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Abstract

As network interfaces in the data-center get faster and faster, and an increasing
portion of services is implemented in software, we wonder how many CPU cycles
our servers are dedicating to handling network traffic. In fact, real world measure-
ments always represent the first step to evaluate whether new optimizations are
needed, in particular given the claim, coming from some SmartNIC vendors, that
this cost can be up to 30% of the total amount of CPU cycles available in a data
center. This work describes the design and functionality of a novel tool, Netto, that
enables in depth observation and monitoring of the Linux kernel’s networking stack
in real time, by exploiting the tracing capabilities of eBPF, an affirmed technology
which dramatically enhances Linux’s observability by allowing the dynamic injec-
tion of user code into the kernel. It is also shown how a dynamic breakdown of the
individual components of the measured networking cost can be built on the fly by
collecting and analyzing CPU stack traces.
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Chapter 1

Introduction

Modern computer systems heavily rely on efficient networking capabilities to handle
the increasing demands of data transfer and communication. Within this context,
the kernel’s networking stack plays a vital role in both (i) allowing networked
communication, and (ii) minimizing their computational overhead on end hosts.
Therefore, as network traffic continues to surge with the widespread adoption of
IoT (Internet of Things) devices [2] in the attempt to create the so-called Smart
Cities and Societies, it is of paramount importance to understand and optimize
the kernel’s overhead imposed by the networking stack to achieve optimal system
performance to deal with the massive amount of exchanged data.

To address this challenge, emerging technologies such as eBPF (extended Berke-
ley Packet Filter) [12] have gained significant attention due to their ability to per-
form dynamic and non-intrusive tracing of the whole Linux kernel. By providing a
safe and efficient means to extend and customize the kernel’s functionality, eBPF
has opened up new possibilities for deep analysis of the networking stack and its
associated performance overhead.

By utilizing eBPF, we can collect fine-grained data and gain valuable insights
into the behavior of the kernel during network operations. This approach allows
not only to pinpoint performance bottlenecks, but also to identify and possibly op-
timize code and infrastructure inefficiencies, ultimately leading to improved system
performance and resource utilization.

1.1 Goal of the Thesis
The primary objective of this work is to explore the use of eBPF as a powerful tool
for tracking and quantifying the CPU cost induced by the networking stack of the
Linux kernel, and presenting Netto (https://github.com/miolad/netto), a novel
tool that utilizes these principles to allow the real-time, low overhead monitoring
and analysis of Linux’s networking layer.
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1 – Introduction

The following chapters will present a comprehensive methodology for utilizing
eBPF to track kernel overhead in the networking stack, and discuss the instru-
mentation of critical network-related functions using eBPF probes, collection and
analysis of performance data, and interpretation of the results. Then, the details of
the current implementation of these methodology is examined, together with the
challenges that have been hit throughout the writing of Netto. Finally, the tool has
been applied to several real-world scenarios, to validate it and gauge its accuracy
and performance overhead.
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Chapter 2

Related Work

The demand for efficient and accurate measurements of the costs and overheads of
the kernel’s network stack is pervasive in all research work surrounding the network-
ing topic. A reliable measurement is in fact the ideal starting point from which all
research should begin, as well as the target, to ensure expected performance gains
or rule out regressions.

Indeed, this work’s subject is touched upon by much of the relevant literature,
whether it is the main point of the paper, or a necessary note. In any case, regardless
of this fact, no unified measurement framework exists that can satisfy all the usual
requirements of accuracy and transparency, and in no case the suggested method
proves exhaustive in measuring the entire networking layer of the Linux kernel, as
Netto vouches.

In the following sections, three notable examples are reported to discuss advan-
tages and limitations of the suggested techniques.

2.1 Netmap
As part of the netmap project, Rizzo [9, Section 2.3] developed a custom solution
to measure the baseline performance profile of FreeBSD’s sendto system call. In
the adopted technique, the syscall was instrumented in-kernel to allow forcing an
early return at different depths. The designated system call could then be profiled
by calling it repeatedly from an ad-hoc user-space program and averaging out its
execution time over multiple runs.

Such a solution is appropriate only for static analysis of a system’s performance,
but it is clearly not suitable for real-time or continuous monitoring, as it requires
multiple intrusive kernel modifications to collect a single measurement. Moreover,
this approach does not take into account scheduling, and is therefore unreliable on
loaded systems. Apart from these drawbacks, Rizzo’s solution would still not con-
tend Netto due to the limited extent of the measurement and inadequate scalability.
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2 – Related Work

2.2 Arrakis
Two years later, Peter et al. [8] used a similar technique to profile the UDP data
path of the Linux network stack. Unlike [9], however, measurements were taken
by timestamping meaningful events directly in kernel. This approach still requires
patching the kernel, but avoids breaking its functionality while collecting the sam-
ples. Otherwise, the scope remains that of a focused, one-time measurement: once
again, extending this concept to the whole network stack would need a massive ker-
nel patch which would be incompatible with the Plug-and-Play nature that Netto
strives for. Also, timestamping per-packet hot-paths would likely prove challenging
due to the associated overhead; Netto overcomes this complications by conditionally
sampling these otherwise prohibitive functions.

2.3 NSight
NSight [5] is a recent tool that allows to diagnose latency deviations of network
packets in end-hosts which claims both very high precision and negligible overhead.
It manages this by utilizing the hardware profiler Intel-PT
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Chapter 3

Background

3.1 eBPF: Extended Berkeley Packet Filter
Extended Berkeley Packet Filter — or eBPF [12] — is a versatile and powerful
technology that has gained prominence in recent years for its ability to address a
wide range of networking and system monitoring challenges.

Initially introduced in the Linux kernel in version 3.18 as an extension of the
traditional Berkeley Packet Filter (BPF, now referred to as classic BPF, or cBPF),
eBPF has evolved far beyond the original scope of packet filtering for traffic capture,
and it is now a robust framework for programmable packet processing, system
tracing, and custom event handling for modern computer systems.

Central to its functionality is a Just-In-Time (JIT) recompiler, which allows
users to write and execute programs directly within the kernel, providing an un-
precedented level of flexibility and efficiency in network and system management.

Key features and components of eBPF include:

1. Programmability: eBPF programs are written in a restricted subset of the
C programming language (sometimes referred to as BPF-C, although compi-
lation from other languages is possible1), ensuring safety and security. These
programs can be dynamically injected into the kernel and executed without
requiring kernel module recompilation or system reboot, enabling rapid devel-
opment and deployment of custom functionality.

2. Security: eBPF’s safety features, including bound checking and instruction
verification, are enforced thanks to a static verifier which is invoked upon
program load. These guarantee the correctness of the injected code, making
eBPF a secure choice for running untrusted code within the kernel. This is

1Aya (https://aya-rs.dev/book/) is an in development, end-to-end framework for utilizing
eBPF with the Rust programming language.
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3 – Background

particularly important in protecting the integrity and stability of the host
system.

3. Compatibility: eBPF is a core feature of modern versions of the Linux kernel,
meaning that support is confirmed regardless of the host Linux distribution.
Moreover, the eBPF instruction set is independent of the underlying physical
architecture, making eBPF programs inherently portable.

4. Performance: eBPF programs are executed directly in kernel, which elimi-
nates the need for expensive system to user transitions, that often represent
a significant performance pitfall of modern operating systems’ design. Fur-
thermore, thanks to its JIT recompiler, eBPF code can be run at near native
speed.

5. Ecosystem: A rich ecosystem of tools and libraries has emerged around eBPF,
including BCC (the BPF Compiler Collection, TODO: cite), which provides
pre-built eBPF programs for common use cases, and bpftool for managing
eBPF programs and maps at runtime.

6. Versatility: Thanks to the many in-kernel hook points available to its pro-
grams, eBPF is suitable for a multitude of different applications, ranging from
the definition of fast network functions, to security monitoring, to system trac-
ing, and beyond.

Figure 3.1: High level overview of the eBPF architecture.
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3 – Background

The flexibility and performance benefits of eBPF have positioned it as a fun-
damental tool for enhancing the observability, security, and efficiency of modern
computer systems.

Some of the most notable components of the eBPF architecture are discussed in
the following sections.

3.1.1 Maps
The eBPF virtual CPU’s memory subsystem can only rely on a 512 B stack; no heap
is available, and thus dynamic memory allocation is not supported. This apparent
oversight in the design of eBPF is actually one of the main pillars of its security
model: dynamic memory is in fact one of the largest sources of runtime faults for
user programs, due to the error-prone nature of writing memory allocation and
management code. Additionally, bringing malloc to the kernel could also have
negative performance implications.

Instead, eBPF relies on maps to persist state across program invocations and
share it with other eBPF programs in the kernel or with user-space applications.
Fundamentally, maps are key/value stores managed entirely by the Linux kernel.
eBPF programs can access them with dedicated helper functions2, whereas user-
space applications can read and write to them by submitting the relevant command
through the bpf system call.

Many different map types are available, which differ by internal structure and
behavior, as well as the exposed interface. In the following, some among the most
noteworthy map types are described:

• BPF_MAP_TYPE_ARRAY: A simple linear array, it is fully described by the number
and size of its entries. When decorated with the BPF_F_MMAPABLE flag, Linux
allows user-space applications to “mmap” the backing memory to their address
space, enabling them to access it without expensive system calls. This is the
most direct and low-level means of exchanging data between eBPF programs
and user-space applications.

• BPF_MAP_TYPE_HASH: A typical hash-based associative table, which maps keys
to values. Both key and value types can be either primitive or composite
types for maximum flexibility. Like BPF_MAP_TYPE_ARRAY, hash maps are size
bounded by a max_entries parameter that is specified at map creation time,
but unlike arrays, pre-allocation of memory can be turned off in favor of an
allocate-on-insert strategy.

2Helpers are functions available to eBPF programs whose implementation resides in the kernel.
Helpers allow to expose a stable API to the eBPF layer regardless of the underlying kernel version,
and serve as bridge between the eBPF Virtual Machine and the native resources of the host system.
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3 – Background

• BPF_MAP_TYPE_PERF_EVENT_ARRAY: Supports streaming data from eBPF to
the user-space application by pushing raw bytes to a collection of per-CPU
circular buffers.

• BPF_MAP_TYPE_RINGBUF: Newer and better alternative to the aforementioned
BPF_MAP_TYPE_PERF_EVENT_ARRAY, to which it should be preferred in all cases.
It overcomes some of the shortcomings of its predecessor, making it universally
more convenient and/or performant. In a later chapter, this map type will be
compared to the previous mmapable array for fast kernel-to-user data transfers.

• BPF_MAP_TYPE_STACK_TRACE: Complements eBPF’s capability to dump CPU
stack traces by providing a natural map to store and later retrieve them from
the user-space. Conceptually, it functions as a hash map that associates a
stackid to each inserted stack trace, with the former being an automatically
generated 32 bit digest of the associated trace. Because traces that hash into
the same stackid are not repeated, this map can provide a form of “in-kernel
trace summarization”, minimizing the number of traces that must reach the
user-space controller.

Many more map types are available for different use cases. Additionally, some of
the aforementioned maps are also provided in different variants, like the PER_CPU
modifier available for arrays and hash maps (which partitions them into isolated,
per-CPU copies), or the LRU alternative of hash maps (that adds Least Recently
Used semantics to the map entries).

3.1.2 Program Types
eBPF programs are dynamically injected into the Linux kernel at specific hook
points, that determine the circumstances and context with which the program is
invoked. A hook point is defined by the tuple of program type and possibly a specific
attachment point: the former determines the kind of program and set of concrete
attachment points available, if any.

Among the multiple program types defined in modern versions of Linux, the
tracing and monitoring possibilities are virtually limitless. Here are some of the
most relevant eBPF program types for this work:

• Tracepoints: Linux tracepoints are static tracing hooks scattered all around
the kernel’s source code. A tracepoint is defined in the code by its name and
context, i.e. what data is passed to tracing programs and with what format.
Tracepoints identify fixed positions in the kernel source, generally associated
with meaningful events; they are also organized into major categories — like
syscalls or irq — that group related tracepoints together (see Listing 3.1
for reference).

8



3 – Background

eBPF supports attaching to tracepoint hooks through a few different program
types, including (i) tracepoint, (ii) raw_tracepoint, and (iii) tp_btf. (ii)
and (iii) differ from (i) because they’re raw, meaning that tracepoint argu-
ments are passed as raw bytes instead of parsing them into distinct variables
beforehand (giving them a slight performance advantage); additionally, tp_btf
programs are BTF-powered3, thus allowing them to access the kernel’s memory
directly without bridging helpers.

• KProbes: Although tracepoints are numerous and well distributed in the
kernel source, sometimes it is necessary to monitor functionality that is not
covered by any static tracepoint. KProbes are effectively dynamic hook points
that can be created at runtime to target almost any instruction of the running
kernel. This is accomplished by replacing the live instruction from system
memory at probe registration time with a breakpoint that traps the CPU and
jumps to user code.
Despite the convenience, these probes are generally very expensive.

• fentry/fexit: Since Linux 5.5, BPF trampolines [11] have allowed kernel
code to call into eBPF programs directly and with virtually zero overhead.
fentry and fexit are the two eBPF tracing program types built on top of
this feature, which ought to replace the older KProbes thanks to their much
superior performance.
They can attach to, respectively, any kernel function’s entry and return ad-
dresses and, similarly to the previously cited tp_btf, fentry and fexit are
also powered by BTF, simplifying their usage with respect to program argu-
ments and access to the host system’s memory.
Due to their undisputed superiority, Netto favors BFP trampolines to KProbes
whenever tracepoints are not available.

• perf_event: perf is a powerful profiling tool included in the Linux kernel; it
can instrument CPU performance counters and much more. eBPF programs
of type BPF_PROG_TYPE_PERF_EVENT can be attached to an open perf_event,
hence getting triggered whenever the event’s counter is ticked.
This is a very powerful feature that is exploited by Netto to achieve a peri-
odically invoked eBPF program, that it uses to sample the CPU call stack at
regular intervals.

3BTF (BPF Type Format) [14] is the metadata format which encodes the debug info related to
eBPF programs and maps. When available, it can enhance program introspection and visibility,
improving their portability.

9



3 – Background

$ ls /sys/kernel/tracing/events

alarmtimer hda_controller maple_tree rtc
amd_cpu hda_intel mce sched
asoc header_event mctp scsi
avc header_page mdio sd
block huge_memory mei signal
bpf_test_run hwmon migrate skb
bpf_trace hyperv mmap smbus
bridge i2c mmap_lock snd_pcm
cfg80211 i2c_slave module sock
cgroup i915 mptcp sof
clk initcall msr sof_intel
cma intel_iommu napi spi
compaction intel−sst neigh swiotlb
context_tracking interconnect net syscalls
cpuhp iocost netlink task
cros_ec iomap nmi tcp
csd iommu notifier thermal
damon io_uring nvme thermal_power_allocator
dev ipi oom thp
devfreq irq osnoise timer
devlink irq_matrix page_isolation tlb
dma_fence irq_vectors pagemap ucsi
drm iwlwifi page_pool udp
enable iwlwifi_data percpu v4l2
error_report iwlwifi_io power vb2
exceptions iwlwifi_msg printk vmalloc
ext4 iwlwifi_ucode pwm vmscan
fib jbd2 qdisc vsyscall
fib6 kmem ras watchdog
filelock ksm raw_syscalls wbt
filemap kvm rcu workqueue
fs_dax kvmmmu regmap writeback
ftrace kyber regulator x86_fpu
gpio libata resctrl xdp
handshake lock rpm xen
hda mac80211 rseq xhci−hcd

Listing 3.1: Available tracepoint categories as of Linux 6.5.2

3.1.3 Toolchain

As observed previously, eBPF programs are usually written in a restricted C lan-
guage, then compiled by an LLVM-powered compiler — like clang — into the BPF
bytecode, which can then be loaded into the kernel.

Most eBPF projects (like Netto) are composed of one or more eBPF programs

10



3 – Background

running in the kernel and a user-space controller that supervises them. To aid
developers in adding eBPF capabilities to their tools, various toolkits and libraries
are available on the open-source landscape. Among these, libbpf — a C library — is
the most low-level option, as it only serves as a thin wrapper on top of the Linux bpf
system call. It offers helpful APIs for loading compiled eBPF programs and maps,
as well as attaching the verified programs to the chosen kernel’s hook points. Due to
libbpf being developed alongside the main Linux kernel, it is always in feature parity
with mainline eBPF, and bindings for a number of other programming languages
are available: Netto is built on top of the Rust binding of libbpf.

Another very popular option is BCC, the Bpf Compiler Collection. BCC is
an assortment of tools and ready-made eBPF programs that aims to ease eBPF
development by providing a Python API for compiling and interacting with eBPF
code. Contrary to libbpf, BCC does not support the CO-RE programming paradigm
(Compile Once-Run Everywhere): tools based on BCC must ship their eBPF code
as source, for it to be compiled only at runtime. Because of this, it is also required
of target systems to install the BCC suite in order to run the programs, which is
one of the main reasons why Netto is not built on BCC.

3.2 RAPL: Running Average Power Limit
Among Netto’s features is the capability to estimate the host system’s power draw
owing to only networking-related tasks. This is crucial information necessary — for
instance — to assess whether a SmartNIC deployment would be a sensible option for
energy concerns in a data-center context. In order to give Netto energy awareness,
the RAPL [6, Volume 3B, Chapter 15.10.1] interface was used.

RAPL — which stands for Running Average Power Limit — is a technology
developed by Intel to monitor and control the power consumption in computer
processors. Although first introduced for Intel chips, RAPL is now available on
AMD CPUs as well.

RAPL consists of an MSR-based interface through which energy metrics about
the running system are exposed, along with a method for setting power limits (for
example to reduce power consumption or limit the amount of generated heat),
though this aspect of the RAPL specification has not been used by Netto.

RAPL implements four distinct power domains that can be independently con-
figured and probed (Figure 3.2 depicts them on a schematic picture):

1. Package domain: This includes all energy used by the CPU package, which
contains both PP0 and PP1 subdomains.

2. DRAM domain: Represents the connected DRAM memory modules.

3. PP0/Core domain: Concerns all the cores of the processor.

11
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4. PP1/Graphics domain: For CPU models that have it, this domain maps to
the on-board GPU.

Because RAPL’s resolution is limited to the entire core cluster of a CPU, Netto
can not estimate the power draw for the individual core or hyperthread, and hence
the estimated networking energy consumption can only be a rough approximation
based on a linear correlation between CPU utilization and energy consumption.

Figure 3.2: Power domains supported by RAPL.

3.3 Linux Networking Summary
The Linux network stack is the portion of the kernel that is in charge of handling
and moving network packets, between network interface and application (and vice-
versa), and from a network interface to another (for bridging and forwarding),
regardless of whether interfaces are physical NICs or virtual devices that live entirely
in software.

The following subsections are going to detail the journey of a typical network
packet as it is received by an interface, until it is delivered to the destination
application.

12



3 – Background

3.3.1 Network to socket
When a packet is received on a physical interface, it is DMAed to a ring buffer in
kernel memory, and an interrupt is raised by the hardware. Due to its complexity,
the packet handling stack can not all be contained in the Interrupt Service Routine
(ISR) of the NIC driver, and it is thus split into a top half and a bottom half. This
architecture, which is common across a variety of device drivers, allows to preserve
system responsiveness by keeping the high priority ISR (top half) compact and
fast, while delegating the bulk of the computation to a deferrable function (bottom
half), usually run in a lower priority context.

Linux deferrable functions enable one to schedule code to be executed at a later
time, thus allowing to bring expensive computations out of the constrained interrupt
context; this makes them ideal for implementing typical driver’s bottom halves. In
modern versions of the Linux kernel, several facilities implement this abstraction,
some of which are now briefly described:

• Softirqs: Softirqs are ideal for high frequency invocations. They are stati-
cally allocated, hence not applicable for implementing generic drivers’ bottom
halves; as of Linux 6.5.3, ten softirq variants are defined.
Softirqs execute independently on different cores of the hosting computer, al-
lowing true parallel processing. Each CPU has a bitmask of pending softirqs,
that identifies which softirq types have been scheduled for execution with the
raise_softirq() function. Regularly, each CPU checks for pending softirqs
and serves them with __do_softirq(); most notably, this check happens at
every IRQ exit. Because softirqs might get reactivated while being served
(for example by high priority interrupts, or by the softirqs themselves), the
__do_softirq() function is allowed to drain the pending mask up to ten times
per invocation. Past this threshold, outstanding softirqs are moved to the pro-
cess context via the ksoftirqd kernel threads, which call __do_softirq() in
a loop. Given that any individual softirq handler is run with preemption dis-
abled, their execution time must remain bounded, in order to avoid starving
other tasks of the CPU.

• Tasklets: The preferable method to implement bottom halves for most sit-
uations is with tasklets. Tasklets are built on top of two specific softirqs
(HI_SOFTIRQ for high priority tasklets, and TASKLET_SOFTIRQ for normal ones),
but unlike softirqs, tasklets can be allocated and initialized at runtime, and
they are serialized on different CPUs, meaning that tasklets of the same type
are not allowed to run in parallel, simplifying the design of driver stacks by
denying most sources of race conditions.

• Workqueues: Workqueues are similar to tasklets, in that they allow user allo-
cation and management of deferred work units. Conversely, though, the imple-
mentation of workqueues is based on a worker pool made up of kernel thread

13



3 – Background

workers, which host the deferred computation. For this reason, workqueues are
always run in process context, and can therefore use blocking calls.

• Threaded IRQs: Threaded interrupt handlers have been a feature of the
Linux kernel since 2.6, with the introduction of request_threaded_irq(). In
contrast to the traditional request_irq(), it not only allows adding a handler
for an interrupt line, but it also registers an associated thread_fn: after each
interruption from the specified irq, the regular handler is first executed in
interrupt context, then the system will independently wake up a dedicated
kernel thread where the specified deferred function will later be run.

Due to the networking layer being a fundamental component of a modern op-
erating system, and considering the possibly high frequency of exchanged network
packets, which would require the recurrent invocation of the kernel’s network stack,
softirqs are the most well suited option for its implementation. Indeed, two of the
ten currently allocated softirq types are related to networking: NET_RX_SOFTIRQ
and NET_TX_SOFTIRQ.

For NIC drivers implementing the NAPI4 interface, the top half culminates with
a call to napi_schedule(), which raises the NET_RX_SOFTIRQ on the local CPU and
registers the NIC’s driver for polling. For each invocation, the NET_RX_SOFTIRQ will
poll all registered drivers (within its budget constraint of 300 packets or 2 jiffies by
default), by calling their provided napi_poll() virtual function. At this point, the
typical NIC driver will perform a “cleanup” of the RX rings: a process which can
be broken down into the following high level overview, for each received packet:

1. Run any XDP_NATIVE eBPF program on the packet, if supported.

2. Wrap the packet into an skb, populating fields such as protocol and VLAN.

3. Submit the packet to the upper networking layer with netif_receive_skb(),
napi_gro_receive() or similar (the specific function used depends on the
driver’s capabilities, not on the NIC or its current configuration).

Once the generic networking layer of the Linux kernel is reached, an skb is man-
aged based on its L3 protocol by delivering it to the appropriate protocol handler
(like ip_rcv() for IPv4 traffic). Similarly, bridging is implemented by a specific re-
ceive handler — br_handle_frame() — which is run on every frame received on an
interface that is part of a software bridge. Crucially, a bridge can “pass a frame up”
when an skb targets the bridge itself with a nested call to netif_receive_skb().
Figure 3.3 shows a simplified model of the insides of the NET_RX_SOFTIRQ.

4NAPI [15] (formerly New API ) is the event handling mechanism used in the Linux networking
stack.
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Figure 3.3: Simplified model for the NET_RX_SOFTIRQ; the entry point is
net_rx_action, registered as the handler for this softirq.

3.3.2 Socket to application
To provide networking services to user-space processes, Linux adopts the traditional
socket API. Sockets represent the interface between applications and in-kernel net-
work functions, and through them users can send and receive data.

The scope of the NET_RX_SOFTIRQ, for traffic intended for the local host, ends
after dispatching the packet’s payload to the appropriate socket’s receive buffer.
Note however that not all incoming packets must be delivered locally. Some, for
example, might be transmitted on output interfaces due to bridging or forwarding,
while others may be dropped because of filtering or other reasons.

The traditional way of interacting with socket objects in Linux has been the
system call interface. Syscalls such as read and recv will retrieve data from the
socket’s kernel-side buffer and copy it to the user-provided address, completing the
packet’s journey. If no data is currently available, most variants of the aforemen-
tioned system calls will put the user process in “io-wait”, blocking it until there is
something to read. Some asynchronous versions of these functions have been pro-
posed throughout the years, but none have had the success and prominence of the
recent io_uring [18] interface.

io_uring

The Linux kernel has provided support for asynchronous input/output (AIO) op-
erations since version 2.5, but the implementation has largely been perceived as
inefficient and limited, with glaring oversights such as the complete lack of support
for socket operations. With Linux 5.1, io_uring has officially replaced the obsolete
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Figure 3.4: Design of the io_uring asynchronous I/O interface.

AIO as the preferred asynchronous I/O interface.

io_uring is a high performance asynchronous I/O framework proposed as an
alternative to the traditional syscall interface, and intended to simplify and speed
up asynchronous operations by minimizing context switches and reducing system
call overhead.

It is based on two circular buffers in shared memory between client application
and kernel, respectively called “submission queue” (SQ) and “completion queue”
(CQ); the former being writable by the user and readable by the kernel, vice-versa
the latter is writable by the kernel and readable by the user. Keeping these rings
in mapped memory allows to negate the cost of expensive system calls for writing
or reading them by user code.

An I/O request is issued by pushing the proper entry to the submission queue
(SQE, or Submission Queue Entry), describing the desired operation. The ker-
nel notices the submission either by direct notification from the user with the
io_uring_enter syscall, or through a dedicated polling thread. The latter option
(known as SQPOLL) allows for true zero-syscall I/O, at the expense of burning a
CPU core on polling. In any case, as the kernel receives an SQE, the associated op-
eration is asynchronously executed. Upon termination, its return code is wrapped
in a CQE (Completion Queue Entry) and written to the CQ, where the application
can receive it, completing the cycle. Figure 3.4 depicts this mechanism.

16



3 – Background

3.3.3 Data transmission
The network subsystem of Linux is, by nature, fairly asymmetric. This is because
the reception of an incoming network packet is inevitably an asynchronous event
with respect to the local computer system. Consequently, its management is dele-
gated to a mechanism of neutral interrupts and softirqs, until the received packet
is eventually assigned to a process via the owning socket.

In the opposite direction, the picture is generally much simplified, as socket
writes represent the primary entry point into the network stack for locally generated
outbound traffic. For a usual blocking call like write or send, the entire TX network
stack is contained within the syscall, which brings data from the user-space buffer to
the output NIC driver. It must be noted, however, that this simplistic dissertation
does not take into account complications specific to individual protocols, like in the
case of TCP, which uses deferrable tasklets to aid its congestion and flow control
implementations.

Lastly, the previously mentioned NET_TX_SOFTIRQ is infrequently raised to flush
NICs transmit queues in case an interface data is to be transmitted on was busy
on previous send attempts.
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Chapter 4

Netto’s Architecture

This chapter will present Netto’s architecture and design choices, first as a high
level overview of the methodology behind its main monitoring capabilities, then
by discussing some of the necessary precautions against scheduling and task inter-
ruptions. Finally, Netto’s event breakdown feature is going to be analyzed in its
multiple proposed forms.

4.1 Overview
In order to accurately measure the CPU utilization of the Linux kernel’s networking
stack, Netto uses eBPF tracing probes placed at the entry and return addresses of
the Linux functions that represent the main entry-points to in-kernel networking.
By relying on eBPF for the instrumentation, compatibility is ensured across dis-
tributions without requiring inconvenient patches to the kernel or device drivers,
while maintaining an acceptable level of runtime overhead.

The specific networking entry points that have thus been identified — which
will be referred to as “events” from now on —, together with their associated C
functions in the kernel source code are the following:

• NET_RX_SOFTIRQ: Polls NAPI-based physical and virtual network drivers and
handles incoming raw packets until dispatchment to local sockets; it batches
up to 300 skbuff s per invocation by default.
This softirq is responsible for most of the receive-side network stack and re-
active outbound traffic (i.e. transmitted packets that originate from remote
hosts, such as for bridging and forwarding network functions). Other kinds of
protocol-specific output packets are also produced in this softirq’s context, like
TCP acknowledgements or ICMP echo replies.

• NET_TX_SOFTIRQ: Occasionally flushes transmission queues for busy network-
ing drivers during high load scenarios.
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Despite the name similarity with the NET_RX_SOFTIRQ, this softirq can not be
considered as its transmit-side sibling. In fact, its CPU footprint is generally
quite limited.

• Socket receive operations: User-callable functions to terminate a receive
operation. These include system calls like read and recv, which ultimately
copy available received data from in-kernel socket buffers to user-provided
memory for consumption.
The identified C function associated with this event is sock_recvmsg(), which
acts as a common crossing point for the multiple available socket read paths.

• Socket send operations: User-callable functions to trigger transmission on
data through a socket object. Unlike socket reads, a write will usually account
for most of the transmission side of the Linux kernel’s networking stack. These
include system calls such as write and send.
The identified C function associated with this event is sock_sendmsg(), which
acts as a common crossing point for the multiple available socket write paths.

Table 4.1 summarizes the chosen eBPF program types and attach points for
the four aforementioned events. Note that eBPF ELF sections1 are specified in the
format <program type>/[<attach point>]. For the first two events, which use
BTF-powered raw tracepoint program types, the attach point refers to the specific
tracepoint’s name used, whereas for the latter events, the trampoline based tracing
programs fentry and fexit require as their attach point the name of the kernel
function to hook.

The decisions about eBPF program types is attributable to an effort at min-
imizing in-kernel overhead by the eBPF instrumentation. For this reason, static
tracepoints were preferred whenever available, and BPF trampolines were selected
otherwise. Note that, as both softirq events map to the same set of tracepoints,
the two are distinguished by filtering over their vec argument. Also worth men-
tioning is that the last two events are hit by any of the available relevant system
calls, including their async analogues and the networking opcodes of the io_uring
interface.

The described set of eBPF programs allows Netto to measure the on-CPU time
for each of the four network events independently. Every exit eBPF program accu-
mulates the difference in its invocation timestamp with that of its respective entry
into an event-specific, per-CPU, monotonically increasing nanosecond counter that
is shared with the user-space controller via a suitable BPF_MAP_TYPE_PERCPU_ARRAY

1An eBPF program’s section in its compiled ELF binary determines its type and concrete
attach point. See https://docs.kernel.org/bpf/libbpf/program_types.html for reference.
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Event Responsibility eBPF entry ELF sec. eBPF exit ELF sec.
NET_RX_SOFTIRQ Network → Socket tp_btf/softirq_entry tp_btf/softirq_exit

NET_TX_SOFTIRQ Flush TX queues tp_btf/softirq_entry tp_btf/softirq_exit

Socket recv ops Socket → Application fentry/sock_recvmsg fexit/sock_recvmsg

Socket send ops Application → Network fentry/sock_sendmsg fexit/sock_sendmsg

Table 4.1: eBPF programs’ ELF sections for the four identified networking entry-
points.

eBPF map. The controller runs with a default period of 500 ms, reads the most up-
to-date values from the map — on which it performs the necessary integration
analysis by comparing them with the previous iteration’s counters —, and then
updates the user-facing report. In particular, the total amount of CPU utilization
spent by Linux in networking tasks during any controller update cycle is given
by the fraction of the sum of every event’s on-CPU time since the last controller
invocation over the controller period, for each CPU. The default control loop invo-
cation frequency of 2 Hz has been originally chosen as a good compromise between
a satisfying temporal resolution of the output data and an acceptable level of CPU
overhead, although it must be noted that the initial concerns about elevated sys-
tem load due to the user-space controller have not materialized (as is shown in
Chapter 6). In the current implementation of Netto the default value can thus be
overridden to best suit the user’s needs.

To provide more meaningful insights into the cost of networking, the NET_RX_SOFTIRQ’s
contribution to the measurement is then broken down into smaller components. This
allows Netto to estimate the cost of the individual network functions like bridging
and forwarding. A more in depth explanation of this feature, along with details
on the design of two competing methodologies that have been attempted for its
implementation, is provided in Section 4.3.

4.2 Handling Switching of the Execution Context

The simple strategy presented so far works well in the common case, but it is subject
to errors in preemptible kernels in two separate scenarios: (i) network softirqs can
interrupt tasks on which socket events are running (this is because softirqs could
be run in interrupt context), and (ii) the task scheduler could preempt or migrate
monitored tasks; together, these synchronization problems aggravate the eBPF side
of the measurement stack.

The following subsections are going to present the proposed solutions to both of
these complications, discussing the resulting architecture.
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4.2.1 Softirqs Interrupting Other Tasks

Figure 4.1: Diagram of a softirq interrupting another networking task (a
sock_sendmsg in the figure).

Linux softirqs can be run in irq context, and can thus interrupt any user pro-
cess, including those where an instance of the identified socket network events is
currently running. This occurrence (schematically depicted in Figure 4.1) is es-
pecially common during high network load situations. This unfortunate timing of
events would lead — under the logic explained in the previous section — to the
over-estimation of the CPU utilization of the interrupted task. It is worth pointing
out that the opposite case, where a NET_RX_SOFTIRQ or NET_TX_SOFTIRQ is inter-
rupted by a socket operation, is not possible under the Linux implementation of
softirqs, because they are run in a non-preemptible context.

The adopted solution consists in associating to each encountered kernel task2

(i.e. each task a socket operation is found running on) a pair of bits allocated to
store information about what socket operation is currently executing, if any. It’s
important to associate this data to the task, and not to the host CPU, because tasks
can be migrated between cores, and the information must be maintained even for
threads that have been scheduled out of the processor.

These bits are set at every entry and exit to the sock_recvmsg and sock_sendmsg
events. Softirq entries will then behave like an exit from the socket recv/send event
whose id is stored in the task data, and vice-versa, softirq exits will act as the
corresponding socket event’s entry, updating the global entry timestamp.

4.2.2 Migratable Tasks
The second issue is related to tasks being preempted out of the CPU by the Linux
scheduler, possibly migrating them to different cores, as shown in the schema in
Figure 4.2. Since metrics exported by the eBPF layer have a per-CPU resolution,

2In Linux, a task represents a thread; each task has a pid that identifies it. Multi-threaded
processes are instead identified by a tgid (Thread Group ID).
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Figure 4.2: A task being migrated between two CPUs of the underlying computer
system.

any such migration negatively influences the measurement’s accuracy, as the exact
on-CPU time of a migrated task can not be correctly estimated by its exit eBPF
probe. Again, this problem only affects socket-related network events, for the same
reasons denoted above.

The solution here involves making Netto’s eBPF layer scheduling aware. This
involves instrumenting the Linux scheduler, which can be done by attaching a
tracing program to the sched_switch tracepoint. This tracepoint, in fact, is invoked
at every task switch on every CPU, and can access information of the entering
and exiting tasks. Coupled with the per-task storage introduced in 4.2.1, this new
program can correctly react to network task migrations. Once again, the elected
strategy consists in impersonating the associated event’s entry and exit routines by
the sched_switch probe based on the values of the task bits for the previous and
next tasks.

4.3 Event Breakdown
The tool, as described thus far, is fully functional in presenting the total CPU
utilization of the Linux networking stack, but provides little to no insight into
what components make up this monolithic cost. In fact, the only subdivision we
can attempt at this point is the one that spreads the overall CPU load into the
four identified events, though the diagnostic advantage of this operation would be
limited. It is instead undeniable that a finer-grained breakdown of the total cost
could prove useful in identifying hotspots and implementing optimizations.

For this reason, one of the key capabilities developed for Netto as part of this
thesis is providing an estimated breakdown of the cost of the individual network
events into their main components. With this feature — currently implemented for
the NET_RX_SOFTIRQ event — Netto can approximate the cost of the individual
network functions of a Linux host, such as bridging and forwarding.
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In the remaining subsections of this chapter, two techniques designed to im-
plement this goal are first going to be introduced, Full Functions Tracking and
Network Stack Sampling. Chapter 5 is then going to detail their implementation
and expose complications associated with their realization. Finally, Chapter 6 will
compare their performance and overhead, revealing the preferred technique used in
upstream Netto.

4.3.1 Full Functions Tracking
The most intuitive solution would be to extend the set of events traced with
eBPF from the initial four, with the core functions found in the body of the
NET_RX_SOFTIRQ and highlighted in the simplified model in Figure 3.3. As Netto’s
eBPF layer is now notified of every entry and exit from any of these sub-events, it
can export to the user-space controller a complete record of their execution time,
similarly to how it already measures the CPU utilization of other, higher level
events.

However, this concept fails to take into account two crucial aspects of the
NET_RX_SOFTIRQ’s internals:

1. Execution frequency of its sub-events: As already pointed out in an earlier
paragraph, the NET_RX_SOFTIRQ has an upper bound of 300 packets that can
be processed per invocation. This limit ensures that the softirq will release the
CPU in a timely manner and avoids starvation of other system tasks. At the
same time, its packet batching capability is beneficial for Netto as the execution
frequency of the associated eBPF tracing probes is scaled down with respect
to the inbound packet frequency by at most a factor of 300. The reduced eBPF
program calls help mitigate their intrinsic system overhead.
Conversely, most of the NET_RX_SOFTIRQ’s sub-events are run for each incom-
ing packet. This translates to possibly millions of times a second for multigig-
capable hardware, and especially for UDP or similar connectionless protocols,
where GRO/GSO can not artificially aggregate related packets.
Attaching tens of eBPF probes to such high-frequency hot paths would unde-
niably magnify Netto’s kernel side overhead. The extent of this inefficiency is
measured and discussed in Chapter 6.

2. Complex hierarchy of its sub-events: The NET_RX_SOFTIRQ’s sub-events
form a complex hierarchy with their call stacks. This is especially evident for
the netif_receive_skb() function, which is the core skb handling routine
and acts as the entry-point to the generic in-kernel networking stack in Linux.
This function, through the br_handle_frame() receive handler, can in fact be
run recursively, in case a bridge interface receives a packet with a destination
MAC address matching that of the virtual bridge device.
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Because of this and other similar anomalies, the simple execution time mea-
surement of the sub-events by difference of eBPF program invocation times-
tamps is not adequate anymore. The implemented solution revolves around
an eBPF-side event-stack; a more detailed description of this algorithm is pre-
sented in Chapter 5.

4.3.2 Network Stack Sampling

Algorithm 1 Stack trace symbol counting.
1: resetCounts()
2:
3: // Iterate over all captured stack traces
4: for trace in capturedTraces do
5: // Iterate over all of its instruction pointers
6: for instructionPointer in trace do
7: // Compare ip to all known kernel symbol ranges
8: for sym in knownSymbols do
9: if instructionPointer in sym.addrRange then

10: // In case of match, increment associated counter
11: incrementCountFor(sym)
12: end if
13: end for
14: end for
15: end for

A different technique aims to mitigate both of the highlighted complications with
Full Functions Tracking, by trading measurement accuracy for lower overhead. Net-
work Stack Sampling works by estimating the cost of the NET_RX_SOFTIRQ’s sub-
components instead of attempting an exact measurement; conversely, the eBPF
layer remains greatly simplified, as the burden of managing the sub-event hierar-
chy’s complexity is moved to the user-space domain.

The core idea behind Network Stack Sampling is to apply the methodology of
sample-based CPU profilers to the Linux kernel’s network stack, in real time. These
tools, commonly used to debug and diagnose software performance for user-space
applications, sample the program’s call stack at regular intervals, and then use the
captured data to discover hot-paths in the code and suggest optimization efforts.

Netto implements this through a single additional eBPF program of type perf_event,
which is able to interrupt each CPU core at a user-specified frequency. This parame-
ter is an fundamental configuration knob, as it allows a tailored compromise between
measurement accuracy and system overhead. Each invocation of the perf_event
eBPF program will dump the interrupted core’s kernel-side call stack, and pipe
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it to the user-space controller for analysis. The acquisition of the stack traces is
performed through the dedicated helper functions, and it’s thus fairly lightweight.
Conversely, the transfer of possibly thousands of stack traces every second by all
CPUs — and related retrieval by the controller application — is potentially a large
performance bottleneck of this design, and great attention has been put into ensur-
ing that this is implemented as efficiently as possible. In Chapter 5 several viable
options are explored and compared.

In any case, the controller will retrieve all captured stack traces during its update
cycles. At this point, trace analysis is performed. The strategy is fairly straight-
forward (see Algorithm 1): for all stack traces, the controller iterates over all the
contained instruction pointers, which are then matched up against a predetermined
set of kernel symbols, corresponding to the NET_RX_SOFTIRQ’s sub-event functions.
Every match results in an associated counter being incremented. After completion,
the counters are directly used to derive the CPU utilization by relating them to the
total execution time of the parent NET_RX_SOFTIRQ event for the same time slot.

4.4 Estimating the Total Networking Power Draw
A key application of the network stack diagnostics provided by Netto — which is
able to measure the CPU utilization associated to networking tasks — is deriving
the fraction of the CPU’s electrical power consumption due to networking. This
feature can help system administrators better understand the energy footprint of
their servers, as well as evaluating whether a SmartNIC deployment would prove
suitable to reduce the power draw in data centers, as this topic is becoming more and
more relevant throughout the years. Indeed, the relationship between networking
load and power draw, including the association between possible offloading of the
network stack to dedicated accelerators and resulting energy saving, is object of
further research, and a possible future direction for the development of Netto.

In its current implementation, Netto is able to compute a coarse approximation
of the network stack’s CPU-related power draw by intersecting the whole system
instantaneous energy consumption — as reported by Intel RAPL (which was dis-
cussed in Section 3.2) — with the fraction of the CPU utilization attributable to
the four networking events highlighted earlier in this chapter. In particular, the
total electrical power is obtained by integrating the contributions of the Package
and DRAM RAPL domains for each of the available sockets; this figure is then
scaled by the overall networking CPU load generated by Netto itself and converted
to W for presentation as an exported metric.

Indeed, this crude approximation, which is based on an alleged linear relationship
between CPU utilization and power output, only roughly resembles actual behavior
of modern hardware, that is instead coordinated by many different characteristics
such as frequency scaling and C-states. Unfortunately, no higher-resolution power
probing interface currently exists to, for instance, return the energy utilization on a
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per-core basis, which would allow Netto to enhance its energy-related capabilities.
In any case, this methodology is also utilized by other energy diagnostic software
such as Kepler [7], that also relies on strategically placed eBPF probes to obtain a
power scaling factor.
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Chapter 5

Netto’s Implementation

As of the latest version, Netto contains approximately 2000 lines of Rust code for
the user-space side of the tool and web frontend (where Rust is compiled into
WebAssembly [10] bytecode for execution in a web browser context), coupled with
about 300 lines of BPF-C code for the various eBPF probes that power Netto’s
diagnostic capabilities.

This chapter will expand on the design choices introduced in Chapter 4, showing
their implementation details and integrating them with code listings for the various
portions of the tool, by discussing the base network event monitoring feature first,
then by examining the event breakdown functionality.

Netto’s latest source code can be accessed publicly at this GitHub repository:
https://github.com/miolad/netto. The code is structured as a single Cargo
workspace1, composed of the following members:

• netto: Main binary crate for the tracing tool. It also contains the BPF-C code
in the netto/src/bpf folder.

• web-frontend: WebAssembly binary crate for the custom web frontend that
presents the captured metrics in real time to the user.

• metrics-common: Library crate used to share definitions between netto and
web-frontend.

• xtask: Meta binary crate used as a development tool to compile and deploy
Netto. With the alias specified in .cargo/config.toml, a pseudo-subcommand

1Cargo is the Rust package manager. It is commonly used to aid development of Rust pro-
grams thanks to its capability to automatically gather dependencies and configure them through
compilation switches (the “cargo features”). Workspaces are a special feature of Cargo that allows
to group several “members” together, each member being a separate crate, or project.
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is defined as cargo xtask, which builds and runs the xtask crate with what-
ever arguments it was given, allowing it to manage the compilation of the other
crates.

5.1 eBPF Data Plane
As mentioned above, Netto’s eBPF source is located in netto/src/bpf, where the
tracing code is mainly split into two source files: prog.bpf.c and prog.bpf.h.
vmlinux.h is the automatically generated header that contains all the definitions
from the Linux kernel for usage by the eBPF code.

The subdivision into header and source files is beneficial as the .h contains
definitions that must be propagated to the user-space code for the consumption of
data contained in eBPF maps. For this reason, prog.bpf.h is also read at Netto
compilation time to generate the equivalent Rust definitions by the popular bindgen
library crate.

The integration of eBPF code into Netto’s user-space program is done through
the Rust bindings of the libbpf helper library, which implies a CO-RE usage model:
this means that at compile time, and in a totally transparent way, Cargo will in-
voke the Clang compiler to build the eBPF code into a binary object file, which
is then bundled into the main executable through a skeleton, i.e. an automati-
cally generated Rust source file that contains the compiled BPF bytecode as a
constant byte array. The skeleton model thus allows accessing eBPF functionality
from user code with helpful abstractions over the raw bpf system call interface. All
the described compile-time behavior is configured in the custom builder script at
netto/build.rs.

Listing 5.1 shows the entire contents of the prog.bpf.h header file. Two notable
definitions are:

• enum event_types: Enumeration that associates a numeric identifier to each
tracked network event.
A notable difference with respect to the identified events described in Chapter 4
is the presence of a fifth one: EVENT_IO_WORKER. This entry refers to time
spent by the CPU in io_uring worker threads, which do not necessarily run
networking tasks, but tracking them can help contextualize the overall CPU
utilization of the host computer, especially when io_uring has been configured
with IORING_SETUP_SQPOLL, which dedicates a worker thread to busy polling
of the Submission Queue, burning a CPU core.

• struct per_cpu_data: Crucial struct that defines the format of captured
metrics and how they are transported from the in-kernel eBPF layer to Netto’s
Rust controller.
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1 #ifndef _PROG_BPF_H_
2 #define _PROG_BPF_H_
3

4 #include "vmlinux.h"
5

6 enum event_types {
7 EVENT_SOCK_SENDMSG = 0,
8 EVENT_SOCK_RECVMSG = 1,
9 EVENT_NET_TX_SOFTIRQ = 2,

10 EVENT_NET_RX_SOFTIRQ = 3,
11 EVENT_IO_WORKER = 4,
12

13 EVENT_MAX = 5
14 };
15

16 struct per_cpu_data {
17 /// @brief Latest entry timestamp to any event in ns
18 u64 entry_ts;
19

20 /// @brief Latest scheduler switch timestamp
21 u64 sched_switch_ts;
22

23 /// @brief Total CPU time accounted to various events since the last
scheduler switch

24 u64 sched_switch_accounted_time;
25

26 /// @brief Total time in ns registered for each event
27 u64 per_event_total_time[EVENT_MAX];
28

29 /// @brief When non-zero, stack traces by the perf event prog are enabled
30 u8 enable_stack_trace;
31 };
32

33 #endif

Listing 5.1: Entire contents of the prog.bpf.h header.

The core of the struct is the pair of fields entry_ts and per_event_total_time;
the former contains the most recent entry timestamp in ns to any event, and
is only used internally by the eBPF probes, while the latter is an array that
contains the total cumulative time spent by the CPU in each of the tracked
events since Netto was loaded into the systems.

The other fields are used to enable the monitoring of the EVENT_IO_WORKER
(sched_switch_ts and sched_switch_accounted_time) — as it can be done
by exploiting the already existing sched_switch tracepoint and no additional
probe —, or as part of the final implementation of the NET_RX_SOFTIRQ cost
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breakdown feature (enable_stack_trace), which is going to be discussed later
in this chapter.
As the name implies, this struct is instantiated once for every CPU core, in
order to support per-CPU metric collection.

5.1.1 Maps Definition
Two eBPF maps support the basic event measurement feature, with a third used for
the NET_RX_SOFTIRQ breakdown logic, which will be examined in 5.3. The BPF-C
code where these maps are defined2 is reported in Listing 5.2.

15 /**
16 * Keeps track of which tasks are currently being tracked
17 * by associating an event identifier to each of them.
18 */
19 struct {
20 __uint(type, BPF_MAP_TYPE_TASK_STORAGE);
21 __type(key, u32);
22 __type(value, u64);
23 __uint(map_flags, BPF_F_NO_PREALLOC);
24 } traced_pids SEC(".maps");
25

26 /**
27 * Per-cpu timestamps and counters
28 */
29 struct {
30 __uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
31 __uint(key_size, sizeof(u32));
32 __uint(value_size, sizeof(struct per_cpu_data));
33 __uint(max_entries, 1);
34 } per_cpu SEC(".maps");

Listing 5.2: netto/src/bpf/prog.bpf.c: Definition of the main eBPF maps.

The first one, named traced_pids in the code, is a BPF_MAP_TYPE_TASK_STORAGE
map used to implement the race condition mitigation strategy described in Sec-
tion 4.2: it stores the event identifier of the currently running networking event on
each task for usage by the two softirq probes and the sched_switch tracepoint pro-
gram. The requested map flag BPF_F_NO_PREALLOC requires that all reads from a
task’s eBPF storage fail until an explicit write has been performed by a call to the
helper bpf_task_storage_get(). This helps ensure correct concurrent behavior
by disallowing access to such storage before the first event entry. The semantics of

2eBPF maps can be declared directly from eBPF code by allocating specific structures in the
“.maps” ELF section of the compiled program, describing the requested map. Alternatively, map
allocation can be performed from the user-space by interacting with the bpf system call.
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the task storage contents dedicates the value EVENT_MAX to encoding a “no events”
case.

The per_cpu map instead is a one slot per-CPU array, providing differentiated
memory for the multiple CPU cores of the system, where the previously described
per_cpu_data struct is stored.

5.1.2 Basic Entry-Exit Program Logic
At the heart of Netto’s tracing features are the main eBPF programs attached to the
entry and exit addresses of the Linux networking entry-points, used to measure their
execution time by taking the difference in the probes’ invocation timestamps. In
total, six such programs are defined in prog.bpf.c (as the two softirq networking
events share the same couple of tracepoints, as shown in Table 4.1). However,
since the overall functionality is mostly the same between the different events, only
one specific instance is reported in Listings 5.3 and 5.4, which show the programs
attached to the sock_recvmsg() function.

127 SEC("fentry/sock_recvmsg")
128 int BPF_PROG(sock_recvmsg_entry) {
129 u32 zero = 0;
130 struct per_cpu_data* per_cpu_data;
131 u64* per_task_events, now = bpf_ktime_get_ns();
132

133 if (
134 likely((per_task_events = bpf_task_storage_get(&traced_pids,

bpf_get_current_task_btf(), &event_max, BPF_LOCAL_STORAGE_GET_F_CREATE))
!= NULL) &&

135 likely((per_cpu_data = bpf_map_lookup_elem(&per_cpu, &zero)) != NULL)
136 ) {
137 per_cpu_data->entry_ts = now;
138 *per_task_events = EVENT_SOCK_RECVMSG;
139 }
140

141 return 0;
142 }

Listing 5.3: netto/src/bpf/prog.bpf.c: Entry eBPF program for the socket
receive network event.

Entry programs are very simple: after acquiring a reference to both maps’ mem-
ory, the probe updates the CPU’s latest entry timestamp and then sets the current
event as active for the underlying task.

144 SEC("fexit/sock_recvmsg")
145 int BPF_PROG(sock_recvmsg_exit) {
146 u32 zero = 0;
147 struct per_cpu_data* per_cpu_data;
148 u64* per_task_events, now, entry_ts, t;
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149

150 if (
151 likely((per_task_events = bpf_task_storage_get(&traced_pids,

bpf_get_current_task_btf(), NULL, 0)) != NULL) &&
152 likely((per_cpu_data = bpf_map_lookup_elem(&per_cpu, &zero)) != NULL)
153 ) {
154 entry_ts = per_cpu_data->entry_ts;
155 now = bpf_ktime_get_ns();
156 t = now - entry_ts;
157

158 *per_task_events = EVENT_MAX;
159 per_cpu_data->per_event_total_time[EVENT_SOCK_RECVMSG] += t;
160 per_cpu_data->sched_switch_accounted_time += t;
161 }
162

163 return 0;
164 }

Listing 5.4: netto/src/bpf/prog.bpf.c: Exit eBPF program for the socket receive
network event.

Conversely, exit programs perform the opposite operations to reset the event
identifier on the running task and increment its total execution time in the per_cpu
struct, which is going to be reflected on the final CPU utilization metrics for the
associated event. Notice how the event’s on-CPU time t is computed by subtracting
the latest entry timestamp from the current time (returned by the bpf_ktime_get_ns()
helper). The specific way in which t is calculated, by first moving into the local
stack the entry_ts variable and then now, mitigates a rare race condition which
happened whenever the fexit/sock_recvmsg or fexit/sock_sendmsg programs
were interrupted by a networking softirq (and thus the attached pair of eBPF
programs as well). In such case, it was possible for the entry_ts register to be
overwritten by the tp_btf/softirq_exit eBPF program (as part of its synchro-
nization handling algorithm described in Section 4.2.1) before the value could be
read by the interrupted probe but after the invocation timestamp was obtained
from bpf_ktime_get_ns(), inducing a negative t that would manifest as an in-
stantaneous spike in the measured CPU utilization. This occurrence, albeit rare
(but still relatively frequent on high core count systems) is thus resolved by lines
154 to 156 of the above code snippet.

5.1.3 The sched_switch Tracepoint
Finally, to conclude the discussion about the in-kernel eBPF component of Netto,
a mention of the sched_switch tracepoint program is in order. As specified in the
Architecture chapter of this thesis, such program was made necessary by the need
to track migratable tasks across core boundaries. Listing 5.5 displays its code.
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217 SEC("tp_btf/sched_switch")
218 int BPF_PROG(tp_sched_switch, bool preempt, struct task_struct* prev, struct

task_struct* next) {
219 u32 zero = 0;
220 struct per_cpu_data* per_cpu_data;
221 u64* prev_task_events, * next_task_events, now = bpf_ktime_get_ns();
222

223 prev_task_events = bpf_task_storage_get(&traced_pids, prev, NULL, 0);
224 next_task_events = bpf_task_storage_get(&traced_pids, next, NULL, 0);
225 per_cpu_data = bpf_map_lookup_elem(&per_cpu, &zero);
226

227 if (likely(per_cpu_data != NULL)) {
228 if (prev_task_events != NULL)
229 stop_event(*prev_task_events, per_cpu_data, now);
230 if (next_task_events != NULL && *next_task_events != EVENT_MAX)
231 per_cpu_data->entry_ts = now;
232

233 if (prev->flags & 0x10 /* PF_IO_WORKER */)
234 per_cpu_data->per_event_total_time[EVENT_IO_WORKER] += now -
235 per_cpu_data->sched_switch_ts -
236 per_cpu_data->sched_switch_accounted_time;
237 per_cpu_data->sched_switch_ts = now;
238 per_cpu_data->sched_switch_accounted_time = 0;
239 }
240

241 return 0;
242 }

Listing 5.5: netto/src/bpf/prog.bpf.c: eBPF probe attached to the
sched_switch tracepoint.

This probe is also quite straightforward:

1. First the event identifiers of the exiting (prev) and entering (next) tasks are
acquired, together with a reference to this CPU’s struct per_cpu_data in-
stance (lines 223 to 225).

2. Then, the event ids are used to respectively stop their accounting (line 229: the
stop_event inline function is a convenience routine to increment an event’s to-
tal time based on the current invocation timestamp, as seen in the fexit/sock_recvmsg
program reported above) and update the latest entry timestamp (line 231), if
necessary.

3. Finally, the EVENT_IO_WORKER pseudo-event is addressed by checking whether
the prev task was indeed an io_uring worker thread, and thus incrementing
its total execution time (lines 233 and 234).
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5.2 User-Space Control Plane
On the user-space side, the implementation is based on the actor abstraction offered
by the well known Actix crate (https://actix.rs/), a high performance library for
building fast concurrent applications in Rust. The actor model works by splitting
the business logic of the program into multiple isolated entities (the actors) that
each implement their own function, thus achieving a separation of concerns that is
beneficial for maintainability and overall code quality.

Each actor is identified by a unique address, that can be used as the endpoint
to which to send messages. Message passing is indeed the primary way with which
independent actors communicate by exchanging data and delivering signals; each
actor can in fact be configured to support the reception of messages based on their
static type. The reception of a supported message will then trigger then execution of
a handler function in the actor’s context, possibly returning a result to the original
sender.

The whole actor scaffold is supported by an asynchronous runtime powered by
the Tokio crate (https://tokio.rs/), a state-of-the-art implementation of the
async execution model for the Rust programming language, based on a multi-
threaded work-stealing scheduler that allows to efficiently host multiple tasks on the
available kernel threads. In Netto’s case, the Tokio engine is kept single-threaded
for simplicity, and because its specific workload would not benefit from parallel
execution.

All of Netto’s actors are found in the netto/src/actors folder, whereas the de-
fined message types used for inter-actor communications are in netto/src/actors/mod.rs.
The following subsections will describe the implemented actors and how they in-
teract with each other.

5.2.1 TraceAnalyzer

This is the primary entity responsible for interacting with the eBPF core and ex-
porting metrics. After the startup initialization — where eBPF programs are loaded
and attached to their respective hook points in the kernel — ownership of the libbpf
skeleton is transferred to this actor, which is hence capable of accessing the per_cpu
map where eBPF metrics are stored.

The core of this module is TraceAnalyzer’s run_interval() method, which is
periodically run by Actix based on the controller update cycle frequency parameter
(which defaults to 500 ms). Each invocation of the run_interval() method will:

1. Compute variations in time and total electrical energy with respect to the
previous execution of the function.
The former should, under normal working conditions, closely resemble the
requested period provided by the user configuration, but it could sway slightly
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due to scheduling inaccuracies, especially in highly loaded systems. In order to
provide the maximum accuracy when computing the final metrics, this value
is thus measured.
The latter allows Netto to derive the average power drawn by the system
since the previous controller iteration, which is used to implement the overall
networking power estimation, as explained in Section 4.4.

129 let delta_time = {
130 let dt = now.duration_since(self.prev_update_ts);
131 self.prev_update_ts = now;
132 dt
133 };
134 let delta_energy = self.rapl.as_ref().map(|rapl| {
135 let current_total_energy = rapl
136 .sockets
137 .values()
138 .flat_map(|socket| socket.energy())
139 .sum();
140 let delta_energy = current_total_energy - self.prev_total_energy;
141 self.prev_total_energy = current_total_energy;
142 delta_energy
143 });

Listing 5.6: netto/src/actors/trace_analyzer.rs: Computation of the delta
time and energy.

2. Handle the stream of captured stack traces from eBPF to implement Network
Stack Sampling (discussed later). This step names the entire actor.

3. Perform the lookup into the per_cpu eBPF map and integrate the raw values
with those from the previous controller iteration to produce the CPU utiliza-
tion metrics.
In this step the controller iterates over the per_event_total_time array; for
each entry, it chooses a descriptive name and emits the metric by sending a
MetricUpdate message to the MetricsCollector actor.
Finally, the MetricsCollector is notified about the event array being con-
sumed by a SubmitUpdate message, which also includes the updated network-
ing power draw and the generic /proc/stat metrics, captured and exported
for validation concerns.

346 self.metrics_collector_addr.do_send(SubmitUpdate {
347 net_power_w: delta_energy.map(|e| (e as f64) *
348 total_cpu_frac / (
349 delta_time.as_secs_f64() * 1_000_000.0
350 )
351 ),
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352 user_space_overhead: now.elapsed().as_secs_f64() /
353 delta_time.as_secs_f64(),
354 procfs_metrics
355 });

Listing 5.7: netto/src/actors/trace_analyzer.rs: Final notification to the
MetricsCollector actor, signaling a successful control iteration.

5.2.2 MetricsCollector

The MetricsCollector’s purpose is twofold: (i) it serves as the repository to store
CPU consumption metrics as they are computed by the TraceAnalyzer actor, and
(ii) it also pushes the completed updates to any configured client.

To do these tasks, the actor implements handlers for two main message types,
MetricUpdate and SubmitUpdate, both of which have already been mentioned in
the previous subsection. The former carries the latest information about one specific
metric, such as its name, average CPU time fraction for the latest controller
update cycle, and CPU id of the processor core to which the data refers to. Upon
receiving such a message, the MetricsCollector stores the updated information
about the metric in an inner and cohesive representation of the whole metrics
tree, using the name field of the message as a persistent and hierarchical path that
identifies the metric across controller iteration boundaries (the hierarchical nature of
the name property is used for nested metrics, common due to the NET_RX_SOFTIRQ
breakdown functionality. For instance, the name “RX Softirq/Bridging” identifies
the Bridging submetric of the RX Softirq event). Notably, the MetricsCollector
actor’s code is completely agnostic to the actual metrics produced by the system,
as it will seamlessly support metrics that dynamically change at runtime, although
this use case is not currently exploited by the rest of the application.

As the TraceAnalyzer scans the per_cpu eBPF map, metrics are produced and
pushed to the MetricsCollector for storage. Eventually, when the map has been
drained, a single SubmitUpdate message is sent to the MetricsCollector; this
message signals the completion of the controller iteration, triggering the propaga-
tion of the metrics tree to all clients. Currently Netto supports three client types:
a file-based logger, a Prometheus-compatible exporter, and a custom web solution
designed for real-time consumption of the data. The remaining actors implement
these clients.

5.2.3 WebsocketClient

Netto’s custom web frontend works by serving a static HTML document with ac-
companying WebAssembly script (the web-frontend binary crate) via Actix’s built-
in HTTP server. Upon loading the page on the client’s browser, the wasm program
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loads and establishes a WebSocket connection to Netto, through which all metrics
updates are streamed. More details on this solution are provided in 5.4.

The WebsocketClient actor represents a single WebSocket connection to a
web client; upon upgrade of the HTTP socket, Actix automatically instantiates
a corresponding WebsocketClient, that will then register itself to the singleton
MetricsCollector. As the SubmitUpdate messages are relayed to all registered
WebsocketClients, a Message Pack3 encoded version is sent over the connection
to the wasm script running in the client browser.

5.2.4 FileLogger

The FileLogger implements a basic log-to-file functionality for Netto, where all
metrics are dumped to a user-specified file. Similarly to the previous WebsocketClient,
the Message Pack encoding format is also used, not only because of the low re-
source utilization, but mostly due to the constant size of each metrics snapshot,
which greatly simplifies decoding of the log. The typical bandwidth of a Netto log
is around 3.3 kbps per core.

5.2.5 PrometheusLogger

Finally, the PrometheusLogger concludes the list of used actors. As the name im-
plies, it organizes available metrics into a Prometheus registry and encodes them
to text to be served by the same HTTP server that manages the custom frontend.
Prometheus (https://prometheus.io/) is a successful solution for managing cus-
tom time series metrics, which also defines an efficient format that has become a
de-facto standard throughout the years. Compatibility with Prometheus provides
Netto with the ability to interface with powerful data visualization and management
software such as the Grafana (https://grafana.com/) product stack.

5.3 Event Breakdown
Netto is capable of producing a breakdown of the cost of the NET_RX_SOFTIRQ
network event into its main components. This is particularly useful because the
receive-side networking stack embedded in this softirq hides several core network
functions that could potentially be stressed more or less depending on the specific
load applied to the host system. Knowing what component is causing a large CPU
utilization hit may allow system administrators to more accurately optimize their

3Message Pack is an efficient binary encoding format that was chosen for Netto due to its low
overhead both in message size and computational power required for serialization and deserializa-
tion. https://msgpack.org/
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servers. The greater diagnostic resolution provided by the event breakdown feature
is thus invaluable for a large variety of use cases, and in the future Netto could
be expanded to support more granular breakdowns of other events beyond the
NET_RX_SOFTIRQ.

Currently, Netto supports the following NET_RX_SOFTIRQ sub-events:

1. Driver Poll: It represents the overhead associated with polling the NIC driver.
Since all drivers use a different polling function, this metric is quite opaque,
as the amount and type of work performed might differ depending on the host
hardware. Typically, though, it involves retrieving packet data from dedicated
memory buffers, allocating or recycling skbs to store them, and several other
operations. During testing of Netto, this metric would often stand out as one
of the most prevalent contributions to the overall softirq’s cost.

2. GRO Overhead: Generic Receive Offload (GRO) is a hardware-backed tech-
nology that allows reconstruction of network flows for stream-oriented trans-
port protocols such as TCP by the NIC. GRO is crucial to enhance the effi-
ciency of the TCP/IP receive-side stack specifically as it can condense mul-
tiple segments of the same network flow into bigger skbs, thus reducing the
per-packet computational overhead. Drivers of GRO-capable NICs use special
functions to submit skbs to the common upper layers of the network stack such
as napi_gro_receive(), instead of the more generic netif_receive_skb().
These variants incur into some level of CPU overhead due to the packet man-
agement tasks they provide, which this metric attempts to isolate. In practice,
although sometimes significant, any amount of overhead induced by GRO is
less than the cost of disabling the feature.

3. XDP Generic: This sub-event measures the cumulative CPU consumption
of any eBPF program attached to the XDP_GENERIC attachment point. As
opposed to the NATIVE or OFFLOADED counterparts, XDP_GENERIC is hosted in
the common networking path, thus allowing Netto to target it.

4. TC Classify: It refers to the classification step of the Traffic Control Linux
subsystem.

5. NF Ingress: This is NetFilter’s earliest hook point in the receive-side of the
network stack, and as such it can be used to implement early packet filtering.

6. Conntrack: Conntrack is an important element of the NetFilter firewall ar-
chitecture, which is in charge of connection tracking (as the name suggests).
This makes NetFilter a stateful firewall. Conntrack’s cost can be significant in
some specific circumstances.

7. Bridging: A software bridge is a networking device that implements the
switching algorithm for L2 traffic; in Linux, a bridge is defined by means
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of which interfaces are part of it. The CPU cost of a software bridge can be
attributed to parsing of the Ethernet headers and forwarding frames to output
interfaces.

8. NF Prerouting: Another component of the NetFilter architecture, the PREROUTING
stage refers to the instant before any routing decision takes place, in this case
for traffic in the input chain.
Since this hook is specific for IP packets, two submetrics are actually defined,
for IPv4 and IPv6 respectively.

9. Forwarding: Network function applied to inbound IP packets whose desti-
nation L3 address is a that of a remote host. Forwarding is typically globally
disabled on end hosts through a specific configuration switch, but in modern
servers this is likely the most prominent networking function used, as large
amounts of data can be exchanged by different VMs or network namespaces.

10. Local Delivery: Again referring to inbound IP traffic, the term “local deliv-
ery” is used to describe packets directed to local applications. This sub-event
(which is also split in a v4 and v6 version) thus includes all CPU cycles spent
bringing the received packets to their destination socket, hence including pos-
sible processing of higher level protocols.

In Section 4.3 two different mechanisms were discussed as possible implementa-
tions for this feature. Now, Full Functions Tracking and Network Stack Sampling
are more accurately examined and presented together with their implementation
details.

5.3.1 Full Functions Tracking
As already pointed out in a previous chapter, Full Functions Tracking suffers from
two crucial flaws: (i) poor performance due to amplified eBPF instrumentation
overhead for kernel’s hot functions, and (ii) inadequate scalability caused by hav-
ing to deal with the sub-events hierarchy complications directly in eBPF. And while
it is certainly the first of the two issues (whose extent is going to be analyzed in
Chapter 6) that would eventually lead to the abandonment of this option in favour
of the more elegant Network Stack Sampling solution, the second problem is un-
doubtedly an interesting engineering hurdle that deserves some further discussion.

Indeed, with the ambition of designing a fully generic algorithm that would thus
be applicable to any set of sub-events (a crucial requirement to maintain scalability
and compatibility with past and future versions of the Linux kernel), it is of essential
importance to consider edge cases where the structure of the targeted sub-events
(i.e. what is the relationship of their functions and how they are linked together) is
not a simple tree, but rather a more generic graph.
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This poses critical problems to how the CPU time is accounted for the various
networking events, as the semantics of whether a new event entry should replace
or stack on top of a pending event is a case-by-case decision that depends on the
specific events considered. Additionally, some events could also be run recursively,
aggravating the situation further. This behavior is triggered, for example, by the
implementation of the bridging functionality, which can occasionally “pass frames
up”, causing the recursive execution of the netif_receive_skb() function.

In Netto’s implementation of Full Functions Tracking (which can be consulted
at the aptly named branch of the main GitHub repository: https://github.com/
miolad/netto/tree/full-functions-tracking), these problems were addressed
by a dedicated “event stack”: a per-task structure that would store the ordered list
of the currently running networking events (Listing 5.8).

47 /**
48 * Contains a stack of the currently in-flight events
49 * for a given task
50 */
51 struct event_stack {
52 /// @brief Each element is an index into the events array
53 u16 stack[EVENT_STACK_SIZE];
54 /// @brief Index of the first empty frame in the stack
55 u16 stack_ptr;
56 };

Listing 5.8: main/src/bpf/event_stack.bpf.h: Definition of the event_stack
structure, a key component of the Full Functions Tracking architecture.

Furthermore, access to the event stack should be synchronized between con-
current invocations of eBPF programs, not because of multithreading concerns
(as the event stack is a per-task property, which is thus only ever hosted on one
CPU core at a time), but due to IRQ-hosted events such as NET_RX_SOFTIRQ and
NET_TX_SOFTIRQ possibly interrupting other eBPF programs. This is achieved in
the code by means of a bpf_spin_lock object.

Two operations are supported on the event stack structure, through which the
eBPF probes would update the respective events’ measured CPU time:

• Push: Pushes a new event to the top of the stack, possibly updating the
timings of any other event in the stack. Note that this requires scanning the
stack, and is thus a linear operation with respect to the stack size. In the code
(not reported here due to space constraints), some tricks were required to
ensure correctness, such as explicitly checking for specific events or using often
convoluted expressions to persuade the eBPF verifier (usually a symptom of
high code complexity).

• Pop: The opposite operation of the previous push, it removes the topmost
event from the stack. Similarly to the push operation, equivalent issues plague
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the pop as well.

On the user-space controller side, the implications of Full Functions Tracking-
based event breakdown are minimal, as the final metrics are exported directly by
the eBPF layer, no differently from how the four main networking events were
handled previously.

5.3.2 Network Stack Sampling
The Network Stack Sampling strategy is a more clever solution for the event break-
down functionality that sidesteps most of the complications of Full Functions Track-
ing. Specifically, the large complexity associated with sub-event hierarchy — which
required the utilization of a cumbersome event stack before — is now lifted from
the eBPF layer and into user code, where Netto does not have to deal with eBPF
restrictions such as limited stack size or verifier constraints. Additionally, remov-
ing a major source of complexity from the in-kernel critical data path, along with
getting rid of the expensive eBPF instrumentation for most of the hot functions, is
going to inevitably determine a substantial performance advantage with respect to
the previous attempt.

Of course, as explained in the dedicated section of Chapter 4, the drawback of
Network Stack Sampling is manifested as a theoretically reduced accuracy of the
sub-event metrics, by a factor that is directly related to the configured sampling
frequency setting. Conversely, Network Stack Sampling is however an unbiased algo-
rithm, meaning that no inherent error is introduced in the estimation, and increas-
ing the aforementioned frequency would further converge to the exact solution. In
practice, though, this apparent disadvantage when compared with Full Functions
Tracking is overshadowed by the absolute cost of the previous technique, which
would also skew the measurements (this is covered in detail in the next chapter).

Network Stack Sampling only requires a single additional eBPF program on top
of the ones introduced for the basic measurement feature of the four base networking
events. This is the perf_event probe that — through periodic invocation on all
the CPU cores available in the system — is responsible for dumping the valuable
kernel-side stack traces for later analysis by the user-space controller. Listing 5.9
reports the code of this extra program.

240 SEC("perf_event")
241 int perf_event_prog(struct bpf_perf_event_data* ctx) {
242 struct per_cpu_data* per_cpu_data;
243 u32 index, zero = 0;
244 u64* buf;
245

246 if (
247 likely((per_cpu_data = bpf_map_lookup_elem(&per_cpu,
248 &zero)) != NULL) &&

41



5 – Netto’s Implementation

249 per_cpu_data->enable_stack_trace
250 ) {
251 index = __sync_fetch_and_add(
252 stack_traces_slot_off ? &stack_traces_count_slot_1 :
253 &stack_traces_count_slot_0,
254 1
255 ) + stack_traces_slot_off;
256

257 if (likely((
258 buf = bpf_map_lookup_elem(&stack_traces, &index)
259 ) != NULL)) {
260 *buf = (u64)bpf_get_smp_processor_id() |
261 ((u64)bpf_get_stack(
262 ctx,
263 buf + 1,
264 sizeof(u64) * 127,
265 0) << 32
266 );
267 }
268 }
269

270 return 0;
271 }

Listing 5.9: netto/src/bpf/prog.bpf.c: The perf_event eBPF program that
periodically interrupts the CPU and captures the kernel-side stack trace.

The snippet, which is relative to the mmapable array implementation (refer to
5.3.2 for details), shows a very simple structure. After acquiring a suitable array
slot to save the stack trace to, the bpf_get_stack() helper is used to perform the
actual stack walking and writing the stack frame data to memory, together with
critical information such as the processor id and size of the captured trace. The
compact nature of the program helps keep it fast and efficient, as the evaluation
chapter will highlight.

One notable optimization is the condition on line 249: only during the execution
of a NET_RX_SOFTIRQ Netto is interested in capturing stack traces, and so the feature
is automatically enabled on-demand only for CPU cores busy serving the above
softirq. This reduces the flow of stack traces that must be analyzed, optimizing the
controller’s CPU load during idle networking conditions.

Finally, Listing 5.10 shows how the perf_event programs are loaded and at-
tached. For each CPU in the system, an identical perf_event is opened with type
PERF_TYPE_SOFTWARE and config PERF_COUNT_SW_CPU_CLOCK; this determines a
synthetic event that is triggered at the requested rate. Then, the perf_event_prog
showed above is attached to each of the individual events through the file descriptor
returned by the perf_event_open system call.
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79 // Open and attach a perf-event program for each CPU
80 let _perf_event_links = unsafe {
81 let iter = (0..num_possible_cpus)
82 .map(|cpuid| {
83 let mut attrs = perf_event_attr {
84 size: std::mem::size_of::<perf_event_attr>() as _,
85 type_: PERF_TYPE_SOFTWARE,
86 config: PERF_COUNT_SW_CPU_CLOCK as _,
87

88 // Sampling frequency
89 __bindgen_anon_1: perf_event_attr__bindgen_ty_1 {
90 sample_freq: cli.frequency
91 },
92

93 ..Default::default()
94 };
95

96 // Only count kernel-space events
97 attrs.set_exclude_user(1);
98

99 // Use frequency instead of period
100 attrs.set_freq(1);
101

102 (cpuid, attrs)
103 });
104

105 let mut v = Vec::with_capacity(num_possible_cpus);
106 for (cpuid, mut attrs) in iter {
107 // Open the perf-event
108 let fd = perf_event_open(&mut attrs, -1, cpuid as _, -1, 0);
109 if fd < 0 {
110 return Err(std::io::Error::last_os_error().into());
111 }
112

113 // Attach to BPF prog
114 v.push(skel.progs_mut().perf_event_prog().attach_perf_event(fd)?);
115 }
116

117 v
118 };

Listing 5.10: netto/src/main.rs: Opening of the perf_events and attachment of
the associated eBPF program for each CPU.

Stack Trace Map Choice

Listing 5.9 anticipated that the current implementation of Netto uses a BPF_MAP_TYPE_ARRAY
with the accompanying BPF_F_MMAPABLE flag to “lift” the captured stack traces
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from the in-kernel eBPF layer to the user-space controller for analysis, but multi-
ple different choices have been considered in its place during development, some of
which are now described here.

• BPF_MAP_TYPE_STACK_TRACE + BPF_MAP_TYPE_HASH: The stack trace map
type is a special purpose structure that is meant as specialized storage for
stack traces captured from the dedicated eBPF helpers. In particular, the
bpf_get_stackid() function will perform the stack dump efficiently in native
kernel code, as well as hashing the captured data into a “stackid”, which is
then associated to the trace; the captured bytes are automatically stored in the
provided stack trace map, where it can be later retrieved from the user-space
controller via the bpf system call. A second map of type BPF_MAP_TYPE_HASH
is also required to supplement each stackid with the number of identical traces
captured.

The benefit of this approach lies in the automatic in-kernel trace summariza-
tion feature provided by the stack trace map, which reduces the amount of
unique traces that must be independently analyzed by the application. Con-
versely, this solution turned out to be severely inadequate for Netto’s use-case,
as the stack trace map type lacks any efficient method of bulk retrieval of its
entries from the user-space: in its current state, such a solution would require
several system calls per stackid to read and delete from both maps. Consid-
ering that several thousands traces can be produced every second (a number
that also scales linearly with the amount of available CPU cores), the system
call overhead would simply be unacceptable.

• Single BPF_MAP_TYPE_HASH: Conceptually, a BPF_MAP_TYPE_STACK_TRACE is
just a hash map that can only store stack traces keyed by their own stackid.
It must thus be possible to “emulate” its behavior with a more generic hash
map, which could then also alleviate the requirement for a separate map to
store trace counts, as the same information could more cleverly be packed into
the single value type.

The real advantage of this method, however, is the support for batch lookups
through the bpf system call, which enables the application to potentially dump
the entire contents of the map to the user address space with a single tran-
sition to the kernel and back, dramatically enhancing the efficiency of the
trace retrieval operation. Unfortunately, the downside of replacing the dedi-
cated stack trace map is a far greater trace capture overhead in eBPF caused
by having to effectively capture each trace twice. This is due to the helper
bpf_get_stackid() — which represents the only way to obtain a stackid —
only supporting BPF_MAP_TYPE_STACK_TRACE as its target for trace storage.

Although undoubtedly better than the previous suggestion, the single hash
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map solution is hardly the best option when renouncing in-kernel trace sum-
marization.

• BPF_MAP_TYPE_RINGBUF: The eBPF ring buffer is perhaps the most idiomatic
way to stream potentially large amounts of binary data from eBPF to a user-
space consumer, and as such it must be considered for this use case. In Netto’s
online GitHub repository, an implementation based on this map type is avail-
able under the perf-event-ringbuf-reserve branch.
Over its predecessor (the BPF_MAP_TYPE_PERF_EVENT_ARRAY), the bpf ring
buffer improves performance and usability, and should thus always be pre-
ferred. In particular, the new “reserve-commit” API allows the eBPF producer
to reserve a slice of the buffer to write data to, often avoiding an extra copy of
the message. Netto exploits this functionality at the expense of variable sized
messages; the bpf_ringbuf_output() helper could in fact push messages of
variable sizes to the ring, by needing to copy their contents instead.
Finally, the ring buffer’s “smart wakeup” feature — which is capable of waking
up consumers upon reception of a message — is not useful here as the map
will be completely drained during every controller update iteration.

• mmapable BPF_MAP_TYPE_ARRAY: The last of the discussed solutions (and
the one actually implemented in upstream Netto), is a lower-level, more tai-
lored version of the above ring buffer. A bpf array declared with the BPF_F_MMAPABLE
flag essentially acts as a raw memory buffer that is directly accessible both by
eBPF and user-space code, effectively negating any cost of stack trace retrieval
by the controller.

48 struct {
49 __uint(type, BPF_MAP_TYPE_ARRAY);
50 __uint(map_flags, BPF_F_MMAPABLE);
51 __uint(key_size, sizeof(u32));
52 __uint(value_size, sizeof(u64)*128);
53 __uint(max_entries, 1);
54 } stack_traces SEC(".maps");

Listing 5.11: netto/src/bpf/prog.bpf.c: Declaration of the mmapable array map
to store and lift the captured CPU stack traces for Network Stack Sampling.

In the code listing above, that shows the declaration of the map in eBPF,
the max_entries field is set to one only as a placeholder, as the actual size
of the map is calculated at runtime (based on CPU core count and dynamic
configuration settings) and applied before the map is loaded by libbpf. Each
entry encodes the size of the trace and CPU id in its first byte, and the actual
trace in the remaining 127 B (default maximum stack trace size in Linux). The
map is logically split in two slots, implementing a double buffered architecture:
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whenever the controller drains the map, it will scan it from the beginning to
the address of the last inserted entry. During this operation, however, more
traces might be added by eBPF, as the kernel and application domain of Netto
run asynchronously to each other. In a normal single-buffered scenario, this
determines the loss of the newly inserted entries. By utilizing double buffering
instead, there will always be one active slot for writing by eBPF and the other
for trace consumption by the controller, for them to be swapped at every
control loop cycle.
The currently active slot, together with a counter of the filled entries for each
slot, is stored in purposefully allocated global variables of the eBPF program
(eBPF global variables are shared between all programs in their source file, as
well as the controller application).

152 // Swap buffer slots and get the number of stack traces
153 // in the previously active slot
154 let slot_off = self.skel.bss().stack_traces_slot_off as usize;
155 let num_traces_ref;
156 (self.skel.bss().stack_traces_slot_off, num_traces_ref) =
157 if slot_off > 0 {
158 (0, &mut self.skel.bss().stack_traces_count_slot_1)
159 } else {
160 (
161 self.stack_traces_slot_size,
162 &mut self.skel.bss().stack_traces_count_slot_0
163 )
164 };
165

166 // Make sure to read the count *after* swapping the slots
167 let num_traces = *num_traces_ref;
168

169 ... Snippet (perform trace analysis) ...
170

171 // Reset the stack traces index for this slot
172 *num_traces_ref = 0;

Listing 5.12: netto/src/actors/trace_analyzer.rs: How the mmapable array is
accessed by the controller to drain the accumulated stack traces.

Trace Analysis

During each periodic controller iteration, the stack traces produced by eBPF will
be retrieved and “analyzed”, which involves looping over all of their contained
instruction pointers and matching them against a set of selected kernel symbols.
The instruction pointers (or “frames”) that make up a stack trace represent the
return addresses that each function call automatically pushes to the stack, and
can thus be used to reconstruct the steps that led to the moment when the trace
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was captured (excluding functions that have been compiled inline). Each frame
can therefore be directly associated to a specific function of the traced software
(the kernel itself in this context), as it lies within the addresses of its first and last
instructions.

Upon the initial loading of Netto, the virtual file /proc/kallsyms is scanned
to build a balanced tree of the required sub-event functions, which will later be
used to map instruction pointers from stack traces to their respective functions.
The /proc/kallsyms file contains, for each exported symbol of the running ker-
nel and loaded modules, its name and memory address; for functions, this is their
starting address. Since Netto needs the full range of memory addresses where a
function is accessible, the ending address is derived relative to the position of the
subsequent symbol in memory. After the first linear scan of the file, Netto pro-
ceeds with a filtering step, to only retain the small subset of symbols that are
needed by the NET_RX_SOFTIRQ breakdown functionality, such as br_handle_frame
or do_xdp_generic; failing to prune away useless symbols would needlessly aggra-
vate runtime performance. Finally, the remaining entries are placed in a dedicated
balanced tree (which keyes them by their starting address), that allows fast, loga-
rithmic time access for each instruction pointer. In the code, the KSyms structure
(netto/src/ksyms.rs) serves as a wrapper around such tree (Listing 5.13). The
fun field of struct KSymsVal functionally represents a function pointer that de-
scribes what counters must be incremented in case of a match.

7 pub struct KSyms {
8 syms: BTreeMap<u64, KSymsVal>
9 }

10

11 type SymbolFun = Box<dyn for<’a>
12 Fn(&’a mut Counts, &’a mut PerFrameProps) -> Option<&’a mut u16>
13 >;
14

15 struct KSymsVal {
16 range_end: u64,
17 fun: SymbolFun
18 }

Listing 5.13: netto/src/ksyms.rs: Definition of the KSyms structure.

Finally, at runtime, the core of the trace analysis routine is reported in List-
ing 5.14.

5.4 Data Presentation
A crucial part of any diagnostic software is how the data it produces is presented to
the final user. In Netto, three separate output interfaces are available, all of which
have already been introduced when discussing their respective Actix actors: file
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196 for frame_idx in 0..max_frames {
197 // Load stack frame
198 let ip = trace_ptr.add(frame_idx).read_volatile();
199 if ip == 0 {
200 break;
201 }
202

203 // Check for known symbols
204 if let Some((_, KSymsVal { range_end, fun })) = ksyms
205 .syms
206 .range(..=ip)
207 .next_back() {
208 if ip < *range_end {
209 if let Some(cnt) = fun(&mut c, &mut frame_props) {
210 *cnt = 1;
211 }
212 }
213 }
214 }

Listing 5.14: netto/src/ksyms.rs: Core of the trace analysis routine.

logging, Prometheus-compatible logging, and a custom web frontend. This section
expands on the latter option, presenting a more detailed implementation overview,
along with discussing its features.

The custom web frontend is designed as an ideal interface for real time con-
sumption of the CPU utilization metrics, and as such it proved particularly helpful
during development and validation of the tool, whereas stable deployments of Netto
will probably settle for the Prometheus exporter. The main visualizations are a ta-
ble where all events and sub-events are hosted (Figure 5.1), and a bar graph that
updates in real time to reflect the system’s utilization.

The implementation is based on the static delivery of a bare-bones HTML skele-
ton (www/index.html), which calls for the loading of an external module script,
compiled into WebAssembly from the web-frontend crate. The script will then
connect via WebSocket back to Netto, in order to receive the metrics updates as
soon as they are produced. The frontend is hence able to deserialize the received
messages from the Message Pack format and use the data to update the page’s
contents by directly manipulating its DOM.

For the generation of the graph (which Chapter 6 has various examples of),
Netto uses the Plotters library (https://plotters-rs.github.io/home/#!/) to
render it directly into an SVG container. The plot is composed of three vertical
bars that present successive levels of detail into the running system. The leftmost
one presents the overall distribution of the CPU between system, user, and idle
modes, as reported by the /proc/stat metrics; then, the middle bar zooms into
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Figure 5.1: Snapshot of the overview table of Netto’s custom frontend. The screen-
shot was captured on an idle 8-core system.

the kernel section, relating Netto’s base networking events to the total amount of
CPU time spent in the kernel. Finally, the remaining bar shows the NET_RX_SOFTIRQ
breakdown into its main components.
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Chapter 6

Results and Validation

To ensure the quality and correctness of the captured metrics, Netto has been
subjected to testing and validation against a set of controlled workloads, where a
reasonable expectation of the measurement outcome could be formed prior to run-
ning the tests. Additionally, the /proc/stat values have been used as ground truth
on which to base the interpretation of Netto’s output: even though /proc/stat only
provides generic system diagnosis capabilities — and is not in any way specific to
the Linux networking subsystem — there should still be some correlation between
its and Netto’s results.

First of all, however, Section 6.1 reports a formal comparison between Full Func-
tions Tracking and Network Stack Sampling, the two different proposed methods
for implementing the NET_RX_SOFTIRQ cost breakdown functionality, in terms of
performance and accuracy, as well as motivating, in the second case, the stack
trace lift map choice, among those suggested in 5.3.2.

6.1 Full Functions Tracking vs Network Stack Sam-
pling

Previous chapters already conveyed that the Full Functions Tracking strategy would
prove inadequate due to its increased CPU load on the system, thus requiring
the definition of an alternative approach, which materialized in Network Stack
Sampling. In this section, these allegations are finally backed up by suitable data,
allowing the reader to come to an equivalent conclusion.

In order to assess the runtime performance implications of Netto’s monitor-
ing features, the iperf3 [3] throughput testing tool is used to produce a synthetic
networking load between two identical Intel Core i7-6700 based machines running
Ubuntu 22.04 LTS (kernel 5.15) and directly connected at 40 Gbps through a pair of
Intel XL710 QSFP+ NICs. Specifically, a single-stream TCP traffic was used as the
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Figure 6.1: Comparison of the iperf3 TCP throughput between a baseline with no
receiver instrumentation (red), Full Functions Tracking (green), and Network Stack
Sampling (blue).

test-case, and Netto was loaded on the receiver (only the receiver needs to be moni-
tored since the NET_RX_SOFTIRQ breakdown is a receive-side feature). Additionally,
the Generic Receive Offload (GRO) capability has been disabled on the destination
physical interface for two reasons: (i) a CPU bottleneck is introduced, bringing the
practical throughput comfortably below the 40 Gbps link speed, and (ii) without
any flow reconstruction feature, the rate of inbound logical packets is dramatically
increased, aggravating the kernel load and better resembling a real-world scenario,
where a typical server is unlikely to be handling a single huge TCP stream. With
such configuration, Netto’s instrumentation overhead can be estimated implicitly
via the imposed impact to the system’s top throughput as reported by iperf3, in-
stead of attempting difficult and possibly intrusive direct measurements. Figure 6.1
reports the results.

From the baseline of 10.9 Gbps measured without any form of runtime instru-
mentation, Network Stack Sampling only costs 100 to 500 Mbps depending on the
configured sampling rate (1 and 10 kHz are represented in the figure), amounting
to around 4.5% of the total in the worst case. Full Functions Tracking, instead, is
responsible for a massive 35% performance degradation in the same conditions.

Furthermore, Full Functions Tracking’s cost also depends on the type of load
applied to the system, as different kinds and amounts of eBPF probes are hit. This
is showcased by Figure 6.2, where the same iperf3 TCP receive test has been run
with a special host configuration that puts the receiver NIC in a software bridge
(light green). Compared to the previous results, adding an L2 bridge function to the
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Figure 6.2: Overhead of Full Functions Tracking on the iperf3 TCP receive test
under different networking configurations. When bridging is enabled on the host,
effective speed is further reduced.

mix degrades performance significantly even in the “Baseline” case, where Netto
is not loaded. When also considering the Full Functions Tracking capability (row
“All Programs Attached” in the graph), the additional eBPF programs hooked to
bridge-related code incur a further 10% performance penalty over the already high
cost of the technique, bringing the total to about 45%: this figure suggests that Full
Functions Tracking instrumentation can cost up to as much CPU time as the entire
rest of the Linux network stack, in the worst case. The third row of the graph (“All
Programs Empty”) refers to a special build of Full Functions Tracking where all
the eBPF tracing programs were emptied out but still attached to the usual hook
points; the results show that, although lower, a substantial portion of the whole
overhead is attributable to eBPF itself and not only to the cumbersome event stack
mechanism explained in Section 5.3.1. Finally, it must be noted that Network Stack
Sampling’s overhead does not depend on the host configuration or load type.

Another important aspect that is worth considering for the comparison between
Full Functions Tracking and Network Stack Sampling is the achieved accuracy of
the sub-events metrics. The former will in fact provide an exact measurement,
whereas Network Stack Sampling performs an estimate of the metrics based on a
sampling frequency parameter. In Figure 6.3 the accuracy of the sampling strategy
is analyzed at different frequencies; the graph refers to three iperf3 TCP receive
tests conducted at, respectively, 100 Hz, 1 kHz and 10 kHz sampling frequency, and
it plots — for each of these configurations — a histogram showing the measured
CPU utilization for the IPv4 Local Delivery NET_RX_SOFTIRQ sub-event. To improve
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Figure 6.3: Relative accuracy of the measured IPv4 local delivery sub-event at
varying sampling frequencies with the Network Stack Sampling breakdown method.

consistency in the measurement, the iperf3 bandwidth has been artificially limited
to compensate for the increased load of the higher frequency runs, and all but one
CPU cores of the system were disabled to account for scheduling and task migration
noise.

The results show that at 100 Hz the reported values are unusable: the peak at
CPUutilization = 0% in fact conveys periods where the sampling pattern was so
sparse that it missed all occurrences of the ip_local_deliver() function. Con-
versely, at both 1 and 10 kHz, the results appear promising, as only a marginal
amount of accuracy is lost at the lower sampling frequency. Please note, however,
that these tests heavily depend on the update period of the user-space side of the
tool (here kept at the default T = 500 ms): higher values will smooth out the dif-
ferences, possibly making lower frequencies more viable options. Furthermore, it
would be incorrect to assume that the Full Functions Tracking method produces
strictly better spreads, as its intrinsic overhead must also have a negative impact
on the its accuracy.

6.1.1 Preferred Stack Trace Lifting Strategy
Having assessed the undoubted superiority of Network Stack Sampling over Full
Functions Tracking, it is now appropriate to discuss any performance difference
between the various proposed stack trace maps presented in Chapter 5. Among
those four, the first solution based on a BPF_MAP_TYPE_STACK_TRACE is clearly far
from ideal, due to its significant system overhead caused by the large amounts
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Figure 6.4: User-space CPU utilization for Network Stack Sampling with Ring
Buffer and Mmapable Array backends.

of system calls required to retrieve data from it. Likewise, emulating the dedicated
stack trace map with a hash table would not solve all of the problems, since memory
would still need to be copied, potentially in the kernel context as well. For these
reasons, the first two stack trace lifting strategies have not been implemented in
code and have not thus been tested pragmatically. The other two, instead, are much
more promising approaches, and picking a preferred implementation would not be
a trivial task before testing their respective performance. This subsection hence
tries to answer the question of whether the increased ease of use of the ring buffer
comes with a performance overhead compared with the more barebones, lower level
alternative.

In terms of networking throughput performance, the two solutions perform in-
distinguishably in all of the tests they have been subjected to. This suggests that
the cost of submitting a ring buffer entry is virtually identical to that of writing
to an array slot. Despite this performance similarity, the two implementations do
not fare equally in other metrics. Figure 6.4 presents the average user-space cost
(in terms of unnormalized CPU utilization) associated to both map types during
an iperf3 receive test, at varying sampling frequencies.

This cost includes stack trace retrieval and analysis, as well as the calculation
of the metrics. Although both approaches boast very low CPU overhead, the ring
buffer abstraction consistently comes at the price of a slightly increased cost with
respect to the lower level alternative. Also note that the sampling frequencies con-
sidered here are extremely high and only chosen to amplify the usually small cost
of Network Stack Sampling; these values do not reflect the typical cost of a Netto
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tracing session.

6.2 Controlled Tests
In this section, Netto is applied to various different scenarios in a set of controlled
workloads, in order to showcase and analyze its results and further validate the
output metrics. In all cases, the reference testbed is the one introduced in the
previous section, composed of two identical Ubuntu 22.04 systems connected at
40 Gbps.

6.2.1 iperf3 Throughput Tests
First off, the reliable iperf3 load generator was used to produce synthetic UDP and
TCP traffic. This simple workload, while not representative of a typical networking
load, is very useful for ensuring the correctness and demonstrating the quality of
Netto’s diagnosis. Figure 6.5 shows, for four different transport protocols and flow
direction combinations, a snapshot of the custom web frontend’s real time overview
graph, mentioned in the previous chapter.

In the top row, representing the TCP and UDP send tests, the results reflect
prior expectations: the vast majority of the system’s time is spent serving socket
send operations, although a significant portion is also occupied by the ubiquitous
NET_RX_SOFTIRQ, which in this case is mostly invoked to process acknowledgement
packets (in the case of TCP, as demonstrated by the large “Local delivery/v4”
representation on the rightmost bar), or for handling transmission completion in-
terrupts, necessary for skb recycling logic and other tasks (which falls under the
“Driver poll” category). Also notable is a thin sliver of cyan in the “kernel” bar
of the TCP transmission graph, associated with the NET_TX_SOFTIRQ networking
entry-point.

Moving over to the receive tests, the “TX syscalls” event has expectedly been
replaced by its RX equivalent. The TCP test results are especially satisfactory
as all of the kernel time is accounted for by networking tasks. Additionally, since
Generic Receive Offload was enabled during the transfer, a major portion of the
NET_RX_SOFTIRQ’s time is occupied by GRO overhead. Conversely, in the case of
UDP, a large section of the kernel bar is reported as “other”. To better understand
this surprising anomaly, a kernel-side flamegraph1 was generated by plotting the
stack traces captured for Network Stack Sampling: Figure 6.6 shows the annotated
result.

1Special kind of graph that can help visualize CPU activity on a per-function basis by plotting
a set of stack traces.

55



6 – Results and Validation

kernel

idle

0%

100%

TX syscalls

TX softirq

RX softirq

other

Driver poll

NF ingress

NF conntrack

Local delivery/v4

TCP Send

kernel

user

idle

0%

100%

TX syscalls

RX softirq

other

Driver poll

UDP Send

kernel

idle

0%

100%

RX syscalls

RX softirq

other

Driver poll

GRO overhead

NF ingress

NF conntrack

TCP Receive

kernel

user

idle

0%

100%

RX syscalls

RX softirq

other

Driver poll

GRO overhead

NF ingress

NF conntrack

Local delivery/v4

UDP Receive

Figure 6.5: Measured networking cost during an iperf3 TCP (left) and UDP (right)
send (top) and receive (bottom) tests.

The mysterious gap in the kernel’s CPU time was thus revealed to be caused by
other system calls — such as select — which were found to be used in iperf3’s
I/O loop. Furthermore, the generic syscall entry and exit overhead turned out to
also represent a significant slice of the hidden cost: this workload was measured
to generate about 700k system calls every second which, compared to the circa 7
times lower figure for equivalent TCP streams, makes context switch frequency a
typical bottleneck for UDP transfers’ throughput.

6.2.2 Google’s Online Boutique microservices demo

To more closely analyze a typical web server workload, the Google’s “Online Bou-
tique” [4] microservices demo was also tested. The application, distributed as a set
of eleven interacting microservices, was deployed on a Kind [13] Kubernetes cluster
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Figure 6.6: Flamegraph of the entire kernel’s activity during an iperf3 UDP receive
test.

and exposed through a MetalLB [17] load balancer. On the other machine, the ad-
ditionally provided loadgenerator microservice — a Locust-based [1] application
that can generate synthetic HTTP requests, and configured by Google to target
multiple endpoints of the web service, thus creating load on several portions of the
boutique deployment at the same time — was used to stress the cluster at a rate
of about 1000 requests per second. As the test was ongoing, Netto captured the
following CPU usage overview on the serving host (Figure 6.7a).

Immediately noticeable, as compared to the previous iperf3 tests, is the over-
all higher CPU utilization, which now comfortably exceeds 50%. This is easily
explained by the fact that Locust can simulate the traffic generated by multiple
users, whose requests can be handled independently; any competent web-server
would thus spread its workload over different threads of execution, hence achieving
better resource utilization on modern multi-core CPUs. In contrast, a single TCP
or UDP transfer can not be handled by more than one thread, showcasing the lower
processor usage. Additionally, the online boutique stress test has the server spend
more time in user than in kernel mode. Again, this is not surprising as the tasks
of application-level request parsing and handling, as well as the implementation of
the business logic, all belong in the user-space domain. Regarding the time spent in
the kernel, only a relatively small fraction of it can be attributed to raw networking
work. Among this, most is due to the forwarding network function, responsible for
exchanging data between the microservices in the host’s internal virtual network.
Another significant portion of the central bar is the “IO workers” section, which in
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Figure 6.7: Measured networking cost while stress-testing Google’s “Online Bou-
tique” (left) and Memcached (right).

this case maps to an io_uring SQPOLL thread: clearly, some microservice is using
io_uring with the IORING_SETUP_SQPOLL flag set. The remaining kernel time is
once again mostly spent in various system calls and relative system entry and exit
overhead, as shown in the associated flamegraph (Figure 6.8).

6.2.3 Memcached

Memcached [16] is a high-performance generic distributed memory object caching
system, frequently used in research literature as a benchmark for its fast packet pro-
cessing and network stressing characteristics. For this thesis, Memcached has been
deployed in a containerized form thanks to its official Docker image, and stressed
by RedisLabs’ memtier_benchmark (https://github.com/RedisLabs/memtier_
benchmark), a Redis and Memcached traffic generator written in C++.

Once again, Netto was used on the Memcached server to capture its CPU uti-
lization in real time, a snapshot of which is reported in Figure 6.7b. Compared with
the microservices demo, the distributed object database showcases a far different
allocation of the CPU resource between user and kernel modes, this time clearly
favouring the latter. This behavior is a testament to the application’s high level
of optimization, as its performance is practically dictated by the kernel’s network
throughput. For this specific deployment option, a substantial portion of the net-
working cost is caused by bridging and forwarding, likely due to Docker’s virtual
network topology.
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6.3 CrownLabs Worker Monitoring

Finally, to test consistency and coherence of the measurements over extended pe-
riods of time, as well as verifying the tool on concrete production clusters, Netto
was deployed on CrownLabs’ (https://crownlabs.polito.it/) worker4 node.

CrownLabs is Politecnico di Torino’s internal computing cluster designed to
provide students remote VM hosting for laboratories and exams. The system’s in-
frastructure is based on a Kubernetes-powered cluster supported by a total of six
dedicated servers; the KubeVirt project is then employed to support operating tra-
ditional virtual machines instead of relying on containerized desktop environment
technology. The specific worker4, which also acts as the cluster’s master, is powered
by an Intel Xeon Gold 5120 14-core processor with SMT, for a total of 28 logical

59

https://crownlabs.polito.it/


6 – Results and Validation

Figure 6.9: CPU utilization statistics of the CrownLabs worker4 node over a
one-day observation period as captured by Netto and displayed by Grafana. The
graphs show: overall CPU utilization (top), networking CPU utilization (middle)
and breakdown of the NET_RX_SOFTIRQ (bottom).

CPUs.
To more comfortably track Netto’s metrics for this system over time, a Grafana-

based toolchain was set up to display the time series and allow their exploration;
additionally, the Grafana Mimir metrics database software was used for long-term
data storage. These tools, along with the Prometheus scraper, were hosted on a
second machine as to not clutter the CrownLabs node.

Figure 6.9 displays the results of a one-day long tracing session of the worker4
node as displayed on a custom Grafana dashboard. The visualizations show (top to
bottom): overall system CPU utilization, cumulative networking CPU utilization
across the different network events, and the NET_RX_SOFTIRQ breakdown. As the
data portrays, with an average system occupancy of about 20%, the Linux net-
work stack is typically responsible for less than half a percentage point, except for
the occasional peak caused by bursty data transfers. In any case, the nature of
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this visualization allows system administrators to naturally see periodicities in the
networking load, and debug possibly undesired behavior.
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Chapter 7

Conclusions and Future
Work

This thesis presented Netto, a Linux application that leverages the power and flexi-
bility of the eBPF in-kernel virtual machine to perform dynamic tracing of an host’s
network stack in order to estimate the amount of CPU resources spent handling
network packets. This information can in fact be of primary importance when eval-
uating a system’s performance and can represent a helpful insight for enhancing
efficiency and optimizing bottlenecks in a server’s networking configuration.

During the design phase of the tool, the Linux network stack architecture was
thoroughly studied to understand its structure and intricacies; four entry-points
have thus been identified as the interface between the in-kernel networking services
and the physical network or application domain: two dedicated softirqs and the
socket send and receive operations. Netto hence relies on the instrumentation of
these “events” with eBPF probes to compute each invocation’s execution time, and
then sum them together to obtain the overall CPU utilization of the entire network
stack. As discussed, the choice of eBPF enabled Netto to provide consumption
metrics in real time and with minimal system overhead, which itself allows con-
tinuous operation and integration with existing data center monitoring infrastruc-
ture. Additionally, the NET_RX_SOFTIRQ breakdown feature augments Netto with
the ability to present more detailed information about the networking usage by
showing dedicated metrics for most significant network functions such as bridging
and forwarding, which can greatly improve the observability of the network stack’s
internals.

During the implementation stage, several challenges were faced due to synchro-
nization concerns between the different tracked events, as well as unacceptable per-
formance overhead induced by “Full Functions Tracking”, the initial solution for
the event breakdown logic, that therefore had to be later replaced by the improved
“Network Stack Sampling” method, where a hybrid tracing/sampling architecture
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solved the overhead problems while still maintaining adequate measurement accu-
racy.

Finally, in the evaluation step the tool’s performance was analyzed, as well as
discussing its results and reliability, by comparing its output on simple controlled
tests with prior expectations and validating it with flamegraphs whenever such
expectations were not met.

7.1 Current Limitations
Netto has been designed from its inception to only target in-kernel networking
tasks. This covers the majority of the network-related work performed by typical
servers up to and including the transport layer, but it fails to consider contributions
from higher level protocols, as well as network technology that is implemented
in user-space. This includes the QUIC reliable transport stack, user-space TLS,
and DPDK-based custom data planes, as well as application-level proxies that are
becoming so common in the cloud-native world. Furthermore, Netto intentionally
ignores NIC drivers’ top halves, where the large variety of hardware vendors and
products would impose unreasonable and continuous efforts in supporting all the
possible configurations, though this aspect would hardly represent a significant
portion of the overall CPU utilization.

7.2 Future Work
The work presented for Netto could be reasonably expanded in several different
directions. First off, the event breakdown capability could be expanded to consider
additional and more specific sub-events, which could become significant for specific
types of workloads not considered in this work. Besides, the breakdown functionality
could also be extended to other top-level events beyond the NET_RX_SOFTIRQ, a
possibility not yet contemplated by the tool. These considerations could give Netto
a greater resolution for addressing and tackling networking costs.

Another aspect worth exploring in the future is the possibility to further reduce
system overhead caused by the eBPF instrumentation. Although usually minimal
for the networking and hardware configuration considered during testing, there’s
a possibility for higher impacts to be observed in different setups. In particu-
lar, faster link speeds could determine the increased CPU load for eBPF prob-
ing due to inflated event invocation frequency: at or above 100 Gbps, the default
NET_RX_SOFTIRQ batching factor of 300 could prove insufficient to offset the re-
ceived packet frequency, thus resulting in significant eBPF overhead. A possible
solution to this issue could be implemented by moving the entire measurement
stack to the sampling domain (which exhibits a fixed and user-configurable CPU
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cost), that has already been shown to be capable of providing sufficient accuracy
at minimal overhead.

Finally, a more ambitious goal would be to experiment with hooking Netto’s
networking observation capabilities into third party projects, where the real-time
networking utilization data could allow to dynamically improve system efficiency or
performance, for instance by driving a data center’s consolidation algorithms based
on instantaneous CPU utilization metrics.
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