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Abstract

Nowadays, there is excitement among professionals over the incoming robotics
technologies that are paving the way to make a more efficient, sustainable and
comfortable working environment. In particular, in the last decades the UAVs (Un-
manned Aerial Vehicles) are being exploited in several civil sectors such as agricul-
ture, photography/videography, construction, environmental monitoring and even
transport. This list can potentially grow further, thanks to the intrinsic versatility
of drones and their capability of operating autonomously. However, the bottleneck
of these devices relies on the methods used to localize them in space. Outdoor,
satellite systems like GNSS (Global Navigation Satellite System) and GPS (Global
Positioning System) allow drone localization with acceptable precision. Neverthe-
less, this consideration cannot be applied to indoor spaces, where It isnŠt possible
to rely on such systems to get an accurate estimate of the drone position. Hence,
the goal of this master thesis project is to conĄgure an autonomous mission for a
swarm of drones based on VICON localization system, while using state-of-the-art
software such as ROS2 Humble and PX4 Autopilot v1.14. SpeciĄcally, the tests
were conducted inside a cage of size 7x3x3 meters located in the Collaborative and
Service Robotics Lab at LINKS Foundation. In the beginning, several experiments
were performed to try and conĄgure correctly the drones to Ćy. This thesis reports
in detail how the setup of both software and hardware was conducted, highlighting
the problems faced and the solutions found. The next step was to enable a Ćeet
of multiple drones to perform an autonomous mission, to test the estimate system
and the conĄguration done. The chosen task was mCPP (Multi Drone Coverage
Path Planning) using existing algorithms: a STC (Spanning Tree Coverage) al-
gorithm and DARP (Divide Areas based on RobotŠs initial Positions) algorithm.
Moreover, the mCPP task was an offline one, meaning the environment in which
the drones executed the mission was fully a priori known. A detailed analysis of
the state-of-the-art of such a task and on how the above mentioned algorithms
were implemented, along with the performance results is shown in this document.
At the end, some considerations on further work and suggestions for future exper-
imentation will be given.
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Chapter 1

Introduction

1.1 Thesis Goal

Over the last years, both researchers and companies focused on developing new
solutions regarding the deployment of a UAV swarm to substitute humans in risky
tasks such as maintenance, inspection or rescue. The majority of drone applica-
tions nowadays are thought for outdoor where the GPS sensor can guarantee a
reliable localization.

Instead, the option of drones usage inside a building is not quite implemented,
considering the numerous challenges that arise in an indoor environment: high
localization imprecision and issues related to human safety, just to cite a few. The
difficulties rise signiĄcantly if multi-drone tasks are considered into the equation.

That said, the objective of this thesis project is to correctly setup, conĄgure
and program a multi-drone environment consisting of multiple agents that are
capable of performing a task autonomously, by receiving the commands from a
script installed on the companion board of each drone and started by the GCS.

In particular, the task to accomplish is a mCPP of the cage area designed in
such a way that each drone collaborate with each other by subdividing the coverage
area among all UAVs.

1.2 Context of work

As declared in the Thesis Goal section, a set of drones that operate in an indoor
location cannot use the GPS sensor information to locate itself. Instead, they have
to rely on the internal sensors position estimate which in the scenario of this thesis
does not guarantee enough localization precision, since the mission that the drones
have to perform requires that they operate very closed to each other and so high
precision position estimate is required.
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Introduction

Therefore, to ensure that no drone composing the swarm will collide with each
other, a VICON MoCap system is mounted on top of the beams that constitute
the cage. It is composed by six high precision MoCap cameras that are capable of
recording and transmitting the precise position of each drone. During the mission,
every drone gets that info in real time so it can update its internal localization
and avoid crashing against its peers.

1.3 Novelty contribution

This masterŠs thesis project is done in collaboration with another colleague: Dr.
Davide Morazzo. We shared our struggles into correctly conĄgure and setup the
hardware components and software resources in order to make two drones Ćy at
same time in a cage inside the lab. This common effort is what constitutes the
Ąrst part of this thesis while the second part is describing the speciĄc task that
was assign to me, hence ItŠs fully composed by personal contribution. The goal
is to implement a mCPP both in simulation and in the real setting. The element
of novelty that arises from this work lays under the fact that few research is done
on localization and mission planning of a swarm in indoor environment, where the
challenge is that there is no GPS availability. Moreover, others issues arise while
dealing with such a framework like high instability due to the wall/ceiling effect
and the nearby Ćight of other drones that could cause noises and wrong mission
execution. Hence, studying and implementing such a system is critical also in
the context of research and could unlock further investigations to perform several
services such as inspection of critical structures and automation of task that are
either trivial or unsafe for humans.

In addition to that, talking about the software required to implement such a
setup, most of the projects found in the literature were done based on ROS and
only a small percentage is based upon the new middle-ware ROS2. Therefore, our
efforts in implementing the swarm system in a state-of-the-art software stack could
be vital to enhance those new technologies and beneĄt the research in the area of
indoor swarm development.

1.4 Thesis Organization

The overall thesis contents are organized in two main parts: a detailed conĄgura-
tion representation both of hardware and software in simulation and in lab and an
in depth analysis of the mCPP mission, highlighting the series of steps to perform
it and the issues found along the way.

The Ąrst part starts with the general introduction to whom this section also
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belongs, then with the explanation of all components that coexist inside an indi-
vidual drone. This is done by starting with the description of the entire system
and after that, explaining each component singularly in depth. Next comes the
chapter describing separately the tests done both in simulation and in the real
setting. The sequence of tests are presented in their chronological order, showing
for each one what were the issues found and how they were solved.

The second part is composed by a Ąrst chapter that details the state of the
art for mCPP following the motivation behind the choosing of Spanning Tree
Approach, among all the possibilities. Then, it comes the chapter that refers to
explaining the testing process of the mCPP task, distinguishing simulation from
experimentation in the real setting and focusing on presenting the most important
problems encountered and their solutions.

Finally, a few comments on the results gained and some advice regarding the
further work that can be conducted as a follow-up of this thesis project.

13



Chapter 2

Hardware conĄguration

2.1 Overview

As stated in the Introduction section, this thesis project focuses on implementing
a mission for a swarm composed of two drones. Those are custom made, so an
analysis of their components and how they communicate with each other is vital.

First of all, regardless from the fact that a drone is a standard one available on
the market or a custom made one, both must have on board two components in
order for them to Ćy: the FC (or Autopilot) and the ESC. The Ąrst one is basically
the "internal brain" entitled in calculating the parameters that will allow the move-
ment of the drone, following the commands given by the GCS. The second one,
directly welded to the actuators, is responsible for translating the commands com-
ing from the Autopilot in speed values for the motors. Externally, the drone can
be piloted using an RC system or using an autonomous Ćight mode like Offboard
Mode, the one used in this project for the task to be accomplished. The former
allows to manually control the drone using several Ćight modes like Stabilized and
Position modes, while the latter can be activated using a ROS2 algorithm either
by the GCS or locally by a Companion board, which is a component that enables
drones to Ćy autonomously. This device resides on the drone itself and comes
with an operative system, usually Linux based, where all the necessary software is
installed to allow communications between drone and GCS. When the Companion
board Agent is correctly linked to the Client on the FC and with the GCS, the
algorithm launching the autonomous mission can be started from the GCS itself
and sent through the Companion Board Agent directly to the FC Client, guar-
anteeing a correct transmission of the mission commands with low latency since
GCS-Agent link is UDP based whereas the Agent-Client link is serial.

That said, our goal with this masterŠs thesis project is to operate a mission
autonomously, relying heavily on the use of Companion Boards and using RC
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manual Ćight modes only to test to initial correct setup of each drone.
The following sections will focus on each of the aforementioned components

individually, giving more details on their conĄguration and implementation. The
Ąnal section will brieĆy recap the conĄguration and introduce the topics covered
in the next chapter.

2.2 Flight Controller

The Flight Controller is an essential component of a UAV. Its role is to make the
bridge between high level behavioural commands (i.e Takeoff, Hover, Landing etc)
coming from either the RC or Offboard algorithms, and the low level system where
the ESC needs to know the correct speed and roll, pitch, yaw values to operate on
the actuators.

The RC that we have at our disposal is called BetaFlight Omnibus F4 Pro v3,
an image displaying the product and another one displaying the pinout can be
seen below (Figure: 2.1, 2.2).

This Flight Controller has the following speciĄcations:

• Processor: STM32F405 168 MHz ARM Cortex M4 with single-precision FPU

• RAM: 192 KB SRAM,

• Flash Memory: 1 MB

• MicroSD port

• Sensors: InvenSense MPU6000 IMU (accel, gyro)

• BMP280 barometer

• UARTS ports

• PWM outputs

• RC input PWM/PPM, SBUS

• I2C port for external compass

• USB port

• Built-in OSD

It has a good speed in terms of processor but limited memory, just 1 MB which
will create problems highlighted in the following sections.
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Figure 2.1. Representation of the Flight Controller model showing the back
(right side) and the front (left side)

Figure 2.2. Representation of the Flight Controller pinout showing the back
(right side) and the front (left side)

2.2.1 Choosing a Software Flight Stack

No matter the model type of Flight Controller used, it needs a Software Flight
Stack in order to perform Ćights in different modes, handle emergency situation
and to combine info coming from sensors. On market, there are mainly two types
available both open source: Ardupilot and PX4. Considering that, in the lab
where we conducted all the experimentation, PX4 was already employed for other
projects, we decided to go for this one. On the following lines a brief summary of
the PX4 Flight Stack is given, highlighting the important concepts that are needed
to understand the further steps in developing the drone autonomous behaviours.
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2.2.2 PX4 architecture deĄnition

The PX4 Software stack is subdivided in mainly two parts: the Flight Stack and
the Middleware, each one having its purpose separately described below.

As can be seen from the picture 2.3, the Flight Stack is composed of different
sub-blocks, each of them having a task to complete, one after the other. The entire
architecture can be summarized as organized in three main blocks: estimator,
navigator and mixer. The estimator duty is to combine the information, coming
from sensors both internally like IMU and externally like MoCap, in order to get
a correct estimation of the drone state. In addition to that, the controller gets the
estimation state and the setpoint state and updates the output state in order for
it to reach the required setpoint. Finally, the mixer is responsible for translating
the commands into values understandable by the actuators.

Figure 2.3. All the sub-blocks composing the Flight stack are shown in sequence

The Middleware is the other part of the PX4 software stack. Its main func-
tionality is to enable the UAV to communicate both internally inside the Flight
Controller, using uORB messages of publisher/subscriber type and externally with
other devices such as GCS or Companion Boards. With these latter components
the communication is handled by translating the uORB messages in ROS2 mes-
sages, that are the core of the software that runs the autonomous missions. Below
is attached an image 2.4 showing the internal structure of the uXRCE-DDS mid-
dleware, the one used for this project. As highlighted also in the Introduction
chapter, the middleware is composed of a Client, running directly on the FC that
automatically runs on startup and an Agent that allows the drone to be connected
with the Companion Board, the GCS and therefore to communicate eventually
with other drones that have the same middleware installed. The important fea-
ture of uXRCE-DDS is that it translates the FC uORB commands into ROS2
commands and vice versa, enabling an easy conĄguration of the mission through
an algorithm via the ROS2 API.

Following this overview of the Ćight stack architecture, the next thing to address
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Figure 2.4. Figure showing the Client and Agent communication highlighting
also the translation between uORB topics and ROS2 topics

is the reason why a particular version of px4 software was used and the implications
of that also on the other software picks, related to the autonomy of the UAV.

2.2.3 Autopilot software conĄguration

Our goal again is to perform a task in form of autonomous mission for a set of
two drones. That said, upon deĄning the requirements for this thesis project, a
constraint arose: the mission has to be deĄned using the latest forms of software
available open-source and in particular the ROS2 set of libraries. At that time,
the newest version was ROS2 Humble that runs on Ubuntu 22.04 LTS. DeĄned
that the next step was to identify a working version of the autopilot software that
supported ROS2 Humble. From the autopilot side, the picking was tougher since
Omnibus F4 v3 Flight Controller is discontinued, meaning is not commercially
available anymore, hence the px4 development team doesnŠt give support to its
software conĄguration. Therefore, some tests were performed using different px4
versions. At the end, the beta version of px4 autopilot software, future version
1.14, was used. Nonetheless, some manual corrections on modules and source code
scripts were required to guarantee compatibility with the board. Considering also,
as mentioned in the Flight Controller description, that the Ćash memory was only
1 MB, only the necessary modules were kept.

On the following lines the software setup used can be summarized:

• ROS2 Humble

• PX4 beta version (future v.1.14)

• Ubuntu 22.04 LTS
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• Python 3.10.12

• QGroundControl 4.2

QGroundControl functionalities and usage will be explained in detail in its
relative section. In short, is a software used to check if all the sensors mounted on
the drone are correctly calibrated and to conĄgure a set of parameters that allow
to tailor the FC modules to the speciĄc model of board.

That said, on the following lines the high level steps used to correctly conĄgure
the Autopilot are shown, for more details see [7]:

1. Flash the Bootloader: a deĄned .hex Ąle has to be run in order to load inside
Omnibus Pro v3 the boot functions so that it starts. To do this kind of
operation, the BetaĆight ConĄgurator software was used, after connecting
the board to the GCS using a microUSB-USB cable.

2. Flash the PX4 Firmware: with the starting program Ćashed, the next step is
to load and install the PX4 Ąrmware. To do that another program was used:
QGroundControl. This piece of software is a must have in the "drone world"
since it allows to conĄgure the parameters of the UAV and to calibrate its
internal sensors, just by using the Front End interface.

3. Setup the Firmware: additional setup was done including changes to some
parameters in QGroundControl in order for the drone to be armed correctly.
In particular, the motors ordering deĄned by the PX4 Airframe didnŠt match
the one on the real drone, resulting in a wrong assignment of motors position.
To Ąx that, table 3 shows the set of parameters that were changed:

Parameter Name Value Comment

param set PWM_MAIN_FUNC1 101 PWM1 Output to Motor 1
param set PWM_MAIN_FUNC2 103 PWM2 Output to Motor 3
param set PWM_MAIN_FUNC3 104 PWM3 Output to Motor 4
param set PWM_MAIN_FUNC4 102 PWM4 Output to Motor 2

Table 2.1. Table representing PX4 parameters change in order to
switch motor ordering.

In addition to that, below it can be seen a Ągure 2.5 showing the difference
between the PX4 airframe ordering and the actual ordering after the parameter
changes. In this way, the mixer has no wrong ordering anymore and the drone can
be armed and can takeoff without issues.

At this point, the FC is conĄgured up and running, so thatŠs all concerning
this component. Next section will describe in detail the conĄguration of the ESC.
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Figure 2.5. Picture showing the PX4 airframe wrong motor Ordering on the left
and the ordering after each actuator is correctly assign on the right

2.3 Electronic Speed Controller

The ESC can be described as the heart of a UAV and, as already mentioned
previously multiple times, is responsible of delivering the motor actions coming
from the FC to every single actuator. Figures showing the model and pinout are
displayed below (Figure 2.6, 2.7).

Figure 2.6. Electronic Speed Controller model showing the back (right
side) and the front (left side).

For this reason, it needs to be welded to every single motor. As it can be seen
from the picture describing the pinout, each actuators has three cables that need
to be welded to three pins on the ESC while the battery has to be welded using
red cable for the voltage and the black one for the ground. The female connector
on the left side of the component, is used to connect it to the FC. In the following
picture it can be seen how that is done, on the Omnibus side.
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Figure 2.7. Electronic Speed Controller showing the location of every single port.

Figure 2.8. Picture displaying the wiring with the other components.

As can be seen, in the left side there is the black cable used to connect the
omnibus to the battery pins, while on the top right side, four cables are attached
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to the PWM ports on the Omnibus directly connected to the 10 pin port to the
ESC accordingly. This link is the direct responsible of transmitting the motor
commands. On the bottom right side, is shown another port that was used to
connect the FC to the Companion Board. Details on how that is done will be
discussed in the following section.

Next another component will be described already mentioned several times,
the Companion Board which duty is to enable communication between drone and
the rest of the world, allowing autonomous mission to be possible.

2.4 NanoPi Companion Board

The model of Companion board at our disposal is the NanoPi Neo Air, Ągures
displaying the chipset along with the pinout are attached below (Figure 2.9, 2.10).

On the following lines a list of the main speciĄcations is presented:

• Processor: Allwinner H3, Quad-core Cortex-A7 Up to 1.2GHz

• RAM: 512MB DDR3 RAM

• Storage: 8GB eMMC

• WiFi: 802.11b/g/n

• MicroUSB: OTG and power input

• MicroSD Slot x 1

• GPIO1: 2.54mm spacing 24pin,It includes UART,SPI,I2C,GPIO

• GPIO2: 2.54mm spacing 12pin,It includes USBx2,IR,SPDIF,I2S

• OS/Software: u-boot, UbuntuCore, eĆasher

This chipset has numerous features that are handy such as WiĄ capability,
MicroUSB, MicroSD and Linux as Operative system but limited RAM. Hence,
the swarm mission has to be developed considering that last aspect. Moreover,
the drone has to communicate directly with the external pose estimation system
in order to acquire its precise pose, therefore requiring some computation also for
that. Consequently, it isnŠt possible to decentralize the mission algorithm, meaning
the drones cannot calculate their trajectories on their own. Instead, the GCS was
used as the main brain for the computation of the set of spatial coordinates that
constitute each drone trajectory. Next, the GCS sends the set of waypoints to be
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Figure 2.9. Companion Board model showing the back (right side) and the front
(left side). In the Ągure, all the speciĄc modules locations are highlighted.

Figure 2.10. Companion Board pinout showing the location of each individual port.

achieved to the Companion Board Agent that conveys the messages directly to the
FC Client.

As already mentioned, the fact that the board has just 512 MB of RAM pro-
duces several challenges such as the installation the software needed for the board
to work.

The Ąrst step to accomplish was to correctly setup the WiFi module mounted
on the NanoPi. An external antenna was mounted through the IPX ANT pin
that can be seen in the Figure 2.9. Second step was to correctly install the Linux
operative system inside the board and to correctly conĄgure the WiFi module in
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order for the user to connect to the board using a terminal via ssh protocol. This
allows to establish a secure and reliable connection with a remote device, in our
case with the Companion Board. Each one has its own IP address assigned, so
that it can be accessed individually by typing the address when the ssh linking is
performed.

Next, another challenge was to install the ROS2 software and the micro-XRCE
Agent on the Companion Board. The problem was that the processor type of the
board is Armhf, therefore for what regards ROS2 only a source type of installation
was possible. Since source type install is more demanding with respect that the
binary one , all the attempts from the Companion Board to compile the packages
kept failing, probably due to the scarce RAM availability. The only solution was to
exploit cross-compilation, hence the software source code was compiled on another
machine with higher power (in our case directly on the GCS) so that a binary Ąle
is produced and can be executed directly on the Companion Board. In this way,
it was possible to successfully install ROS2 Humble on the Companion Board.

For what regards the micro-XRCE Agent, after failed attempts to install from
source for same reasons of RAM limitation discussed above, the only solution found
was to install it via snap package, a lighter version of the Agent, directly on the
Companion Board without requiring cross-compilation.

The Ąnal step performed was to correctly wire the NanoPi to the Omnibus
and establish the connection via terminal automatically, so that when the drone
is powered both Client and Agent are exchanging topics. Below, a picture is
displaying the wiring done in order to link the two (Figure 2.11).

Figure 2.11. Wiring between NanoPi and Omnibus to establish an
Agent-Client communication.

At this point, on both Omnibus and NanoPi startup speciĄc lines of code has
to be type in each device terminal in order to perform the connection, as shown
below.

• uxrce_dds_client start − t serial − d dev/ttyS2 − b 1500000
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• micro − xrce − dds − agent serial − D /dev/ttyS1 − b 1500000

First, the type of connection needs to be speciĄed. In this case, Its serial
since the linking is performed using a cable. Second, the port namespace assigned
by each device needs to be told. Finally, the baud rate is another parameter to
assign. This factor allows to deĄne the speed at which the two devices are allowed
to communicate and depends on the hardware capability. According to the PX4
documentation [2], the FC is capable of reaching 921600 baud/s, which is also the
suggested minimum one for our autonomous mission goal. However, nothing is
said concerning the maximum possible value. On the opposite, the data available
on the Companion Board allowed to calculate the maximum baud rate value that
it can achieve. By looking at the NanoPi processor data sheet, the CCU sets
a frequency of 24MHz. This unit is the responsible of deĄning the main Clock
frequency that all ports and chips use to time them self. That said, the peripheral
clock of the NanoPi, is 24MHz/16 = 1.5 MHz of base clock = 1.5Mbaud/s. This
value is the maximum speed allowed for all the ports, such as the UART port used
for the Agent-Client communication, therefore it sets the maximum value that can
be used. On internet, several possible values for the baud rate can be found but not
all can be used since the rule is that the percentage change between the peripheral
clock value and the baud rate value has to be below 2%. Acquired that, a test was
performed in order to check if that speed value was also supported by the Client
FC. Indeed, the test was positive and the communication was established correctly
at that rate, allowing every ROS2 topic to be visible to each device.

All that said, the NanoPi Companion Board is now fully conĄgured. The next
analyzed component is a tentative of exploiting a different Board at our disposal,
to solve the issues of RAM and processor speed that we were having with the
Omnibus FC and the NanoPi Companion Board.

2.5 Modal AI VOXL Companion Board

As an alternative to the NanoPi Companion Board, the LINKS Foundation com-
pany had given to us the possibility of conĄguring another type of Companion
Board, the Modal AI VOXL. Since this component had the advantage of having
better speciĄcation w.r.t. the one of Modal AI, It was considered in the Ąrst phases
as possible replacement having a Snapdragon 2.15 GHz instead and 4 GB of RAM
compared to 1.2 GHz of processor power and 512 MB of RAM of the NanoPi.
Moreover, the processor type was an ARM 64 bit, erasing all the problems with
ROS2 conĄguration, at least at Ąrst glance.

In reality, even though the mounting and WiFi conĄguration was way easier
than the NanoPi one, at some point regarding the installations of the tools needed,
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major issues were encountered. First, even if the producers company declares that
the Modal AI VOXL uses Linux, It was discovered that was true just in part since
It didnŠt contain a Debian version, rather a custom one: Linux Yocto Jethro. This
version didnŠt have the apt package manager installed but opkg, therefore It was
not possible to install ROS2 with binary since that utilizes apt. A workaround was
found by installing Docker on the VOXL machine and running a pre-built image
of ROS2 Humble on it. Unfortunately, when trying to install microXRCE Agent
and conĄguring the communication between the Agent and the Client residing on
the FC, It was not possible to Ąnd a way of linking the two. That was due to the
fact that the VOXL Modal AI didnŠt allow to manage each port in the terminal
and this fact stopped the possibility to assign the VOXL UART port to the Client
FC. That meant the VOXL couldnŠt be used for our overall drone conĄguration
and It was decided to keep using the NanoPi, despite its limits.

Figure 2.12. Representation of VOXL development kit comprising of all the
components needed in order to conĄgure the Modal AI Companion Board.

The next analyzed component is the Radio Controller, responsible for manual
drone control in the initial phases of this drone setup and conĄguration.
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2.6 Radio Controller

Using several type of Ćight modes (i.e Stabilized, Hold, Land, Position) the Radio
Controller is a device that allows to manually Ćy the drone. During the project,
it was exclusively used to test each drone Ćy stability individually during the Ąrst
tests, while during the autonomous trials both the Radio Controller system had
been shut down, otherwise the VICON system and the Radio Controller system
would disturb each other. This issue will be discussed extensively afterwards, in
the Testing section of the thesis. Moreover, in order for the radio controller to be
connected to a drone, a FrSky 2.4GHz ACCST R-XSR radio receiver was mounted
on each drone and linked with the FC through a cable. Nevertheless, Figure 2.13
and 2.14 show both transmitter and receiver models along with their respective
pinouts.

Figure 2.13. Representation of the Radio Controller. A description of the sticks
to control the direction of the drone and the one to switch mode can be seen.

Figure 2.14. Representation of the Radio transmitter on the left and
its pinout on the right.
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As can be seen from the right side of the 2.13 picture, there are several levers
and sticks that can be used to manually control each drone. The stick on the left
side of the RC is responsible for controlling the throttle using up/down movements
and the yaw using left/right movements. Instead, the right stick controls the roll
using it up/down and the pitch using it left/right. For what regards the levers,
SA was conĄgured to allow arming with lever down and disarming with lever up.
Next, SB was used to set the Ćight modes: lever up for Stabilized, lever center
for Position and lever down for Land. The last lever used was the SH in which
the Flight Termination Kill switch was conĄgured. This command was used for
emergency purpose as a last resort, since when turning the lever down, the drone
stops all the actuators immediately.

2.7 External pose estimate system

As explained in the previous sections, the indoor cage contains a set of six motion
capture cameras of type Vicon Vero v2.2, which purpose is to give to the Extended
Kalman Filter module inside the FC a more precise pose estimate fused with the
internal IMU information, in order to guarantee a precise localization. Pictures
showing the laboratory cage and a single VICON camera are placed below (Figure
2.15 2.16).

Figure 2.15. Picture showing the indoor cage used for testing.

28



Hardware configuration

Figure 2.16. Display of the external pose estimation motion capture camera
(Vicon Vero v2.2) used in the lab.

According to speciĄcations, the cameras have a maximum frame rate of 330
Hz and a latency of 3.6 ms, which is great for the kind of applications this master
thesis is performing. In our case, the bottleneck was the capability of the NanoPi
Neo Air Companion Board on acquiring the information of pose estimation in time.
After several tests, it was agreed to reduce the VICON transmission frame rate
to 100 Hz otherwise the Companion Board couldnŠt keep up with the incoming
messages and several packages would have been lost in the process.

For what regards the conĄguration of the VICON system, each camera is linked
through an Ethernet port to the main switch (Figure 2.17) that is connected also
using Ethernet to the desktop computer used to handle the localization interface.
Finally, the desktop computer is connected to a WiĄ router (Figure 2.18) through
another Ethernet cable, ensuring in this way that the connection is stable and
reducing the possible lost messages to the minimum, when performing the exper-
iments with autonomous drones.

The software used for our applications is called VICON Tracker v3.9. It acts
as a Front End interface, comprising a large set of features. Among all, It lets
to conĄgure the camera system and all drones used as rigid bodies, setup the
parameters such as frame rate and monitor the status of the tracking by plotting
the 3D coordinates of each drone in real time. Below, an image displaying the
software interface is shown (Figure 2.19).

In the following lines, there will be a description of the high level steps done
in order to correctly setup the system and calibrate it so that it can be ready to
give a precise localization of each drone.

1. Connected every Vero camera to an Ethernet port inside the switch system
and connected the switch to a desktop computer having the Vicon Tracker
installed. Moreover, inside Windows Network and Internet application, the
IP address: 192.168.50.56 was added and the Subnet Mask: 255.255.255.0,
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Figure 2.17. Representation of the switch used to link every VICON camera
together with the main GCS

so that the cameras could be linked.

2. Calibrated the cameras using the Tracker menu options with a speciĄc Wand,
used again afterwards to set the origin of the localization system.

3. Added the drones as a rigid bodies by Ąrstly mounting some markers on
them.

Will all the steps performed, the VICON system was up and ready to transmit
data as UDP packets at the IP address written above. The next and Ąnal step was
to conĄgure the receiver system, i.e the Companion Board, inside each drone in
order for them to precisely retrieve the VICON system pose estimate and deliver
it to the FC, ready to be fused.

The VICON Tracker environment is equipped with an SDK that allows devel-
opers to deĄne a custom C++ script in which ItŠs possible to connect with the
Client, in this case the VICON system, and transform the pose estimate directly
in ROS2 messages that can be correctly interpreted by the FC. On the following
lines a brief overview of what the script does.

1. Connect to the Client at the IP Address: 192.168.50.56 and get each drone
object name.
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Figure 2.18. Model of the WiFi router used to connect the CGS via the VICON
system and with the drones

2. For each object get the translation coordinates in form of x,y,z and the
rotation coordinates in form of quaternion. For the former, the VICON
system delivers this info in millimeters while PX4 accepts position estimate
in meters, an appropriate transformation is required. For the latter, the PX4
frame convention needs to be speciĄed for an appropriate acquisition of the
quaternion rotation, therefore it necessary to specify to VICON to use the
FRD (Forward Right Down) convention.

3. Transform the VICON message into ROS2 message and publish the result
in the Vehicle Odometry message format in order to to be acquired directly
to the Companion Board Agent.

4. After linking Agent with Client via serial cable, the Agent in real time sends
the acquired messages to the FC so that, the Extended Kalman Filter module
inside each drone, can fuse the information.
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Figure 2.19. Image showing the VICON Tracker interface that was used in lab.

2.8 QGroundControl

This piece of software provides an easy interface (Figure 2.20) that enables to
perform all the necessary steps in order for the drone to Ćy, once every component
is up and running and correctly wired. Precisely, It gives the capability to calibrate
the internal sensors, to setup the RC and the FC. In the context of this thesis,
It was used for the initial conĄguration and calibration of each drone, for the
assignment of speciĄc parameters to allow the drone to be armed Offboard and to
setup the system to accept external pose estimation. It was use extensively both
during simulation and experimentation, to check the correct toggling of Flight
Modes and mission execution.

2.9 Wrap Up

Once the Flight Controller, the Electronic Speed Controller, the Companion Board,
the Radio Controller and the External pose estimate system setup is done, follow-
ing the step highlighted in each above section, the next step was to perform several
tests in order to check the correctness of the conĄguration in some practical ex-
amples. Therefore, in the next chapter, all the testing performed along with the
problems and solutions, will be discussed in detail. Also, the focus will be to
present the differences between the simulation and experimentation.
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Figure 2.20. Image showing the QGC interface overview of the internal
sensors and components status.
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Chapter 3

Testing the setup

3.1 Overview

Now that all the components have been mounted and calibrated, the next step is
to test one drone, Ąrst in the simulation environment than in lab. In the following
sections both topics are addressed, highlighting for each the problem encountered
and how they were solved. At the end of the chapter, a few words of recap and an
intro to the task that deĄnes this masterŠs thesis project.

3.2 Simulation Setting

For what regards the simulation environment, several time was spent at Ąrst to
understand the version of px4 to use, since the Omnibus F4 is deprecated starting
from px4 1.12. Nevertheless, the intention of this thesis was to try a conĄguration
where all the software components are as updated as possible. Therefore, despite
deprecation, we successfully managed to run the software stack both in simula-
tion and in lab with real hardware using px4 v1.14 beta version, that at time of
writing, represents the most updated version of Autopilot. Since in general, the
software stack allows to install sets of modules deĄned for the speciĄc hardware,
in simulation tests are very close to the real setting scenario. In the following lines
a recap of all the software used, as stated in the Hardware Description section:

• PX4 beta 1.14

• ROS2 Humble

• Micro-XRCE Agent

• Gazebo Garden
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This software setup represents the most updated conĄguration available and
allowed us to experiments the latest functionalities in terms of ROS2 middle-ware
and Gazebo simulation environment.

3.2.1 First basic test

In Ąrst phases of the simulation tests, a Python script was written to allow a single
drone to takeoff at 5 meters altitude, hold position for 8 seconds and then land. To
write the code, [6] was used as reference. The entire basic mission is constructed
and viewed as a state-machine, composed of actions expressed as commands for
the drone to perform. This kind of "state-machine approach" is maintained from
now on for all the upcoming missions, that rise in complexity, following this basic
test.

According to the official documentation in [4], Ąrst the drone needs to change
Ćight mode from "Stabilized Mode", which is the standard manual Ćight mode,
to "Offboard Mode", which allows the drone to receive commands coming from
an external script and not from the RC. Next, it needs to receive the position to
reach, in this case to reach 5 meters in altitude and maintain position on x and y
axes. To achieve both of this conditions, the algorithm that was created, publishes
the required messages on two distinct ROS2 topics called "OffboardControlMode"
and "TrajectorySetpoint".

Last step before the testing could be performed, was to do a series of frame
transformations, since ROS2 and PX4 have different frame conventions, as stated
in [3]. In particular, for what regards the body frame, PX4 uses FRD (X Forward,
Y Right, Z Down) while ROS2 uses FLU (X Forward, Y Left, Z Up), whereas
in the global frame PX4 uses NED and ROS2 uses ENU. The difference in frame
reference can be easily viewed in Ągure 3.1. That said, if we want to send position
commands as a form of waypoint to PX4 a transformation from FLU to FRD is
required. On the contrary, to visualize the drone trajectory, since Rviz uses as
ROS2 a FLU frame conversion for the body reference frame, the message coming
from PX4 regarding the drone position needs to be transformed from FRD to FLU.
If we are not doing so, of course everything will be messed up and the drone will
not reach the desired positions.

In this basic test, since the drone performs just a change in attitude, just by
adding a minus before the z coordinate will solve the issue due to the fact that
in this case the difference between FLU and FRD is just a sign. Of course this
doesnŠt apply on the general case where the entire x,y,z coordinate changes from
waypoint to waypoint, hence some transformations have to be performed. Given
the triplet of x,y,z coordinates, to perform a frame conversion from FLU to FRD
just a rotation around X-axis of 180° Degrees is required. The same transformation
applies to frame conversion from FRD to FLU. Therefore, the vector of coordinates
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Figure 3.1. On left side PX4 FRD/NED reference frame, on the right side
ROS2 FLU/ENU reference frame

representing the position of the drone needs to multiplied by the following rotations
matrix.

Rot(x,180°) =







1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)





 =







1 0 0
0 −1 0
0 0 −1





 (3.1)

After all of this is done, the simulation runs smoothly and as can be seen from
the following picture, the drone performs the test successfully. For more details
on the implementation refer to [8], take from the official GitHub repository for
this masterŠs thesis project. One additional note is that, as can be seen from the
picture, Rviz shows actually two trajectories. One is the actual one in green, the
other is the setpoint ideal one, in blue.

Following this basic test, other ones were performed to assure that the frame
convention was working correctly and that the drone was capable of reaching the
speciĄed sequence of waypoints. Below there is a picture highlighting one of these
tests.

While performing these tests, one problem was that the drone didnŠt auto-
matically disarm after landing. From Gazebo, the drone was clearly landing since
reached the ground but from the FC Client perspective, the drone was seen as Ćy-
ing, hence the disarming cannot happen. We solved this issue by realizing that in
order for the system to recognize the landing, "OffboardControlMode" and "Trajec-
torySetpoint" messages need to be shutdown before the drone reaches the ground.
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Figure 3.2. Picture showing that the drone walked for the entire mission

Figure 3.3. On left side PX4 FRD reference frame, on the right side
ROS2 FLU reference frame

In this way, the UAV FC Client understands that the mission is completed be-
cause no more waypoints are received and even the request to stay Offboard ended,
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therefore It can recognize landing, shutdown the motors and disarm automatically.

3.2.2 Testing with multiple UAVs

Since the tests using one drone were all completed successfully, the next step was
to implement a mission involving multi-drone offboarding. The PX4 software is
equipped with the tools needed to perform multi-vehicle simulation. Each drone
has its own instance, meaning a separate launch command has to be executed in
order to have the two drones in the same simulation environment. This modularity
allows to assign a name for each, for example "drone1" for the Ąrst drone and
"drone2" for the second one, so that the topics assigned to each drone have as
suffix the relative namespace. In this way, each drone has its own set of ROS2
topics easily identiĄable and their operations can be commanded separately.

Figure 3.4. Picture showing that the drone walked for the entire mission

In the mission, one drone was spawned at x = 0 and y = 3, according to PX4
reference frame and the other at x = 0 y = 6. Moreover, each drone got a difference
instance name, allowing to differentiate between the two. Mission was planned so
that the two drones takeoff simultaneously, keeping their x and y start positions
and just reach the altitude of 5 meters. Next, they keep their y and z position
while departing from one another on the x axis positions. Lastly, they land on the
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current position and disarm. The entire mission planning trajectory execution is
shown below in Ągure 3.4 .

Finally, the simulation environment is conĄgured and ready for more complex
tasks as the one described in the second part of the thesis. Now, the lab environ-
ment has to be conĄgured and set accordingly, in order for the drones to performed
the same basic tests done in simulation, with the appropriate changes to account
for errors in localization, loss of data and more.

3.3 Real Setting

For what concern the lab experiments, there are several issues to analyze since the
real drone Ćying conĄguration was not as smooth as in the simulation scenario.
Hence, some considerations will be discussed regarding the problems of arming, of
manual control and of linking with the VICON system, showing also the solution
adopted to overcome them.

3.3.1 Arming the drone

At start, the Ąrst step was to correctly arm the drone. At the beginning, all the
drone propellers were removed and using the RC, the drone was told to arm by
moving the corresponding stick. The drone was also connected to the GCS via a
microUSB-USB cable in order to link it to QGroundControl. The Ąrst problem
encountered was that, upon trying to arm the UAV, the motors werenŠt moving,
even if in the QGroundControl interface the display showed that the drone was
in arming mode. After checking the log, the message showing the arming was
toggled on, so the solution of the problem was to Ąnd elsewhere. After checking
some forums and documentation on the internet, where people had the same issues
of arming, It was discovered that some additional parameters had to be inserted
inside the QGroundControl Parameters panel and hence inside the drone. In the
following lines those parameters are shown in the following 3.1:

Upon changing those parameters, the drone motors started spinning accord-
ingly, when the RC SA switch assigned to arming was used and if the throttle
lever was put down, as mentioned in the Radio Controller section of Hardware
ConĄguration and in Ągure 2.13. Therefore, the UAV was now ready for the Ąrst
manual Ćights.

3.3.2 Manual control tests

After performing the Ąrst Ćights with the drone, some problems arose. First of all,
the drone itself was not very easy to handle and guide, even if "Stabilized Mode"
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Parameter Name Value Comment

COM_CPU_MAX -1 Maximum allowed CPU load to still arm
SYS_MC_EST_GROUP 2 Set multicopter estimator group to EKF2
SYS_HAS_GPS 0 No GPS availability

COM_ARM_WO_GPS 1 Allowing to arm without GPS

SYS_HAS_MAG 0 No magnetometer availability

Table 3.1. Table representing PX4 parameters changed to allow arming.

was used, which should be a relatively easy mode to Ćy the drone with. More-
over, after disarming the drone motors where all more or less hot upon touching,
signaling that something wrong is going on. In fact, after checking the logs of the
Ćight, It was discovered that the "Yaw Angular Rate" and "Roll Angular Rate"
quantities are to far away from their respective setpoints, whereas "Pitch Angular
Rate" is acceptable. In addition to that, as can be seen from Ągure 3.5, there
are high irregular spikes that are affecting the system. This anomalous behaviour
is responsible of the high heat coming from the motors and on the fact that the
UAV piloting was hard to execute. In order to solve that, It was necessary to
do two additional steps. First, an ESC Calibration using QGroundControl menu
interface by plugging the drone with the gcs. Second, a simple PID tuning was
done by setting the multiplier to almost zero. After performing such operations,
a great improvement happened in terms of maneuverability of the UAV during
Ćight and motors didnŠt heat so much. Picture 3.6 shows that both quantities are
now acceptable compared to the previous state, the peak-to-peak is lower and the
overall trend is better following the one of the setpoint, indicating that now the
drone can be piloted smoothly.

Now that the drone is capable of Ćying with manual control without major
issues, the next step is enable autonomous Ćight by linking it with the VICON
localization system.

3.3.3 Tests using the VICON system

As described in the Hardware ConĄguration subsection, the VICON is a technology
of Motion Capture characterized by a set of cameras that are pointing to the inside
of the laboratory cage, allowing to localize precisely where the drone is, at any time.
This architecture is mandatory since autonomous mode can be powered on only if
an external estimation system is at place, as stated in [1].

First of all, in order for the drone to receive the position information from the
VICON system, a dedicated C++ script had to be produced using the VICON
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Figure 3.5. Picture highlighting a major issue with yaw and roll speed
variation w.r.t. their setpoints

SDK. The script essentially connects to the cameras, extract the position info
and transforms it into PX4 language by publishing a speciĄc topic called "vehi-
cle_visual_odometry". The Agent inside the Companion Board mounted on the
drone transmits the topic information to the Client Flight Controller and therefore
It can be fused with the IMU internal position estimate by the Estimated Kalman
Filter.

Second of all, a list of FC internal parameters had to be changed to set the
drone for external position estimate. On table 3.2, those parameters are described
brieĆy. With that done, the drone is capable of receiving the external vision data
to fuse inside the ekf.

At this point, the mission script created previously to perform the basic tests
can also potentially be utilized to do the autonomous real tests. However, to check
if the drone ekf fuses correctly the position information coming from the VICON
system and to pilot the drone in a safe way, It was decided Ąrst to Ćight with
manual control and not directly in autonomy.

Indeed after several trials, even if the VICON system was connected to the
UAV, this one didnŠt receive correctly the pose information but, as can be seen
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Figure 3.6. Picture showing yaw and roll angular rate after solving the issues

Parameter Name Value Comment

EKF2_MULTI_IMU 0 Running a single IMU and EKF
EKF2_IMU_CTRL 1 Accounts for the Acceleration Bias inside the IMU
EKF2_EV_CTRL 11 Enables yaw fusion
EKF2_EV_DELAY 50 Delay in ms between VICON and IMU timestamps
EKF2_HGT_REF 3 Sets external vision as source for height data

Table 3.2. Table describing PX4 parameters that were changed to allow
external position estimate.

from the picture 3.7, the x,y,z positions, plotted w.r.t time, have multiple areas
where no info is received for about a second, highlighted in the Ągure by the fact
that the graphs are all composed by dashed lines, instead of continuous ones.
This translates, from the drone perspective Ągure 3.8, in a erroneous fusion of the
VICON data by the ekf and therefore there are still dashed lines in the position
coordinates. As can be easily noticed, this situation is extremely dangerous since
the drone in some parts of the Ćight looses information of its position which can
be produce anomalous behaviours. Moreover, another proof that something is
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Figure 3.7. Picture showing the position data coming in from VICON from the
Flight Controller perspective.

going wrong is that It can be seen from logs that internally, the FC ekf is indeed
losing a lot of packages regarding the "vehicle_visual_odometry" message. A last
indicator of a major loss in data packages, reside in the "reset counter" parameter
of PX4. This quantity identiĄes how many times the ekf had to reset its fusion
algorithm due to erroneous data. Indeed, picture 3.10 shows that during the Ćight
189 packages between x,y and z coordinates had been lost.

Nevertheless from the VICON only perspective, as can be seen from Ągure
3.9, the graphs are continuous and smooth, also there is no presence of dashed
lines, indicating that the Motion Capture cameras actually was sending the data
correctly. This suggests, that the problems reside only in the communication
between VICON, the Companion Board and the GCS. At Ąrst, It was hypothesize
a problem of the C++ script used to receive and send the VICON position estimate
data but, after several trials in which some parameters where changed shown
in table 3.3, the same behaviours described were occurring with only a slightly
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Figure 3.8. Picture showing the position data after EKF2 fusion with
the VICON data.

Figure 3.9. Picture showing the position data going out of the VICON system
from the VICON perspective.

improvement.
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Parameter Name Value Comment

EKF2_BARO_CTRL 1 Allowing Barometer for height estimation
EKF2_ACC_NOISE 0.8 Making EKF2 more resistant to vibrations
EKF2_BARO_NOISE 6 Threshold noise in barometric measurements
EKF2_GYR_NOISE 0.05 Threshold noise in gyroscope measurements
EKF2_EV_NOISE_MD 0 Taking noise info from vision message
IMU_ACCEL_CUTOFF 30.0 Low pass Ąlter cutoff frequency for acceleration

Table 3.3. Table showing PX4 parameters that were changed in order to try and
solve the dashed line error.

Figure 3.10. Picture representing the reset counter of position data by the EKF2
module inside the Flight Controller.

After a while, It was found out that the RC and its receiver operate at a band-
width of 2.4 GHz, same as the WiFi module inside the NanoPi Neo Air Companion
Board. Hence, considering that both components have the same bandwidth, they
interfere with each other, disturbing the VICON data transmission to the FC.

Therefore, the solution was to unplug the receiver mounted on the drone and
power off the RC to allow the UAV to receive correctly the external position
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Figure 3.11. Picture from logs showing how many data packages have been lost.

estimate and to enable it to Ćy in Offboard mode. Indeed, another possible solu-
tion was to buy a receiver with a different bandwidth, i.e 800 MHz, so that Re-
ceiver/Radio Controller and Companion Board couldnŠt disturb each other, while
maintaining the ability to take manual control if something wrong during Offboard
happened. Since It was not possible to Ąnd in time a replacing receiver, It was
decided to adopt the Ąrst solution, therefore to Ćy the drone in Offboard Mode
without manual control as a backup.

That said, before proceeding with offboard tests, a form of emergency handling
was needed, in case something went wrong during the Ćight there had to be a
way of powering off the devices without incurring in component damages. The
solution found was to exploit a feature of the PX4 Autopilot system, which is the
"Flight Termination Kill". This behaviour allows to switch off the drone motors
instantly and It was implemented inside the RC in the upper right switch. Since as
mentioned above, the Radio Controller is not usable during Offboard, this feature
was implemented as a ROS2 command and could be activated when needed from
a terminal window on the GCS.

Finally, the drone was capable of Ćying offboard and had also a backup stopping
if anything bad occurred. The next step was to perform some tests using Ąrst one
drone, then two drone at the same time.

3.3.4 Tests in Offboard Mode

At this point, everything was ready for autonomous Ćights. After powering up the
drone, the VICON system and checking that the two were communicating while
having a terminal window with the "Flight Termination Kill" command ready, It
was time to do a Ąrst test. Indeed as can be seen from the pictures 3.13 there was
some improvement w.r.t. the tests with manual control involved. This Ćight had
almost half of the reset counters in comparison with the previous one, allowing for
a more stable and acceptable autonomous Ćight. Still, as can be seen from 3.12,
in the graphs involving the "vehicle_visual_odometry" position messages, there
are multiple spikes of anomalous data that are fed inside the ekf. Fortunately, the
latter internal system is capable of interpreting the data and comparing it with
the internal sensors. Considering that the spikes were very short in time and too
much different w.r.t. the IMU estimation, the ekf discarded didnŠt consider them
as plausible position estimate.
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Figure 3.12. Picture representing position data of the FC compared with the
info coming from the external position system.

Figure 3.13. Picture showing the reset counter of position data by the EKF2
module inside the Flight Controller during Offboard Mode.
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This suggests that some additional effort was still needed in order to zero out
the reset counters and allowing to have a smooth Ćight, with no lost packages or
multiple anomalous spikes in the position data.

During the time where we were trying to investigate the problem of huge pack-
age loss, one solution found to reduce them was to use a WiFi router inside the
laboratory totally dedicated to the drone tests. In this way, we could be sure that
all the bandwidth used was between the VICON system, the NanoPi and the GCS
and everything was conĄgured so that both external pose estimation system and
the GCS were connected to the router via Ethernet, ensuring the maximum speed
and accuracy of communication, leaving just the NanoPi to connect to the router
using UDP protocol. Indeed, the use of a dedicated router had an huge impact in
performances as can be seen from the picture 3.15, no more resets happened with
the ekf which means no more package loss. The effect of this can be seen in Ągure
3.14 where, It can be noticed, there are no more spikes coming from the external
position, the graphs are smooth resulting in the drone Ąnally following correctly
the desired trajectories.

Figure 3.14. Picture representing position data of the FC compared with
the info coming from the external position system, coming from a single
drone simulated mission.

With the problem of localization solved, everything was ready for a test using
two drones at ones. For this type of tests, the same procedure applicable to one
drone was used, adding just the instance of the second drone in the algorithms that
translate the VICON position into PX4 ROS2 message, adding a few more lines
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Figure 3.15. Picture the reset counter of position data by the EKF2 module
during Offboard Mode after using exclusively the dedicated router, coming from
a single drone simulated mission.

to assign a set of waypoints to reach also to the second drone and an additional
terminal window was dedicated for the "Flight Termination Kill" of the second
drone. As expected, the Ćight was neat and both drones performed the assigned
mission correctly. Pictures 3.16, 3.17, 3.18, 3.19 show just that. Notice that the
x,y reset counter for both drones resets just once, having no inĆuence whatsoever
on the trajectories of both drones.

With all that said, all the tests, performed considering some basic missions
with the goal to conĄgure the system, resulted in a clean autonomous Ćight con-
Ąguration and hence everything was setup for some more advanced mission tasks.
On the following section, just a recap will be presented, summarizing brieĆy the
problems and solution and introducing the next chapter focused entirely on the
Ąnal task to be performed by conĄgured pair of drones.

3.4 Wrap up

This chapter was focused on presenting the struggles and solutions in order to setup
and conĄgure a pair of two drones, both in simulation than in the real setting. In
the former, despite some initial trouble regarding the not recognized landing of
one drone, everything else ran pretty smoothly. The same thing cannot be said for
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Figure 3.16. Picture representing position data of the drone 1 FC compared
with the info coming from the external position system, coming from a two
drones simulated mission.

the tests in real setting, since several issues were faced in order to make Ąrst one
than two drones work in the same mission. First, the arming problem was solved
by conĄguring some parameters inside the QGC interface.

Second, the problem of package loss was solved by realizing that the problem
was the Receiver/Radio Controller and the NanoPi acting on the same bandwidth.
Therefore, by unplugging the Ąrst, the problem was solved partially.

Since, some huge spike were present still and some resets with the ekf counters
were happening, just by using a dedicated router connected only the mission sys-
tem, the package loss problem was solved, allowing to perform neat missions, Ąrst
with just one drone than with a pair of two simultaneously.

That said, the next chapter will characterized in detail the not so trivial task
of Coverage Path Planning, Ąrst by introducing the state-of-the-art and then by
showing the tests performed both in simulation and in the real setting, with the
same approach used for this chapter.
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Figure 3.17. Picture the reset counter of position data for drone 1 by the
EKF2 module inside the Flight Controller during Offboard Mode, coming
from a two drones simulated mission.

Figure 3.18. Picture representing position data of drone 2 the FC compared
with the info coming from the external position system, coming from a two
drones simulated mission.
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Figure 3.19. Picture the reset counter of position data for drone 2 by the
EKF2 module inside the Flight Controller during Offboard Mode, coming
from a two drones simulated mission.
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Chapter 4

The coverage path planning

problem

4.1 Task and state-of-the-art description

As mentioned in the Thesis Goal section, after doing the conĄguration and setup
of a multi-drone system, the aim is to perform a mCPP to map the indoor cage
Ćoor. To accomplish such an objective, a proper state-of-the-art research has been
conducted to categorize the different algorithms that can be used. Before diving
into that, Ąrst some context has to be given in order to understand better what
we are talking about.

According to [10], the act of coverage means to Ąnd a path for the UAVs to
follow, in order to completely map an environment while staying collision free and
eventually avoiding obstacles that they may Ąnd along the way. Moreover, the
Coverage Path Planning problem derives from the Travelling salesman problem
where the goal is to deĄne a path that visits a set of points once and to return to
the starting point. In addition to that, the covering path problem addresses also
the presence of obstacles and therefore Ąnds a path collision and obstacle free for
all the robots involved.

As stated in [9][5] the steps to perform the task are:

1. DeĄne the coverage area by either getting the occupancy grid map or by
specifying the vertices of the polygon that represents the area. The setting
in which the multi-drone system operates can be:

(a) Offline: the setting is perfectly known and location of static obstacles
is given, typical of indoor environments.

(b) Online: no prior info is given, hence the drones have to use sensors
to locate themselves and map the environment around them properly,
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typical of outdoor environments.

2. Divide the area in cells that correspond to the size of each drone. This
technique is called cellular decomposition. Two types exist:

(a) Approximate: the decomposition is done on a surface which is irregular
so that the area cannot be 100% covered.

(b) Exact: the target area surface is such that can be fully covered.

3. Split the area assigning each sector to a drone.

4. Each drone covers its subarea using a speciĄed algorithm.

That said, methods that leverage exact cellular decomposition in an offline setting,
can be considered to accomplish our task since the laboratory environment is a
rectangle 7×3 meters, of course fully explorable and known.

Once the coverage area is deĄned and each drone has its subarea assigned, the
Ąnal step is to specify an algorithm for the coverage. Again in [10], an analysis of
the algorithm for CPP is done, emphasizing the advantages and disadvantages of
each technique. The following picture 4.1, taken from the aforementioned article,
summarises these concepts.

Figure 4.1. List of CPP algorithms each with speciĄed performance metrics.

Among all, for this masterŠs thesis the STC approach has been chosen. The
main reason is its non-backtracking feature, that guarantees a closed path coverage
in the least amount of time since it explores every cell just once. Another important
feature is the simplicity to implement it since is a well-known problem in the Ąeld
and in the literature.
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First, the coverage path problem was considered starting with the setup of just
one drone, than It was extended to two drones. We will consider each of such cases
separately, focusing on highlighting the issues and the solutions found.

4.2 Single drone coverage path planning

For a single drone, the aforementioned steps are valid but some additional consid-
erations have to be made.

1. Construct a 2Dx2D sized Grid Map and assign to the drone a starting cell.
Each cell central point represents a node.

2. Link each cell with Its neighbouring cells, deĄning edges therefore a graph
structure.

3. Apply DFS algorithm to Ąnd one of the MSTs associated with that graph.

4. Divide each cell into four sub cells of size D and identify the starting sub cell
central point from where the drone will start the coverage.

5. Circumnavigate the MST with a counterclockwise trajectory covering each
sub cell once.

Figure 4.2 summarizes brieĆy what had been just described.
That said, two remarks are needed in order to clarify certain aspects. First,

since in simulation the drone at disposal as approximately a size of 50x10x50 It
was decided to assign D = 50, hence a sub cell has a size of 50x50 centimeters
while a cell is 100x100 centimeters. Second, in general the DFS algorithm cannot
guarantee that the exploration with generated an MST but, in this case, since
all the weights associated to each edges are equal to 1 meter, the result cannot
be other than that. Moreover, since a starting point has been speciĄed, just one
possible spanning tree will always be produced, even though in general to the
graph multiple spanning trees are possible, for example generated using Kruskal
algorithm instead of DFS.

Now, a separate describing will be given for simulation testing and for real
testing, giving an idea of the issues and solution found along the way for each.

4.3 Simulation testing

As mentioned in the previous section, the simulated model of the drone has size
50x10x50 which is different w.r.t. the real drone that is of size 17x7x15. Consid-
ering that for the coverage mission It was considered as covered an area thatŠs as
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Figure 4.2. Info-graphic showing the logic behind the algorithm used
to perform single CPP.

big as its drone size, this means that different grid maps will be considered for
simulation and real experimentation. In simulated environment, the grid map is
3x3 with each sub cell having D = 50 centimeters. The results are shown in the
Ągure 4.3.
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Figure 4.3. Representation of the Rviz2 trajectory capturing the coverage
path planning inside Gazebo.

Considering that in the real setting some robustness in the algorithm is needed
to ensure its efficacy, some of that was already implemented and tested in simula-
tion. This means the mission still kept a state machine like structure and inside
each state a check was performed and the state switch to the next one only if
the test was passed. First, the drone mode is changed in Offboard and a test is
performed to ensure that. Second, the drone is armed and until the command
is fully acquired by the drone and executed no further advance in the state ma-
chine is allowed. Once arming is done, the drone gets its Ąrst waypoint to reach
that belongs to the coverage path planning trajectory. Here, a test comparing the
setpoint waypoint coordinates and the actual drone components guarantees that
the drone move to the next sub cell only if the difference between its position and
the setpoint isnŠt higher than Ąve centimeters. This test is crucial to ensure that
the coverage act is done with precision. Finally, for landing a speciĄc command
is given and the drone automatically lands and disarms after arriving on the Ąnal
sub cell composing the coverage path planning trajectory.

4.4 Experimental testing

With respect to the simulation tests, since the real drone had a size of 17x7x15
cm, hence much smaller than the gz x500 model, the coverage area was changed
accordingly, in order for the UAV to cover cells that have more or less its size. At
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Ąrst, the real drone had to cover an area of 11x3 cells of size D = 30 cm each. The
area picking was done considering all the available space inside the laboratory cage,
excluding squares that were too close to walls and net cage, since that wouldŠve
put the drone at risk of severe damaging.

Before actually testing the drone in laboratory, a trial was conducted using
the Gazebo Garden simulator, to check if everything was working correctly and
in fact, the drone performed the coverage as expected, in accordance with the
previous tests.

Nevertheless, when a Ąrst trial was performed on the real drone inside the
laboratory, the mission in part was accomplished as far as the UAV stayed in the
central area but when the drone was reaching a more edgy waypoint provided by
the coverage algorithm, It lost the connection with VICON localization system
and It was behaving erroneously. Prepared for these kind of emergency situations
the command "Flight Kill Termination" was sent from the GCS and the drone
landed and stopped, without major issues, even though It took a signiĄcant hit.
As can be seen from the picture 4.4 in the Ąrst 15 seconds the VICON localization
worked but after that It sent anomalous peaks of data, indicating that the drone
was at 5 meters altitude, which was obviously wrong. Consequently, the internal
local position was changed based on that but the result was not as intended.

Figure 4.4. Figure taken from the drone logs. It can be seen that the VICON
message is totally misleading and wrong.

After that episode, some investigations on the VICON setup itself showed that
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the VICON cameras lights were producing reĆections that were erroneously inter-
preted inside the VICON system as markers of potentially other drones. Moreover,
performing some tests even in the corners of the cage using a rover, showed that
even in that scenario the VICON transmission was not good at all, ending in a
misleading transmission of position data.

Fortunately, the VICON Tracker interface, that is the Front End software used
to calibrate the system of Motion Capture Cameras had the option to mask some
areas inside the cage, in this case the reĆections, leading to a cut of wrongs markers
appearance and overall in a more stable Ćying environment. Nevertheless, since
the problems with wrong position data at the edge of the area was not fully solved,
It was decided to restrict the coverage area to just a block of 60 cm squared cells
at the center. Therefore a 4x2 region was used to perform the Coverage Path
Planning task, as can be seen from the picture 4.5.

Figure 4.5. Figure representing the area covered by the drone used in laboratory.

With that accounted for, then the further trials of coverage ended successfully.
Nevertheless, upon doing some more experimentation, It was necessary to change
aspects of the algorithm with respect to the simulated scenario. Those changes
are described brieĆy above:

• Relax the thresholds used to deĄne if the drone was arriving to the setpoint
sub cell. With a thresholds seated to 10 cm, the coverage was executed but
It was raking too long, since the drone in Ćight was not very stable and It
was taking too much time to recharge the required precision. Instead, he
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thresholds have been set to 15 cm on the x,y,z axis positions, ending in a
much smoother and faster coverage.

• The PX4 landing command in version 1.14 was bugged and It didnŠt function
properly. It was a well known issue but at the time of testing, It was not
fully Ąxed by the development team that maintain the autopilot. Hence,
as already mentioned in previous sections, a Ćight termination kill command
was used. Of course, since that command would power off the drone entirely,
when the drone Ąnished to cover every point of the chosen area, It was given
a setpoint to reach near the ground, same x and y and z equal to zero. After
reaching almost the ground, then the Ćight terminal command was executed,
allowing the drone to "land".

Figure 4.6. Figure describing the coverage path planning drone position w.r.t.
VICON data. The Ćight ended after 270 sec.

As can be seen from the picture 4.6, the local position on all axes of the drone
followed the VICON data precisely and the data was actually correct but the Ćight
last too much, for the reasons described already above. At 270 sec, after almost 5
minutes of Ćying the drone landed automatically due to the fact that the battery
almost discharged considering the long Ćight. That meant the drone only covering
more or less 70% of the total area that was assign to.

After lessening the thresholds, picture 4.7 reveals a complete Coverage Path
Planning of the assigned area in just 110 sec, not even 2 minutes of Ćight. With
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Figure 4.7. Figure representing the area covered by the drone used in laboratory.
The Ćight ended after 110 sec.

that result, for what regards the single coverage path planning, the mission was
accomplished. The Next section will address the efforts in extending the problem
to two drones and how It was possible to perform a working simulation of that.

4.5 Pair of drones coverage path planning

In the case of mCPP, additional considerations must be done in order to assign
each drone its portion of area to cover. In the following lines the updated algorithm
will be described brieĆy:

1. Construct a Grid Map of size DxD cells and assign to each robot an initial
position.

2. Calculate for each drone its Evaluation matrix (E), quantifying for each cell
Its Euclidean distance from the k-drone initial position.

3. Use the E matrix to calculate the Assignment matrix (A), which allocates
each cell to be covered the nearest drone. Moreover, in the cases where both
drones have equal distances from certain cells, those were assigned half to
one drone and the other half to the other in order to have, at the end, the
same number of cell assigned to the drones.
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4. Use the A matrix to deĄne a Grid Map for each drone, composed of all the
cells assigned.

5. Use each subarea deĄned by each drone Grid Map to construct an MST
in each drone restricted ROI. Each MST computation is performed using
the same DFS algorithm used in the single drone coverage path planning
problem.

6. Use the MST as a pathway in order for each drone to circumnavigate their
respective areas only.

Figure 4.8. Representation of the Rviz2 trajectory capturing the coverage path
planning of the two drones inside Gazebo.

Picture 4.9 summarizes the steps analyzed above. An important notice is that,
when performing the tests in simulation, an odd situation was registered. By choos-
ing as initial positions the top left corner and the bottom right one instead, the
algorithm performed well until the last step. While attempting circumnavigation,
the algorithm entered a dead end scenario in which It couldnŠt Ąnd a trajectory
that was circumnavigating all the MST in its totality. Numerous attempts were
performed in order to address the issue but none of them worked and It was decided
to change initial positions and retry. Indeed, after choosing as initial positions the
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top left corner and the top right corner the algorithm worked according to the
expectation and in simulation the theoretical behaviour was reproduced, as can be
seen from picture 4.8.

Figure 4.9. Steps to perform in order to execute a mCPP mission
composed of two drones.

64



The coverage path planning problem

4.6 Wrap up

That was all regarding the description of the Coverage Path Planning performed
in the single and paired case.

In the former, since the drone size differ in the simulation with respect to
reality, the assigned area to cover changed accordingly. In the real scenario, a loss
of localization data was experienced at the borders of the laboratory cage, hence
some reĆection masking correction was done in order to try and solve the issue.
However, since the problem didnŠt disappear even after that, It was decided to
assign a smaller portion to cover at the center, to have always a precise localization.
Indeed, the coverage path planning mission was accomplished, even though some
relaxation of thresholds on the reaching of the setpoints was necessary to reduce
the coverage time.

In the latter, performed exclusively in simulation, some effort was allocated
to deĄne a simpliĄed version of the DARP algorithm. Each drone had Its area
assigned based on calculation considering their initial distance with respect to each
cell. After that, another operation allowed to assign each cell to the nearest drone.
However, during simulation tests in the algorithm a dead end was Ąnd, indicating
that It doesnŠt work for every possible scenario, hence some further investigation
can be done in order to solve the issue, as follow-up work to this masterŠs thesis
project.
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Conclusions
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In the following document, a detailed and exhaustive analysis of a masterŠs
thesis project regarding the conĄguration of multiple drones, both in hardware
and in software, was described. With all the work done in the Ąrst part, drones
that have the same components as the one proposed can be setupped successfully
and equipped with the autonomy capability. However, as highlighted in several
occasions, the setup had some limitations mainly focused in low RAM and low
processor speed of the NanoPi Companion Board. This device represents the
bottleneck that in many ways limits the capability of autonomy. One important
limitation that was not addressed in this project since It was not a major concern,
is the fact that ROS2 software cannot run nodes inside the NanoPi Companion
Board. For this reason, the task of coverage path planning couldnŠt be decentral-
ized, meaning It wasnŠt possible to run the algorithm for each drone inside the
Companion Board itself but It was necessary to use a GCS that was computing
the algorithm and was sending to the drone just the set of waypoints, one at the
time.

To try and solve the aforementioned limitation a possible work can be the one
of exploiting the Modal AI VOXL Companion Board instead, which has very good
speciĄcations in comparison with the NanoPi board. Indeed, some effort have to
be put in order to setup correctly the communications between the Client on the
FC and the Agent in the VOXL Companion Board.

Since the tests of the paired coverage path planning problem were just con-
ducted on simulation, the testing in the real setting with real hardware can be done
also as a follow-up step to this project. The algorithm itself is already equipped
with all the internal checks needed to run a smooth Ćight testing. The only issue
with the testing of such a setting is the problem of wrong localization, if the drones
reach the edges of the cage. Therefore, a careful analysis have to be done in order
to choose an area, as central as possible, to be sure that the drones never lose
the external position estimate. Indeed, in conjunction to that, a deep analysis of
the VICON system can also be perform in order to better calibrate the Motion
Capture system and maybe solve the issue with wrong localization on corners area.

Finally, several other algorithms can be tested, for example some others men-
tioned in [10], and an analysis of their performance can be done, comparing the
results with the one coming from the STC algorithm used in this project. More-
over, some obstacles can also be put as a part of the equation and see how the
various algorithms perform in such a scenario.
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