximately 20% of all Empatica patients) with valid data across
all devices were assigned to the test set to facilitate comparisons of this model’s
results with those of other devices. Of the remaining 106 patients, approximately
15% (15 patients) were randomly assigned to the evaluation set, with the remaining
91 patients comprising the training set. The data in the training set are utilized
directly by the model for learning, while those in the evaluation set are employed
to assess the model’s performance during training. In all experiments using the
temperature signal, the 6 patients with faulty temperature sensors were excluded,
resulting in 86 patients for training and 26 patients for testing with an unchanged
evaluation set. Cross-validation was not conducted in this case due to the resource-
intensive nature of network training. Repeating the training for different folds for
each cycle would have required too much time.

Table 3.11: Population characteristics of each set used in Empatica model training

Empatica Train set Evaluation set Test set

Valid patients: n 133 91 15 27
Females: n (%) 73 (54.89) 51 (56.04) 8 (53.33) 14 (51.85)
Age (years): mean ± SD
[range]

45.32 ± 16.23
[18.2, 84.6]

46.23 ± 16.37
[18.2, 84.6]

44.57 ± 15.70
[18.6, 73.7]

42.24 ± 16.15
[19.0, 72.8]

Diagnosis: %

Breathing disorders 57.14 59.34 60.00 51.86
Hypersomnolence 15.79 12.09 20.00 22.23
Parasomnias 4.51 4.40 6.67 3.70
Insomnia 6.02 6.59 6.67 3.70
Circadian disorders 1.50 2.20 0 0
Movement disorders 2.26 2.20 0 3.70
Other disorders 3.01 4.40 0 0
Healthy controls 4.51 3.29 0 11.11
Missing diagnosis 5.26 5.49 6.67 3.70
SD = standard deviation

Several experiments were conducted using this model. Two modes of input were
tested: directly using the raw signals or using the spectrograms of the signals.
Subsequent experiments were conducted using both modes.

The initial experiment focused on the number of epochs within the model
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input window. The lengths of 128, 256, 512, and 1024 epochs were examined,
equating to approximately 1 hour, 2 hours, 4 hours, and 8 and a half hours,
respectively. The results indicated that, using both raw signals and spectrograms,
the best performance was obtained at the maximum length of 1024 epochs, which
is coherent with the outcomes in the original model paper [9].

The next experiment was to choose which signals to use as input. The initial
study [9] utilized accelerometer and PPG, also known as BVP, data gathered from
a wearable device. Empatica additionally offers various other signals, including
EDA and skin temperature, as well as measurements derived from the raw signals,
such as HR, which is derived from BVP. The various combinations of the five
signals (accelerometer, BVP, EDA, temperature, and HR) were evaluated using
fixed model parameters to facilitate a comparison of the results. The results of
the most interesting combinations are shown in Table 3.12 using the raw signals
and Table 3.13 using the spectrograms. The tables present the balanced accuracy
which was chosen as the overall metric to compare the performance of the different
experiments because, unlike accuracy, it is robust to class imbalance and is easier to
interpret than MCC. Using raw signals as direct input, the table shows that heart
rate is the most effective among all single signals, followed by the accelerometer,
EDA, BVP, and finally, temperature. While combining signals does lead to
improvements over some single signals, HR alone still remains the most effective.
The difference in performance between BVP and HR is noteworthy because HR is
derived from BVP, so BVP contains more information and is also higher frequency,
but can also contain more noise than HR. Instead, spectrogram results (Table 3.13)
demonstrate that the most effective signals are BVP and accelerometer, followed
by EDA, HR, and temperature. Combining signals substantially increases balanced
accuracy in this case, with the best result obtained by using BVP and accelerometer
simultaneously while adding more signals seems to have diminishing returns. In
general, it is evident that using spectrograms as input yields better performance
than using raw data, as repeatedly observed in all experiments. Therefore, only
spectrograms were utilized in the subsequent step.

The final step was hyperparameter tuning to find the best parameters for the
model using the spectrograms of BVP and accelerometer signals as input. The
parameters used were:

• M , the number of encoders and decoders, with a value between 8, 10, 12, 14;

• K, the kernel height of the 2D convolutions that have kernel size (K, 3), with
a value between 4, 8, 16, 32;

• initial filter number, the number of filters used in the 2D convolution of
the first encoder, which determines the number of its output features and is
incremented for each successive encoder level, with a value between 4, 8, 16,
32;

38



Results

Table 3.12: Balanced accuracies using different combinations of raw signals in
input to the Empatica network

Signals Balanced accuracy

BVP 0.32 ± 0.04 [0.30, 0.34]
ACC 0.39 ± 0.07 [0.37, 0.42]
EDA 0.38 ± 0.07 [0.36, 0.41]
TEMP 0.36 ± 0.07 [0.33, 0.39]
HR 0.47 ± 0.09 [0.44, 0.51]
BVP+ACC 0.41 ± 0.07 [0.38, 0.43]
BVP+ACC+EDA+HR 0.39 ± 0.06 [0.37, 0.42]
BVP+ACC+TEMP 0.40 ± 0.06 [0.38, 0.43]
BVP+ACC+EDA+TEMP+HR 0.36 ± 0.05 [0.34, 0.38]

Values presented as mean ± standard deviation followed by 95% confidence interval.
BVP = blood volume pulse, ACC = accelerometry, EDA = electrodermal activity, TEMP = skin
temperature, HR = heart rate

Table 3.13: Balanced accuracies using different combinations of signals spectro-
grams in input to the Empatica network

Signals Balanced accuracy

BVP 0.47 ± 0.08 [0.44, 0.50]
ACC 0.47 ± 0.08 [0.44, 0.50]
EDA 0.43 ± 0.09 [0.40, 0.47]
TEMP 0.33 ± 0.06 [0.30, 0.35]
HR 0.42 ± 0.07 [0.39, 0.45]
BVP+ACC 0.52 ± 0.08 [0.48, 0.55]
BVP+ACC+EDA 0.48 ± 0.07 [0.46, 0.52]
BVP+ACC+TEMP 0.42 ± 0.07 [0.39, 0.44]
BVP+ACC+EDA+TEMP 0.45 ± 0.08 [0.42, 0.49]

Values presented as mean ± standard deviation followed by 95% confidence interval.
BVP = blood volume pulse, ACC = accelerometry, EDA = electrodermal activity, TEMP = skin
temperature, HR = heart rate

• learning rate, with a value between 0.01, 0.001, 0.0001.

The search was performed using HyperBand [18], which allows for faster parameter
search than traditional approaches such as grid search. Early stopping was also
used: each learning procedure was stopped when there was no improvement in
accuracy on the evaluation set for 25 consecutive epochs, as done in [9]. The
HyperBand was run for up to 250 epochs for each configuration, and the one with
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better accuracy on the evaluation set was selected. The parameters of the best
model are: M=10, K=16, initial filters=16, learning rate = 0.001; interestingly,
these are the same values found in the paper [9] as a result of optimization. The
EBE concordance metrics on the test set, which consists of the patients with valid
data from all devices, are shown in Table 3.14. The results indicate that the model
struggles slightly to recognize wake and REM epochs (lower sensitivity), classifying
many epochs as light sleep when they are not (lower specificity), but in general
it succeeds in achieving good performance, with the MCC showing a moderate
correlation for all of them. These results are remarkably higher than those of the
random forest classifier with feature extraction (Table 3.10), suggesting that the
poor performance was not due to the low amount of informative signals, but rather
to the overly restrictive feature extraction method. Comparing these scores with
those of the other devices on the same patients (Table 3.9), the model generally
performs better than Fitbit and Emfit, but Somnofy is still slightly better, for
example when comparing global metrics. The achieved accuracy of 67% aligns
with the 69% accuracy obtained in both the original paper describing the model
architecture [9] and the previous paper that tested sleep stages classification with
Empatica [8]. However, it is essential to observe that the studies used different
datasets with varying populations, precluding a direct comparison of the results.

The sleep measures obtained from Empatica are presented in Table 3.15, demon-
strating significant differences only for sleep onset latency and REM latency. This
suggests that Empatica is more reliable than the other devices for these measures.
These findings are also reflected in the Bland-Altman plots in Figure 3.6, where sleep
onset latency and REM latency have larger average differences of approximately 6
and 41 minutes of underestimation, respectively. The total sleep time exhibits a
higher average overestimation difference of nearly 12 minutes when compared to
the others, which display less difference.

Figure 3.7 displays the distributions of consecutive durations of sleep stages,
where the similarity between the distributions of PSG and Empatica is noticeable,
especially for WASO and deep sleep. The distribution of REM is more concentrated
on short durations than PSG, thus overestimating the fragmentation of REM,
which is also the case to a lesser extent for light sleep. The Empatica distributions
exhibit a greater similarity than those of the other devices (Figure 3.5), but it must
be taken into account that this model was trained on this specific population.
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Table 3.14: Sleep staging classification performance of the best optimized convo-
lutional network from Empatica signals spectrograms on common patients

Sleep stage Sensitivity Specificity Accuracy Matthews
CC

Wake 0.59 ± 0.22
[0.50, 0.68]

0.94 ± 0.05
[0.92, 0.96]

0.88 ± 0.06
[0.85, 0.90]

0.54 ± 0.18
[0.47, 0.62]

REM 0.55 ± 0.22
[0.46, 0.64]

0.93 ± 0.04
[0.92, 0.95]

0.88 ± 0.05
[0.86, 0.90]

0.46 ± 0.21
[0.38, 0.54]

Light sleep 0.71 ± 0.07
[0.68, 0.74]

0.67 ± 0.12
[0.62, 0.71]

0.70 ± 0.06
[0.67, 0.72]

0.38 ± 0.13
[0.33, 0.43]

Deep sleep 0.70 ± 0.21
[0.62, 0.78]

0.92 ± 0.06
[0.90, 0.94]

0.89 ± 0.03
[0.87, 0.90]

0.61 ± 0.12
[0.56, 0.65]

Global
Balanced accuracy 0.64 ± 0.08 [0.60, 0.67]

Accuracy 0.67 ± 0.07 [0.64, 0.70]
Matthews CC 0.49 ± 0.12 [0.44, 0.53]

Epoch-by-epoch concordance for the best convolutional neural network using as input the
Empatica BVP and accelerometer signals spectrograms as a result of hyperparameter tuning.
Values presented as mean ± standard deviation followed by 95% confidence interval. Results
calculated using only patients with all devices as a test so that they could be compared with
those of other devices.
CC = correlation coefficient
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Table 3.15: Sleep measures of the best Empatica model on common patients

Sleep measure PSG Empatica

TST
(min)

Mean ± SD 363.19 ± 79.58 374.91 ± 80.09
95% CI mean [331.70, 394.67] [343.23, 406.59]
P value t-test - .23*

SOL
(min)

Mean ± SD 18.63 ± 14.94 12.15 ± 9.73
95% CI mean [12.72, 24.54] [8.30, 16.00]
P value t-test - .029*

REML
(min)

Mean ± SD 132.65 ± 74.91 93.94 ± 56.47
95% CI mean [103.02, 162.29] [71.61, 116.28]
P value t-test - .033*

SE
(%)

Mean ± SD 74.29 ± 13.55 76.36 ± 12.17
95% CI mean [68.93, 79.65] [71.54, 81.17]
P value t-test - .14

WASOd
(min)

Mean ± SD 59.93 ± 40.87 56.07 ± 34.07
95% CI mean [43.76, 76.09] [42.60, 69.55]
P value t-test - .79*

REMd
(min)

Mean ± SD 62.78 ± 33.85 60.43 ± 31.14
95% CI mean [49.39, 76.17] [48.11, 72.74]
P value t-test - .69

Lightd
(min)

Mean ± SD 223.83 ± 59.75 233.02 ± 61.45
95% CI mean [200.20, 247.47] [208.71, 257.33]
P value t-test - .23

Deepd
(min)

Mean ± SD 76.57 ± 32.13 81.46 ± 38.38
95% CI mean [63.86, 89.28] [66.28, 96.65]
P value t-test - .44

Underlined P values represent statistically significant differences.
Empatica = Empatica measures using the best model from hyperparameters tuning using as
input the BVP and accelerometer spectrograms, TST = total sleep time, SOL = sleep onset
latency, REML = REM latency, SE = sleep efficiency, WASOd = WASO duration, REMd =
REM duration, Lightd = light sleep duration, Deepd = deep sleep duration, min = minutes, SD
= standard deviation, CI = confidence interval, * = differences not normally distributed
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Figure 3.6: Bland-Altman plots sleep measures of the best Empatica model on
common patients
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Differences between the sleep measures of the best Empatica model and PSG on common patients.
min = minutes, SD = standard deviation
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Figure 3.7: Distributions of sleep stages consecutive durations of the best Empatica
model on common patients
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Comparison of the estimated distributions of consecutive durations for each sleep stage between
the PSG and the best Empatica model from hyperparameters tuning using as input the BVP
and accelerometer spectrograms. The distributions are calculated for the common patients. Each
plot is normalized so that the area under the histogram integrates to 1.
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3.4 Fusion of devices sleep stages
The sleep stages provided by Somnofy, Fitbit, Emfit, and the fully convolutional
network from Empatica data are combined using a random forest algorithm. The
Empatica model used is the one obtained from hyperparameter tuning. Only the
27 patients with valid data for all devices were used to avoid missing sleep stages
and to use only patients in the Empatica test dataset. This approach ensures that
the results can be directly compared with those of individual devices.

To observe the impact of each device, all combinations of two, three, and finally
all four devices were tested. Table 3.16 displays the outcomes for each combination
after leave-one-group-out cross-validation. The accuracies for each sleep stage
are predominantly high, all close to 90 percent, except for light sleep, which is
around 70 percent. Considering that the highest balanced accuracy achieved so
far in common patients was 68% for Somnofy, in the two-device combinations
only Somnofy plus Empatica manages to perform better than Somnofy alone. On
the other hand, all the combinations with three devices that include the Somnofy
display enhanced balanced accuracy relative to single devices. The combination of
all four devices does not seem to further improve performance and has very similar
results to the 3-device combinations. The most effective combination appears to
be Somnofy, Fitbit, and Empatica.

Other experiments have been done, including giving in input to the random
forest the predecessor and subsequent epochs in addition to the current epoch, but
no improvement in performance was found.

3.5 Comparison results of the devices and models
A summary comparison between the results of Somnofy, Fitbit, Emfit, and the
best results with Empatica and devices fusion on common patients is shown in
Table 3.17 for individual sleep stage metrics and Table 3.18 for global metrics. For
Empatica, the results of the best model obtained with hyperparameter tuning are
shown, and for device fusion, the combination of Somnofy, Fitbit, and Empatica is
reported.

Summarizing the results, the tables confirm how Somnofy performs considerably
better than Fitbit, which in turn performs substantially better than Emfit. The
Empatica algorithm manages to perform better than Fitbit, but not Somnofy.
The fusion of the different devices, on the other hand, proves to be effective and
performs better than Somnofy alone, with a better accuracy both in individual
sleep stages and overall.

Table 3.19 presents a further comparison of overall metrics for common patients
categorized by diagnosis to demonstrate variations in performance among different
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sleep disorders. The findings indicate that commercial devices exhibit superior
performance on healthy patients, perhaps due to their model training data being
predominantly composed of this subgroup, but are limited when dealing with
disorders. On the other hand, the Empatica and fusion devices models exhibit
consistent performance across all sleep disorders with less noticeable variation
between different diagnoses. However, their outcomes for healthy patients are
inferior compared to Somnofy.
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Table 3.16: Performance of sleep stages fusion for all devices combinations

Som
nofy

Fitbit
Em

fit

Em
patica

Accuracy Balanced
accuracy

Matthews
CCWake REM Light Deep

x x 0.89 ± 0.07
[0.87, 0.92]

0.89 ± 0.06
[0.86, 0.91]

0.69 ± 0.08
[0.66, 0.72]

0.87 ± 0.06
[0.84, 0.89]

0.65 ± 0.10
[0.61, 0.69]

0.49 ± 0.14
[0.43, 0.55]

x x 0.90 ± 0.07
[0.87, 0.93]

0.90 ± 0.05
[0.88, 0.92]

0.71 ± 0.09
[0.67, 0.74]

0.87 ± 0.07
[0.84, 0.90]

0.67 ± 0.10
[0.63, 0.70]

0.51 ± 0.15
[0.45, 0.57]

x x 0.90 ± 0.07
[0.87, 0.93]

0.90 ± 0.05
[0.88, 0.92]

0.72 ± 0.08
[0.68, 0.75]

0.89 ± 0.05
[0.87, 0.91]

0.71 ± 0.09
[0.68, 0.75]

0.51 ± 0.14
[0.46, 0.57]

x x 0.89 ± 0.08
[0.86, 0.92]

0.87 ± 0.07
[0.84, 0.90]

0.68 ± 0.09
[0.64, 0.71]

0.86 ± 0.07
[0.83, 0.89]

0.64 ± 0.11
[0.59, 0.68]

0.43 ± 0.16
[0.37, 0.49]

x x 0.89 ± 0.06
[0.86, 0.91]

0.89 ± 0.06
[0.87, 0.92]

0.70 ± 0.06
[0.67, 0.72]

0.88 ± 0.04
[0.86, 0.90]

0.66 ± 0.08
[0.63, 0.70]

0.48 ± 0.11
[0.44, 0.52]

x x 0.88 ± 0.07
[0.86, 0.91]

0.88 ± 0.04
[0.86, 0.90]

0.69 ± 0.06
[0.67, 0.71]

0.88 ± 0.04
[0.86, 0.90]

0.63 ± 0.08
[0.60, 0.66]

0.47 ± 0.11
[0.43, 0.51]

x x x 0.90 ± 0.08
[0.87, 0.93]

0.90 ± 0.05
[0.88, 0.92]

0.70 ± 0.10
[0.66, 0.74]

0.88 ± 0.06
[0.85, 0.90]

0.70 ± 0.11
[0.66, 0.74]

0.49 ± 0.15
[0.43, 0.55]

x x x 0.91 ± 0.07
[0.88, 0.93]

0.91 ± 0.05
[0.88, 0.93]

0.73 ± 0.08
[0.69, 0.76]

0.90 ± 0.05
[0.88, 0.91]

0.73 ± 0.09
[0.69, 0.76]

0.54 ± 0.13
[0.48, 0.59]

x x x 0.90 ± 0.07
[0.87, 0.93]

0.91 ± 0.04
[0.89, 0.92]

0.71 ± 0.08
[0.68, 0.74]

0.89 ± 0.05
[0.86, 0.91]

0.72 ± 0.09
[0.69, 0.76]

0.51 ± 0.12
[0.46, 0.56]

x x x 0.89 ± 0.08
[0.86, 0.92]

0.89 ± 0.05
[0.87, 0.91]

0.69 ± 0.08
[0.66, 0.72]

0.88 ± 0.05
[0.86, 0.90]

0.67 ± 0.08
[0.64, 0.71]

0.47 ± 0.13
[0.41, 0.52]

x x x x 0.90 ± 0.07
[0.87, 0.93]

0.91 ± 0.04
[0.89, 0.92]

0.72 ± 0.08
[0.69, 0.76]

0.89 ± 0.06
[0.87, 0.92]

0.72 ± 0.09
[0.69, 0.76]

0.53 ± 0.13
[0.48, 0.59]

Epoch-by-epoch concordance accuracy for each sleep stage and overall balanced accuracy and
MCC for the fusion of sleep stages from different devices using a random forest. All possible
device combinations are displayed, with each "x" indicating that the device was used for that
combination. Values presented as mean ± standard deviation followed by 95% confidence interval.
Results calculated using only patients with all devices.
CC = correlation coefficient
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Results

Table 3.17: Epoch-by-epoch concordance comparison of single stage metrics
between devices and proposed models on common patients

Sleep
stage Model Sensitivity Specificity Accuracy Matthews

CC

Wake

Somnofy 0.64 ± 0.21 0.94 ± 0.07 0.89 ± 0.07 0.61 ± 0.15
Fitbit 0.38 ± 0.17 0.98 ± 0.03 0.88 ± 0.08 0.46 ± 0.13
Emfit 0.09 ± 0.11 0.99 ± 0.03 0.85 ± 0.10 0.16 ± 0.18

Empatica 0.59 ± 0.22 0.94 ± 0.05 0.88 ± 0.06 0.54 ± 0.18
Fusion 0.79 ± 0.18 0.91 ± 0.08 0.91 ± 0.07 0.54 ± 0.15

REM

Somnofy 0.71 ± 0.29 0.93 ± 0.05 0.90 ± 0.05 0.57 ± 0.28
Fitbit 0.68 ± 0.29 0.89 ± 0.07 0.86 ± 0.07 0.48 ± 0.26
Emfit 0.48 ± 0.22 0.82 ± 0.07 0.77 ± 0.06 0.24 ± 0.20

Empatica 0.55 ± 0.22 0.93 ± 0.04 0.88 ± 0.05 0.46 ± 0.21
Fusion 0.63 ± 0.26 0.94 ± 0.05 0.91 ± 0.05 0.51 ± 0.28

Light
sleep

Somnofy 0.73 ± 0.09 0.72 ± 0.14 0.72 ± 0.08 0.45 ± 0.17
Fitbit 0.77 ± 0.10 0.60 ± 0.16 0.68 ± 0.09 0.36 ± 0.16
Emfit 0.64 ± 0.08 0.51 ± 0.08 0.58 ± 0.06 0.15 ± 0.13

Empatica 0.71 ± 0.07 0.67 ± 0.12 0.70 ± 0.06 0.38 ± 0.13
Fusion 0.70 ± 0.11 0.76 ± 0.12 0.73 ± 0.08 0.45 ± 0.14

Deep
sleep

Somnofy 0.65 ± 0.22 0.94 ± 0.05 0.89 ± 0.06 0.59 ± 0.22
Fitbit 0.52 ± 0.24 0.95 ± 0.05 0.87 ± 0.06 0.50 ± 0.24
Emfit 0.40 ± 0.15 0.85 ± 0.05 0.77 ± 0.05 0.23 ± 0.14

Empatica 0.70 ± 0.21 0.92 ± 0.06 0.89 ± 0.03 0.61 ± 0.12
Fusion 0.78 ± 0.22 0.92 ± 0.06 0.90 ± 0.05 0.62 ± 0.18

Epoch-by-epoch concordance of the devices providing sleep stages (Somnofy, Fitbit, and Emfit)
and the best models proposed (fine-tuned convolutional model using spectrograms of BVP and
accelerometer for Empatica, and the combination of Somnofy, Fitbit and Empatica for the fusion
model). Sensitivity, specificity, accuracy, and Matthews correlation coefficient for each sleep stage
are reported and they were calculated using only patients with all devices. Values presented as
mean ± standard deviation.
CC = correlation coefficient
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Results

Table 3.18: Epoch-by-epoch concordance comparison of overall metrics between
devices and proposed models on common patients

Model Balanced
accuracy Accuracy Matthews

CC

Somnofy 0.68 ± 0.12 0.70 ± 0.09 0.54 ± 0.15
Fitbit 0.59 ± 0.12 0.64 ± 0.11 0.44 ± 0.16
Emfit 0.40 ± 0.08 0.48 ± 0.09 0.19 ± 0.12

Empatica 0.64 ± 0.08 0.67 ± 0.07 0.49 ± 0.12
Fusion 0.73 ± 0.09 0.72 ± 0.09 0.54 ± 0.13

Epoch-by-epoch concordance of the devices providing sleep stages (Somnofy, Fitbit, and Emfit)
and the best models proposed (fine-tuned convolutional model using spectrograms of BVP and
accelerometer for Empatica, and the combination of Somnofy, Fitbit, and Empatica for the
fusion model). Overall balanced accuracy, accuracy, and Matthews correlation coefficient are
reported and they were calculated using only patients with all devices. Values presented as mean
± standard deviation.
CC = correlation coefficient
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Results

Table 3.19: Comparison of overall epoch-by-epoch concordance metrics on common
patients divided by diagnosis between devices and proposed models

Disorder Metric Somnofy Fitbit Emfit Empatica Fusion

Breathing
disorders

(14)

Bal. Acc. 0.64 0.55 0.40 0.64 0.73
Accuracy 0.68 0.61 0.48 0.68 0.70

MCC 0.50 0.39 0.19 0.49 0.50

Hypersomnolence
(6)

Bal. Acc. 0.73 0.66 0.39 0.64 0.75
Accuracy 0.75 0.71 0.52 0.67 0.79

MCC 0.61 0.52 0.21 0.46 0.64

Healthy
controls

(3)

Bal. Acc. 0.84 0.67 0.45 0.69 0.75
Accuracy 0.81 0.72 0.55 0.72 0.77

MCC 0.72 0.56 0.26 0.56 0.62

Insomnia
(1)

Bal. Acc. 0.64 0.56 0.43 0.53 0.70
Accuracy 0.64 0.56 0.46 0.49 0.60

MCC 0.48 0.38 0.22 0.31 0.47

Movement
disorders

(1)

Bal. Acc. 0.73 0.40 0.35 0.67 0.72
Accuracy 0.69 0.50 0.32 0.74 0.67

MCC 0.55 0.26 0.20 0.63 0.50

Parasomnias
(1)

Bal. Acc. 0.49 0.57 0.39 0.48 0.61
Accuracy 0.53 0.61 0.43 0.56 0.57

MCC 0.30 0.43 0.13 0.35 0.33

Missing
diagnosis

(1)

Bal. Acc. 0.68 0.60 0.28 0.63 0.69
Accuracy 0.73 0.70 0.42 0.63 0.73

MCC 0.56 0.49 0.00 0.45 0.53
Overall epoch-by-epoch concordance divided per diagnosis of the patients with valid data of all
devices. The performances are presented for the devices providing sleep stages (Somnofy, Fitbit,
and Emfit) and the best models proposed (fine-tuned convolutional model using spectrograms of
BVP and accelerometer for Empatica, and the combination of Somnofy, Fitbit, and Empatica
for the fusion model). Values represent the mean and the number in parentheses following each
diagnosis indicates the number of patients affected by the disorder.
Bal. Acc. = balanced accuracy, MCC = Matthews correlation coefficient
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Chapter 4

Discussion and conclusion

This thesis evaluates the potential use of commercial devices as a support or
alternative to PSG for sleep stages classification in patients with sleep disorders.
The analysis is based on data from a prior study that included four commercial
devices: Somnofy, Fitbit Inspire 2, Emfit, and Empatica E4, added to patients
undergoing PSG. First, a comprehensive evaluation was conducted on Somnofy,
Fitbit, and Emfit devices that automatically provide sleep stages. Then, customized
algorithms were proposed, initially using one device and then combining multiple
devices.

Sleep stages classifications from commercial devices have demonstrated statisti-
cally significant differences from PSG for sleep measures such as total sleep time
and REM latency. As these measures are among the parameters used to diagnose
sleep disorders, it is not advisable to make a diagnosis using these device-based
measures. Emfit, in particular, performed inadequately, specifically failing to detect
periods of wakefulness. Fitbit experienced some difficulty with this type of patients
and was unable to recognize sleep stages of very short durations. Somnofy, on the
other hand, was able to provide accurate scores across all sleep stages and was
effective at detecting short duration sleep stages.

The Empatica device was selected to train a custom algorithm due to its high
frequency raw data and diverse signal types. The algorithm, adapted from [9]
and fine-tuned, was found to be effective on Empatica and in patients with sleep
disorders, showing superior results to Fitbit, the other wearable device, but not
reaching the performance of Somnofy. Different combinations and types of inputs
were tested, revealing that PPG and accelerometer spectrograms were the most
effective.

The novel proposed approach of fusing sleep stages from different devices has
shown promising results, improving the overall accuracy of sleep stages classification
in comparison to individual devices. It is important to point out that some of
these devices are contactless, which minimizes the burden of using multiple devices
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Discussion and conclusion

simultaneously and thus makes it a viable option.
In conclusion, this study demonstrates that current commercial devices can

achieve accuracies of over 70% in classifying sleep stages in patients with sleep
disorders. Comparing the accuracy of these devices to that of doctors manually
scoring PSG, which was estimated at 88% [3], there is still a gap. However, the
advantages of these devices, such as the ability to be used easily in one’s own
home for multiple nights, make them capable of supporting studies done with
PSG. Nonetheless, limitations still exist, particularly regarding sleep measures, and
further improvements are necessary to enable the diagnosis of sleep disorders using
only these devices.

Limitations and future developments

The inter-rater agreement for PSG among doctors can be seen as a limitation since
the gold standard used for both training and testing is unstable and the results
obtained may vary significantly from one doctor to another. Therefore, Empatica
and fusion models should be tested on additional datasets, preferably with a larger
number of patients and diverse population characteristics, to obtain a more reliable
performance estimation.

A limitation of this dataset was that there were few patients with valid data
for all devices relative to the total number of patients. As a result, only a small
number of patients were available to train and test the sleep stages fusion model
from multiple devices.

As a future development in sleep stages fusion, it is possible to utilize raw signals
directly without relying on the device’s classification algorithm. This approach
could potentially be more effective, and since several of the devices used in this
study provide signals at relatively low frequencies (e.g., Emfit every 4 seconds), it
could be explored with other commercial devices as well.
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