
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Integration Testing for Enterprise
Web Applications

In collaboration with
RCS Etm Sicurezza Spa

Supervisors Candidate
Prof. Giovanni MALNATI Takla TRAD

October 2023

Abstract

In today’s fast changing software ecosystem, efficient microservice integration has
emerged as a vital problem for software development teams. To guarantee that these
scattered components work together seamlessly, the integration process necessitates
extensive testing. This thesis aims to provide a thorough examination of automated
integration testing within the realm of microservices, with a focus on the use of a
ubiquitous language to promote larger test engagement.
Throughout this research endeavor, in collaboration with RCS lab, a company look-
ing to improve their integration testing practice, the goal was to create an automated
integration testing flow that not only empowers developers but also extends testing
capabilities to Quality Assurance team members. The encircling goal is to provide a
test suite exemplar that encompasses best practices and concepts allowing successful
testing operations.
A multifaceted strategy was used to overcome this challenge. Initially, an explo-
ration was conducted on the applications under test, laying the groundwork for
microservices integration testing efforts. Subsequently, the focus shifted to the im-
plementation approaches. These techniques include configuring the test environment
to accurately reflect the real-world conditions, managing databases for seamless
data interactions, and strategically using Testcontainers to ensure smooth test exe-
cution while maintaining a high degree of fidelity to the production environment.
Testcontainers is a framework that provides throwaway, lightweight instances of
test-dependent services wrapped in Docker containers. Emphasis is placed on the
value of adopting Cucumber as the selected testing framework. Cucumber is a tool
used to test applications written in a Behavior-Driven Development style, which
supports a team-centric and cross-functional workflows. Cucumber provides a lan-
guage abstraction that encourages developer and Quality Assurance collaboration.
This collaboration approach fostered a culture of shared testing accountability which
increases overall testing involvement. Furthermore, Jenkins, an open-source automa-

iii

tion tool equipped with plugins built for continuous integration, was selected to
orchestrate the automated execution of the integration tests, providing frequent and
timely validation on microservice integrations. Alongside the achievements, one can
find discussions revolving the difficulties experienced during the implementation
process and the tactics used to overcome them. To review and debate the results of
the testing efforts, successful scenarios are outlined, using Cucumber reports and
Jenkins pipeline performance metrics, ensuring alignment with the specified objec-
tives. Finally, a comprehensive overview of the study’s achievements is presented,
stressing the significance of the chosen technique, and highlighting possible future
improvements.
This thesis provided a complete grasp of the problems, tactics, and outcomes con-
nected with automated integration testing in the microservices domain. Collaborat-
ing with RCS lab produced a helpful resource for future testing attempts, allowing
widespread participation to perform tests that ensure the integrity of microservice
communications.

Contents

List of Figures vii

List of Tables viii

List of Abbreviations ix

1 Introduction 1

1.1 Importance of Integration Testing in Microservices Environment . . 3

1.2 Thesis Objectives . 5

1.2.1 Identify and Evaluate Existing Integration Testing Method-
ologies and Tools . 6

1.2.2 Select the Most Suitable Tools for The Company and Exper-
iment Their Effectiveness 6

1.2.3 Inspire the Employees and Improve Software Development
Process . 6

1.3 Thesis Structure . 7

2 Related Work 8

2.1 Overview of Microservices Architecture 8

2.1.1 Defining the Scope and Size of Microservices 8

2.1.2 Advantages of Adopting Microservices Architecture 9

2.2 Development Methodologies for Microservices Testing 9

Contents v

2.2.1 Test-Driven Development 9

2.2.2 Domain-Driven Development 10

2.2.3 Behavior-Driven Development 11

2.3 Testing Approaches for Microservices Architecture 12

2.3.1 Manual vs. Automation Testing 12

2.3.2 Types of Software Testing 15

2.3.3 Continuous Testing . 20

2.4 Frameworks and Tools . 22

3 Proposed Approach 25

3.1 Applications Under Test . 25

3.2 Implementation Techniques . 28

3.2.1 Test Environment . 28

3.2.2 Databases . 29

3.2.3 Docker Compose Configuration 30

3.2.4 Testcontainers Configuration 31

3.2.5 Cucumber Configuration 33

3.2.6 REST Assured . 39

3.2.7 Jenkins . 41

3.3 Challenges . 44

3.3.1 Dependencies and Integration Testing Complexity 44

3.3.2 Data Setup . 44

3.3.3 Resource Management and Time Constraints 45

3.3.4 WireMock vs. Docker Images 46

4 Results and Discussion 47

4.1 Covered Scenarios . 47

vi Contents

4.1.1 Clientsadmin Scenarios . 47

4.1.2 Activitylist Scenarios . 52

4.2 Results . 57

4.2.1 Cucumber Report . 57

4.2.2 Jenkins Pipeline Reports 58

5 Conclusion and Future Work 60

5.1 Summary of the Study . 60

5.2 Contributions and Implications . 61

5.3 Future Research Directions . 61

References 63

List of Figures

1.1 The Testing Pyramid. From Lecture Slides on Modularità (Orga-
nizzare il codice sorgente) - Le domande del test by G. Malnati
(2021-23) [1] . 2

2.1 Sociable vs. Solitary Unit Tests . 16

2.2 Variations of test doubles. From Exploring Mocks in Unit Testing
Chapters chosen by Vladimir Khorikov (2020), Manning Publica-
tions Co. Copyright 2020 Manning Publications. [2] 17

3.1 Clients, printers and burning stations configuration entry of the Tools
menu in upper navigation bar. 25

3.2 Clients configuration table (with copy right-click menu) 26

3.3 Services involved in the test environment represented along with
their dependencies . 28

3.4 Docker Desktop Charts (Screenshot 1) - 4 minutes into the testing
phase: Containers are going up. 45

3.5 Docker Desktop Charts (Screenshot 2) - 7 minutes into the testing
phase: Containers are up and running and tests are almost done. . . 45

4.1 Cucumber HTML Report . 57

4.2 Cucumber JSON Report . 58

4.3 Cucumber Report Pluggin in Jenkins 59

4.4 Jenkins Stage View . 59

List of Tables

3.1 Exposed and unexposed services in the test environment 32

3.2 Cucumber tags, its respective location, and the corresponding end-
point they cover . 34

4.1 Conducted tests under the tag @ClientsAdmin-PrinterModel 48

4.2 Conducted tests under the tag @ClientsAdmin-Printer 49

4.3 Conducted tests under the tag @ClientsAdmin-Client 50

4.4 Conducted tests under the tag @ClientsAdmin-BurningStation . . . 51

4.5 Conducted tests under the tag @ActivityList-Search 53

4.6 Conducted tests under the tag @ActivityList-DiffUsers 53

4.7 Conducted tests under the tag @ActivityList-SearchFails 54

4.8 Conducted tests under the tag @ActivityList-SearchWithSort 54

4.9 Conducted tests under the tag @ActivityList-SearchEnrichLius . . . 55

4.10 Conducted tests under the tag @ActivityList-SearchAfter 56

List of Abbreviations

API Application Programming Interface

BDD Behavior-Driven Development

CD Continuous Deployment

CEO Chief Executive Officer

CI Continuous Integration

CI/CD Continuous Integration and Continuous Delivery/Deployment

DDD Domain-Driven Design

DDoS Distributed Denial-of-Service

DSL Domain Specific Language

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IP Internet Protocol

JSON JavaScript Object Notation

JWT JSON WEB TOKEN

KPI key performance indicator

QA Quality Assurance

REST Representational State Transfer

x List of Abbreviations

ROI Return on Investment

SVN Subversion

TDD Test-Driven Design

UI User Interface

URL Uniform Resource Locator

UX User Experience

VM Virtual Machine

Chapter 1

Introduction

The pursuit of excellence has become synonymous with the success of modern busi-
nesses. The necessity for frequent releases, the need to manage an endless number
of device combinations, and the push for standardization have all created challenges
for development and Quality Assurance teams. Among these challenges, the iron
triangle of time, cost, and quality looms big, asking a basic question: which of these
aspects consumes the most time and is the most important?

With each passing week, new technologies, trends, and approaches arise in the
software development sector. Automation, continuous testing, continuous integra-
tion, and DevOps have all become essential components of this transformative path.
The software industry is pushed by a persistent goal of achieving more with less as
expectations for speedy delivery rise. While time and quality remain top concerns,
market trends have opened the path for a more holistic strategy that balances all three
important elements.The Return on Investment (ROI) paradigm places enormous
pressure on firms to offer the most recent features quickly and flawlessly, all while
minimizing hassles and lowering costs. Companies are increasingly experimenting
with new work practices, with ROI serving as a litmus test for the feasibility of
change. Automated testing emerges as a keystone in this pursuit for efficiency and
efficacy.

Continuous Integration (CI) testing, helping organizations shift left, has become a
cornerstone of software development lifecycles. Shifting left has a simple philosophy:
"Shift left is an approach that moves testing to earlier in the software development

2 Introduction

lifecycle (hence, “shifting left”)", as stated by GitLab B.V. (2023) [3]. This method
acknowledges that as software proceeds from left to right throughout the develop-
ment cycle, its complexity grows exponentially, as does the expense of correcting
faults. Hence, considering the measurable advantages of detecting a defect early in
the development cycle, according to Arvinder Saini (Jan 11, 2017) [4], "The Systems
Sciences Institute at IBM reported that it cost 6x more to fix a bug found during
implementation than to fix one identified during design. Furthermore, according to
IBM, the cost to fix bugs found during the testing phase could be 15x more than the
cost of fixing those found during design.". Early bug discovery saves developers
from the downstream ripple effects, allowing them to fix a single problem rather than
dealing with a slew of problems. Furthermore, it guarantees that developers address
the fault while it is still fresh in their brains, maintaining contextual details that help
speed up resolution.
The shift left method is beneficial not just to developers, but it also coincides with
larger company objectives. As mentioned by GitLab B.V. (2023) [5], "Organizations
that adopt continuous integration have a competitive advantage because they can
deploy faster. Organizations that have implemented CI are making revenue on the
features they deploy, not waiting for manual code checks.". Improved software
delivery performance and increased availability are concrete benefits of testing more
frequently and earlier. These advantages are appealing not only to engineers, but to
CEOs and stakeholders, fostering a culture of shared success.

Fig. 1.1 The Testing Pyramid. From Lecture Slides on Modularità (Organizzare il codice
sorgente) - Le domande del test by G. Malnati (2021-23) [1]

1.1 Importance of Integration Testing in Microservices Environment 3

The testing pyramid, as illustrated in Figure 1.1 (G. Malnati, 2021-23) [1], is an
iconic guidance in the world of automated testing. At its core are a collection of
quick unit tests capable of quickly identifying problems without incurring significant
expenditures. Integration tests, at a higher level, examine the behavior of coupled
components, revealing how they interact smoothly. End-to-end testing, at its peak,
orchestrates full user journeys across several encounters. Though end-to-end testing
is beyond the scope of this thesis, the techniques we describe apply to all levels of
the pyramid.
The idealized testing pyramid, on the other hand, frequently deviates from reality.
In practice, a familiar pattern emerges: a scattering of unit tests, a visible absence
of integration tests, and end-to-end tests that shatters repeatedly, eventually being
marginalized and forgotten. Leaving aside judgment, this reality check highlights
the complexity of testing, particularly in the context of microservices.

1.1 Importance of Integration Testing in Microser-
vices Environment

The isolation concept is glamourised by microservices architecture, which allows
autonomous teams to operate independently and assume control of their services.
However, this autonomy comes with a catch: no single body is responsible for
guaranteeing the flowless integration of all services. Each team pushes their service
directly to production, hoping that these disparate efforts would come together ef-
fortlessly. Hope, on the other hand, is not a strategy. This leads us to the crux of the
issue: Integration Testing.

In a microservices environment where autonomous teams go ahead independently,
the dependence on contracts between teams becomes critical. These contracts, repre-
sented through semantic versioning and service interfaces, are critical for ensuring
that the different microservices interact amicably.
A fascinating alternate viewpoint arises, promoting the concept of “Testing in Pro-
duction”. This trend supports approaching production deployments as intrinsically
unpredictable and supporting the practice of quality testing in live settings. The
reasoning is straightforward: regardless of one’s faith in the code, production set-
tings remain unique from non-production contexts, and unanticipated complications

4 Introduction

inevitably arise. Production testing involves both scheduled testing and proactive
error triggering with advanced technologies. When rigorously performed, it provides
a disciplined structure for responding to unavoidable faults, as opposed to the use-
less quest of averting every prospective failure. However, pushing for production
testing does not diminish the need for pre-production testing. It instead stresses a
risk-based strategy. It involves careful consideration of prospective difficulties and
their repercussions, allowing for educated risk tolerance decisions. As a result, it
necessitates a constant process of improving integration testing.

Fidelity, isolation, speed, scalability, ephemerality, and cost are the six important
dimensions being optimized:

• Fidelity: How similar is the testing environment to production. The closer it is,
the more diagnostic it is, but also more expensive and complicated it is likely
to be. It is also likely that you may not actually be able to match it exactly.
Possible, but not likely.

• Isolation: Tests should not interfere with each other, or interfere with pro-
duction systems. Everything should have a known environment that holds
throughout the duration of the test. It is also not best to test against external
resources or production resources when running a local test. It is not an idea,
as even if only a read operation is done against an API, it is possible to DDoS
the servers, as well as it is possible to send a malformed request that totally
break things. Hence, every test should have its own environment that no one
else can touch.

• Speed: Reducing the time from commit to deploy is correlated with positive
business outcomes. Fast CI/CD results in fast deployments.

• Scalability: No matter how fast individual builds are, situations where more
than one build running at a time will occur. And if there are more builds
than workers, queuing will have to take place and that makes developers less
productive.

• Ephemerality: How long does the infrastructure last? Ideally, as long as it is
needed. If it is not being used, we do not want to pay for it. This would mean
that the test infrastructure should disappear as soon as the tests are over, or

1.2 Thesis Objectives 5

maybe not. Generally, if everything works okay and tests have passed, then
the infrastructure is not needed anymore. However, if a failing test takes place,
the infrastructure might be needed to figure out what went wrong, only for a
limited period of time.

• Cost: No one would want to spend more money on their testing infrastructure
than they spend on their production infrastructure. It depends on two factors:
the first is rational factor which is how much money are you spending? and
the other is a motive factor which is am I getting my money’s worth. Cost is
correlated with usage, so even if you are spending a lot, at least you know you
are getting some insights out of it.

As we dive deeper into the world of microservices integration testing, we will
dissect each optimization dimension, uncovering its profound implications and
demonstrate the critical role these factors play in ensuring the harmony, reliability,
and performance of microservices-based applications. QA and automated testing
take center stage in an era defined by microservices, paving the way to a future
where time, cost, and quality achieve balance, reshaping the landscape of software
development and innovation.

1.2 Thesis Objectives

The prevailing question is no longer whether integration testing is necessary, but
rather, how to make it efficient, comprehensive, and cost-effective in an environment
defined by microservices architecture. This thesis embarks on a comprehensive
exploration of automated integration testing in the realm of microservices, with a
central focus on fostering greater engagement of various teams in RCS lab.

6 Introduction

1.2.1 Identify and Evaluate Existing Integration Testing Method-
ologies and Tools

The first objective is to investigate and evaluate the various integration testing
approaches and tools available in the context of microservices architecture. This
requires assessing the current environment, including the strengths, shortcomings,
and applicability of various testing approaches. By achieving the above, this thesis
aims to provide a strong foundation for making informed decisions regarding the
chosen integration testing solutions and their deployment.

1.2.2 Select the Most Suitable Tools for The Company and Ex-
periment Their Effectiveness

The second goal is to practice implementing integration testing technologies within
a specific organization setting. It involves selecting the best appropriate technologies
that are compatible with RCS lab’s particular microservices infrastructure. Following
that, experiments will be carried out to assess the usefulness of these technologies
in real-world circumstances. This part of the study aims to bridge the theoretical
knowledge and practical application gap, ensuring that the chosen tools improve the
testing process and deliver executable discoveries.

1.2.3 Inspire the Employees and Improve Software Development
Process

Recognizing that technology transformations frequently involve changes in orga-
nizational culture and procedures, thus the third goal is to empower employees to
embrace the newly selected integration testing methodology and tools. This includes
training programs designed specifically for development and Quality Assurance
teams, with the purpose of equipping them with the knowledge and skills needed
for smooth adoption. Furthermore, the goal is to show how these improvements
may greatly enhance the software development process by speeding up the testing
process, improving cooperation among different teams, and eventually providing
higher-quality software.

1.3 Thesis Structure 7

1.3 Thesis Structure

The efforts of this thesis resulted in the development of a Spring Boot application,
implementing integration tests for specific endpoints of a couple of microservices,
Clientsadmin and Activitylist. In particular, the analyzed testing tools are: Test-
containers for builidng a containerised testing environment suitable to performing
integration testing, Cucumber for the ubiquitous language, and a sample of REST
Assured for testing RESTful APIs.
The ultimate goal was to build a CI pipeline, which automatically performs com-
pilation and testing of the developped application. The thesis will be structured as
follows:

• Chapter 2, Related Work: In this chapter, we dive into existing literature on
microservices, integration testing, and related methodologies, establishing a
solid theoretical foundation for our research.

• Chapter 3, Proposed Approach: We provide an in-depth description of our
research methodology, including the selection of microservices for testing and
the tools and techniques employed.

• Chapter 4, Results and Discussion: This chapter presents our test scenarios,
their results, and in-depth discussions about the implications of our findings.

• Chapter 5, Conclusion and Future Work: We conclude the study by summariz-
ing our key findings, contributions, and insights. Additionally, we identify the
limitations of our research and suggest potential directions for future studies.

Chapter 2

Related Work

2.1 Overview of Microservices Architecture

Monolithic applications were once considered as the norm, however, they are not
well-suited for applications that require scaling, according to Alex Soto Bueno,
Andy Gumbrecht, and Jason Porter (2018, 3) [6]. Further Alex Soto Bueno, Andy
Gumbrecht, and Jason Porter (2018, 3) explain further that "Microservices aren’t
here to tell you that everything else is bad; rather, they offer an architecture that
is far more resilient than a monolith to changes in the future", from which we can
conclude that microservices are more resilient to change and can be scaled more
easily. This makes them a better choice for applications that need to be able to adapt
to changing requirements.

2.1.1 Defining the Scope and Size of Microservices

In the context of microservices, granularity or scope of each individual application is
guided by the design and decision-making process. As stated by Alex Soto Bueno,
Andy Gumbercht, and Jason Porter (2018, 4), "Regarding application size, there are
no rules, other than a rule of thumb" [6]. In this context, the rule of thumb could
be translated into a "bounded context" from Domain-Driven Development (DDD),
it suggests that each microservice should align with a specific domain context or
business capability. Another informal guideline is that each should be manageable
by a small team and this team should have a single responsibility. However, the right

2.2 Development Methodologies for Microservices Testing 9

size can be subjective and varies based on factors like the complexity of business
logic, the organization’s structure. Thus this statement emphasizes that there’s no
one-size-fits-all or definitive metric for the size of a microservice. Instead, developers
should rely on general guidelines, understand the specific needs of their domain, and
iterative refinement to determine the optimal service granularity.

2.1.2 Advantages of Adopting Microservices Architecture

Microservices architecture allows you to break down an application into smaller,
self-contained units that can be scaled independently. This can be beneficial for
applications with fluctuating traffic, as you can scale the microservices that are
experiencing the most load. It can also make it easier to develop and maintain appli-
cations, as each microservice can be maintained by a dedicated team of developers.
Additionally, they can be rolled out independently of each other, which can reduce
the risk of deployments.

2.2 Development Methodologies for Microservices Test-
ing

Testing in any software architecture, including microsevices, is difficult due to its
disperse nature. Various testing strategies may be adopted to guarantee that each
piece of code performs as expected. there exists many different methodologies to
test microservices architecture that will vary depending on the specific application,
and the most common ones include:

2.2.1 Test-Driven Development

Test-Driven Development guarantees that code is developed to pass tests which
helps to improve code quality. As dictated by Benjamin J. Evans, Jason Clark, and
Martijn Verburg (2022) [7], "Its basic premise is that you write tests during your im-
plementation rather than afterward, and those tests influence the design of your code".

TDD requires tests to be developed for each unit of code, these tests are then used to

10 Related Work

guide code development which takes a little longer than other techniques. They can
also assist in improving code quality and minimize the amount of problems, however,
it does not guaranteed project fulfillment, nor prove robustness of the written tests,
nor maintainability. It is easy to get wrapped up in the TDD approach and forget
about how to properly write unit tests that answer the following questions: Does the
test aim on testing the correct part of the system? Is it legible? Is it maintainable?
The implementation consists of three phases that must be repeated for each test case:

1. Write a failing test: Create a failing test to show which feature is missing and
how it should behave.

2. Make the test pass: Write only enough code to pass the test. At this point, the
code does not need to be beautiful or tidy.

3. Refactor your code: The code should be safely tidied up to make it more
legible and manageable while it is protected by the passing test.

Refactoring steps should be tiny and incremental, and all tests should be performed
after each little step to ensure that nothing broke during the modifications. Refac-
toring can be done after numerous tests have been written or after each test. It is a
crucial technique since it guarantees that the code will become simpler to understand
and maintainance can be performed while still passing all previously defined tests.

2.2.2 Domain-Driven Development

Domain-Driven Development (DDD) is a software development methodology that
focuses on the domain of the problem that the product is attempting to solve. DDD
established the domain’s basic concepts and then models the software around those
principles. As a result, it is well suited to microservices architecture, in which each
microservice is responsible for a single domain notion.

DDD tests are created to ensure that the program models the domain ideas ap-
propriately and are frequently conducted in a domain-specific manner, which might
make them difficult to comprehend for non-domain specialists. They can be very
useful at ensuring that the program appropriately represents the domain. Further,
DDD extends TDD by formalizing the top TDD practitioners’ excellent behavior.

2.2 Development Methodologies for Microservices Testing 11

The finest TDD practitioners approach the problem from the outside in, beginning
with a failed customer acceptance test that explains the system’s behavior from the
user’s perspective. We take care as BDD practitioners to build acceptance tests as ex-
amples that everyone on the team may understand. The process of developing those
examples is focused on collecting input from business stakeholders about whether
the previously mentioned tests reflect the correct concept before the development
even starts. This is done after a coordinated attempt to create a common, ubiquitous
language describing the system.

2.2.3 Behavior-Driven Development

Behavior-Driven Development (BDD) is a software development methodology that
combines the best practices of TDD with DDD which centers its attention on the
behavior of the software rather than its implementation. As a result, it is well suited
to microservices architecture, in which each microservice is responsible for a certain
function.

BDD tests are developed in a way that represents the expected program behav-
ior and are then used to guide software development. Adding to that its frequent
use in conjunction with pipeline for continuous integration and continuous delivery
(CI/CD), which automate software testing and development. This development
approach aims to bring together members of business and technical teams. Gayathri
Mohan (2022, 71) provides an example of a BDD framework by highlighting its
benefits and structure: "For example, BDD frameworks like Cucumber provide
facilities to write tests in natural language, resembling a typical user story with
the Given, When, Then structure." [8]. This allows the business people to supply
requirements as failing tests, while the technical people may begin implementing
features by correcting the failed tests.

12 Related Work

Summary

All three strategies attempt to create high-quality software, but they concentrate on
distinct features and methodologies.

• BDD: is preferable for projects requiring clear communication between tech-
nical and non-technical team members.

• DDD: thrives when modeling a complicated domain that necessitates a thor-
ough understanding.

• TDD: is used to ensure that the software is clean and well-tested, providing
solid support for future updates and refactoring.

The approaches are not mutually exclusive and may be blended efficiently in a single
project to capitalize on their individual strengths.

2.3 Testing Approaches for Microservices Architec-
ture

The evolution in development approaches has made it a necessity to adopt robust
testing paradigms, especially for microservices architecture as asserting that mi-
croservices are dependable, reliable, and robust is a challenging task due to their
diffused nature.
The focus in the following section will target the different aspects of testing.

2.3.1 Manual vs. Automation Testing

Software testing has evolved significantly over the years, strating from a transi-
tion from manual testing to automated testing, in addition to a transition from a
development-centric activity to one that is more collaborative and may be conducted,
independently of the development team.

2.3 Testing Approaches for Microservices Architecture 13

Manual Testing

Testing was primarily a manual procedure carried out by QA teams, developers,
or even end-users. This method requires QA testers to engage with the program
in the same way that end users would, exploring the application to detect bugs,
inconsistencies, and usability concerns.

Previously, test cases were explicitly specified, and testers would go through the
program step by step to check its functionality and behavior. The manual testing
approach had advantages; it was simple and intuitive, making it ideal for exploratory,
usability, and ad-hoc testing. Furthermore, no specialist programming abilities were
required. It did, however, have certain limitations, such as being time-consuming and
less accurate owing to potential human mistakes. Furthermore, the manual technique
proved inefficient when dealing with recurring and large-scale experiments.

Transition to Automation

The limits of manual testing became more apparent as software programs got more
complicated and the rate of development accelerated. This resulted in the growth of
automated testing in the software industry, which provided a faster and more reliable
method of identifying software faults.

Automated tests, which are designed to perform actions and validations autonomously,
previously needed specific programming abilities, therefore they were often created
by developers or highly technical QA team members. While automated testing had
the benefits of speed and dependability, it was also cost-effective for regression test-
ing and suitable for load and performance testing. However, these advantages were
accompanied by certain drawbacks, such as the initial expense of establishing the
automated environment and a higher learning curve. Furthermore, the ever-changing
nature of software features necessitated continuous updating of test scripts, and the
early phases of automation typically need programming abilities.

14 Related Work

The Rise of User-Friendly Automation Tools

As the industry grew, it began to shift toward framework and technologies that
enabled QA teams to write automated tests with little or no programming knowledge.
Selenium and Appium are two tools that have changed the sector by providing user-
friendly interfaces and domain-specific languages, making test script writing more
accessible. Some cutting-edge platforms have gone so far as to provide codeless
automation, allowing tests to be built visually.

Because of the democratization of automated testing, QA teams became even more
self-sufficient, reducing their reliance on development teams for both test genera-
tion and maintenance. While this provided benefits such as removing the need for
programming skills, allowing the QA team to take entire ownership of the testing
cycle, and allowing for faster turnaround times for test preparation and execution, it
also had certain drawbacks. There may be some initial setup and learning required,
and codeless solutions may provide limited customization choices. As Mark Winter-
ingham (2022, 95) pointed out "Automation tools are very good at giving us rapid
feedback in a consistent manner based on explicit instructions we set. But we get
out what we put in, nothing more." [9].

Summary

Overall, as stated by Gayathri Mohan (2022, XIII) "Manual testing has evolved into
manual exploratory testing, and remains a fundamental part of the testing discipline
today." [8]. Over and above that, the transition from manual to automated testing, as
well as the following creation of user-friendly test automation tools, was a reaction to
the rising complexity and speed of modern software development. This has resulted
in more agile, efficient, and effective testing methods, allowing the QA team to work
independently of the development team, allowing for faster and more dependable
releases.

2.3 Testing Approaches for Microservices Architecture 15

2.3.2 Types of Software Testing

Software testing is an exceptionally critical in a microservices setup since they are
loosely coupled. Testing them needs to be done in a way that can oversee the commu-
nication between services and making sure, beyond any doubt, data is consistent and
reliable. This requires a different approach than the one usually used in conventional
testing strategies.

There are several types of testing that may be applied on any architecture including
the microservices architecture. The best way to do it will highly depend on what part
of the system is chosen to be under test, but some of the foremost well-known ways
to do it are:

Static analysis

In an article, Xiao Pu (2021) defines static analysis as "the process of analysing
computer programme without executing the code. This practice is often used to
ensure that codes follow certain structures or standards (e.g coding standards)."
[10]. Static analysis, unlike other types of testing, analyses the source code without
running it, focused on discovering possible flaws and assuring compliance with
coding standards. These evaluations are performed automatically by specialized
tools, which examine the codebase for code complexity, possible flaws, security
vulnerabilities, and breaches of coding style requirements.

Moreover, they assist developers to discover and correct flaws early in the develop-
ment process by offering insights into code quality and maintainability, eventually
leading to greater code consistency and adherence to coding standards. They also
contribute to the general robustness and stability of software projects, making them
a vital addition to any development team. This approach also includes continuous
integration and monitoring to ensure that code quality is maintained throughout time.

16 Related Work

Unit testing

Unit testing is when we check if small parts of the code work properly. This can
be a prominent method to target glitches at the starting stages of development, but
it does not assess how diverse microservices interact together. In a microservice
environment, they ought to center on how well each individual service works. Tools
like JUnit for Java or PyTest for Python can help with creating thorough unit tests.
"A dependency is something we don’t have full control over during a unit test.",
said Roy Osherove (2022, 11) [11]. Unit testing can be done in two different ways.
The first way is to test only the main thing we want to test without considering any
other dependencies. The second way is to include everything that the code under test
collaborates with as part of the test.

Fig. 2.1 Sociable vs. Solitary Unit Tests

Jay Fields (2015) [12], contributes by giving different names for the above-mentioned
ways to do unit testing. A test that interacts with its associated dependencies in the
system is called a sociable unit test. On the other hand, a solitary unit test is the one
that is specifically designed to test only one part of the system, which is isolated.

Sociable Unit Tests are all about how a class works with other classes it depends
on, and how it carries on with changes in its state. This strategy is a great choice for
testing business-domain logic in a system. Knowing that solitary unit testing, ex-
cludes the dependencies of the class under test, the main difference between sociable
and solitary unit testing is the use of test doubles to imitate the state of dependencies
that the class undergoing unit testing depends on.

Test Doubles are used in Sociable unit testing where objects tend to be replaced with
some fictitious dependencies. Acronyms, such as dummies, fakes, mocks, spies and
stubs, are usually used concurrently but they are not synonyms. Each one of them
could substitute a genuine item in the testing environment, although their behavior
varies greatly.

2.3 Testing Approaches for Microservices Architecture 17

Fig. 2.2 Variations of test doubles. From Exploring Mocks in Unit Testing Chapters chosen by
Vladimir Khorikov (2020), Manning Publications Co. Copyright 2020 Manning Publications.
[2]

The distinction between these categories is as follows:

• Mocks: aid in the simulation and analysis of future encounters. These interac-
tions are requests made by the system under test to its dependents aiming on
modify their status.

• Stubs: aid in simulating incoming interactions. These interactions are calls
made by the system under test to its dependents in order to get input data.
Used when you want to replace a real implementation with an object that will
return the same response every time.

• Dummies: are the easiest of the four test double types to use. It is designed
to help fill parameter lists or fulfill some mandatory field requirements where
you know the object will never get used. In many cases, you can even pass in
an empty object.

• Fakes: can be seen as an enhanced stub that almost does the same work as
your production code, but that takes a few shortcuts to fulfill your testing
requirements. Fakes are especially useful when you’d like your code to
run against something that is very close to the real third-party subsystem or
dependency that you’ll use in the live implementation.

• spies: are stubs that record information during the calls to it. For example, an
email gateway stub might be able to return all the messages that it “sent”.

18 Related Work

Unit Test Coverage should be at a remarkable degree, achieved by the hard work
of the development teams. The fundamental goal of unit testing is to guarantee
the impeccable performance of individual components or isolated code units. This
comprehensive analysis of individual units not only assists in the identification and
correction of problems, but it also plays an important role in the early discovery of
bugs, hence, improving the general resilience of the system.

Unit Test Limitations incorporate the fact that they are fundamentally restricted
in their capacity to ensure that these components work flawlessly when integrated
into a larger system. Further, another notable weakness is their inability to detect
problems caused by complex interactions between numerous components. These
interactions can result in complicated situations and subtle faults that are hidden
beyond the scope of unit testing.

Hence, Integration Testing Need arises. Integration testing is considered criti-
cal for ensuring that diverse components of the system work in collaboration. This
criterion stems from the fact that unit tests alone are unable to guarantee the overall
operation of the system and integration tests help in bridging the gap between isolated
unit testing and complete software capability evaluation.

Integration testing

Integration testing is a critical stage in the software testing lifecycle that focuses
on assessing the interactions and collaborations between various components or
modules inside a software system. Integration testing, as opposed to unit testing,
which tests individual code units in isolation, evaluates how these components
perform together when integrated into a coherent system. This level of testing is
fundamental because it tackles the critical question of whether the microservices
operate together coherently to offer the required functionality.
Several critical components and elements are required for successful integration
testing:

• Components to be Integrated: Integration testing entails identifying and inte-
grating certain software components, such as modules, microservices, or APIs,
to ensure that they perform well together

2.3 Testing Approaches for Microservices Architecture 19

• Test Environment: A controlled testing environment is required for reproducing
the production configuration. It consists of hardware, software, databases,
and network settings that are designed to simulate the actual deployment
environment

• Test Data: To properly conduct integration tests, realistic and diversified test
data sets are necessary. These data sets mimic numerous scenarios and inputs
to thoroughly examine component interactions

• Test Cases: Integration test cases are intended to analyze the interfaces and
interactions of integrated components. These instances define the inputs,
anticipated results, and test circumstances.

Transitioning from integration testing to end-to-end testing is a significant stage
that guarantees the system’s validity. Integration tests are generally concerned with
the interactions of individual components or microservices. They frequently fall short
of offering an aggregate understanding of how these components work together to
achieve user scenarios and whole business processes. End-to-end tests, on the other
hand, take a larger view, determining if certain user workflows perform properly
when all components are integrated.

End-to-end testing

End-to-end tests are critical for determining if certain operations inside a software
system are completed appropriately. They are intended to address the question: Does
a particular user journey, which often spans multiple components or microservices,
function as expected?. These tests are often run automatically using scripted scenar-
ios, simulating user interactions and transactions throughout the system.

End-to-end tests are distinguished by their ability to check while business pro-
cesses, including many components, databases, and external dependencies, while
accurately simulating actual user behavior and interactions, such as data entry and
retrieval. They give a comprehensive perspective of system behavior, making them
especially useful for evaluating key procedures that span numerous components. Se-
lenium, Puppeteer, and Cypress are some common tools for running end-to-end tests.
These tests are necessary to ensure that a program runs smoothly and consistently,

20 Related Work

providing the desired user experience and functionality. However, as communicated
by Daniel Irvine (2022, 519), "End-to-end tests are costly to build and maintain.
Fortunately, they can be ntroduced gradually, so you can start small and prove their
value before increasing their scope" [13].

Acceptance testing

Acceptance tests are used to ensure that software development efforts are in line with
the planned business objectives and user requirements. The tests, which are often
performed manually by testers or stakeholders acting as end users, assess whether the
software meets high-level user expectations and serves its intended function. They
are distinguished by scenario-driven evaluations that include real-world use cases
and concentrate on the journeys, user interface (UI) interactions, and overall user
experience (UX). While acceptance tests are performed less often than automated
tests, they provide a comprehensive view of the application’s functioning, which is
important in the evaluation of the final product’s value to end users.

2.3.3 Continuous Testing

Continuous testing is a broad technique that incorporates a variety of practices aimed
at incorporating automated testing into every stage of the software development and
delivery process. The purpose is to guarantee that the software fulfills quality criteria
and functions as intended at each stage, from development through deployment.

Continuous Integration

Continuous Integration, in the context of Continuous Testing, is the stage at which
code changes are routinely merged and the build is automatically initiated. This is
followed by unit tests, component tests, and other forms of automated testing to
detect bugs as early as possible.
Tool for Continuous Integration: Jenkins
"Jenkins is a continuous integration tool using Java language and is configurable via
both GUI interface and console commands", affirms Katalon (2019) [14]. Jenkins
can develop, deploy, and automate any project, making it extremely versatile.

2.3 Testing Approaches for Microservices Architecture 21

Continuous Delivery

Katalon (2019) adds that "Continuous Delivery (CD) can often be confused with
continuous deployment. A great way to think about the difference is continuous
delivery is having any code version ready to deploy to production." [14]. Automated
tests are run against the codebase and infrastructure, frequently increasing test
coverage to include integration, functional, and end-to-end testing.
Tool for Continuous Delivery: GitLab CI/CD
GitLab CI/CD platform serves as a single platform for managing both CI and CD
as it enables teams to automate testing at each level of the pipeline, from coding to
deployment.

Continuous Deployment

Continuous Deployment takes it a step further by guaranteeing that any update that
passes through all stages of your production pipeline is automatically delivered to
your client, with no human involvement. It encompasses the idea of completely
automated end-to-end testing, which frequently includes extra levels of testing such
as performance, security, and smoke tests.
Tool for Continuous Deployment: Spinnaker
By the definition on its official website, Spinnaker (2023) is "an open-source, multi-
cloud continuous delivery platform that combines a powerful and flexible pipeline
management system with integrations to the major cloud providers." [15]. It inte-
grates with Jenkins and other CI tools for automated triggering of pipelines based on
code changes and passing tests.

22 Related Work

2.4 Frameworks and Tools

Docker

Docker is a containerization technology that has transformed application packaging
and deployment as defined on the official website by Docker Inc. (2023), "Docker is
a platform designed to help developers build, share, and run container applications.
We handle the tedious setup, so you can focus on the code." [16]. It enables you to
package a program and its dependencies into a container image that can subsequently
operate reliably across several environments. This containerization simplifies testing
by giving your program with a repeatable and isolated environment, guaranteeing
that it functions consistently regardless of where it runs.

Testcontainers

"Testcontainers for Java is a Java library that supports JUnit tests, providing lightweight,
throwaway instances of common databases, Selenium web browsers, or anything
else that can run in a Docker container.", as documentated by Richard North and
other authors (2015-2021) [17]. It allows you to design, maintain, and deconstruct
Docker containers as part of your unit and integration tests. This is especially useful
if your program makes use of other services like databases, message queues, or web
services. Testcontainers enables you to run these services in containers for testing,
ensuring that your tests are self-contained and reproducible.

Jenkins

Jenkins is a flexible automation server that is essential for accomplishing CI/CD. It
enables you to automate many steps of the software development process, such as
code compilation and testing, as well as deployment and delivery. Jenkins pipelines
assist teams in streamlining development operations, allowing for the timely and
dependable delivery of software updates. It supports a wide range of plugins, making
it suitable for a variety of development environments and tools.

2.4 Frameworks and Tools 23

Cucumber

"It’s simple. Whether open source or commercial, our collaboration tools will boost
your engineering team’s performance by employing Behavior-Driven Development
(BDD).", arrogantly introduced SmartBear Software (2023) their Cucumber tool
[18]. Further, Cucumber is a tool that encourages cooperation among developers,
testers, and non-technical stakeholders. It defines test cases in an organized manner
using Gherkin, a human-readable plain-test format, and enables teams to specify
software behavior in the form of executable specs. This method promotes a better
knowledge of requirements and makes automated testing easier, guaranteeing that
software matches defined criteria.

JUnit

JUnit is a Java testing framework that is used to write and perform unit tests. It
includes a collection of annotations and assertions that make testing specific com-
ponents of a Java program easier. Junit promotes test-driven development (TDD)
approaches, in which tests are developed before real code, guaranteeing that each
unit of code (such as methods or classes) works correctly in isolation.

REST Assured

In the documentation, Johan Haleby (2023) presented that "REST Assured is a Java
DSL for simplifying testing of REST based services built on top of HTTP Builder.
It supports POST, GET, PUT, DELETE, OPTIONS, PATCH and HEAD requests
and can be used to validate and verify the response of these requests." [19], which
basically contains the key features of the Java-based package REST Assured.

Awaitility

Johan Haleby additionally have presented Awaitility, which is a Java library for
testing asynchronous code, which is common in modern applications, particularly
those that use distributed networks and microservices. Johan Haleby (2023) defines
it as "a DSL that allows you to express expectations of an asynchronous system in a
concise and easy to read manner." [20]. Thus it provides a short and clear syntax for

24 Related Work

expressing assertions that await the occurrence of certain circumstances or events.
This tool is required in circumstances when your tests must support asynchronous
processes, such as waiting for a message or a resource to become available.

Wiremock

"WireMock: Mock the APIs You Depend On" [21], Wiremock (2023) published
on their official website, hence, it can be defined as an effective tool for simulating
HTTP servers. Wiremock is especially handy when your program relies on external
APIs or services that are not always available during testing. You may imitate
these external services with Wiremock by describing the anticipated behavior of
HTTP requests and replies. This allows you to thoroughly test your application’s
interactions with external services without making any actual network calls.

Chapter 3

Proposed Approach

3.1 Applications Under Test

As discussed in previous chapters, this thesis carries the analysis of finding a way to
facilitate the testing phase and automate it.

Fig. 3.1 Clients, printers and burning stations configuration entry of the Tools menu in upper
navigation bar.

As shown in the previous Figure 3.1, the first feature to be tested is “System Operation
and Control”, that can be found in the Administration Area menu of MITOCube.
This feature consists of three tables:

• Clients: are provided with an IP address, mandatory to access MITOCube.

• Printers: can then be enabled for certain clients, where they will be installed
as local printers and be used in their operating system and applications.

26 Proposed Approach

• Burning station: configuration can be created to allow their use from the
clients and set specific authorizations on Legal Archiving for each client.

Printers, clients and burning stations can be configured with a dedicated functionality
to be registered in the system, as mentioned in the functional requirements of the
module clientsadmin [22].
Figure 3.2 represents the clients’ configuration page after “System Operation and
Control” is selected, in addition to the tabs of the other two pages in which we may
configure printers and burning stations.

Fig. 3.2 Clients configuration table (with copy right-click menu)

In the microservice called clientsadmin, endpoints handling the implementation of
the functionalities of the above feature may be found:

• /printer/model

• /printer

• /client

3.1 Applications Under Test 27

• /burningstation

As per the second feature to be tested, we focus on the following endpoints located
in activitylist microservice:

• /search

• /search/after

These endpoints constitute a dynamic search system in this search implementation,
where it notably provides two search options:
Basic Search Mode: The ordinary search feature where /search focuses on returning
the correct list of "Liu"s based on the search terms, query, received as input.
Contextual Search Mode: /search/after provides contextual searching in addition
to the ordinary search mode. In this mode, an additional input of type “Liu” is
accepted and considered as a point of reference in the content. This extra “Liu”
ensures that the subsequent search results, from the content, are fetched.
Activitylist, in its turn, enriches the query it receives with a series of additional data,
that will be communicated to Xplora/Elasticsearch. Knowing that the accuracy of
the result depends on other services (Xplora/Elasticsearch), we will try to focus on
testing activitylist by assuring that it is not compromising the scope of the original
query it received as input.

28 Proposed Approach

3.2 Implementation Techniques

3.2.1 Test Environment

To evaluate the aforementioned features, not only clientsadmin and activitylist mi-
croservices should be up and running, but all of the services involved in the flow of
the architecture in Figure 3.3.

Fig. 3.3 Services involved in the test environment represented along with their dependencies

As illustrated in figure 3.3, the testing environment should consist on having all of
the mentioned microservices running and able to communicate among themselves,
where each one of them has an exclusive role:

• integration-test: The service that contains the implemented tests.

• service-registry: Eureka server used for other microservices discovery and
registration; Hence, it is intended to be ready and functioning before all other
microservices.

• apigw: API Gateway and acts as a single point of contact for client requests,
delivering a variety of key features that improve the security, scalability, per-
formance, and management of microservices-based systems, resembling the

3.2 Implementation Techniques 29

system under test. It encapsulates the complicated structure of the underlying
architecture, allowing clients to engage with the services more easily while
enforcing critical restrictions and optimizations.

• clientsadmin, activitylist: The applications under test.

• mysql: MySQL database service.

• dendron, phonebook, permission, preference, mitocube: activitylist depends
on all these microservices to conclude the testing procedure.

• Xplora, ElasticSearch: Xplora acts as an intermediary between ElasticSearch
and the microservice requesting the queries, activitylist. It handles transform-
ing the raw data fetched from ElasticSearch and guarantees that activtylist
receives them in a well-structured data.

3.2.2 Databases

In order to assess the microservices, it is essential to connect them to their databases.
However, the content of the databases needed depends on the testing objectives and
the precise scenarios covered in the testing approach.
For instance, when performing tests on the clientsadmin’s endpoints, it is not recom-
mended to have the database filled with any data. This is because we are looking to
validate whether the application can successfully initialize, set up, and interact with
the database; this procedure is better done on an empty database.
On the other hand, testing the search APIs in activitylist would require the database
to be pre-populated, which is essential for thorough and realistic testing when recre-
ating real-world settings. The relational database referred to is called ‘mysql‘ and it
contains the users registered and needed for authentication, as well as it contains the
tables essential to all the microservices that activitylist is dependent on.
Furthermore, to rigorously analyze the performance of the search endpoints, Elastic-
Search must be filled with a replica of real-world data. This methodology enables us
to undertake extensive testing that mimics the complexity and delicacies of actual
usage scenarios.

30 Proposed Approach

3.2.3 Docker Compose Configuration

A docker compose file has been created in the following path:
src/test/resources/docker-compose/docker-compose.yml,
which defines how docker containers of all the services this project depends on
should be built and run.
Below is stated an example of how apigw microservice is defined, in the YAML file,
to be used later in the test environment:

v e r s i o n : ’3.3’
s e r v i c e s :

apigw:
image: nexus . r c s l a b . i t : 5000 / r c s / apigw: 2 . 0 . R04−SNAPSHOT_integ− t e s t
e n v i r o n m e n t :

- s e r v e r . p o r t =8081
- APIGW_LOGS=/ app / apigw / l o g s
- h a z e l c a s t . s e r v i c e U r l . d e f a u l t = h t t p : / / s e r v i c e − r e g i s t r y :8761 / e u r e k a /

...
volumes:

- / c / Use r s / P u b l i c / l o g s / apigw / : / app / apigw / l o g s :rw
depends_on:

- "service-registry"
- "clientsadmin"
- "activitylist"
- "mitocube"

...

Here is a quick explanation of each section:

• ‘version‘: Specifies the version of the docker compose file format. Here, it is
set to "3.3".

• ‘services‘: Contains all the services (containers) that should be run when
docker compose is up.

• ‘apigw‘: States the name of the service.

• ‘image‘: Contains the docker image to be used.

• ‘environment‘: Environment variables to be passed to the service.

• ‘volumes‘: Mounts paths for volumes, allowing data to persist.

• ‘depends on‘: Specifies the services this service depends on. Docker compose
will start the services considering the dependency order.

3.2 Implementation Techniques 31

3.2.4 Testcontainers Configuration

For the configuration of Testcontainers, AbstractIntegrationTest class is created and
contains, mainly, the docker compose file location, the services which their ports are
exposed, and a WaitStrategy for each service.

@ T e s t c o n t a i n e r s
@Spr ingBootTes t (webEnvironment = S p r i n g B o o t T e s t . WebEnvironment .RANDOM_PORT)
p u b l i c a b s t r a c t c l a s s A b s t r a c t I n t e g r a t i o n T e s t {

@Container
p u b l i c s t a t i c f i n a l DockerComposeConta iner docke rComposeCon ta ine r =

i n i t i a l i z e D o c k e r C o m p o s e () ;

p r i v a t e s t a t i c DockerComposeConta iner i n i t i a l i z e D o c k e r C o m p o s e () {

F i l e f i l e = new F i l e (O b j e c t s . r e q u i r e N o n N u l l (C o n t e x t H o l d e r . g e t P r o p e r t y (
TESTCONTAINER_DOCKER_COMPOSE_YML))) ;

DockerComposeConta iner docke rComposeCon ta ine r = new DockerComposeConta iner
(f i l e)
. wi thLocalCompose (t r u e)
. w i t h O p t i o n s ("−− c o m p a t i b i l i t y ") ;

/ / s e t W a i t S t r a t e g y
/ / expose s e l e c t e d s e r v i c e s
r e t u r n docke rComposeCon ta ine r ;

}
}

It is worth mentioning that .withLocalCompose(true) is added for the sole purpose
that on my local machine, i am unable to get the required permissions to modify any
file, in the case where a volume is created to mount the log files for each service to a
local file on my machine. Moreover, .withOptions("–compatibility") is used to tell
Docker Compose to use compatibility mode.
Using the above configuration alone, we are unable to acknowledge at what point
the container is going to be ready to receive some traffic. Hence, we have added
WaitStrategy for each service selected to be exposed for later use. This inspection
has a timeout of 10 minutes and the types of WaitStrategy used are:

• Wait.forLogMessage(): For mysql, we are looking in the container’s log output
for ready for connections., which indicates that the database is ready to
be used.

32 Proposed Approach

• Wait.forHttp(): This strategy is used for all the other exposed services; By
default, /actuator/info is checked and should return an HTTP 200 OK
success status response code. However,

– For mitocube, we check /mitocube/actuator/health. Checking if
this URL is up is not enough; we need to make sure that mitocube is
registered to the Eureka server, service-registry. We do this by checking
if the response contains “MITOCUBE:1”.

– For apigw, we check /actuator/health. Similarly to mitocube, we
should check if both services, mitocube and activitylist, are registered to
the service-registry by checking if the response contains “MITOCUBE:1”
and “ACTIVITYLIST:1”.

– For ElsticSearch, we check the health of /_cluster/health.

– For Xplora, we check the health of /XploraWS/es/getClusterStatus.

In Table 3.1, exposed and unexposed microservices are listed along the assigned
port(s) to each one of them.

Exposed Unexposed

Service Port Service Port

MYSQL :3306 SERVICE_REGISTRY :8761
APIGW :8081 KAFKA :9293
MITOCUBE :8484 KAFKA_REP :9294
DENDRON :8089 ELASTIC_SEARCH :9200&:9300
PHONEBOOK :8086 XPLORA :8080&:5701
PERMISSION :8092 ZOOKEEPER :2181
PREFERENCE :8094
ACTIVITY_LIST :8093
CLIENTS_ADMIN :8088

Table 3.1 Exposed and unexposed services in the test environment

When all the wait strategies are satisfied and the needed services’ ports are exposed,
we can affirm, with confidence, that all the containers are up and running.
AbstractIntegrationTest also defines a static class called Initializer, which implements
the ApplicationContextInitializer interface. The latest interface provides a way to
customize the spring boot application context before it is created. Hence, Initializer

3.2 Implementation Techniques 33

class starts the docker containers and sets the correct port of the mysql container to
MYSQL_PORT environment variable, as shown in code snippet.

p u b l i c s t a t i c c l a s s I n i t i a l i z e r imp lemen t s
A p p l i c a t i o n C o n t e x t I n i t i a l i z e r < C o n f i g u r a b l e A p p l i c a t i o n C o n t e x t > {

@Override
p u b l i c vo id i n i t i a l i z e (@NotNull C o n f i g u r a b l e A p p l i c a t i o n C o n t e x t c o n t e x t) {

C o n t e x t H o l d e r . s e t C o n t e x t (c o n t e x t) ;
docke rComposeCon ta ine r . s t a r t () ;
L i s t < S e r v i c e s > s e l e c t e d S e r v i c e s = g e t S e l e c t e d S e r v i c e s () ;
i n t m y s q l P o r t = 3306 ;
i f (s e l e c t e d S e r v i c e s . c o n t a i n s (S e r v i c e s .MYSQL)) {

m y s q l P o r t = dockerComposeCon ta ine r . g e t S e r v i c e P o r t (S e r v i c e s .MYSQL.
getName () , S e r v i c e s .MYSQL. g e t P o r t ()) ;

}
T e s t P r o p e r t y V a l u e s . o f ("MYSQL_PORT=" + m y s q l P o r t) . applyTo (c o n t e x t .

g e t E n v i r o n m e n t ()) ;
}

}

Further, the above mentioned class, AbstractIntegrationTest, can be extended by
other classes that will implement integration tests. These classes, subsequently,
possesses the capability of using dockerComposeContainer to access the docker
containers already initialized in initializeDockerCompose() method.

3.2.5 Cucumber Configuration

Cucumber’s configuration may be found in RunTest class. Initially, using
@RunWith(Cucumber.class), JUnit is informed to run the class with cucumber’s
test runner. Further, we specify various options for running cucumber tests, using
@CucumberOptions, as follows:

• features = "src/test/resources/features": Specifies the path where the ‘.feature‘
files may be found and in the project we chose to put them in
src/test/resources/features.

• extraGlue = { "it.rcslab.cucumber.context" }: Specifies the additional pack-
ages where hooks can be found. By default, Cucumber will only look in the
package where the runner is located. For this project, the glued package is
it.rcslab.cucumber.context and, basically, it contains Authentication-

34 Proposed Approach

Holder and ResponseHolder classes that will hold on to the authentication
information and the response entity for the requests done by each test.

• plugin = { "pretty", "html:target/cucumber-report.html", "json:target/cucumber-
report.json" } : Specifies the output format of the test report. In the case of
this project, a pretty report, an HTML report file, and a JSON report file will
be generated.

An extra option may be added to help organize the test runs or run only a subset of
the tests at a time. For instance, to specify that only scenarios or features tagged
with @ActivityList-Search should run, we add tags = "@ActivityList-Search" to
CucumberOptions.

In the Table 3.2, the association of each tag used in the project, with its respec-
tive location, and the corresponding endpoint used to accomplish its tests, is stated.

Tag Feature file Endpoint

@ClientsAdmin

@ClientsAdmin-PrinterModel ClientsadminPrinterModel /printer/model
@ClientsAdmin-Printer ClientsadminPrinter /printer
@ClientsAdmin-Client ClientsadminClient /client
@ClientsAdmin-BurningStation ClientsadminBurningStation /burningstation

@ActivityList

@ActivityList-Search ActivityListSearch /search
@ActivityList-SearchAfter ActivityListSearchAfter /search/after
@ActivityList-SearchDiffUsers ActivityListSearchDiffUsers /search
@ActivityList-SearchEnrichLius ActivityListSearchEnrichLius /search
@ActivityList-SearchFails ActivityListSearchFails /search
@ActivityList-SearchWithSort ActivityListSearchWithSort /search

Table 3.2 Cucumber tags, its respective location, and the corresponding endpoint they cover

Feature file

In the test automation process, the capabilities of cucumber feature files are used to
create and execute tests with clarity and precision. Starting from the feature files, let

3.2 Implementation Techniques 35

us take a simple example of a scenario and follow the implementation step-by-step.
The selected scenario belongs, precisely, to @ClientsAdmin-PrinterModel, hence,
its implementation may be found in ClientsadminPrinterModel.feature and it
targets /printer/model endpoint that belongs to clientsadmin microservice.

@ClientsAdmin @ClientsAdmin − P r i n t e r M o d e l
F e a t u r e : C l i en t sAdmin P r i n t e r M o d e l API works p r o p e r l y

Background: apigw l o g i n
When I su bmi t username: "flavio" and password : "12345678"
Then I r e c e i v e a JWT

S c e n a r i o : The c l i e n t r e t r i e v e s t h e l i s t o f p r i n t e r models and r e c e i v e s s t a t u s
code OK and one p r i n t e r model

Given P r i n t e r M o d e l c o n t a i n s t h e f o l l o w i n g r e c o r d s
| name | d r i v e r |
| pm_model01 | pm_dr ive r01 |

When The c l i e n t c a l l s GET / p r i n t e r / model
Then The c l i e n t r e c e i v e s s t a t u s code of 200
And The c l i e n t r e c e i v e s c o n t e n t − t y p e a p p l i c a t i o n / j s o n
And The c l i e n t r e c e i v e s a L i s t o f 1 P r i n t e r M o d e l
And The c l i e n t r e c e i v e s one P r i n t e r M o d e l h av i ng name "pm_model01"

Background

In this scenario, we are replicating an API test that includes authentication and
fetching a list of printer models. The scenario starts with a background section in
which an API gateway login is performed and an authentication JSON Web Token
(JWT) is received. This JWT is required to authenticate subsequent calls. The use of
the cucumber background section is chosen with regards to its definition provided by
Matt Wynne and Aslak Hellesøy [23], "A background section in a feature file allows
you to specify a set of steps that are common to every scenario in the file. Instead of
having to repeat those steps over and over for each scenario, you move them up into
a Background element".
The JWT is safely stored in an ‘extraGlue’ class, AuthenticationHolder, allowing its
access across the tests’ stages while maintaining their independence. This technique
improves maintainability, reusability, and consistency while managing authentication
data effectively and keeping scenarios clean and compact.

36 Proposed Approach

Scenario

Each scenario begins after the user authenticates successfully. In the example
scenario provided above, the client is supposed to obtain a list of printer models
from the API in this simulation. In the scenario, it is described the behaviors and
expectations using Given, When, and Then phases, where:

• Given: step creates a predefined state by indicating the record that Print-
erModel table should contain, named “pm_model01” and a driver named
“pm_driver01”.

• When: step defines the client’s intention to perform an HTTP GET request to
the endpoint /printer/model.

• Then: step describes the expected results of the request. A successful response
should result in an HTTP 200 OK success status response code for the client.
It should also get a response with the content-type of application/json, which
confirms that the data is in JSON format. Furthermore, the client should expect
to get a list of printer models, containing one printer model, that should be
named “pm_model01”.

In summary, this scenario ensures that the API is running properly by determining
whether it delivers the necessary data in response to a client request and that the
authentication phase is performing as anticipated. This is known as BDD, and it
involves writing tests in a human-readable style to check that the software acts as
expected from the user’s perspective.

Step Definition

Moving to the implementation of the steps mentioned in the feature file, the relevant
actions for Given, When, and Then steps are implemented in the feature file’s step
definitions.
In the step definition classes, the login action, done in the background, is handled by
the following definition:

@When("I submit username: string and password: string")
@Then("I receive a JWT")

3.2 Implementation Techniques 37

In the first line, a When annotation is used from cucumber to define a step for the
login and represent a user submitting a username and password. As a next step, using
Then annotation, we ensure that the JWT, saved in the AuthenticationHolder, was
received correctly and that it is not null.
The main scenario holds the implementations of:

1. @Given("PrinterModel contains the following record(s)")

This function annotation is in charge of storing the printer model records stated
in the feature file and passed to the step definition class as a function parameter.

2. @When("The client calls GET (/printer|/client|/burningstati-
on)([/a-zA-Z0-9]*)$")

This is a versatile step that handles GET requests to several endpoints (/client,
/printer, /printer/model, and /burningstation). It created the URL
based on the route supplied and sends the GET request using the service client.

These step definitions bridge the gap between the high-level scenario described in the
feature file and the actions and assertions executed throughout the test automation
process. They provide explicit and exact communication among test scenarios and
the code behind it, thus, guaranteeing the correctness and the effectiveness of the
tests being conducted.

Database Cleanup

To enhance the dependability and predictability of out tests, we prioritize test scenario
isolation. Following each test execution, an approach to clean and reset the database
is involved, which returns it to its predefined baseline state. This method has various
advantages. For starters, it ensures the predictability of the test results as, initially,
the database was in a known state. Second, it encourages test independence, reducing
the possibility of incidences where tests affect each other. Third, by preventing data
contamination or obsolete records from other tests, we ensure data integrity. This
technique simplifies the debugging efforts because errors are less likely to occur as a
result of test interactions.
As our microservices ecosystem grows, this technique scales effectively, giving us
a solid basis for preserving our system’s stability. This technique is consistent and

38 Proposed Approach

considered as best practice for testing as it increases the confidence in the quality
and performance of services as they interact inside a distributed system.

Scenario Outline

Cucumber’s scenario outline is a handy tool that allows you to run the same scenario
several times with various data sources. It is especially beneficial when you want
to test a scenario with multiple input combinations or under different conditions.
A scenario outline is a scenario template which specifies a scenario that includes
placeholders for inputs or data that will change each time the scenario is run.
For this project, this approach is selected to test the search endpoints with some tests,
especially the ones that are data driven. Data-driven testing is well suited to search
endpoints, which frequently contain a broad variety of potential input combinations
and expected outputs.

@ A c t i v i t y L i s t @ A c t i v i t y L i s t − S e a r c h W i t h S o r t
F e a t u r e : A c t i v i t y L i s t Se a r ch API works p r o p e r l y wi th s o r t i n g e n a b l e d

S c e n a r i o O u t l i n e : S ea rc h i n < o r d e r > o r d e r , r e c e i v e f i r s t : < f i r s t L i u I d > and l a s t : <
l a s t L i u I d > L i u I d

Given I c r e a t e a que ry ha v i ng t h e c a t e g o r y "events"
And I open a group wi th c o n d i t i o n "AND"
And I add t o t h e group a r u l e where "liid" "equal" "20080312044460"
And I c l o s e t h e c u r r e n t group
And I s e t que ry s i z e t o < q u e r y S i z e >
And Enab le s o r t i n g "<field>" i n a "<order>" o r d e r
When I send a POST s e a r c h r e q u e s t
Then The c l i e n t r e c e i v e s s t a t u s code of 200
And The c l i e n t r e c e i v e s c o n t e n t − t y p e a p p l i c a t i o n / j s o n
And I r e c e i v e < r e t u r n e d L i u s > i t e m s wi th l i i d e q u a l s "20080312044460"
And I r e c e i v e t h e "first" i t em ha v i ng l i u I d e q u a l s t o < f i r s t L i u I d >
And I r e c e i v e t h e "last" i t em ha v i ng l i u I d e q u a l s t o < l a s t L i u I d >

Examples:
q u e r y S i z e	f i e l d	o r d e r	r e t u r n e d L i u s	f i r s t L i u I d	l a s t L i u I d
607	l	a s c	607	61665	83275
607	l	d e sc	607	83275	61665
620	l	d e sc	607	83275	61665

The template in the code snippet mentioned above, the scenario outline approach
is selected for testing the search endpoint with some extra parameters, in particular,
by adding a sort measure on the field parameter. These tests are present particularly
under @ActivityList-SearchWithSort.

3.2 Implementation Techniques 39

In the implementation, the template offers placeholders different input variables
(query size, field, order, returned Lius, first LidId, and last LiuId) and during execu-
tion, these placeholders will be replaced with the actual values from the Examples
table.

Cucumber Reports

As mentioned earlier, Cucumber was utilized in the test automation process to
execute and report on our integration tests. We were able to gain extensive insights
on the behavior of our microservices as a result of this integration. The following
are paths to the Cucumber test reports:

• HTML Report: /target/cucumber-report.html:
The HTML report displays test results in a user-friendly format, making it
simple to browse through scenarios and stages.

• JSON Report: /target/cucumber-report.json:
The structured data regarding the test outcomes is contained in the JSON report.
Although it cannot be viewed directly, it can be utilized for sophisticated
analysis or interaction with other technologies.

These reports are critical in determining the accuracy and robustness of our microser-
vices integration.

3.2.6 REST Assured

REST Assured with cucumber is a combination for creating BDD-styled tests for
RESTful APIs in feature files, using natural language, while utilizing REST As-
sured’s capabilities for performing HTTP requests and assertions from within the
step definition implementations.
For the sake of completeness, our target is to illustrate an example of how REST
Assured implementation should look like in case it gets adopted for later use in the
test application. The example will target the developed tests for both search APIs
and below is outlined the demonstration of how REST Assured is set up and used.
As a first step, @Before annotation is needed to cover the setup of RequestSpecifica-
tion’s configuration with the base URI, content-type header... Other settings needed

40 Proposed Approach

for the tests should be configured at this point in the process.

@Before
p u b l i c vo id b e f o r e S c e n a r i o () {

/ / . . .
r e q u e s t S p e c i f i c a t i o n = new R e q u e s t S p e c B u i l d e r ()

. s e t B a s e U r i (S t r i n g . f o r m a t (" h t t p : / / % s :%d " ,
dockerComposeCon ta ine r . g e t S e r v i c e H o s t (S e r v i c e s . APIGW . getName () ,

S e r v i c e s . APIGW . g e t P o r t ()) ,
docke rComposeCon ta ine r . g e t S e r v i c e P o r t (S e r v i c e s . APIGW . getName () ,

S e r v i c e s . APIGW . g e t P o r t ())))
. addHeader (

H t t p H e a d e r s . CONTENT_TYPE,
MediaType . APPLICATION_JSON_VALUE

)
. b u i l d () ;

/ / . . .
}

The next step would be handling the login. Normally, a POST request is dispatched
to the authentication path containing the username and password.
As we already know, this response holds the JWT that should be used in the following
API call, which means that we should keep it stored, this is done using the glued
AuthenticationHolder class.

Response r e s p o n s e = R e s t A s s u r e d . g i v e n (r e q u e s t S p e c i f i c a t i o n)
. when ()
. body (pos tBody)
. p o s t (AUTHENTICATE_PATH) ;

a u t h e n t i c a t i o n H o l d e r . s e t A u t h e n t i c a t i o n I n f o (
r e s p o n s e . getBody () . a s (A u t h e n t i c a t i o n I n f o . c l a s s)) ;

Following that, the natural next step would be to perform a POST request to the
search API endpoint. This request is sent with the defined request headers and body
that contains the search parameters and criteria. Once the request is sent and the
response is extracted and parsed for further analysis.

r e s p o n s e = R e s t A s s u r e d . g i v e n (r e q u e s t S p e c i f i c a t i o n)
. when ()
. h e a d e r s (r e q u e s t H e a d e r s ())
. body (q u e r y B u i l d e r . b u i l d ())
. p o s t (ACTIVITYLIST_SEARCH_PATH) ;

a c t i v i t y L i s t R e s u l t = g e t A c t i v i t y L i s t R e s u l t F r o m R e s p o n s e B o d y (
r e s p o n s e . getBody () . a s S t r i n g ()) ;

3.2 Implementation Techniques 41

Eventually, we make use of REST Assured built-in assertions to evaluate the re-
sponse’s status code and content type.

r e s p o n s e . t h e n () . s t a t u s C o d e (e x p e c t e d S t a t u s C o d e) ;
r e s p o n s e . t h e n () . c o n t e n t T y p e (c o n t e n t T y p e) ;

It is worth mentioning that REST Assured is a robust library for testing RESTful
APIs that offers a variety of functionalities for making requests, processing responses,
and verifying claims. However, the decision between REST Assured with cucumber
or RestTemplate on the other hand, is determined by the project requirements and
team preferences. RestTemplate is more straightforward and may be a better solution
when BDD-style tests are not required. REST Assured with cucumber shines when
it comes to BDD, improving collaboration, and creating exceptionally legible API
tests.

3.2.7 Jenkins

Creating a jenkins pipeline as part of this project is an important step in automating
and enhancing both the development and testing processes. Jenkins pipelines simplify
the whole software development lifecycle by automatically creating, testing, and
possibly deploying an application whenever changes in the code are made. This
automation provides consistency and fast reproducibility in the development process.
Overall, CI automation improves the quality of the code and fasten up the delivery
of trustworthy software to production. Accordingly, in what follows an explanation
of the Jenkins pipeline implemented for this project may be found. A declarative
pipeline script which serves the automation and the testing process of the project. It
is written in Groovy, a scripting language, and has a well-defined structure:

• Starting from a "pipeline" block that signifies the start of a Jenkins pipeline
and encapsulates the whole pipeline.

• "agent any" indicates that the pipeline is not tied to a specific agent label and
may run on any node that is free when the execution kicks off.

• The first stage, “Checkout SVN repository” is in charge of downloading the
source code of the project from a Subversion (SVN) repository. The checkout
step is used from within a script block along required parameters.

42 Proposed Approach

• The second stage, “Clean and Test”, oversees cleaning the project and execut-
ing the tests using maven. A simple bat step is responsible for running the
maven command "mvn clean test" (Windows host machine).

• Finally, a "post" block defines an "always" section in the scenario, and it will be
executed whether the precedent step is successful or not. This block contains
a cucumber step expected to handle a cucumber report for the tests using the
project generated file target/cucumber-report.json. Jenkins analyzes
this JSON report and delivers it in a user-friendly style. This presentation
covers numerous important aspects: methodically deconstructed test scenarios,
their separate phases, and a demonstration of the results of each test.

This pipeline can serve as a part of CI, however, whether it is a full CI depends on
the context and requirements of the software development project.
The corresponding pipeline script is presented below:

3.2 Implementation Techniques 43

p i p e l i n e {
a g e n t any
s t a g e s {

s t a g e (’ Checkout SVN repo ’) {
s t e p s {

echo " Checking o u t SVN repo . . . "
s c r i p t {

c u r r e n t R e v i s i o n = c h e c k o u t c h a n g e l o g : f a l s e , p o l l : f a l s e , scm :
[

$ c l a s s : ’ SubversionSCM ’ ,
a d d i t i o n a l C r e d e n t i a l s : [] ,
excludedCommitMessages : ’ ’ ,
e x c l u d e d R e g i o n s : ’ ’ ,
exc ludedRevprop : ’ ’ ,
e x c l u d e d U s e r s : ’ ’ ,
f i l t e r C h a n g e l o g : f a l s e ,
i g n o r e D i r P r o p C h a n g e s : f a l s e ,
i n c l u d e d R e g i o n s : ’ ’ ,
l o c a t i o n s :
[

[
c a n c e l P r o c e s s O n E x t e r n a l s F a i l : t r u e ,
c r e d e n t i a l s I d : ’ ab31b425 −82c7 −4977− b8c9 −9 d4c3a56cb05 ’ ,
d e p t h O p t i o n : ’ i n f i n i t y ’ ,
i g n o r e E x t e r n a l s O p t i o n : t r u e ,
l o c a l : ’ . ’ ,
r emote : ’ h t t p s : / / svn . r c s l a b . i t / svn / Mito2 / Dev / t r u n k /

a p p l i c a t i o n s / Mito / b r a n c h e s / MitoCube . 2 . 0 . R04 /
I n t e g r a z i o n e / i n t e g r a t i o n − t e s t ’

]
] ,
q u i e t O p e r a t i o n : f a l s e ,
workspaceUpda t e r : [$ c l a s s : ’ Upda teUpda te r ’]

]
}
echo " Done c h e c k i n g o u t SVN repo . . . "

}
}
s t a g e (’ Clean and T e s t ’) {

s t e p s {
echo "mvn c l e a n t e s t . . . "
b a t ’mvn c l e a n t e s t ’
echo " Done mvn c l e a n t e s t . . . "

}
p o s t {

a lways {
cucumber ’ t a r g e t / cucumber − r e p o r t . j s o n ’

}
}

}
}

}

44 Proposed Approach

3.3 Challenges

3.3.1 Dependencies and Integration Testing Complexity

The effective handling of dependencies between distinct microservices, guaranteeing
their harmonic interaction, was a major problem in the microservices setup. This
included coordinating versions, settings, and communication protocols across vari-
ous services, such as testing the API under test /search in Activitylist microservice,
which has a dependent implementation of logic on several microservices, such as
Xplora, Dendron, Preference, and Permission.

A planned strategy was used to effectively solve this difficulty. A realistic method
was implemented rather of relying simply on abstract coordination. Docker images
with exposed ports were developed for each of the dependent microservices. This as-
sured that the API under test, /search, could call the relevant APIs from the dependent
microservices and obtain the requisite replies. This method provides a tangible and
practical manner of managing dependencies, improving compatibility, and allowing
for thorough testing of interactions across microservices. Furthermore, it aided in
the creation of a more streamlined and efficient testing environment, fostering the
dependable coordination of interdependent services.

3.3.2 Data Setup

Setting up the necessary data for testing may be difficult, especially when various
situations demand different database setups. It is critical to manage data consistency
and integrity throughout testing.

Addressing this challenge entailed the adoption of a thorough data management
approach. This multimodal strategy included the use of database seeding scripts
and fixtures to create customized data scenarios for testing. Notably, this technique
included the inclusion of pre-filled databases holding data closely approximating
real-world circumstances, allowing for the testing of specific data scenarios. Docker
containers were fundamental in managing database instances, allowing for the quick
creation of isolated environments to handle various test situations.

3.3 Challenges 45

3.3.3 Resource Management and Time Constraints

Managing resource constraints, such as memory and CPU limits, was a significant
difficulty, particularly in a resource-intensive testing environment. Maintaining the
consistency and dependability of testing findings while dealing with these constraints
necessitated close attention.

Several tactics were used to monitor resource management and timing constraints,
such as the charts provided by Docker Desktop. Reusing the containers during test
was a significant time savior, adding to that deleting containers created for testing
following test completion was a critical part of resource management. Despite these
resource improvements, the testing environment required a significant number of
resources to be operational, often requiring 6-8 minutes to attain readiness using a
maximum of 9GB of the allocated memory (24.27GB) and a maximum of 400% of
the CPU (8 cores allocated equivalent to 800%), as displayed in the Figures 3.4 and
3.5.

Fig. 3.4 Docker Desktop Charts (Screenshot 1) - 4 minutes into the testing phase: Containers
are going up.

Fig. 3.5 Docker Desktop Charts (Screenshot 2) - 7 minutes into the testing phase: Containers
are up and running and tests are almost done.

46 Proposed Approach

3.3.4 WireMock vs. Docker Images

A big difficulty arose during the preparation of our integration testing strategy while
picking between two unique ways for replicating the behavior and interactions of
microservices. The main decision was whether to use the WireMock framework,
a lightweight, in-memory mock server, or Docker images to represent each of the
needed microservices. Both choices had advantages and drawbacks.

On the one hand, WireMock provided the benefit of rapid and simple API response
simulation. It allowed us to design and manage stubs for individual API endpoints,
giving us fine-grained control over the simulated answers.

Using Docker images of actual microservices, on the other hand, offered a more
accurate depiction of our production environment in our testing process. This method
allowed us to examine real-world interactions between microservices, including de-
pendencies and communication paths. Docker containers were capable of emulating
real-world circumstances, exposing integration flaws that would have been hidden
behind the simplicity of mocks.

After careful research, we determined that using Docker images of real microservices
was the best strategy for our integration testing needs. Several things influenced
this decision. While requiring more initial setup and resource management, Docker
images enabled a faithful simulation of microservice interactions, mimicking the
intricacies of the real-world production environment. This method would allow for
thorough testing of end-to-end scenarios in the future, including data persistence,
communication paths, and possible bottlenecks. This move helped to a more reliable
integration testing process by lowering the likelihood of inconsistencies between
the two environments and boosting the overall robustness of our testing efforts by
aligning our testing environment more closely with the production environment.

Chapter 4

Results and Discussion

4.1 Covered Scenarios

Comprehensive testing is critical in the context of software development and quality
assurance to assure the functionality, stability, and resilience of application pro-
gramming interfaces (APIs). The focus has been centered around examining the
functionality, performance, and reliability of the backend applications. Integration
tests were rigorously created to guarantee that these backend components work
fluidly and respond appropriately to varied input conditions. The tests entail the
creation of HTTP requests as well as forceful validations of return responses. It is
crucial to note that, while these integration tests thoroughly cover backend operations,
they do not cover frontend logic or interactions that a user may perform. Instead,
the emphasis has been on testing the essential backend functionalities, assuring data
integrity and the proper operation of the microservices.

4.1.1 Clientsadmin Scenarios

A collection of precisely developed test cases for Clientsadmin API are included,
which is a vital microservice in the ecosystem. These test scenarios cover a wide
range of use cases, investigating Clientsadmin API’s functionality under various
settings and user interactions.
The goal of putting the API through these stringent tests is to evaluate its capacity and
to administrate multiple entities (PrinterModel, Printer, Client, and Burningstation)

48 Results and Discussion

while ensuring data integrity, security, and user experience. These scenarios not
only provide quality assurance but also information about the API’s performance,
robustness, and conformance to functional requirements. The purpose of this sys-
tematic examination is to verify that the Clientsadmin API functions as an essential
and dependable components of the infrastructure.

PrinterModel

Starting with PrinterModel endpoint, it is put through tests: collecting printer models,
executing POST and PUT requests, and dealing with deletions. Maintaining the
integrity of printer models is critical for overall system consistency.

Table 4.1 Conducted tests under the tag @ClientsAdmin-PrinterModel

Target Description

GET /printer/model
• Fetch a non existent printer model
• Fetch a single printer model
• Fetch more than one printer model

POST /printer/model
• Create without sending data
• Create a single printer model
• Create a not unique printer model (Name)

PUT /printer/model
• Update without sending data
• Update a single printer model
• Update non existent printer model

DELETE /printer/model

• Delete without sending an id
• Delete a single printer model
• Delete using an invalid id
• Delete using non existent id

GET /printer/model by id
• Fetch a single printer model by id
• Fetch using a non existent id
• Fetch using an invalid id

The above tests are considered as standard or “baseline” tests that focus on the basic
functionality and behavior of the /printer/model API, with no specific tests related to
business logic, as the API works independently. The conducted tests on this endpoint
can be shown in the Table above 4.1.

4.1 Covered Scenarios 49

Client and Printer

Similarly, for the /client and /printer endpoints, tests encompass retrieving client
and printer lists, POST and PUT requests, handling various error conditions, and
verifying the relationships between printer models, printers, and clients.

These tests include both baseline scenarios for printer functionality and extra scenar-
ios focusing on printer model dependencies. Tests connected to POST requests on
/printer endpoint, in particular, emphasize the significance of supplying appropriate
printer models when creating new printers, stressing the dependent relationship
between these two entities.

Table 4.2 Conducted tests under the tag @ClientsAdmin-Printer

Target Description

GET /printer
• Fetch a non existent printer
• Fetch a single printer
• Fetch more than one printer

POST /printer

• Create without sending data
• Create printer with non existent printer model
• Create without assigning to it a printer model
• Create a single printer
• Create a not unique printer (Name)
• Create a not unique printer (MAC Address)

PUT /printer
• Update without sending data
• Update non existent printer

DELETE /printer

• Delete without sending an id
• Delete a single printer
• Delete using an invalid id
• Delete using non existent id

GET /printer by id
• Fetch a single printer by id
• Fetch using a non existent id
• Fetch using an invalid id

Some of the tests are especially designed to address the following requirements:
unique printer names, unique printer MAC addresses, and printer model selection.
The conducted tests on this endpoint can be shown in the Table above 4.2.

50 Results and Discussion

Baseline tests are implemented for /client, similarly to previous tests, additional tests
are especially designed to address the following requirements: unique client names,
unique client MAC addresses, and activation of the link established between clients
and printers. The conducted tests on this endpoint can be shown in the Table below
4.3.

Table 4.3 Conducted tests under the tag @ClientsAdmin-Client

Target Description

GET /client
• Fetch a non existent client
• Fetch a single client
• Fetch more than one client

POST /client

• Create without sending data
• Create client with non existent printer
• Create without assigning to it a printer
• Create a single client
• Create a not unique client (Name)
• Create a not unique client (MAC Address)

PUT /client
• Update without sending data
• Update non existent client

DELETE /client

• Delete without sending an id
• Delete a single client
• Delete using an invalid id
• Delete using non existent id

GET /client by id
• Fetch a single client by id
• Fetch using a non existent id
• Fetch using an invalid id

GET /printer/getclients

• Fetch non existent client
• Fetch client linked to printer
• Fetch client linked to printer(2 diff clients)
• Fetch clients linked to printer

4.1 Covered Scenarios 51

Burningstation

For the /burningstation endpoint, tests include checking the retrieval of burning
stations, making POST requests, handling invalid input, and verifying the behavior
when interacting with burning stations, printers, and clients by validating that both
successful and unsuccessful scenarios are appropriately handled.

Table 4.4 Conducted tests under the tag @ClientsAdmin-BurningStation

Target Description

GET /burningstation
• Fetch a non existent burning station
• Fetch a single burning station
• Fetch more than one burning station

POST /burningstation • Create a single burning station

PUT /burningstation • Update non existent burning station

DELETE /burningstation

• Delete without sending an id
• Delete a single burning station
• Delete using an invalid id
• Delete using non existent id

GET /burningstation by id
• Fetch a single burning station by id
• Fetch using a non existent id
• Fetch using an invalid id

GET /burningstation/getclients
• Fetch non existent client
• Fetch client using an invalid id
• Fetch client using a non existent id

PUT /burningstation/connectclients

• Connect client to a burning station
• Connect clients to a burning station
• Connect client to a burning station
• Connect client to a non existent id
• Connect client to invalid id

PUT /burningstation/disconnectclients

• Disconnect client from station
• Disconnect clients from station
• Disconnect non existent client
• Disconnect client from non existent id
• Disconnect client from invalid id

52 Results and Discussion

Additionally, tests for connecting and disconnecting clients to burning stations have
been covered. These tests collectively ensure that /burningstation endpoint is robust
and reliable, addressing diverse scenarios to provide a significant level of confidence
in its functionality. The conducted tests on this endpoint can be shown in the Table
above 4.4.

By implementing this extensive set of tests, not only a validation on the core func-
tionality of the covered APIs, but also addressing various edge cases and potential
error scenarios. This approach helps in building robust and reliable APIs that can
handle a wide range of real-world situations, contributing to the overall quality and
stability of your software system.

4.1.2 Activitylist Scenarios

The Activitylist Search API is an important component of the software system. A
thorough suite of test scenarios has been created to ensure its smooth operation.
These examples include a wide range of functionality and usage patterns, from
simple searches to more complex interactions. The API’s replies to requests of
differing complexity are examined, and assessments are carried out in various user
settings. The examples address query size, sorting, user-specific searches, and error
handling, targeting the API’s resilience, correctness, and capacity to smoothly handle
a wide range of real-world circumstances.
Additionally, they also evaluate the API’s performance in terms of offering enriched
data insights based on query parameters.The goal of these defined tests is to guarantee
that the Activitylist search APIs not only meet its intended purpose, but also function
as a dependable and responsive component without the software’s ecosystem.

Search

Starting from the test scenarios written under the tag named @ActivityList-Search,
the search API capabilities are introduced by searching for some specific values using
various pre-defined criteria. It also evaluates the API’s flexibility by verifying that
the pre-defined criteria on different parameters, in the request query, are respected
and reflected in the received response.
As dictated in Table 4.5, the API is evaluated in the first couple of scenarios for its

4.1 Covered Scenarios 53

ability to search for certain “liid” values, with varied query sizes. The third and
fourth example have a more complicated query with an alternation of the operator
between the condition: non-empty URI (AND/OR) ending in “.com”.

Query Size Liid More Rules Returned Items

100 20080312044460 100

50 20080312044460 50

50 17110818000063
Size > 10000 AND

50(URI not empty AND
URI ends with .com)

50 17110818000063
Size > 10000 AND

50(URI not empty OR
URI ends with .com)

Table 4.5 Conducted tests under the tag @ActivityList-Search

@ActivityList-DiffUsers covers the performance of the API under various user
credentials. It includes a variety of test scenarios, each characterized by a distinct
combination of "liid", "username", "password", and the anticipated number of Lius
(items) with a matching "liid". The scenario outline begins with the login, which
results in the acquisition of a JWT. Following that, a query is built with a specific
"liid" value. The final step is to ensure that the number of recovered items from
the received response matches the predicted number for the provided "liid". The
example table is parameterized with various "liid" values, users, passwords, and
expected counts, these values are noted in the below Table 4.6.

Liid Username Password Total Returned Lius

20080312044460 bgemmi 12345678 50
20080312044460 flavio 12345678 50
18092814114376 bgemmi 12345678 50
18092814114376 flavio 12345678 0
17110818082492 flavio 12345678 0
17110818082492 bgemmi 12345678 0

Table 4.6 Conducted tests under the tag @ActivityList-DiffUsers

54 Results and Discussion

@ActivityList-SearchFails is intended to assess how the system handles invalid
input parameters in its search functionality. It is a parameterized approach, with test
cases covering different "category" and "querysize" value combinations. Specifically,
when an invalid input is submitted, it ensures that the client receives the expected
error code (e.g., 400 for bad request). As stated in Table 4.7, the conducted tests
includes examples of null "category" values, empty "category" values, and negative
"querysize" values, enabling comprehensive error handling for many forms of erro-
neous inputs during search queries.

Category Query Size Expected Error Code

null 0 400
0 400

events -1 400
Table 4.7 Conducted tests under the tag @ActivityList-SearchFails

@ActivityList-SearchWithSort dives into the API’s behavior after enabling the
sort functionality. This parameterized scenario evaluates the system’s responsiveness
when looking for data based on certain sorting criteria. It starts by making a query
for the "events" category, specifying the query size, and enabling sorting based on
a given field and order (ascending or descending). These tests verify whether the
API correctly returns the results based on provided search criteria and "liid" values,
with a focus on different combinations of "querysize" and "liid" values. The above
mentioned tests can be seen in the Table below 4.8.

Query Size Field Order Returned Lius First LiuId Last LiuId

607 l asc 607 61665 61665
607 l desc 607 83275 61665
620 l desc 607 83275 61665
Table 4.8 Conducted tests under the tag @ActivityList-SearchWithSort

In @ActivityList-SearchEnrichLius, the emphasis is on determining the API’s
ability to produce accurate results depending on certain query parameters. These
scenarios cover situations such as looking for specified "liid" values with given query

4.1 Covered Scenarios 55

sizes and predicted total Lius counts and ensuring the returned data matches particu-
lar criteria such as "caseName", "caseId", "leaId", "voiceTargetId", and "liidStatus",
and that the comments connected with the findings are proper. These characteristics
are part of the data enrichment process that occurs during query execution. This step
entails getting extra information from other microservices in order to improve the
query results. Hence, not just the core query criteria is checked, but also the integrity
of additional data obtained from external sources, to verify the overall quality and
completeness of the ActivityList Search API’s results. The above mentioned tests
can be seen in the Table below 4.9.

Liid Query Size Total Returned Lius

20080312044460 10 607
18092814114376 10 0
19040309210322 10 0
20092216251673 10 327
17110818000063 10 1500
17112409114079 10 15

Table 4.9 Conducted tests under the tag @ActivityList-SearchEnrichLius

Search After

@ActivityList-SearchAfter focuses on ensuring that the search feature with the
search after capability functions properly. Various test cases are run in this set of
scenarios to verify the API’s performance and correctness. Each scenario involves
creating an event query, selecting the query size, and providing a reference to a
specified “liuid”.
These scenarios cover a variety of query sizes and "liuId" values, with the goal of
ensuring that the API delivers the required number of items with the proper "liid"
values. Additionally, the "liuId" values of the first and last items in the returned array
of results are checked to verify correct ordering. It’s worth noting that some cases
contain negative "liuId" values, which means that the liuid is not provided and the
API should function as a normal search, or queries with no anticipated results as they
intend to test border cases.
Overall, these scenarios thoroughly evaluate the validity and effectiveness of the

56 Results and Discussion

ActivityList Search After API’s functionality. There are no obvious flaws in the
given table, but the ordering of received "lius" in contrast to "liuId" values should
be thoroughly reviewed to guarantee correctness. The above mentioned tests can be
seen in the Table below 4.10.

Query Size LiuId Returned Lius First LiuId Last LiuId

10 -1 10 83275 83235
10 83265 10 83258 83191
20 83162 20 83149 83079

607 -1 607 83275 61665
10 83275 10 83273 83223
10 61665 10 83273 83235

700 -1 607 83275 61665
800 61665 0 -1 -1
800 83275 606 83273 61665
607 61665 0 -1 -1
607 83275 606 83273 61665

Table 4.10 Conducted tests under the tag @ActivityList-SearchAfter

In summary, these extensive test cases provide in-depth coverage of the ActivityList
Search and Search After APIs. They analyze its essential functionality, error han-
dling, and how it responds to different user scenarios. These tests are critical in
confirming the APIs’ dependability and accuracy in a variety of real-world circum-
stances, hence, improving the overall quality of the software system it serves.

4.2 Results 57

4.2 Results

As part of our extensive integration testing approach, 118 tests were conducted.
Within the RCS lab’s microservices-based application ecosystem, the 118 test cases
demonstrate the wide coverage of scenarios and interactions performed to examine
the functionality, performance, and reliability of the tested endpoints. The results of
these tests demonstrate insights about the small piece of the system’s overall health
and preparedness, serving as a core indication of its robustness and quality.

4.2.1 Cucumber Report

Html Report

The chosen testing framework’s HTML report is a useful tool for visualizing the
outcomes of the conducted integration tests, as shown in Figure 4.1. It has a user-
friendly UI that makes interpreting test results easier. Users may quickly identify both
succeeded and failed cases within this report, offering a comprehensive summary
of the testing process. Furthermore, the HTML report include unique insights and
crucial results, such as identifying essential test cases that require immediate attention
or emphasizing regions of the program that have shown stability.

Fig. 4.1 Cucumber HTML Report

58 Results and Discussion

JSON Report

Futhermore, we create a JSON report that is particularly designed for interaction
with our Jenkins workflow. This JSON report serves as a structured data source
for Jenkins, allowing it to provide summaries of test results within the Jenkins
environment. The transformation can be shown from Figure 4.2 to Figure 4.3.

Fig. 4.2 Cucumber JSON Report

4.2.2 Jenkins Pipeline Reports

Cucumber Report

Adding to the abovementioned, among the Jenkins plugin exists a Cucumber plugin
that provides enhanced reporting capabilities for Cucumber test results within Jenkins
based on the previously generated JSON report.
The choice about whether to use the Cucumber-generated HTML report within your
Java application or rely on Jenkins for reporting is determined by the requirements.
Both techniques offer advantages, and the choice should be based on the team’s
workflow. The Jenkins Cucumber Report Plugin is an excellent solution if centralized
reporting, historical data analysis, and easy interaction with Jenkins are the target,
otherwise, the Cucumber-generated HTML report may be preferable. The detailed
Jenkins Cucumber Report can be seen in the below Figure 4.3.

4.2 Results 59

Fig. 4.3 Cucumber Report Pluggin in Jenkins

Stage View

The Stage View in Jenkins pipeline, as displayed in Figure 4.4, serves as a visual
dashboard and presents a simple, high-level overview of the whole testing process.
It provides a visual depiction of each stage of the pipeline, making it simple to
determine which stages have passed successfully and which have failed. This high-
level overview is crucial for immediately spotting any bottlenecks or difficulties in
the pipeline.

Fig. 4.4 Jenkins Stage View

Chapter 5

Conclusion and Future Work

5.1 Summary of the Study

In this research, we embarked on a comprehensive exploration of software inte-
gration testing, focusing on the critical aspect of API testing. We aimed to assess
the functionality, performance, and reliability of some endpoints of a couple of
microservices within the RCS lab’s application ecosystem. This study encompassed
118 integration tests, which rigorously examined various scenarios and interactions
to ensure the robustness and quality of what is tested. The key findings include:

• The effective validation of the covered APIs’ main functionality, establishing
confidence in their dependability.

• Identifying opportunities for improvement in error handling and boundary
conditions that might improve the overall stability of the software system.

• Insights on the system’s readiness to deal with a variety of real-world events,
which contributes to its general health and resilience.

5.2 Contributions and Implications 61

5.2 Contributions and Implications

This research made several significant contributions to the field of software quality
assurance and microservices testing at RCS lab. These contributions include:

• A comprehensive set of 118 integration tests that can serve as a benchmark for
assessing the quality of similar microservices-based applications.

• Valuable insights into the performance, functionality, and reliability of mi-
croservices, aiding in the development of robust software systems.

• Practical implications for software developers and quality assurance teams,
emphasizing the importance of thorough testing to ensure the dependability of
microservices.

The implications of this thesis work extend to the development and maintenance of
microservices-based applications, where these findings can guide best practices in
testing and quality assurance processes. Additionally, this research highlights the
need for ongoing monitoring and improvement of microservices to enhance their
reliability and resilience.

5.3 Future Research Directions

While the study has yielded useful results, it is not without limitations. These
limitations include:

• The focus on a narrow collection of microservices within RCS lab’s ecosystem,
which limits the generalizability of the findings to other domains.

• The lack of real-time testing scenarios, which might enable a more complete
assessment of the performance of microservices under dynamic situations.

• The reliance on predefined test cases, which may not cover all real-world
scenarios.

62 Conclusion and Future Work

Future research in this field can expand on our findings in the following ways:

• Broadening the scope of testing to encompass a broader range of microservices
and domains, allowing for a more thorough study of microservices-based
applications.

• Investigate the feasibility and advantages of adding end-to-end testing to the
existing integration testing framework, with an emphasis on improving overall
quality assurance and identifying possible system-level concerns.

• Training and Familiarization: Begin training sessions and workshops to ac-
quaint the QA team with the testing frameworks and tools discussed in this
thesis. This will allow team members to become proficient in the use of these
resources.

• Quality Improvement Metrics: Use metrics and key performance indicators
(KPIs) to measure the efficacy and efficiency of the QA team’s testing opera-
tions. These indicators can help you track your success and discover areas for
improvement.

References

[1] G. Malnati. Slides on Modularità (Organizzare il codice sorgente) - Le domande
del test. Lecture Slides, Politecnico di Torino, Department of Control and
Computer Engineering, 2021-23.

[2] Vladimir Khorikov. Exploring Mocks in Unit Testing. Manning Publications
Co., 2020.

[3] GitLab B.V. How to shift left with continuous integration.
https://about.gitlab.com/topics/ci-cd/shift-left-devops/, 2023.

[4] Arvinder Saini. How much do bugs cost to fix during each phase of the sdlc?
Jan 11, 2017.

[5] GitLab B.V. What is continuous integration (ci)?
https://about.gitlab.com/topics/ci-cd/benefits-continuous-integration/,
2023.

[6] Andy Gumbercht Alex Soto Bueno and Jason Porter. Testing Java Microser-
vices. Manning Publications Co., 2018.

[7] Jason Clark Benjamin J. Evans and Martijn Verburg. The Well-Grounded Java
Developer. Manning Publications Co., 2022.

[8] Gayathri Mohan. Full Stack Testing. O’Reilly Media, Inc, 2022.

[9] MARK WINTERINGHAM. Testing Web APIs. Manning Publications Co.,
2022.

[10] Xiao Pu. Introduction to static analysis. https://se-
education.org/learningresources/contents/staticAnalysis/intro.html, 2021.

[11] Roy Osherove. The Art of Unit Testing with examples in JavaScript. Manning
Publications Co., 2022.

[12] Jay Fields. Working Effectively with Unit Tests. CreateSpace Independent
Publishing Platform, 2018.

[13] Daniel Irvine. Mastering React Test-Driven Development, Second Edition.
Packt Publishing Ltd., 2022.

64 References

[14] Katalon. Introduction to continuous testing | continuous testing
101. https://medium.com/katalon-studio/introduction-to-continuous-testing-
continuous-testing-101-5cb5bbfb4623, 2019.

[15] Spinnaker. https://spinnaker.io/, 2023.

[16] Inc. Docker. https://www.docker.com/, 2023.

[17] Richard North and other authors. https://java.testcontainers.org/, 2015-2021.

[18] SmartBear Software. https://cucumber.io/, 2023.

[19] Johan Haleby. https://github.com/rest-assured/rest-assured/wiki/Usage, 2023.

[20] Johan Haleby. http://www.awaitility.org/, 2023.

[21] WireMock. https://wiremock.org/, 2023.

[22] System Operation and Control.

[23] Matt Wynne and with Steve Tooke Aslak Hellesøy. The Cucumber Book Second
Edition. The Pragmatic Bookshelf, 2017.

Acknowledgements

to my family and friends

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Importance of Integration Testing in Microservices Environment
	1.2 Thesis Objectives
	1.2.1 Identify and Evaluate Existing Integration Testing Methodologies and Tools
	1.2.2 Select the Most Suitable Tools for The Company and Experiment Their Effectiveness
	1.2.3 Inspire the Employees and Improve Software Development Process

	1.3 Thesis Structure

	2 Related Work
	2.1 Overview of Microservices Architecture
	2.1.1 Defining the Scope and Size of Microservices
	2.1.2 Advantages of Adopting Microservices Architecture

	2.2 Development Methodologies for Microservices Testing
	2.2.1 Test-Driven Development
	2.2.2 Domain-Driven Development
	2.2.3 Behavior-Driven Development

	2.3 Testing Approaches for Microservices Architecture
	2.3.1 Manual vs. Automation Testing
	2.3.2 Types of Software Testing
	2.3.3 Continuous Testing

	2.4 Frameworks and Tools

	3 Proposed Approach
	3.1 Applications Under Test
	3.2 Implementation Techniques
	3.2.1 Test Environment
	3.2.2 Databases
	3.2.3 Docker Compose Configuration
	3.2.4 Testcontainers Configuration
	3.2.5 Cucumber Configuration
	3.2.6 REST Assured
	3.2.7 Jenkins

	3.3 Challenges
	3.3.1 Dependencies and Integration Testing Complexity
	3.3.2 Data Setup
	3.3.3 Resource Management and Time Constraints
	3.3.4 WireMock vs. Docker Images

	4 Results and Discussion
	4.1 Covered Scenarios
	4.1.1 Clientsadmin Scenarios
	4.1.2 Activitylist Scenarios

	4.2 Results
	4.2.1 Cucumber Report
	4.2.2 Jenkins Pipeline Reports

	5 Conclusion and Future Work
	5.1 Summary of the Study
	5.2 Contributions and Implications
	5.3 Future Research Directions

	References

