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Abstract

This study introduces an innovative framework for addressing the maximum in-
dependent set (MIS) and minimum vertex cover (MVC) problems using a graph
neural network (GNN) approach inspired by dynamic programming (DP). The MIS
problem finds important applications in Communication Networks, as it can help in
optimizing the network’s performance by ensuring non-interfering or non-conflicting
communication between nodes. Instead, identifying an MVC in a network helps to
minimize the number of resources needed for infrastructure deployment, which is
crucial in applications like transportation or utility networks. Unfortunately, the
MIS and MVC are NP-hard problems, and classic heuristics, like the simplex or
the ellipsoid methods, may take too much time to find a solution. For this reason,
in the last few years, new methods involving Machine Learning (ML) models have
been deployed. Since the MIS and MVC problems are NP-hard, producing labels
to train the ML-like approaches would be too difficult, thus unsupervised training
is employed. If the ML models are properly trained, these approaches have the
advantage of being faster than standard heuristics, as the complexity of the method
is linked to the complexity of the ML model architecture. Unfortunately, ML-like
approaches may lead to solutions of the MIS and MVC problems that are too far
from the optimal value. The goal of this work is to produce a new algorithm that,
by making use of an ML model, shares the low complexity of standard ML-like
methods but outperforms them by making use of an ML model that is trained
self-supervised. Moreover, the architecture of the proposed ML model relies on
Graph Neural Networks (GNNs), that leverage the concept of embeddings in order
to capture diverse semantic meanings of graphs.

The proposed algorithm employs a DP-like recursive structure. Each iteration of the
algorithm considers a graph as input and outputs a graph of lower complexity (thus
with fewer nodes or fewer edges) that is employed in the next iteration. The first
step of each iteration consists of creating two smaller sub-graphs. Both sub-graphs
have a lower complexity than the graph from which they were generated. Then, the
second step is executed by an ML model that acts as a binary classifier, indicating
which of the two graphs is chosen. Finally, in the third step, a check over the chosen
graph is made. If the chosen graph has a specific structure, the algorithm stops,
otherwise the chosen graph is used in the next iteration. To train the ML model
effectively, annotated comparisons between different graphs in terms of their MIS
and MVC sizes are leveraged. By annotating these comparisons with the outcomes
generated by the algorithm, a self-training process is established that results in
improved self-annotation of the comparisons and vice versa. Theoretical results



prove that if the ML model is effectively trained, then the proposed algorithm
leads to solutions that are near-optimal. Finally, numerical results show that
the proposed method outperforms the state-of-the-art approaches across various
synthetic and real-world datasets.
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Chapter 1

Introduction

An unprecedented success has been achieved by deep neural networks (DNNs) in
extracting intricate patterns directly from data without the need for handcrafted
rules, while still generalizing well to new and previously unseen instances [1, 2].
Among the several fields of application, in the last few years, Combinatorial
Optimization (CO) problems have been successfully tackled by DNNs, such as the
Traveling Salesman Problem [3, 4, 5], the Job-Shop Scheduling Problem [6, 7], and
the Quadratic Assignment Problem [8].

A fundamental obstacle faced by DNNs techniques when applied to CO problems is
the scarcity of training data. Generating annotations for this data entails solving a
vast number of instances of CO, which makes supervised learning approaches com-
putationally impractical for NP-hard problems, as highlighted in [9]. Overcoming
this challenge is crucial to realizing the complete potential of deep neural networks
(DNNs), which otherwise have wide-ranging utility in the domain of CO.

DNNs are not the only tool for solving CO tasks. Several works have used dynamic
programming (DP) approaches in order to break the initial complexity of a CO
problem into several less complex instances. The Vehicle Routing Problem [10],
the Knapsack Problem [11], and the Graph Coloring Problem [12] are only a few
examples of CO problems tackled with DP-like frameworks. The main limitations of
DP-like algorithms are in terms of time and space. As DP focuses on breaking down
a problem into several sub-problems, this operation can be time-limiting, as every
sub-problem can potentially produce several different sub-sub-problems and so on.
Moreover, if the number of sub-tasks is too high, the memory required to store all
of them may be too big. Circumventing these problems, by properly changing the
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Introduction

inherent structure of a classical DP algorithm, can lead to an algorithm that is fast
and efficient.

This work, resulted in a paper accepted at the NeurIPS conference1, consists of
solving two classical CO problems applied to graphs: the Maximum Independent
Set (MIS) and the Minimum Vertex Cover (MVC) problems. The MIS consists of
finding the independent set (IS) of the biggest size, where an IS is a set of nodes
such that every couple of nodes in the IS is not connected with an edge. The MVC
goal is, instead, to find the set of nodes (defined as vertex cover (VC)) of minimum
cardinality such that every edge of the graph has at least one of the two nodes
defining it in the set.

This work proposes two novel algorithms, sharing the same structure, for solving
the MIS and MVC problems. The algorithms leverage the capabilities of a Graph
Neural Network (GNN) model [13]. GNNs have been used in the last few years
for their ability to learn representations of graph-structure data independently on
the size of the graph [14]. They can effectively capture into vector representations,
known as embeddings, the patterns and semantics of a graph.

The proposed algorithms share a DP-like structure. Given a graph as input, the
algorithms iteratively break a graph into two sub-graphs of lower complexity. This
procedure is followed until one of the sub-graphs assumes a specific structure. The
novelty brought by the proposed methods lies in the division, or branching, process.
A model composed of GNNs decides which of the two sub-graphs will be used in the
next iteration, and the un-chosen sub-graph is no longer taken into consideration.
By following this approach, the time and space limitations that are inherent to
classical DP-like methods are drastically reduced, as the number of sub-tasks is
limited by the GNN-like model.

If on one side the GNN-like model lightens the complexity of the DP-like proposed
algorithms, on the other side the DP-like structure helps the model by producing
training data, even if the MIS and MVC problems are known to be NP-hard.
Indeed, this work proposes a self-supervised learning approach where the DP-like
algorithms produce the ensemble of training data and labels that are necessary for
efficiently training the GNN-like model.

1Maximum independent set: Self-training through dynamic programming. Lorenzo Brusca, Lars
C.P.M. Quaedvlieg, Stratis Skoulakis, Grigorios Chrysos and Volkan Cevher. 37th Conference on
Neural Information Processing Systems (NeurIPS 2023)
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A precise validation of the proposed methods is conducted in diverse graph distri-
bution datasets. The proposed DP-like algorithms show better performances than
previous DNN methods, like [15, 16, 17, 18], in almost all datasets.

1.1 Thesis Outline
The structure of this work is organized in 8 chapters, organized as follows:

• In Chapter 1 the introduction of this work is provided.

• Chapter 2 presents a description of all topics covered by this work.

• Chapter 3 delves into the analysis of the proposed algorithms and introduces
the important Comparator Function.

• In Chapter 4 the architecture of the GNN-like model is analyzed.

• Chapter 5 details the self-training process, describing both the crucial Consis-
tency Property and the data generation process.

• Chapter 6 focuses on the ensemble of modifications to the standard methods
that are carried out to improve the final results.

• In Chapter 7 the performances of both the standard proposed approaches and
the modified approaches are compared against diverse baseline methods.

• Finally, Chapter 8 details the conclusions and future changes to improve the
proposed methods.

3



Chapter 2

Background

This chapter provides an overview of the ensemble of topics that are treated in this
work. In particular, these are the topics covered by the sections of this chapter:

• Section 2.1 defines a standard CO problem and the two problems analyzed in
this work.

• Section 2.2 presents a general explanation of classic DP and MCTS methods.

• Section 2.3 provides an overview of general ML learning approaches for training
an ML model.

• Section 2.4 describes the structure of Recurrent GNNs.

• Section 2.5 shows several Convolutional GNNs methods.

2.1 Combinatorial optimization problems over
graphs

In this section, an analysis of CO problems over graphs is conducted. In particular,
a general overview of graphs and CO problems over graphs is given, followed by a
description and formulation of typical CO graph problems.

4
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2.1.1 Graph definition and notation
The following paragraphs show the graph notations that are employed in all the
subsequent chapters of this work.

Graph definition. A graph G(V, E) is an ordered couple that describes relations
between different entities. Such entities are called nodes or vertices, while the
relations between nodes are called edges or arcs. The set of all nodes is denoted
as V , while the set of all edges is denoted as E. Every edge is defined as a couple
of nodes, thus E is a subset of V × V (where × denotes the cartesian product),
namely E ⊆ {(u, v)|u, v ∈ V }. Every edge (u, v) can be assigned a weight w(u,v),
which is a number that can model the strength of the relation among the two nodes
u, v defining the edge.

Graph types. If the couples of nodes defining the edges are ordered couples, the
graph is referred to as directed, otherwise, the graph is undirected. Moreover, a
graph is permitting-loops if admits edges (u, u), connecting a node to itself. Vice
versa, the graph is permitting-no-loops. Lastly, unweighted graphs admit only one
possible weight for every edge, contrary to the weighted graphs.

Graph features. The set of weights of a graph G are generally gathered into
a square matrix AG denoted as the Adjacency matrix. Every element AG(i, j)
is equal to wi,j if the edge (i, j) exists, otherwise it is equal to 0. In the case of
an undirected graph, the matrix is symmetric, since wi,j = wj,i. The neighbors
of a node v is the set of nodes that are directly connected through an edge with
v, namely ne[v] = N (v) = {u ∈ V | (u, v) ∈ E}, while co[v] denotes the set of
arcs having v as a node. The degree of a node v is the total number of nodes
connected to v, namely d(v) = |ne[v]| = |N (v)|. Moreover, the degrees of a graph
are generally gathered into a diagonal matrix D. For every node couple (i, j), the
element D(i, j) is equal to 0 if i /= j and it is equal to d(i) if i = j.

2.1.2 Combinatorial optimization: a brief summary
Combinatorial optimization is a branch of optimization that focuses on finding the
best possible solution among a finite set of discrete options or combinations. It
involves selecting an optimal arrangement or combination of elements from a given
set to optimize a defined objective function while satisfying specific constraints.

A CO problem is defined by a set of discrete decision variables x = (xi)1≤i≤N ∈ S
and a objective function, sometimes denoted as cost function or energy function,
f(x) : S → R, that maps the decision variables into a real number. The set S ∈ RN

is named as the solution space and contains the possible values that the decision

5
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variables can assume. The goal of the problem is to find a value x ∈ S such
that f is either maximized or minimized under a set of constraints. Maximization
and minimization are equivalent, since minimizing f(x) is totally equivalent to
maximizing −f(x).

Some CO problems admit a Linear programming (LP) formulation, meaning that
the objective function and the constraints can be expressed as a linear combination
of the decision variables. Moreover, if the decision variables assume only integer
values, then the formulation is said to be Integer-linear programming (ILP). In the
latter case, the ILP problem is typically formulated with the following canonical
form:

maximize cT x,

subject to Ax ≤ b,

and x ≥ 0.

(2.1)

In the above formulation, x is the vector of decision variables, c is the vector of the
cost function coefficients, b is the constraint vector and A is the constraint matrix.
The above formulation is used later to define the problems analyzed in this work.

2.1.3 Case study
Within the class of CO problems, a specific category is dedicated to addressing
problems formulated on graph structures. In this work, two CO problems are
examined: the MIS and the MVC. The subsequent sections provide succinct
explanations and descriptions of these problems.

Maximum independent set problem

In the context of a graph G(V, E), an independent set is defined as a set of nodes
S ⊆ V where, for any two vertices in S, there is no edge connecting them. In other
words, for any nodes u and v belonging to S, the edge (u, v) does not exist in E.
The objective of this problem is to identify the independent set with the maximum
number of nodes, denoted as MIS(G) in the current study.

As well as other notorious graph theory problems, the MIS admits an ILP for-
mulation. Particularly, given a graph G(V, E) with n = |V |, the binary decision
variables are x = (xi)1≤i≤n ∈ {0,1}n for each vertex i ∈ V such that xi = 1 if vertex
i is considered as part of the solution and xi = 0 otherwise.

In MIS, the energy function is defined as the sum of every binary decision variable:
F (G, x) = q

i∈V xi. Since every edge (i, j) can have at most one of its nodes in
the independent set (otherwise the independent condition is violated), the sum of
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decision variables of i and j is at most one:

maximize
Ø
i∈V

xi,

subject to xi + xj ≤ 1 ∀ (i, j) ∈ E,

and xi ∈ {0, 1} ∀ i ∈ V .

(2.2)

Minimum vertex cover problem

A vertex cover is a set of vertices S ⊆ V such that, for every edge (u, v) ∈ E, at
least one of the vertices u or v is in S. The MVC problem focuses on finding the
vertex cover with the smallest cardinality, denoted as MVC(G).

Adopting the notation used for the MIS problem, the ILP formulation is employed
for the MVC problem. In contrast to the MIS case, the objective function F (G, x) =q

i∈V xi, is minimized. Moreover, due to the requirement that each edge of the graph
must be covered, it follows that the sum of the decision variables corresponding to
the two nodes defining an edge must be greater than or equal to one:

minimize
Ø
i∈V

xi,

subject to xi + xj ≥ 1 ∀ (i, j) ∈ E,

and xi ∈ {0, 1} ∀ i ∈ V .

(2.3)

2.1.4 NP-hardness of MIS and MVC: so what?
As said before, the MIS and MVC problems can be solved by using ILP. Several
algorithms have been proposed for solving linear programs, like the interior point
method [19], branch and bound [20], or the cutting planes method [21]. In this
section, two famous methods are briefly described, along with an analysis of their
complexity.

Simplex method

The simplex method [22] operates based on the fundamental concept that the
feasible solutions of a linear program can be represented by a polytope, a convex
body in n-dimensional space with flat faces. These faces are determined by the
set of constraint equations aT x ≤ b, where each equation divides the space in
half along the hyperplane x|aT x = b. The objective of the linear program is to
find the corner of the polytope that maximizes the objective function cT x. To
achieve this, the simplex method begins at any corner and systematically traverses
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along the edges, continuously moving towards a higher-valued objective function
until reaching an optimal corner. At each step, the current location is represented
by a set of n constraints (called the basis) in the form aT x = b, which uniquely
identifies a corner as it can be solved by solving a system of n equations with n
unknowns. Then, one of the constraints is swapped for one of the constraints in
the basis (this is called pivoting process) and a new corner is reached. In the worst
case, every corner is visited and the total number of steps taken by the algorithm
is 2N . However, if the pivoting is performed smartly enough [23], then the number
of steps taken by the algorithm is O(N), each costing O(N2). So, in total, the
complexity is O(N3), as shown by Table 2.1.

Ellipsoid method

The ellipsoid method [24] aims to generate a sequence of ellipsoids E0, · · · , E i, · · ·
with a dimensionality N (the same as the dimensionality of the solution space S
mentioned in Section 2.1.2). The idea behind the method is to progressively reduce
the volume of the ellipsoid until a possible solution is found. Given an ellipsoid
E i, the sub-gradient (gi) of the cost function f is computed at the center zi of the
ellipsoid. Then, the half-plane g(i)T (z−z(i)) splits the ellipsoid into two halves, and
the subsequent ellipsoid in the sequence, E i+i, is the smallest ellipsoid that encloses
the half-ellipsoid E (i) ∩ z|g(i)T (z− z(i)) ≥ 0. If E (i) contains the solution of the
problem, then also E (i) is guaranteed to enclose the maximizer of f . This process
continues until an ellipsoid with a sufficiently small volume is attained. Table 2.1
shows that the ellipsoid method exhibits polynomial worst-case complexity, unlike
the simplex method which has an exponential worst-case complexity. However, the
higher typical complexity of the ellipsoid method makes the simplex method to be
the preferred choice in practice.

About the complexity of MIS and MVC

The MIS and MVC problems can be solved using either the simplex or the ellipsoid
method since they admit an ILP formulation. Unfortunately, as highlighted by Table
2.1, the typical computational complexity for the ellipsoid method is polynomial of
order 5, which can be a problem for graphs of big size, and it is even exponential
in the worst case for the simplex method! For this reason, there is a need for new
tools and algorithms to solve more efficiently such problems. Deep learning can
help in this direction by drastically reducing the complexity needed for solving the
aforementioned graph theory problems.
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Table 2.1: Computational complexity of the simplex and ellipsoid method. The
complexity is expressed as a function of the dimensionality of the decision variables.
The following values are copied from the work of [23].

Method Typical Worst
Simplex O(N3) O(N22N)
Ellipsoid O(N5) O(N8)

2.2 Dynamic programming and MCTS
The algorithm that is designed in this work to solve the MIS and MVC problems
leverages Dynamic Programming (DP) techniques. Moreover, the tree search struc-
ture that is explained in the following chapters strongly resembles the architecture
of the Markov Chain Tree Search (MCTS). For these reasons, a short explanation
of these two approaches is conducted.

2.2.1 Dynamic Programming
Invented in the 1950s by Richard Bellman, DP [25] is a technique that aims at
finding a solution to a problem in polynomial time, and not exponential as for other
methods (e.g. the worst-case complexity of the simplex method, Section 2.1.4).
DP relies on the idea of dividing a complex problem into smaller sub-problems and
then solving the latter ones. In order to do that, the algorithm is built on two
principles: Optimal substructure and Overlapping sub-problems.

Optimal substructure
The optimal substructure property enables the reduction of problem complexity by
decomposing it into smaller sub-problems. To compute the solution to the original
problem, the solutions to the sub-problems are computed and then combined to
determine the overall solution. This approach is advantageous because combining
the sub-problem solutions is easier than directly calculating the solution to the
original problem, as the sub-problems have lower complexity.

Overlapping sub-problems As a problem is broken down into sub-problems
using the optimal substructure property, the same sub-problems are frequently
encountered. This property, known as the overlapping sub-problems property,
suggests that storing the solutions to these sub-problems in a table, often referred
to as the look-up table, is a common and efficient approach. By consulting the
look-up table, it is possible to quickly determine if a solution to a sub-problem has
already been calculated when encountering it again.
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2.2.2 Monte Carlo Tree Search
The Monte Carlo tree search method [26] is a search algorithm used in decision-
making processes for complex problems, especially in areas such as game-playing,
planning, and optimization. It uses a tree structure, known as the game tree or
search tree, to represent the possible states and actions of the game being played.
The basic idea behind MCTS is to simulate multiple random plays or "rollouts" in
order to estimate the value of different actions or moves from a given state. Then,
the value of the estimates is propagated to the nodes of the tree, in order to update
the current node values. The following four steps, visually shown by Figure 2.1,
summarize the MCTS algorithm:

• Selection: Starting from the root of the tree, the MCTS method traverses the
tree by selecting child nodes based on a selection policy until it reaches a leaf
node.

• Expansion: Once a leaf node is reached, the MCTS algorithm expands it by
adding one or more child nodes representing possible actions or moves from
that state. These new nodes are added to the search tree.

• Simulation (or Rollout): the MCTS method performs a Monte Carlo simulation
or rollout from the newly added node(s). It plays out the game from the
expanded state by making random moves until reaching a terminal state (e.g.,
end of the game). The result of this random play is used to estimate the value
or quality of the newly added nodes.

• Backpropagation: After the simulation is complete, the algorithm backpropa-
gates the results up the tree, updating the value estimates of all nodes along
the path from the expanded node to the root. This information helps guide
future selections and influence the overall search strategy.

2.3 Training approaches in Machine Learning
In this work, the model employed for solving the graph theory problems defined in
Section 2.1.3 is trained with a self-supervised approach. Since it is not a standard
approach, an analysis of this technique is conducted, highlighting the difference
with respect to well-known training techniques, like the supervised approach.

Supervised learning
Supervised Learning (SL) is based on the fundamental concept of providing a
system with input examples and their corresponding desired outputs, often referred
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Figure 2.1: The image shows multiple steps of the Monte Carlo tree search algo-
rithm. Each step generates a new state and a new estimate, that is backpropagated
to update the state values.

to as labels. The primary objective of SL is to acquire a generalized rule or pattern
that facilitates the mapping of new inputs to their respective outputs. In essence,
SL represents a structured learning process that operates under the guidance of
provided examples in a controlled manner.
Going into further detail, the SL learning method constructs a mathematical
model by utilizing a dataset that comprises both input data and corresponding
labels. This dataset, commonly referred to as training data, includes a collection
of specific instances used for training purposes. Through an iterative optimization
process, driven by a defined cost function, the SL method learns a function that
facilitates the prediction of output values for new, unseen inputs. The ultimate
aim is to establish an optimal function that accurately predicts outputs for inputs
not encountered during training. This ability to perform accurately on previously
unseen data, known as test data, is a key measure of success for any machine
learning model. As an algorithm gradually improves the accuracy of its outputs
over time, it is considered to have acquired the task and is expected to demonstrate
high accuracy in handling unlabeled examples encountered in real-world scenarios.

Unsupervised Learning
Unsupervised learning (UL) is a machine learning approach where the learning
algorithm is trained on raw, unlabeled data without any specific guidance or
explicit feedback. Unlike supervised learning, unsupervised learning does not rely
on pre-labeled examples to learn patterns or make predictions. Instead, it focuses
on extracting meaningful information, identifying patterns, and finding underlying
structures within the data.
The goal of unsupervised learning is to uncover hidden relationships, clusters, or
structures in the data without prior knowledge or labeled information. It allows the
method to autonomously explore and discover patterns that may not be immediately
apparent. Unsupervised learning can be seen as a form of exploratory analysis, as
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it enables researchers to gain insights and knowledge about the data, often leading
to further investigations or more focused analysis.

Reinforcement Learning
Reinforcement learning (RL) involves an agent learning to interact with an environ-
ment to maximize a reward signal. Unlike supervised and unsupervised learning,
reinforcement learning operates in a dynamic and sequential decision-making set-
ting.
In reinforcement learning, an agent learns through a process of trial and error by
taking actions in an environment and observing the resulting states and rewards.
The agent aims to learn an optimal policy, which is a mapping from states to
actions, that maximizes the cumulative reward over time. The agent explores the
environment by taking actions and receives feedback in the form of rewards or
penalties based on the desirability of its actions.

Semi-supervised Learning
Semi-supervised learning (Semi-SL) integrates concepts from SL and UL. It involves
a dataset that includes both labeled and unlabeled data, and the model is trained
on both types of data. Initially, the model is trained using the labeled data in a
supervised manner. Subsequently, the model generates labels for the unlabeled data
through its own predictions. If the model’s label generation process demonstrates
sufficient confidence, these generated labels are then utilized to further train the
model.

Self-supervised Learning
In self-supervised learning (Self-SL), the model itself generates labels after each
iteration. These labels, generated based on the current model parameters, are then
utilized to train the model in the next iteration. This iterative process allows the
model to improve its performance by continually updating the labels and adjusting
its parameters accordingly. Furthermore, as the training progresses and the model
is exposed to more data samples, the accuracy of label predictions improves. This
improvement is due to the model’s parameters being refined and adjusted based on
the increasing amount of training data.
Self-supervised learning utilizes unlabeled data, which is advantageous as it enables
learning from abundant unlabeled datasets without the need for external annota-
tions. However, self-supervised learning generally requires longer training times
compared to other learning methods.
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2.4 Recurrent Graph Neural Networks
Graph Neural Networks (GNNs) have gained significant traction in recent years since
their introduction by Scarselli [27] in 2009. They have found successful applications
in various fields, like Communication Networks [28], Bioinformatics [29], and Natural
Language Processing [30]. In this work as well, GNNs are employed, specifically
for generating what is known as embeddings. The embeddings are low-dimensional
vectors that capture crucial characteristics or features of the corresponding graph
elements. In particular, node embeddings and edge embeddings encode information
about individual nodes and edges within the graph, respectively. On the other
hand, graph embeddings capture collective information and characteristics of the
entire graph structure.

GNNs can be broadly categorized into two groups: Recurrent GNN (RecGNN)
and Convolutional GNN (ConvGNN). In this section, the first group, RecGNN,
is analyzed while the discussion on ConvGNN is reserved for Section 2.5. For the
description of RecGNNs, the approach presented in the work by Scarselli [27] is
followed, while the description of ConvGNNs is based on the work by Wu [13]. It
is worth noting that these two works employ different notations, leading to the use
of distinct notations for Section 2.4 and Section 2.5.

2.4.1 Labels and notations
In addition to the notation introduced in Section 2.1.1 for a graph G(V, E), it
is assumed that each node v ∈ V and each edge (v, u) ∈ E is associated with a
label lv ∈ RlV and a label l(v,u) ∈ RlE , respectively. The node labels represent
features of the objects that the nodes represent, while the edge labels indicate the
relationships between two objects. For instance, in the context of a social network
graph where nodes represent individuals, the node labels may convey characteristics
of the person represented by each node, and the edge labels may reflect the strength
of friendships between different individuals.

In the following section is considered a supervised learning framework, aimed at
training a model to find the embedding of every node of a graph. To this end, the
following dataset is employed:

L = {(Gi, vi,j, ti,j)|, Gi = (Vi, Ei) ∈ G, vi,j ∈ Vi;
ti,j ∈ Rm, 1 ≤ i ≤ p, 1 ≤ j ≤ Ni}.

(2.4)

Every datasample of the dataset is a triple, composed by a graph Gi, a node vi,j

that is part of the nodes of Gi, and a target ti,j, where the target corresponds to
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Figure 2.2: The picture shows a graph along with the node labels and edge labels.
The circles indicate the presence of a node. The grey area indicates the set of labels
and states that influence the computation of the state x1 of node v = 1.

the embedding of the node. Moreover, it is assumed that p graphs are used for
training and that each graph Gi has Ni nodes.

2.4.2 Model: states and parametric functions
Each node v is assigned a state xv. The state xv ∈ RS captures information not
only about the node itself but also about the edges connecting the node and its
neighboring nodes, as depicted in Figure 2.2. The relationship between xv and its
neighbors, edges, and itself is described by a parametric function fw, referred to as
the local transition function. Furthermore, xv is utilized to compute the output ov,
which represents the decision pertaining to the node. The function that expresses
the dependence of ov on the current state and label of the node is known as the
local output function. The following equations provide a definition for the local
transition and local output functions:

xv = fw(lv, lco[v], xne[v], lne[v]),
ov = gw(xv, lv).

(2.5)
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Figure 2.3: On the top, the graph is displayed. In the middle, every graph node
is replaced by the two units fw and gw. The two units can be implemented by
feed-forward networks, as shown by the picture in the middle-right part of the
figure.

In general, a condensed form of the previous equation is employed by stacking the
states, outputs, labels, and node labels into vectors x, o, l, and lV , respectively:

x = Fw(x, l),
o = Gw(x, lV ).

(2.6)

In Equation 2.6, the functions Fw and Gw are referred to as the global transition
function and the global output function, respectively.

The objective is to establish a mapping ϕw : D → Rm that assigns an output
ov to each node v in a graph, representing the node’s embedding. Consequently,
Equation 2.6 has to be solved, and in order to accomplish this, the implications of
Banach’s fixed-point (BFP) theorem [31] are leveraged. According to the theorem,
if Fw from Equation 2.6 is a constructive mapping, the following conditions are
satisfied:

1. There exists a solution to Equation 2.6, and such solution is unique.

2. The unique solution can be found by the Jacobi iterative method [32], namely:

x(t + 1) = Fw(x(t), l). (2.7)
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3. The dynamical system in Equation 2.7 converges to the solution exponentially
fast given any initial state value x(0).

Thanks to the BFP theorem, it is possible to iteratively solve Equation 2.5 for
every node v by using the following set of formulas:

xv(t + 1) = fw(lv, lco[v], xne[v], lne[v]),
ov = gw(xv(t), lv).

(2.8)

The computation procedure outlined in Equation 2.8 can be visualized as an
encoding network, as described in Scarselli’s work [27]. In this network, each graph
node is replaced by a pair of units responsible for calculating the functions fw
and gw defined in Equation 2.5. For every node v, the first unit, upon activation,
computes the state value xv(t+1) based on the information stored by its neighboring
nodes and the node itself (e.g., the previous state value xv(t)). On the other hand,
the second unit is responsible for determining the output value ov(t) of the node,
considering the current state value xv(t) and the label lv associated with node
v. The network structure is visually depicted in Figure 2.3. It is worth noting
that if the functions fw and gw are implemented using a traditional feed-forward
neural network, the encoding network becomes a recurrent neural network (RNN),
where the connections between neurons can be categorized as internal or external
connections. The internal connections arise from the unit’s network architecture,
while the external connections are defined by the edges of the graph.

2.4.3 Learning procedure
Before delving into the specific formulas and calculations used for training a
RecGNN, a concise overview of the gradient calculation technique for RNNs is first
shown. This technique is particularly relevant to the training of RecGNNs, due to
the fact that if the units comprising the encoding network are implemented using
traditional feed-forward networks, the encoding network itself can be classified as
an RNN. Lastly, a comprehensive outline of the necessary steps needed for the
training process is provided.

Recurrent neural networks and the backpropagation through time step

As discussed earlier, if the units within the encoding network are implemented using
traditional feed-forward networks, the encoding network itself can be classified as a
recurrent neural network. One key characteristic of this network is its ability to
make predictions based not only on the current inputs but also on the historical
inputs that preceded them. This is achieved through the presence of directed cycles
within the neural connections of an RNN. However, this cyclic structure poses a
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challenge when it comes to training the network using the standard backpropagation
algorithm. To address this challenge, a technique called Backpropagation through
time (BPTT) is employed, specifically designed to handle sequential data’s temporal
nature. In BPTT, the network is effectively ’unrolled’ across different time steps,
resulting in the creation of multiple network copies, each corresponding to a specific
time step. This unrolling process transforms the cyclic connections into a directed
acyclic graph (DAG). Consequently, during the training process with BPTT, the
system is trained not only taking into account a particular time t but also taking
into consideration all the preceding time steps, such as t− 1, t− 2, t− 3, and so
on. By considering the entire temporal context, the RNN can effectively learn and
make predictions based on the sequential dependencies within the data.

Training a GNN

The objective of the training process is to find the optimal set of parameters w such
that the function ϕw closely approximates the data within the learning dataset
defined in Equation 2.4. To this end, the work of Scarselli [27] proposes a standard
quadratic cost function to be minimized in the parameters w:

ew =
pØ

i=1

NiØ
j=1

(ti,j − ϕw(Gi, vi,j))2 (2.9)

The term (ti,j − ϕw(Gi, vi,j))2 refers to the squared difference between the target
value (ti,j) of a node vi and the estimated embedding of the node. This difference
is evaluated for every node vi,j ∈ Vi and every graph Gi = (vi, Ei) belonging to the
training dataset.

The learning algorithm, which relies on the Backpropagation Through Time de-
scribed before, consists of the following steps:

1. Forward step: by employing the equation given in Equation 2.7, the states
xv(t) undergo iterative updates until reaching a time T where x(T ) closely
approximates the fixed point solution of Equation 2.6, i.e., x(T ) ≈ x.

2. Backpropagation step: by defining an auxiliary variable z(t) and by making it
converge to a value z, the gradient of the error is evaluated: ∂ew(T )/∂w.

3. Updating step: By utilizing the previously obtained error gradient, update the
weights w following a conventional gradient descent equation.

As said in the above list, the auxiliary variable z(t) is used to find the gradient
of the error. Particularly, given that the global transition and output functions
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Fw(x, l), Gw(w, lN) are differentiable, z(t) is defined as:

z(t) = z(t + 1) · ∂Fw

∂x
(x, l) + ∂ew

∂o
· ∂Gw

∂x
(x, lN). (2.10)

An interesting theorem, whose proof can be found in [27], states that the sequence
z(T ), z(T−1), z(T−2), . . . converges exponentially fast to a value z = limt→−∞ z(t),
independently from the initial state z(T ). Moreover, the following equation for
calculating the gradient of the error holds:

∂ew

∂w
= ∂ew

∂o
· ∂GW

∂w
(x, lN) + z · ∂FW

∂w
(x, l). (2.11)

The contribution to the gradient from the output function Gw is represented by
the first term on the right-hand side of Equation 2.11. Conversely, the second term
represents the contribution from the transition function Fw.

2.5 Convolutional Graph Neural Network
In addition to the analysis of Recurrent GNNs discussed earlier, another significant
variant of GNNs is the Convolutional GNN. ConvGNNs adopt the fundamental
principles of conventional Convolutional Neural Networks (CNNs), where feature
extraction is accomplished using multiple filters. These filters traverse the data
and execute the convolution operation. However, graph data is non-Euclidean
as the distances between nodes do not adhere to the Euclidean space principles.
The relationships between nodes are determined by arbitrary edges or connections,
and the distances between nodes are not necessarily defined by straight lines or
continuous geometric characteristics. Consequently, due to the non-Euclidean
nature of graphs, the standard convolution operation performed by CNN filters
cannot be directly applied. To address this, a novel convolution method called
graph convolution is employed, which is realized using convolutional filters.

The classification of CNNs can be categorized into two main groups: spectral-
based and spatial-based. The key distinction between these two types lies in their
respective definitions of graph convolution. This section provides an examination
and analysis of these two classifications.

As specified in Section 2.4, the notations employed in Section 2.4 and in the
following sections are different. Indeed, Section 2.4, which deals with RecGNNs,
employs the original notation of Scarselli [27] while the following sections, which
deal with ConvGNNs, use the notations of [13].
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2.5.1 Spectral-based ConvGNN
Standard convolutional filters, employed in CNNs, exhibit translation invariance,
enabling weight sharing where the same filter is applied across different parts of
the input [33]. This property allows them to identify similar features regardless
of their specific spatial positions in the spatial domain. In contrast, graphs lack
a well-defined spatial concept or a mathematical definition for spatial translation.
Spectral graph convolution, denoted as ∗G, helps in this direction since it provides a
mathematical framework to design operators (filters) with the translation-invariant
property [34].

Let G(V, E) be a given graph, with its adjacency matrix denoted as A and its degree
matrix as D. The graph G can be represented using the normalized graph Laplacian
matrix, defined as L = IN−D− 1

2 AD− 1
2 . Since L is positive semidefinite, it possesses

precisely N orthogonal eigenvectors that form a basis capable of diagonalizing
the Laplacian matrix. Therefore, L can be decomposed as L = UΛUT , where
U = [u0, u1, . . . uN−1] represents a unitary matrix containing the eigenvalues of L,
and Λ is a diagonal matrix containing the corresponding eigenvalues.
In the context of graph signal processing, a graph signal x ∈ RN represents a feature
vector associated with all the nodes of a graph. The graph Fourier transform of
a signal x is defined as F(x) = UT x, and the corresponding inverse operation is
defined as F−1(x̂) = Ux̂. The graph Fourier transform maps a signal x into the
orthonormal space defined by the eigenvectors of the Laplacian matrix.

Ultimately, the spectral graph convolution between a graph signal x and a filter g
can now be defined as follows:

x ∗G g = F−1(F(x)⊙F(g)) = U(UT x⊙UT g), (2.12)

where ⊙ denotes the element-wise Hadamard product. Introducing the filter as
gθ = diag(UT g), Equation 2.12 simplifies to:

x ∗G gθ = UgθUT x. (2.13)

The aforementioned equation serves as the foundation for any Spectral-based
ConvGNN, with different methodologies diverging in their selection of the filter gθ.

Spectral CNN

In the study of [35], which introduced the initial Spectral-based ConvGNN known
as the Spectral CNN, the filter is defined as a diagonal matrix comprising trainable
parameters Θ(k)

i,j . These parameters within Θ(k)
i,j correspond to layer k and are
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responsible for mapping the ith input feature to the jth output feature. In layer k,
the resulting output of a hidden layer is expressed as:

H(k)
:,j = σ(

ck−1Ø
i=1

UΘ(k)
i,j UT H(k−1)

:,i ), j = 1,2, . . . , ck, (2.14)

where ck−1 and ck indicate the number of input and output channels respectively.
Unfortunately, Spectral CNNs suffer from a significant computational complexity
due to the eigendecomposition of the Laplacian matrix, which has a computational
cost of O(N3). Furthermore, any modification in the graph structure necessitates
recalculating the eigenvectors and eigenvalues of the Laplacian matrix L, further
amplifying the computational overhead.

Chebyshev Spectral CNN

In the context of Spectral CNN, in addition to the limitations mentioned earlier,
the filters used are generally not localized. As a result, these filters do not confine
their influence solely to the closest K neighbors of a node but instead involve all
nodes in the graph. However, this drawback is addressed by Chebyshev Spectral
CNN (ChebNet) [36], which leverages Chebyshev polynomials. These polynomials
are recursively defined as Ti(x) = 2xTi−1(x)− Ti−2(x) with initial values T0(x) = 1
and T1(x). They are employed to approximate the filter gθ as follows:

gθ =
K−1Ø
i=0

θiTi(Λ̃), Λ̃ = 2Λ/λmax − IN . (2.15)

By introducing a matrix L̃ = 2L/λmax − IN, where Ti(L̃) = UTi(Λ̃)UT , Equation
2.13 can be rewritten as:

x ∗G gθ =
K−1Ø
i=0

θiTi(Λ̃)x. (2.16)

It’s important to note that in Equation 2.16, the sum is truncated to a value K ≪ N ,
resulting in complexity that is independent of the graph size. Furthermore, this
truncation preserves the localization property.

Graph Convolutional Network

The main drawback of ChebNet lies in the large number of parameters θ that
are employed. Thus, complexity still remains an issue and the model may run
into overfitting scenarios. Graph Convolutional Network (GCN) [37] addresses this
problem by introducing a first-order approximation of ChebNet (i.e. K = 1) and
assuming θ = θ0 = −θ1. These modifications lead to the following simplification
of Equation 2.16:

x ∗G gθ = θ(IN + D− 1
2 AD− 1

2 ). (2.17)
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Figure 2.4: The left image shows a standard convolution performed by a CNN. A
3× 3 filter is centered in one pixel (or node) and computes the weighted average of
the central pixel and its 8 neighbors. The right image shows a spatial-based graph
convolution, where the filter is centered in one node and computes the weighted
average of the node and its neighbors. In the right image, the size of the filter
varies with the number of neighbors.

2.5.2 Spatial-based ConvGNN
Spatial-based ConvGNNs shares similarities with standard CNNs as both involve
convolutional operations defined based on the spatial relationships between nodes.
In CNNs, each pixel in an image can be viewed as a node in a graph, connected to
its eight adjacent pixels, as illustrated in the left image of Figure 2.4. Subsequently,
a 3 × 3 filter is applied to a node (or pixel), followed by a weighted average of
the node and its eight neighbors. Similarly, in spatial-based graph convolution,
a weighted average of a node and its neighbors is computed, as shown in the
right image of Figure 2.4. However, unlike the fixed-size filters used in CNNs, the
spatial-based graph convolution does not have a predetermined filter size due to
the varying number of neighbors that nodes can have in a graph.

Neural Network for Graphs

The initial proposal for spatial-based ConvGNN is the Neural Network for Graphs
(NN4G) [38]. In contrast to Recurrent GNN, NN4G adopts a feedforward ar-
chitecture, eliminating any recursive or feedback connections. Moreover, NN4G
takes a constructive approach, where node information is incrementally utilized
without introducing cyclic dependencies in the definition of system state variables,
as opposed to Equation 2.6. Consequently, NN4G employs the following equation
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to compute the states of the next layer of nodes:

h(k)
v = act(W(k)T xv +

k−1Ø
i=1

Ø
u∈N (v)

Θ(k)T h(k−1)
u ), (2.18)

where act is an activation function, W(k)T
, Θ(k)T are learnable parameters, and h(k)

v

is the output of the hidden layer for v and layer k. Unfortunately, NN4G works
directly with the adjacency matrix without normalizing it, with the consequence
that node states may assume extremely different values.

2.5.3 Diffusion Convolutional Neural Network
The Diffusion Convolutional Neural Network (DCNN) [39] interprets graph con-
volution as a diffusion process, where the exchange of information between nodes
aims to achieve equilibrium through multiple information exchange steps. The
exchange of information is governed by transition probabilities, which are gathered
into the probability transition matrix P defined as P = D−1A. Ultimately, DCNN
defines diffusion graph convolution as follows:

H(k) = act(W(k) ⊙PkX). (2.19)

Next, the obtained H(1), H(2), . . . , H(K) are combined through concatenation to
produce the final outputs of the model.
However, the primary limitation of DCNN originates from the transition matrix,
which diminishes the contribution of peripheral nodes in comparison to central
nodes.

Message Passing Neural Networks

When considering Message Passing Neural Networks (MPNN) [40], graph con-
volution is viewed as a message-passing procedure, allowing edges to transmit
information directly between nodes. To extend the propagation of information,
the message-passing process is iterated for K steps. Consequently, the following
equation is employed to determine the hidden layer output of a node v:

h(k)
v = Uk(hk−1

v ,
Ø

u∈N (v)
Mk(h(k−1)

v , h(k−1)
u , xe

vu)), (2.20)

where Uk and Mk represent functions that contain learnable parameters. After
obtaining the hidden representation for each node v, the resulting value h(K)

v can
be utilized in two ways: either passed to an output layer for calculating the final
node embedding or employed in a readout function to determine the ultimate graph
embedding.
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Chapter 3

Proposed algorithm

The objective of this work is to discover a new approach for addressing two
fundamental graph theory problems: the Maximum Independent Set and the
Minimum Vertex Cover. To achieve this, two algorithms, whose fundamental
steps are described in Section 3.1, inspired by DP techniques have been developed.
Moreover, the algorithms leverage the capabilities of a Machine Learning model that
acts as a comparator. If the comparator, whose operating principles are described
in Section 3.2, is properly trained, the algorithms can lead to near-optimal solutions
with a low computational complexity.

3.1 Algorithm steps
The algorithms for solving the MIS and the MVC problems are built on fundamental
operating principles, like the knowledge of sub-graph or the branching and ending
steps. Sections 3.1.1 and 3.1.2 describe the steps of the algorithms for, respectively,
the MIS and MVC problems.

3.1.1 Algorithmic operations for MIS
As previously mentioned, the algorithm for MIS effectively employs DP techniques.
Consequently, it recursively decomposes the original graph G(V, E) into a collection
of progressively smaller sub-graphs, namely G1(V1, E1), . . . , Gi(Vi, Ei), . . . . Then,
the algorithm stops and identifies a solution once a sub-graph takes on a specific
structure. Thus, the fundamental essence of the algorithm hinges upon this
decomposition, or branching, process, which necessitates these sub-graphs to be

23



Proposed algorithm

chosen properly. The branching process, or branching step, and the meaning of
choosing a sub-graph "properly" are summarized in the following theorem:

Theorem 1. Let a graph G(V, E) ∈ G. Then for any vertex v ∈ V with d(v) ≥ 1,

|MIS(G)| = max (|MIS (G/N (v))|, |MIS(G/{v}) |) 1 .

Proof. Let G(V, E) be a graph and MIS(G) be its maximum independent set. The
goal is to show that for any vertex v ∈ V with d(v) ≥ 1, the size of MIS(G) can be
obtained by either removing v or removing its neighbors N (v).

Consider two cases:

• v ∈ MIS(G)

In this case, if N (v) is removed from G, the resulting graph is denoted
as G0 = G \ N (v). Since the neighbors of v cannot be in the maximum
independent set, removing it does not affect the size of MIS(G). Therefore,
MIS(G) = MIS(G0).

• v /∈ MIS(G)

In this case, v is removed from G to obtain the graph G1 = G \ {v}. Since v
is not in the maximum independent set, removing it does not affect the size
of MIS(G). Therefore, MIS(G) = MIS(G1).

By considering these two cases, it is shown that for any vertex v ∈ V , the maximum
independent set MIS(G) can be obtained by either removing v or removing its
neighbors N (v). Thus, the size of the maximum independent set can be expressed
as follows:

|MIS(G)| = max (|MIS (G/N (v))|, |MIS(G/{v}) |) .

According to Theorem 1, the branching step mentioned above consists of picking a
random node v from a sub-graph G(V, E) and building two graphs G0 and G1. G0
is the original graph G without the neighbors of v, namely G0 = G/N (v), while

1Note: In the trivial case where G is an empty graph (i.e., it has no edges), the size of the
maximum independent set is |V |.
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=

Branching step Ending step

Figure 3.1: The figure shows an example of branching and ending steps in the
case of the algorithm for MIS and a specific graph. The left part of the figure shows
the branching step if the randomly chosen node is v1. The right part shows the
ending step, as the sub-graph is composed of two isolated nodes.

G1 is the original graph G without the node v, namely G1 = G/{v}. Then, the
MIS of G corresponds to the MIS of G0 if |MIS(G0)| ≥ |MIS(G1)| or to the MIS of
G1 if |MIS(G0)| < |MIS(G1)|.

The aforementioned branching step is recursively applied by the algorithm for MIS.
For each step i of the algorithm, from a sub-graph G two graphs G0 and G1 are
built in the manner specified above. Then, the algorithm for MIS tries to predict
if |MIS(G0)| ≥ |MIS(G1)| is true or not. If true, G0 is the sub-graph, otherwise
G1 it is. Once the sub-graph is found, it is used in step i + 1 of the algorithm to
perform a new decomposition. Whenever a sub-graph has no edges, all nodes are
isolated and therefore independent. This last step, denoted as ending step, makes
the algorithm stop and the solution found by the algorithm coincides with the total
number of nodes in the graph.

The left part of Figure 3.1 shows the branching step of a specific sub-graph in case
the node v = v1 is randomly picked. Graph G0 is composed of the nodes v1, v3, and
v4 as the neighbors v2, v5 of v are removed. Graph G1, instead, does not include
v1, as it is removed from the original sub-graph G. The right part of Figure 3.1
depicts the ending step of the algorithm. The sub-graph has two isolated nodes
and, thus, the algorithm stops and the solution given by the algorithm is equal to
the total number of isolated nodes, that is 2 in the specific example of Figure 3.1.

25



Proposed algorithm

3.1.2 Algorithmic operations for MVC
The algorithmic approach for solving the MVC problem shares similarities with the
algorithm employed for addressing the MIS problem. Specifically, the algorithm for
MVC strives to diminish the inherent complexity of the initial graph by iteratively
identifying optimal sub-graphs. However, the two graphs G0 and G1, formed during
the branching step, do not undergo the same computational treatment as elaborated
in Section 3.1.1. Instead, the notion of a "copy node" is introduced. A copy node v′

represents a synthetic node that is introduced into the graph to reduce the original
graph’s structure in terms of edge count. The synthetic node v′ is introduced
whenever a node v has been identified as part of the final solution. In this context,
all edges incident on v are removed, and the copy node v′ is inserted in the graph
as well as the edge (v, v′).

The following theorem, whose proof is omitted as it is similar to the one of Theorem
1, describes how the graphs G0 and G1 are built and the operating principle behind
the branching step:

Theorem 2. Let a graph G(V, E) ∈ G. Then for any vertex v ∈ V with d(v) ≥ 1,

|MVC(G)| = min (|MVC (G0)|, |MVC(G1}) |) 2 .

where

• G′ := G(V \{v}, E\{(u, ℓ) | u ∈ N (v)∧ℓ ∈ N (u)}), G′ is created by removing
v from G as well as all the edges incident to neighbors of v.

• G0 := G′(V ∪ {u′|u ∈ N (v)}, E ∪ {(u′, u)|u ∈ N (v)}), G0 is created from G′

by adding the copy nodes u′|∀u ∈ N (v) and the edges (u′, u) for all u ∈ N (v)
(each vertex u is connected with its copy u′). G0 represents the situation where
vertex v is not selected in the MVC, but its neighbors are.

• G1 = G(V ∪ {v′}, E \ {(u, v)|u ∈ N (v)} ∪ {(v′, v)}), G1 is created from G
by removing all edges incident to v and adding a copy node v′ that is then
connected to v. G1 represents the situation where v is selected to be part of
the MVC.

The branching step of the algorithm for MVC consists of analyzing a sub-graph
G. From G, two graphs G0 and G1 are built according to Theorem 2 and the

2In the trivial case where G is a graph with only connected components of two vertices
(d(v) ≤ 1 for all v ∈ V ), the size of the minimum vertex cover is |G| = |E(G)|.
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Branching step Ending step

Figure 3.2: The figure depicts the branching and ending steps for the algorithm
for MVC and for a specific example. The left part shows the generation of the
graph G0 and G1 if a random node v = v2 is picked. The right part shows the
ending step, where the sub-graph has edges with degrees less or equal to 1.

algorithm for MVC aims at estimating which graphs, among G0 and G1, has the
lowest MVC. The algorithm progression stops with the ending step, which occurs
whenever all nodes of a sub-graph have a degree lower or equal to one. At this
point, the solution found by the algorithm coincides with the total number of edges
of the sub-graph.

Figure 3.2 depicts the previously mentioned branching and ending steps for a
specific example. Specifically, a node v = v2 is picked. The graph G0 is generated
by removing the node v2 and by removing all edges that incident on the neighbors
of v2, that are nodes v1, v3. Then, the copy nodes v′

1, v′
3 are inserted and connected

to v1, v3 respectively. Graph G1 is obtained by removing the edges incident on
node v2 and by adding a copy node v′

2 connected to v2. The sub-graph of the right
part of Figure 3.2 has nodes of degrees less or equal to 1, thus the algorithm stops
(ending step) and the solution found by the algorithm is 3 since 3 edges are present
in the sub-graph.

3.2 Graph-comparing function and comparator
function

The biggest challenge of the algorithms described in the previous sections is posed
by the branching step. This procedure tries to estimate which graph between G0
and G1 is the sub-graph that is used in the next iteration of the algorithm. The
following sections describe the tool that is used to perform such an estimate and
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make a detailed overview of the algorithms for MIS and MVC.

3.2.1 Graph comparing function (and comparator) for MIS
Consider a function, denoted as Graph-Comparing Function for MIS, that takes
two graphs as input and outputs either a 0 or a 1:

CMPMIS : G × G −→ {0,1}. (3.1)

The graph-comparing CMPMIS function defined above compares two graphs G0
and G1 based on the size of their MIS. Namely, if |MIS(G0)| ≥ |MIS(G1)| then
CMPMIS(G0, G1) = 0 while if |MIS(G0)| < |MIS(G1)| then CMP(G0, G1) = 1.

The function 3.1 would solve all problems, as it would always find the proper
sub-graph with the largest MIS and, according to Theorem 1, it would always
find the optimal MIS solution. Indeed, starting from a graph G(V, E) and a
random node v ∈ V , by recursively selecting either G/{v} or G/N (v) based on
|MIS(G/{v})| ≥ |MIS(G/N (v))|, the algorithm surely ends in an independent set
of maximum size. The decision of whether |MIS(G/{v})| ≥ |MIS(G/N (v))| at each
recursive call can be made according to the output of CMPMIS(G/{v}, G/N (v)).
Moreover, the following remarks hold:

Remark 1. Given a graph-comparing function for MIS CMPMIS : G × G → {0,1},
the induced algorithm is randomized, since at Step 4 of Algorithm 1, a vertex v is
randomly selected. Notice that Algorithm 1 recursively proceeds until a sub-graph
with 0 edges is reached (see Step 2).

Remark 2. Two different graph-comparing functions CMPMIS and (CMPMIS)′

induce two different optimal algorithms ACMPMIS and A(CMPMIS)′ for calculating the
maximum independent set.

The cornerstone of this work is that, as highlighted by Remark 1, any graph-
comparing function CMPMIS induces an algorithm ACMPMIS for MIS that behaves
as displayed in Algorithm 1. Recursively selecting G/{v} or G/N (v) based on the
output of a graph comparing function CMPMIS(G/{v}, G/N (v)) ∈ {0, 1} always
guarantees to reach an independent set of a maximum size of the original graph.
Unfortunately, implementing a graph-comparing function that behaves as described
above is impossible. Nonetheless, a new function that behaves almost as a graph-
comparing function can be designed, as described in the next paragraph.

In case CMPMIS(G0, G1) /= I [|MIS(G0)| < |MIS(G1)|], where I is the indicator func-
tion, it is not guaranteed that the induced algorithm produces an independent set
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Algorithm 1 Induced Algorithm for the MIS problem
1: function ACMPMIS(G(V, E)) ▷ Algorithm ACMPMIS(G) takes a graph G as

input
2: if |E| = 0 then return V
3: end if
4: pick a vertex v ∈ V with d(v) > 0 uniformly at random.
5: G0 ← G \ {v} and G1 ← G \ N (v)
6: if CMPMIS(G0, G1) = 0 then
7: G← G0 ▷ Remove vertex v
8: else
9: G← G1 ▷ Remove the neighbors of v

10: end if
11: return ACMPMIS(G)
12: end function

of maximum size. In this scenario, the graph-comparing function for MIS is referred
to as the Comparator Function for MIS, and the function is denoted as CMPMIS

θ .
Naturally, the algorithm ACMPMIS

θ , described in 1, is still valid even if a comparator
function, not a graph-comparing function, is employed. Simply, ACMPMIS

θ does not
guarantee to produce independent sets of maximum size, differently from ACMPMIS .
Moreover, Remarks 1,2 still apply to the comparator function CMPMIS

θ , as pointed
out by the following Remark:

Remark 3. A graph-comparing function for MIS, denoted as CMPMIS, always
outputs the result of I [|MIS(G0)| < |MIS(G1)|]. A comparator function for MIS,
denoted as CMPMIS

θ , does not guarantee to output I [|MIS(G0)| < |MIS(G1)|]. Nev-
ertheless, Remarks 1 and 2 and the Algorithm 1 are still valid for the comparator
function.

As mentioned above, the difference between ACMPMIS and ACMPMIS
θ is that the first

one will always lead to an independent set that is maximum, while the second one
does not guarantee to lead to an independent set that is maximum.

Even if the algorithm induced by the comparator does not guarantee to lead to an
optimal solution, the following considerations still apply:

• the comparator for MIS CMPMIS
θ can be efficiently designed in order to have

low computational complexity.

• the comparator for MIS CMPMIS
θ , if properly designed, can induce an algorithm
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for MIS ACMPMIS
θ that leads to near-optimal solutions.

At this point, the question that arises is how to design a comparator function
for MIS that meets the two points above and resembles as much as possible a
graph-comparing function. Surprisingly, this work employs a Machine Learning
model Mθ : G → R to effectively design a comparator:

CMPMIS
θ (G0, G1) = I[Mθ(G0) < Mθ(G1)]. (3.2)

Since the model is parameterized by a set of parameters θ, the resulting comparator
is characterized by the same symbol: CMPMIS

θ .

The structure of the model Mθ, used for designing the comparator CMPMIS
θ , is

analyzed in Chapter 4.

3.2.2 Graph-comparing function (and comparator) for MVC
Similarly to what was discussed in Section 3.2.1, the Graph-Comparing Function
for MVC is the knowledge behind the algorithm for solving the MVC problem.
However, if on one side the function CMPMVC for MVC is defined in the same
way as Equation 3.1, on the other side its use is different. Indeed, the graph-
comparing function CMPMVC compares two graphs G0 and G1 based on the size
of their MVC. If |MVC(G0)| ≤ |MVC(G1)| then the graph-comparing function
assumes a value equal to zero, namely CMPMVC(G0, G1) = 0. Vice versa, if
|MVC(G0)| > |MVC(G1)| the graph-comparing function assumes a value equal to
one, namely CMPMVC(G0, G1) = 1.

As for Algorithm 1, a graph-comparing function for MVC induces a recursive
algorithm ACMPMVC , as depicted in Algorithm 2. For each iteration of the algorithm,
a random node v is picked from a graph G. Then, two graphs G0 and G1 are built
from G as explained by Theorem 2. According to the MVC of G0 and G1, the
graph-comparing function CMPMVC chooses which of the two is a sub-graph. The
new sub-graph becomes the graph G that is used in the next iteration.
The aforementioned process ends whenever a graph G is composed of either isolated
nodes or nodes with a degree equal to one and, according to Theorem 2, a vertex
cover of minimum size is attained.

Similarly to what is discussed in Section 3.2.1, the following remarks hold for the
induced algorithm ACMPMVC :

Remark 4. Given a graph-comparing function for MVC CMPMVC : G×G → {0,1},
the induced recursive algorithm ACMPMVC is randomized, since at Step 9 of Algorithm
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2, a vertex v is randomly selected. Notice that Algorithm 2 recursively proceeds
until a sub-graph with nodes having degree d(v) lower than 1 is reached (see line 2
of 2).

Remark 5. Two different graph-comparing functions for MVC CMPMVC and
(CMPMVC)′ induce two different algorithms ACMPMVC and (ACMPMVC)′ for calculat-
ing the minimum vertex cover.

Algorithm 2 Induced Algorithm for the MVC problem
1: function ACMPMVC(G(V, E)) ▷ Algorithm ACMPMVC(G) takes a graph G as

input
2: if ∀v ∈ V : d(v) ≤ 1 then ▷ G is composed of isolated nodes and isolated

edges
3: S ← ∅
4: for each edge (v, v′) ∈ E do
5: S ← S ∪ {v} ▷ Select one of the endpoints of each isolated edge
6: end for
7: return S
8: end if
9: pick a vertex v ∈ V with d(v) ≥ 1 uniformly at random.

10: G′ := G(V \ {v}, E \ {(u, ℓ) | u ∈ N (v) ∧ ℓ ∈ N (u)})
11: G0 := G′(V ∪ {u′|u ∈ N (v)}, E ∪ {(u′, u)|u ∈ N (v)}
12: G1 = G(V ∪ {v′}, E \ {(u, v)|u ∈ N (v)} ∪ {(v′, v)})
13: if CMPMVC(G0, G1) = 0 then
14: G← G0 ▷ Remove vertex v and put it’s neighbors in the MVC
15: else
16: G← G1 ▷ Put vertex v in the MVC and remove the edges to its

neighbors
17: end if
18: return ACMPMVC(G)
19: end function

Even for the MVC problem, a graph-comparing function cannot be implemented in
practice, but it is possible to design an approximation of it. A Comparator Function
for MVC, denoted as CMPMVC

θ , does not guarantee to always output the result of
the indicator function I[|MVC(G0)| > |MVC(G1)|]. Nevertheless, it is possible to
design a comparator for MVC that induces an algorithm ACMPMVC

θ whose solutions
are near-optimal and calculated in an efficient way. Moreover, ACMPMVC

θ shares the
same properties of ACMPMVC illustrated in Remarks 4 and 5:

Remark 6. A graph-comparing function for MVC, denoted as CMPMVC, always
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outputs the result of I [|MVC(G0)| > |MVC(G1)|]. A comparator function for MVC,
denoted as CMPMVC

θ , does not guarantee to output I[|MVC(G0)| > |MVC(G1)|].
Nevertheless, Remarks 4 and 5 and the Algorithm 2 are still valid for the comparator
function.

Identically to the MIS problem, the comparator CMPMVC
θ is designed employing

a Machine Learning model Mθ : G → R. Consequently, the resulting comparator
assumes the following structure:

CMPMVC
θ (G0, G1) = I[Mθ(G0) > Mθ(G1)]. (3.3)

The architecture of the ML model Mθ for MVC is the same as the architecture of
the model for MIS, and such architecture is elucidated in Chapter 4.
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Model architecture

As mentioned in Chapter 3, the algorithm employed for solving the MIS and MVC
problems leverages an ML model. This model, denoted as Mθ(G), is divided
into two modules: the first module, denoted as Graph Embedding Module (GEM),
contains GNNs while the second module is made of a standard Fully Connected
Neural Network (FCNN). Section 4.1 describes the GEM module, while Section
4.3 provides an overview of the entire model architecture. Moreover, Section 4.2
illustrates an analysis of the GELU function, which is a peculiar activation function
employed for the GEM module.

The next sections do not include a diversification between the model for MIS and
for MVC, since both models share the same architecture. Consequently, in this
chapter, every symbolic expression refers to both the MIS and MVC problems.

4.1 Graph Embedding Module (GEM)

The operating principle of the GEM is similar with respect to standards GNNs
introduced in Section 2.5. Both GEM and GNNs consider a graph as input and
output a representation of the graph, denoted as embedding. Nonetheless, GEM
and standard GNNs differ in the way the embedding is computed. Indeed, unlike
classic GNN modules, the GEM module captures different semantic meanings by
leveraging three (not two as in standard GNNs) diverse types of information: the
information contained in a node, its neighbors, and its anti-neighbors. This can
be noted in the following recursive formula, which is at the heart of the GEM
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functioning:

µk+1
v = LN

GELU
θk

0µk
v

......θk
1

Ø
u∈N (v)

µk
u

......θk
2

Ø
u/∈N (v)

µk
u

 . (4.1)

In the above equation, µk+1
v ∈ R3p denotes the embedding at iteration k + 1 of the

graph node v. θk
0 , θk

1 , θk
1 ∈ Rp×3p are the parameters of the linear k-linear layers,

LN is a normalization layer and GELU is particular activation function whose
functioning is described in Section 4.2. The bias term is omitted in the equation
for readability purposes.
Initially, all nodes in the graph have zero embeddings µ0

v = 0⃗. Here, µ0
v = 0⃗ denotes

the initial embedding vector of node v. Then, for all iterations k ∈ [0, . . . , K − 1]
Equation 4.1 is computed in order to compute the final embedding µv = µK

v for
every node v of the graph. For every iteration k of the GEM module and for every
node v, three different quantities are computed by three different linear layers. The
first linear layer captures the embedding of node v, namely θk

0µk
v . The second

linear layer computes the relationships between the embeddings of the neighbors
of v by calculating the quantity θk

1
q

u∈N (v) µk
u. Finally, thanks to the third linear

layer, the information on the anti-neighbors is also taken into account by the term
θk

2
q

u/∈N (v) µk
u. The three linear layers of an iteration k are gathered into a bigger

layer denoted as Macro-Layer and indicated with the symbol MacLk.
The use of separate linear layers for different features (nodes, neighbors, and anti-
neighbors embeddings), emphasizes the contrasting semantic meaning between
neighbors and anti-neighbors, representing positive and negative relationships in
the graph. Then, the results of the three linear layers are concatenated ([. . . ∥ . . . ]
symbol in Equation 4.1) and passed to a GELU [41] activation function. A
normalization layer prevents the embeddings from assuming too big or too small
values.

After K iterations of Equation 4.1, every node of the graph has an embedding µv.
In order to find the final graph embedding µG, an average pooling is performed
according to the following equation:

µG = 1
|V |

Ø
i∈V

µi. (4.2)

At this point, the final graph embedding µG is computed and can be passed to the
FCNN module.

4.2 GELU activation function
Equation 4.1 employs a non-canonical activation function, namely the Gaussian
Error Linear Unit (GELU). The GELU activation function has been proposed by
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[41] and aims to combine properties from ReLUs, dropout, and zoneout.

ReLU activation function multiplies an input x by either 0 or 1, depending on the
sign of x. It is important to remark that such multiplication is made determin-
istically, as the multiplication is only related to x ≷ 0. Differently from ReLU,
the zoneout [42] regularizer performs the multiplication only by 1 and does it
stochastically. Also, by turning off neurons, the dropout technique performs the
multiplication of an input x stochastically, but the multiplied value is 0.

The features of ReLUs, dropout, and zoneout are merged by GELU by stochastically
multiplying the input by zero or one, but the output value is obtained deterministi-
cally. The neuron input x is multiplied by a value m obtained according to the
Bernoulli distribution: m ∼ Bernoulli(Φ(x)). The input Φ(x) of the distribution is
given by the cumulative distribution function of the standard normal distribution,
namely Φ(x) = P (X ≤ x), X ∼ N (0,1). The standard normal distribution is
chosen because neuron input values generally follow a normal distribution. Finally,
as the multiplication of x by m is stochastic and the output should be deterministic,
the expected value is calculated in order to find the final formula of GELU:

GELU(x) = E[mx] = xE[m] = xΦ(x) = x
1
2[1 + erf(x/

√
2)]. (4.3)

Figure 4.1 shows the behavior of the GELU function against the behavior of the
common activation functions ReLU and ELU.

The effectiveness of GELU against other famous activation functions has been
proven by [41] for the MNIST and TIMIT datasets. In this section, the effectiveness
of the GELU function is tested against the effectiveness of the ReLU and ELU
activation functions. Three different experiments have been conducted under the
same set of hyperparameters, but three different activation functions have been
employed for the GEM. Figure 4.2, shows the test set approximation ratio, whose
precise meaning is elucidated in Chapter 7, for MIS as the model is being trained.
The figure shows the ability of the model to learn quicker if a GELU function is
employed against a ReLU and an ELU.

4.3 Mθ model: the final overview
As mentioned before, the second module of the model architecture is composed of
a standard fully connected neural network [43], as depicted by the right part of
Figure 4.3. The input to the FCNN is the graph embedding µG obtained by the
GEM. Once the input is propagated to the network, it reaches the final layer that
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Figure 4.1: The plot shows the behavior of three curves produced by three distinct
activation functions.

outputs the graph logit value lG, associated with the graph G given as input to
Mθ.

The final structure of Mθ is highlighted in Figure 4.3. Initially, an input graph G is
passed to the model with zeros as node embeddings, which are displayed as white
in the figure. After K iterations of the GEM module, the final node embeddings
are obtained. These are then averaged to obtain a graph embedding µG. Finally,
the graph embedding is put through multiple fully connected layers to obtain a
final logit value for the input graph.

During the training process, the comparator function CMP(G0, G1) uses the result
of Mθ(G0) and Mθ(G1) for training the model itself, as described later by Chapter
5. Unfortunately, the logit value outputted by Mθ(G) is not a number in (0,1) and,
thus, it does not represent a probability. For this reason, a softmax function is
employed. This function is a differentiable loss function that takes the logit values
Mθ(G0), Mθ(G1) and outputs the following probability binary vector:

p = softmax([Mθ(G0)∥Mθ(G1)]). (4.4)

The probability binary vector calculated as 4.4 is employed for classification. If
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Figure 4.2: The figure shows the test set approximation ratio (the higher the
better) for MIS over the COLLAB dataset. Each curve has been obtained with the
same hyperparameters but different activation functions.

 for
 iterations

: Neighbors

: Anti-neighbors

Figure 4.3: Architecture of model Mθ(G), including the GEM module and the
fully connected layers. The striped green edges of the GEM module connect the
anti-neighbors, while the black edges connect the neighbors. The pile above each
node vi represents the node embedding µi. Every node embedding is then averaged
(q symbol in the figure) to obtain the graph embedding µG, represented by the
purple pile.

(p)0 > (p)1 then the comparator chooses G0, otherwise it branches over G1.
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Chapter 5

Training the model Mθ

The ML model Mθ, whose architecture is described in Section 4, is employed by
the proposed algorithms in order to find a solution to the MIS and MVC problems.
Unfortunately, as later described by Section 5.1, training the ML model with
a classic supervised approach is not efficient at all. Thus, this work utilizes a
self-supervised approach based on the theoretical property denoted as consistency
property. Thanks to this property and thanks to a smart data generation process,
described in Section 5.2, it is possible to efficiently train the model Mθ.

5.1 Model training: why not supervised?
The most straightforward approach for training the model Mθ would be a supervised
approach. A classic supervised training would select the parameters θ ∈ Θ such
that CMPMIS

θ (G0, G1) ≃ I [|MIS(G0)| < |MIS(G1)|] for the MIS problem or, in case
of the MVC problem, CMPMVC

θ (G0, G1) ≃ I [|MVC(G0)| > |MVC(G1)|].
Unfortunately, a supervised approach would require a huge amount of annotated
data of the form {((G0, G1), I [|MIS(G0)| < |MIS(G1)|])} for MIS and, considering
the MVC problem, of the form {((G0, G1), I [|MVC(G0)| > |MVC(G1)|])}. As
mentioned in Section 2.1.4, the MIS and the MVC problems are NP-Hard, thus
annotating such data comes with an insurmountable computational burden.

The key idea to overcome the latter limitation is to annotate the data of the form
{(G0, G1)} by using the algorithm ACMPMIS

θ for MIS and the algorithm ACMPMVC
θ

for MVC. The biggest improvement introduced by the usage of the algorithms with
respect to the classic annotated data is in the computational complexity. Indeed,
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the proposed algorithms of this work run in polynomial time with respect to the size
of the graph. Intuitively, the proposed framework entails the optimization of the
parameterized comparator functions CMPMIS

θ and CMPMVC
θ on data generated using

algorithms ACMPMIS
θ and ACMPMVC

θ respectively for the MIS and MVC problems.
A better comparator function leads to a better algorithm, which leads to better
data, and vice versa. This mutually reinforcing relationship, which is at the basis
of the self-supervised training, between the two components of the framework is
theoretically indicated by Theorems 3,4 that are presented in Sections 5.1.1,5.1.2.

5.1.1 Consistency comparator for MIS
At the heart of the self-supervised learning approach for MIS lies the knowledge
of consistent comparator for MIS. In particular, a comparator function for MIS
CMPMIS

θ : G × G → {0,1} is called consistent if and only if for any pair of graphs
G0, G1 ∈ G the following holds:

CMPMIS
θ (G0, G1) = 0 if and only if E

è---ACMPMIS
θ (G0)

---é ≥ E
è---ACMPMIS

θ (G1)
---é .

(5.1)

Remark 7. In Equation 5.1 the expressions E
è---ACMPMIS

θ (G0)
---é ,E

è---ACMPMIS
θ (G1)

---é
are used since, as already discussed, a comparator CMPMIS

θ for MIS induces a
randomized algorithm ACMPMIS

θ for MIS.

Equation 5.1 highlights that a consistent comparator for MIS induces an algorithm
that produces, under expected value, solutions that are coherent with respect to
the choice made by the comparator. Thus, if a consistent comparator chooses, as
an example, a graph G0 among two graphs G0 and G1, then the induced algorithm
coherently states that the MIS of G0 is greater than the MIS of G1, thus confirming
the choice of the consistent comparator. Moreover, the opposite implications also
apply. Indeed, given, for example, an algorithm induced by a consistent comparator
stating that a graph G0 has a higher MIS than a graph G1, then the algorithm
leverages a comparator that chooses G0 among the two graphs G0 and G1.

At this point, one good question that arises is the reason why a consistent com-
parator would be important. The answer to this question is given by the following
theorem:

Theorem 3. Given a consistent comparator for MIS CMPMIS
θ : G × G → {0,1},

the induced algorithm ACMPMIS
θ always computes a Maximum Independent Set,

E
è---ACMPMIS

θ (G)
---é = |MIS(G)| for all G ∈ G.
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Proof. Consider a consistent comparator for MIS CMPMIS
θ . Theorem 3 will be

proven with an induction on the number of edges i.

• Induction Basis (i = 0): Let G(V, E) ∈ G[0] then ACMPMIS
θ (G) = V =

MIS(G) .

• Induction Hypothesis: E
è---ACMPMIS

θ (G)
---é = |MIS(G)| for all G ∈ G[j] with

j ≤ i .

• Induction Step: Let G ∈ G[i + 1] and consider a node v with degree d(v) ≥
1. Consider also the graphs G0 := G/{v} and G1 := G/{N (v)}. Both
G0 and G1 admit less than i edges and thus by the inductive hypothesis,
E

è---ACMPMIS
θ (G0)

---é = |MIS(G0)| and E
è---ACMPMIS

θ (G1)
---é = |MIS(G1)|. Hence

CMPMIS
θ (G0, G1) = 0 if and only if |MIS(G0)| ≥ |MIS(G1)|. As a result,---ACMPMIS

θ (G)
--- = max (|MIS(G0)| , |MIS(G1)|) and Theorem 1 implies that---ACMPMIS

θ (G)
--- = |MIS(G)| .

Theorem 3 is very important. It establishes that a consistent comparator for MIS
induces an optimal algorithm. So, at this point, the goal of training for MIS is to
find the set of parameters θ⋆ ∈ Θ such that the resulting comparator CMPMIS

θ⋆ is
consistent:

CMPMIS
θ⋆ = 0 if and only if E

è---ACMPMIS
θ⋆ (G0)

---é ≥ E
è---ACMPMIS

θ⋆ (G1)
---é . (5.2)

By definition of a consistent comparator for MIS, in order to train a comparator
effectively what is needed is the output of the induced algorithm (see Equation
5.1). This permits us to overcome the NP-hardness of the MIS problem, as the
computational complexity of the proposed algorithm of this work is polynomial.

5.1.2 Consistency comparator for MVC
Similarly to what was discussed in Section 5.1.1, the idea of consistent comparator
for MVC is crucial in the self-supervised learning approach of the comparator for
MVC. Given a comparator function for MVC CMPMVC

θ : G×G → {0,1}, it is called
consistent if and only if for any pair of graphs G0, G1 ∈ G the following holds:

CMPMVC
θ (G0, G1) = 0 if and only if E

è---ACMPMVC
θ (G0)

---é ≤ E
è---ACMPMVC

θ (G1)
---é .

(5.3)
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Remark 8. In Equation 5.3 the expressions E
è---ACMPMVC

θ (G0)
---é ,E

è---ACMPMVC
θ (G1)

---é
are used since, as already discussed, a comparator CMPMVC

θ for MVC induces a
randomized algorithm ACMPMVC

θ for MVC.

The same reasoning made for the MIS problem in Section 5.1.1 can be made for the
MVC problem. Indeed, Equation 5.3 underscores the idea that when a comparator
for MVC is consistent, the algorithm it induces will, on average, yield solutions
that align with the comparator’s choices. For instance, if a consistent comparator
for MVC opts for one graph, say G0, over two options G0 and G1, the resulting
induced algorithm will assert that the MVC of G0 is smaller than that of G1, thus
affirming the comparator’s choice. Conversely, the converse holds true as well.
In other words, if an algorithm, arising from a consistent comparator for MVC,
indicates that the MVC of a graph G0 is smaller than that of G1, it implies that
the comparator favored G0 when choosing between the two graphs G0 and G1.

Equivalently to the MIS case, a consistent comparator for MVC induces an algorithm
for MVC that is optimal:

Theorem 4. Let a consistent comparator for MVC CMPMVC
θ : G × G → {0,1}.

Then the induced algorithm ACMPMVC
θ always computes a Minimum Vertex Cover,

E
è---ACMPMVC

θ (G)
---é = |MVC(G)| for all G ∈ G.

The proof of Theorem 4 is omitted as it is almost identical to the proof of Theorem
3.

Thanks to Theorem 4, the goal is to train a comparator for MVC in order to
make it as consistent as possible. According to Equation 5.3, this can be done by
leveraging the results of the induced algorithm, that runs polynomially. Then, as
well as the MIS problem, the goal of training for the MVC comparator CMPMVC

θ is
to find the set of parameters θ⋆ ∈ Θ such that the comparator is consistent:

CMPMVC
θ⋆ = 0 if and only if E

è---ACMPMVC
θ⋆ (G0)

---é ≤ E
è---ACMPMVC

θ⋆ (G1)
---é . (5.4)

5.2 Training process
The cornerstone idea of the self-supervised learning approach is to make the
comparator more and more consistent over time. Namely, the idea is to update the
parameters, respectively for the MIS and MVC comparators, as follows:

θt+1 := argminθ∈ΘEG0,G1

è
ℓ

1
CMPMIS

θ (G0, G1), I
è
E

è---ACMPMIS
θt (G0)

---é < E
è---ACMPMIS

θt (G1)
---éé2é

.

(5.5)
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Algorithm 3 Basic Pipeline of the Self-Supervised Training Approach
1: Input: A distribution Dtrain over graphs.
2: Initialize parameters θ0 ∈ Θ.
3: Initialize Strain = Dtrain.
4: for each super-epoch tsuper = 0, . . . , T super − 1 do
5: Pick randomly Rtot graphs [G(1)

init, G
(2)
init, . . . , G

(i)
init, . . . , G

(Rtot)
init ] ∼ Strain.

6: Update Strain as Strain = Strain − [G(1)
init, G

(2)
init, . . . , G

(i)
init, . . . , G

(Rtot)
init ]

7: for each graph G
(i)
init do

8: Recursive tree: Run ACMPθt (G(i)
init) and gather the leaf graphs

9: Roll-outs: Estimate the MIS/MVC of each leaf graph
10: Pairwise samples: Construct datasamples by coupling each leaf node
11: end for
12: for each sub-epoch t = 0, . . . , T sub − 1 do
13: Update the parameters θt+1 ∈ Θ as in Equation 5.5 or 5.6
14: end for
15: end for

θt+1 := argminθ∈ΘEG0,G1

è
ℓ

1
CMPMVC

θ (G0, G1), I
è
E

è---ACMPMVC
θt (G0)

---é > E
è---ACMPMVC

θt (G1)
---éé2é

.

(5.6)
where ℓ(·, ·) is a binary classification loss.

Algorithm 3 summarizes the training pipeline. For each super-epoch, Rtot graphs
are picked from the set of graphs Strain. The Strain is updated in Line 6 in order
to avoid picking the same graphs in the next super-epoch. Then, for each graph,
three important steps are executed. The recursive tree step, described in Section
5.2.1, computes the leaf graphs by running the induced algorithm. Then, in the
roll-out step elucidated in Section 5.2.2, an estimate of either the MIS or MVC is
evaluated for each leaf graph. The last step, denoted as pairwise samples (Section
5.2.3), consists of coupling all leaf graphs in order to produce datasamples. Line 13
of the algorithm shows the update of the model parameters, performed thanks to
the datasamples generated in the previous for-loop.
It is important to point out the different uses of the super-epochs and the sub-
epochs. During each super-epoch, a set of datasamples is generated. Then, for
every sub-epoch the same set of datasamples is employed for updating the model
parameters.

Algorithm 3 is the training pipeline for both the MIS and MVC comparators. For
this reason, the comparator symbol in line 6 of Algorithm 3 does not have either
the superscript MIS or the superscript MVC.
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5.2.1 Recursive tree

As described in Chapter 3, the proposed algorithms are recursive, and two graphs
are produced for each iteration of the algorithms. Thus, all the graphs generated
at each iteration can be represented by a tree, denoted as "recursive tree", where
each level i of the tree corresponds to iteration i of the algorithm and contains two
nodes, which are the graphs generated in iteration i. Figure 5.1 shows a specific
example of the recursive tree step starting from a graph Ginit. In the figure, every
leaf of the tree is a graph called "leaf graph". The red leaf graphs of the figure,
namely G2, G3, G6, are the graphs chosen by the comparator, the ones that are
not chosen, namely G1, G4, G5, are in gray. Moreover, in the example displayed by
Figure 5.1, the leaf graph G6 is drawn with a red circle, as the algorithm underwent
the ending step.
At the end, all leaf graphs are gathered and employed in the subsequent step
(Section 5.2.2). They are the starting point for the generation of the datasamples.

5.2.2 Roll-out

The recursive tree step considers a graph as input and outputs several leaf graphs.
Then, each leaf graph undergoes the roll-out step. The idea of this procedure is
taken from the "simulation" step of the Monte Carlo Tree Search of Section 2.2.2.
Indeed, similar to the MCTS, the roll-out step aims at estimating the value of
each node of the recursive tree, performing an estimate of the MIS or the MVC
(depending on the analyzed problem) of each leaf graph. The difference between
the simulation of the MCTS and the roll-out step of the proposed algorithms lies
in the way the estimation is performed. In the case of the MCTS, the estimate
is calculated by making random moves until a terminal state is reached. In the
roll-out step of the proposed algorithms, the estimate is not randomly generated
but calculated by the algorithm induced by the comparator that is being trained.

In the case of the algorithm for MIS, the estimate of the roll-out step is made
by running the algorithm induced by the comparator Mtot times for every leaf
graph. Then, the estimated MIS value EV MIS

Gi
corresponding to leaf graph Gi is
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3. Pairwise samples: Build the datasamples

Figure 5.1: Recursive tree step: Starting from a graph G
(i)
init, the induced algorithm

generates the leaf graphs G1, G2, G3, G4, G5, G6. The red nodes of the tree represent
the leaf graphs chosen by the comparator, while the gray nodes are the remaining
leaf graphs. The leaf graph G6 is represented by a node that has a thin red circle,
as the algorithm underwent the ending step. Moreover, it is worth noticing that
the comparator symbols CMPθt do not have the superscript MIS or MVC, since
the image does not specifically refer to either the comparator for MIS or for MVC.

the maximum between the Mtot runs of the algorithm:

EV MIS
G1 = max (|(ACMPMIS

θ (G1))(1)|, |(ACMPMIS
θ (G1))(2)|, . . . , |(ACMPMIS

θ (G1))(Mtot)|),
EV MIS

G2 = max (|(ACMPMIS
θ (G2))(1)|, |(ACMPMIS

θ (G2))(2)|, . . . , |(ACMPMIS
θ (G2))(Mtot)|),

...
EV MIS

Gi
= max (|(ACMPMIS

θ (Gi))(1)|, |(ACMPMIS
θ (Gi))(2)|, . . . , |(ACMPMIS

θ (Gi))(Mtot)|),
...

(5.7)

The roll-out step for the algorithm for MVC is similar to the one for MIS. The
only difference is that the minimum, not maximum, among the Mtot runs is the
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estimated value:
EV MVC

G1 = min (|(ACMPMVC
θ (G1))(1)|, |(ACMPMVC

θ (G1))(2)|, . . . , |(ACMPMVC
θ (G1))(Mtot)|),

EV MVC
G2 = min (|(ACMPMVC

θ (G2))(1)|, |(ACMPMVC
θ (G2))(2)|, . . . , |(ACMPMVC

θ (G2))(Mtot)|),
...

EV MVC
Gi

= min (|(ACMPMVC
θ (Gi))(1)|, |(ACMPMVC

θ (Gi))(2)|, . . . , |(ACMPMVC
θ (Gi))(Mtot)|),

...
(5.8)

As shown by Algorithm 3, the roll-out step is executed several times for each
super-epoch. Naturally, the estimates calculated during the first super-epochs
are not good, since the comparator has not been trained enough yet. Conversely,
as soon as the comparator is being trained super-epoch after super-epoch, the
estimates get better and better.

5.2.3 Pairwise samples
The pairwise samples step receives several leaf graphs, and each leaf graph is
associated with an estimate. The last step consists of creating datasamples from all
possible couples of leaf graphs. As an example, if the total number of leaf graphs
is 100, then the total number of couples, and thus datasamples, is

1
100
2

2
.

A datasample is a couple of graphs Gi, Gj associated with a number that can be
either 0 or 1. In the case of the comparator for MIS, the number is 0 if the estimate
for Gi is greater than the estimate for Gj, namely EV MIS

Gi
> EV MIS

Gj
, otherwise

is 1. Instead, if the comparator for MVC is being trained, the number is 0 is
EV MV C

Gi
< EV MV C

Gj
and 1 otherwise. The above description is summarized by the

following equation that shows the structure of a datasample for the MIS and MVC
comparators respectively:

⟨(Gi, Gj), I[EV MIS
Gi

< EV MIS
Gj

]⟩. (5.9)

⟨(Gi, Gj), I[EV MV C
Gi

> EV MV C
Gj

]⟩. (5.10)

Figure 5.2 shows a specific example of the three steps of Sections 5.2.1,5.2.2,5.2.3.
Starting from a graph G

(i)
init, 6 leaf graphs are generated by the proposed algorithm

thanks to the comparator’s choices. Then, the 6 leaf graphs undergo the roll-out
step, and each graph is associated with an estimate. Finally, in the pairwise-samples
step,

1
6
2

2
= 15 pairs are formed by coupling the 6 leaf graphs. Every couple is then

associated with a number (I[EVGi
≶ EVGj

] in Figure 5.2) to form a datasample.
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1. Recursive tree: Run  2. Roll-out: Estimate the MIS/MVC of each leaf node

3. Pairwise samples: Build the datasamples

Figure 5.2: The figure illustrates the three steps outlined in Sections
5.2.1,5.2.2,5.2.3 through which a graph denoted as G

(i)
init undergoes. Notably, the

symbols for the comparator and the estimated value lack the superscripts MIS or
MVC, and the symbol ≶ replaces the symbols < or >. Additionally, the notation
max
or

min
is employed in step 2. These choices are made because the training algorithm

depicted in the figure does not explicitly refer to either the MIS or MVC problem,
but it is a general framework valid for both problems.
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Chapter 6

Model and algorithmic
enhancements

The basic operating principles of the proposed algorithms, the model architecture,
and the training process are described in the previous chapters. This chapter
focuses on the modifications that have been proposed in order to improve the final
results. Particularly, Sections 6.2,6.4 describe changes to the model architecture,
Section 6.1 shows a modification to the training process, Section 6.5 elucidates a
modification in the comparator usage, and Section 6.3 describes how the dataset
augmentation operation is performed in this work.

6.1 Mixed Roll-Outs
Among the modifications described in this work, the mixed roll-outs one is probably
the most effective. The idea is to improve the roll-out step of Section 5.2.2 by
incorporating the result of a greedy algorithm. The estimates of Section 5.2.2 are
evaluated as the maximum or minimum (depending on MIS or MVC) among Mtot
runs. This means that the estimate is the "best" result among the Mtot runs. By
incorporating the result of a greedy algorithm that is totally external with respect
to the proposed algorithms, the estimate EVGi

can improve. The greedy algorithm,
later described in Chapter 7, has the advantage of producing solutions that are
often near-optimal, and such solutions are found incredibly fast. Naturally, two
distinct greedy algorithms are employed for the MIS and MVC problems, but the
operating principle is the same for both of them.
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The addition of the greedy result, brought by the mixed roll-outs modification,
changes the Equations 5.7,5.8 into, respectively, the following equations:

EV MIS
Gi

= max (|GreedyMIS(Gi)|, |(ACMPMIS
θ (Gi))(1)|, . . . , |(ACMPMIS

θ (Gi))(Mtot)|).
(6.1)

EV MVC
Gi

= min (|GreedyMVC(Gi)|, |(ACMPMVC
θ (Gi))(1)|, . . . , |(ACMPMVC

θ (Gi))(Mtot)|).
(6.2)

6.2 Concatenation Model
The model Mθ described in Chapter 4, used by the comparator for deciding between
two graphs G0, G1 (see Equations 3.2,3.3), takes only one graph as input. This
implies that the graphs G0 and G1 are treated independently from one another. The
result of Mθ(G0) is not influenced at all by the result of Mθ(G1). The concatenation
model modification aims at introducing interdependence among the two graphs
G0, G1. This is done by modifying the model of Chapter 4 by implementing
a new architecture M ′

θ. Differently from Mθ, the ML model M ′
θ is defined as

M ′
θ(G0, G1) : G×G → R2 and, consequently, takes two graphs as input and outputs

a bi-dimensional vector. The vector is a probability binary vector that indicates
the probability of each graph. Then, the comparator CMPθ(G0, G1) chooses the
graph associated with the highest probability:

p = M ′
θ(G0, G1),

CMPθ(G0, G1) = argmax((p)0, (p)1).
(6.3)

Figure 6.1 shows the architecture of the concatenated model. Two graphs G0, G1
are given to two distinct GEMs (see Section 4.1 for the GEM description). The
resulting graph embeddings are concatenated and given as input to a fully connected
neural network that outputs a probability binary vector. Since the embeddings are
concatenated, their mutual interdependence is leveraged by the FCNN.

6.3 Dataset Augmentation
Normally, the training graphs employed during the training process are randomly
selected from the distribution Dtrain while the model is being trained. Thus, the
Rtot graphs of Line 4 of Algorithm 3 have random sizes. What if the training
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 for
 iterations

 for
 iterations

Figure 6.1: The concatenation model displayed in the figure takes two graphs
G0, G1 as input. The graphs are passed to two distinct GEM modules and the
resulting embeddings (µG0 and µG1 in the figure) are concatenated and passed to
an FCNN. The output of the model is a binary probability vector.

graphs from Dtrain are sorted in terms of the total number of nodes? The model
would be first trained over small graphs and, as soon as the training process goes
on, graphs of larger and larger size would be used for training the comparator.
Thanks to this sorting approach, when the model is being trained over large graphs,
it is already "initialized" over the small graphs and can, in principle, learn much
better from the big training graphs.

Unfortunately, the sorting approach on its own does not work. Indeed, once the
comparator is being trained over the big graphs it seems to forget what it learned in
the past, and thus the induced algorithm does not provide any more good solutions
for the test graphs of small size, resulting in a worse test set approximation ratio1.
What is mentioned above can be noted in Table 6.1. The table shows the test set
approximation ratio for the MIS problem and the COLLAB dataset as soon as more
and more training graphs were used for training. The row Base refers to the model
being normally trained (no sorting), while row Pure Sorting shows the results for
the purely sorted dataset. It can be noted that the test set approximation ratio for
MIS of the row "pure sorting" drops as soon as the 80% of the graphs are trained.
This is a direct effect of what was mentioned above: when the model is being
trained over larger graphs, the results get worse.

To avoid a drop in the performances in the case of the purely sorted dataset,

1See Chapter 7 for a precise explanation of what the test set approximation ratio is.
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Table 6.1: Test set approximation ratio for MIS (the higher the better) during
the training process for the COLLAB dataset using different methods. The results
of every column are obtained after the model is trained over a specific number of
graphs (in percentage). Every row refers to a specific method that is used.

Method (↓) Training graphs % (→) 20% 40% 60% 80% 100%
Base (no sorting) 0.912 0.953 0.979 0.986 0.990

Pure Sorting 0.961 0.976 0.982 0.953 0.951
Dataset Augmentation 0.959 0.977 0.988 0.990 0.996

a smart dataset augmentation is performed. In particular, the purely sorted
dataset is augmented by adding smaller graphs between the larger ones. Once
the model is trained over the larger graphs, it is also re-trained over some of the
smaller ones and it does not forget what it learned in the past. The results of
the dataset augmentation modification are shown in row Dataset Augmentation
of Table 6.1. Surprisingly, the model performances do not drop, and the final test
set approximation ratio for the dataset augmentation, after the 100% of the train
graphs were used, is even better than the one for the normally trained model.

6.4 Layer Augmentation

As mentioned in Section 6.3, training the model with a pure sorted dataset is in
principle a good idea: while the model is being trained over the large graphs, it has
already been "initialized" as it already learned from small graphs. Unfortunately,
Section 6.3 shows in Table 6.1 that this approach does not work on its own, and a
countermeasure has to be taken. The modification Layer Augmentation proposed
in this section is a specific countermeasure for the model trained with the purely
sorted dataset. The idea is to enhance the model’s capabilities as graphs of bigger
and bigger sizes are employed in the training process. This is performed by adding
one macro-layer MacLK+1 at the end of the GEM module as soon as the training
process goes on. If, before the augmentation, the model had K macro-layers for
the GEM module, the augmented model will have K + 1 macro-layers

In Figure 6.2, the GEM module of a model Mθ goes from K = 3 macro-layers to K =
4 macro-layers. The parameters of the macro-layers MacLnew

0 , MacLnew
1 , MacLnew

2
of the augmented GEM module are the same as the old GEM module.
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Before Layer Augmentation After Layer Augmentation

Figure 6.2: The figure shows the GEM module of a model Mθ before and after
the augmentation by one macro-layer. The model parameters of the macro-layers
MacLnew

0 , MacLnew
1 , MacLnew

2 of the new GEM module are the same as the old
GEM module, except for, obviously, the model parameters of the last macro-
layer MacLnew

3 . The figure does not display the activation functions and the
normalization layers.

6.5 Ensemble Learning

Before delving into the description of the modification, it has to be remarked
that the comparator symbols CMPθ displayed in this section do not contain the
superscripts MIS and MVC, as what is written in this section refers to both the
algorithms for MIS and MVC.

One of the most important states of this work is that a comparator CMPθ induces
an algorithm ACMPθ . Then, the comparator that is designed by an ML model can
be properly trained such that the induced algorithm finds solutions that are near-
optimal. The Ensemble Learning modification does not use a single comparator
CMPθ but, instead, multiple comparators [CMPθ(1) , CMPθ(2) , . . . , CMPθ(L) ] induce
one single algorithm, denoted as Ensemble Algorithm. The idea of this modification
is that a comparator does not deal with all possible kinds of graphs, but each
comparator CMPθ(i) handles graphs having a specific number of nodes. To this
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end, each CMPθ(i) is assigned an interval of nodes:

CMPθ(1) −→ [1, N (1)
max),

CMPθ(2) −→ [N (2)
min, N (2)

max),
...

CMPθ(i) −→ [N (i)
min, N (i)

max),
...

CMPθ(L) −→ [N (L)
min,∞).

(6.4)

It is important to remark that the maximum interval boundary of a range coincides
with the minimum interval boundary of the subsequent range, namely: N (i)

max =
N

(i+1)
min .

Once the range-of-nodes assignment is performed, for each iteration, the ensemble
algorithm chooses one comparator among the list [CMPθ(1) , . . . , CMPθ(L) ] in order
to decide between two graphs G0 = (V0, E0) and G1 = (V1, E1). The choice of the
comparator is made according to the number of nodes |V0|, |V1| of the two graphs.
Specifically, the average number of nodes Navg = (|V0|+ |V1|)/2 value is computed.
Then, the ensemble algorithm checks on which interval [N (i)

min, N (i)
max) of Equation 6.4

does the value Navg fall. The comparator CMPθ(i) corresponding to [N (i)
min, N (i)

max) is
the one used by the ensemble algorithm.

The training process for the ensemble algorithm, as depicted in Algorithm 4, closely
resembles the one described in Algorithm 3. The key distinction arises in Line 7
of Algorithm 4, as the choice of which comparator has to be trained depends on
the average number of nodes of the Rtot sampled graphs. The comparator that is
trained in that specific super-epoch is the one for which the average node value
falls in the comparator’s node interval. Moreover, the recursive tree and roll-out
steps of 4 are performed employing the ensemble algorithm and both the initial
graph distribution Dsorted

train and the dataset Ssorted
train are sorted in terms of the number

of nodes.
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Algorithm 4 Training Pipeline for the Ensemble Algorithm
1: Input: A distribution Dsorted

train over graphs.
2: Initialize parameters θ

(i)
0 ∈ Θ for every comparator CMPθ(i) .

3: Initialize Ssorted
train = Dsorted

train . The datasets are sorted in terms of number of nodes.
4: for each super-epoch tsuper = 0, . . . , T super − 1 do
5: Pick the first Rtot graphs [G(1)

init = (V (1)
init , E

(1)
init), . . . , G

(Rtot)
init =

(V (Rtot)
init , E

(Rtot)
init )] = Ssorted

train [0 : Rtot].
6: Update Ssorted

train as Ssorted
train = Ssorted

train − [G(1)
init, G

(2)
init, . . . , G

(i)
init, . . . , G

(Rtot)
init ]

7: Choose CMPθ(i) according to Navg = (|V (1)
init |+ |V

(2)
init |+ · · ·+ |V

(Rtot)
init |)/Rtot

8: for each graph G
(i)
init do

9: Recursive tree: Run the ensemble algorithm and gather the leaf graphs
10: Roll-outs: Estimate the MIS/MVC of each leaf graph
11: Pairwise samples: Construct dataset by coupling each leaf node
12: end for
13: for each sub-epoch t = 0, . . . , T sub − 1 do
14: Update the parameters θ

(i)
t+1 ∈ Θ as in Equation 5.5 or 5.6

15: end for
16: end for
17:
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Chapter 7

Experimental results

The objective of this chapter is to present both the experimental findings and
the complete set of datasets and specifications utilized to achieve these results.
Section 7.1 illustrates the employed datasets, including a special dataset artificially
created by this work, while Section 7.2 lists the values of the most important
hyper-parameters and the baselines used for comparing the results of this work
with the ones obtained by other papers and methods. The most important result,
namely the test set approximation ratio, is shown in Section 7.3, and Section
7.4 empirically tests the theoretical result of Sections 5.1.1,5.1.2 concerning the
consistency property. Finally, an ablation study is conducted in Section 7.5.

7.1 Dataset specifications
The datasets over which the comparator is trained and tested are of two types.
The first type, depicted in Section 7.1.1, is composed of classic datasets employed
in diverse papers and works that deal with solving graph theory problems with the
help of ML models. The second type, described in Section 7.1.2, is composed of an
artificially built dataset. This dataset was built to show that the greedy heuristics,
later described in Section 7.2.2, perform badly on specific graph distributions.

Two important parameters are considered for the analysis of the datasets: the size
and the density of the graphs. The first parameter is measured in terms of the
total number of nodes (namely |V |). The second one reflects how sparse a graph is
and it is measured as the ratio between the total number of edges of the graph and
the total number of edges if the graph had been complete: |E|

|V |(|V |−1)/2 .
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7.1.1 Real-world datasets and RB
The IMDB and COLLAB datasets [44] come from real-world scenarios. The IMDB
is a movie collaboration dataset that gathers actor/actress and genre information
from various movies on IMDB. COLLAB is a scientific collaboration dataset created
by merging three public datasets focused on significant physics research problems.
Both datasets contain ego-graphs, which are graphs having one node denoted as
hub that is connected to all other nodes. As shown by Table 7.1, the two datasets
differ in their sizes.

TWITTER dataset [45] has been created to model social-network scenarios. The
graphs of TWITTER are obtained from ego-graphs by removing the hub node.
The dataset is not particularly dense and contains, on average, graphs of more
than 100 nodes (see Table 7.1).

The RB, RB200, and RB500 datasets have been purposely created by [46] to contain
"hard satisfiable instances". Indeed, these datasets are known to be extremely
challenging. The RB dataset is employed for the MIS problem while the RB200 and
RB500 datasets, which differ in the number of nodes (see Table 7.1), are employed
for the MVC problem. Notably, RB200 and RB500 were generated by configuring
a small hyper-parameter ρ = 0.25, making the instances within these datasets
challenging, as specified by [18].

Table 7.1: Statistics of the employed datasets. For each dataset, it is reported the
average number of nodes and density of the graphs composing the dataset, and the
total number of graphs employed for both training and testing (denoted as "Train"
and "Test" respectively).

IMDB COLLAB TWITTER RB SPECIAL (MIS) RB200 RB500 SPECIAL (MVC)
Nodes 19.77 74.49 131.76 216.67 106.89 197.28 540.79 230.68

Density 0.51 0.52 0.205 0.218 0.530 0.205 0.179 0.527
Train |Dtrain| 800 800 777 400 800 400 400 400
Test |Dtest| 200 200 196 100 200 100 100 100

7.1.2 Special dataset
As later shown in Tables 7.3,7.4, the greedy algorithms perform well on most
datasets. So, why should somebody implement algorithms that leverage ML
models? The answer to this question is given by the numbers of column SPECIAL
of Tables 7.3,7.4, as the greedy heuristics do not perform well over the "special"
dataset. Indeed, this dataset was purposely built by this work in order to show how
easy it is to produce graph instances where greedy algorithms do not exhibit good
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results. Indeed, the biggest advantage of ML-based algorithms compared to greedy
heuristics is the generalization to every graph distribution, as ML-based solutions
can be adapted to any kind of dataset, differently from greedy approaches.

The special datasets for MIS and for MVC share the same configuration, which
is described in the next lines. The difference in the datasets lies in the average
number of nodes of the graphs composing the datasets, as the special instances for
MVC have bigger sizes than the ones for MIS (Table 7.1).

Whenever a new concept has to be described, it is not recommended to directly
start from an example. In the case of the graph composing the special dataset, it
might be better to start, instead, from the example of Figure 7.1. The figure shows
a graph whose nodes are drawn in three colors. The nodes in blue, specifically
b1 and b2, are called boundary nodes (B symbol) and are connected to only the
nodes in red. The red nodes, that compose the set I, are denoted as independent
nodes, and every node is connected to all nodes belonging to the B set and to all
nodes belonging to the C set. It is important to remark that the nodes in I do
not neighbor one another. Finally, the nodes belonging to the C set form a clique,
and each node ci (called clique node) is also connected to every node in I. In the
example of Figure 7.1, the MIS coincides with the nodes in I while the MVC is the
set of nodes C and B.

The special dataset is composed of graphs sharing the same configuration as
the graph of Figure 7.1 but having a diverse number of sets B, I, C, namely
[B1, . . . , Bm], [I1, . . . , In], [C1, . . . , Cl]. Moreover, the graphs for the special dataset
were obtained by varying the number of nodes in every independent and clique
set. If the number of nodes in every clique set is greater or equal to the number of
nodes of every independent set, the MIS of each graph instance coincides with the
independent sets, namely MIS = I1 ∪ I2 ∪ · · · ∪ In, while the MVC coincides with
the union of the clique and boundary sets, namely MVC = B1 ∪B2 ∪ · · · ∪Bm ∪
C1 ∪ C2 ∪ · · · ∪ Cl.

7.2 Training set-up and baselines
This section is dedicated to exploring the ensemble of hyper-parameters and
methodologies used in the generation and evaluation of results for the proposed
algorithms. It delves into the specifications of parameter settings and the techniques
employed for both producing and assessing the outcomes of the proposed method.
The analysis of the parameters set-up is in Section 7.2.1, while the description of
the baseline methodologies is in Section 7.2.2.
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Figure 7.1: The image depicted in the figure is a specific example of a graph
taken from the special dataset. The nodes of the graph are divided into three sets:
boundary set (B letter), independent set (I letter), and clique set (C letter).

7.2.1 Parameters Set-up
As mentioned in Section 4.1, each macro-layer MacLk is composed of three linear
layers, and each of them captures a different semantic meaning of a node. Each linear
layer has sizes 96× 32 and the outputs of the three linear layers are concatenated
and given as input to the linear layers of the next GEM iteration. As shown
in Table 7.2, the GEM module has, in total, K = 3 iterations and, therefore, it
contains 3 macro-layers.
The FCNN module is composed of L = 4 layers having the following sizes: 96× 32,
32× 32, 32× 32, and 64× 1. Furthermore, the output of the last GEM macro-layer
has a skip connection [47] into the last dense layer of the model. The skip connection
directly copies the output of the last GEM macro-layer and concatenates it with
the output of the third FCNN layer, which is also why the last FCNN layer has 64
input neurons.
Regarding the training process, the model is trained with a learning rate of 0.001
and the Adam optimizer [48]. The datasamples described in Section 5.2.3 are
gathered into batches of size equal to 32. The number of super-epochs and sub-
epochs is respectively set to 10 and 30. Finally, the number of roll-outs Mtot defined
in Section 5.2.2 is 10, and the number of picked graphs Rtot is 80, besides for the
RB datasets and the special dataset for MVC where Rtot is set to 40.
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Table 7.2: Experimental setting employed in the training process. The number
of picked graphs Rtot is set to 40 for the RB datasets and the special dataset for
MVC, while it is set to 40 for the remaining datasets.

Name Value
Learning rate (λ) 0.001

Optimizer Adam
Output layer size (D) 32

Number of GEM layers (K) 3
Number of fully connected layers (L) 4

Batch size 32
super-epochs (T super) 10

sub-epochs (T sub) 30
Number of roll-outs (Mtot) 10

Number of picked graphs (Rtot) 80, 40

7.2.2 Baselines

The results of various studies have been used as baselines to compare the outcomes
of the proposed method. The paragraph Baselines from related studies makes
a summary of them. Furthermore, a few greedy heuristics, illustrated in the
paragraph Baselines from heuristic methods, are also employed as a baseline to
compare the results of the proposed method.

Baselines from related studies: The work "RUN-CSP" [15] leverages a recurrent
neural network and assigns a bi-dimensional state to every node, similarly to
the MPNN structure described in Section 2.5.3. Moreover, a deep reinforcement
learning approach is employed in the work "LwDMIS" [16]. In particular, the work
of [16] uses an agent that iteratively determines either the belonging of a node to
the final solution or defers the decision hoping that the belonging assignment will be
easier in the next iteration. Finally, the approaches of "EGN" [17] and "Meta-EGN"
[18] leverage an unsupervised learning approach (Section 2.3). Specifically, in the
work of [17] an ML model is trained in order to minimize a relaxed version of the
cost functions defined in Section 2.1.3. The work of [18] improves the theoretical
studies of [17] by adding a smarter initialization to the model parameters.

Baselines from heuristic methods: The greedy algorithm for MIS iteratively
chooses as part of the final solution the node v with the lowest degree of a graph,
and removes all nodes neighboring v. The algorithm stops whenever the graph is
composed of only isolated nodes, and the solution coincides with the total number
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of isolated nodes.
The greedy algorithm for MVC operates using a similar principle. Firstly, all
isolated nodes are removed from the initial graph. Secondly, several iterations
are run and for each of them, the node u with the highest degree is part of the
final solution. Similarly to the MIS case, all nodes neighboring v are taken away.
Thirdly, whenever the graph consists solely of individual nodes, the solution aligns
with the total number of these isolated nodes.
In addition to the results of the greedy algorithms for MIS and MVC, the outcomes
of a Simple Local Search are taken into consideration. Given a time limit, the local
search method randomly adds a node to the final solution and removes conflicting
nodes. The largest or smallest (depending on the type of problem) set in the time
period is used as the solution of the algorithm.
Finally, even the results of the proposed method obtained by a randomly parame-
terized comparator, denoted as Random CMP, are employed as a baseline.

7.3 Test Set Approximation Ratio Results

The most important criterion used to judge the performances of the proposed
method and the methodologies illustrated in Section 7.2.2 is the "test set approxi-
mation ratio". Given one of the datasets of Section 7.1 and either the proposed
algorithm for MIS or MVC, for every test graph from |Dtest| a couple of values are
evaluated. The first value is the solution to the problem (either MIS or MVC) given
by the methods of Section 7.2.2 or by the proposed method. The second value is
the optimal solution of either the MIS or MVC problem. This value is obtained by
setting, for every graph, a time limit of 1 hour for the optimal solver Gurobi 10.0
[49]. Then, the division of the method’s solution and the optimal value is evaluated.
The final test set approximation ratio is the average value of such division among
all graphs belonging to the test set |Dtest| of a specific dataset. Naturally, the ratio
is always lower or equal to 1 for the MIS problem, as the method’s solution is
always lower (or equal) than the optimal value. Conversely, the ratio for MVC is
always greater or equal to 1.
It is important to remark that all results from the same column of Tables 7.3 to
7.6 are obtained using the exact same test dataset.

The results generated by the proposed approach can be categorized into two types.
The initial type, as illustrated in Section 7.3.1, consists of outcomes obtained using
the standard method, without the alterations described in Chapter 6. Conversely,
the second category of results (presented in Section 7.3.2) is achieved through the
modifications outlined in Chapter 6.
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7.3.1 Standard method results

The descriptions of the results pertaining to the standard comparator and the
baseline methods for both the MIS and MVC problems can be found in the following
two paragraphs, presented separately.

Results for MIS: The data presented in Table 7.3 represent the test set approx-
imation ratio for the MIS problem. The results for the RUN-CPS, EGN, and
Meta-EGN methods are sourced from the researches of [17] and [18]. Notably, the
results for the SPECIAL dataset are acquired by executing the open-source code
referenced in the same research papers on the SPECIAL dataset. Additionally, all
outcomes for the LwDMIS method across various datasets are obtained by utilizing
the open-source code provided in the corresponding research paper.
Most methods perform optimally over the IMDB dataset, which is the smallest
dataset, but struggle over the RB dataset, which contains the biggest graphs.
Among the ML-based approaches, the proposed method (without modifications)
achieves the best performance over the COLLAB and SPECIAL datasets. The
Meta-EGN beats the standard comparator over the RB and TWITTER datasets.
Remarkably, Table 7.3 shows a horrible result for the greedy MIS heuristic over
the SPECIAL dataset (Section 7.1.2), as it performs even worse than the ran-
dom comparator. Indeed, the heuristic always chooses the boundary nodes from
B1, . . . , Bm, as they always have the lowest degree. Thus, all nodes from I1, . . . , In

cannot be chosen as they are not independent of the boundary nodes. Then, the
greedy algorithm for MIS chooses one node from every clique set C1, . . . , Cl. Thus,
the solution found by the greedy MIS always coincides with all boundary sets plus
one node per clique set, even if the MIS is the union of all independent sets.

Results for MVC: The test set approximation ratios for MVC of Table 7.4 are
taken from the work of [18], besides the results for the SPECIAL dataset obtained
by running the open-source code of the related works. Similarly to the MIS problem,
almost all methods perform optimally over the IMDB dataset. Moreover, regarding
the ML-based approaches, the Meta-EGN method achieves the best performances
across all datasets except for the RB500 and SPECIAL datasets, where the standard
comparator has the best performance. As well as the MIS case, the modifications
of Chapter 6 generally improve the results of the standard method, and the results
of the Meta-EGN work may be beaten.
The greedy MVC algorithm does not behave well over the SPECIAL dataset.
Indeed, the greedy heuristic chooses some of the independent nodes from I1, . . . , In,
even if they are not part of the final MVC. Moreover, the boundary nodes are never
considered as part of the final solution by the greedy algorithm, since their degree
is lower than the one of the independent nodes I.
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Table 7.3: Test set approximation ratios for MIS (the higher the better) on five
datasets. The average approximation ratios (along with the standard deviation)
on MIS are reported for the proposed method and the baseline methods described
in Section 7.2.2. The results for the comparator are obtained from the standard
method without the modifications of Chapter 6. For every dataset, the highest
ratio among the ML-based baselines is reported in bold.

Method (↓) Dataset (→) IMDB COLLAB TWITTER RB SPECIAL

CMP (standard) 1.000 0.990± 0.051 0.967± 0.083 0.770± 0.107 0.996± 0.029

RUN-CSP 0.823± 0.191 0.912± 0.188 0.909± 0.145 0.738± 0.067 0.946± 0.059

LwDMIS 1.000 0.978± 0.031 0.972± 0.032 0.804± 0.089 0.828± 0.304

EGN 1.000 0.982± 0.063 0.924± 0.133 0.788± 0.065 0.921± 0.218

Meta-EGN 1.000 0.988± 0.059 0.976± 0.048 0.806± 0.059 0.920± 0.228

Greedy MIS 1.000 0.998± 0.023 0.964± 0.048 0.925± 0.053 0.131± 0.055

Random CMP 0.874± 0.261 0.817± 0.211 0.634± 0.182 0.615± 0.155 0.225± 0.279

Simple local Search (10s) 1.000 0.860± 0.213 0.644± 0.218 0.565± 0.237 0.188± 0.340

Table 7.4: Test set approximation ratios (the lower the better) for MVC on six
datasets. The average approximation ratios (along with the standard deviation)
on MVC are reported for the proposed method and the baseline methods (Section
7.2.2). The results for the comparator are obtained from the standard method
without the modifications of Chapter 6. For every dataset, the lowest ratio among
the ML-based baselines is reported in bold.

Method (↓) Dataset (→) IMDB COLLAB TWITTER RB200 RB500 SPECIAL

CMP (standard) 1.000 1.011± 0.027 1.083± 0.044 1.031± 0.006 1.015± 0.004 1.002± 0.001

RUN-CSP 1.188± 0.178 1.208± 0.198 1.180± 0.435 1.124± 0.001 1.062± 0.005 1.051± 0.019

EGN 1.000 1.013± 0.022 1.033± 0.023 1.031± 0.004 1.021± 0.002 1.059± 0.025

Meta-EGN 1.000 1.003± 0.010 1.019± 0.017 1.028± 0.005 1.016± 0.002 1.063± 0.015

Greedy MVC 1.000 1.000± 0.004 1.015± 0.015 1.027± 0.007 1.014± 0.003 1.336± 0.278

Random CMP 1.012± 0.041 1.037± 0.050 1.149± 0.068 1.104± 0.019 1.086± 0.014 1.454± 0.318

Simple local Search (10s) 1.000 1.003± 0.011 1.078± 0.045 1.042± 0.005 1.024± 0.004 1.549± 0.093

7.3.2 Modified method results
The next paragraphs depict the results for the method with the modifications of
Chapter 6, showing which modifications have the greatest impact.

Result for MIS: The first modification that has been implemented is the mixed
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Table 7.5: The table presents the test set approximation ratio for MIS (where
higher values indicate better performance) across five datasets. Each row corre-
sponds to a distinct method. Specifically, the outcomes of the standard approach
are included as well as those of five modifications described in Chapter 6, along
with the top-performing ML-based baselines approach detailed in Table 7.3. The
best result for each dataset is highlighted in bold.

Method (↓) Dataset (→) IMDB COLLAB TWITTER RB SPECIAL

CMP (standard) 1.000 0.990± 0.051 0.967± 0.083 0.770± 0.107 0.996± 0.029

Mixed roll-outs 1.000 0.990± 0.049 0.977± 0.031 0.836± 0.083 0.994± 0.035

Concatenated model 1.000 0.990± 0.042 0.960± 0.046 0.767± 0.123 0.994± 0.039

Dataset augmentation 1.000 0.996± 0.025 0.972± 0.045 0.771± 0.109 0.996± 0.025

Layer Augmentation 1.000 0.996± 0.029 0.977± 0.030 0.773± 0.102 0.996± 0.026

Ensemble Learning 1.000 0.990± 0.044 0.977± 0.033 0.817± 0.086 0.997± 0.021

Best ML baseline 1.000 0.988± 0.059 0.976± 0.048 0.806± 0.059 0.920± 0.228

roll-outs one. As shown by Table 7.5, the results for MIS for such modification are
better than the ones of the standard comparator, except for the SPECIAL dataset.
This is possibly due to the bad behavior of the greedy heuristic when applied to
the SPECIAL dataset. It is worth noting that since the mixed roll-out approach
consistently performs better than the standard method across various datasets,
the results for all other modifications in Table 7.5 were jointly obtained alongside
the mixed roll-out modification. The dataset and layer augmentation adjustments
show great results for the COLLAB dataset, but almost negligible improvements
with respect to the standard method for the RB and SPECIAL datasets.
Unfortunately, the concatenated model does not exhibit great results. Capturing
the interdependency of couples of graphs is in principle a good idea, but probably
a deeper model is needed to model the complexity of such a relation.
Finally, the ensemble learning modification performs better than the standard
comparator on every dataset, and it has the best result over the SPECIAL dataset.
This modification leverages multi-comparators, so it is predictable that it performs
better than the standard method that uses just one comparator.
Importantly, among the neural approaches, the modifications applied to the stan-
dard proposed method perform favorably in all datasets, as the ML-baseline results
are exceeded. The performance of the method indicates that the proposed self-
training scheme is able to learn from diverse data distributions and generalize
reasonably well in the test sets of the respective dataset.
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Table 7.6: The table displays the test set approximation ratios for MVC (where
lower values signify superior performance) across six datasets. In particular,
the table includes the results of the standard approach, alongside those of five
modifications outlined in Chapter 6, as well as the top-performing ML-based
baseline approach elaborated upon in Table 7.4. The lowest result for each dataset
is emphasized in bold.

Method (↓) Dataset (→) IMDB COLLAB TWITTER RB200 RB500 SPECIAL

CMP (standard) 1.000 1.011± 0.027 1.083± 0.044 1.031± 0.006 1.015± 0.004 1.002± 0.001

Mixed roll-outs 1.000 1.008± 0.015 1.033± 0.028 1.027± 0.005 1.014± 0.004 1.005± 0.003

Concatenated model 1.000 1.045± 0.031 1.080± 0.041 1.035± 0.008 1.017± 0.006 1.003± 0.002

Dataset augmentation 1.000 1.008± 0.014 1.039± 0.029 1.027± 0.005 1.014± 0.005 1.002± 0.001

Layer Augmentation 1.000 1.005± 0.012 1.035± 0.028 1.029± 0.006 1.014± 0.004 1.002± 0.001

Ensemble Learning 1.000 1.009± 0.016 1.031± 0.024 1.026± 0.004 1.013± 0.003 1.001± 0.001

Best ML baseline 1.000 1.003± 0.010 1.019± 0.017 1.028± 0.005 1.016± 0.002 1.051± 0.019

Results for MVC: Similarly to the MIS problem, the mixed roll-outs modification
shows better performances than the standard comparator in all datasets except
for the SPECIAL one (see Table 7.6). Because of this, as well as the MIS case, all
modification results are obtained with the mixed roll-outs adjustment as well.
Again, the complexity of the interdependency among graphs is not well-captured
by the concatenated model, as it does not have better results than the standard
comparator (except for the TWITTER dataset).
Finally, the ensemble learning approach has a big impact on the MVC problem, as
shown by Table 7.6. Besides the COLLAB dataset, it achieves better performances
among all modification approaches. Using multiple comparators implies that each
comparator deals with a subset of all graphs from |Dtest|, and thus it can be more
specific and precise.

7.4 Experimental analysis for the consistency
property

What is stated in Theorems 3,4 is one of the cornerstone ideas of this work. Indeed,
the goal is to train a comparator (either for MIS or MVC) in order to have it as
consistent as possible, as a consistent comparator induces an algorithm that is
optimal. Naturally, the comparators that produced the results in Section 7.3 are
not consistent, as the test set approximation ratios are not equal to 1, with the
exception of the IMDB dataset. Is there a way to check how far is a comparator
from being consistent? The answer to this question is given in this section.
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The consistency ratio of Figure 7.2 is a number between 0 and 1 measuring how far
is a comparator from being consistent. The ratio is calculated during the training
process. After every iteration, where an iteration is a total of 5 sub-epochs, the
following is done. For every train graph from |Dtrain|, the algorithm (either for
MIS or MVC) is run for 10 times and the average value among the 10 runs is
calculated. At this point, every train graph is associated with an average value.
All possible pairs of graphs are formed, for a total of

1
|Dtrain|

2

2
couples. For each

pair (G0, G1), the comparator is run to check if the comparator’s choice is coherent
with respect to the average values associated with the two graphs. As an example,
if the consistency ratio for MIS is measured, a comparator for MIS is coherent if it
chooses graph G0 if and only if the average value of G0 is greater than the one of
G1. If the comparator is coherent for a couple of graphs, then a "hit" is counted.
At each iteration, the measured consistency ratio of the comparators of Figure 7.2
is the fraction of hits over the total number of graph pairs, namely #hits

(|Dtrain|
2 ) .

0 10 20 30 40 50 60
iteration

0.80

0.85

0.90

0.95

1.00

co
ns

is
te

nc
y 

ra
tio

 fo
r 

th
e 

M
IS

COLLAB
TWITTER
RB

0 10 20 30 40 50 60
iteration

0.70

0.75

0.80

0.85

0.90

0.95

co
ns

is
te

nc
y 

ra
tio

 fo
r 

th
e 

M
VC

COLLAB
TWITTER
RB200

Figure 7.2: The left and right plots highlight the consistency ratio (the higher
the better) of the comparator respectively for the MIS and MVC problems. For
each plot, the consistency is calculated for three datasets and at the end of every
iteration, where an iteration corresponds to 5 sub-epochs. The consistency ratio
value associated with iteration 0 is obtained at the beginning of iteration 1 and
indicates the consistency ratio of the random comparator.

The curves of Figure 7.2 have, overall, an increasing behavior for the 3 datasets
reported in each plot. The 3 comparators in each plot become more and more
consistent as training goes on. This experimental evidence is really important, as
the more consistent a comparator the more it learns and can produce more accurate
solutions. As a result, the two plots in Figure 7.2 are an experimental proof that
the comparator, for both the MIS and the MVC problems, is learning after every
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iteration.

7.5 Ablation study
This section proposes an ablation study on several parameters of the standard
comparator function for MIS on the COLLAB dataset. The purpose of the study is
to analyze how much the parameters under examination affect the final test results.
The following parameters are tweaked:

• D: The output size of each of the 3 linear layers composing a macro-layer of
the GEM module.

• K: The number of macro-layers (or iterations) composing the GEM module.

• L: The number of layers composing the FCNN.

The analysis of the 3 parameters is performed by changing them within the
following ranges: D ∈ [8,16,32,48,64], K ∈ [1,2,3,4,5], and L ∈ [2,3,4,5]. Moreover,
the experiments are carried out with a base configuration of D = 32, K = 3, and
L = 4. As an example, if the value D = 64 is tested, the parameters K and L are
kept to their base configuration, namely K = 3 and L = 4.

Table 7.7: Test set approximation ratio for MIS and for the COLLAB dataset.
The numbers are obtained by varying the parameter D. The highest value is
reported in bold.

Parameter (D) 8 16 32 48 64

Model Performance 0.975± 0.058 0.970± 0.053 0.990± 0.051 0.983± 0.049 0.981± 0.050

Table 7.8: Test set approximation ratio for MIS and for the COLLAB dataset.
The numbers are obtained by varying the parameter K. The highest value is
reported in bold.

Parameter (K) 1 2 3 4 5

Model Performance 0.910± 0.100 0.946± 0.065 0.990± 0.051 0.989± 0.045 0.963± 0.058

The 3 parameters of Tables 7.7 to 7.9 reflect the complexity of the model Mθ used
to design the comparator CMPθ. The higher the parameters value the higher the
number of neurons composing the model Mθ. As shown by the 3 tables, if the
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Table 7.9: Test set approximation ratio for MIS and for the COLLAB dataset.
The numbers are obtained by varying the parameter L. The highest value is
reported in bold.

Parameter (L) 2 3 4 5

Model Performance 0.920± 0.090 0.986± 0.057 0.990± 0.051 0.985± 0.056

values of the parameters are too low, the resulting model Mθ does not have enough
neurons, resulting in an under-fitting scenario. Similarly, a high parameter number
leads to several neurons, and this can result in an over-fitting situation and poor
performance.
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Chapter 8

Conclusion and Future Work

In this work two novel DP-like algorithms, sharing the same structure, are proposed.
The proposed methods are implemented to solve two classical graph theory problems,
namely the Maximum Independent Set and Minimum Vertex Cover Problems. The
work analyzes the usage of the comparator function, which is at the heart of the
proposed approaches. Such a function is implemented with an ML model that
is composed of a new module realized with graph neural networks, namely the
GEM, and a standard fully connected neural network. Thanks to the comparator
function, the algorithmic architecture of the proposed methods has been lightened,
counteracting the space and time limitations that are typical of standard DP-like
algorithms.

In this study, a self-supervised learning approach is employed to properly train the
ML model. Self-training offers the dual benefits of data self-annotation and data
generation, mitigating the lack of training data due to the NP-hardness nature
of the MIS and MVC problems. The training process relies on the theoretical
result denoted as consistency property, and the more a comparator is consistent
the better the solutions that the induced algorithm can provide.

Remarkably, the proposed methods show good performance. Concerning the MIS
problem, the ML-based baseline methods results are surpassed over all datasets.
Regarding the MVC problem, the proposed approach is beaten only by the Meta-
EGN work over just two datasets.
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Conclusion and Future Work

This work resulted in an article, which was accepted at the 37th NeurIPS confer-
ence1.

8.1 Future work
Few adjustments could be implemented to improve the methods proposed in this
work.

First of all, it could be helpful to employ another greedy heuristic for the mixed
roll-outs modification of Section 6.1. Indeed, one could implement a randomized
version of the greedy algorithms of Section 7.2.2, which randomly adds and removes
nodes starting from the solution given by the greedy heuristic.

Secondly, it could be beneficial to enhance the ensemble learning modification
capabilities. Indeed, this modification showed great performance, especially for
the MVC problem. It could be possible to build artificial datasets resembling the
ones of Section 7.1 but much easier to train. Therefore, the ensemble learning
modification could be much more effective when trained over both the original
dataset and the artificial one resembling it.

Thirdly, it could be extremely interesting to train only one model for all datasets.
Up to now, each dataset required separate training and, therefore, several com-
parators. Thus, there is a one-to-one correspondence between each dataset and
the corresponding trained comparator. What if one trains just one ML model over
all datasets? Would the corresponding comparator generalize well across datasets
having diverse graph distributions?

1Maximum independent set: Self-training through dynamic programming. Lorenzo Brusca, Lars
C.P.M. Quaedvlieg, Stratis Skoulakis, Grigorios Chrysos and Volkan Cevher. 37th Conference on
Neural Information Processing Systems (NeurIPS 2023)
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