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Abstract

The rapid growth of machine learning techniques has promoted innovative
advancements across various domains, including health, medicine, and rehabilitation.
However, the effectiveness of these methods heavily relies on the availability of large
and well-annotated datasets. In particular, in the realm of medicine, a common
challenge lies in the existence of extensive datasets, which often lack comprehensive
labeling. This limitation hampers the progress and deployment of automated
algorithms across various medical applications.

This thesis addresses the challenge of unlabeled video datasets by proposing a
novel approach for generating automatic labels in the context of monitoring the
upper limb activity in stroke patients. Leveraging developments in deep learning
and computer vision, the proposed framework extracts relevant features from video
sequences and inputs them into Snorkel [1] to generate labeled data of hand activity.
By utilizing weakly supervised learning techniques, the framework is designed
to effectively learn from limited annotated samples and generalize to unlabelled
data. The study begins by exploring state-of-the-art machine learning architectures
that can learn from scarce data and focus on weakly supervised machine learning
along with the generative model used by Snorkel. To evaluate the effectiveness
of the proposed approach, a comprehensive dataset of upper limb activity of
stroke patient video recordings [2] is analyzed, and quantitative and qualitative
assessments are conducted to compare the performance of the automated label
generation framework against manual annotations. The metrics include accuracy,
Intersection over Union, F1-score, and confusion matrices. Visual comparisons of
generated labels and ground truth annotations provide insights into the system’s
interpretability. Overall, the pipeline achieved an F1-score of 76%. The results
of this study offer an effective solution to the issue of limited labeled data in
stroke patient video analysis. The proposed framework showcases the potential of
harnessing the growth of machine learning in rehabilitation, even when confronted
with large unlabeled datasets. Furthermore, the methodologies developed can serve
as a blueprint for addressing similar challenges in other medical domains requiring
video data analysis with limited labeled samples.
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The Motion Analysis Lab

This thesis was conducted at Harvard Medical School’s Motion Analysis Lab at
Spaulding Rehabilitation Hospital in Boston, MA. The lab primarily focuses on
utilizing robotics and wearable technology to analyze the bio-mechanics of human
movement. The ultimate goal of this research is to advance the understanding and
treatment of conditions that limit mobility, including cerebral palsy, stroke, and
Parkinson’s Disease.

During my time at the lab, I had the opportunity to explore various ongoing
projects. This experience allowed me to delve into different aspects of research and
gain a comprehensive perspective on how technology and biomechanics intersect to
address mobility challenges.

Recovery-on-Track

The aim of this project is 3D reconstruction of rehabilitation exercises using
human pose estimation and lidar data to build a stroke tele-rehabilitation system.
My contribution was to explore different depth cameras available on the market
to enable the tracking of the body movements in 3D. I tested different depth
cameras such as, OAKD-pro W, Intel RealSense D455, Microsoft Azure Kinect and
iPad LiDAR technology, compared the quality of the depth images and helped in
designing the optimal setup for the data collection.

Tai Chi

The TaiChi projects focuses on testing the delivery of a novel Tele-Tai Chi (TC)
intervention in a single-arm feasibility study for community-dwelling TC-naive older
adult and invstigate meaningful changes in areas like physical activity, (self-efficacy),
overall well-being, balance, walking abilities (gait), and assess improvements of TC
proficiency. I was involved in the ongoing data collection.

1



The Motion Analysis Lab

Smartwatch
For the SmartWatch project I was involved in validating the app introduced in
[3], along with a new app based on the Timed Up and Go task , using the Vicon
Motion System.

I was involved in writing the script to synchronize Vicon and watch data and
in analyzing data collected on physical therapist while simulating chronic stroke
patients. I also submitted a 1 page abstract for the BSN conference on this project
and got accepted.

Posture Check phase II
Posture Check is a project on detecting compensatory movements of stroke survivors
while using a robotic device for arm rehabilitation and a camera system that can
provide feedback about those undesired movement while doing therapy.

For phase II, they wanted to test the possibility of introducing the third dimension
while gathering data. At first, my work was to test different Human Pose Estimation
algorithms such as, MoveNet, MediaPipe, OpenPose and LightBuzz, on the 2D
dataset.

Then, I tested two different hardware to enable 3D pose estimation. Inter
Realsense, based on active stereo technology, and Microsoft Azure Kinect, based
on LiDAR technology.

Finally, I was involved in exploring the possibility to use OpenCap [4] to have
3D pose estimation along with a biomechanic model developed in OpenSim.
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Introduction

The fast growth of machine learning methods has driven significant advancements
in various areas. Machine learning is progressively integrating into our daily
lives, enhancing the ease, effectiveness, and personalization of our interactions and
experiences. In the field of rehabilitative medicine, machine learning offers the
potential to tailor treatments, enhance patient outcomes, and provide more efficient
and effective care [5]. Some examples are:

• Physical Therapy Assistance [6]: Machine learning algorithms analyze patients’
movement patterns during physical therapy sessions, providing real-time
feedback to both patients and therapists. This aids in ensuring correct
exercises are performed and tracking progress.

• Gait Analysis [7]: Machine learning is employed to analyze the gait of indi-
viduals recovering from injuries or surgeries. Sensors and cameras capture
movement data, which is then processed to assess changes in gait and provide
insights for rehabilitation plans.

• Fall Prevention [8]: Machine learning algorithms analyze movement data
to predict the likelihood of falls in elderly patients, allowing caregivers to
implement preventive measures.

• Recovery Monitoring [9]: Wearable sensors and devices equipped with machine
learning continuously monitor patients’ movements and vital signs, aiding
healthcare providers in tracking progress and adjusting rehabilitation plans
accordingly.

The effectiveness of these methods heavily relies on the availability of large and
well-annotated datasets. A labeled dataset serves as the backbone of machine
learning applications in rehabilitation. It empowers models to learn, predict, and
guide rehabilitation processes with a level of precision and personalization that
can greatly enhance patient outcomes and the overall quality of care [5]. This
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Introduction

personalized approach enables rehabilitation programs to be tailored to individual
needs, optimizing the likelihood of positive outcomes.

Nevertheless, it’s important to recognize that the labeling process significantly
affects the time required for the deployment of these models. The time-consuming
task of annotating data directly impacts the efficiency of the entire pipeline, and
any improvements made to expedite the labeling process can have a cascading
effect, accelerating the deployment of machine learning models.

This thesis presents a comprehensive pipeline designed to significantly expedite
the video labeling process. By combining deep learning strategies and weakly
supervised machine learning, the framework can correctly recognize hand activity
in video and automatically label frame by frame. These generated labels will
subsequently be employed for annotating data gathered from wearable sensors,
specifically wrist and ring sensors [2], accelerating the deployment of algorithms
for sensor data analysis.

In the following of Chapter 1, previous works are reviewed to give a comprehensive
outlook on the current approaches to automatically label sensor data. Then, the
RingSensor study is introduced and described as the data collected in that study
are used to train and test the framework proposed in this manuscript for the
self-labeling of video recordings and, consequently, of sensor data.
Chapter 2 will focus on an in-depth description of the methods and materials used,
including deep learning models and weakly supervised framework, along with the
metrics selected to analyze the results.
Then, results are analyzed and discussed in chapters 3 and 4. Finally, a summary
of the pipeline is provided in Chapter 5, along with a discussion on limitations and
possible future work.

1.1 Related work
In previous studies on Human Activity Recognition utilizing wearable sensors, man-
ual techniques like video recordings and direct observations were widely employed
to gather annotations.

For example, Plotnik et al.[10] designed a wearable assistant for Parkinson’s
disease patients with freezing of gait symptoms. In this research, two annotators
were assigned to conduct on-site annotations. One used a digital video camera
to record subjects’ activities, while the other assigned real-time labels to the
acceleration data transmitted from a wearable device on a laptop. Finally, a
physiotherapist pinpointed the endpoints of freezing of gait events in the collected
data through post-analysis of video recordings.

Similarly, Anguita et al.[11] employed a smartphone (Samsung Galaxy S II)
to collect data about human movements and identify different human activities
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using ambient information. They gathered acceleration and angular velocity data
covering daily activities like standing, sitting, lying, walking, and going downstairs
and upstairs. Each subject performed two rounds of every activity set, with 5
seconds of rest in between. Following the data collection, manual labeling was
carried out based on the video footage of the subjects’ activities.

Banos et al.[12] attached two IMUs to the subject’s right wrist and left ankle,
along with an additional sensor on the chest for two-lead ECG measurements. This
configuration allowed the collection of acceleration, angular velocity, geomagnetic
data, and ECG signals from 12 distinct outdoor human activities among 10 volun-
teers. The entire data acquisition procedure was documented via video recording
and subsequently manually annotated.

Furthermore, numerous other publicly available HAR datasets [13] centered on
wearable sensors or portable devices are accessible online. These datasets mainly
include acceleration, angular velocity, and geomagnetic signals. Detailed annotation
with high accuracy can be obtained by manual annotation methods with intensive
labeling efforts.

In the realm of long-term human activity monitoring, acquiring a comprehen-
sively labeled dataset for supervised algorithms poses a significant challenge. Given
this difficulty, an increasing number of researchers are gravitating towards weakly
supervised methodologies, aiming to mitigate the laborious task of manual labeling
[14].

By integrating experience sampling, multi-instance learning (MIL) gains knowl-
edge from a rather weakly labeled dataset. Here, labels are connected to sets,
known as bags, of instances, as opposed to individual instances. This approach
allows sensor data to be labeled at a coarser level, significantly reducing the burden
of annotation. A bag is considered positive if it contains at least one positive
instance and negative if all instances within the bag are negative.

The pioneering work in applying MIL to time series data for Human Activity
Recognition was described in [15]. This extensive study and comparative assessment
demonstrated the effectiveness of MIL-based methods in significantly reducing the
effort required for annotation. Expanding upon the work outlined in [15], Guan
et al. [16] introduced a novel MIL model for offline activity recognition using
multivariate time series data. This model employs a generative graphical approach
based on an Auto-Regressive Hidden Markov Model HMM, enabling the prediction
of both bag and instance labels.

Unsupervised learning methods are typically employed to uncover hidden pat-
terns in activity data without the need for predefined labels. For instance, Wyatt
et al. [17] treated activity data as a series of natural language terms, essentially
sequences of object usage. They utilized generic models derived from everyday
activities found on the internet, which served as a form of common knowledge in
Human Activity Recognition.
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Another example is the approach proposed by Bottcher et al. [18], which
introduced an unsupervised framework that employs clustering algorithms to
identify transitions between various stages of manual work that follow a semi-
predefined procedure. This framework, even when the order and number of steps
are known in advance, eliminates the requirement for labeled data.

Similarly, van Kuppevelt et al. [19] delve into the segmentation of accelerometer
data from daily activities using unsupervised machine learning techniques. A
Hidden Semi-Markov Model (HSMM), configured to identify a maximum of ten
behavioral states from five-second averaged acceleration with and without the
addition of x, y, and z-angles, was used to segment and cluster the data. The
analysis of the data revealed the patterns of daily physical activity and sedentary
behavior in individuals. By harnessing unsupervised techniques, the need for
manually labeling activity data is unnecessary.

The methods mentioned earlier tackle the challenge of data annotation by
primarily employing two types of annotation techniques, which involve either
extensive manual labeling or learning-based approaches. As research transitions
from controlled laboratory settings to real-world environments, acquiring detailed
labeled data becomes more challenging.

Consequently, the fundamental concept underlying techniques like Multi-Instance
Learning (MIL) and unsupervised learning is to utilize a limited amount of labeled
data along with existing knowledge about the target activities [20]. This approach
aims to train a learning model capable of accurately classifying Activities of Daily
Life. However, it’s important to note that even within these advanced methods,
there remains a certain degree of necessity for manual labeling of the initial data.
This initial labeling effort serves as a foundation upon which these sophisticated
techniques are built to enhance the efficiency and accuracy of activity recognition.

Thus, this thesis focuses on a novel approach to annotating hand activity through
video data collected in laboratory settings. The recordings are provided by the
RingSensor study, whose end goal is to monitor the use of the affected upper limb
in stroke survivors through the use of finger and wrist-worn sensors. To do this,
videos were recorded to enable the manual labeling of sensor data.
To speed up the annotations process, the proposed framework uses deep learning
to identify hands and objects in frames and weakly supervised learning to generate
labels.
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1.2 RingSensor Study

1.2.1 Aims
The specific aims of this study are:

• Aim 1: To lay the groundwork for the development of a machine learning-
based algorithm (Aim 2). Preliminary data will be collected using finger-worn
sensors while participants (Up to 20 stroke survivors) perform a variety of
activities of daily living.

• Aim 2: To validate the suitability of a finger-worn sensor to accurately
measure real-world upper-limb performance in stroke survivors (up to 60
subjects) via the development of machine learning-based algorithms, using
measures derived from the sensor data. The proposed finger-worn sensor
is hypothesized to capture and accurately illustrate measures of real-world
upper-limb performance.

• Aim 3: To obtain both stroke survivors (users) and clinicians (prescribers)
feedback on the functionality and usability of the proposed system.

At present, Aim 1 has been successfully achieved, and the video data has been
integrated into the proposed pipeline, while Aim 2 is currently in progress.

1.2.2 Background and significance
Upper-limb paresis ranks as the primary impairment post-stroke, afflicting up to
75% of those who experience a stroke [21]. This paresis considerably hinders an
individual’s ability to perform a variety of essential everyday tasks. Especially
even with rehabilitation, nearly half (49%) of stroke survivors still encounter
challenges using their affected limb, even five years after the incident. Given this,
a more tailored, systematic approach to individual rehabilitation plans is crucial to
ensure the best clinical outcomes. Solid scientific evidence points to the efficacy
of rehabilitation interventions in enhancing motor skills [22], stemming primarily
from motor learning processes.

The rise of wearable sensors offers a promising approach for objectively tracking
motor performance in real-world scenarios. Currently, wrist-worn sensors dominate
wearable technology, mainly aiming to quantify the extent of arm usage, like the
duration and intensity of daily upper-limb movements[23]. Yet, there’s a drawback:
these wrist-based sensors predominantly track gross arm movements, like the passive
arm swings during walking. This often leads to an overestimated assessment of
motor performance.
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In contrast, emerging research paints finger-worn sensors in a promising light,
highlighting their potential for more precise monitoring of upper-limb activities[24].
Preliminary data from healthy individuals, as shown in 1.1, indicates a strong
correlation between acceleration data from finger-worn sensors and their real-world
upper-limb activities, both within and beyond lab environments. Arising from these
findings, Ring sensor study aims to explore an innovative approach to accurately
gauge the upper-limb movements of chronic-stage stroke survivors during daily
activities using both finger-worn and wrist-worn sensors. Additionally, the study
aims to delve into potential feedback mechanisms that could be integrated based
on these sensor technologies.

Figure 1.1: Displays the proposed finger-worn sensor and ring-sensor.

1.2.3 Research design and methods
In the proposed study, up to 60 subjects were recruited. Up to 20 out of the 60
subjects recruited for Aim 2 were asked to participate in Aims 1 and 3. Additionally,
10 clinicians will be recruited for Aim 3.

Notably, this study doesn’t include any interventions. Preliminary screening
occurs via phone by the study staff, followed by a final assessment at Spauld-
ing Rehabilitation Hospital’s Motion Analysis Laboratory (MAL). An in-person
preliminary screening is also available upon request.

Stroke Survivors Recruitment Criteria

Inclusion Criteria:

• Stroke survivor (ischemic or hemorrhagic), > 6 months post-stroke at the time
of consent

8



Introduction

• Residual mild to moderate upper-limb impairments with a score > 35 on the
Fugl-Meyer assessment (FMA) without severe range of motion limitations

• Age between 18 and 80

Exclusion Criteria:

• Inability to lift upper-limb against gravity (> 30 degrees of flexion and
abduction).

• Severe upper-limb spasticity preventing passive finger movement (MAS > 3).

• Unable to put on/take off sensors independently or with caregiver assistance.

• Cognitive impairments affecting comprehension and instruction following
(score < 23 in the MMSE).

• Possessing implantable medical devices not compliant with ISO 14117:2012 or
ANSI/AAMI PC69 Bluetooth compatibility standards. Subjects will provide
their medical device record card for verification.

Clinician Recruitment Criteria for Aim 3

Inclusion Criteria:

• Clinicians with a minimum of one year of experience in stroke rehabilitation.

• At least 21 years of age.

Study procedure for aim 1

From the designated group of 60, approximately 20 subjects are invited for a
preliminary face-to-face meeting before the procedures outlined in Aim 2. This
session is hosted at SRH in Charlestown, MA, potentially extending over three
hours.

During this session, after obtaining consent and finishing the initial screening
process (as detailed in Aim 2, Visit 1), participants are equipped with sensors on
both hands, upper limbs, and torso. They then undertake a set of tasks (refer
to Table 1) monitored by the research team. The entire session is captured on
available recording devices such as GoPros or handheld cameras, facilitating the
synchronization of the accelerometer data from the sensors.

The recorded video data are then annotated by the research team, significantly
contributing in completing Aim 1.
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Study procedure for aim 2

Study activities are scheduled at the SRH MAL, the participant’s home, or through
virtual sessions. The location for the visit is decided after consulting with the
prospective study participant and study PI. For participants preferring virtual
sessions who lack the necessary hardware or internet access, an encrypted device is
provided throughout the course of the study. The entire study is structured to last
a maximum of 2 weeks, incorporating 2 to 3 sessions at SRH. These sessions are
separated with a 2 to 7-day period of sensor data gathering at the participant’s
home.

Figure 1.2: Study procedure pipeline

Visit 1 - Consent and Screening

If participants have already taken part in Aim 1 and wish to continue, they would
have consented to the subsequent aims of the study. Once initially screened,
candidates meet with a researcher to understand and complete the consent process.
Their cognitive functionality and instruction comprehension are assessed using the
Mini-Mental State Examination (MMSE). Prospective participants who don’t meet
this criterion are not included.

For those who clear this stage, their capacity to make decisions and consent
is evaluated via the UCSD Brief Assessment of Capacity for Consent Question-
naire. They must comprehend the research nature of the study, differentiating it
from treatment, and be aware of the associated risks and advantages. Failing to
understand these aspects result in their exclusion. After clearing these evaluations,
participants either sign the consent form or give verbal agreement if participating
remotely.

Following this, a Fugl-Meyer assessment (FMA) [25] assesses their upper-limb
functionality, giving a score between 0 and 66 to determine upper extremity motor
impairment. Those scoring below 35 on this scale are not eligible for the study. Post
FMA, participants have their muscle tone evaluated via the Modified Ashworth
Scale (MAS) [26] or medical records review. Their upper limb functionality is
measured by performing tasks corresponding to the Wolf Motor Function Test [27].
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They will also self-evaluate using the Motor Activity Log [28], a clinically approved
method to assess the usage and movement quality of their affected limb during
daily activities. This evaluation is anticipated to take around 2 hours.

- Participants can choose to combine both Visit 1 and Visit 2 on the same day.

Visit 2 - Lab-based Assessments

Sensors will be positioned bilaterally on participants’ fingers and wrists, along with
one on the torso by the research team. Commercially available silicone rings will be
used for the finger-worn sensors, whereas Velcro straps will secure the wrist-worn
and torso sensors. This set-up is estimated to be completed within approximately
10 minutes.

Following the sensor set-up, participants start the laboratory phase of the study.
This phase can occur in a simulated home setting located at the Spaulding Reha-
bilitation Hospital or the participant’s own house virtual sessions. All tasks are
captured on video for offline analysis, employing GoPro cameras and a handheld
videorecorder or a webcam for virtual sessions. GoPros, strapped to the partici-
pant’s trunk and head, offers researchers a first-person view, facilitating the later
synchronization of movement with data from the wearable sensors. The handheld
recorder serves a similar purpose, offering supplementary angles that might elude
the GoPros’ field of view. Only those approved by the IRB are allowed to record
and access the video data, and participants’ consent for recording is secured in
advance. Participants are directed to execute a set of tasks, each to be performed
three times, to capture within-subject variability of the motor patterns. To avoid
participant fatigue, task performance is divided across two sessions.The activities
executed are detailed in Table 1.1.

Each in-lab session may last approximately 1.5 hours. Once the first session is
completed, subjects are asked to return after 2 to 7 days to complete the second
session.

Home Monitoring

Subjects are required to wear sensors on both the wrist and index finger for a
period ranging from 2 to 7 days. They are asked to take off the sensors every night
for charging using the provided charger. Care must be taken to ensure that the
sensors don’t come into contact with excess amounts of water; for instance, they
should be removed prior to activities like showering or swimming. Nonetheless,
hand washing is permissible with the sensors on.

Each participant receives a pre-paid smartphone preinstalled with Google Time-
line, a custom application to oversee the condition of the sensors (Sensor Monitoring
app), and another for annotating day-to-day activities (Activity Annotation app).
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Tasks
Walking (level, incline, decline)
Sit to Stand transitions
Stair Walking
Drinking a glass of water
Opening a door
Apply Makeup or Shave
Buttoning a shirt
Don/ Doff a sweater
Pick-up and place a two-handled basket (e.g. laundry basket)
Put a table cloth on table
Apply toothpaste on toothbrush
Make a sandwich
Wash Hands
File Nails
Unload bag of groceries
Sweep Floor
Remove money from wallet

Table 1.1: List of Tasks

These specially designed apps have undergone a security assessment by the MGB
IT department. The functionalities of these apps are outlined below:

• Google Timeline is intended to record movement patterns and types (such as
walking or driving). This data aids in filtering out sensor signals collected
during passive mobility actions. Although participants are advised to carry
the phone, it isn’t mandatory for them to take it everywhere they travel.

• The Sensor Monitoring app ensures time-synchronization of the wearable
sensors, oversees their operational status and facilitates communication be-
tween the patient and researchers for troubleshooting. Furthermore, this app
provides daily notifications to participants in the morning and in the evening.
These alerts remind subjects to charge the devices, put on/take off the sensors,
and record their activities.

• The Activity Annotation app allows participants to note their activities roughly
every 90 minutes (with reminders sent about five times daily) or any time they
want to add a new activity that involves significant upper limb movements.

Visit 3 - Lab-based Assessments
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After completing the home-monitoring phase (spanning 2 to 7 days), participants
will be requested to revisit the MAL. Here, they will hand back the sensors and
smartphone and take part in the second lab-based evaluation, structured similarly
to Visit 2.

Study procedure for aim 3

Interview and Observation (Stroke Survivors)

A selection of study participants (up to 20 individuals) are invited for an
interview, either face-to-face or virtually via platforms such as UMass, UMD, or
MGB Enterprise Zoom. Additionally, a brief observation of their ADLs performance
is conducted. The aim behind these activities is to gain insights into the participants’
unique environmental contexts and natural behaviors, including any challenges or
obstacles they might face.

The interview are recorded using a voice recorder (Sony) or Zoom (in case of a
remote interview).

Interview(Clinicians)

An interview is conducted with up to 10 clinicians, either in-person or through MGB
Enterprise Zoom, to gather insights on the acceptance and opinions regarding the
use of ring sensors for monitoring patients’ in-home activities. Clinical participants
is presented with an information sheet that outlines the specifics of this protocol,
and verbal consent is secured before initiating the interview.
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1.2.4 Video Annotation
We assembled a team of clinicians to determine and propose labels that would be
clinically relevant for the video recordings captured during the second aim of the
study. Beyond just analyzing hand activity, the team of clinicians introduced a
grasp ontology. This was aimed at understanding which types of grasps stroke
survivors utilized most frequently. The goal behind this was to provide insight that
could guide interventions, encouraging survivors to use their fingers more extensively
in grasping activities. The labels used to annotate videos are summarized in the
following.

• No Movement

◦ Arm
◦ Hand

• Movement

◦ Ambulatory Movements (arm swing during gait)
◦ Non-Ambulatory Movements (goal/task oriented)

⋆ Unilateral
⋄ Gross Arm
⋄ Fine Hand

1. Full hand grasp
2. Finger grasp
3. Lateral pinch
4. Flag for uncertainty

⋆ Bilateral (coupled manipulation-single object)
⋄ Gross Arm
⋄ Fine Hand

1. Full hand grasp
2. Finger grasp
3. Lateral pinch
4. Flag for uncertainty

⋆ Bilateral (uncoupled manipulation-separate objects)
⋄ Gross Arm
⋄ Fine Hand

1. Full hand grasp
2. Finger grasp
3. Lateral pinch
4. Flag for uncertainty
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Examples for clarity: Full hand grasp (gross use of hand) includes:

• Hook – fingers flexed around small diameter object (holding bucket, hang from
bar above)

• Power – cylindrical object between fingers and thumb (holding bottle)

• Palmer – object diagonally across palm with thumb stabilizing (hammer)

• Spherical – fingers shaped around round object (ball, round lid)

Finger grasp (fine manipulation between fingers) includes:

• Pincer/Precision – object between forefinger and thumb (pick up small object)

In Table 1.2, we provide a summary of the labels applied to the tasks. This
offers a comprehensive view of how the annotations correlate with the dataset.

Tasks Ambulatory Non-Ambulatory Unimanual Bimanual Fine Hand Movements Gross Arm Movements
Walking (level, incline, decline) X X X
Sit to Stand transitions X X X
Stair Walking X X X
Drinking a glass of water X X X
Opening a door X X X
Apply Makeup or Shave X X X
Buttoning a shirt X X X
Don/ Doff a sweater X X X
Pick-up and place a basket X X X
Put a table cloth on table X X X
Apply toothpaste on toothbrush X X X
Make a sandwich X X X
Wash Hands X X X
File Nails X X X
Unload bag of groceries X X X
Sweep Floor X X X
Remove money from wallet X X X

Table 1.2: Summary of tasks performed

The pipeline outlined in this thesis aims to expedite the grasp annotation process
signaling the frames where the hand(s) is in contact with any object. Given that
contact annotations are already in place within ELAN, clinicians can streamline
their workflow by selecting the corresponding time intervals and just focus on
assigning the grasp label. This approach saves considerable time as the clinicians
don’t need to go through the whole set of acquired frames but can inspect just a
subset.
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2.1 Overview
We developed a two-stage pipeline for the self-labeling of hand activity in egocentric
videos, as illustrated in Figure 2.1. Briefly, in the first stage, videos are processed
through a deep learning model that identifies and produces rectangular bounding
boxes around detected hands and objects they are in contact with. Notably, this
framework doesn’t require ground truth labels for the training set. However, to
characterize the performance of the first stage of the pipeline, a subset of frames in
the dataset was manually annotated to create both validation and test sets and
compare with the generated bounding boxes.

In the second stage, the data split into training, validation, and test sets were
processed using Snorkel. Through the application of labeling functions, the training
set was annotated with the following labels:

• Contact label: Denoting instances where there’s contact between hands and
objects.

• No Contact label: This label marks moments where there was no contact
between hands and objects.

• Out-Of-Frame label: This denotes instances where hands were not captured
by the GoPros.

After the labeling process, the labeled dataset was loaded into ELAN [29], an
annotation software, for visualizing and reviewing the annotation.
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Figure 2.1: High-level block diagram of the two-stages pipeline used for the
self-labeling of hand activity in videos.
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2.2 RingSensor Study - Video Data

Before going into details of the stages, a brief overview of the dataset is presented.
As previously mentioned, the video recordings incorporated in the pipeline were
obtained within aim 1 of the RingSensor study, as detailed in section 1.2.3. Overall,
the recordings capture the activity of 20 subjects from 4 distinct views within a
simulated kitchen setting, as illustrated in Figure 2.2. In particular, the 4 views are

1. Head Video: GoPro camera attached to subjects’ heads via a head strap.

2. Chest Video: GoPro camera attached to subjects’ torso using a chest strap.

3. Room: Recordings obtained from a standalone GoPro camera positioned on
a tripod to provide a general view of the room.

4. RoomDoor Similar to the Room view but offers a vantage point from the
doorway, using another tripod-mounted GoPro camera.

All the video recordings were synchronized with a remote controller that triggered
the start.

For the purpose of developing the self-labeling pipeline presented in this manuscript,
only the head videos of two participants (namely participant 001 and participant
003) were considered. To prepare the videos for the deep learning model in stage
1, frames recorded while clinicians were attaching sensors to the subjects were
trimmed out.

Figure 2.2: Different views of the RingSensor recordings
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2.3 Stage 1
After the pre-editing, the head videos of two subjects were used as input for the
first stage. A detailed block diagram of the pipeline employed for this initial stage
can be found in Figure 2.3.

Figure 2.3: Block diagram of the first stage of the self-labeling analysis pipeline

Stage one consists of 2 steps. In the first step, to identify hand activity and
determine the most effective model, the same videos are analyzed using two different
deep learning models. One is the Hand Object Detector [30], based on a Faster-
RCNN, and the other is Yolo-v8 [31]. Both models were trained with the dataset
in [30] and are described in details in the following sections. The results produced
by these models were formatted as dictionaries. Concurrently, a manual annotation
of a subset of the video frames was carried out.

The second step consists of two Python scripts to process the output of step one
and make it suitable for the forthcoming stage two. The first script is employed for
data manipulation and converts the dictionary format into a pandas dataframe.
The second script incorporates the manually annotated labels into the pandas
dataframe, thus forming the validation and test sets. More details of the contents
of the scripts are provided in section 2.3.3.

2.3.1 Hand Object Detector
The first deep learning model employed is the Hand Object Detector [30], developed
to reliably extract hand state information from Internet videos of humans engaged
in activities involving their hands.

19



Materials and Methods

Dataset

The dataset consists of a diverse set of everyday interactions sourced from YouTube.
An overview of the dataset is illustrated in Figure 2.4. It can be divided into
two main parts: a vast collection of unlabeled videos employed for unsupervised
learning and a subset of 100K annotated frames.

• Collecting Video Dataset:Starting with 11 categories, such as DIY and
cooking, 13.2K search queries were used to source around 6.5M YouTube videos.
The objective was to identify videos showcasing hands interacting with objects.
To filter this vast dataset, a model based on video thumbnails was employed.
This model identified videos featuring hands and human interactions while
omitting those with cartoons.

• Image Dataset: The "100 Days of Hands" (100DOH) dataset consists of 27.3K
videos from 11 categories, providing 131 days of everyday interaction footage.
This data was utilized to produce a 100K frame-level dataset. Random frames
were selected, discarding images without hands. There are 189.6K annotated
hands in these images, interacting with 110.1K objects. The dataset was
divided into training, validation, and testing sets (80/10/10%) based on the
YouTube uploader’s ID. This ensures no overlap and maintains compatibility
with existing data like VLOG.

Figure 2.4: Snapshot of the "100DOH" dataset

Pipeline

The pipeline used to build the model is illustrated in Figure 2.5. The system
processes an RGB image to detect hands regardless of their size. For each detected
hand, the system predicts a bounding box, determines its side as left or right,
and identifies its contact state (such as none, self, person, or with a portable/non-
portable object). Additionally, it specifies a bounding box for any object the hand
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interacts with and establishes a link between the hand and the corresponding object.
This output is suitable for direct integration into hand reconstruction tools like
[32].

Figure 2.5: Workflow of the Hand Object Detector framework

The backbone of the model is a Faster-RCNN [33]. It’s a two-module object
detection system (Figure 2.6). The initial module utilizes a deep, fully convolutional
network to propose regions. An RPN (Region Proposal Network) accepts an image
and output a set of rectangular object proposal, each with a score. This mechanism
is modeled utilizing a fully convolutional network. The ultimate aim is to merge
computation with a Fast R-CNN object detection network. Following this, the
second module, which is the Fast R-CNN detector [34], operates on these proposed
regions.

Figure 2.6: Workflow of a Faster-RCNN network

21



Materials and Methods

The Hand Object detector is built upon Faster-RCNN [33], which is trained
to detect hands and the objects they are in contact with. Like the traditional
Faster-RCNN, this network predicts whether each anchor box represents an object,
its specific category, and any necessary adjustments to the anchor box’s bounding
dimensions. Additionally, the system predicts a range of auxiliary outputs sourced
directly from the same ROI-pooled features as the standard classification outputs
like hand side and contact state.

2.3.2 Yolo-v8
The second deep learning model used was Yolo-v8, the latest version of the Yolo
family [31]. Yolo stands for You Only Look Once and is presented as a new approach
to object detection. They conceptualized it as a regression challenge, focusing on
spatially separated bounding boxes and their correlated class probabilities. A unified
neural network produces predictions for bounding boxes and class probabilities
straight from complete images in a singular evaluation. As the entire detection
process is integrated into one network, it facilitates end-to-end optimization based
on detection efficacy. A representation of the Yolo pipeline is illustrated in Figure

Figure 2.7: Processing step of the yolo model

2.7. The system processes the input image by dividing it into an S × S grid. A grid
cell is tasked with detecting an object if the object’s center lies within that cell.
Each cell is designed to predict B bounding boxes along with their confidence scores.
These scores denote the model’s confidence in the box containing an object and the
predicted box’s accuracy. If a cell doesn’t contain an object, its confidence score
is zero. If it does, the confidence score is expected to match the intersection over
union (IOU) of the predicted box and the actual object’s position. Moreover, each
grid cell predicts C conditional class probabilities, which depend on the presence
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of an object within that cell. By multiplying these conditional class probabilities
with the box’s confidence scores, the system derives class-specific confidence scores
for every box. These final scores capture both the likelihood of a particular class
being in the box and how well the predicted box around the object fits.

Yolo-v8 is the latest release of the Yolo family and is easily deployable through
UltraAnalytics. After getting the annotation from the author of the hand object
detector, three Yolo-v8 models were trained with the same dataset: medium, large,
and extra-large models. The metrics used to compare the 4 models are described in
Section 2.3.5. To obtain a dictionary structure for the Yolo-v8 models, additional
lines of code were used in the original script.

2.3.3 Python scripts

First Script

Given that the outputs from both models were in the form of dictionaries, the
initial script was designed to transform this dictionary into a Pandas dataframe.
The script iterates through the dictionary, retrieving details like hands, objects,
and their respective bounding boxes for each frame. Other parameters, such as
confidence scores, were also saved. To ensure that the frame count matched the
original video’s, frames labeled as "None" were inserted to facilitate synchronization
throughout the various stages. Additionally, this process involved determining the
side of the hand and pairing it with the appropriate object, achieved by minimizing
the distance between the centers of the detected hands and objects within a frame.

After acquiring an initial data structure, the following functions were imple-
mented:

• correct_switch: There was a persistent issue with both models where
they intermittently confused the left and right hands across frames. To
address this, two distinct functions were employed. The first function, named
correct_switch, partitions the frame into three distinct regions: left, right,
and neutral. Depending on the location of the bounding boxes, the hand’s
orientation (left or right) was determined and assigned accordingly. The
neutral zone was designated for instances where a hand traverses across the
frame.

• check_side: Once the three zones were delineated and initial hand side
assignments were made, the function then assessed the overlap between bound-
ing boxes of the current and previous frame. In instances where the overlap
exceeded a certain threshold and there was a change in the assigned zone from
the previous frame, it was interpreted as a movement across zones. Conse-
quently, the hand’s side was adjusted to either left or right. By implementing
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this strategy, any hands initially marked as neutral underwent correction,
effectively addressing the hand side misidentification challenge.

• extract_hand_side: After ensuring the dataset was accurately organized,
this function separated the data into right and left hand. For the purposes of
symmetry and evaluating the pipeline’s efficacy, only data related to the right
hand was utilized.

• correct_duplicate: Although confidence thresholds could be established for
both models, situations where multiple detections of the same hand (either
right or left) occurred. To address this, the function leveraged the previously
stored confidence scores to discern and eliminate duplicate hand detections.

• check_missing: Lastly, a verification step ensured that the total number of
frames matched the original video’s frame count.

All the synchronization was performed considering frame timestamps in milliseconds.
The only difference between the models and their final pandas structure were the
additional features from the hand object detector described in section 2.3.1. The
snapshot of the final structure, the training set, is shown in Figure 2.8.

Figure 2.8: Snapshot of final Pandas Structure after running first script with
Hand Object Detector as the model.

Second script

The subsequent script served two purposes: it appended the appropriate labels to
the previously created Pandas structure and extracted both the validation and test
sets. After manually annotating the labels discussed in section 2.1, a CSV file was
generated as the output from the ELAN Annotation Software. This file is depicted
in Figure 2.9.

The script follows a three-step process:

1. Label encoding: In this phase, the labels are transformed into a numerical
format. Specifically, ’No Contact’ is represented by 0, ’Contact’ by 1, and
’out-of-frame’ by 2.
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Figure 2.9: ELAN Annotation Software CSV file, first row is hand side, second
and third rows are starting and ending frames in millisecond, last row is the
annotation.

2. Label extraction: For accurate label assignment, each entry in the ’frame
in millisecond’ column of the pandas dataframe is matched against the time
intervals in the CSV file. When a match is identified, the corresponding label
is added to the training set, and the row’s identifier is stored in a list.

3. Creating the validation set: Using the list of identifiers generated in the
previous step, the validation set is extracted from the main training dataset.
Subsequent to this extraction, the corresponding rows are removed from the
training set. The test set is prepared using the same procedure.

2.3.4 Training, Validation and Test set
Table 2.1 provides an overview of the dataset used to evaluate the pipeline, using
subject 001 and 003 of the RingSensor study.

001 # of frames 003 # of frames Total # of frames % of total frames
Train 71k 107k 188k 80%

Validation 40k 40k 15%
Test 13k 13k 5%

Table 2.1: Training, Validation and Test set summary

Training

The training set contains approximately 180k frames of two subjects carrying out
activities in a simulated kitchen. For this pipeline, the training set is not labeled.
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Validation

The validation set consists of about 20 minutes (40k frames) from subject 001.
After labeling the right-hand activity manually, this data is used to test the labeling
function mentioned in section 2.4.1.

Test

Similarly to the validation set, the test set is a subset of subject 003 of roughly
7min (13k frames), created to evaluate the pipeline’s performance.

2.3.5 Characterization
To determine the optimal model for the initial stage, Intersection over Union
(IoU) served as the evaluation metric for comparing the performance of two deep
learning models employed in the first stage of the proposed pipeline: Yolo-v8 and
Hand Object Detector. To enable this comparison, a manually annotated dataset
was created. Annotations were made using a custom-developed app designed for
generating bounding box annotations. Five minutes of video, randomly extracted
from 15 subjects, were utilized to generate the labeled dataset.

Intersection over Union (IoU)

Intersection over Union (IoU) evaluates the performance of object detection by
comparing the ground truth bounding box with the predicted bounding box (Figure
2.10). The equation used to calculate IoU is the following:

Figure 2.10: IoU uses the ground-truth and predicted bounding boxes to compute
the performance of a object detection framework.
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IoU = Area of Overlap

Area of Union
(2.1)

Intersection over Union is a simple ratio where the numerator calculates the
overlapping area between the predicted and the ground-truth bounding boxes and
the denominator represents the combined area covered by both the predicted and
the ground-truth bounding boxes. To facilitate this calculation, a bounding boxes
annotation tool was designed to produce the dataset required for comparison.

Bounding Box Annotation Tool

The interface of the bounding box annotation tool is illustrated in Figure 2.11.

Figure 2.11: Interface of the custom-developed app for the annotation of bounding
boxes

Annotations were conducted frame by frame, with users dragging and releasing
the mouse cursor around objects or hands. The tool was equipped with IDs to
toggle between left/right hands and objects, streamlining the process. To expedite
the annotation, a draw previous bounding boxes button was integrated, allowing
for the replication of bounding boxes from previous frames when objects remained
stationary. For error correction, a function to erase bounding boxes based on their
ID was introduced. For enhanced efficiency, keyboard shortcuts were assigned
to each button, facilitating quicker annotations. Furthermore, features such as
saving and loading current annotations were incorporated. Upon completion of
the annotations, the data can be exported into a CSV file. The annotation tool
was employed to label 5 minutes of footage from 15 random subjects engaging in
various activities.
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2.4 Stage 2
After finalizing the dataset, the training, validation, and test sets were fed to the
second stage, with the training set remaining unlabeled. The pipeline employed in
stage 2 is depicted in the block diagram shown in Figure 2.12. The three splits

Figure 2.12: Block diagram for the second stage of the self-labeling pipeline

of the dataset underwent initial processing by Snorkel to train the labeling model.
Snorkel’s workflow can be segmented into three primary steps:

1. Loading Data: Through Snorkel’s inherent functions, the dataset is inte-
grated into the Snorkel framework. This phase involves data manipulation to
ensure it is formatted appropriately for the next step.

2. Labeling Function: Labeling functions are designed to determine the rela-
tionships between pairs of bounding boxes. By encoding specific intuitions
into these functions, existing relationships can be detected. There are two
primary types of labeling functions: Categorical and Spatial. This step applies
to the datasets five labeling function coded to detect contact, no contact and
out-of-frame.

3. Label model training: The final step involves evaluating the performance of
the labeling functions on the validation set and refining them to more accurately
capture the relationships present in the RingSensor data. Ultimately, the
labeling functions are applied to the training set, and through a generative
model, the dataset is annotated.

After training the label model, annotations were added to the training set.
To facilitate visualization of the results in the ELAN Annotation software, an
additional script was developed to modify the outputs accordingly. A comprehensive
breakdown of this script is available in section 2.4.2. Both the Validation and Test
sets were annotated using the previously trained label model to assess performance,
leveraging specific metrics such as the micro F1-score and Confusion matrices,
described in section 2.4.3.
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2.4.1 Snorkel
Snorkel [1] is a pioneering system allowing users to train cutting-edge models
without the need for manual data labeling. Users craft labeling functions that
capture the underlying relationships of an unlabeled dataset. Snorkel efficiently
filters out noise from these outputs without relying on ground truth. This is
achieved through the system’s complete integration of a newly proposed machine
learning approach, data programming. The design of the system is concisely

Figure 2.13: Workflow of the Snorkel architecture

depicted in Figure 2.13 and it can be can be outlined as follows::

1. Subject matter expert (SME) users craft labeling functions (LFs) that capture
weak supervision sources, incorporating elements like distant supervision,
patterns, and heuristics.

2. Snorkel applies these LFs to unlabeled data, subsequently learning a generative
model. This model amalgamates the outputs of the LFs into probabilistic
labels.

3. Using these probabilistic labels, Snorkel can train a discriminative classification
model, which could be a deep neural network.

Labeling Functions

Instead of manually labeling training data, Snorkel users write labeling functions.
The labeling functions used for this pipeline can be grouped into two primary
category. Categorical intuition, knowledge regarding the typical categories of sub-
jects and objects involved in such relationships (for instance, ’person’ is often the
subject for actions like ’ride’ and ’carry’). Spatial intuition, Understanding the
relative positions of the subject and objects (for instance, the subject is generally
positioned above the object in the context of the action ’ride’). For the RingSensor
study data, five labeling functions were created. Out of these, three are categori-
cal, corresponding to each label, while the remaining two are spatial, specifically

29



Materials and Methods

designated for the ’Contact’ label.

Categorical LFs:

• Given that the deep learning models identify bounding boxes of objects when
hands are nearby or in contact, if both hands and objects are detected, it’s
labeled as ’contact’.

• The "No contact" label proved challenging due to the dataset used to train
the deep learning models. If the hand is detected but not the object, then it’s
labeled as "No contact".

• Regarding the "out-of-frame" label, if no hands are detected, it is labeled as
"out-of-frame".

Spatial LFs: Spatial labeling functions were applicable solely for the ’contact’
label and served to reinforce the categorical ’contact’ labeling function.

• The ’contact’ label is assigned based on the overlapping area of the bounding
boxes of hands and objects, specifically when the overlap exceeds a predefined
threshold.

• To counteract situations where contact might still exist even if the overlapping
area is below the threshold, a labeling function is employed that checks if the
center of the hand is within the bounding box of the object.

Following the application of the labeling functions, Snorkel produces a table
detailing the performance of each LF. This table is available for review in section
3.2.1.

Training the model

After defining the LFs, a multi-class LabelModel was employed to assign training
labels to the unlabeled training set. The output from the generative model comprises
a set of probabilistic labels, along with the probability associated with each labeling
function. The model underwent training for 100 epochs with a step size of 0.01.

2.4.2 Python Script
The labeled data generated by Snorkel was used to get a visual representation in
ELAN. Additionally, it was used to produce metrics, which are described in the
next section, to assess the performance of the entire pipeline.

The output of snorkel was a vector of numeric form labels with length equals to
the amount of frames in the video. Given that all elements were synchronized using
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frame timestamps in milliseconds, synchronization was achieved by utilizing the
row IDs. By extracting the row IDs, the script aligned these newly generated labels
with the corresponding rows in the original training dataset. After the alignment,
the scripts decode the numeric form labels back into text form. Thus, the training
set was labeled.

Given that labels were assigned frame by frame, there were instances where
labels switched momentarily before reverting to their prior values. To address this
inconsistency, a function was developed to correct such switching. This function
checks if the consecutive number of frames labeled with the same annotation were
less than 7 (≈ 0.23 sec) and adjusted these labels to match their preceding values.
In this way, the smallest sequence of consecutive frames was set to 7. This corrective
measure enhanced the accuracy metrics, as evidenced in section 3.2.3.

To maintain compatibility with the annotation software, a new pandas dataframe
was utilized. In this revised structure, for every sequence of frames with the same
label, only the start and end frame timestamps in milliseconds were recorded
alongside the corresponding annotation. This led to the creation of the table
illustrated in Figure 2.14. After sorting the rows by the beginning of each time
interval, the script exported the updated data into an ELAN-compatible CSV
file. By applying the same script to the labels generated for the validation set by
Snorkel, a visual comparison between the ground-truth labels and the predicted
labels was carried out.

Figure 2.14: ELAN-compatible CSV file

2.4.3 Characterization

To evaluate the pipeline’s performances, two metrics used in multi-label machine
learning frameworks were employed: the F1-score micro and Weighted F1-score. To
derive these metrics, we utilized confusion matrices, which are commonly employed
to evaluate the performance of a classification model.
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F1-score

The F1 score is an evaluation metric in machine learning that gauges a model’s
accuracy by combining its precision and recall scores. This accuracy metric
calculates the frequency with which a model made accurate predictions across the
entirety of the dataset. For data distributions with multiple classes, the F1-score
micro is calculated. Given the dataset’s imbalanced nature, the weighted F1-score
is preferred for the thesis. The formula is:

Weighted F1 − score =
NØ

i=1
wi ∗ F1 − Scorei (2.2)

where wi is:
wi = N. of samples in class i

Total numebrs of samples
(2.3)

Confusion Matrix

A confusion matrix provides a table-based visualization of a prediction model’s
performance. Each entry in the matrix represents the count of predictions where
the model accurately or inaccurately predicted the classes. Figure 2.15, shows how
a confusion matrix is calculated for a binary classification problem.

Figure 2.15: Binary Confusion Matrix: TP: Correctly predicted positive values.
FP: Negative values incorrectly predicted as positive. TN: Correctly predicted
negative values. FN: Positive values incorrectly predicted as negative.

The multi-class confusion matrix extends the binary confusion matrix to handle
cases where there are more than two classes. Rows represent the actual or ground-
truth classes. Columns represent the predicted classes by the classifier. Each cell in
the matrix corresponds to the number of times a particular class was predicted for a
given actual class. The diagonal elements of the matrix represent correct predictions
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for each class, while off-diagonal elements indicate where misclassifications occurred.
By examining the matrix, one can quickly see not only how many predictions were
correct, but also the nature of the errors being made. The multi-class confusion
matrix is shown in Figure 2.16

Figure 2.16: Multi-class Confusion Matrix for a three label classifier

2.5 ELAN Annotation Software
Upon completing the execution of the entire pipeline, ELAN was employed as a
visualization tool to facilitate a clearer interpretation of the confusion matrices.
This visual representation helped in pinpointing the discrepancies between the
ground-truth labels and the predictions generated by the framework. This not only
enhanced the comprehension of the matrix results but also provided insights into
the areas where the pipeline might have faltered.

ELAN is an annotation tool for audio and video recordings. This annotation
software allows users to extensively annotate audio and video recordings with lim-
itless textual notes. These annotations can range from individual words, sentences,
or glosses to comments, translations, and descriptions of observable features in
the media. Users can organize these annotations on different layers, known as
tiers. These tiers have the capability to be connected in a hierarchical manner.
Moreover, an annotation can be synchronized with specific media timings or be
linked to previously existing annotations. Thus, for the RingSensor video data,
synchronization proved to be incredibly beneficial as showed in Figure 2.17.

However, the labeling process within the software is tedious due to its multi-step
nature. Users must initially choose the time interval for each label tier, followed by
selecting the type of annotation. As detailed in section 1.2.4, each annotation type
must be selected twice – once for the right side of the body and once for the left.
This considerably slows down the labeling process unless there’s an increase in the
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Figure 2.17: ELAN interface for RingSensor video data annotation with the
labels described in section 1.2.4

number of annotators.
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3.1 Stage 1
To select the optimal model for stage 1, we began by visually assessing how each
model processes our video data. This involved observing the videos after they had
been processed by the two deep learning models. The outcomes are depicted in
figures 3.1 and 3.2.

Hand Object Detector

Figure 3.1: Screenshot of subject 001 with the Hand Object Detector
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Yolo-v8

Figure 3.2: Screenshot of subject 001 with Yolo-v8 model

Both models accurately predict hand bounding boxes and exclusively identify
the objects they are in contact with. As illustrated, they both ignore other objects
in the frame, concentrating solely on the book the subject is holding.

3.1.1 Characterization
The Intersection over Union was computed for the subset of the RingSensor’s video
data to gain a deeper insight into the performance of the models. After manually
annotating bounding boxes for hands and objects in contact in randomly selected
five-minute video clips from various subjects, we evaluated the performance of
both the Hand Object Detector and YOLO-v8 models. The tables 3.1 for the
Hand Object Detector and 3.2 for YOLO-v8 report the accuracy of right-hand
bounding boxes. In the Hand columns, we present the # of correctly detected
right-hand frames out of the total frames containing the right hand. The IoU
columns showcase the average IoU score for the correctly detected right hand
frames.
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Subjects Hand det. IoU
002 901/1284 0.87
004 951/1063 0.86
005 965/1033 0.87
014 1285/1377 0.93
019 798/842 0.91

Avg. 4733/5599 0.9

Table 3.1: IoU for Hand Object Detector

Subjects Hand(Medium) IoU(Medium) Hand(Large) IoU(Large) Hand(XL) IoU(XL)
002 905/1284 0.92 884/1284 0.86 870/1284 0.86
004 932/1063 0.84 963/1063 0.86 950/1063 0.84
005 817/1033 0.78 827/1033 0.8 845/1033 0.8
014 1316/1377 0.94 1254/1377 0.94 1261/1377 0.94
019 741/842 0.84 729/842 0.84 726/842 0.84

Avg. 4711/5599 0.864 4657/5599 0.86 4652/5599 0.856

Table 3.2: IoU for Yolo-v8 models
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3.2 Stage 2

3.2.1 Snorkel - Labeling Function
The labeling function analysis tool provided an overview of how well the crafted
labeling functions (LF) matched the validation set. This offers insights into the
efficacy of the LFs and determines if there’s a necessity to make adjustments to
them. The analysis tool provides the following metrics:

• Polarity:The label for which the LF is written.

• Coverage: The percentage of frames addressed by the LF.

• Overlaps:Percentage of potential overlaps with other labeling functions.

• Conflicts:Percentage of instances where the LF disagrees with other labeling
functions.

• Correct:Instances covered by the LF that are correctly labeled.

• Incorrect:Instances covered by the LF that are incorrectly labeled.

• Empirical Accuracy:Accuracy measured on the data covered by the LF.

Hand Object Detector

j Polarity Coverage Overlaps Conflicts Correct Incorrect Emp. Acc.
lf_object 0 [1] 0.51 0.50 0.0 19154 2761 0.87
lf_area 1 [1] 0.50 0.50 0.0 18894 2574 0.88
lf_dist 2 [1] 0.31 0.31 0.0 11409 1948 0.85
lf_no 3 [0] 0.10 0.0 0.0 1454 3041 0.32

lf_no_frame 4 [2] 0.39 0.0 0.0 11593 5097 0.69

Table 3.3: LF Analysis with Hand Object Detector on Validation set
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Yolo-v8 Medium Model

j Polarity Coverage Overlaps Conflicts Correct Incorrect Emp. Acc.
lf_object 0 [1] 0.46 0.45 0.0 17078 2906 0.85
lf_area 1 [1] 0.45 0.45 0.0 16824 2761 0.86
lf_dist 2 [1] 0.25 0.25 0.0 9271 1687 0.85
lf_no 3 [0] 0.16 0.0 0.0 1653 5056 0.25

lf_no_frame 4 [2] 0.38 0.0 0.0 11204 5203 0.68

Table 3.4: LF Analysis with Yolo-v8 Medium on Validation set

Yolo-v8 Large Model

j Polarity Coverage Overlaps Conflicts Correct Incorrect Emp. Acc.
lf_object 0 [1] 0.46 0.45 0.0 17078 2906 0.85
lf_area 1 [1] 0.45 0.45 0.0 16824 2761 0.86
lf_dist 2 [1] 0.25 0.25 0.0 9271 1687 0.85
lf_no 3 [0] 0.16 0.0 0.0 1653 5056 0.25

lf_no_frame 4 [2] 0.38 0.0 0.0 11204 5203 0.68

Table 3.5: LF Analysis with Yolo-v8 Large on Validation set

Yolo-v8 XL Model

j Polarity Coverage Overlaps Conflicts Correct Incorrect Emp. Acc.
lf_object 0 [1] 0.51 0.50 0.0 18401 3475 0.84
lf_area 1 [1] 0.50 0.50 0.0 18175 3324 0.85
lf_dist 2 [1] 0.28 0.28 0.0 10130 2091 0.83
lf_no 3 [0] 0.12 0.0 0.0 1363 4024 0.25

lf_no_frame 4 [2] 0.37 0.0 0.0 10828 5009 0.68

Table 3.6: LF Analysis with Yolo-v8 XL on Validation set
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3.2.2 Confusion matrices
When assessing the pipeline results and visualizing them, we employed confusion
matrices. For each model, we generated two confusion matrices, one for the
validation set and another for the test set. Confusion matrices can be visualized in
various ways, but in our case, we arranged them with the true labels on the left
vertical side and the predicted labels along the bottom side. The following figures
illustrate the eight confusion matrices we generated.

Yolo-v8 Medium

Figure 3.3: Medium model confusion matrix for validation set
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Figure 3.4: Medium model confusion matrix for test set

Yolo-v8 Large

Figure 3.5: Large model confusion matrix for validation set
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Figure 3.6: Large model confusion matrix for test set

Yolo-v8 XL

Figure 3.7: XL model confusion matrix for validation set
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Figure 3.8: XL model confusion matrix for test set

Hand Object Detector

Figure 3.9: Hand Obj. Det. model confusion matrix for validation set
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Figure 3.10: Hand. Obj. Det. model confusion matrix for test set

3.2.3 F1-score

To comprehensively assess the pipeline’s performance across all labels, we opted to
calculate two F1 scores: one for micro and another for weighted evaluation. Tables
3.7 and 3.7 display these scores for the validation and test sets, respectively. The
final column represents the micro F1 score evaluated prior to the implementation
of the 7-frame minimum non-switching label algorithm.

Validation set F1-score Micro Weighted F1-score No 7 Frames check
Hand Obj. Det. 0.76 0.753 0.74
Yolo-v8 Medium 0.71 0.71 0.69
Yolo-v8 Large 0.72 0.72 0.71
Yolo-v8 XL 0.72 0.72 0.70

Table 3.7: F1-scores Validation set table
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Test set F1-score Micro Weighted F1-score No 7 Frames check
Hand Obj. Det. 0.65 0.64 0.63
Yolo-v8 Medium 0.544 0.56 0.546
Yolo-v8 Large 0.57 0.59 0.56
Yolo-v8 XL 0.58 0.59 0.57

Table 3.8: F1-scores test set table

3.3 Visual Comparison Results
Finally, we imported all the labels generated for the test set from the four different
models into ELAN to demonstrate each model’s proficiency in creating the time
intervals for annotations and the correct labeling. A comprehensive discussion of
the results and outcome of this phase is offered in the following Chapter.

Figure 3.11: Visual Comparison of the different models on the Test set
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4.1 Stage 1

We trained two different deep-learning models to compare their performance on the
RingSensor video data, namely the Hand Object Detector and YOLO-v8. Given
that they were trained on the dataset described in [30], this phase was essential to
determine the project’s feasibility. Figures 3.1 and 3.2 display screenshots of the
two deep learning models when applied to the RingSensor video data. Yet, these
visuals alone weren’t sufficient to comprehensively assess the models’ performance.
Nevertheless, this was useful for determining if the models functioned as intended
on our video data. We observed that, even with other objects present in the frame,
the highlighted bounding boxes were exclusively around objects in contact with the
hand as described in [30]. Consequently, we manually annotated bounding boxes for
5 minutes of footage from 15 random subjects engaged in the simulated activities
detailed in section 1.2.3 to produce performance metrics for the deep learning
models. We also picked the activities randomly, and the results are illustrated in
tables 3.1 and 3.2. The Hand columns represent the # of frames of right hand
correctly detected over the total amount of right hand frames per video. The IoU
column shows the average Intersection over Union for all the detected right hands.

Let’s delve into the analysis of the YOLO-v8 models. When examining the IoU,
we primarily focused on hand detections. The performance of the YOLO models
was notably consistent, registering nearly identical IoU scores across different
implementations of the model. Interestingly, there wasn’t a direct relationship
between the model size and improved detection capabilities on our video dataset.
For instance, in the right-hand detection column, there are scenarios where the
medium model outperforms both the Large and XL versions. For three out of
five subjects, the medium model correctly detected more right hands. As initially
observed from the tables, the medium model appears to be slightly better in
hand detection, boasting both a higher overall hand detection rate and IoU score
compared to the other two models. Nonetheless, after executing the complete
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pipeline, this distinction became less significant, with the XL model outperforming
the others when integrating the Yolo models into the full pipeline. For a more
comprehensive understanding of this result, we plan to include more manually
labeled frames across all subjects.

In terms of the Hand Object Detector, it is undeniably the superior model for
our first stage. It outperformed the Yolo-v8 Medium by detecting a greater number
of hands and achieving an average IoU across subjects of 90%. This distinction
plays a significant role in the final results of the full pipeline; with this model, we
achieve the best performance.
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4.2 Stage 2

4.2.1 Labeling Function
After crafting the labeling function, the outcomes are consolidated by the LF
analysis tool and presented in a DataFrame, as illustrated and detailed in section
3.2.1. This phase is crucial for stage 2, as it will significantly influence the overall
performance of the pipeline. Inadequately written LFs will lead to an overall low
accuracy throughout the pipeline.

Tables 3.3, 3.4, 3.5, and 3.6 display the performance of the Labeling Function
across the four deep learning models employed in this thesis. From the tables, it is
evident that the Hand Object Detector excels in coverage for the ’Contact’ label
(Polarity 1). In contrast, it demonstrates the least coverage for the ’No Contact’
label, emphasizing the model’s behavior toward detecting hands in contact with
objects. However, an interesting observation is that even with its minimal coverage
among the four models, its accuracy remains the highest. The three labeling
functions tailored for the ’Contact’ label are remarkably aligned, as evidenced by
the Overlaps column, and exhibit superior accuracy compared to the rest. This
further reaffirms that the Hand Object Detector’s primary emphasis is on hand
and object contact detection.

Concerning the Yolo models, they exhibit a similar pattern to the Hand Object
Detector, with the three LFs for the ’Contact’ label consistently outperforming in
both Accuracy and Coverage for each model. This trend can be attributed to the
fact that the same dataset was employed to train all four models. Nonetheless, this
isn’t a setback, as the primary objective of the thesis is to annotate the ’Contact’
label with the utmost accuracy. Among the three models, the Yolo-v8 XL model
exhibits the highest Coverage for the ’Contact’ LFs, displaying impressive accuracy,
though not outperforming the Hand Object Detector. Conversely, its coverage for
the ’out of frame’ and ’No Contact’ labels is the least, but its accuracy remains
on par with the other models. In sum, the XL model stands out with superior
performance within the Yolo models.

We favor a model with superior coverage as it aids in streamlining the creation
of time intervals for the contact label. This approach enables clinicians to expedite
the grasp labeling process significantly, as they are provided with pre-defined time
intervals. This idea can be further elucidated by examining the frames from the
validation set. Out of the 43,100 total frames, 25,556 are labeled as ’Contact’,
indicating that ’Contact’ instances constitute 59% of the set. Both the Hand Object
Detector and the Yolo-v8 XL model closely align with this figure, suggesting that
the coverage of the LFs encompasses almost all the ’contact’ labels within the
validation set. A parallel observation can be made for the ’out of frame’ label. Here,
there are 12,933 instances, making up 30% of the dataset. Given this, it’s evident
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that both models might be mislabeling instances as ’out of frame’ even when hands
are in the frame, seeing as their coverage surpasses the actual count of ’out of
frame’ labels. Addressing this discrepancy would likely require the integration of
ringSensor Video data into the validation set.

4.2.2 Characterization
After training the label model and deriving the model weights, I evaluated its
performance using both the validation and test sets. The resulting figures are
detailed in section 3.2.2. An immediate observation is the relationship between
the results of the labeling function analysis and the patterns in the confusion
matrices. The ’Contact’ label, along with the ’out of frame’ label, emerges as the
best-performing one across the four models, at least when considering the validation
set. But before delving into the details of the confusion matrices, let’s first address
the best-performing model.

Focusing solely on the ’Contact’ label, given its primary relevance to our study,
it becomes abundantly clear that among the Yolo models, the XL model takes the
lead, a prediction consistent with our LF analysis. Yet, a reaffirmation from this
evaluation is that the Hand Object Detector consistently eclipses the other models
in performance, evident across both the validation and test datasets.

When it comes to the ’No Contact’ label, it’s evident that none of the models
effectively detect instances where there’s no contact between hands and objects.
An examination of the training dataset utilized for the deep learning models, as
outlined in [30], reveals a distinct imbalance skewed against ’No Contact’ instances.
This observation is further solidified by looking at the confusion matrices. Within
the validation set, the ’No Contact’ label accounts for 4,611 frames out of a total
of 43,100, and 2,315 frames out of 13,192 in the test set. Given the objectives of
this thesis, we have chosen to bypass the ’No Contact’ label. However, it would be
interesting as future steps of this research to leverage the RingSensor video data to
annotate bounding boxes capturing more ’No Contact’ instances.

Finally, concerning the ’out of frame’ label, while it manifests promising outcomes
in the validation set, its performance doesn’t mirror the same in the test set. A
closer examination of the test set reveals a notably reduced count of ’out of
frame’ instances, consisting of merely 2,266 of the 13,192 frames. Given that both
the validation and test sets consist of randomly chosen everyday activities, as
referenced from table 1.1, such disparities might be expected with other subjects
in the RingSensor video data. Consequently, the reliability of this label is analyzed.
Indeed, this outcome aligns with our anticipations, especially when reviewing the
LF analysis related to the ’out of frame’ label.

To harness the full potential of the ’Contact’ label, other than just looking at its
accuracy, we must delve deeper into Precision and Recall metrics. By thoroughly
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understanding these aspects, we can understand the true value of the label in real-
world applications. This deeper analysis will provide a comprehensive perspective
on how clinicians can effectively streamline and enhance their annotation process
using this framework. We’ll focus exclusively on the Hand Object Detector, given
its superior performance.

Label Precision Recall
No Contact 0.39 0.25

Contact 0.87 0.77
Out of frame 0.67 0.92

Table 4.1: Precision and Recall on the Validation set

Label Precision Recall
No Contact 0.34 0.15

Contact 0.85 0.71
Out of frame 0.40 0.88

Table 4.2: Precision and Recall on the Test set

Table 4.1 and 4.1, summarizes the Precision and Recall metrics obtained for
the Hand Obj. Det. for the validation and test. By looking at these metrics, we
can say that the no-contact label is not working as expected, justified by the low
Precision and Recall in both the validation and test set.

The ’Out of frame’ label exhibits low precision and high recall, indicating that
our model tends to be generous in its predictions. It frequently assigns this label
even when uncertain. However, we utilized the ’Out of frame’ label for instances
where we understood that our model couldn’t reliably tell whether there was contact
with an object, primarily because the hands were not visible within the frame.
Therefore, this label was inherently meant for further examination. Even though a
review of this label is necessary, its presence still establishes a time interval within
the annotation software. This, in turn, facilitates a more streamlined labeling
process for clinicians.

The ’Contact’ label exhibits both high precision and medium to high recall.
This signifies that when our model assigns the ’Contact’ label, it’s usually correct.
With such robust performance, the annotation process becomes much more efficient.
Given that the designated time intervals are established with higher accuracy, the
likelihood of them being correct is high, further expediting the clinician’s workflow.

To enhance the model’s accuracy, we employed F1 scores as a metric to gauge
the overall performance of the pipeline. This was used in determining the optimal
number of consecutive frames to consider without encountering a label switch,
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effectively determining the minimum sequence of frames required to achieve the
highest F1 scores. One of the challenges previously addressed was the frequent
label switching due to inaccuracies in bounding box predictions. Leveraging the F1
score, we established that the ideal minimum sequence of non switching frames to
enhance performance is seven. This adjustment led to an improvement across all
label metrics. Tables 3.7 and 3.8 depict the performance enhancements achieved
through this strategy.

The outcomes of the complete pipeline are illustrated in section 3.3. In Figure
3.11, the outputs from all models, post-frame correction, have been imported
into the annotation software. The figure distinctly reveals that the Hand Object
Detector outperforms others when over imposed with the ground truth. Its time
intervals align more closely with the original ones. The ’out of frame’ label,
while requiring further verification, still contributes to streamlining the annotation
process, successfully fulfilling the thesis’s aim.
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In this thesis, we confronted the prevailing issue of unlabeled video datasets,
presenting an innovative methodology tailored to auto-generate labels, especially
within the realm of observing upper limb activities in stroke patients. After
reviewing existing approaches to annotating wearable sensor data through manual
video recordings and various machine learning techniques, we presented our novel
framework. By capitalizing on recent advances in deep learning and computer
vision, our devised system extracts bounding boxes of hands and objects from
videos and collaborates with Snorkel [1] to generate hand activity labels.

The primary objective of this thesis centered around accurately annotating
the ’Contact’ label to expedite the annotation process for clinicians. Within the
context of the RingSensor project, the insights of medical professionals are essential.
They will annotate the specific grasp types of post-stroke survivors. This is key to
customizing treatments, especially if patients exhibit a preference for a particular
grasp type due to their condition rather than using conventional ones. Nonetheless,
manually selecting the time interval and then annotating contact and grasp type
is a tedious process for clinicians. Therefore, our framework streamlines this by
automatically creating the time intervals and accurately labeling the ’Contact’
label.

To achieve this, we implemented a two-stage framework for our study. In the
first stage, we evaluated various deep learning models. The hand object detector
emerged as the top performer, accurately identifying hands and the objects they
interact with. We faced a significant challenge in this stage with the switching of
the left and right sides. However, we tackled this issue by using a customized script
to process the outputs, correcting and preparing them for the next stage.

The core of our framework lies in the second stage. For the Snorkel [1] model,
correctly crafting the labeling functions was central. By deeply analyzing the
datasets and leveraging spatial and categorical intuition on the RingSensor video
data, we were able to correctly define LFs for the ’Contact’ label with high accuracy.
Following the data processing and correcting the label switching issues, our model
achieved a micro F1-score of 76% across all labels. After examining the Precision
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and Recall metrics across all the labels, we chose to exclude the ’No Contact’
label because of its low precision, recall, and limited data presence. On the other
hand, the ’Contact’ label stood out with high precision and recall, attesting to our
framework’s ability to accurately pinpoint when hands and objects are in contact
and delineate the associated time intervals. The ’out of frame’ label, despite its low
precision, was retained due to its high recall. Meaning that when the framework
labels ’out of frame’, we need to double-check it. We had originally incorporated
this label to signal instances when the hands were not visible within the frame.
Hence the deep learning model was unable to generate bounding boxes during
such instances, necessitating a manual review and annotation using an alternative
camera angle. Retaining this label ensures the creation of the time interval, and,
although a review is mandatory, it accelerates the overall annotation procedure.

The results of this study offer an effective solution to the issue of limited labeled
data in stroke patient video analysis. The existing framework offers room for
improvement. By incorporating more instances of the ’No Contact’ label and
deploying separate deep learning models for hands and contacts, we can better
identify movements like reaching and more accurately delineate the time intervals
for contact.

Additionally, It can be used as a blueprint for addressing similar challenges in
the wearable sensors annotation process. The approaches outlined can be extended
to annotate additional labels within the RingSensor data. For instance, leveraging
a room camera’s perspective combined with Human Pose Estimation could provide
valuable features for Snorkel, facilitating the labeling of non-ambulatory arm
movements.

In conclusion, the proposed framework shows the potential of the expanding
domain of machine learning within rehabilitation, especially when faced with
vast unlabeled datasets, and presents a viable alternative to traditional manual
annotation and machine learning methodologies.
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